US20180280394A1 - Methods of treating liver disease - Google Patents
Methods of treating liver disease Download PDFInfo
- Publication number
- US20180280394A1 US20180280394A1 US15/935,759 US201815935759A US2018280394A1 US 20180280394 A1 US20180280394 A1 US 20180280394A1 US 201815935759 A US201815935759 A US 201815935759A US 2018280394 A1 US2018280394 A1 US 2018280394A1
- Authority
- US
- United States
- Prior art keywords
- formula
- pharmaceutically acceptable
- compound
- liver
- effective amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- JAZVTCLJSCGTQP-UHFFFAOYSA-N CC1=C(C2=NOC(C3CC3)=C2COC2=CC=C(C3(O)CN(C4=CC(C(=O)O)=CC=N4)C3)C(Cl)=C2)C(Cl)=CC=C1 Chemical compound CC1=C(C2=NOC(C3CC3)=C2COC2=CC=C(C3(O)CN(C4=CC(C(=O)O)=CC=N4)C3)C(Cl)=C2)C(Cl)=CC=C1 JAZVTCLJSCGTQP-UHFFFAOYSA-N 0.000 description 5
- JDQXIZDTDUREKP-UHFFFAOYSA-N CC1=CC(F)=CC(Cl)=C1C1=NOC(C2CC2)=C1COC1=CC=C(C2(O)CN(C3=C(F)C=C(C(=O)O)C=N3)C2)C(Cl)=C1 Chemical compound CC1=CC(F)=CC(Cl)=C1C1=NOC(C2CC2)=C1COC1=CC=C(C2(O)CN(C3=C(F)C=C(C(=O)O)C=N3)C2)C(Cl)=C1 JDQXIZDTDUREKP-UHFFFAOYSA-N 0.000 description 5
- PGAYJWWJOPHNDA-NRFANRHFSA-N COC1=CC=CC=C1[C@H](CN1C(=O)N(C(C)(C)C(=O)O)C(=O)C2=C1SC(C1=NC=CO1)=C2C)OC1CCCCC1 Chemical compound COC1=CC=CC=C1[C@H](CN1C(=O)N(C(C)(C)C(=O)O)C(=O)C2=C1SC(C1=NC=CO1)=C2C)OC1CCCCC1 PGAYJWWJOPHNDA-NRFANRHFSA-N 0.000 description 5
- VOZCDFGICFPGET-KPLVRAHFSA-N COC1=CC=CC=C1[C@H](CN1C(=O)N(C(C)(C)C(=O)O)C(=O)C2=C1SC(C1=NC=CO1)=C2C)O[C@H]1CC[C@@H](C)CC1 Chemical compound COC1=CC=CC=C1[C@H](CN1C(=O)N(C(C)(C)C(=O)O)C(=O)C2=C1SC(C1=NC=CO1)=C2C)O[C@H]1CC[C@@H](C)CC1 VOZCDFGICFPGET-KPLVRAHFSA-N 0.000 description 5
- BPZKKRJVZJRFKV-UEXGIBASSA-N CC(C)(C(O)=O)N(C(c1c(N2C[C@@H](c3ccccc3OC)O[C@H](CC3)CC[C@H]3O)[s]c(-c3ncc[o]3)c1C)=O)C2=O Chemical compound CC(C)(C(O)=O)N(C(c1c(N2C[C@@H](c3ccccc3OC)O[C@H](CC3)CC[C@H]3O)[s]c(-c3ncc[o]3)c1C)=O)C2=O BPZKKRJVZJRFKV-UEXGIBASSA-N 0.000 description 1
- BNTXXTIADVQHED-UHFFFAOYSA-N OC(C1)(CN1c(ncc(C(O)=O)c1)c1F)c(c(Cl)c1)ccc1OCc1c(C2CC2)[o]nc1-c(c(Cl)cc(F)c1)c1Cl Chemical compound OC(C1)(CN1c(ncc(C(O)=O)c1)c1F)c(c(Cl)c1)ccc1OCc1c(C2CC2)[o]nc1-c(c(Cl)cc(F)c1)c1Cl BNTXXTIADVQHED-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
Definitions
- the present disclosure relates to methods of preventing and/or treating liver diseases.
- Liver disease is generally classified as acute or chronic based upon the duration of the disease. Liver disease may be caused by infection, injury, exposure to drugs or toxic compounds, alcohol, impurities in foods, and the abnormal build-up of normal substances in the blood, an autoimmune process, a genetic defect (such as haemochromatosis), or unknown cause(s).
- Liver disease is a leading cause of death world wide. In particular, it has been seen that a diet high in fat damages the liver in ways that are surprisingly similar to hepatitis.
- the American Liver Foundation estimates that more than 20 percent of the population has non-alcoholic fatty liver disease (NAFLD). It is suggested that obesity, unhealthy diets, and sedentary lifestyles may contribute to the high prevalence of NAFLD. When left untreated, NAFLD can progess to non-alcoholic steatohepatitis (NASH) causing serious adverse effects. Once NASH develops, it causes the liver to swell and scar (i.e. cirrhosis) over time.
- NASH non-alcoholic steatohepatitis
- liver disease can be any liver disease, including, but not limited to, chronic and/or metabolic liver diseases, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH).
- NAFLD nonalcoholic fatty liver disease
- NASH nonalcoholic steatohepatitis
- NASH nonalcoholic steatohepatitis
- the ACC inhibitor and the FXR agonist can be coadministered.
- the ACC inhibitor and the FXR agonist can be administered together as a single pharmaceutical composition, or separately in more than one pharmaceutical composition.
- a pharmaceutical composition comprising a therapeutically effective amount of an ACC inhibitor and a therapeutically effective amount of a FXR agonist.
- FIG. 1 Liver triglycerides in umol/g in the murine FFD model. (*p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001;****p ⁇ 0.0001 significantly different from vehicle by ANOVA). Graph shows mean ⁇ SEM.
- FIG. 2 ALT IU/L in the murine FFD model. (*** p ⁇ 0.001; significantly different from vehicle by ANOVA). Graph shows mean ⁇ SEM.
- FIG. 3 Hepatic expression of liver fibrosis gene Col1a1 measured by quantitative RT-PCR in the murine FFD model. (**p ⁇ 0.01; ****p ⁇ 0.0001 significantly different from vehicle by ANOVA; # significantly different from either single agent by t-test). Graph shows mean ⁇ SEM.
- FIG. 4 Hepatic expression of liver fibrosis gene Timp1 measured by quantitative RT-PCR in the murine FFD model. (*p ⁇ 0.05; ****p ⁇ 0.0001 significantly different from vehicle by ANOVA; # significantly different from either single agent by t-test). Graph shows mean ⁇ SEM.
- FIG. 5 Percent PSR positive area by quantitative image analysis in the rat CDHFD model. (**p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001 significantly different from vehicle by t-test; & p ⁇ 0.001 significantly different from start of treatment by t-test). Graph shows mean ⁇ SEM.
- FIG. 6 Percent ⁇ -SMA positive area by quantitative image analysis in the rat CDHFD model. (**p ⁇ 0.01 significantly different from vehicle by t-test; & p ⁇ 0.001 significantly different from start of treatment by t-test; # p ⁇ 0.05 significantly different from either single agent by t-test). Graph shows mean ⁇ SEM.
- FIG. 7 Timp1 protein measured in plasma by ELISA in the rat CDHFD model. (*p ⁇ 0.05 significantly different from vehicle by t-test; & p ⁇ 0.001 significantly different from start of treatment by t-test). Graph shows mean ⁇ SEM.
- FIG. 8 Hyaluronic acid (HA) measured in plasma by ELISA in the rat CDHFD model. **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001 significantly different from vehicle by t-test). Graph shows mean ⁇ SEM.
- FIG. 9 N-terminal propeptide of Type III Collagen (PIIINP) measured in plasma by ELISA in the rat CDHFD model. (*p ⁇ 0.05,**p ⁇ 0.01, ****p ⁇ 0.0001 significantly different from vehicle by t-test; & p ⁇ 0.001 significantly different from start of treatment by t-test; # p ⁇ 0.05 significantly different from either single agent by t-test). Graph shows mean ⁇ SEM.
- the term “about” used in the context of quantitative measurements means the indicated amount ⁇ 10%, or alternatively the indicated amount ⁇ 5% or ⁇ 1%.
- pharmaceutically acceptable salt refers to a salt of a compound disclosed herein that retains the biological effectiveness and properties of the underlying compound, and which is not biologically or otherwise undesirable.
- acid addition salts and base addition salts are acid addition salts and base addition salts.
- Pharmaceutically acceptable acid addition salts may be prepared from inorganic and organic acids.
- Acids and bases useful for reaction with an underlying compound to form pharmaceutically acceptable salts are known to one of skill in the art.
- methods of preparing pharmaceutically acceptable salts from an underlying compound are known to one of skill in the art and are disclosed in for example, Berge, at al. Journal of Pharmaceutical Science , January 1977 vol. 66, No. 1, and other sources.
- “pharmaceutically acceptable carrier” includes excipients or agents such as solvents, diluents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like that are not deleterious to the disclosed compound or use thereof.
- excipients or agents such as solvents, diluents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like that are not deleterious to the disclosed compound or use thereof.
- the use of such carriers and agents to prepare compositions of pharmaceutically active substances is well known in the art (see, e.g., Remington's Pharmaceutical Sciences , Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics , Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.).
- therapeutically effective amount and “effective amount” are used interchangibly and refer to an amount of a compound that is sufficient to effect treatment as defined below, when administered to a patient (e.g., a human) in need of such treatment in one or more doses.
- the therapeutically effective amount will vary depending upon the patient, the disease being treated, the weight and/or age of the patient, the severity of the disease, or the manner of administration as determined by a qualified prescriber or care giver.
- treatment means administering a compound or pharmaceutically acceptable salt thereof for the purpose of: (i) delaying the onset of a disease, that is, causing the clinical symptoms of the disease not to develop or delaying the development thereof; (ii) inhibiting the disease, that is, arresting the development of clinical symptoms; and/or (iii) relieving the disease, that is, causing the regression of clinical symptoms or the severity thereof.
- Liver diseases are acute or chronic damages to the liver based on the duration of the disease.
- the liver damage may be caused by infection, injury, exposure to drugs or toxic compounds such as alcohol or impurities in foods, an abnormal build-up of normal substances in the blood, an autoimmune process, a genetic defect (such as haemochromatosis), or other unknown causes.
- liver diseases include, but are not limited to, cirrhosis, liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic steatohepatitis (ASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and hepatitis, including both viral and alcoholic hepatitis.
- NAFLD non-alcoholic fatty liver disease
- NASH non-alcoholic steatohepatitis
- ASH alcoholic steatohepatitis
- hepatic ischemia reperfusion injury hepatic ischemia reperfusion injury
- PBC primary biliary cirrhosis
- PSC primary sclerosing cholangitis
- hepatitis including both viral and alcoholic hepatitis.
- Non-alcoholic fatty liver disease is the build up of extra fat in liver cells that is not caused by alcohol.
- NAFLD may cause the liver to swell (i.e. steatohepatitis), which in turn may cause scarring (i.e. cirrhosis) over time and may lead to liver cancer or liver failure.
- NAFLD is characterized by the accumulation of fat in hepatocyes and is often associated with some aspects of metabolic syndrome (e.g. type 2 diabetes mellitus, insulin resistance, hyperlipidemia, hypertension). The frequency of this disease has become increasingly common due to consumption of carbohydrate-rich and high fat diets.
- a subset ( ⁇ 20%) of NAFLD patients develop nonalcoholic steatohepatitis (NASH).
- NASH a subtype of fatty liver disease
- NAFLD a subtype of fatty liver disease
- It is characterized by macrovesicular steatosis, balloon degeneration of hepatocytes, and/or inflammation ultimately leading to hepatic scarring (i.e. fibrosis).
- Patients diagnosed with NASH progress to advanced stage liver fibrosis and eventually cirrhosis.
- the current treatment for cirrhotic NASH patients with end-stage disease is liver transplant.
- PSC primary sclerosing cholangitis
- Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, that occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and often requires liver transplantation.
- a method of treating and/or preventing liver disease in a patient in need thereof comprising administering to the patient a therapeutically effective amount of an ACC inhibitor in combination with a therapeutically effective amount of a FXR agonist.
- the presence of active liver disease can be detected by the existence of elevated enzyme levels in the blood.
- blood levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) above clinically accepted normal ranges are known to be indicative of on-going liver damage.
- Routine monitoring of liver disease patients for blood levels of ALT and AST is used clinically to measure progress of the liver disease while on medical treatment. Reduction of elevated ALT and AST to within the accepted normal range is taken as clinical evidence reflecting a reduction in the severity of the patient's on-going liver damage.
- the liver disease is a chronic liver disease.
- Chronic liver diseases involve the progressive destruction and regeneration of the liver parenchyma, leading to fibrosis and cirrhosis.
- chronic liver diseases can be caused by viruses (such as hepatitis B, hepatitis C, cytomegalovirus (CMV), or Epstein Barr Virus (EBV)), toxic agents or drugs (such as alcohol, methotrexate, or nitrofurantoin), a metabolic disease (such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), haemochromatosis, or Wilson's Disease), an autoimmune disease (such as Autoimmune Chronic Hepatitis, Primary Biliary Cholangitis (formerly known as Primary Biliary Cirrhosis), or Primary Sclerosing Cholangitis, or other causes (such as right heart failure).
- viruses such as hepatitis B, hepatitis C, cytomegalovirus (CMV), or Epstein
- cirrhosis is characterized pathologically by loss of the normal microscopic lobular architecture, with fibrosis and nodular regeneration. Methods for measuring the extent of cirrhosis are well known in the art. In one embodiment, the level of cirrhosis is reduced by about 5% to about 100%.
- the level of cirrhosis is reduced by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% in the subject.
- the liver disease is a metabolic liver disease.
- the liver disease is non-alcoholic fatty liver disease (NAFLD).
- NAFLD is associated with insulin resistance and metabolic syndrome (obesity, combined hyperlipidemia, diabetes mellitus (type II) and high blood pressure). NAFLD is considered to cover a spectrum of disease activity, and begins as fatty accumulation in the liver (hepatic steatosis).
- NAFLD has several other known causes.
- NAFLD can be caused by certain medications, such as amiodarone, antiviral drugs (e.g., nucleoside analogues), aspirin (rarely as part of Reye's syndrome in children), corticosteroids, methotrexate, tamoxifen, or tetracycline.
- NAFLD has also been linked to the consumption of soft drinks through the presence of high fructose corn syrup which may cause increased deposition of fat in the abdomen, although the consumption of sucrose shows a similar effect (likely due to its breakdown into fructose). Genetics has also been known to play a role, as two genetic mutations for this susceptibility have been identified.
- NAFLD non-alcoholic steatohepatitis
- NASH non-alcoholic steatohepatitis
- a method of treating and/or preventing nonalcoholic steatohepatitis (NASH) in a patient in need thereof comprising administering to the patient a therapeutically effective amount of an ACC inhibitor in combination with a therapeutically effective amount of a a FXR agonist.
- liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases.
- advanced liver fibrosis results in cirrhosis and liver failure.
- Methods for measuring liver histologies such as changes in the extent of fibrosis, lobular hepatitis, and periportal bridging necrosis, are well known in the art.
- the level of liver fibrosis which is the formation of fibrous tissue, fibroid or fibrous degeneration, is reduced by more that about 90%. In one embodiment, the level of fibrosis, which is the formation of fibrous tissue, fibroid or fibrous degeneration, is reduced by at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 10%, at least about 5% or at least about 2%.
- the compounds provided herein reduce the level of fibrogenesis in the liver.
- Liver fibrogenesis is the process leading to the deposition of an excess of extracellular matrix components in the liver known as fibrosis. It is observed in a number of conditions such as chronic viral hepatitis B and C, alcoholic liver disease, drug-induced liver disease, hemochromatosis, auto-immune hepatitis, Wilson disease, Primary Biliary Cholangitis (formerly known as Primary Biliary Cirrhosis), sclerosing cholangitis, liver schistosomiasis and others.
- the level of fibrogenesis is reduced by more that about 90%.
- the level of fibrogenesis is reduced by at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least 40%, at least about 30%, at least about 20%, at least about 10%, at least about 5% or at least 2%.
- provided herein is a method of treating and/or preventing primary sclerosing cholangitis (PSC) in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of an ACC inhibitor in combination with a therapeutically effective amount of a FXR agonist.
- PSC primary sclerosing cholangitis
- NASH non-alcoholic fatty acid deficiency
- compounds useful for the treatment of NASH would be useful for slowing, improving or reversing epigenetic age or effects of aging due to NASH.
- combination therapies for the treatment of NASH such as, for example, the combination of an ACC inhibitor with an an FXR agonist as disclosed herein may be useful for improvement or reversal of aging effects due to NASH.
- the ACC inhibitor and the FXR agonist may be administered together in a combination formulation or in seperate pharmaceutical compositions, where each inhibitor may be formulated in any suitable dosage form.
- the methods provided herein comprise administering separately a pharmaceutical composition comprising an ACC inhibitor and a pharmaceutically acceptable carrier or excipient and a pharmaceutical composition comprising a FXR agonist and a pharmaceutically acceptable carrier or excipient.
- Combination formulations according to the present disclosure comprise an ACC inhibitor and a FXR agonist together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents.
- Combination formulations containing the active ingredient may be in any form suitable for the intended method of administration.
- the ACC inhibitor is a compound having the structure of Formula (I):
- the ACC inhibitor is a compound having the structure of Formula (II):
- the ACC inhibitor is the compound of Formula (I) or a pharmaceutically acceptable salt thereof. In one embodiment, the ACC inhibitor is the compound of Formula (II) or a pharmaceutically acceptable salt thereof.
- the FXR agonist is a compound having the structure of Formula (III):
- the FXR agonist is a compound having the structure of Formula (IV):
- the compounds of Formula (III) and Formula (IV) may be synthesized and characterized using methods known to those of skill in the art, such as those described in U.S. Publication No. 2014/0221659.
- compositions both for veterinary and for human use, of the disclosure comprise at least one of the active ingredients, together with one or more acceptable carriers therefor and optionally other therapeutic ingredients.
- the carrier(s) must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and physiologically innocuous to the recipient thereof.
- Each of the active ingredients can be formulated with conventional carriers and excipients, which will be selected in accord with ordinary practice.
- Tablets can contain excipients, glidants, fillers, binders and the like.
- Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the Handbook of Pharmaceutical Excipients (1986). Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like.
- the pH of the formulations ranges from about 3 to about 11, but is ordinarily about 7 to 10.
- each active ingredient will be administered in a dose from 0.01 milligrams to 1 gram.
- the dosage will be from about 10 milligrams to 450 milligrams.
- the dosage will be from about 25 to about 250 milligrams.
- the dosage will be about 50 or 100 milligrams.
- the dosage will be about 100 milligrams.
- 20 mg of an ACC inhibitor is administered.
- 20 mg of a compound of Formula (II) is administered.
- 30 mg of an FXR agonist is administered.
- 30 mg of a compound of Formula (III) is administered. It is contemplated that the active ingredients may be administered once, twice or three times a day. Also, the active ingredients may be administered once or twice a week, once every two weeks, once every three weeks, once every four weeks, once every five weeks, or once every six weeks.
- the pharmaceutical composition for the active ingredient can include those suitable for the foregoing administration routes.
- the formulations can conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington's Pharmaceutical Sciences (Mack Publishing Co., Easton, Pa.). Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
- Formulations suitable for oral administration can be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
- the active ingredient may also be administered as a bolus, electuary or paste.
- the active ingredient may be administered as a subcutaneous injection.
- a tablet can be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets can be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, or surface active agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient therefrom.
- the active ingredient can be administered by any route appropriate to the condition. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with for example the condition of the recipient. In certain embodiments, the active ingredients are orally bioavailable and can therefore be dosed orally. In one embodiment, the patient is human.
- the ACC inhibitor and the FXR agonist can be administered together in a single pharmaceutical composition, e.g. a fixed dose combination, or seperately (either concurrently or sequentially) in more than one pharmaceutical composition.
- the ACC inhibitor and the FXR agonist are administered together.
- the ACC inhibitor and the FXR agonist are administered separately.
- the ACC inhibitor is administered prior to the FXR agonist.
- the FXR agonist is administered prior to the ACC inhibitor.
- the ACC inhibitor and the FXR agonist can be administered to the patient by the same or different routes of delivery.
- compositions of the disclosure comprise an effective amount of an ACC inhibitor selected from the group consisting of a compound of Formula (I) and a compound of Formula (II), or a pharmaceutically acceptable salt thereof, and an effective amount of a FXR agonist selected from the group consisting of a compound of Formula (III) and a compound of Formula (IV), or a pharmaceutically acceptable salt thereof.
- compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable.
- excipients may be, for example, inert diluents, such as, for example, calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium, povidone, calcium or sodium phosphate; granulating and disintegrating agents, such as, for example, maize starch, or alginic acid; binding agents, such as, for example, cellulose, microcrystalline cellulose, starch, gelatin or acacia; and lubricating agents, such as, for example, magnesium stearate, stearic acid or talc.
- inert diluents such as, for example, calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium, povidone, calcium or sodium phosphate
- granulating and disintegrating agents such as, for example, maize starch, or alginic acid
- binding agents such as, for example, cellulose, microcrystalline cellulose, starch, gelatin or aca
- Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
- a time delay material such as, for example, glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.
- Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, such as, for example, peanut oil, liquid paraffin or olive oil.
- an inert solid diluent for example calcium phosphate or kaolin
- an oil medium such as, for example, peanut oil, liquid paraffin or olive oil.
- Aqueous suspensions of the disclosure contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
- excipients include a suspending agent, such as, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as, for example, a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate
- the aqueous suspension may also contain one or more preservatives such as, for example, ethyl or n-propyl p-hydroxy-benzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as, for example, sucrose or saccharin.
- Oil suspensions may be formulated by suspending the active ingredient in a vegetable oil, such as, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as, for example, liquid paraffin.
- the oral suspensions may contain a thickening agent, such as, for example, beeswax, hard paraffin or cetyl alcohol.
- Sweetening agents such as, for example, those set forth above, and flavoring agents may be added to provide a palatable oral preparation.
- These compositions may be preserved by the addition of an antioxidant such as, for example, ascorbic acid.
- Dispersible powders and granules of the disclosure suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives.
- a dispersing or wetting agent and suspending agents are exemplified by those disclosed above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
- the pharmaceutical compositions of the disclosure may also be in the form of oil-in-water emulsions.
- the oily phase may be a vegetable oil, such as, for example, olive oil or arachis oil, a mineral oil, such as, for example, liquid paraffin, or a mixture of these.
- Suitable emulsifying agents include naturally-occurring gums, such as, for example, gum acacia and gum tragacanth, naturally occurring phosphatides, such as, for example, soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as, for example, sorbitan monooleate, and condensation products of these partial esters with ethylene oxide, such as, for example, polyoxyethylene sorbitan monooleate.
- the emulsion may also contain sweetening and flavoring agents. Syrups and elixirs may be formulated with sweetening agents, such as, for example, glycerol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.
- compositions of the disclosure may be in the form of a sterile injectable preparation, such as, for example, a sterile injectable aqueous or oleaginous suspension.
- a sterile injectable preparation such as, for example, a sterile injectable aqueous or oleaginous suspension.
- This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as, for example, a solution in 1,3-butane-diol or prepared as a lyophilized powder.
- a non-toxic parenterally acceptable diluent or solvent such as, for example, a solution in 1,3-butane-diol or prepared as a lyophilized powder.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution
- sterile fixed oils may conventionally be employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- fatty acids such as, for example, oleic acid may likewise be used in the preparation of injectables.
- a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weight:weight).
- the pharmaceutical composition can be prepared to provide easily measurable amounts for administration.
- an aqueous solution intended for intravenous infusion may contain from about 3 to 500 ⁇ g of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
- the formulation is typically administered about twice a month over a period of from about two to about four months.
- Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations can be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use.
- sterile liquid carrier for example water for injection
- Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described.
- Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
- NASH non-alcoholic steatohepatitis
- FFD mice were subsequently treated with placebo (vehicle), an ACC inhibitor (Formula (I)), an FXR agonist (Formula (III)), or with the combination of Formula (I) and Formula (III) for 1 month.
- Control mice remained on a normal chow diet for the entire 6 month study period.
- Endpoint analyses included biochemical quantification of liver triglycerides, plasma ALT, and measurement of the pro-fibrotic transcripts Timp1 and Col1A1 in liver.
- mice Male C57CL/6 mice (aged 12 weeks at study inception) were used in this study. All procedures used to study the animals were in the compliance with the U.S. Department of Agriculture's Animal Welfare Act (9 CFR Parts 1, 2, and 3); the Guide for the Care and Use of Laboratory Animals (Institute for Laboratory Animal Research, The National Academys Press, Washington, D.C.); and the National Institutes of Health, Office of Laboratory Animal Welfare.
- the experimental design is shown in Table 1.
- Study animals were administered either a standard chow diet (Harlan Teklad Global Diets 2014, TD2014) or a commercially available high fat, high cholesterol diet (Research Diets Inc, DB12079B) (the FFD).
- Animals receiving the FFD were administered fructose/glucose in drinking water formulated as follows: 23.1 g fructose (Sigma, F2543) and 17.2 g of glucose (Sigma, 49158) was mixed into 1000 mL of drinking water.
- the compound of Formula (I) and the compound of Formula (III) were formulated in 0.5% sodium carboxymethylcellulose (medium viscosity), 1% w/w ethanol, 98.5% w/w 50 mM Tris Buffer, pH 8 in reverse osmosis water.
- the compound of Formula (I) was formulated at either 0.1 or 0.2 mg/mL and given in the dose provided in Table 1
- the compound of Formula (III) was formulated at 2 mg/mL and given in the dose provided in Table 1.
- mice in groups 1-6 were sham dosed with vehicle BID.
- the sham dosing was designed to acclimate animals to oral gavage dose administration.
- animals in all dose groups were dosed three times daily; twice sequentially in the AM (7:00+/ ⁇ 1 hour), and once in the evening (19:00+/ ⁇ 1 hr), with the same volume of formulation containing no compound (group 1, vehicle) or the appropriate compounds as outlined below (Table 1) for 28 days (until dosing Day 29). Each group was split into two and half were sacrificed 2 hours post dose, and half were sacrificed 8 hours post dose on Day 29.
- Mouse liver tissue samples (25 ⁇ 10 mg, accurately weighed in frozen state) were homogenized and extracted with a water immiscible organic solvent mixture that extracts the triacylglyceride fraction as well as the free and esterified cholesterol fractions into the organic phase. After centrifugation, an aliquot of the organic upper layer, containing the triacylglycerides, cholesterol and cholesterol esters was diluted either 10-fold or 25-fold with ethanol. Two separate aliquots of this dilution were taken. One aliquot was analyzed for triacylglycerides, the second aliquot was used for the total cholesterol determination.
- Triacylglyceride determination For the triacylglyceride determination, one aliquot of the 25-fold dilution (or no dilution in the case of samples which have low triacylglyceride content) was evaporated under a stream of nitrogen. The dried extract was reconstituted stepwise with a 0.1% sodium dodecyl sulfate in PBS solution under ultrasonication followed by mixing with the Triacylglyceride Determination Reagent (InfinityTM Triglycerides Liquid Stable Reagent, Thermo Scientific, Product Data Sheet, InfinityTM, Triglycerides Liquid Stable Reagent).
- This reagent solution contained several enzymes, cofactors and the chromogenic reagent 4-aminoantipyrine.
- TAG triacylglycerides
- Triacylglyceride Determination Reagent After incubation with the Triacylglyceride Determination Reagent for 30 min at 37° C., samples were transferred into a microtiter plate, and the absorbance is measured at 540 nm in a microplate reader (SpectraMax M2, Molecular Devices). Quantitation was performed using a linear least squares regression analysis generated from fortified calibration standards using glyceryl trioleate (triolein) as triacylglyceride reference standard. Calibration standard samples were taken through the same extraction and incubation steps as the tissue samples. Weight corrections and concentration calculations were performed using Microsoft Excel 2013. Final tissue contents were given in ⁇ mol Triacylglyceride (TAG)/g Liver Tissue.
- TAG Triacylglyceride
- Serum ALT was measured by Pyruvate with pyridoxal-5′-phosphate and analyzed on the Cobas Hitachi 6000 Chemistry System, Roche Diagnostics.
- NanoString assays were carried out with all reagents and consumables contained in an nCounter master kit (NanoString) according to manufacturer instructions to measure RNA transcripts. Briefly, the color coded reporter probe targeting 110 liver fibrosis related genes and 6 control housekeeping genes (Table 2) were hybridized overnight in a pre-heated 65° C. thermocycler for 16 to 22 hours with 100 ng RNA samples in a reaction that includes a hybridization buffer and a capture probe.
- Example 1 demonstrates that a combined treatment with an ACC inhibitor and an FXR agonist results in greater efficacy than either agent administered alone in the mouse model of NASH.
- FIG. 1 shows a significant reduction in liver triglycerides with the combination of the compound of Formula (I) and the compound of Formula (III) relative to the individual agents
- FIG. 2 shows a significant reduction in serum ALT with the combination of the compound of Formula (I) and the compound of Formula (III) relative to the individual agents
- FIG. 3 and FIG. 4 show a significant reduction in liver expression of Col1a1 and Timp1 with the combination of the compound of Formula (I) and the compound of Formula (III) relative to the individual agents, respectively.
- NASH non-alcoholic steatohepatitis
- 5.12 g of Tris HCl was added to the container.
- 2.12 g of Tris base was added to the container.
- QS water was added to 1 L with gentle mixing.
- Tissues were collected by Charles River in Reno, Nev., processed and embedded in paraffin at Histo-tec in Hayward, Calif. and then shipped to Gilead Sciences in Foster City. Samples were sectioned at 5 ⁇ m and sections were mounted on glass slides for subsequent staining.
- Sections were pretreated in 0.2% Phosphomolybdic Acid (EMS, Cat#26357-01) and then subsequently incubated in 0.1% (W/V) Sirius Red 88-89-1 in saturated Picric acid solution (EMS, Cat#26357-02) for 1 hour at room temperature. This was followed by differentiation in 0.01N HCl (EMS, Cat#26357) and dehydration in graded alcohols.
- EMS Phosphomolybdic Acid
- Sections were deparaffinized in 3 changes of xylene for 5 minutes each, and subsequently rehydrated in 3 changes of 100% EtOH, 1 change of 95% EtOH, 1 change of 80% EtOH for 3 minutes each; followed by 2 successive rinses in distilled water.
- the sections were then incubated in Peroxidazed 1 (Biocare Medical, Cat# PX968) endogenous peroxidase blocker for 5 minutes and rinsed in distilled water. Heat induced epitope retrieval was then performed using Reveal Decloaker (Biocare Medical, Cat# RV1000M) at 95° C.
- ⁇ -SMA stained slides were captured using a Leica AT2 scanner at 40 ⁇ magnification. Digital slide images were checked for scanning quality, annotated and exported to appropriate network folders within Leica Digital Image Hub archive. Quantitative image analysis was performed on the whole slide images using Visiopharm image analysis software (Visiopharm, Hoersholm, Denmark) to determine the extent and intensity of ⁇ -SMA. The total ⁇ -SMA-stained area was measured and expressed as a percentage of total liver area stained.
- Plasma TIMP-1 ELISA Plasma TIMP-1 ELISA
- Plasma TIMP-1 concentrations were determined in duplicate using a commercially available rat TIMP-1 specific ELISA kit (R&D Systems, Minneapolis, Minn., Cat # RTM100). TIMP-1 was assayed in plasma according to the manufacturer's specifications with minor modifications. Buffer RD1-21 (50 ⁇ l) was added to ELISA plate wells pre-coated with mouse anti-TIMP-1. Prior to ELISA, a seven point standard curve of rat TIMP-1 (NS0-expressed recombinant TIMP-1: 2400-37.5 pg/mL) was generated and plasma samples were diluted 1:20 in buffer RD5-17.
- O.D. absorbance was immediately determined at 450 nm on a SpectraMax 190 microplate reader (Molecular Devices, Sunnyvale Calif.). Relative O.D.s for each standard and sample were background corrected against blank samples, and standard curves for conversion of O.D.s to TIMP-1 concentration were generated using a 4 Parameter curve fit method. Unknown sample TIMP-1 concentrations were determined using SoftMax ProS software using a dilution factor of 20. Results are shown in FIG. 7 .
- Plasma PIIINP concentrations were determined in duplicate using a commercially available rat Procollagen III N-Terminal Propeptide (PIIINP) ELISA Kit (Biomatik, Wilmington, Del., Cat# EKU06788). PIIINP was assayed in plasma diluted 50 fold in PBS according to the manufacturer's specifications with minor modifications. 7 standards (2,000 pg/mL, 1,000 pg/mL, 500 pg/mL, 250 pg/mL, 125 pg/mL, 62.5 pg/mL, 31.2 pg/mL) were prepared from standard stock which was reconstituted in Standard Diluent. 100 ⁇ L each of standards, blank and samples were added into the appropriate wells.
- PIIINP Procollagen III N-Terminal Propeptide
- the plate was covered with the plate sealer and incubated for 1 hour at 37° C. After removing liquid from each well, 100 ⁇ L of Detection Reagent A working solution was added to each well and covered with the plate sealer then incubated for 1 hour at 37° C. The wells were washed with 350 ⁇ L of 1 ⁇ Wash and sit for 1 ⁇ 2 minutes for 3 times. After the last wash, any remaining wash buffer was removed by decanting and blotting against absorbent paper. Then 100 ⁇ L of Detection Reagent B working solution was added to each well, plate was covered with the plate sealer and incubated for 30 minutes at 37° C. The aspiration/wash process was repeated for total 5 times.
- Plasma HA concentrations were determined in duplicate using a commercially available HA Test Kit (Corgenix, Inc., Broomfield, Colo., Cat#029-001). HA was assayed in plasma according to the manufacturer's specifications with minor modifications. Prior to assay, a seven point standard curve of HA reference solution (800-12.5 ng/mL) was generated and each reference sample and plasma sample was diluted 1 part to 10 parts Reaction Buffer (30 ⁇ l reference/sample to 300 ⁇ l Reaction Buffer). Samples and standards (100 ⁇ l) were added in duplicate to microplate wells pre-coated with HA binding protein (HABP) and incubated (room temperature) for 60 minutes on an orbital plate shaker (300 rpm).
- HABP HA binding protein
- Example 2 demonstrates that a combined treatment with an ACC inhibitor and an FXR agonist results in greater efficacy than either agent administered alone in the rat model of NASH.
- FIG. 5-9 shows a significant reduction markers of fibrosis including percent picrosirius positive area, percent ⁇ -SMA positive area, and three plasma markers associated with fibrosis, TIMP1, HA, and PIIINP with the combination of the compound of Formula (I) and the compound of Formula (III) relative to the vehicle.
- FIG. 6 and FIG. 9 show a significant reduction ⁇ -SMA and PIIINP with the combination of the compound of Formula (I) and the compound of Formula (III) relative to the individual agents, respectively.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/935,759 US20180280394A1 (en) | 2017-03-28 | 2018-03-26 | Methods of treating liver disease |
| US16/803,824 US11833150B2 (en) | 2017-03-28 | 2020-02-27 | Methods of treating liver disease |
| US18/495,712 US20240165119A1 (en) | 2017-03-28 | 2023-10-26 | Methods of treating liver disease |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762477697P | 2017-03-28 | 2017-03-28 | |
| US201762482105P | 2017-04-05 | 2017-04-05 | |
| US201762586354P | 2017-11-15 | 2017-11-15 | |
| US15/935,759 US20180280394A1 (en) | 2017-03-28 | 2018-03-26 | Methods of treating liver disease |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/803,824 Continuation US11833150B2 (en) | 2017-03-28 | 2020-02-27 | Methods of treating liver disease |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180280394A1 true US20180280394A1 (en) | 2018-10-04 |
Family
ID=61972244
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/935,759 Abandoned US20180280394A1 (en) | 2017-03-28 | 2018-03-26 | Methods of treating liver disease |
| US16/803,824 Active 2039-07-23 US11833150B2 (en) | 2017-03-28 | 2020-02-27 | Methods of treating liver disease |
| US18/495,712 Pending US20240165119A1 (en) | 2017-03-28 | 2023-10-26 | Methods of treating liver disease |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/803,824 Active 2039-07-23 US11833150B2 (en) | 2017-03-28 | 2020-02-27 | Methods of treating liver disease |
| US18/495,712 Pending US20240165119A1 (en) | 2017-03-28 | 2023-10-26 | Methods of treating liver disease |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US20180280394A1 (es) |
| EP (3) | EP4122464B1 (es) |
| JP (2) | JP6906626B2 (es) |
| KR (3) | KR20240091322A (es) |
| CN (1) | CN110461328A (es) |
| AU (2) | AU2018243719B2 (es) |
| CA (1) | CA3055581C (es) |
| ES (2) | ES2982801T3 (es) |
| PL (2) | PL4122464T3 (es) |
| PT (2) | PT4122464T (es) |
| SI (2) | SI3600309T1 (es) |
| TW (1) | TWI663975B (es) |
| WO (1) | WO2018183193A1 (es) |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10421730B2 (en) | 2016-06-13 | 2019-09-24 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| WO2020150136A1 (en) * | 2019-01-15 | 2020-07-23 | Gilead Sciences, Inc. | Fxr (nr1h4) modulating compounds |
| US10980810B2 (en) | 2017-10-06 | 2021-04-20 | Gilead Sciences, Inc. | Combination therapy comprising an ACC inhibitor |
| USRE48711E1 (en) | 2009-07-13 | 2021-08-31 | Gilead Sciences, Inc. | Apoptosis signal-regulating kinase inhibitors |
| US11247986B2 (en) | 2016-06-13 | 2022-02-15 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US11352371B2 (en) | 2019-08-09 | 2022-06-07 | Gilead Sciences, Inc. | Thienopyrimidine derivatives as ACC inhibitors and uses thereof |
| WO2022192428A1 (en) | 2021-03-11 | 2022-09-15 | Gilead Sciences, Inc. | Glp-1r modulating compounds |
| WO2022212194A1 (en) | 2021-03-29 | 2022-10-06 | Gilead Sciences, Inc. | Khk inhibitors |
| WO2022256529A1 (en) | 2021-06-04 | 2022-12-08 | Gilead Sciences, Inc. | Compounds for treating nash and nafld |
| US11524005B2 (en) | 2019-02-19 | 2022-12-13 | Gilead Sciences, Inc. | Solid forms of FXR agonists |
| WO2022266444A1 (en) | 2021-06-18 | 2022-12-22 | Gilead Sciences, Inc. | Il-31 modulators for treating fxr-induced pruritis |
| US11655237B2 (en) | 2020-03-30 | 2023-05-23 | Gilead Sciences, Inc. | Solid forms of a Cot inhibitor compound |
| US11827662B2 (en) | 2019-06-14 | 2023-11-28 | Gilead Sciences, Inc. | Cot modulators and methods of use thereof |
| US11833150B2 (en) | 2017-03-28 | 2023-12-05 | Gilead Sciences, Inc. | Methods of treating liver disease |
| US11845737B2 (en) | 2020-04-02 | 2023-12-19 | Gilead Sciences, Inc. | Process for preparing a Cot inhibitor compound |
| US11897878B2 (en) | 2018-10-31 | 2024-02-13 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds |
| US11905299B2 (en) | 2015-07-06 | 2024-02-20 | Gilead Sciences, Inc. | Cot modulators and methods of use thereof |
| US11925631B2 (en) | 2018-10-31 | 2024-03-12 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds |
| US12037342B2 (en) | 2019-05-23 | 2024-07-16 | Gilead Sciences, Inc. | Substituted eneoxindoles and uses thereof |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AR114930A1 (es) | 2017-09-12 | 2020-11-11 | Novartis Ag | Composición farmacéutica |
| EP3937908A1 (en) * | 2019-03-11 | 2022-01-19 | Gilead Sciences, Inc. | Formulations of a compound and uses thereof |
| US20220347190A1 (en) * | 2019-09-19 | 2022-11-03 | Novartis Ag | Treatment comprising fxr agonists |
| WO2021107029A1 (ja) * | 2019-11-26 | 2021-06-03 | 田辺三菱製薬株式会社 | ヒトの非アルコール性脂肪肝炎の予防薬または治療薬 |
| US11478533B2 (en) | 2020-04-27 | 2022-10-25 | Novo Nordisk A/S | Semaglutide for use in medicine |
| IL301945A (en) | 2023-04-04 | 2024-11-01 | Yeda Res & Dev | A method and a system for predicting diseases related to the liver |
Family Cites Families (246)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NZ193011A (en) | 1979-03-19 | 1983-03-15 | Ici Australia Ltd | Diarylamine derivatives intermediates herbicidal compositions |
| US4670560A (en) | 1986-04-28 | 1987-06-02 | Ortho Pharmaceutical Corporation | Thienopyrimidine-2,4-dione derivatives and intermediates thereof |
| DE3880544D1 (de) | 1987-04-21 | 1993-06-03 | Basf Ag | P-phenoxy-phenoxymethyl-fuenfring-heteroaromaten. |
| JPH02225485A (ja) | 1989-02-27 | 1990-09-07 | Taiho Yakuhin Kogyo Kk | チエノピリミジン―3―酢酸誘導体 |
| JP3121061B2 (ja) | 1991-10-04 | 2000-12-25 | 塩野義製薬株式会社 | アルコキシイミノアセトアミド類製造用中間体の製造法およびそれに用いる中間体 |
| DE4137940A1 (de) | 1991-11-18 | 1993-05-19 | Basf Ag | 3-isoxazolylphenylverbindungen, ihre herstellung und ihre verwendung |
| US5258551A (en) | 1991-12-18 | 1993-11-02 | Shionogi & Co., Ltd. | Process for producing α-ketoamide derivative |
| AU5891494A (en) | 1993-01-29 | 1994-08-15 | Nippon Soda Co., Ltd. | Heterocyclic derivative |
| WO1994024095A1 (en) | 1993-04-16 | 1994-10-27 | Abbott Laboratories | Immunosuppressive agents |
| WO1997007119A1 (en) | 1994-08-26 | 1997-02-27 | Takeda Chemical Industries, Ltd. | Thienopyrimidine derivatives, their production and use |
| TW276256B (es) | 1993-08-26 | 1996-05-21 | Takeda Pharm Industry Co Ltd | |
| JP3811196B2 (ja) | 1993-08-26 | 2006-08-16 | 武田薬品工業株式会社 | エンドセリン拮抗剤、チエノピリミジン誘導体およびその製造法 |
| IL112721A0 (en) | 1994-03-10 | 1995-05-26 | Zeneca Ltd | Azole derivatives |
| WO1996004274A1 (en) | 1994-08-02 | 1996-02-15 | Merck Sharp & Dohme Limited | Azetidine, pyrrolidine and piperidine derivatives |
| GB9501865D0 (en) | 1995-01-31 | 1995-03-22 | Merck Sharp & Dohme | Therapeutic agents |
| US5633272A (en) | 1995-02-13 | 1997-05-27 | Talley; John J. | Substituted isoxazoles for the treatment of inflammation |
| JPH09110873A (ja) | 1995-08-17 | 1997-04-28 | Takeda Chem Ind Ltd | チエノピリミジン誘導体、その製造法および用途 |
| DE19536811A1 (de) | 1995-10-02 | 1997-04-03 | Basf Ag | Zwischenprodukte und Verfahren zur Herstellung von substituierten Salicylsäurederivaten als Pflanzenschutzmittel |
| ATE223732T1 (de) | 1996-02-13 | 2002-09-15 | Searle & Co | Arzneimittelkombinationen mit immunosuppressiven wirkungen welche cyclooxygenase-2 inhibitoren und leukotrien lta4 hydrase-inhibitoren enthalten |
| JP2007302703A (ja) | 1996-04-30 | 2007-11-22 | Takeda Chem Ind Ltd | 医薬組成物 |
| CA2250908C (en) | 1996-04-30 | 2012-03-13 | Takeda Chemical Industries, Ltd. | Combined use of gnrh agonist and antagonist |
| SE9702001D0 (sv) | 1997-05-28 | 1997-05-28 | Astra Pharma Prod | Novel compounds |
| US6984644B2 (en) | 1997-05-28 | 2006-01-10 | Astrazeneca Ab | Treatment of skin disorders using thieno[2,3-D]pyrimidinediones |
| DE19754082A1 (de) | 1997-12-05 | 1999-06-10 | Knoll Ag | Methode zur Bekämpfung der Fettleibigkeit |
| JP2002532729A (ja) | 1998-12-23 | 2002-10-02 | グラクソ グループ リミテッド | 核内受容体のリガンドのアッセイ |
| JP2002541258A (ja) | 1999-04-09 | 2002-12-03 | セル セラピューティクス インコーポレーテッド | インターリューキン−12シグナルを阻害するための治療用化合物及びその使用方法 |
| AU774538B2 (en) | 1999-06-11 | 2004-07-01 | Allergan, Inc. | Organosilyl compounds having nuclear hormone receptor modulating activity |
| AU2002215218A1 (en) | 2000-11-17 | 2002-05-27 | Takeda Chemical Industries Ltd. | Isoxazole derivatives |
| BR0207216A (pt) | 2001-02-14 | 2004-03-09 | Warner Lambert Co | Derivados de tieno 2,3-d-pirimidindiona como inibidores de metaloproteinase matriz |
| US20040131670A1 (en) | 2001-04-17 | 2004-07-08 | Ping Gao | Pellicle-resistant gelatin capsule |
| US20040105884A1 (en) | 2001-04-17 | 2004-06-03 | Ping Gao | Pharmaceutical dosage form comprising a sulfite compound |
| US20040105883A1 (en) | 2001-04-17 | 2004-06-03 | Ping Gao | Pharmaceutical dosage form capable of maintaining stable dissolution profile upon storage |
| US20040105885A1 (en) | 2001-04-17 | 2004-06-03 | Ping Gao | Gelatin capsule exhibiting reduced cross-linking |
| EP1405636A4 (en) | 2001-06-26 | 2009-04-15 | Takeda Pharmaceutical | FUNCTIONAL REGULATOR FOR RETINOID RELATIVE RECEPTOR |
| US7655658B2 (en) | 2001-08-10 | 2010-02-02 | Palatin Technologies, Inc. | Thieno [2,3-D]pyrimidine-2,4-dione melanocortin-specific compounds |
| WO2003016280A1 (en) | 2001-08-13 | 2003-02-27 | Lion Bioscience Ag | Nr1h4 nuclear receptor binding compounds |
| EP1285914B1 (en) | 2001-08-13 | 2007-12-19 | PheneX Pharmaceuticals AG | Nr1h4 nuclear receptor binding compounds |
| WO2003015777A1 (en) | 2001-08-13 | 2003-02-27 | Lion Bioscience Ag | Nr1h4 nuclear receptor binding compounds |
| EP1478437B1 (en) | 2002-02-27 | 2005-08-31 | Pfizer Products Inc. | Acc inhibitors |
| US20050107475A1 (en) | 2002-03-21 | 2005-05-19 | Jones Stacey A. | Methods of using farnesoid x receptor (frx) agonists |
| US7595311B2 (en) | 2002-05-24 | 2009-09-29 | Exelixis, Inc. | Azepinoindole derivatives as pharmaceutical agents |
| WO2004014902A2 (en) | 2002-08-09 | 2004-02-19 | Astrazeneca Ab | Compounds having an activity at metabotropic glutamate receptors |
| CN1894241A (zh) | 2002-08-09 | 2007-01-10 | 阿斯利康(瑞典)有限公司 | 作为代谢型谷氨酸受体-5调节剂的“1,2,4” 噁二唑 |
| TW200424183A (en) | 2002-08-09 | 2004-11-16 | Nps Pharma Inc | New compounds |
| AU2003253165A1 (en) | 2002-08-13 | 2004-02-25 | Warner-Lambert Company Llc | Pyrimidine fused bicyclic metalloproteinase inhibitors |
| EP1407774A1 (en) | 2002-09-10 | 2004-04-14 | LION Bioscience AG | 2-Amino-4-quinazolinones as LXR nuclear receptor binding compounds |
| AU2003290796A1 (en) | 2002-11-14 | 2004-06-15 | The Scripps Research Institute | Non-steroidal fxr agonists |
| US20050143449A1 (en) | 2002-11-15 | 2005-06-30 | The Salk Institute For Biological Studies | Non-steroidal farnesoid X receptor modulators and methods for the use thereof |
| AU2003290700A1 (en) | 2002-11-22 | 2004-06-18 | Smithkline Beecham Corporation | Farnesoid x receptor agonists |
| EP1585392B1 (en) | 2003-01-06 | 2009-03-18 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Herbicides inhibiting the action of plant acetyl-coa carboxylase for use as pesticides. |
| CA2514407C (en) | 2003-01-29 | 2012-01-03 | Takeda Pharmaceutical Company Limited | Thienopyrimidine compounds and use thereof |
| WO2004087076A2 (en) | 2003-03-31 | 2004-10-14 | The Rockefeller University | Methods for inhibiting adipogenesis and for treating type 2 diabetes |
| WO2005077345A1 (en) | 2004-02-03 | 2005-08-25 | Astrazeneca Ab | Compounds for the treatment of gastro-esophageal reflux disease |
| WO2005077373A2 (en) | 2004-02-03 | 2005-08-25 | Astrazeneca Ab | Treatment of gastro-esophageal reflux disease (gerd) |
| US7585881B2 (en) | 2004-02-18 | 2009-09-08 | Astrazeneca Ab | Additional heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists |
| US7820705B2 (en) | 2004-05-14 | 2010-10-26 | Irm Llc | Compounds and compositions as PPAR modulators |
| MY144903A (en) | 2004-06-17 | 2011-11-30 | Novartis Ag | Pyrrolopyridine derivatives and their use as crth2 antagonists |
| WO2006014647A2 (en) | 2004-07-21 | 2006-02-09 | Athersys, Inc. | Cyclic n-hydroxy imides as inhibitors of flap endonuclease and uses thereof |
| EP2939674A1 (en) | 2004-10-13 | 2015-11-04 | PTC Therapeutics, Inc. | Compounds for nonsense suppression, and methods for their use |
| JP2008137894A (ja) | 2005-03-22 | 2008-06-19 | Nippon Kayaku Co Ltd | 新規なアセチレン誘導体 |
| TW200716576A (en) | 2005-06-07 | 2007-05-01 | Shionogi & Co | Heterocyclic derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase 1 |
| JP5420908B2 (ja) | 2005-12-15 | 2014-02-19 | エグゼリクシス, インコーポレイテッド | 医薬的薬剤としてのアゼピノインドール誘導体 |
| ATE526318T1 (de) | 2005-12-19 | 2011-10-15 | Glaxosmithkline Llc | Farnesoid-x-rezeptor-agonisten |
| US7560551B2 (en) | 2006-01-23 | 2009-07-14 | Amgen Inc. | Aurora kinase modulators and method of use |
| EP1984360B1 (en) | 2006-02-03 | 2014-01-15 | Eli Lilly & Company | Compounds and methods for modulating FX-receptors |
| CN101395170A (zh) | 2006-02-14 | 2009-03-25 | 英特塞普特药品公司 | 用于预防或治疗fxr介导的疾病或状态的作为fxr配体的胆汁酸衍生物 |
| EP1989210A2 (en) | 2006-03-02 | 2008-11-12 | Cv Therapeutics, Inc. | A2a adenosine receptor antagonists |
| EP2001851A2 (en) | 2006-03-28 | 2008-12-17 | Novartis AG | Amide derivatives and their application for the treament of g protein related diseases |
| WO2007118323A1 (en) | 2006-04-17 | 2007-10-25 | Neuromed Pharmaceuticals Ltd. | Isoxazole derivatives as calcium channel blockers |
| WO2007135027A1 (de) | 2006-05-24 | 2007-11-29 | Boehringer Ingelheim International Gmbh | Substituierte pteridine, die mit einem viergliedrigen heterocyclus substituiert sind |
| PL2029547T3 (pl) | 2006-05-24 | 2010-09-30 | Lilly Co Eli | Agoniści FXR |
| ATE460403T1 (de) | 2006-05-24 | 2010-03-15 | Lilly Co Eli | Verbindungen und verfahren zur modulierung von fx-rezeptoren |
| US7521442B2 (en) | 2006-05-25 | 2009-04-21 | Bristol-Myers Squibb Company | Cyclopropyl fused indolobenzazepine HCV NS5B inhibitors |
| SI2040713T1 (sl) | 2006-06-27 | 2014-11-28 | Intercept Pharmaceuticals, Inc. | Derivati žolčne kisline kot FXR ligandi za preprečevanje ali zdravljenje bolezni ali stanj, posredovanih s FXR |
| EP2043651A2 (en) | 2006-07-05 | 2009-04-08 | Exelixis, Inc. | Methods of using igf1r and abl kinase modulators |
| EP2041114B1 (en) | 2006-07-07 | 2016-03-02 | NephroGenex, Inc. | Inhibitors of advanced glycation end products |
| BRPI0712795A2 (pt) | 2006-07-07 | 2012-09-04 | Boehringer Ingelheim Int | derivados de heteroarila substituìdos com fenila e uso dos mesmos como agentes antitumorais |
| EP1894928A1 (en) | 2006-08-29 | 2008-03-05 | PheneX Pharmaceuticals AG | Heterocyclic fxr binding compounds |
| EP1894924A1 (en) | 2006-08-29 | 2008-03-05 | Phenex Pharmaceuticals AG | Heterocyclic FXR binding compounds |
| US8193225B2 (en) | 2006-10-13 | 2012-06-05 | The Board Of Regents Of The University Of Texas System | Isoxazole amides, derivatives and methods of chemical induction of neurogenesis |
| CL2007003035A1 (es) | 2006-10-24 | 2008-05-16 | Smithkline Beechman Corp | Compuestos derivados de isoxazol sustituidos, agonistas de receptores farnesoid x; procedimiento de preparacion; composicion farmaceutica que lo comprende; y uso del compuesto en el tratamiento de la obesidad, diabetes mellitus, fibrosis en organos, |
| US8501933B2 (en) | 2006-11-09 | 2013-08-06 | Roche Palo Alto Llc | Thiazole and oxazole-substituted arylamides as P2X3 and P2X2/3 antagonists |
| CN101679297B (zh) | 2006-12-08 | 2012-01-11 | 埃克塞利希斯股份有限公司 | Lxr和fxr调节剂 |
| GB0625842D0 (en) | 2006-12-22 | 2007-02-07 | Argenta Discovery Ltd | Indolizine derivatives |
| US20090105251A1 (en) | 2007-01-25 | 2009-04-23 | Benjamin Jones | Renin inhibitors |
| MX2009008421A (es) | 2007-02-09 | 2009-11-02 | Dow Agrosciences Llc | Proceso para la oxidacion de ciertas sulfiliminas sustituidas a sulfoximinas insecticidas. |
| US7511149B2 (en) | 2007-02-09 | 2009-03-31 | Dow Agrosciences Llc | Process for the oxidation of certain substituted sulfilimines to insecticidal sulfoximines |
| JP5302221B2 (ja) | 2007-02-26 | 2013-10-02 | ダウ アグロサイエンシィズ エルエルシー | ある種の置換スルフィルイミン類の調製方法 |
| EP2253630A1 (en) | 2007-05-21 | 2010-11-24 | Takeda Pharmaceutical Company Limited | Heterocyclic compound and use thereof |
| BRPI0812521A2 (pt) | 2007-06-13 | 2015-06-23 | Glaxosmithkline Llc | Composto, composição farmacêutica, método para o tratamento de doença em um mamífero, processo para a preparação de um composto, e, uso de um composto |
| JP2008308448A (ja) | 2007-06-15 | 2008-12-25 | Sankyo Agro Kk | (3−硫黄原子置換フェニル)へテロアリール誘導体 |
| WO2008155054A1 (en) | 2007-06-20 | 2008-12-24 | F. Hoffmann-La Roche Ag | Farnesoid-x-receptor mutants, and crystallisation thereof |
| EP2176249A2 (en) | 2007-07-02 | 2010-04-21 | Boehringer Ingelheim International GmbH | New chemical compounds |
| US20110034507A1 (en) | 2007-07-02 | 2011-02-10 | Smithkline Beecham Corporation | Farnesoid x receptor agonists |
| EA201000051A1 (ru) | 2007-07-13 | 2010-08-30 | ГЛАКСОСМИТКЛАЙН ЭлЭлСи | Противовирусные соединения, композиции и способы использования |
| US20090197880A1 (en) | 2007-07-13 | 2009-08-06 | Genelabs Technologies, Inc. | Anti-viral compounds, compositions, and methods of use |
| TW200906823A (en) | 2007-07-16 | 2009-02-16 | Lilly Co Eli | Compounds and methods for modulating FXR |
| JP2011513196A (ja) | 2007-08-01 | 2011-04-28 | ハー・ルンドベック・アクチエゼルスカベット | ドーパミン作動系が破壊された障害もしくは状態の症状を軽減するためまたはその障害もしくは状態を処置するためのkcnqカリウムチャネル開口薬の使用 |
| US8188080B2 (en) | 2007-10-17 | 2012-05-29 | Sanford-Burnham Medical Research Institute | VHR protein tyrosine phosphatase inhibitors, compositions and methods of use |
| US20090143451A1 (en) | 2007-11-14 | 2009-06-04 | Andrews William H | Compounds that increase telomerase reverse transcriptase (tert) expression and methods for using the same |
| BRPI0821676A2 (pt) | 2007-12-21 | 2015-06-16 | Astrazeneca Ab | Composto, composição farmacêutica, e, processo para a preparação dos compostos. |
| EP2110374A1 (en) | 2008-04-18 | 2009-10-21 | Merck Sante | Benzofurane, benzothiophene, benzothiazol derivatives as FXR modulators |
| US20120015988A1 (en) | 2008-05-13 | 2012-01-19 | Boehringer Ingelheim International Gmbh | Sulfone Compounds Which Modulate The CB2 Receptor |
| US8158636B2 (en) | 2008-05-19 | 2012-04-17 | Plexxikon Inc. | Compounds and methods for kinase modulation, and indications therefor |
| US20100016313A1 (en) | 2008-05-19 | 2010-01-21 | Burnham Institute For Medical Research | Intestinal alkaline phosphatase modulators and uses thereof |
| EP2128158A1 (en) | 2008-05-26 | 2009-12-02 | Phenex Pharmaceuticals AG | Heterocyclic cyclopropyl-substituted FXR binding compounds |
| WO2009152083A1 (en) | 2008-06-10 | 2009-12-17 | Plexxikon, Inc. | 5h-pyrr0l0 [2,3-b] pyrazine derivatives for kinase modulation, and indications therefor |
| US8822513B2 (en) | 2010-03-01 | 2014-09-02 | Gtx, Inc. | Compounds for treatment of cancer |
| US20110288114A1 (en) | 2008-06-20 | 2011-11-24 | Kinemed, Inc. | Compositions for the treatment of fibrotic diseases or conditions |
| EP2307370B1 (en) | 2008-06-23 | 2012-01-04 | Basf Se | Sulfoximinamide compounds for combating animal pests |
| WO2010006096A1 (en) | 2008-07-11 | 2010-01-14 | Smithkline Beecham Corporation | Processes for the preparation of anti-viral compounds and compositions containing them |
| US8044214B2 (en) | 2008-08-25 | 2011-10-25 | Angus Chemical Company | Process for preparing isoxazole compounds |
| US20120021519A1 (en) | 2008-09-19 | 2012-01-26 | Presidents And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| CN102164899B (zh) | 2008-09-25 | 2014-11-26 | 霍夫曼-拉罗奇有限公司 | 用作抗异常脂肪血症及相关疾病的fxr调节剂的取代的吲唑或四氢吲唑类 |
| MX2011002793A (es) | 2008-09-25 | 2011-04-05 | Hoffmann La Roche | Derivados de 3-amino-indazol o de 3-amino-4,5,6,7-tetrahidro-indaz ol. |
| CA2736880A1 (en) | 2008-09-26 | 2010-04-01 | Wyeth Llc | 1,2,3,6-tetrahydroazepino[4,5-b]indole-5-carboxylate nuclear receptor inhibitors |
| CA2740366A1 (en) | 2008-10-21 | 2010-04-29 | Metabolex, Inc. | Aryl gpr120 receptor agonists and uses thereof |
| EP2351743A4 (en) | 2008-10-27 | 2012-05-09 | Takeda Pharmaceutical | BICYCLIC COMPOUND |
| US20100113473A1 (en) | 2008-10-30 | 2010-05-06 | Player Mark R | Aryl amide compound as an acetyl coenzyme a carboxylase inhibitor |
| FR2937972B1 (fr) | 2008-11-04 | 2013-03-29 | Galderma Res & Dev | Derives d'oxoazetidine, leur procede de preparation et leur utilisation en medecine humaine ainsi qu'en cosmetique |
| JP5679997B2 (ja) | 2009-02-04 | 2015-03-04 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 11β−ヒドロキシステロイドデヒドロゲナーゼ1の環状阻害剤 |
| WO2010093191A2 (en) | 2009-02-13 | 2010-08-19 | Lg Life Sciences Ltd. | Novel compounds effective as xanthine oxidase inhibitors, method for preparing the same, and pharmaceutical composition containing the same |
| FR2943059A1 (fr) | 2009-03-16 | 2010-09-17 | Sanofi Aventis | Derives de n-°6-aza-bicyclo°3.2.1!oct-5-yl)-aryl-methyl!- heterobenzamide,leur preparation et leur application en therapeutique |
| JP2012532175A (ja) | 2009-07-06 | 2012-12-13 | ビーエーエスエフ ソシエタス・ヨーロピア | 無脊椎動物系害虫防除用ピリダジン化合物 |
| US8883832B2 (en) | 2009-07-06 | 2014-11-11 | Aerpio Therapeutics Inc. | Compounds, compositions, and methods for preventing metastasis of cancer cells |
| BR112012001597A2 (pt) | 2009-07-24 | 2015-09-01 | Basf Se | Método para controlar e/ou combater pestes de invertebrados, método para a proteção do material de propagação de planta e/ou das plantas que crescem do mesmo, material de propagação de planta e método para tratar ou proteger um animal de infestação ou infecção por parasitas |
| US9212177B2 (en) | 2009-08-05 | 2015-12-15 | Versitech Limited | Antiviral compounds and methods of making and using thereof |
| EP2289883A1 (en) | 2009-08-19 | 2011-03-02 | Phenex Pharmaceuticals AG | Novel FXR (NR1H4) binding and activity modulating compounds |
| US20120220603A1 (en) | 2009-09-04 | 2012-08-30 | Zalicus Pharmaceuticals Ltd. | Substituted heterocyclic derivatives for the treatment of pain and epilepsy |
| WO2011047129A1 (en) | 2009-10-15 | 2011-04-21 | Southern Research Institute | Treatment of neurodegenerative diseases, causation of memory enhancement, and assay for screening compounds for such |
| HRP20140035T1 (hr) | 2009-12-29 | 2014-02-14 | Poxel | Tieno[2,3-b]piridindion aktivatori ampk i njihove terapijske uporabe |
| CN102883607B (zh) | 2010-03-01 | 2015-07-22 | Gtx公司 | 用于治疗癌的化合物 |
| US20130231348A1 (en) | 2010-06-09 | 2013-09-05 | Afraxis, Inc. | 8-(HETEROARYLMETHYL)PYRIDO[2,3-d]PYRIMIDIN-7(8H)-ONES FOR THE TREATMENT OF CNS DISORDERS |
| WO2012058531A2 (en) | 2010-10-29 | 2012-05-03 | North Carolina State University | Modulation of response regulators by imidazole derivatives |
| TWI408128B (zh) | 2010-12-03 | 2013-09-11 | Nat Univ Tsing Hua | 間-三聯苯衍生物及其在有機發光二極體之應用 |
| WO2012076063A1 (en) | 2010-12-10 | 2012-06-14 | Rottapharm S.P.A. | Pyridine amide derivatives as ep4 receptor antagonists |
| WO2012087520A1 (en) | 2010-12-20 | 2012-06-28 | Irm Llc | Compositions and methods for modulating farnesoid x receptors |
| EP2655369A1 (en) | 2010-12-20 | 2013-10-30 | Irm Llc | Compositions and methods for modulating farnesoid x receptors |
| CU24152B1 (es) | 2010-12-20 | 2016-02-29 | Irm Llc | 1,2 oxazol-8-azabiciclo[3,2,1]octano 8 il como moduladores de fxr |
| WO2012090219A2 (en) | 2010-12-31 | 2012-07-05 | Jubilant Biosys Ltd. | Thiazole compounds useful as acetyl-coa carboxylase (acc) inhibitors |
| FR2981933B1 (fr) | 2011-11-02 | 2013-11-15 | Galderma Res & Dev | Derives d'oxoazetidine, leur procede de preparation et leur utilisation en medecine humaine ainsi qu'en cosmetique |
| EP2545964A1 (en) * | 2011-07-13 | 2013-01-16 | Phenex Pharmaceuticals AG | Novel FXR (NR1H4) binding and activity modulating compounds |
| WO2013037482A1 (en) | 2011-09-15 | 2013-03-21 | Phenex Pharmaceuticals Ag | Farnesoid x receptor agonists for cancer treatment and prevention |
| RS57157B1 (sr) | 2011-11-11 | 2018-07-31 | Gilead Apollo Llc | Acc inhibitori i njihove primene |
| NZ734451A (en) | 2012-06-19 | 2018-12-21 | Intercept Pharmaceuticals Inc | Preparation, uses and solid forms of obeticholic acid |
| TWI621618B (zh) | 2013-03-13 | 2018-04-21 | 比利時商健生藥品公司 | 經取代2-氮雜雙環類及其作為食慾素受體調控劑之用途 |
| EA201592020A1 (ru) | 2013-04-22 | 2016-05-31 | Кадила Хелзкэр Лимитед | Новая композиция для неалкогольной жировой болезни печени (нажбп) |
| WO2014181287A1 (en) | 2013-05-09 | 2014-11-13 | Piramal Enterprises Limited | Heterocyclyl compounds and uses thereof |
| BR112015028173A2 (pt) | 2013-05-10 | 2017-07-25 | Nimbus Apollo Inc | inibidores de acc e usos dos mesmos |
| EP2994138A4 (en) | 2013-05-10 | 2016-12-28 | Nimbus Apollo Inc | ACC-HEMMER AND USES THEREOF |
| DK3848038T3 (da) | 2013-05-14 | 2023-02-06 | Intercept Pharmaceuticals Inc | 11-Hydroxyl-6substituerede-derivater af galdesyrer og aminosyrerkonjugater heraf som farnesoid X receptor modulerer. |
| TWI696462B (zh) | 2013-07-10 | 2020-06-21 | 日商興和股份有限公司 | 非酒精性脂肪性肝疾病治療劑 |
| WO2015007451A1 (en) | 2013-07-15 | 2015-01-22 | Syngenta Participations Ag | Microbiocidal heterobicyclic derivatives |
| CN110437297B9 (zh) | 2013-08-01 | 2022-01-11 | 美国卫生和人力服务部 | 法尼醇x受体的抑制剂和在医学中的用途 |
| ES2846183T3 (es) | 2013-09-11 | 2021-07-28 | Inst Nat Sante Rech Med | Métodos y composiciones farmacéuticas para el tratamiento de la infección por el virus de la hepatitis B |
| US20150082981A1 (en) | 2013-09-20 | 2015-03-26 | E I Du Pont De Nemours And Company | Capture of trifluoromethane using ionic liquids |
| CN104513213A (zh) | 2013-09-28 | 2015-04-15 | 山东亨利医药科技有限责任公司 | Fxr激动剂 |
| WO2015065983A1 (en) | 2013-10-29 | 2015-05-07 | Lumena Pharmaceuticals, Inc. | Bile acid recycling inhibitors for treatment of gastrointestinal infections |
| BR112016009630B1 (pt) | 2013-11-05 | 2021-02-09 | Novartis Ag | receptores de farnesoide x, seus usos, combinação e composição farmacêutica |
| WO2015116856A2 (en) | 2014-01-29 | 2015-08-06 | City Of Hope | Farnesoid x receptor antagonists |
| CA2942403A1 (en) | 2014-03-13 | 2015-09-17 | Salk Institute For Biological Studies | Fxr agonists and methods for making and using |
| US10077268B2 (en) | 2014-03-13 | 2018-09-18 | Salk Institute For Biological Studies | FXR agonists and methods for making and using |
| CA2942398A1 (en) | 2014-03-13 | 2015-09-17 | Salk Institute For Biological Studies | Analogs of fexaramine and methods of making and using |
| EP3495360A1 (en) | 2014-04-14 | 2019-06-12 | Grünenthal GmbH | Heteroaryl substituted heterocyclyl sulfones |
| WO2015162538A1 (en) | 2014-04-21 | 2015-10-29 | Lupin Limited | Heterocyclic compounds as calcium sensing receptor modulators for the treatment of hyperparathyroidism, chronic renal failure and chronic kidney disease |
| WO2015162244A1 (en) | 2014-04-25 | 2015-10-29 | Basf Se | N-acylamidine compounds |
| WO2015165960A1 (en) | 2014-04-30 | 2015-11-05 | Basf Se | N-acylamidine compounds |
| MX388957B (es) | 2014-05-29 | 2025-03-20 | Bar Pharmaceuticals S R L | Derivados del colano para uso en el tratamiento y/o prevencion de enfermedades en las que intervienen el fxr y el tgr5/gpbar1 |
| CN104045635A (zh) | 2014-06-23 | 2014-09-17 | 华东理工大学 | 3,4,5-三取代异恶唑类化合物及其用途 |
| CN106714840A (zh) | 2014-09-25 | 2017-05-24 | 阿斯利康(瑞典)有限公司 | 用于治疗肝病的ω‑3脂肪酸和SGLT‑2抑制剂的组合 |
| US9855249B2 (en) | 2014-10-02 | 2018-01-02 | Flatley Discovery Lab, Llc | Isoxazole compounds and methods for the treatment of cystic fibrosis |
| EP3006939A1 (en) | 2014-10-06 | 2016-04-13 | Gilead Sciences, Inc. | Histidine-rich Glycoprotein as a marker for hepatic Farnesoid X receptor activation |
| WO2016068585A1 (ko) | 2014-10-27 | 2016-05-06 | 주식회사 엘지화학 | 유기 전계 발광 소자 |
| CA2966885A1 (en) | 2014-11-06 | 2016-05-12 | Enanta Pharmaceuticals, Inc. | Bile acid analogs an fxr/tgr5 agonists and methods of use thereof |
| KR20170117020A (ko) | 2014-11-21 | 2017-10-20 | 아카나 테라퓨틱스, 엘티디. | 질병의 치료를 위한 융합된 비시클릭 화합물 |
| US10208081B2 (en) | 2014-11-26 | 2019-02-19 | Enanta Pharmaceuticals, Inc. | Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof |
| WO2016086134A1 (en) | 2014-11-26 | 2016-06-02 | Enanta Pharmaceuticals, Inc. | Bile acid derivatives as fxr/tgr5 agonists and methods of use thereof |
| US11578097B2 (en) | 2014-11-26 | 2023-02-14 | Enanta Pharmaceuticals, Inc. | Tetrazole derivatives of bile acids as FXR/TGR5 agonists and methods of use thereof |
| KR20170099909A (ko) | 2014-11-26 | 2017-09-01 | 이난타 파마슈티칼스, 인코포레이티드 | Fxr/tgr5 작용제로서의 담즙산 유사체 및 이의 이용 방법 |
| EP3034501A1 (en) | 2014-12-17 | 2016-06-22 | Gilead Sciences, Inc. | Hydroxy containing FXR (NR1H4) modulating compounds |
| EP3034499A1 (en) | 2014-12-17 | 2016-06-22 | Gilead Sciences, Inc. | Novel FXR (NR1H4) modulating compounds |
| WO2016097933A1 (en) | 2014-12-18 | 2016-06-23 | Novartis Ag | Azabicyclooctane derivatives as fxr agonists for use in the treatment of liver and gastrointestinal diseases |
| EA201892625A1 (ru) | 2015-01-09 | 2019-07-31 | Джилид Аполло, Ллс | КОМБИНИРОВАННАЯ ТЕРАПИЯ С ПРИМЕНЕНИЕМ ИНГИБИТОРА АЦЕТИЛ-КоА-КАРБОКСИЛАЗЫ (ACC) ДЛЯ ЛЕЧЕНИЯ НЕАЛКОГОЛЬНОЙ ЖИРОВОЙ БОЛЕЗНИ ПЕЧЕНИ |
| CN107257793A (zh) | 2015-01-20 | 2017-10-17 | 梅里亚股份有限公司 | 抗蠕虫化合物、组合物及其使用方法 |
| TWI698430B (zh) | 2015-02-13 | 2020-07-11 | 南北兄弟藥業投資有限公司 | 三環化合物及其在藥物中的應用 |
| US10100285B2 (en) | 2015-04-03 | 2018-10-16 | Propagenix Inc. | Ex vivo proliferation of epithelial cells |
| CN106146483A (zh) | 2015-04-23 | 2016-11-23 | 上海迪诺医药科技有限公司 | 杂环类法尼酯衍生物x受体调节剂 |
| GB201507340D0 (en) | 2015-04-29 | 2015-06-10 | Univ St Andrews | Light emitting devices and compounds |
| US20180192651A1 (en) | 2015-07-13 | 2018-07-12 | Vanderbilt University | Thermal volatilization of orco agonists |
| EP3347450B1 (en) | 2015-09-11 | 2021-03-17 | Propagenix Inc. | Ex vivo proliferation of epithelial cells |
| AR106472A1 (es) | 2015-10-26 | 2018-01-17 | Gilead Apollo Llc | Inhibidores de acc y usos de los mismos |
| ES2943235T3 (es) | 2015-11-25 | 2023-06-12 | Gilead Apollo Llc | Composiciones fungicidas que contienen derivados de 2,4-dioxo-1,4-dihidrotieno[2,3-d]pirimidina |
| AU2016361412A1 (en) | 2015-11-25 | 2018-05-24 | Gilead Apollo, Llc | Pyrazole ACC inhibitors and uses thereof |
| KR20180082558A (ko) | 2015-11-25 | 2018-07-18 | 길리어드 아폴로, 엘엘씨 | 에스테르 acc 억제제 및 그의 용도 |
| MX2018006287A (es) | 2015-11-25 | 2018-09-07 | Gilead Apollo Llc | Inhibidores de acc de triazol y usos de los mismos. |
| WO2017096130A1 (en) | 2015-12-04 | 2017-06-08 | Bristol-Myers Squibb Company | Apelin receptor agonists and methods of use |
| TW201734002A (zh) | 2015-12-11 | 2017-10-01 | 拜耳作物科學股份有限公司 | 作為殺蟲劑之經取代的丙二醯胺類 |
| CN106946867B (zh) | 2016-01-06 | 2019-11-12 | 广州市恒诺康医药科技有限公司 | Fxr受体调节剂及其制备方法和用途 |
| EP3190103A1 (en) | 2016-01-08 | 2017-07-12 | Rijksuniversiteit Groningen | Inhibitors of the pd-1/pd-l1 protein/protein interaction |
| US10882871B2 (en) | 2016-01-10 | 2021-01-05 | British Columbia Cancer Agency Branch | 18/19F-labelled compounds which target the prostate specific membrane antigen |
| WO2017122209A2 (en) | 2016-01-12 | 2017-07-20 | Yeda Research And Development Co. Ltd. | NF-kappaB INHIBITORS |
| WO2017128896A1 (zh) | 2016-01-26 | 2017-08-03 | 江苏豪森药业集团有限公司 | Fxr激动剂及其制备方法和应用 |
| CN107021957A (zh) | 2016-02-01 | 2017-08-08 | 山东轩竹医药科技有限公司 | Fxr受体激动剂 |
| CN108602811B (zh) | 2016-02-01 | 2021-11-16 | 轩竹生物科技有限公司 | Fxr受体激动剂 |
| CN107021958A (zh) | 2016-02-01 | 2017-08-08 | 山东轩竹医药科技有限公司 | Fxr受体激动剂 |
| TW201741307A (zh) | 2016-02-22 | 2017-12-01 | 艾洛斯生物製藥公司 | Fxr調節劑及其使用方法 |
| CN108699078A (zh) | 2016-03-02 | 2018-10-23 | 吉利德阿波罗公司 | 噻吩并嘧啶二酮acc抑制剂的固体形式及其制备方法 |
| CN107224583A (zh) | 2016-03-24 | 2017-10-03 | 中美华世通生物医药科技(武汉)有限公司 | 药物组合物及其用途 |
| FR3050112B1 (fr) | 2016-04-15 | 2020-09-04 | Soc Civ Immobiliere Gecinq | Utilisation de l'acide fenofibrique dans le traitement des maladies hepatiques |
| WO2017189652A1 (en) | 2016-04-26 | 2017-11-02 | Enanta Pharmaceuticals, Inc. | Isoxazole derivatives as fxr agonists and methods of use thereof |
| WO2017189651A1 (en) | 2016-04-26 | 2017-11-02 | Enanta Pharmaceuticals, Inc. | Isoxazole derivatives as fxr agonists and methods of use thereof |
| WO2017189663A1 (en) | 2016-04-26 | 2017-11-02 | Enanta Pharmaceuticals, Inc. | Isoxazole derivatives as fxr agonists and methods of use thereof |
| WO2017201150A1 (en) | 2016-05-18 | 2017-11-23 | Enanta Pharmaceuticals, Inc. | Isoxazole analogs as fxr agonists and methods of use thereof |
| WO2017201155A1 (en) | 2016-05-18 | 2017-11-23 | Enanta Pharmaceuticals, Inc. | lSOXAZOLE DERIVATIVES AS FXR AGONISTS AND METHODS OF USE THEREOF |
| WO2017201152A1 (en) | 2016-05-18 | 2017-11-23 | Enanta Pharmaceuticals, Inc. | Isoxazole derivatives as fxr agonists and methods of use thereof |
| RU2740902C2 (ru) | 2016-06-03 | 2021-01-21 | Хемоцентрикс, Инк. | Способ лечения фиброза печени |
| AR108711A1 (es) | 2016-06-13 | 2018-09-19 | Gilead Sciences Inc | Compuestos moduladores de fxr (nr1h4) |
| PE20190971A1 (es) | 2016-06-13 | 2019-07-09 | Glaxosmithkline Ip Dev Ltd | Compuestos quimicos |
| CA2968836C (en) | 2016-06-13 | 2025-09-02 | Gilead Sciences Inc | Fxr (nr1h4) modulating compounds |
| CA3026512A1 (en) | 2016-06-13 | 2017-12-21 | Gilead Sciences, Inc. | Fxr (nr1h4) modulating compounds |
| TW201808283A (zh) | 2016-08-05 | 2018-03-16 | 廣東東陽光藥業有限公司 | 含氮三環化合物及其在藥物中的應用 |
| MA55632A (fr) | 2016-08-23 | 2022-02-16 | Ardelyx Inc | Procédé de preparation de modulateurs du récepteur hormonal pour le traitement d'états et de troubles métaboliques |
| US11091482B2 (en) | 2016-08-23 | 2021-08-17 | Ardelyx, Inc. | Isoxazolyl-carbonyloxy azabicyclo[3.2.1]octanyl compounds as FXR activators |
| CN108430998B (zh) | 2016-09-28 | 2021-07-09 | 四川科伦博泰生物医药股份有限公司 | 氮杂双环衍生物及其制备方法和用途 |
| WO2018060075A1 (en) | 2016-09-29 | 2018-04-05 | Bayer Cropscience Aktiengesellschaft | 1 -[2-(1 -chlorocyclopropyl)-2-hydroxy-3-(3-phenyl-1,2-oxazol-5-yl)propyl]-1h-imidazole-5-carbonitrile derivatives and related compounds as fungicides for crop protection |
| JP2019537557A (ja) | 2016-10-04 | 2019-12-26 | エナンタ ファーマシューティカルズ インコーポレイテッド | Fxrアゴニストとしてのイソキサゾール類似体およびその使用方法 |
| MX394463B (es) | 2016-10-18 | 2025-03-19 | Madrigal Pharmaceuticals Inc | Métodos para tratar trastornos del hígado o trastornos lipídicos con un agonista de thr-beta. |
| CN107973790A (zh) | 2016-10-22 | 2018-05-01 | 合帕吉恩治疗公司 | 杂环fxr调节剂 |
| KR20210042421A (ko) | 2016-11-10 | 2021-04-19 | 갈메드 리서치 앤드 디벨롭먼트 리미티드 | 섬유증에 대한 치료 |
| JP2019533706A (ja) | 2016-11-11 | 2019-11-21 | ギリアード サイエンシーズ, インコーポレイテッド | 肝疾患を処置する方法 |
| CN106588804B (zh) | 2016-12-09 | 2018-11-09 | 都创(上海)医药科技有限公司 | 一种作为类法尼醇x受体(fxr)的化合物的制备方法 |
| CN106632294A (zh) | 2016-12-15 | 2017-05-10 | 宁波百纳西药业有限公司 | 一种螺环化合物及其药物用途 |
| CN106748922B (zh) | 2017-01-12 | 2019-02-01 | 中国药科大学 | 一类新型砜酸衍生物、其制备方法及其作为药物的用途 |
| EP3571205B1 (en) | 2017-01-22 | 2023-08-30 | Sunshine Lake Pharma Co., Ltd. | Thienopyrimidine derivative and use thereof in medicine |
| ES2963841T3 (es) | 2017-03-03 | 2024-04-02 | Gilead Sciences Inc | Procesos para preparar inhibidores de ACC y formas sólidas del mismo |
| EP4122464B1 (en) | 2017-03-28 | 2024-05-15 | Gilead Sciences, Inc. | Therapeutic combinations for treating liver diseases |
| CN106955288B (zh) | 2017-03-30 | 2020-01-10 | 复旦大学附属中山医院 | Fxr激动剂在制备治疗脂肪肉瘤相关疾病药物中的用途 |
| JP2020516627A (ja) | 2017-04-12 | 2020-06-11 | ギリアード サイエンシーズ, インコーポレイテッド | 肝疾患を処置する方法 |
| WO2018190643A1 (en) | 2017-04-12 | 2018-10-18 | Il Dong Pharmaceutical Co., Ltd. | An isoxazole derivatives as nuclear receptor agonists and used thereof |
| US20210121493A1 (en) | 2017-07-25 | 2021-04-29 | Cedars-Sinai Medical Center | Methods for treating liver diseases |
| KR20190036705A (ko) | 2017-09-28 | 2019-04-05 | 한미약품 주식회사 | (2r)-2-(2-메톡시페닐)-2-(옥산-4-일옥시)에탄-1-올 화합물의 신규 제조방법 및 이에 사용되는 중간체 |
| EP3691648A1 (en) | 2017-10-06 | 2020-08-12 | Gilead Sciences, Inc. | Combination therapy comprising an acc inhibitor |
| CA3114240C (en) | 2018-10-30 | 2023-09-05 | Gilead Sciences, Inc. | Imidazopyridine derivatives as alpha4beta7 integrin inhibitors |
| LT3911647T (lt) | 2019-01-15 | 2024-03-25 | Gilead Sciences, Inc. | Izoksazolo junginys kaip fxr agonistas ir jį apimančios farmacinės kompozicijos |
| CA3129949C (en) | 2019-02-19 | 2024-04-30 | Gilead Sciences, Inc. | Solid forms of fxr agonists |
| EP3937908A1 (en) | 2019-03-11 | 2022-01-19 | Gilead Sciences, Inc. | Formulations of a compound and uses thereof |
-
2018
- 2018-03-26 EP EP22180249.9A patent/EP4122464B1/en active Active
- 2018-03-26 WO PCT/US2018/024345 patent/WO2018183193A1/en not_active Ceased
- 2018-03-26 CN CN201880021872.2A patent/CN110461328A/zh active Pending
- 2018-03-26 CA CA3055581A patent/CA3055581C/en active Active
- 2018-03-26 SI SI201830753T patent/SI3600309T1/sl unknown
- 2018-03-26 PL PL22180249.9T patent/PL4122464T3/pl unknown
- 2018-03-26 PL PL18717800.9T patent/PL3600309T3/pl unknown
- 2018-03-26 JP JP2019553028A patent/JP6906626B2/ja active Active
- 2018-03-26 EP EP24175827.5A patent/EP4424364A3/en active Pending
- 2018-03-26 KR KR1020247018500A patent/KR20240091322A/ko not_active Ceased
- 2018-03-26 EP EP18717800.9A patent/EP3600309B1/en active Active
- 2018-03-26 ES ES22180249T patent/ES2982801T3/es active Active
- 2018-03-26 PT PT221802499T patent/PT4122464T/pt unknown
- 2018-03-26 PT PT187178009T patent/PT3600309T/pt unknown
- 2018-03-26 KR KR1020197031248A patent/KR102743630B1/ko active Active
- 2018-03-26 KR KR1020227028209A patent/KR20220119520A/ko not_active Ceased
- 2018-03-26 AU AU2018243719A patent/AU2018243719B2/en active Active
- 2018-03-26 SI SI201831108T patent/SI4122464T1/sl unknown
- 2018-03-26 US US15/935,759 patent/US20180280394A1/en not_active Abandoned
- 2018-03-26 ES ES18717800T patent/ES2927019T3/es active Active
- 2018-03-28 TW TW107110635A patent/TWI663975B/zh active
-
2020
- 2020-02-27 US US16/803,824 patent/US11833150B2/en active Active
- 2020-11-27 JP JP2020196934A patent/JP2021038259A/ja active Pending
-
2021
- 2021-04-20 AU AU2021202387A patent/AU2021202387A1/en not_active Abandoned
-
2023
- 2023-10-26 US US18/495,712 patent/US20240165119A1/en active Pending
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USRE48711E1 (en) | 2009-07-13 | 2021-08-31 | Gilead Sciences, Inc. | Apoptosis signal-regulating kinase inhibitors |
| US11905299B2 (en) | 2015-07-06 | 2024-02-20 | Gilead Sciences, Inc. | Cot modulators and methods of use thereof |
| US12358903B2 (en) | 2016-06-13 | 2025-07-15 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US10774054B2 (en) | 2016-06-13 | 2020-09-15 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US11739065B2 (en) | 2016-06-13 | 2023-08-29 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US10981881B2 (en) | 2016-06-13 | 2021-04-20 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US10421730B2 (en) | 2016-06-13 | 2019-09-24 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US11247986B2 (en) | 2016-06-13 | 2022-02-15 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US11833150B2 (en) | 2017-03-28 | 2023-12-05 | Gilead Sciences, Inc. | Methods of treating liver disease |
| US10980810B2 (en) | 2017-10-06 | 2021-04-20 | Gilead Sciences, Inc. | Combination therapy comprising an ACC inhibitor |
| US11963961B2 (en) | 2017-10-06 | 2024-04-23 | Gilead Sciences, Inc. | Combination therapy comprising an ACC inhibitor |
| US11925631B2 (en) | 2018-10-31 | 2024-03-12 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds |
| US11897878B2 (en) | 2018-10-31 | 2024-02-13 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds |
| US12258346B2 (en) | 2018-10-31 | 2025-03-25 | Gilead Sciences, Inc. | Substituted 6-azabenzimidazole compounds |
| EP4360632A3 (en) * | 2019-01-15 | 2024-06-19 | Gilead Sciences, Inc. | Fxr (nr1h4) modulating compounds |
| JP2022517108A (ja) * | 2019-01-15 | 2022-03-04 | ギリアード サイエンシーズ, インコーポレイテッド | Fxr(nr1h4)調節化合物 |
| WO2020150136A1 (en) * | 2019-01-15 | 2020-07-23 | Gilead Sciences, Inc. | Fxr (nr1h4) modulating compounds |
| JP7265635B2 (ja) | 2019-01-15 | 2023-04-26 | ギリアード サイエンシーズ, インコーポレイテッド | Fxr(nr1h4)調節化合物 |
| IL284591B2 (en) * | 2019-01-15 | 2025-04-01 | Gilead Sciences Inc | FXR (NR1H4) Modulating Compounds |
| CN113302190A (zh) * | 2019-01-15 | 2021-08-24 | 吉利德科学公司 | Fxr(nr1h4)调节化合物 |
| AU2020209564B2 (en) * | 2019-01-15 | 2022-12-01 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US11225473B2 (en) | 2019-01-15 | 2022-01-18 | Gilead Sciences, Inc. | FXR (NR1H4) modulating compounds |
| US11524005B2 (en) | 2019-02-19 | 2022-12-13 | Gilead Sciences, Inc. | Solid forms of FXR agonists |
| US12102625B2 (en) | 2019-02-19 | 2024-10-01 | Gilead Sciences, Inc. | Solid forms of FXR agonists |
| US12037342B2 (en) | 2019-05-23 | 2024-07-16 | Gilead Sciences, Inc. | Substituted eneoxindoles and uses thereof |
| US11827662B2 (en) | 2019-06-14 | 2023-11-28 | Gilead Sciences, Inc. | Cot modulators and methods of use thereof |
| US12398160B2 (en) | 2019-06-14 | 2025-08-26 | Gilead Sciences, Inc. | Cot modulators and methods of use thereof |
| US11352371B2 (en) | 2019-08-09 | 2022-06-07 | Gilead Sciences, Inc. | Thienopyrimidine derivatives as ACC inhibitors and uses thereof |
| US11655237B2 (en) | 2020-03-30 | 2023-05-23 | Gilead Sciences, Inc. | Solid forms of a Cot inhibitor compound |
| US12486252B2 (en) | 2020-03-30 | 2025-12-02 | Gilead Sciences, Inc. | Solid forms of a Cot inhibitor compound |
| US11845737B2 (en) | 2020-04-02 | 2023-12-19 | Gilead Sciences, Inc. | Process for preparing a Cot inhibitor compound |
| US12365666B2 (en) | 2020-04-02 | 2025-07-22 | Gilead Sciences, Inc. | Process for preparing a Cot inhibitor compound |
| WO2022192428A1 (en) | 2021-03-11 | 2022-09-15 | Gilead Sciences, Inc. | Glp-1r modulating compounds |
| WO2022212194A1 (en) | 2021-03-29 | 2022-10-06 | Gilead Sciences, Inc. | Khk inhibitors |
| WO2022256529A1 (en) | 2021-06-04 | 2022-12-08 | Gilead Sciences, Inc. | Compounds for treating nash and nafld |
| WO2022266444A1 (en) | 2021-06-18 | 2022-12-22 | Gilead Sciences, Inc. | Il-31 modulators for treating fxr-induced pruritis |
Also Published As
| Publication number | Publication date |
|---|---|
| PL4122464T3 (pl) | 2024-09-16 |
| SI3600309T1 (sl) | 2022-10-28 |
| JP2021038259A (ja) | 2021-03-11 |
| AU2018243719B2 (en) | 2021-01-21 |
| JP6906626B2 (ja) | 2021-07-21 |
| ES2982801T3 (es) | 2024-10-17 |
| PL3600309T3 (pl) | 2022-11-07 |
| PT4122464T (pt) | 2024-06-27 |
| TW201902482A (zh) | 2019-01-16 |
| EP4424364A2 (en) | 2024-09-04 |
| EP4424364A3 (en) | 2024-11-27 |
| CA3055581C (en) | 2023-03-14 |
| TWI663975B (zh) | 2019-07-01 |
| KR102743630B1 (ko) | 2024-12-18 |
| SI4122464T1 (sl) | 2024-07-31 |
| US20210015818A1 (en) | 2021-01-21 |
| KR20220119520A (ko) | 2022-08-29 |
| EP4122464A1 (en) | 2023-01-25 |
| CA3055581A1 (en) | 2018-10-04 |
| CN110461328A (zh) | 2019-11-15 |
| US11833150B2 (en) | 2023-12-05 |
| JP2020512349A (ja) | 2020-04-23 |
| AU2021202387A1 (en) | 2021-05-20 |
| AU2018243719A1 (en) | 2019-09-19 |
| WO2018183193A1 (en) | 2018-10-04 |
| PT3600309T (pt) | 2022-10-03 |
| ES2927019T3 (es) | 2022-11-02 |
| EP3600309A1 (en) | 2020-02-05 |
| US20240165119A1 (en) | 2024-05-23 |
| KR20240091322A (ko) | 2024-06-21 |
| EP4122464B1 (en) | 2024-05-15 |
| KR20190126920A (ko) | 2019-11-12 |
| EP3600309B1 (en) | 2022-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240165119A1 (en) | Methods of treating liver disease | |
| US20180133203A1 (en) | Methods of treating liver disease | |
| US20180311244A1 (en) | Methods of treating liver disease | |
| US20180333401A1 (en) | Methods of treating liver disease | |
| HK40108151A (en) | Methods of treating liver disease | |
| HK40087647B (en) | Therapeutic combinations for treating liver diseases | |
| HK40087647A (en) | Therapeutic combinations for treating liver diseases | |
| HK40023776A (en) | Therapeutic combinations for treating liver diseases | |
| HK40023776B (en) | Therapeutic combinations for treating liver diseases | |
| HK40011190A (en) | Therapeutic combinations for treating liver diseases | |
| HK40011656A (en) | Methods of treating liver disease |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GILEAD SCIENCES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BATES, JAMIE GEIER;BRECKENRIDGE, DAVID GORDON CLARKSON;LILES, JOHN T;REEL/FRAME:045645/0589 Effective date: 20180322 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |