[go: up one dir, main page]

WO2025215902A1 - Information processing system, control method, and control program - Google Patents

Information processing system, control method, and control program

Info

Publication number
WO2025215902A1
WO2025215902A1 PCT/JP2025/001527 JP2025001527W WO2025215902A1 WO 2025215902 A1 WO2025215902 A1 WO 2025215902A1 JP 2025001527 W JP2025001527 W JP 2025001527W WO 2025215902 A1 WO2025215902 A1 WO 2025215902A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
feature points
inspection
inspection data
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2025/001527
Other languages
French (fr)
Japanese (ja)
Inventor
絢子 稲垣
葉月 中江
卓哉 小出
達希 萩原
康敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of WO2025215902A1 publication Critical patent/WO2025215902A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]

Definitions

  • the present invention relates to an information processing system, a control method, and a control program.
  • Liquid crystal display devices are increasingly being used in large-screen televisions and large monitors, and as a result, there is a demand for wider films to be used on the display surfaces of these devices. For example, there is a demand for wider films of 2000 mm or more. Furthermore, in order to anticipate substrate loss (film loss) and reduce transportation costs, there is a demand for the production of long film rolls with winding lengths of 1000 m or more, and even 3000 m or more.
  • Patent Document 1 discloses a technology in which an optical film inspection system has first and second inspection units that detect defects at different stages during the manufacturing process, and the defects detected by these inspection units are combined to determine the predicted yield based on the cutting position and size.
  • Patent Document 1 integrates defects that occur between multiple processes, and does not grasp the occurrence status of defects within a process.
  • the present invention was made in consideration of the above circumstances, and aims to understand the occurrence of defects during the manufacturing process of webs such as films and during post-processing using such webs.
  • An acquisition unit that classifies feature points included in each of the first and second inspection data into first type feature points that are present in the first inspection data but not in the second inspection data, second type feature points that are not present in the first inspection data but present in the second inspection data, and third type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web is manufactured or post-processed into a manufactured web, and second inspection data from a second manufacturing process in which post-processing using the web is performed after the first manufacturing process, and acquires data from a recorded database; a selection unit that accepts selection of a plurality of target lots or selection of a plurality of inspection sections in the longitudinal direction of the web in one lot; a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit; an output unit that outputs the display data.
  • the selection unit further receives a selection of the type of the classified feature points;
  • step (b) further, a selection of the type of the classified feature points is accepted;
  • step (d) the display data is generated using the received data on the type of feature point.
  • the information processing system of the present invention comprises an acquisition unit that acquires data from a recorded database by classifying feature points contained in the first and second inspection data into first-type feature points that are present in the first inspection data but not in the second inspection data, second-type feature points that are absent in the first inspection data but present in the second inspection data, and third-type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data from a second manufacturing process in which a web is post-processed, which is performed after the first manufacturing process; a selection unit that accepts selection of multiple target lots or selection of multiple inspection sections in the longitudinal direction of the web within a single lot; a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit; and an output unit that outputs the display data.
  • FIG. 1 is a schematic diagram illustrating an application example of an information processing system according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating a configuration of an inspection device.
  • FIG. 1 is a schematic diagram illustrating a configuration of an inspection device.
  • FIG. 1 is a schematic diagram illustrating a configuration of an inspection device.
  • 1 is a block diagram showing a schematic configuration of an information processing system. 4 is an example of various data stored in a storage unit.
  • 10 is a flowchart showing a process for generating first inspection data performed in a first manufacturing process.
  • 10 is a flowchart showing a process for generating second inspection data performed in a second manufacturing process. 4 shows examples of various data in an inspection data DB stored in a storage unit.
  • 10 is a flowchart showing a feature point extraction process and the like executed in the information processing system.
  • FIG. 10 is a schematic diagram for explaining the extraction processing of feature points.
  • 10 is a subroutine flowchart showing the comparison process in step S34.
  • 10 is an example of a probability density function calculated by kernel density estimation, which shows the positions and intensities of feature points.
  • 10 is an example of a corresponding point list.
  • 10 is a table for explaining first to third type feature points.
  • 10 is an example of extracted data of feature points.
  • 10 is a flowchart showing an analysis process for analyzing and displaying the occurrence status of a defect.
  • 10 is an example of an operation screen displayed on a terminal device.
  • 10 is an example of an operation screen displayed on a terminal device.
  • 10 is an example of an extracted data list.
  • 10 is a table showing the analysis results of feature points in lot 1.
  • 18B is a table for explaining feature point extraction conditions 1 and 2 in FIG. 18A.
  • 10 is a table showing the occurrence status of feature points in each lot.
  • 10 is an example of display data.
  • 10 is an example of display data.
  • 10 is an example of display data.
  • 10 is an example of display data.
  • 10 is an example of display data.
  • the web refers to a sheet-like material, including a resin film and a metal film.
  • the web also includes a laminate.
  • the web refers to a long resin film, such as a film roll, and the film roll to be processed.
  • the processing also includes a process of applying a coating liquid and a lamination process of overlaying another film-like material to produce a laminate.
  • lot In this embodiment, a lot is typically assigned to each roll (film roll).
  • the term "lot” simply refers to the method of ID division, and lots may be selected as divisions of actual rolls, or divisions based on time information when manufacturing or post-processing was carried out may be used. For example, it may be linked to the time of inspection by an inspection device installed in the process. This can be done using a separate table that associates multiple inspection times with films or film rolls.
  • any ID assigned (unique ID) as needed may be used to define a lot. In the following description, lot numbers are assumed to be automatically assigned unique numbers.
  • lot IDs are assigned branch IDs or new lot IDs at one of the processes, and there may be a one-to-n or n-to-1 correspondence rather than a one-to-one correspondence.
  • a single lot of 3000m of film may be divided into three 1000m pieces in the downstream process.
  • a branch ID of the lot ID or a new lot ID is assigned in the downstream process.
  • two or three film rolls may be joined together in the upstream process to form a single film that is used in the downstream process.
  • the correspondence between the lot IDs in each process is described in the lot list (see Figure 4 below).
  • feature points are defects on the film, and are generated by analyzing image data.
  • Image analysis may involve extracting, as feature points, pixels whose pixel values deviate by a predetermined amount from the average value of the surrounding pixels (the difference is greater than or equal to a predetermined amount) in image data captured from a film surface using known techniques.
  • feature points may be calculated using the "image processing for generating feature points" technique described below. In many cases, dozens to thousands of feature points are generated from one or more image data captured from a single film roll 80 (total length several kilometers). Defects include both defects that could result in product defects and minor defects that do not result in product defects.
  • Feature points include defects related to poor adhesion when films are bonded together (e.g., by ultrasonic welding) and axial irregularities.
  • Feature point information includes size and position (x-y coordinates). Alternatively, feature point information may be obtained by grouping (clustering) multiple nearby feature points together. The image processing for generating feature points will be described later.
  • FIG. 1 is a schematic diagram showing an application example of an information processing system 50 according to this embodiment.
  • the information processing system 50 communicates with terminal devices 70 and the like in factories A and B via a network.
  • the network is a communication line such as a data communication network.
  • Some networks may use a wired LAN or a wireless LAN (for example, a LAN conforming to the IEEE 802.11 standard). Details of the information processing system 50 will be provided later.
  • the terminal device 70 is, for example, a PC (personal computer).
  • the terminal device 70 is a PC used by an employee of a manufacturing company that operates Factory A and Factory B.
  • Factory A is equipped with the above-mentioned film roll manufacturing apparatus 1000.
  • Factory A is operated or managed by, for example, a film manufacturer.
  • Factory A carries out a first manufacturing process for manufacturing a film roll 80.
  • multiple sub-processes are carried out, such as a drying process, a stretching process, and a winding process.
  • Inspection devices 90a1, a2 (hereinafter collectively referred to as inspection devices 90) are placed before and after the multiple sub-processes.
  • the film surface of the film roll 80 is inspected by the multiple inspection devices 90a1, 90a2. While Figure 1 shows two inspection devices 90a1, 90a2, the number of inspection devices 90 is not limited to this and may be one, or three or more.
  • Factory B is equipped with product manufacturing equipment 2000.
  • Factory B is operated or managed by, for example, a coating manufacturer (hereinafter referred to as a user company or user). Each factory B is operated by multiple user companies.
  • Factory B manufactures products using film rolls 80 shipped and transported from factory A.
  • Factory B includes multiple sub-processes, which involve unwinding film (film F8, described below) from the film roll 80 and coating, or layering or adhering it with other films.
  • the sub-processes correspond to the first and second manufacturing processes.
  • Multiple inspection devices 90b1-90b4 (hereinafter collectively referred to as inspection devices 90) are located before and after the multiple sub-processes. While four inspection devices 90b1, 90b2, 90b3, and 90b4 are shown in Figure 1, the number of inspection devices 90 is not limited to this and may be three or fewer, or five or more.
  • the process of manufacturing a film (web) is called the first manufacturing process
  • the post-processing carried out at factory B using this manufactured film is called the second manufacturing process.
  • the post-processing process includes a coating process to apply a functional layer to the surface, and a lamination process to overlay a web of another film or the like.
  • the film surface of the film roll 80 is also inspected by inspection device 90.
  • the material of the film F8 produced as shown in Figure 1 is not particularly limited, but typical examples include polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, cyclic olefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, phenolic resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, cellulose acetate resin, and vinyl chloride resin.
  • the width of film F8 is preferably 1000 mm to 3200 mm, taking into consideration productivity, quality, etc.
  • the thickness is preferably 15 ⁇ m to 500 ⁇ m, taking into consideration quality, handling, etc.
  • the first post-processing step may be referred to as the first manufacturing process
  • the subsequent post-processing step may be referred to as the second manufacturing process.
  • the film roll 80 manufactured in Factory A may be unwound and post-processed in a later process.
  • the sub-processes performed in Factory B include a lamination process (also called a bonding process) in which other films are layered and bonded. The lamination process forms a laminate 80B (see the enlarged cross-sectional view of the bubble in Figure 1).
  • Film F8 is a PVA (polyvinyl alcohol resin) layer, with the first layer being a TAC (triacetyl cellulose) layer, the second layer being an optically functional film layer such as a polarizer, and the third layer being a protector.
  • the third layer may also be a separator, anti-glare film, or the like.
  • the third layer is an opaque layer.
  • the inspection device 90 photographs the film and generates inspection data. As mentioned above, in the example shown in Figure 1, multiple inspection devices 90 are placed before and after the sub-processes, such as the stretching process and lamination process, of the film production line. The inspection device 90 will be described below with reference to Figures 2A to 2C.
  • the following types (1) and (2) are used as devices for detecting irregularities on the surface of a transparent body such as film F8 as an object to be inspected, as well as bubbles, cracks, and distortions in the internal structure of the transparent body.
  • the following type (2) is also used as a device for detecting irregularities on the surface of a non-transparent body as an object to be inspected, as well as bubbles, cracks, and distortions in the internal structure of the non-transparent body.
  • a transmission-type inspection device that detects defects in the object by irradiating the object with light and receiving the light that has passed through the object.
  • a reflection-type inspection device that detects defects in the object by receiving the light reflected from the object.
  • the transmissive and reflective types there are bright-field inspection devices that receive non-scattered light from the surface and dark-field inspection devices that receive scattered light, depending on the relative positions of the camera's optical axis, light source, and object being inspected.
  • a bright-field inspection device if there is no defect, there is no scattering of light, so light from the light source enters the light detection means without being blocked. If there is a defect, the light is blocked by the defect and does not enter the light detection means. Therefore, the defect is observed as a dark dot or streak against a bright background.
  • a dark-field inspection device if there is no defect, there is no scattering of light, so light does not enter the light detection means.
  • the defect is observed as a bright dot or streak against a dark background.
  • Either type of inspection device may be used as the inspection device 90 in this embodiment. It is preferable, but not limited to, that the first inspection data and the second inspection data be acquired by the same type of inspection device.
  • FIG. 2A is a schematic diagram showing the configuration of a reflective inspection device 90 as viewed from the width direction (X direction).
  • FIG. 2B is a schematic diagram showing the configuration of the inspection device 90 as viewed from the transport direction (Y direction).
  • the inspection device 90 includes a light source 91, a camera 92 as an optical sensor, an image analysis unit 93 as a data processing device, and a memory unit 94.
  • the inspection device 90 optically inspects feature points (hereinafter simply referred to as defects) that occur on the film F8 during transport.
  • the camera 92 optically inspects the film F8 in the film roll 80 and generates image data as inspection data.
  • the image data includes not only still images but also video data consisting of a time-series of consecutive still images. Alternatively, feature points may be extracted directly from signal data without converting the data into image data.
  • the number of cameras 92, the angle of view, and the distance to the film surface are set so that the entire width of the film F8 is the inspection area (capture range). The number of cameras is determined so that multiple cameras can be arranged in the width direction when a single camera cannot adequately capture the entire width of the film.
  • FIG. 2B illustrates an example in which two cameras 92 are arranged in the width direction (X direction).
  • the image analysis unit 93 may combine multiple images obtained by continuous shooting with one camera 92 to generate a single image data piece containing the entire film surface of the film roll 80, or may store multiple image data pieces in the storage unit 94 in association with the shooting times. Similar image data pieces obtained by multiple cameras 92 arranged in the width direction may also be combined.
  • the image analysis unit 93 can determine the longitudinal position of the film F8 by referencing the stored transport speed (winding speed or unwinding speed) and the shooting times associated with the image data. In the following description, it is assumed that multiple image data pieces obtained by continuous shooting are stored for one film roll 80 in association with the shooting times.
  • the image analysis unit 93 generates defect information by analyzing the image data.
  • the inspection device 90 inspects the long film F8 for defects that occur during the manufacturing process, such as while the film F8 is being wound.
  • the light source 91 irradiates the inspection area of the film F8 with light.
  • the light source 91 irradiates light uniformly across the width of the rolled film F8 (a direction perpendicular to the longitudinal direction of the film F8 and parallel to the film surface).
  • uniform means that the illuminance on the film F8 is approximately the same across the width of the film F8 (e.g., the difference between the maximum and minimum values is less than a specified value).
  • Camera 92 is an optical sensor that optically reads the inspection area of film F8.
  • Camera 92 is equipped with imaging elements such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), lenses, etc.
  • Camera 92 is an area sensor that generates two-dimensional image data from the output signals of each imaging element.
  • Camera 92 detects diffused light that is irradiated by light source 91 and reflected in the inspection area of film F8.
  • either a color camera or a black and white camera (monochrome camera) may be used as camera 92.
  • the one or more cameras 92 have a shooting range that spans the entire width of the film F8, and in one shooting session, the entire width of the film F8 is simultaneously read.
  • the cameras 92 may be those that detect light in the visible light range or those that detect light in the infrared range.
  • the contrast between the signal values corresponding to the illuminated areas on film F8 illuminated by light source 91 and the signal values corresponding to the non-illuminated areas not illuminated by light source 91 in the output signal from camera 92 be equal to or greater than a predetermined value. In other words, it is desirable that only the areas on film F8 illuminated by light from light source 91 (illuminated areas) appear bright.
  • Contrast is expressed as the difference or ratio between two values to be processed (here, the signal value corresponding to the irradiated area and the signal value corresponding to the non-irradiated area), and the greater the difference between the two values, the greater the contrast.
  • a light source 91 that is powerful and highly directional.
  • strong means that when the illuminance at an irradiation distance of 50 mm is E50, the illuminance E50 is 50,000 lx or more.
  • highly directional means that when the illuminance at an irradiation distance of 50 mm is E50 and the illuminance at an irradiation distance of 100 mm is E100, the relationship (E50 - E100)/E50 ⁇ 0.5 is satisfied.
  • the image analysis unit 93 is composed of a CPU, RAM, etc., and reads various processing programs stored in the memory unit 94, loads them into RAM, and performs various processes in cooperation with these programs.
  • the storage unit 94 is composed of an HDD, SSD (Solid State Drive), etc., and stores various processing programs, data required to execute those programs, etc.
  • the storage unit 94 also stores captured image data (inspection data) linked to the time of capture.
  • the storage unit 94 also stores the winding speed (e.g., 100 m/min) of the film roll manufacturing apparatus 1000, or the unwinding conditions (e.g., 30 m/min) of film F8 in the product manufacturing apparatus 2000. These winding speeds and unwinding conditions may be included in the inspection list (see Table T3 in Figure 4) of the inspection data DB (database).
  • the image analysis unit 93 performs data processing on the output signal of the camera 92 (optical sensor) to detect characteristic points (position and intensity) of defects, etc. on the film F8.
  • the data processing includes image processing of the image data obtained from the output signal of the camera 92, defect determination processing to determine defects based on the data after image processing, and quantitative evaluation processing to quantitatively evaluate defects based on the data after image processing.
  • the camera 92 may be positioned so as to receive specularly reflected light emitted from the light source 91 (in the case of a bright-field inspection method that receives non-scattered light).
  • the camera 92 may be positioned to avoid receiving specularly reflected light from the light source 91 (in the case of a dark-field inspection method that receives scattered light). In other words, it is preferable to position the camera 92 in a position that receives diffused light reflected from the object being inspected.
  • Transmission type inspection device 2C shows an example of a transmission type inspection device 90.
  • a transmission type inspection device 90 in which the light source 91 is disposed opposite the camera 92 with the film F8 sandwiched therebetween may be employed.
  • Fig. 3 is a block diagram showing a schematic configuration of the information processing system 50.
  • the information processing system 50 is, for example, a server.
  • the information processing system 50 includes a control unit 51, a storage unit 52, and a communication unit 53.
  • the storage unit 52 stores an inspection data DB.
  • the control unit 51 has a CPU and memories such as RAM, ROM, etc.
  • the CPU is a control circuit configured with a multi-core processor or the like that controls each of the above-mentioned units and executes various arithmetic processing in accordance with a program, and each function of the information processing system 50 is realized by the CPU executing the corresponding program.
  • the control unit 51 functions as an acquisition unit 511, a selection unit 514, and an output unit 516 in cooperation with the communication unit 53.
  • the control unit 51 also functions as a comparison unit 512, an extraction unit 513, and a display data generation unit 515.
  • the acquisition unit 511 acquires various data from the test data DB.
  • the acquisition unit 511 acquires the first and second inspection data obtained by inspection in the first and second manufacturing processes.
  • the comparison unit 512 extracts feature points from each of the first and second inspection data.
  • the comparison unit 512 searches for corresponding feature points between the first and second inspection data through a comparison process.
  • the comparison unit 512 generates feature point descriptors (descriptor 2, described below) for the two pieces of inspection data (image data), and uses these feature point descriptors to perform a feature point matching process between the inspection data and output the comparison results (a corresponding point list shown in Figure 12, described below).
  • the extraction unit 513 uses the comparison results to extract (classify) first to third type feature points.
  • the selection unit 514 accepts selections from the user, such as the lot or inspection section and the type of feature point.
  • the display data generation unit 515 generates display data from the data selected by the selection unit 514.
  • the display data is a chart for visually representing data. Charts include tabular data and graphs. Graphs include bar graphs, line graphs, point graphs, stacked bar graphs, etc. that show the occurrence status of characteristic points. For example, they include bar graphs, line graphs, point graphs, and stacked bar graphs that show the occurrence status of characteristic points in each process between lots.
  • the output unit 516 transmits display data to the terminal device 70 or displays it on the display unit (not shown) of the terminal device 70 in response to a request from the terminal device 70, etc.
  • the memory unit 52 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, a solid-state drive, a flash memory, a ROM, or the like is used as the storage.
  • the memory unit 52 stores a user list, a lot list, an inspection data DB (database), and the like. Of these, the user list and the lot list are managed and registered by an administrator through access to the terminal device 70. For example, this administrator is a person in charge of the relevant department of the manufacturer that operates Factory A.
  • the inspection data DB of the memory unit 52 may be an external database independent of the information processing system 50.
  • (User list) 4 shows an example of various data stored in the storage unit 52.
  • Table T1 shown in FIG. 4 is an example of a user list.
  • the user list stores user IDs, user names, contact information, etc.
  • Each user is assigned access rights to the search data DB, and is granted access rights to various data (inspection data, extracted data, etc.) related to the film roll 80 (identified by lot ID) that the user is involved in.
  • Table T2 in Fig. 4 is an example of a lot list, which records a lot ID assigned to each film roll, a product name (also called a type), a delivery destination user ID (orderer), multiple manufacturing conditions, size (width, length, thickness), manufacturing date, etc.
  • Table T3 in Fig. 4 is an example of an inspection list registered in the inspection data DB.
  • the inspection list stores an inspection ID, lot ID, inspection device ID, inspection data, inspection date and time, etc.
  • An example of inspection data included in the inspection list corresponding to the inspection device ID such as the inspection device 90a1 shown in Fig. 1 will be described later.
  • the communication unit 53 also serves as an interface for network connection with an external device such as a PC.
  • FIG. 5 is a flowchart illustrating the process for generating the first inspection data performed in the first manufacturing process.
  • FIG. 6 is a flowchart illustrating the process for generating the second inspection data performed in the second manufacturing process.
  • FIG. 7 is a diagram illustrating examples of the first and second inspection data obtained by the processes of FIGS. 5 and 6.
  • the first inspection data is inspection data generated by the generation process described below using image data obtained by one of inspection devices 90a1 to 90b3 in the example shown in FIG. 1.
  • the second inspection data is inspection data generated by the generation process described below using image data obtained by one of inspection devices 90a2 to 90b4 that is located downstream of the inspection device 90 that acquired the first inspection data.
  • FIG. 5 is a flowchart showing the process of generating the first inspection data performed in the first manufacturing process.
  • Step S11 In the typical example described above, in the first manufacturing step, the film roll 80 is manufactured by the film roll manufacturing apparatus 1000 .
  • Step S12 The inspection device 90 photographs the film and stores the image data.
  • the inspection device 90 is the same as that described with reference to FIG. 3A and other figures.
  • Step S13 The image analysis unit 93 performs image processing, which will be described below, on the image data to generate a plurality of feature points.
  • the image analysis unit 93 acquires two-dimensional image data generated by the camera 92 and stored in the storage unit 94 .
  • the image analysis unit 93 performs data processing on the image data (examination data) acquired from the camera 92.
  • the image analysis unit 93 divides the image data into multiple regions. For example, the image analysis unit 93 divides the image data into n regions (e.g., several to several tens) in the width direction (hereinafter referred to as regions a1 to an).
  • the image analysis unit 93 acquires image data for one area a1 and performs mathematical processing on the image data for area a1. Appropriate mathematical processing is provided depending on the type of defect to be detected (gauge band, vertical wrinkles, diagonal wrinkles, uneven bright spots, light leaks, etc.).
  • Mathematical processing includes preprocessing, enhancement processing, signal processing, image feature extraction, etc.
  • Pretreatment includes the following: - Image cropping, - Low-pass filter, high-pass filter, Gaussian filter, median filter, bilateral filter, - morphological transformation, color transformation (L*a*b*, sRGB, HSV, HSL), contrast adjustment, noise removal, restoration of blurred and shaken images, mask processing, Hough transform, projection transformation, etc.
  • enhancement processing examples include the Sobel filter, Scharr filter, Laplacian filter, Gabor filter, and Canny algorithm.
  • the signal processing includes the following: - Basic statistical quantities (maximum, minimum, average, median, standard deviation, variance, quartile), square root of the sum of squares, difference, sum, product, ratio, distance matrix calculation, differential and integral calculus, threshold processing (binarization, adaptive binarization, etc.), - Fourier transform, wavelet transform, peak detection (peak value, number of peaks, half-width, etc.), etc.
  • image feature extraction examples include template matching and SIFT features.
  • Threshold processing is a process that determines whether or not the defect is the target of detection based on a predetermined defect determination threshold, and also determines the rank (intensity) of the defect.
  • threshold processing determining the presence and type of defect corresponds to “defect determination processing.” Also, in threshold processing, classifying defects into multiple ranks according to the threshold corresponds to “quantitative evaluation processing.”
  • defects are classified into multiple ranks for a parameter (feature) that takes a value between 1 and 100.
  • ranks are classified according to the size (diameter or area) of the defect. Ranks classified by size may also be further subdivided according to the parameter value.
  • the image analysis unit 93 performs similar processing on areas other than area a1.
  • the image analysis unit 93 After processing each of the regions a1-an, the image analysis unit 93 integrates the results for each of the regions a1-an, and data processing ends. Specifically, the image analysis unit 93 generates data that associates the rank of the detected defects with their location (x and y coordinates) for each region (each position in the width direction of the film F8).
  • the image analysis unit 93 stores the results of the data processing in the storage unit 94.
  • the image analysis unit 93 performs this type of data processing on each of the multiple image data obtained by inspecting one film roll 80, and obtains the processing results. By aggregating these processing results, the first inspection data such as that shown in table T11 in Figure 7 is generated.
  • Terminal device 70 in the first manufacturing process sends inspection data including information on multiple feature points obtained through the processing up to step S13 to information processing system 50.
  • Acquisition unit 511 of information processing system 50 stores the acquired inspection data in the inspection data DB of storage unit 52 as first inspection data.
  • Figure 7 shows an example of the contents of the inspection data in the inspection list.
  • the first inspection data shown in table T11 in Figure 7 includes feature point IDs that are automatically assigned consecutive numbers to each feature point, and feature point descriptors 1 and 2 (hereinafter simply referred to as descriptor 1, etc.) for each feature point ID.
  • Descriptor 1 is information about a feature point alone, recording its XY coordinate position and intensity. Intensity is the rank of the feature point, which will be described later. Intensity information may also include information about the feature point's size (diameter, area) and brightness.
  • the XY coordinate position is based on the origin of the film surface (for example, the left edge of the leading edge).
  • X is the coordinate in the width direction of the film, and can range from 0 to 3000 mm, for example, depending on the film size (see Table T2).
  • Y is the coordinate in the length direction of the film, and can range from 0 to 10000 m, for example, depending on the film size.
  • Descriptor 1 is generated by the image analysis unit 93 of the inspection device 90.
  • Descriptor 2 is peripheral information, and is vector or array information that represents surrounding information such as relationships with other feature points.
  • SIFT features may be used as descriptors, or the probability density function of feature points calculated by kernel density estimation may be used as descriptors.
  • Descriptor 2 is mainly generated by the comparison unit 512.
  • FIG. 6 is a flowchart showing the process of generating second inspection data performed in the second manufacturing process.
  • Step S21 In the second manufacturing process, after the first manufacturing process, the product manufacturing apparatus 2000 performs post-processing using the film roll 80 to manufacture a product using the film F8.
  • Step S22 The inspection device 90 photographs the surface of the film F8 before post-processing, or during or after post-processing, and stores the image data.
  • Step S23 The image analysis unit 93 stores the generated inspection data including the feature point information of the plurality of feature points in the storage unit 94 by the same process as in step S13.
  • Terminal device 70 in the second manufacturing process sends inspection data including multiple pieces of feature point information obtained in the processes up to step S23 to information processing system 50.
  • Acquisition unit 511 of information processing system 50 stores the acquired inspection data as second inspection data in the inspection data DB of storage unit 52.
  • Second inspection data T12 shown in FIG. 7 is described using feature point IDs and feature point descriptors 1 and 2, similar to the first inspection data shown in table T11.
  • Feature Point Extraction Processing and Registration Processing in Inspection Data DB 8 to 14
  • the process of extracting feature points and the process of registering feature points in the inspection data DB executed by the information processing system 50 will be described below.
  • Fig. 8 is a flowchart showing the process of extracting feature points.
  • Fig. 9 is a schematic diagram for explaining the process of extracting feature points.
  • the information processing system 50 starts the processing from step S31 onwards in response to a start instruction from the user via the operation screen of the terminal device 70, or when the second test data is registered in the test data DB of the memory unit 52 and a pair of first and second test data is obtained.
  • Step S31 The acquiring unit 511 acquires the same lot, i.e., a pair of first and second inspection data, from the inspection data DB.
  • the same lot is linked by the lot ID assigned to the inspection ID.
  • the comparison unit 512 performs preprocessing on the first inspection data under a first condition, and performs preprocessing on the second inspection data under a second condition.
  • the comparison unit 512 performs preprocessing to reverse the Y coordinate (up and down) of the second inspection data to match any differences between winding (first manufacturing process) and unwinding (second manufacturing process) of the second inspection data. Furthermore, in the second manufacturing process, the comparison unit 512 performs preprocessing to reverse the X coordinate (left and right) of the second inspection data (or first inspection data) depending on information on whether the shooting area of the camera 92 is set to the front or back of the film F8.
  • the comparison unit 512 performs at least one of the following noise removal processes on the first and second test data as the noise removal processes included in the first and second conditions.
  • Step S34 The comparison unit 512 searches for feature points in one test data that are identical to or correspond to feature points in the other test data through comparison processing, and matches the feature points with each other.
  • Figure 10 is a subroutine flowchart showing the processing of step S34.
  • the comparison unit 512 generates a descriptor 2 for each feature point of the first and second test data.
  • the comparison unit 512 uses a SIFT feature amount as the descriptor, or a probability density function of the feature points calculated by kernel density estimation as the descriptor.
  • the comparison unit 512 compares the feature points of the first and second test data to find the most similar points.
  • the comparison unit 512 evaluates the similarity between the feature points using Descriptor 1 and Descriptor 2, and regards the most similar points as corresponding feature points.
  • the comparison unit 512 searches for feature points in the first test data that correspond to feature points of interest in the second test data. In this case, the comparison unit 512 determines that feature points in the first test data that match or have the closest intensity to the X and Y coordinates of descriptor 1 of the feature point in the second test data are the same point. Alternatively, the comparison unit 512 determines that feature points with the closest distance (Euclidean distance) between the X and Y coordinates of descriptor 1 are the same point (corresponding points). The comparison unit 512 excludes feature points that are farther apart than a set threshold from the determination of corresponding points.
  • the threshold value in the Y direction is set to a value that is two to three orders of magnitude larger than that in the X direction.
  • the threshold value in the X direction is several millimeters, and the threshold value in the Y direction is several meters. The reason the threshold value in the Y direction is two to three orders of magnitude larger than that in the X direction is that there is a greater amount of change.
  • the comparison unit 512 may use descriptor 2 in addition to descriptor 1 to extract feature points that are most similar based on the distance between vectors in high-dimensional vector space.
  • the comparison unit 512 may use a probability density function calculated by kernel density estimation as described above as descriptor 2.
  • Figure 11 is an example of a probability density function calculated by kernel density estimation that indicates the position and intensity (density) of feature points.
  • the vertical and horizontal axes are XY coordinates, and it is shown that the higher the concentration, the higher the density.
  • the comparison unit 512 determines that one feature point corresponds to only one other feature point. For example, for a feature point in the second test data, the feature point in the first test data whose descriptor vectors are closest to the feature point in the second test data is registered as the corresponding point in the corresponding point list.
  • FIG. 12 is an example of a corresponding point list stored in the storage unit 52.
  • the corresponding point list associates each feature point in the second inspection data with the most similar feature point in the first inspection data.
  • the corresponding point list also describes the X and Y coordinates of the feature points in the second inspection data, the Euclidean distance between the associated feature points, the difference dx in the X coordinate, and the difference dy in the Y coordinate.
  • the control unit 51 ends the processing in FIG. 10, returns to the processing in FIG. 8, and performs step S35 and subsequent steps.
  • Step S35 The extraction unit 513 classifies feature points from the correspondence list, the first test data, and the second test data into first to third type feature points.
  • the first to third type feature points will be described later.
  • the extraction unit 513 classifies, among the feature points of the second test data in the correspondence list, feature points that are not associated with feature points of the first test data as second type feature points.
  • the extraction unit 513 classifies, among the feature points of the first test data, feature points that are not included in the correspondence list (feature points that are not associated with feature points of the second test data) as first type feature points.
  • FIG. 13 is a table for explaining the first to third type feature points.
  • the first type feature points are feature points that are present in the first inspection data but not present in the second inspection data.
  • the first type feature points are feature points that disappear in the second manufacturing process (e.g., the coating process or the lamination process). These first type feature points are feature points that do not need to be managed in the first manufacturing process. In this case, the manufacturing conditions that cause the first type feature points to occur may be subject to relaxed standards in the first manufacturing process.
  • the second type feature points are feature points that are not present in the first inspection data but are present in the second inspection data.
  • the second type feature points are feature points that newly appear in the second manufacturing process. Because these second type feature points are feature points that originate in the second manufacturing process, they can be used to improve the second manufacturing process.
  • the third type feature points are feature points that exist in both the first inspection data and the second inspection data. These third type feature points are feature points that originate from the first manufacturing process and require management. Because these third type feature points originate from the first manufacturing process, they can be used to improve the first manufacturing process.
  • Step S36 The control unit 51 registers the feature point extraction information extracted in the processes up to step S35 in the test data DB (END).
  • Figure 14 is an example of extracted data.
  • the extracted data records the inspection IDs of the original first and second inspection data, as well as the extraction results for each feature point.
  • the extraction results (Types 1 to 3) are classified as shown in Figure 13.
  • Integrated feature point IDs are automatically assigned consecutive numbers, and integrated feature points are generated corresponding to feature points that are present in either or both of the first and second inspection data.
  • the number of integrated feature point IDs is greater than or equal to the number of first inspection and second inspection feature point IDs.
  • first and second inspection data may be generated for one lot ID by multiple inspection devices.
  • the film roll 80 in its original wound state may be inspected (photographed), and multiple second inspection data may be generated by inspections in several downstream processes.
  • the information processing system 50 may generate multiple feature point extraction data for one piece of first inspection data and multiple pieces of second inspection data (one-to-many). For example, if there are three pieces of inspection data, feature point extraction data may be generated between the first and second inspection data, and between the second and third inspection data. Furthermore, if there are three or more pieces of inspection data, the user may be able to select which pair of inspection data to associate with.
  • (Analysis of defect occurrence status) 15 is a flowchart showing an analysis process for analyzing and displaying the occurrence status of defects between lots or between inspection sections.
  • 16A and 16B are examples of operation screens displayed on the terminal device 70 or the like.
  • the selection unit 514 accepts the user's selection of target data. For example, in the operation screen 701 shown in FIG. 16A, a product listed in the lot list (see FIG. 4) is selected in area b0, and then (1) multiple lots or (2) multiple inspection sections within a single lot are selected in area b1. Multiple lots will be described later. For example, in the case of a 3,000 m film, multiple inspection sections divided into 500 m or 1,000 m sections in the longitudinal direction are selected. Alternatively, multiple inspection sections divided into 500 mm sections in the transverse direction are selected. Then, feature points for each of the multiple sections are compared. In this case, the overall length may be displayed as a comparison. For example, the total number of feature points over the entire length in the longitudinal direction divided by the number of sections (average value) may be presented as a comparison target.
  • the operation screen 702 shown in Figure 16B is a screen that is displayed when the Multiple Lots button in area b1 in Figure 16A is pressed. Area b11 of the operation screen 702 displays a list of lots related to the selected product. The user activates the selection of each lot with button b12. The example of the operation screen 702 shows that lots 1 to 5 have been selected. The user reflects the selection by pressing the Confirm button b13. Note that if there are multiple manufacturing processes, the system may accept the selection of the target manufacturing process within the lot.
  • Step S52 The acquisition unit 511 acquires extracted data that meets the conditions selected in step S51 from the inspection data DB.
  • FIG. 17 is an example of the extracted data list acquired in step S52. In the following description, it is assumed that lots 1 to 5 are processed and manufactured through three consecutive manufacturing processes, steps 1 to 3, and extracted data is acquired between each process. For example, in the example shown in FIG. 17, two pieces of extracted data, extracted data 01 and extracted data 02, are recorded for lot 1. Extracted data 01 corresponds to the extracted data shown in FIG. 14.
  • Step S53 The selection unit 514 accepts the user's selection of the type of feature point.
  • the user can select the type of feature point by selecting some in area b2 of the operation screen 701.
  • the example of the operation screen 701 shows that second and third types of feature points have been selected.
  • This selection may also be performed automatically by the control unit 51.
  • the user may select the "automatic" button in area b2, causing the control unit 51 to automatically perform the selection.
  • Steps S54 and S55 The display data generation unit 515 analyzes the feature point data and generates display data in accordance with the conditions selected in steps S52 and S53. The analysis process of the feature point data will be described below with reference to Figures 18A to 18C.
  • Figures 18A and 18B are tables showing the analysis results.
  • Figure 18A shows the analysis results for Lot 1 as a representative of the selected Lots 1 to 5.
  • Figure 18B is a table explaining the conditions for extracting feature points in Figure 18A.
  • Extraction Condition 1 in Figure 18A feature points (defects) occurring in Process 1 use third-type feature points in Extracted Data 01 (see Figure 17) generated using the inspection data from Processes 1 and 2.
  • feature points occurring in Process 2 use second-type feature points in the same Extracted Data 01.
  • Feature points occurring in Process 3 use second-type feature points in Extracted Data 02 generated using the inspection data from Processes 2 and 3.
  • the total process uses all feature points extracted from the inspection data for Process 3 alone (Inspection Data i03).
  • the second type feature points used in step 3 are second type feature points classified by comparing the inspection data of step 3 with the inspection data of the immediately preceding step 2.
  • extraction condition 2 may be applied instead of extraction condition 1 shown in Figure 18B.
  • condition a and condition b are applied as an AND condition.
  • feature points generated in process 1 are third-type feature points, and first-type feature points are excluded.
  • feature points generated in process 2 are third-type feature points between processes 2 and 3, and second-type feature points between processes 1 and 2.
  • extraction condition 1 is applied.
  • Figure 18A shows five classifications based on the size (area) of feature points, from size 1 to size 5, and the number of feature points for each size is shown. Size 1 is the smallest classification, and size 5 is the largest classification. Below, the total value of these sizes is used, but it is also possible to use the aggregated value for each size classification depending on the settings input by the user.
  • the table in Figure 18C displays a list of the number of feature points that occurred in each process for each lot.
  • the display data generation unit 515 generates display data.
  • the output unit 516 then outputs the generated display data. For example, display data such as that shown in Figure 19A below is displayed in area b4 (see Figure 16A) on the operation screen 701 of the terminal device 70.
  • the displayed data may be the table data itself in a tabular format, such as that shown in Figure 18C, or it may be a bar graph, line graph, dot graph, or stacked bar graph generated from the table data shown in Figure 18B. It may also be a Venn diagram. For example, it may display the extent to which transitional feature points overlap between three or more processes for each lot.
  • Figures 19A to 19E are examples of such graph-based display data.
  • Figures 19A to 19D are charts generated based on the table data in Figure 18C.
  • Figures 19A to 19C are dot graphs, and Figures 19D and 19E are examples of stacked bar graphs.
  • Figure 19A shows the number of feature points in Process Total for lots 1 to 5.
  • Figure 19B shows the number of feature points generated in Process 3 for lots 1 to 5.
  • the type of feature points shown here is Type 2 feature points, as indicated by Condition 1 in Figure 18B.
  • Figure 19C shows the number of feature points generated in Process 1 for lots 1 to 5.
  • the type of feature points shown here is Type 3 feature points, as indicated by Condition 1 in Figure 18B.
  • Figure 19D shows the number of feature points in Process Total for lots 1 to 5, with each bar indicating the number of feature amounts generated in each of Processes 1 to 3.
  • the types of feature amounts shown here are Type 3 feature points and Type 2 feature points, as indicated by Condition 1 in Figure 18B.
  • Figure 19E shows the number of feature points for the total process in lots 1 to 5, with each bar
  • the information processing system of this embodiment includes an acquisition unit that classifies feature points contained in the first and second inspection data into first-type feature points that are present in the first inspection data but not in the second inspection data, second-type feature points that are absent in the first inspection data but present in the second inspection data, and third-type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web for each lot is manufactured or a manufactured web is post-processed, and acquires the data from a recorded database.
  • the system also includes a selection unit that accepts selection of multiple target lots or selection of multiple inspection sections in the longitudinal direction of the web in a single lot, a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit, and an output unit that outputs the display data.
  • a selection unit accepts selection of multiple target lots or selection of multiple inspection sections in the longitudinal direction of the web in a single lot
  • a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit
  • an output unit that outputs the display data.
  • the configuration of the information processing system 50 described above is the main configuration used to explain the features of the above embodiment, but is not limited to the above configuration and can be modified in various ways within the scope of the claims. Furthermore, configurations that are commonly found in information processing devices/systems are not excluded.
  • the display data example described above shows an example in which changes in status between multiple lots can be grasped.
  • display data is generated in a manner that allows changes in status between sections within a single lot to be grasped. For example, if the film length of a single lot is 3,000 m, this is divided into three sections: 0 to 1,000 m, 1,000 to 2,000 m, and 2,000 to 3,000 m.
  • the display data generation unit 515 then generates display data similar to those shown in FIGS. 19A to 19E for each section.
  • the inspection data is divided according to the specified sections, and extracted data is generated for each divided inspection data.
  • the display data generation unit 515 then generates display data by analyzing the extracted data corresponding to these acquired sections.
  • This modified example also achieves the same effects as the present embodiment shown in FIGS. 1 to 17 . For example, it is possible to grasp the occurrence status of feature points (defects) within a single lot as they change over time.
  • the user's selection of the type of feature can be made for each type.
  • the type may also be selected for each process.
  • a third or second type selection may be made for each process.
  • multiple types may be selected for each process in relation to the preceding and succeeding processes. For example, as shown in the table for condition 2, in process 2, if the user selects a second type of feature point in relation to the preceding process (between processes 1 and 2) and a third type of feature point in relation to the succeeding process (processes 2 and 3), this is accepted under an AND condition.
  • the control unit 51 may automatically select the type of feature point. For example, in a case where the status of newly occurring feature points in each process is to be visually displayed, the control unit 51 may automatically set the type of feature point under condition 1 or condition 2 shown in FIG. 18B by accepting the user's selection of "defects occurring in each process.”
  • the series of processes shown in FIG. 15 may be performed in real time. For example, inspection data obtained in each process may be processed in real time and displayed under preset conditions. Furthermore, an alert may be output depending on the number of newly occurring second-type feature points. Specifically, when the number of newly occurring second-type feature points exceeds a threshold, an alert is sent to a set process (e.g., the process where the fault occurred or any process before or after it). As a result, it is possible to quickly determine whether the fault should be fixed and to support the improvement.
  • a set process e.g., the process where the fault occurred or any process before or after it.
  • the information processing system 50 may also include an inspection device 90 disposed in the first manufacturing process and/or the second manufacturing process.
  • the feature point generation function of the image analysis unit 93 of the inspection device 90 may be performed by the control unit 51 of the information processing system 50.
  • the inspection device 90 sends image data of an image of the film surface and the image capture conditions (information such as transport speed, camera orientation, and angle of view) to the information processing system 50, and the feature point generation process is performed on the control unit 51 side.
  • the means and methods for performing various processes in the information processing system 50 according to the above-described embodiment can be realized by either a dedicated hardware circuit or a programmed computer.
  • the above program may be provided by a computer-readable recording medium such as a USB memory or a DVD (Digital Versatile Disc)-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is typically transferred to and stored in a storage unit such as a hard disk.
  • the above program may be provided as standalone application software, or may be incorporated into the software of a device as one of its functions.

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

An information processing system 50 comprises: an acquiring unit 511 for acquiring data from a database that stores feature points included in each of first and second inspection data acquired in a process, the feature points being classified into first-type feature points that are present in the first inspection data but are not present in the second inspection data, second-type feature points that are not present in the first inspection data but are present in the second inspection data, and third-type feature points that are present in both the first and second inspection data; a selecting unit 514 for accepting selection of a plurality of lots of interest or selection of a plurality of inspection sectors in the longitudinal direction of a web in one lot; a display data generating unit 515 for generating display data from the data acquired from the database by the acquiring unit 511 and selected by the selecting unit 514; and an output unit 516 for outputting the display data.

Description

情報処理システム、制御方法、および制御プログラムInformation processing system, control method, and control program

 本発明は、情報処理システム、制御方法、および制御プログラムに関する。 The present invention relates to an information processing system, a control method, and a control program.

 液晶表示装置は、大画面テレビや大型モニターに使用されるようになってきており、これにともない液晶表示装置の表示面に用いられるフィルムも広幅化が求められている。例えば、2000mm幅以上の幅広のフィルムが要望されている。また、予め基材ロス(フィルムロス)を見込んだり、輸送コスト削減を図ったりするために、巻き長も1000m以上、更には3000m以上の長尺のフィルムロールの製造が求められる。 Liquid crystal display devices are increasingly being used in large-screen televisions and large monitors, and as a result, there is a demand for wider films to be used on the display surfaces of these devices. For example, there is a demand for wider films of 2000 mm or more. Furthermore, in order to anticipate substrate loss (film loss) and reduce transportation costs, there is a demand for the production of long film rolls with winding lengths of 1000 m or more, and even 3000 m or more.

 フィルム等のウェブを基材とした製品を製造する後加工工程では、欠陥等の品質トラブルが発生したときに、前工程、すなわちそのウェブの製造時に発生し、ウェブ上に元々存在した欠陥なのか、後加工工程で発生したものかの切り分けが必要である。明確に後加工工程で発生したものであるとの切り分けができない場合には、前工程への改善が求められる場合がある。改善要望に対応しようとすると、前工程の出荷規格が必要以上に厳しくなる、結果オーバースペックになる。また、後工程でどのように影響するのかが明確にわからないが、品質トラブルを未然に防ぐために、ウェブ製造時の出荷規格を見込みで過度に厳しくするという対応も行われる場合もある。このような場合もオーバースペックになる。オーバースペックは、歩留まり悪化や、コスト増になり、エコロジー的に好ましくなく、また前工程を行う事業者と後工程を行う事業者の双方にとって好ましくない。 When a defect or other quality issue occurs in a post-processing step that produces a product based on a web such as film, it is necessary to determine whether the defect occurred in the upstream process, i.e., during the production of the web and was originally present on the web, or whether it arose in the downstream process. If it is not possible to clearly determine that the defect occurred in the downstream process, improvements may be required in the upstream process. In attempting to respond to requests for improvement, the shipping standards for the upstream process may become stricter than necessary, resulting in over-specification. Also, in order to prevent quality issues before they occur, it is sometimes necessary to set overly strict shipping standards for web production based on estimates, even though it is not clear how this will affect the downstream process. Such cases also constitute over-specification. Over-specification leads to reduced yields, increased costs, is undesirable from an ecological perspective, and is undesirable for both the upstream and downstream process companies.

 下記の特許文献1は光学フィルムの検査システムにおいて、製造工程中の異なる段階で欠陥を検出する第1、第2の検査部を配置し、これらの検査部で得られた欠陥を併合し、切削の位置およびサイズによる予測歩留まりを判断する技術が開示されている。 Patent Document 1 below discloses a technology in which an optical film inspection system has first and second inspection units that detect defects at different stages during the manufacturing process, and the defects detected by these inspection units are combined to determine the predicted yield based on the cutting position and size.

特開2013-024868号公報JP 2013-024868 A

 しかしながら、特許文献1の技術は、複数の工程間で発生する欠陥を統合するものであり、工程での欠陥の発生状況を把握するものではない。 However, the technology in Patent Document 1 integrates defects that occur between multiple processes, and does not grasp the occurrence status of defects within a process.

 本発明は、上記事情に鑑みてなされたものであり、フィルム等のウェブを製造する際、およびこれを用いて後加工を行う製造工程において欠陥の発生状況を把握することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to understand the occurrence of defects during the manufacturing process of webs such as films and during post-processing using such webs.

 本発明の上記目的は、下記の手段によって達成される。 The above-mentioned object of the present invention is achieved by the following means.

 (1)ウェブを製造または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データに基づき、前記第1、第2検査データのそれぞれに含まれる特徴点を前記第1検査データでは存在し、前記第2検査データでは存在しない第1種特徴点、前記第1検査データでは存在せず、前記第2検査データで存在する第2種特徴点、および前記第1、第2検査データでともに存在する第3種特徴点に分類して、記録したデータベースからデータを取得する取得部と、
 対象の複数のロットの選択、または1つのロットにおけるウェブの長手方向の複数の検査区間の選択を受け付ける選択部と、
 前記取得部が前記データベースから取得した、前記選択部で選択されたデータから表示データを生成する表示データ生成部と、
 前記表示データを出力する出力部と、を備える情報処理システム。
(1) An acquisition unit that classifies feature points included in each of the first and second inspection data into first type feature points that are present in the first inspection data but not in the second inspection data, second type feature points that are not present in the first inspection data but present in the second inspection data, and third type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web is manufactured or post-processed into a manufactured web, and second inspection data from a second manufacturing process in which post-processing using the web is performed after the first manufacturing process, and acquires data from a recorded database;
a selection unit that accepts selection of a plurality of target lots or selection of a plurality of inspection sections in the longitudinal direction of the web in one lot;
a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit;
an output unit that outputs the display data.

 (2)前記選択部は、さらに、分類した特徴点の種類の選択を受け付け、
 前記表示データ生成部は、受け付けた特徴点の種類のデータで、前記表示データを生成する、上記(1)に記載の情報処理システム。
(2) the selection unit further receives a selection of the type of the classified feature points;
The information processing system according to (1), wherein the display data generation unit generates the display data using data on the type of feature points received.

 (3)前記表示データは、複数のロットでの製造工程で発生した特徴点を比較したチャートを含む、上記(1)に記載の情報処理システム。 (3) An information processing system as described in (1) above, wherein the display data includes a chart comparing characteristic points that occurred in the manufacturing process for multiple lots.

 (4)前記チャートは、後の製造工程で発生した第2種特徴点を、複数のロット間で比較したチャートである、上記(3)に記載の情報処理システム。 (4) An information processing system according to (3) above, wherein the chart is a chart comparing second-type features that occur in a later manufacturing process between multiple lots.

 (5)前記チャートには、棒グラフ、折れ線グラフ、点グラフおよび積み上げ棒グラフのいずれかが少なくとも含まれる、上記(3)に記載の情報処理システム。 (5) The information processing system described in (3) above, wherein the chart includes at least one of a bar graph, a line graph, a dot graph, and a stacked bar graph.

 (6)ウェブを製造または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データに基づき、前記第1、第2検査データのそれぞれに含まれる特徴点を前記第1検査データでは存在し、前記第2検査データでは存在しない第1種特徴点、前記第1検査データでは存在せず、前記第2検査データで存在する第2種特徴点、および前記第1、第2検査データでともに存在する第3種特徴点に分類して、記録したデータベースからデータを取得するステップ(a)と、
 対象の複数のロットの選択、または1つのロットにおけるウェブの長手方向の複数の検査区間の選択を受け付けるステップ(b)と、
 前記ステップ(a)で前記データベースから取得した、前記ステップ(a)で選択されたデータから表示データを生成するステップ(d)と、
 前記表示データを出力するステップ(e)と、を含む処理を実行する制御方法。
(6) A step (a) of classifying feature points included in each of the first and second inspection data into first type feature points that are present in the first inspection data but not in the second inspection data, second type feature points that are not present in the first inspection data but present in the second inspection data, and third type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web is manufactured or post-processed into a manufactured web, and second inspection data from a second manufacturing process in which post-processing using the web is performed after the first manufacturing process, and acquiring data from a recorded database;
(b) accepting a selection of a plurality of target lots or a selection of a plurality of inspection sections along the length of the web within a single lot;
(d) generating display data from the data selected in step (a) retrieved from the database in step (a);
and (e) outputting the display data.

 (7)前記ステップ(b)では、さらに、分類した特徴点の種類の選択を受け付け、
 前記ステップ(d)では、受け付けた特徴点の種類のデータで、前記表示データを生成する、上記(6)に記載の制御方法。
(7) In the step (b), further, a selection of the type of the classified feature points is accepted;
The control method according to (6) above, wherein in the step (d), the display data is generated using the received data on the type of feature point.

 (8)前記表示データは、複数のロットでの製造工程で発生した特徴点を比較したチャートを含む、上記(6)に記載の制御方法。 (8) A control method according to (6) above, wherein the display data includes a chart comparing characteristic points that occurred in the manufacturing process for multiple lots.

 (9)前記チャートは、後の製造工程で発生した第2種特徴点を、複数のロット間で比較したチャートである、上記(8)に記載の制御方法。 (9) A control method according to (8) above, wherein the chart is a chart comparing second-type features that occur in a later manufacturing process between multiple lots.

 (10)前記チャートには、棒グラフ、折れ線グラフ、点グラフ、および積み上げ棒グラフのいずれかが少なくとも含まれる、上記(8)に記載の制御方法。 (10) The control method described in (8) above, wherein the chart includes at least one of a bar graph, a line graph, a dot graph, and a stacked bar graph.

 (11)上記(6)から(10)のいずれかに記載の制御方法を、コンピューターに実行させるための制御プログラム。 (11) A control program for causing a computer to execute the control method described in any one of (6) to (10) above.

 本発明に係る情報処理システムは、ウェブを製造または製造されたウェブに後加工する第1製造工程における第1検査データ、および第1製造工程後に行われる、ウェブを用いた後加工処理を行う第2製造工程における第2検査データに基づき、第1、第2検査データのそれぞれに含まれる特徴点を第1検査データでは存在し、第2検査データでは存在しない第1種特徴点、第1検査データでは存在せず、第2検査データで存在する第2種特徴点、および第1、第2検査データでともに存在する第3種特徴点に分類して、記録したデータベースからデータを取得する取得部と、対象の複数のロットの選択、または1つのロットにおけるウェブの長手方向の複数の検査区間の選択を受け付ける選択部と、取得部がデータベースから取得した、選択部で選択されたデータから表示データを生成する表示データ生成部と、表示データを出力する出力部と、を備える。これにより、ウェブを製造する際、およびこれを用いて後加工を行う製造工程において、欠陥の発生状況を把握する。 The information processing system of the present invention comprises an acquisition unit that acquires data from a recorded database by classifying feature points contained in the first and second inspection data into first-type feature points that are present in the first inspection data but not in the second inspection data, second-type feature points that are absent in the first inspection data but present in the second inspection data, and third-type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data from a second manufacturing process in which a web is post-processed, which is performed after the first manufacturing process; a selection unit that accepts selection of multiple target lots or selection of multiple inspection sections in the longitudinal direction of the web within a single lot; a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit; and an output unit that outputs the display data. This allows for understanding the occurrence of defects when manufacturing a web and during manufacturing processes in which post-processing is performed using the web.

 本発明の一つ以上の実施形態によって提供される利点および特徴は、以下の詳細な説明および添付の図面からより完全に理解される。しかし、これらは例示のみを目的としており、本発明を限定することを意図したものではない。
本実施形態に係る情報処理システムの適用例を示す模式図である。 検査装置の構成を示す概略図である。 検査装置の構成を示す概略図である。 検査装置の構成を示す概略図である。 情報処理システムの概略構成を示すブロック図である。 記憶部に記憶される各種データの例である。 第1製造工程で行われる第1検査データの生成処理を示すフローチャートである。 第2製造工程で行われる第2検査データの生成処理を示すフローチャートである。 記憶部に記憶される検査データDBの各種データ例である。 情報処理システムで実行される特徴点の抽出処理等を示すフローチャートである。 特徴点の抽出処理を説明するための模式図である。 ステップS34の対比処理を示すサブルーチンフローチャートである。 カーネル密度推定により算出した、特徴点の位置と強度を示す確率密度関数の例である。 対応点リストの例である。 第1~第3種特徴点を説明するためのテーブルである。 特徴点の抽出データの例である。 欠陥の発生状況を解析し、表示する解析処理を示すフローチャートである。 端末装置に表示される操作画面の例である。 端末装置に表示される操作画面の例である。 抽出データリストの例である。 ロット1での特徴点の解析結果を示すテーブルである。 図18Aでの特徴点の抽出条件1、2を説明するためのテーブルである。 各ロットでの特徴点の発生状況を示すテーブルである。 表示データの例である。 表示データの例である。 表示データの例である。 表示データの例である。 表示データの例である。
Advantages and features provided by one or more embodiments of the present invention will be more fully understood from the following detailed description and the accompanying drawings, which are for purposes of illustration only and are not intended to be limiting.
FIG. 1 is a schematic diagram illustrating an application example of an information processing system according to an embodiment of the present invention. FIG. 1 is a schematic diagram illustrating a configuration of an inspection device. FIG. 1 is a schematic diagram illustrating a configuration of an inspection device. FIG. 1 is a schematic diagram illustrating a configuration of an inspection device. 1 is a block diagram showing a schematic configuration of an information processing system. 4 is an example of various data stored in a storage unit. 10 is a flowchart showing a process for generating first inspection data performed in a first manufacturing process. 10 is a flowchart showing a process for generating second inspection data performed in a second manufacturing process. 4 shows examples of various data in an inspection data DB stored in a storage unit. 10 is a flowchart showing a feature point extraction process and the like executed in the information processing system. FIG. 10 is a schematic diagram for explaining the extraction processing of feature points. 10 is a subroutine flowchart showing the comparison process in step S34. 10 is an example of a probability density function calculated by kernel density estimation, which shows the positions and intensities of feature points. 10 is an example of a corresponding point list. 10 is a table for explaining first to third type feature points. 10 is an example of extracted data of feature points. 10 is a flowchart showing an analysis process for analyzing and displaying the occurrence status of a defect. 10 is an example of an operation screen displayed on a terminal device. 10 is an example of an operation screen displayed on a terminal device. 10 is an example of an extracted data list. 10 is a table showing the analysis results of feature points in lot 1. 18B is a table for explaining feature point extraction conditions 1 and 2 in FIG. 18A. 10 is a table showing the occurrence status of feature points in each lot. 10 is an example of display data. 10 is an example of display data. 10 is an example of display data. 10 is an example of display data. 10 is an example of display data.

 以下、添付した図面を参照して、本発明の実施形態を説明する。しかしながら、本発明の範囲は、開示される実施形態に限定されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Embodiments of the present invention will now be described with reference to the accompanying drawings. However, the scope of the present invention is not limited to the disclosed embodiments. In the description of the drawings, identical elements will be given the same reference numerals, and duplicate explanations will be omitted. Furthermore, the dimensional proportions in the drawings have been exaggerated for the sake of explanation and may differ from the actual proportions.

 (ウェブ)
 本実施形態において、ウェブとは、シート状の材料であり、樹脂フィルム、金属フィルムを含む。また、ウェブには、積層体が含まれる。以下においては、ウェブは、長尺の樹脂フィルムであり、フィルムロール、およびこれに加工するものとして説明する。加工には、塗布液を塗布する加工、および別のフィルム状の材料を重ねて積層体を生成する積層工程も含む。
(web)
In this embodiment, the web refers to a sheet-like material, including a resin film and a metal film. The web also includes a laminate. In the following description, the web refers to a long resin film, such as a film roll, and the film roll to be processed. The processing also includes a process of applying a coating liquid and a lamination process of overlaying another film-like material to produce a laminate.

 (ロット)
 本実施形態において、ロットとは、典型的な例では、ロール単位(フィルムロール単位)に付与されるものである。他の例として、ロットはIDの区切り方を指しているだけであり現物のロールの区切りとしてのロットを選択してもよいし、製造または後工程を実施した時刻的な情報による区切りを用いてもよい。例えば工程に設けられた検査装置による検査時刻に紐付けられる。複数の検査時刻とフィルムまたはフィルムロールとの対応づけた別のテーブルにより行える。また必要に応じて附番(ユニークID)した任意のIDをロットの定義として用いてもよい。以下においては、ロット番号は自動でユニークな番号が付与されたものとして説明する。
(lot)
In this embodiment, a lot is typically assigned to each roll (film roll). As another example, the term "lot" simply refers to the method of ID division, and lots may be selected as divisions of actual rolls, or divisions based on time information when manufacturing or post-processing was carried out may be used. For example, it may be linked to the time of inspection by an inspection device installed in the process. This can be done using a separate table that associates multiple inspection times with films or film rolls. Furthermore, any ID assigned (unique ID) as needed may be used to define a lot. In the following description, lot numbers are assumed to be automatically assigned unique numbers.

 また、ロットIDは、いずれかの工程で枝番IDまたは新たなロットIDが付与され、一対一対応でなく、一対nまたはn対1の場合がある。例えば、前工程では、1つのロットで3000mのフィルムが、後工程では1000mで3分割される場合がある。この場合、後工程では、ロットIDの枝番または、新たなロットIDが付与される。また、逆に前工程で2つまたは3つのフィルムロールを、接合して1つのフィルムとして、後工程で使用される場合がある。この場合には、前工程では2つまたは3つのロットIDである、後工程では1つのロットIDとなる。いずれの場合も、各工程のロットID同士の対応づけは、ロットリスト(後述の図4参照)に記述される。 Furthermore, lot IDs are assigned branch IDs or new lot IDs at one of the processes, and there may be a one-to-n or n-to-1 correspondence rather than a one-to-one correspondence. For example, in the upstream process, a single lot of 3000m of film may be divided into three 1000m pieces in the downstream process. In this case, a branch ID of the lot ID or a new lot ID is assigned in the downstream process. Conversely, two or three film rolls may be joined together in the upstream process to form a single film that is used in the downstream process. In this case, there will be two or three lot IDs in the upstream process and one lot ID in the downstream process. In either case, the correspondence between the lot IDs in each process is described in the lot list (see Figure 4 below).

 (特徴点情報)
 本実施形態においては、特徴点とは、フィルム上の欠陥であり、画像データを解析することにより特徴点を生成する。画像解析は、公知の技術により、フィルム面を撮影した画像データにおいて、画素値が周囲の平均値から、所定以上外れた(差分が所定以上)の画素を特徴点として抽出してもよく、あるいは、後述の「特徴点生成の画像処理」の手法により算出してもよい。1つのフィルムロール80(全長数km)を撮影した1つまたは複数の画像データからは、多くの場合、数十から数千の特徴点が生成される。欠陥には、製品不良に至るレベルの不具合と、製品不良には至らないレベルの軽微な不具合の両方が含まれる。特徴点には、フィルム同士を途中で接着(超音波融着等)した際の接着不良、軸ムラ等に関する欠陥が含まれる。特徴点情報として、大きさ、位置(xy座標)が含まれる。また、特徴点情報としては、近接する複数の特徴点を1つにまとめた(クラスタリングされた)ものが用いられてもよい。特徴点生成の画像処理については後述する。
(Minatorial information)
In this embodiment, feature points are defects on the film, and are generated by analyzing image data. Image analysis may involve extracting, as feature points, pixels whose pixel values deviate by a predetermined amount from the average value of the surrounding pixels (the difference is greater than or equal to a predetermined amount) in image data captured from a film surface using known techniques. Alternatively, feature points may be calculated using the "image processing for generating feature points" technique described below. In many cases, dozens to thousands of feature points are generated from one or more image data captured from a single film roll 80 (total length several kilometers). Defects include both defects that could result in product defects and minor defects that do not result in product defects. Feature points include defects related to poor adhesion when films are bonded together (e.g., by ultrasonic welding) and axial irregularities. Feature point information includes size and position (x-y coordinates). Alternatively, feature point information may be obtained by grouping (clustering) multiple nearby feature points together. The image processing for generating feature points will be described later.

 図1は、本実施形態に係る情報処理システム50の適用例を示す模式図である。図1に示すように、情報処理システム50は、工場A、工場Bの端末装置70等と、ネットワークを通じて相互に通信接続する。ネットワークは、データ通信網等の通信回線である。一部のネットワークでは、有線LANや、無線LAN等(例えばIEEE802.11規格に従ったLAN)が用いられてもよい。情報処理システム50についての詳細は後述する。 FIG. 1 is a schematic diagram showing an application example of an information processing system 50 according to this embodiment. As shown in FIG. 1, the information processing system 50 communicates with terminal devices 70 and the like in factories A and B via a network. The network is a communication line such as a data communication network. Some networks may use a wired LAN or a wireless LAN (for example, a LAN conforming to the IEEE 802.11 standard). Details of the information processing system 50 will be provided later.

 端末装置70は、例えばPC(パーソナルコンピュータ)である。例えば、端末装置70は、工場A、工場Bを操業する製造会社の従業員が用いるPCである。 The terminal device 70 is, for example, a PC (personal computer). For example, the terminal device 70 is a PC used by an employee of a manufacturing company that operates Factory A and Factory B.

 工場Aには上述のフィルムロール製造装置1000が設けられる。工場Aは、例えば製膜メーカーにより操業され、または管理される。工場Aではフィルムロール80を製造する第1製造工程が実施される。第1製造工程では、乾燥工程、延伸工程、巻き取り工程等の複数種類のサブ工程が実施される。複数のサブ工程の前後には、検査装置90a1、a2(以下、これらを総称して検査装置90ともいう)が配置される。フィルムロール80のフィルム面は、複数の検査装置90a1、90a2により検査される。図1では、2つの検査装置90a1、90a2を示しているが検査装置90の個数は、これに限られず、1つでもよく、3つ以上でもよい。 Factory A is equipped with the above-mentioned film roll manufacturing apparatus 1000. Factory A is operated or managed by, for example, a film manufacturer. Factory A carries out a first manufacturing process for manufacturing a film roll 80. In the first manufacturing process, multiple sub-processes are carried out, such as a drying process, a stretching process, and a winding process. Inspection devices 90a1, a2 (hereinafter collectively referred to as inspection devices 90) are placed before and after the multiple sub-processes. The film surface of the film roll 80 is inspected by the multiple inspection devices 90a1, 90a2. While Figure 1 shows two inspection devices 90a1, 90a2, the number of inspection devices 90 is not limited to this and may be one, or three or more.

 工場Bには、製品製造装置2000が設けられる。工場Bは、例えば、塗布メーカー等(以下、ユーザー会社またはユーザーともいう)により操業され、または管理される。工場Bそれぞれを操業するユーザー会社は複数である。工場Bでは、工場Aから出荷され、輸送されたフィルムロール80を用いて製品が製造される。工場Bには、フィルムロール80からフィルム(後述のフィルムF8)を繰り出して、塗布、または他のフィルムと重ね合わせ乃至接着することによる後加工である複数のサブ工程が含まれる。サブ工程は、第1または第2製造工程に相当する。複数のサブ工程の前後には、複数の検査装置90b1~90b4(以下、これらも総称して検査装置90ともいう)が配置される。図1では、4つの検査装置90b1、90b2、90b3、90b4を示しているが検査装置90の個数は、これに限られず、3つ以下でもよく、5つ以上でもよい。 Factory B is equipped with product manufacturing equipment 2000. Factory B is operated or managed by, for example, a coating manufacturer (hereinafter referred to as a user company or user). Each factory B is operated by multiple user companies. Factory B manufactures products using film rolls 80 shipped and transported from factory A. Factory B includes multiple sub-processes, which involve unwinding film (film F8, described below) from the film roll 80 and coating, or layering or adhering it with other films. The sub-processes correspond to the first and second manufacturing processes. Multiple inspection devices 90b1-90b4 (hereinafter collectively referred to as inspection devices 90) are located before and after the multiple sub-processes. While four inspection devices 90b1, 90b2, 90b3, and 90b4 are shown in Figure 1, the number of inspection devices 90 is not limited to this and may be three or fewer, or five or more.

 本実施形態では、典型的な例では、フィルム(ウェブ)を製造する工程を第1製造工程、この製造されたフィルムを用いて、工場Bで行う後加工を第2製造工程という。例えば後加工工程では、表面に機能層を付与する塗布処理、別のフィルム等のウェブを重ねる積層工程等が行われる。第2製造工程においても、フィルムロール80のフィルム面は、検査装置90により検査される。 In this embodiment, as a typical example, the process of manufacturing a film (web) is called the first manufacturing process, and the post-processing carried out at factory B using this manufactured film is called the second manufacturing process. For example, the post-processing process includes a coating process to apply a functional layer to the surface, and a lamination process to overlay a web of another film or the like. In the second manufacturing process, the film surface of the film roll 80 is also inspected by inspection device 90.

 図1に示される製造されるフィルムF8の素材としては、特に限定されないが、一般的には、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、環状オレフィン系樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、酢酸セルロース樹脂、塩化ビニル樹脂等が挙げられる。また、例えば、フィルムF8の幅は、生産性、品質等を考慮し、1000mmから3200mmが好ましい。厚さは、品質、ハンドリング等を考慮し、15μmから500μmが好ましい。 The material of the film F8 produced as shown in Figure 1 is not particularly limited, but typical examples include polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, cyclic olefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, phenolic resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, cellulose acetate resin, and vinyl chloride resin. Furthermore, for example, the width of film F8 is preferably 1000 mm to 3200 mm, taking into consideration productivity, quality, etc. The thickness is preferably 15 μm to 500 μm, taking into consideration quality, handling, etc.

 本実施形態の典型的以外の例として、工場Bでこの製造されたフィルムに複数の後加工を行う場合には、先に行う後加工を第1製造工程といい、これよりも後に行う後加工を第2製造工程という場合もある。また、工場Aで製造されたフィルムロール80を、後の工程で、繰り出して後加工を行う場合がある。典型的な例では、工場Bで行うサブ工程には他のフィルムを重ねて接着する積層工程(接着工程ともいう)が含まれる。積層工程により積層体80Bが形成される(図1の吹き出しの拡大断面図参照)。以下では、工場Bのいくつかのサブ工程により、第1~第3層が原反フィルム(F8)に接着される、または塗布される。なお、吹き出しの拡大断面図では、各層間の接着層の表記は省略している。例えばフィルムF8は、PVA(ポリビニルアルコール樹脂)層であり、第1層はTAC(トリアセチルセルロース)層、第2層は偏光子等の光学機能フィルム層であり、第3層はプロテクターである。また、第3層は、セパレーターまたは防眩フィルム等であってもよい。第3層は、不透明な層である。 As a non-typical example of this embodiment, if the film manufactured in Factory B undergoes multiple post-processing steps, the first post-processing step may be referred to as the first manufacturing process, and the subsequent post-processing step may be referred to as the second manufacturing process. Alternatively, the film roll 80 manufactured in Factory A may be unwound and post-processed in a later process. In a typical example, the sub-processes performed in Factory B include a lamination process (also called a bonding process) in which other films are layered and bonded. The lamination process forms a laminate 80B (see the enlarged cross-sectional view of the bubble in Figure 1). Below, the first to third layers are bonded or applied to the raw film (F8) through several sub-processes performed in Factory B. Note that the enlarged cross-sectional views of the bubbles omit the adhesive layers between each layer. For example, Film F8 is a PVA (polyvinyl alcohol resin) layer, with the first layer being a TAC (triacetyl cellulose) layer, the second layer being an optically functional film layer such as a polarizer, and the third layer being a protector. The third layer may also be a separator, anti-glare film, or the like. The third layer is an opaque layer.

 検査装置90は、フィルム等を撮影し、検査データを生成する。上述のように図1に示す例では、検査装置90は、フィルム製造ラインの延伸工程、積層工程等のサブ工程の前後に複数配置されている。以下、図2A~図2Cを参照し、検査装置90について説明する。 The inspection device 90 photographs the film and generates inspection data. As mentioned above, in the example shown in Figure 1, multiple inspection devices 90 are placed before and after the sub-processes, such as the stretching process and lamination process, of the film production line. The inspection device 90 will be described below with reference to Figures 2A to 2C.

 (検査装置90)
 フィルムF8等の透明体を被検査体として、その表面に存在する凹凸や透明体内部に存在する泡、亀裂、内部構造のひずみ等を検出する装置としては以下の方式(1)、(2)がある。また、非透明体を被検査体として、その表面に存在する凹凸や表層に存在する泡、亀裂、内部構造のひずみ等を検出する装置として以下の方式(2)がある。(1)被検査体を光照射し、被検査体を透過した光を受光することにより被検査体の欠陥を検出する透過型の検査装置。(2)被検査体を反射した光を受光することにより、被検査体の欠陥を検出する反射型の検査装置。
(Inspection device 90)
The following types (1) and (2) are used as devices for detecting irregularities on the surface of a transparent body such as film F8 as an object to be inspected, as well as bubbles, cracks, and distortions in the internal structure of the transparent body. The following type (2) is also used as a device for detecting irregularities on the surface of a non-transparent body as an object to be inspected, as well as bubbles, cracks, and distortions in the internal structure of the non-transparent body. (1) A transmission-type inspection device that detects defects in the object by irradiating the object with light and receiving the light that has passed through the object. (2) A reflection-type inspection device that detects defects in the object by receiving the light reflected from the object.

 また、さらに、透過型、反射型それぞれに、カメラの光軸、光源、および被検査体の位置関係に応じて、表面の非散乱光を受光する明視野型検査装置と散乱光を受光する暗視野型検査装置とがある。明視野型検査装置では、欠陥がない場合には、光の散乱がないので、光源からの光が遮られることなく光検出手段に入射し、欠陥が存在する場合には、該欠陥により光が遮られて光検知手段に入射しない。従って、明るい背景の中に暗い点や筋として欠陥が観察される。これに対して、暗視野型検査装置では、欠陥がない場合、光が散乱しないので光検出手段に入射しないが、欠陥があると、欠陥により光が散乱するので光検出手段に入射する。従って、暗い背景の中に明るい斑点又は筋として欠陥が観察される。本実施形態における検査装置90としては、いずれの方式の検査装置を採用してもよい。第1検査データと第2検査データが同じ方式の検査装置により取得されることが好ましいが、これに限られない。 Furthermore, for both the transmissive and reflective types, there are bright-field inspection devices that receive non-scattered light from the surface and dark-field inspection devices that receive scattered light, depending on the relative positions of the camera's optical axis, light source, and object being inspected. In a bright-field inspection device, if there is no defect, there is no scattering of light, so light from the light source enters the light detection means without being blocked. If there is a defect, the light is blocked by the defect and does not enter the light detection means. Therefore, the defect is observed as a dark dot or streak against a bright background. In contrast, in a dark-field inspection device, if there is no defect, there is no scattering of light, so light does not enter the light detection means. However, if there is a defect, the light is scattered by the defect and enters the light detection means. Therefore, the defect is observed as a bright dot or streak against a dark background. Either type of inspection device may be used as the inspection device 90 in this embodiment. It is preferable, but not limited to, that the first inspection data and the second inspection data be acquired by the same type of inspection device.

 (反射型の検査装置)
 図2Aは、幅方向(X方向)から視た反射型の検査装置90の構成を示す概略図である。図2Bは、搬送方向(Y方向)から視た、検査装置90の構成を示す概略図である。検査装置90は、光源91、光学センサーとしてのカメラ92、データ処理装置としての画像解析部93、及び記憶部94を備える。検査装置90は、搬送中のフィルムF8に発生した特徴点(以下、単に欠陥ともいう)を光学的に検査するものである。検査装置90は、カメラ92が、フィルムロール80のフィルムF8を光学的に検査し、検査データとして画像データを生成する。画像データには、静止画像のみならず時系列の連続した静止画からなる動画データも含まれる。また、検査データとしては、画像データ化せずに、信号データから直接、特徴点を抽出するようにしてもよい。カメラ92は、フィルムF8の幅方向全域が検査領域(撮影範囲)となるように、カメラの台数、画角、およびフィルム面までの距離が設定される。カメラの台数は、1台のカメラでフィルム全幅を適切に撮影できない場合に、複数台のカメラを幅方向に並べるためである。図2Bでは、幅方向(X方向)に例として2台のカメラ92を並べた状態を示した図である。画像解析部93は、1台のカメラ92の連続撮影により得られた複数の画像を結合して、フィルムロール80のフィルム面全体を含む1枚の画像データを生成してもよく、撮影時刻と対応づけて、複数の画像データを記憶部94に記憶してもよい。また、幅方向に並んだ複数台のカメラ92により得られた同様の画像データを結合してもよい。画像解析部93は、記憶されている搬送速度(巻取速度、又は送り出し速度)を参照することで、画像データと対応付けられる撮影時刻により、フィルムF8の長手方向における位置を判定できる。以下においては、1つのフィルムロール80に対応して、連続する撮影により得られた複数の画像データが撮影時刻と対応づけて記憶されているものとして説明する。画像解析部93は、画像データを解析することで、欠陥情報を生成する。検査装置90は、長尺のフィルムF8の巻き取り中等の製造工程中に発生した欠陥を検査対象とする。
(Reflection type inspection device)
FIG. 2A is a schematic diagram showing the configuration of a reflective inspection device 90 as viewed from the width direction (X direction). FIG. 2B is a schematic diagram showing the configuration of the inspection device 90 as viewed from the transport direction (Y direction). The inspection device 90 includes a light source 91, a camera 92 as an optical sensor, an image analysis unit 93 as a data processing device, and a memory unit 94. The inspection device 90 optically inspects feature points (hereinafter simply referred to as defects) that occur on the film F8 during transport. In the inspection device 90, the camera 92 optically inspects the film F8 in the film roll 80 and generates image data as inspection data. The image data includes not only still images but also video data consisting of a time-series of consecutive still images. Alternatively, feature points may be extracted directly from signal data without converting the data into image data. The number of cameras 92, the angle of view, and the distance to the film surface are set so that the entire width of the film F8 is the inspection area (capture range). The number of cameras is determined so that multiple cameras can be arranged in the width direction when a single camera cannot adequately capture the entire width of the film. FIG. 2B illustrates an example in which two cameras 92 are arranged in the width direction (X direction). The image analysis unit 93 may combine multiple images obtained by continuous shooting with one camera 92 to generate a single image data piece containing the entire film surface of the film roll 80, or may store multiple image data pieces in the storage unit 94 in association with the shooting times. Similar image data pieces obtained by multiple cameras 92 arranged in the width direction may also be combined. The image analysis unit 93 can determine the longitudinal position of the film F8 by referencing the stored transport speed (winding speed or unwinding speed) and the shooting times associated with the image data. In the following description, it is assumed that multiple image data pieces obtained by continuous shooting are stored for one film roll 80 in association with the shooting times. The image analysis unit 93 generates defect information by analyzing the image data. The inspection device 90 inspects the long film F8 for defects that occur during the manufacturing process, such as while the film F8 is being wound.

 光源91は、フィルムF8の検査領域に光を照射する。光源91は、ロール状のフィルムF8の幅方向(フィルムF8の長手方向と直交する方向であって、フィルム面に平行な方向)において均一に光を照射するものである。ここで、均一とは、フィルムF8における照度が、フィルムF8の幅方向に亘って略同一(最大値と最小値の差が所定値以下等)であることをいう。 The light source 91 irradiates the inspection area of the film F8 with light. The light source 91 irradiates light uniformly across the width of the rolled film F8 (a direction perpendicular to the longitudinal direction of the film F8 and parallel to the film surface). Here, "uniform" means that the illuminance on the film F8 is approximately the same across the width of the film F8 (e.g., the difference between the maximum and minimum values is less than a specified value).

 カメラ92は、フィルムF8の検査領域を光学的に読み取る光学センサーである。カメラ92は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子、レンズ等を備える。カメラ92は、各撮像素子の出力信号から2次元の画像データを生成するエリアセンサーである。カメラ92は、光源91により照射され、フィルムF8の検査領域において反射された光のうち拡散光を検出する。ここでは、カメラ92として、カラーカメラ、または白黒カメラ(モノクロカメラ)のいずれかが用いられてもよい。 Camera 92 is an optical sensor that optically reads the inspection area of film F8. Camera 92 is equipped with imaging elements such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), lenses, etc. Camera 92 is an area sensor that generates two-dimensional image data from the output signals of each imaging element. Camera 92 detects diffused light that is irradiated by light source 91 and reflected in the inspection area of film F8. Here, either a color camera or a black and white camera (monochrome camera) may be used as camera 92.

 1台または複数台のカメラ92は、フィルムF8の幅方向全体に亘る撮影範囲を有しており、1回の撮影で、フィルムF8の幅方向における全範囲を同時に読み取る。カメラ92は、可視光領域の光を検出するものであってもよいし、赤外線領域の光を検出するものであってもよい。 The one or more cameras 92 have a shooting range that spans the entire width of the film F8, and in one shooting session, the entire width of the film F8 is simultaneously read. The cameras 92 may be those that detect light in the visible light range or those that detect light in the infrared range.

 また、カメラ92の出力信号において、フィルムF8上の光源91により光が照射される照射部に対応する信号値と、光源91により光が照射されない非照射部に対応する信号値とのコントラストが所定値以上であることが望ましい。つまり、フィルムF8上の光源91からの光が当たっているところ(照射部)だけ、明るく見える状態が望ましい。 Furthermore, it is desirable that the contrast between the signal values corresponding to the illuminated areas on film F8 illuminated by light source 91 and the signal values corresponding to the non-illuminated areas not illuminated by light source 91 in the output signal from camera 92 be equal to or greater than a predetermined value. In other words, it is desirable that only the areas on film F8 illuminated by light from light source 91 (illuminated areas) appear bright.

 コントラストは、処理対象の二つの値(ここでは、照射部に対応する信号値と非照射部に対応する信号値)の差や比等で表され、二つの値が異なるほど、コントラストが大きくなる。照射部と非照射部とのコントラストを大きくするためには、強力で直進性の高い光源91を用いることが望ましい。 Contrast is expressed as the difference or ratio between two values to be processed (here, the signal value corresponding to the irradiated area and the signal value corresponding to the non-irradiated area), and the greater the difference between the two values, the greater the contrast. To increase the contrast between the irradiated and non-irradiated areas, it is desirable to use a light source 91 that is powerful and highly directional.

 ここで、「強力」とは、照射距離50mmにおける照度をE50としたときに、照度E50が50000lx以上であることをいう。また、「直進性の高い」とは、照射距離50mmにおける照度をE50、照射距離100mmにおける照度をE100としたときに、(E50-E100)/E50<0.5を満たすことをいう。 Here, "strong" means that when the illuminance at an irradiation distance of 50 mm is E50, the illuminance E50 is 50,000 lx or more. Furthermore, "highly directional" means that when the illuminance at an irradiation distance of 50 mm is E50 and the illuminance at an irradiation distance of 100 mm is E100, the relationship (E50 - E100)/E50<0.5 is satisfied.

 画像解析部93は、CPU、RAM等から構成され、記憶部94に記憶されている各種処理プログラムを読み出してRAMに展開し、当該プログラムとの協働により各種処理を行う。 The image analysis unit 93 is composed of a CPU, RAM, etc., and reads various processing programs stored in the memory unit 94, loads them into RAM, and performs various processes in cooperation with these programs.

 記憶部94は、HDD、SSD(Solid State Drive)等により構成され、各種処理プログラム、当該プログラムの実行に必要なデータ等を記憶している。また、記憶部94は、撮影した画像データ(検査データ)を、撮影時刻と紐付けて記憶する。記憶部94には、フィルムロール製造装置1000での巻取速度(例えば100m/min)、または製品製造装置2000におけるフィルムF8の繰り出し条件(例えば30m/min)が記憶されている。これらの巻取速度、送り出し条件は、検査データDB(データベース)の検査リスト(図4のテーブルT3参照)に含まれていてもよい。 The storage unit 94 is composed of an HDD, SSD (Solid State Drive), etc., and stores various processing programs, data required to execute those programs, etc. The storage unit 94 also stores captured image data (inspection data) linked to the time of capture. The storage unit 94 also stores the winding speed (e.g., 100 m/min) of the film roll manufacturing apparatus 1000, or the unwinding conditions (e.g., 30 m/min) of film F8 in the product manufacturing apparatus 2000. These winding speeds and unwinding conditions may be included in the inspection list (see Table T3 in Figure 4) of the inspection data DB (database).

 画像解析部93は、カメラ92(光学センサー)の出力信号に対してデータ処理を行うことで、フィルムF8の欠陥等の特徴点(位置・強度)を検出する。データ処理は、カメラ92の出力信号から得られた画像データに対する画像処理と、画像処理後のデータに基づいて欠陥を判定する欠陥判定処理と、画像処理後のデータに基づいて欠陥を定量評価する定量評価処理と、を含む。 The image analysis unit 93 performs data processing on the output signal of the camera 92 (optical sensor) to detect characteristic points (position and intensity) of defects, etc. on the film F8. The data processing includes image processing of the image data obtained from the output signal of the camera 92, defect determination processing to determine defects based on the data after image processing, and quantitative evaluation processing to quantitatively evaluate defects based on the data after image processing.

 (カメラ92と光源91の相対的な位置)
 カメラ92の配置位置としては、光源91から照射される光の正反射光を受ける位置としてもよい(非散乱光を受光する明視野型検査方式の場合)。
(Relative positions of camera 92 and light source 91)
The camera 92 may be positioned so as to receive specularly reflected light emitted from the light source 91 (in the case of a bright-field inspection method that receives non-scattered light).

 また、カメラ92の配置位置としては、光源91から照射される光の正反射光を受ける位置を避ける位置としてもよい(散乱光を受光する暗視野型検査方式の場合)。すなわち、検査対象物で反射された光のうち拡散光を受ける位置に配置されることが好ましい。 Furthermore, the camera 92 may be positioned to avoid receiving specularly reflected light from the light source 91 (in the case of a dark-field inspection method that receives scattered light). In other words, it is preferable to position the camera 92 in a position that receives diffused light reflected from the object being inspected.

 (透過型の検査装置)
 図2Cは、透過型の検査装置90の例である。このように光源91が、フィルムF8を挟んでカメラ92に対向して配置される透過型の検査装置90を採用してもよい。
(Transmission type inspection device)
2C shows an example of a transmission type inspection device 90. In this way, a transmission type inspection device 90 in which the light source 91 is disposed opposite the camera 92 with the film F8 sandwiched therebetween may be employed.

 (情報処理システム50)
 以下、図3を参照し、情報処理システム50について説明する。図3は、情報処理システム50の概略構成を示すブロック図である。情報処理システム50は、例えばサーバーである。図3に示すように情報処理システム50は、制御部51、記憶部52、および通信部53を備える。記憶部52は、検査データDBが記憶されている。
(Information Processing System 50)
The information processing system 50 will be described below with reference to Fig. 3. Fig. 3 is a block diagram showing a schematic configuration of the information processing system 50. The information processing system 50 is, for example, a server. As shown in Fig. 3, the information processing system 50 includes a control unit 51, a storage unit 52, and a communication unit 53. The storage unit 52 stores an inspection data DB.

 (制御部51)
 制御部51は、CPUと、RAM、ROM等のメモリを有する。CPUは、プログラムにしたがって上記各部の制御や各種の演算処理を実行するマルチコアのプロセッサ等から構成される制御回路であり、情報処理システム50の各機能は、それに対応するプログラムをCPUが実行することにより発揮される。
(Control unit 51)
The control unit 51 has a CPU and memories such as RAM, ROM, etc. The CPU is a control circuit configured with a multi-core processor or the like that controls each of the above-mentioned units and executes various arithmetic processing in accordance with a program, and each function of the information processing system 50 is realized by the CPU executing the corresponding program.

 制御部51は、通信部53と協働することで取得部511、選択部514、および出力部516として機能する。また、制御部51は、対比部512、抽出部513、および表示データ生成部515として機能する。取得部511は、検査データDBから各種データを取得する。 The control unit 51 functions as an acquisition unit 511, a selection unit 514, and an output unit 516 in cooperation with the communication unit 53. The control unit 51 also functions as a comparison unit 512, an extraction unit 513, and a display data generation unit 515. The acquisition unit 511 acquires various data from the test data DB.

 また、取得部511は、第1製造工程、第2製造工程での検査により得られた第1、第2検査データを取得する。対比部512は、第1、第2検査データそれぞれにおいて特徴点を抽出する。対比部512は対比処理により、第1、第2検査データ間で対応する特徴点を探索する。対比部512は、対比処理では、2つの検査データ(画像データ)に対して特徴点の記述子(後述の記述子2)を生成し、およびこの特徴点の記述子を用いて検査データ間で特徴点のマッチング処理を行い、対比結果(後述の図12に示す対応点リスト)を出力する。抽出部513は、対比結果を用いて、第1から第3種特徴点を抽出する(分類する)。 Furthermore, the acquisition unit 511 acquires the first and second inspection data obtained by inspection in the first and second manufacturing processes. The comparison unit 512 extracts feature points from each of the first and second inspection data. The comparison unit 512 searches for corresponding feature points between the first and second inspection data through a comparison process. In the comparison process, the comparison unit 512 generates feature point descriptors (descriptor 2, described below) for the two pieces of inspection data (image data), and uses these feature point descriptors to perform a feature point matching process between the inspection data and output the comparison results (a corresponding point list shown in Figure 12, described below). The extraction unit 513 uses the comparison results to extract (classify) first to third type feature points.

 選択部514は、ユーザーからロットまたは検査区間、および特徴点の種類等の選択を受け付ける。 The selection unit 514 accepts selections from the user, such as the lot or inspection section and the type of feature point.

 表示データ生成部515は、選択部514により選択されたデータから表示データを生成する。表示データは、視覚的にデータを表現するためのチャートである。チャートには、表形式の表データおよびグラフが含まれる。グラフには、特徴点の発生状況を示した棒グラフ、折れ線グラフ、点グラフ、積み上げ棒グラフ等が含まれる。例えば、ロット間での各工程の特徴点の発生状況を示した、棒グラフ、折れ線グラフ、点グラフ、積み上げ棒グラフが含まれる。出力部516は、端末装置70の要求等に応じて、表示データを端末装置70に送信したり、端末装置70の表示部(図示せず)に表示したりする。 The display data generation unit 515 generates display data from the data selected by the selection unit 514. The display data is a chart for visually representing data. Charts include tabular data and graphs. Graphs include bar graphs, line graphs, point graphs, stacked bar graphs, etc. that show the occurrence status of characteristic points. For example, they include bar graphs, line graphs, point graphs, and stacked bar graphs that show the occurrence status of characteristic points in each process between lots. The output unit 516 transmits display data to the terminal device 70 or displays it on the display unit (not shown) of the terminal device 70 in response to a request from the terminal device 70, etc.

 (記憶部52)
 記憶部52は、オペレーティングシステムを含む各種プログラムや各種データを格納する大容量の補助記憶装置である。ストレージには、例えば、ハードディスク、ソリッドステートドライブ、フラッシュメモリー、ROM等が採用される。記憶部52には、ユーザーリスト、ロットリスト、検査データDB(データベース)等が記憶される。このうちユーザーリスト、ロットリストの管理、登録は、管理者による端末装置70のアクセスにより登録される。例えば、この管理者は、工場Aを操業するメーカーの担当部門の担当者である。記憶部52の検査データDBは、情報処理システム50とは独立した外部のデータベースであってもよい。
(Storage unit 52)
The memory unit 52 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, a solid-state drive, a flash memory, a ROM, or the like is used as the storage. The memory unit 52 stores a user list, a lot list, an inspection data DB (database), and the like. Of these, the user list and the lot list are managed and registered by an administrator through access to the terminal device 70. For example, this administrator is a person in charge of the relevant department of the manufacturer that operates Factory A. The inspection data DB of the memory unit 52 may be an external database independent of the information processing system 50.

 (ユーザーリスト)
 図4は、記憶部52に記憶される各種データの例である。図4に示すテーブルT1は、ユーザーリストの例である。ユーザーリストには、ユーザーID、ユーザー名、連絡先等が記憶される。また、ユーザーは、ユーザー毎の検索データDBへのアクセス権が設定されており、ユーザー自身が係わるフィルムロール80(ロットIDで識別)に関する各種データ(検査データ、抽出データ等)へのアクセス権が付与される。
(User list)
4 shows an example of various data stored in the storage unit 52. Table T1 shown in FIG. 4 is an example of a user list. The user list stores user IDs, user names, contact information, etc. Each user is assigned access rights to the search data DB, and is granted access rights to various data (inspection data, extracted data, etc.) related to the film roll 80 (identified by lot ID) that the user is involved in.

 (ロットリスト)
 図4のテーブルT2は、ロットリストの例である。ロットリストには、フィルムロール毎に付与されるロットID、製品名(品種ともいう)、納入先ユーザーID(発注元)、および複数の製造条件、サイズ(幅、長さ、厚さ)、製造日等が記録される。
(Lot list)
Table T2 in Fig. 4 is an example of a lot list, which records a lot ID assigned to each film roll, a product name (also called a type), a delivery destination user ID (orderer), multiple manufacturing conditions, size (width, length, thickness), manufacturing date, etc.

 (検査データDB)
 図4のテーブルT3は、検査データDBに登録されている検査リストの例である。検査リストには、検査ID、ロットID、検査装置ID、検査データ、検査日時等が記憶される。検査装置IDは、図1に示す検査装置90a1等に対応する検査リストに含まれる検査データの例については、後述する。
(Test data DB)
Table T3 in Fig. 4 is an example of an inspection list registered in the inspection data DB. The inspection list stores an inspection ID, lot ID, inspection device ID, inspection data, inspection date and time, etc. An example of inspection data included in the inspection list corresponding to the inspection device ID such as the inspection device 90a1 shown in Fig. 1 will be described later.

 (通信部53)
 通信部53は、PC等の外部の装置とネットワーク接続するインターフェースでもある。
(Communication unit 53)
The communication unit 53 also serves as an interface for network connection with an external device such as a PC.

 (第1、第2検査データの生成処理)
 以下、図5~図7を参照し、第1、第2製造工程で行われる第1、第2検査データの生成処理について説明する。図5は、第1製造工程で行われる第1検査データの生成処理を示すフローチャートである。図6は、第2製造工程で行われる第2検査データの生成処理を示すフローチャートである。図7は、図5、図6の処理で得られた第1、第2検査データの例を示す図である。第1検査データは、以下に説明する生成処理により、図1に示す例では検査装置90a1~90b3のいずれかにより得られた画像データにより生成された検査データである。第2検査データは、以下に説明する生成処理により、検査装置90a2~90b4のうち、第1検査データを取得した検査装置90よりも後段に配置された検査装置90により得られた画像データにより生成された検査データである。
(Generation of first and second test data)
The processes for generating the first and second inspection data performed in the first and second manufacturing processes will be described below with reference to FIGS. 5 to 7. FIG. 5 is a flowchart illustrating the process for generating the first inspection data performed in the first manufacturing process. FIG. 6 is a flowchart illustrating the process for generating the second inspection data performed in the second manufacturing process. FIG. 7 is a diagram illustrating examples of the first and second inspection data obtained by the processes of FIGS. 5 and 6. The first inspection data is inspection data generated by the generation process described below using image data obtained by one of inspection devices 90a1 to 90b3 in the example shown in FIG. 1. The second inspection data is inspection data generated by the generation process described below using image data obtained by one of inspection devices 90a2 to 90b4 that is located downstream of the inspection device 90 that acquired the first inspection data.

 (第1検査データの生成処理)
 図5は、第1製造工程で行われる第1検査データの生成処理を示すフローチャートである。
(First test data generation process)
FIG. 5 is a flowchart showing the process of generating the first inspection data performed in the first manufacturing process.

 (ステップS11)
 上述の典型的な例においては第1製造工程では、フィルムロール製造装置1000によりフィルムロール80が製造される。
(Step S11)
In the typical example described above, in the first manufacturing step, the film roll 80 is manufactured by the film roll manufacturing apparatus 1000 .

 (ステップS12)
 検査装置90は、フィルムを撮影し、画像データを保存する。検査装置90は、図3A等で説明したものである。
(Step S12)
The inspection device 90 photographs the film and stores the image data. The inspection device 90 is the same as that described with reference to FIG. 3A and other figures.

 (ステップS13)
 画像解析部93は、画像データに対して以下に説明する画像処理を行い、複数の特徴点を生成する。
(Step S13)
The image analysis unit 93 performs image processing, which will be described below, on the image data to generate a plurality of feature points.

 (特徴点生成の画像処理)
 画像解析部93は、カメラ92により生成され、記憶部94に記憶されている2次元の画像データを取得する。
(Image processing for generating feature points)
The image analysis unit 93 acquires two-dimensional image data generated by the camera 92 and stored in the storage unit 94 .

 画像解析部93は、カメラ92から取得した画像データ(検査データ)に対して、データ処理を行う。 The image analysis unit 93 performs data processing on the image data (examination data) acquired from the camera 92.

 画像解析部93は、画像データを複数の領域に分割する。例えば、画像解析部93は、画像データを幅方向でn個(例えば数個~数十個)の領域(以下、領域a1~領域anと記載する)に分割する。 The image analysis unit 93 divides the image data into multiple regions. For example, the image analysis unit 93 divides the image data into n regions (e.g., several to several tens) in the width direction (hereinafter referred to as regions a1 to an).

 次に、画像解析部93は、1つの領域a1の画像データを取得し、領域a1の画像データに数学的処理を行う。検出対象の欠陥の種類(ゲージバンド、縦シワ、斜めシワ、ムラ輝点、光抜け等)に応じて、適した数学的処理が用意されている。 Next, the image analysis unit 93 acquires image data for one area a1 and performs mathematical processing on the image data for area a1. Appropriate mathematical processing is provided depending on the type of defect to be detected (gauge band, vertical wrinkles, diagonal wrinkles, uneven bright spots, light leaks, etc.).

 数学的処理には、前処理、強調処理、信号処理、画像特徴量抽出等が含まれる。 Mathematical processing includes preprocessing, enhancement processing, signal processing, image feature extraction, etc.

 前処理として、以下が挙げられる。
・画像のトリミング、
・ローパスフィルター、ハイパスフィルター、ガウシアンフィルター、メディアンフィルター、バイラテラルフィルター、・モルフォロジー変換、色変換(L*a*b*、sRGB、HSV、HSL)、コントラスト調整、ノイズ除去、ぼけ・ぶれ画像の復元、マスク処理、ハフ変換、射影変換等。
Pretreatment includes the following:
- Image cropping,
- Low-pass filter, high-pass filter, Gaussian filter, median filter, bilateral filter, - morphological transformation, color transformation (L*a*b*, sRGB, HSV, HSL), contrast adjustment, noise removal, restoration of blurred and shaken images, mask processing, Hough transform, projection transformation, etc.

 強調処理として、Sobelフィルター、Scharrフィルター、Laplacianフィルター、ガボールフィルター、キャニー法等が挙げられる。 Examples of enhancement processing include the Sobel filter, Scharr filter, Laplacian filter, Gabor filter, and Canny algorithm.

 信号処理として、以下が挙げられる。
・基本統計量(最大値、最小値、平均値、中央値、標準偏差、分散、四分位点)、二乗和平方根、差分、和、積、比、距離行列を求める処理、微分積分、閾値処理(二値化、適応的二値化等)、・フーリエ変換、ウェーブレット変換、ピーク検出(ピーク値、ピーク数、半値幅等)等。
The signal processing includes the following:
- Basic statistical quantities (maximum, minimum, average, median, standard deviation, variance, quartile), square root of the sum of squares, difference, sum, product, ratio, distance matrix calculation, differential and integral calculus, threshold processing (binarization, adaptive binarization, etc.), - Fourier transform, wavelet transform, peak detection (peak value, number of peaks, half-width, etc.), etc.

 画像特徴量抽出として、テンプレートマッチング、SIFT特徴量等が挙げられる。 Examples of image feature extraction include template matching and SIFT features.

 次に、画像解析部93は、領域a1の画像データについて数学的処理により求められた値(特徴量)に対して、閾値処理を行う。閾値処理は、所定の欠陥判定閾値に基づいて、検出対象の欠陥であるか否かを判定し、また、欠陥のランク(強度)を決定する処理である。 Next, the image analysis unit 93 performs threshold processing on the values (feature amounts) obtained by mathematical processing of the image data of area a1. Threshold processing is a process that determines whether or not the defect is the target of detection based on a predetermined defect determination threshold, and also determines the rank (intensity) of the defect.

 閾値処理において、欠陥の存在、欠陥の種類を判定することが「欠陥判定処理」に相当する。また、閾値処理において、閾値に従って欠陥を複数のランクに分類することが「定量評価処理」に相当する。 In threshold processing, determining the presence and type of defect corresponds to "defect determination processing." Also, in threshold processing, classifying defects into multiple ranks according to the threshold corresponds to "quantitative evaluation processing."

 例えば、1~100の値をとるパラメーター(特徴量)に対して、欠陥は複数のランクに分類される。例えば、欠陥の大きさ(径や面積)によってランクを分類する。また他にパラメーターの値に応じて大きさで分類したランクをさらに細分してもよい。 For example, defects are classified into multiple ranks for a parameter (feature) that takes a value between 1 and 100. For example, ranks are classified according to the size (diameter or area) of the defect. Ranks classified by size may also be further subdivided according to the parameter value.

 画像解析部93は、領域a1以外の領域に対しても同様に処理を行う。 The image analysis unit 93 performs similar processing on areas other than area a1.

 各領域a1~anに対する処理の後、画像解析部93は、各領域a1~anに対する結果を統合し、データ処理が終了する。具体的には、画像解析部93は、領域ごと(フィルムF8の幅方向における位置ごと)に、検出された欠陥のランクおよび発生位置(xy座標)を対応付けたデータを生成する。 After processing each of the regions a1-an, the image analysis unit 93 integrates the results for each of the regions a1-an, and data processing ends. Specifically, the image analysis unit 93 generates data that associates the rank of the detected defects with their location (x and y coordinates) for each region (each position in the width direction of the film F8).

 データ処理の後、画像解析部93は、データ処理の処理結果を記憶部94に保存する。画像解析部93は、1つのフィルムロール80の検査で得られた複数の画像データそれぞれに対して、このようなデータ処理を行って処理結果を得る。これらの処理結果を集約することで、図7のテーブルT11に示したような第1検査データが生成される。 After data processing, the image analysis unit 93 stores the results of the data processing in the storage unit 94. The image analysis unit 93 performs this type of data processing on each of the multiple image data obtained by inspecting one film roll 80, and obtains the processing results. By aggregating these processing results, the first inspection data such as that shown in table T11 in Figure 7 is generated.

 (ステップS14)
 第1製造工程にある端末装置70は、ステップS13までの処理で得られた複数の特徴点情報が含まれる検査データを情報処理システム50に送る。情報処理システム50の取得部511は、取得した検査データを第1検査データとして、記憶部52の検査データDBに保存する。
(Step S14)
Terminal device 70 in the first manufacturing process sends inspection data including information on multiple feature points obtained through the processing up to step S13 to information processing system 50. Acquisition unit 511 of information processing system 50 stores the acquired inspection data in the inspection data DB of storage unit 52 as first inspection data.

 図7は、検査リストにある検査データの内容の例を示したものである。図7のテーブルT11に示す第1検査データには、特徴点それぞれに自動的に連番で付与された特徴点IDと、特徴点ID毎の特徴点記述子1、2(以下、単に記述子1等という)が記述される。 Figure 7 shows an example of the contents of the inspection data in the inspection list. The first inspection data shown in table T11 in Figure 7 includes feature point IDs that are automatically assigned consecutive numbers to each feature point, and feature point descriptors 1 and 2 (hereinafter simply referred to as descriptor 1, etc.) for each feature point ID.

 記述子1は、特徴点の単独の情報であり、そのXY座標位置と、強度が記録される。強度は、後述する特徴点のランクである。また、強度情報として、特徴点の大きさ(径、面積)、輝度の情報が含まれてもよい。XY座標位置は、フィルム面の起点(例えば、先端の左端)を基準としてXY座標である。Xはフィルムの幅方向の座標であり、フィルムサイズ(テーブルT2参照)に応じて例えば0~3000mmの範囲を取り得る。Yは、フィルムの長手方向の座標であり、フィルムサイズに応じて、例えば0~10000mの範囲を取り得る。記述子1の生成は、検査装置90の画像解析部93で行われる。 Descriptor 1 is information about a feature point alone, recording its XY coordinate position and intensity. Intensity is the rank of the feature point, which will be described later. Intensity information may also include information about the feature point's size (diameter, area) and brightness. The XY coordinate position is based on the origin of the film surface (for example, the left edge of the leading edge). X is the coordinate in the width direction of the film, and can range from 0 to 3000 mm, for example, depending on the film size (see Table T2). Y is the coordinate in the length direction of the film, and can range from 0 to 10000 m, for example, depending on the film size. Descriptor 1 is generated by the image analysis unit 93 of the inspection device 90.

 記述子2は、周辺情報であり、他の特徴点との関係等の周囲の情報を表すベクトルや配列情報である。例えばSIFT特徴量を記述子として用いたり、カーネル密度推定を行って算出した特徴点の確率密度関数を記述子として用いたりする。この記述子2の生成は、主に対比部512により行われる。 Descriptor 2 is peripheral information, and is vector or array information that represents surrounding information such as relationships with other feature points. For example, SIFT features may be used as descriptors, or the probability density function of feature points calculated by kernel density estimation may be used as descriptors. Descriptor 2 is mainly generated by the comparison unit 512.

 (第2検査データの生成処理)
 図6は、第2製造工程で行われる第2検査データの生成処理を示すフローチャートである。
(Generation process of second test data)
FIG. 6 is a flowchart showing the process of generating second inspection data performed in the second manufacturing process.

 (ステップS21)
 第2製造工程では、第1製造工程の後に、製品製造装置2000によりフィルムロール80を用いた後加工処理が実行され、フィルムF8を用いた製品を製造する。
(Step S21)
In the second manufacturing process, after the first manufacturing process, the product manufacturing apparatus 2000 performs post-processing using the film roll 80 to manufacture a product using the film F8.

 (ステップS22)
 検査装置90は、後加工の前のフィルムF8、または後加工中または後加工後のフィルムF8の表面を撮影し、画像データを保存する。
(Step S22)
The inspection device 90 photographs the surface of the film F8 before post-processing, or during or after post-processing, and stores the image data.

 (ステップS23)
 画像解析部93は、ステップS13と同様の処理により、生成した複数の特徴点の特徴点情報を含む検査データを記憶部94に記憶する。
(Step S23)
The image analysis unit 93 stores the generated inspection data including the feature point information of the plurality of feature points in the storage unit 94 by the same process as in step S13.

 (ステップS24)
 第2製造工程にある端末装置70は、ステップS23までの処理で得られた複数の特徴点情報が含まれる検査データを情報処理システム50に送る。情報処理システム50の取得部511は、取得した検査データを第2検査データとして記憶部52の検査データDBに保存する。図7に示す第2検査データT12は、テーブルT11に示した第1検査データと同様に、特徴点id、特徴点記述子1、2で記述されたものである。
(Step S24)
Terminal device 70 in the second manufacturing process sends inspection data including multiple pieces of feature point information obtained in the processes up to step S23 to information processing system 50. Acquisition unit 511 of information processing system 50 stores the acquired inspection data as second inspection data in the inspection data DB of storage unit 52. Second inspection data T12 shown in FIG. 7 is described using feature point IDs and feature point descriptors 1 and 2, similar to the first inspection data shown in table T11.

 (特徴点の抽出処理および検査データDBへの登録処理)
 以下、図8~図14を参照し、情報処理システム50で実行される特徴点の抽出処理および検査データDBへの登録処理について説明する。図8は、特徴点の抽出処理を示すフローチャートである。図9は、特徴点の抽出処理を説明するための模式図である。
(Feature Point Extraction Processing and Registration Processing in Inspection Data DB)
8 to 14, the process of extracting feature points and the process of registering feature points in the inspection data DB executed by the information processing system 50 will be described below. Fig. 8 is a flowchart showing the process of extracting feature points. Fig. 9 is a schematic diagram for explaining the process of extracting feature points.

 情報処理システム50は、ユーザーからの端末装置70を通じた操作画面を通じた開始指示に応じて、または、第2検査データが記憶部52の検査データDBに登録され、一対の第1、第2検査データが揃ったタイミングで、ステップS31以下の処理を開始させる。 The information processing system 50 starts the processing from step S31 onwards in response to a start instruction from the user via the operation screen of the terminal device 70, or when the second test data is registered in the test data DB of the memory unit 52 and a pair of first and second test data is obtained.

 (ステップS31)
 取得部511は、検査データDBから、同一ロット、すなわち一対の第1、第2検査データを取得する。同一ロットは、検査IDに付与されているロットIDから紐付けられる。
(Step S31)
The acquiring unit 511 acquires the same lot, i.e., a pair of first and second inspection data, from the inspection data DB. The same lot is linked by the lot ID assigned to the inspection ID.

 (ステップS32、S33)
 対比部512は、第1検査データに第1条件で前処理を実行し、第2検査データに第2条件で前処理を実行する。
(Steps S32 and S33)
The comparison unit 512 performs preprocessing on the first inspection data under a first condition, and performs preprocessing on the second inspection data under a second condition.

 対比部512は、図9に示すように、第2条件の前処理として、第2検査データに対して、巻き取り(第1製造工程)と繰り出し(第2製造工程)の違いがあれば、これを合わせるためにY座標(上下)を反転させる前処理を行う。また、第2製造工程において、カメラ92の撮影領域がフィルムF8の表面、裏面のどちらを撮影領域として設定しているかの情報に応じて、対比部512は、第2検査データ(または第1検査データ)に対してX座標(左右)を反転させる前処理を行う。 As shown in FIG. 9, as preprocessing for the second condition, the comparison unit 512 performs preprocessing to reverse the Y coordinate (up and down) of the second inspection data to match any differences between winding (first manufacturing process) and unwinding (second manufacturing process) of the second inspection data. Furthermore, in the second manufacturing process, the comparison unit 512 performs preprocessing to reverse the X coordinate (left and right) of the second inspection data (or first inspection data) depending on information on whether the shooting area of the camera 92 is set to the front or back of the film F8.

 また、対比部512は、第1検査データ、第2検査データに対して、第1、第2条件に含まれるノイズ除去処理として、下記の少なくともいずれかを実行する。
(1)低ランクの特徴点の除去。
(2)極小の特徴点を除去。
(3)連続打点を除去。
(4)幅手方向の集中打点を除去。これは、特にフィルムF8の先頭や後端に生じる。
Furthermore, the comparison unit 512 performs at least one of the following noise removal processes on the first and second test data as the noise removal processes included in the first and second conditions.
(1) Removal of low-rank feature points.
(2) Remove extremely small feature points.
(3) Eliminate consecutive hits.
(4) Eliminate concentrated impacts in the width direction. This occurs especially at the leading and trailing edges of film F8.

 (ステップS34)
 対比部512は、対比処理により一方の検査データにある特徴点と同一または対応する特徴点を他方の検査データから探索し、特徴点同士の対応付け(マッチング)を行う。図10は、このステップS34の処理を示すサブルーチンフローチャートである。
(Step S34)
The comparison unit 512 searches for feature points in one test data that are identical to or correspond to feature points in the other test data through comparison processing, and matches the feature points with each other. Figure 10 is a subroutine flowchart showing the processing of step S34.

 (ステップS401)
 対比部512は、第1、第2検査データの各特徴点の記述子2を生成する。対比部512は、例えばSIFT特徴量を記述子として用いたり、カーネル密度推定を行って算出した特徴点の確率密度関数を記述子として用いたりする。
(Step S401)
The comparison unit 512 generates a descriptor 2 for each feature point of the first and second test data. For example, the comparison unit 512 uses a SIFT feature amount as the descriptor, or a probability density function of the feature points calculated by kernel density estimation as the descriptor.

 (ステップS402、S403)
 対比部512は、第1、第2検査データの特徴点同士を比較し、最も対応する点を検索する。対比部512は、特徴点同士の類似性を記述子1、および記述子2により評価し、最も類似する点を対応する特徴点と見做す。
(Steps S402 and S403)
The comparison unit 512 compares the feature points of the first and second test data to find the most similar points. The comparison unit 512 evaluates the similarity between the feature points using Descriptor 1 and Descriptor 2, and regards the most similar points as corresponding feature points.

 例えば、第1、第2検査データの特徴点の比較において、対比部512は、第2検査データの対象の特徴点に対応する特徴点を第1検査データの特徴点の中から探索する。この際に、対比部512は、第2検査データの特徴点の記述子1のX、Y座標と、一致し、または強度が最も近い、第1検査データの特徴点を同一点と判定する。または、記述子1のX、Y座標間の距離(ユークリッド距離)が最も近いもの同士を同一点(対応する点)と判定する。対比部512は、設定された閾値よりも距離が離れた特徴点は、対応する点の判定から除外する。なお、本実施形態においては、閾値はX方向に比べてY方向の閾値は、2~3桁大きい値に設定している。例えば、X方向では閾値は数mmであり、Y方向の閾値は数mである。X方向に比べてY方向の閾値の方が2、3桁大きいのは変化量が多いためである。 For example, when comparing feature points between the first and second test data, the comparison unit 512 searches for feature points in the first test data that correspond to feature points of interest in the second test data. In this case, the comparison unit 512 determines that feature points in the first test data that match or have the closest intensity to the X and Y coordinates of descriptor 1 of the feature point in the second test data are the same point. Alternatively, the comparison unit 512 determines that feature points with the closest distance (Euclidean distance) between the X and Y coordinates of descriptor 1 are the same point (corresponding points). The comparison unit 512 excludes feature points that are farther apart than a set threshold from the determination of corresponding points. Note that in this embodiment, the threshold value in the Y direction is set to a value that is two to three orders of magnitude larger than that in the X direction. For example, the threshold value in the X direction is several millimeters, and the threshold value in the Y direction is several meters. The reason the threshold value in the Y direction is two to three orders of magnitude larger than that in the X direction is that there is a greater amount of change.

 また、対比部512は、記述子1とともに記述子2を用い、高次元ベクトル空間におけるベクトル同士の距離により最も類似する特徴点同士を抽出するようにしてもよい。その場合、対比部512は、記述子2としては上述のようにカーネル密度推定により算出した確率密度関数を用いてもよい。図11は、カーネル密度推定により算出した、特徴点の位置と強度(密度)を示す確率密度関数の例である。図11においては、縦横軸は、XY座標であり、また濃度が高いほど、密度が高いことが示されている。 Furthermore, the comparison unit 512 may use descriptor 2 in addition to descriptor 1 to extract feature points that are most similar based on the distance between vectors in high-dimensional vector space. In this case, the comparison unit 512 may use a probability density function calculated by kernel density estimation as described above as descriptor 2. Figure 11 is an example of a probability density function calculated by kernel density estimation that indicates the position and intensity (density) of feature points. In Figure 11, the vertical and horizontal axes are XY coordinates, and it is shown that the higher the concentration, the higher the density.

 対比部512は、1つの特徴点は、1つの特徴点のみに対応するものとして判定する。例えば、第2検査データの特徴点に対して、第1検査データで最も記述子のベクトル同士が近い特徴点を対応する点として対応点リストに登録する。 The comparison unit 512 determines that one feature point corresponds to only one other feature point. For example, for a feature point in the second test data, the feature point in the first test data whose descriptor vectors are closest to the feature point in the second test data is registered as the corresponding point in the corresponding point list.

 図12は、記憶部52に記憶される対応点リストの例である。対応点リストは、第2検査データの特徴点それぞれに対して、第1検査データ中の最も類似する特徴点が対応付けられたものである。また、対応点リストには、第2検査データの特徴点のXY座標と、対応付けられた特徴点間のユークリッド距離、X座標における差分dx、およびY座標における差分dyが記述されている。以上で、制御部51は、図10の処理を終了し、図8の処理に戻り、ステップS35以下を行う。 FIG. 12 is an example of a corresponding point list stored in the storage unit 52. The corresponding point list associates each feature point in the second inspection data with the most similar feature point in the first inspection data. The corresponding point list also describes the X and Y coordinates of the feature points in the second inspection data, the Euclidean distance between the associated feature points, the difference dx in the X coordinate, and the difference dy in the Y coordinate. With this, the control unit 51 ends the processing in FIG. 10, returns to the processing in FIG. 8, and performs step S35 and subsequent steps.

 (ステップS35)
 抽出部513は、対応リスト、第1検査データ、第2検査データから特徴点を第1種から第3種特徴点までに分類する。第1~第3種特徴点については後述する。具体的には抽出部513は、対応リストにおいて、第2検査データの特徴点うち、第1検査データの特徴点で対応づけられていない特徴点を第2種特徴点に分類する。また、抽出部513は、第1検査データの特徴点のうち、対応リストに含まれてない特徴点(第2検査データの特徴点と対応づけられていない特徴点)を第1種特徴点に分類する。
(Step S35)
The extraction unit 513 classifies feature points from the correspondence list, the first test data, and the second test data into first to third type feature points. The first to third type feature points will be described later. Specifically, the extraction unit 513 classifies, among the feature points of the second test data in the correspondence list, feature points that are not associated with feature points of the first test data as second type feature points. Furthermore, the extraction unit 513 classifies, among the feature points of the first test data, feature points that are not included in the correspondence list (feature points that are not associated with feature points of the second test data) as first type feature points.

 (第1~第3種特徴点)
 図13は、第1~第3種特徴点を説明するためのテーブルである。
(First to third type feature points)
FIG. 13 is a table for explaining the first to third type feature points.

 (第1種特徴点)
 第1種特徴点は、第1検査データに存在する特徴点であり、第2検査データには、存在しない特徴点である。第1種特徴点は、第2製造工程(例えば塗布工程や積層工程)で消えた特徴点である。この第1種特徴点は、第1製造工程では管理が不要な特徴点である。この場合、第1種特徴点の発生要因となる製造条件については、第1製造工程では規格緩和の対象となり得る。
(First type feature point)
The first type feature points are feature points that are present in the first inspection data but not present in the second inspection data. The first type feature points are feature points that disappear in the second manufacturing process (e.g., the coating process or the lamination process). These first type feature points are feature points that do not need to be managed in the first manufacturing process. In this case, the manufacturing conditions that cause the first type feature points to occur may be subject to relaxed standards in the first manufacturing process.

 (第2種特徴点)
 第2種特徴点は、第1検査データに存在せず、第2検査データに存在する特徴点である。第2種特徴点は、第2製造工程で新たに発生した特徴点である。この第2種特徴点は、第2製造工程起因の特徴点であることから、第2製造工程の改善に活かせる。
(Second type feature point)
The second type feature points are feature points that are not present in the first inspection data but are present in the second inspection data. The second type feature points are feature points that newly appear in the second manufacturing process. Because these second type feature points are feature points that originate in the second manufacturing process, they can be used to improve the second manufacturing process.

 (第3種特徴点)
 第3種特徴点は、第1検査データと第2検査データの両方に存在する特徴点である。この第3種特徴点は、第1製造工程起因の特徴点であり、また管理が必要な特徴点である。この第3種特徴点は、第1製造工程起因の特徴点であることから、第1製造工程の改善に活かせる。
(Third-class feature point)
The third type feature points are feature points that exist in both the first inspection data and the second inspection data. These third type feature points are feature points that originate from the first manufacturing process and require management. Because these third type feature points originate from the first manufacturing process, they can be used to improve the first manufacturing process.

 (ステップS36)
 制御部51は、ステップS35までの処理で抽出した特徴点抽出情報を検査データDBに登録する(エンド)。
(Step S36)
The control unit 51 registers the feature point extraction information extracted in the processes up to step S35 in the test data DB (END).

 図14は、抽出データの例である。抽出データには、元になる第1、第2検査データそれぞれの検査IDと、特徴点毎の抽出結果が記録される。抽出結果(第1~第3種)は、図13で示した分類である。統合特徴点IDは、自動的に連番で付与されたものであり、第1、第2検査データのどちらまたは両方にある特徴点に対応して、統合特徴点が生成される。総合特徴点IDの個数≧第1検査、第2検査特徴点IDの個数である。 Figure 14 is an example of extracted data. The extracted data records the inspection IDs of the original first and second inspection data, as well as the extraction results for each feature point. The extraction results (Types 1 to 3) are classified as shown in Figure 13. Integrated feature point IDs are automatically assigned consecutive numbers, and integrated feature points are generated corresponding to feature points that are present in either or both of the first and second inspection data. The number of integrated feature point IDs is greater than or equal to the number of first inspection and second inspection feature point IDs.

 なお、1つのロットIDに対して、複数の検査装置による複数の第1、第2検査データが生成される場合もある。例えば、第2製造工程において、元巻き状態のフィルムロール80を検査(撮影)するとともに、その下流側のいくつかの工程で検査することにより複数の第2検査データが生成される場合である。この場合、情報処理システム50は、1つの第1検査データに対して、複数の第2検査データとの間(1対多)で、複数の特徴点の抽出データを生成するようにしてもよい。例えば、3つの検査データがある場合には、1番目と2番目の検査データ間で、および、2番目と3番目の検査データ間のそれぞれで、特徴点の抽出データを生成する。また、3つ以上の検査データがある場合に、いずれの検査データ間と対応づけるかは、ユーザーにより選択できるようにしてもよい。 It should be noted that multiple first and second inspection data may be generated for one lot ID by multiple inspection devices. For example, in the second manufacturing process, the film roll 80 in its original wound state may be inspected (photographed), and multiple second inspection data may be generated by inspections in several downstream processes. In this case, the information processing system 50 may generate multiple feature point extraction data for one piece of first inspection data and multiple pieces of second inspection data (one-to-many). For example, if there are three pieces of inspection data, feature point extraction data may be generated between the first and second inspection data, and between the second and third inspection data. Furthermore, if there are three or more pieces of inspection data, the user may be able to select which pair of inspection data to associate with.

 (欠陥の発生状況の解析処理)
 図15は、ロット間または検査区間での欠陥の発生状況を解析し、表示する解析処理を示すフローチャートである。図16A、図16Bは、端末装置70等に表示される操作画面の例である。
(Analysis of defect occurrence status)
15 is a flowchart showing an analysis process for analyzing and displaying the occurrence status of defects between lots or between inspection sections. 16A and 16B are examples of operation screens displayed on the terminal device 70 or the like.

 (ステップS51)
 選択部514は、ユーザーによる、対象データの選択を受け付ける。例えば、図16Aに示す操作画面701においては、領域b0において、ロットリスト(図4参照)に記述されている製品を選択した上で、領域b1で、(1)複数ロット、または1つのロット内(2)複数の検査区間の選択を受け付ける。複数ロットについては後述する。複数の検査区間は、例えば、3000mのフィルムの場合に、長手方向において500m毎または1000毎に区分された複数の検査区間を選択するものである。または、幅手方向に500mm毎に複数に区分された検査区間を選択するものである。そして、複数の区分毎の特徴点の比較を行う。この場合、全長表示を比較として表示するようにしてもよい。例えば、長手方向において全長での特徴点の総個数を区分数で割った個数(平均値)を比較対象として提示するようにしてもよい。
(Step S51)
The selection unit 514 accepts the user's selection of target data. For example, in the operation screen 701 shown in FIG. 16A, a product listed in the lot list (see FIG. 4) is selected in area b0, and then (1) multiple lots or (2) multiple inspection sections within a single lot are selected in area b1. Multiple lots will be described later. For example, in the case of a 3,000 m film, multiple inspection sections divided into 500 m or 1,000 m sections in the longitudinal direction are selected. Alternatively, multiple inspection sections divided into 500 mm sections in the transverse direction are selected. Then, feature points for each of the multiple sections are compared. In this case, the overall length may be displayed as a comparison. For example, the total number of feature points over the entire length in the longitudinal direction divided by the number of sections (average value) may be presented as a comparison target.

 図16Bに示す操作画面702は、図16Aにおいて、領域b1の複数ロットのボタンが押下されるに応じて、表示される画面である。操作画面702の領域b11には、選択された製品に関するロットが一覧表示される。ユーザーは、ボタンb12で各ロットの選択を有効にする。操作画面702の例では、ロット1~ロット5までが選択されていることが示されている。ユーザーは、決定ボタンb13を押下することで選択を反映させる。なお、製造工程が複数にわたる場合には、ロット内において、対象とする製造工程の選択を受け付けるようにしてもよい。 The operation screen 702 shown in Figure 16B is a screen that is displayed when the Multiple Lots button in area b1 in Figure 16A is pressed. Area b11 of the operation screen 702 displays a list of lots related to the selected product. The user activates the selection of each lot with button b12. The example of the operation screen 702 shows that lots 1 to 5 have been selected. The user reflects the selection by pressing the Confirm button b13. Note that if there are multiple manufacturing processes, the system may accept the selection of the target manufacturing process within the lot.

 (ステップS52)
 取得部511は、ステップS51で選択された条件に該当する抽出データを、検査データDBから取得する。図17は、ステップS52で取得した抽出データリストの例である。以下においては、ロット1~ロット5は、3つの連続した工程1~工程3までの製造工程により加工、製造され、それぞれの工程間の抽出データが取得されたものとして説明する。例えば、図17に示す例では、ロット1について、抽出データ01、抽出データ02の2つの抽出データが収録される。抽出データ01は図14に示した抽出データに相当する。
(Step S52)
The acquisition unit 511 acquires extracted data that meets the conditions selected in step S51 from the inspection data DB. FIG. 17 is an example of the extracted data list acquired in step S52. In the following description, it is assumed that lots 1 to 5 are processed and manufactured through three consecutive manufacturing processes, steps 1 to 3, and extracted data is acquired between each process. For example, in the example shown in FIG. 17, two pieces of extracted data, extracted data 01 and extracted data 02, are recorded for lot 1. Extracted data 01 corresponds to the extracted data shown in FIG. 14.

 (ステップS53)
 選択部514は、ユーザーにより特徴点の種類の選択を受け付ける。この選択に関し、ユーザーは、特徴点の種類の選択を操作画面701の領域b2のいくつかを選択することで行える。操作画面701の例では、第2種、第3種の特徴点が選択されていることが示されている。また、この選択は、制御部51側で、自動で行うようにしてもよい。例えば領域b2で、ユーザーが「自動」のボタンを選択することで、制御部51側で自動に行うようにしてもよい。
(Step S53)
The selection unit 514 accepts the user's selection of the type of feature point. The user can select the type of feature point by selecting some in area b2 of the operation screen 701. The example of the operation screen 701 shows that second and third types of feature points have been selected. This selection may also be performed automatically by the control unit 51. For example, the user may select the "automatic" button in area b2, causing the control unit 51 to automatically perform the selection.

 (ステップS54、S55)
 表示データ生成部515は、ステップS52、S53で選択された条件に応じて、特徴点のデータを解析し、表示データを生成する。以下、図18A~図18Cを参照し、特徴点データの解析処理について説明する。
(Steps S54 and S55)
The display data generation unit 515 analyzes the feature point data and generates display data in accordance with the conditions selected in steps S52 and S53. The analysis process of the feature point data will be described below with reference to Figures 18A to 18C.

 図18A、図18Bは、解析結果を示すテーブルである。図18Aでは、選択されたロット1~ロット5のうち、代表としてロット1の解析結果を示している。図18Bは図18Aでの特徴点の抽出条件を説明するためのテーブルである。図18Aの抽出条件1に示すように、工程1で発生した特徴点(欠陥)は、工程1、2の検査データを用いて生成した抽出データ01(図17参照)にある第3種特徴点を用いる。また、工程2で発生した特徴点は、同じ抽出データ01にある第2種特徴点を用いる。工程3で発生した特徴点は、工程2、3の検査データを用いて生成した抽出データ02にある第2種特徴点を用いる。工程Totalは、工程3単体の検査データ(検査データi03)で抽出された全特徴点を用いる。この場合、3つ以上の工程を跨ぐ第2特徴点は、新規で発生したものが対象となる。具体的には、条件1に示すように、工程3で用いる第2種特徴点は、工程3の検査データを、直前の工程2の検査データを比較することにより分類された第2種特徴点である。 Figures 18A and 18B are tables showing the analysis results. Figure 18A shows the analysis results for Lot 1 as a representative of the selected Lots 1 to 5. Figure 18B is a table explaining the conditions for extracting feature points in Figure 18A. As shown in Extraction Condition 1 in Figure 18A, feature points (defects) occurring in Process 1 use third-type feature points in Extracted Data 01 (see Figure 17) generated using the inspection data from Processes 1 and 2. Also, feature points occurring in Process 2 use second-type feature points in the same Extracted Data 01. Feature points occurring in Process 3 use second-type feature points in Extracted Data 02 generated using the inspection data from Processes 2 and 3. The total process uses all feature points extracted from the inspection data for Process 3 alone (Inspection Data i03). In this case, newly occurring second-type feature points that span three or more processes are the target. Specifically, as shown in condition 1, the second type feature points used in step 3 are second type feature points classified by comparing the inspection data of step 3 with the inspection data of the immediately preceding step 2.

 変形例として、図18Bに示す抽出条件1に換えて抽出条件2を適用してもよい。抽出条件2では、条件aと条件bがアンド条件で適用される。例えば、工程1で発生した特徴点は、第3種特徴点であり、第1種特徴点を除外している。また工程2で発生した特徴点は、工程2-3間で第3種特徴点であり、工程1-2間で第2種特徴点でもある。以下の例では、抽出条件1を適用している。 As a modified example, extraction condition 2 may be applied instead of extraction condition 1 shown in Figure 18B. In extraction condition 2, condition a and condition b are applied as an AND condition. For example, feature points generated in process 1 are third-type feature points, and first-type feature points are excluded. Furthermore, feature points generated in process 2 are third-type feature points between processes 2 and 3, and second-type feature points between processes 1 and 2. In the example below, extraction condition 1 is applied.

 また、図18Aでは、サイズ1~サイズ5まで特徴点の大きさ(面積)に応じて5段階に区分しており、それぞれのサイズでの特徴点の個数を示している。サイズ1が最も小さい区分であり、サイズ5が最も大きい区分である。以下では、これらの合計であるサイズTotalの数値を用いるが、ユーザーからの入力設定に応じて、サイズ区分毎に集計した数値を用いてもよい。 In addition, Figure 18A shows five classifications based on the size (area) of feature points, from size 1 to size 5, and the number of feature points for each size is shown. Size 1 is the smallest classification, and size 5 is the largest classification. Below, the total value of these sizes is used, but it is also possible to use the aggregated value for each size classification depending on the settings input by the user.

 図18Cのテーブルでは、ロット毎の各工程で発生した特徴点の個数を一覧表示している。このような解析をすることで、表示データ生成部515は、表示データを生成する。そして出力部516は、生成された表示データを出力する。例えば、端末装置70の操作画面701の領域b4(図16A参照)に、以下の図19A等に示すような表示データを表示する。 The table in Figure 18C displays a list of the number of feature points that occurred in each process for each lot. By performing this analysis, the display data generation unit 515 generates display data. The output unit 516 then outputs the generated display data. For example, display data such as that shown in Figure 19A below is displayed in area b4 (see Figure 16A) on the operation screen 701 of the terminal device 70.

 表示される表示データは、図18Cに示したような表形式の表データそのものであってもよく、また、図18Bに示した表データから生成した棒グラフ、折れ線グラフ、点グラフ、積み上げ棒グラフであってもよい。また、ベン図であってもよい。例えば、それぞれのロット毎に、3つ以上の工程間で、推移する特徴点がどれだけ重なるかを表示してもよい。図19A~図19Eは、そのようなグラフでの表示データの例である。 The displayed data may be the table data itself in a tabular format, such as that shown in Figure 18C, or it may be a bar graph, line graph, dot graph, or stacked bar graph generated from the table data shown in Figure 18B. It may also be a Venn diagram. For example, it may display the extent to which transitional feature points overlap between three or more processes for each lot. Figures 19A to 19E are examples of such graph-based display data.

 図19A~図19Dは、図18Cの表データに基づいて生成されたチャートである。図19A~図19Cは、点グラフであり、図19D、図19Eは、積み上げ棒グラフの例である。図19Aでは、ロット1~5における工程 Totalの特徴点の個数が示されている。図19Bでは、ロット1~5における工程3で発生した特徴点の個数が示されている。ここで示された特徴点の種類は、図18Bの条件1に示すように第2種特徴点である。図19Cでは、ロット1~5における工程1で発生した特徴点の個数が示されている。ここで示された特徴点の種類は、図18Bの条件1に示すように第3種特徴点である。図19Dでは、ロット1~5における工程 Totalの特徴点の個数が示されており、各棒では、工程1~3の各工程で発生した特徴量の個数がそれぞれ示されている。ここで示された特徴量の種類は、図18Bの条件1に示すように第3種特徴点および第2種特徴点である。図19Eでは、ロット1~5における工程 Totalの特徴点の個数が示されており、各棒では、サイズ1~5それぞれの特徴量の個数が積み上げて示されている。 Figures 19A to 19D are charts generated based on the table data in Figure 18C. Figures 19A to 19C are dot graphs, and Figures 19D and 19E are examples of stacked bar graphs. Figure 19A shows the number of feature points in Process Total for lots 1 to 5. Figure 19B shows the number of feature points generated in Process 3 for lots 1 to 5. The type of feature points shown here is Type 2 feature points, as indicated by Condition 1 in Figure 18B. Figure 19C shows the number of feature points generated in Process 1 for lots 1 to 5. The type of feature points shown here is Type 3 feature points, as indicated by Condition 1 in Figure 18B. Figure 19D shows the number of feature points in Process Total for lots 1 to 5, with each bar indicating the number of feature amounts generated in each of Processes 1 to 3. The types of feature amounts shown here are Type 3 feature points and Type 2 feature points, as indicated by Condition 1 in Figure 18B. Figure 19E shows the number of feature points for the total process in lots 1 to 5, with each bar showing the stacked number of feature values for each size 1 to 5.

 このようにすることで、例えば以下の効果が得られる。図19Aでは、ロット4、5では、ロット1~3に比べて工程3で特徴点の個数の増加が見られる。図19B、20Cを対比して参照することで、または図19Dを参照することで、工程3(Total)での特徴点の増加は、工程3自体で増加したものではなく、工程1で増加したことが読み取れる。 By doing this, for example, the following effects can be obtained. In Figure 19A, an increase in the number of minutiae in process 3 can be seen in lots 4 and 5 compared to lots 1 to 3. By comparing Figures 19B and 20C, or by referring to Figure 19D, it can be seen that the increase in minutiae in process 3 (total) is not due to an increase in process 3 itself, but rather an increase in process 1.

 このように本実施形態に係る情報処理システムは、ロット毎のウェブを製造または製造されたウェブに後加工する第1製造工程における第1検査データ、および第1製造工程後に行われる、ウェブを用いた後加工処理を行う第2製造工程における第2検査データに基づき、第1、第2検査データのそれぞれに含まれる特徴点を第1検査データでは存在し、第2検査データでは存在しない第1種特徴点、第1検査データでは存在せず、第2検査データで存在する第2種特徴点、および第1、第2検査データでともに存在する第3種特徴点に分類して、記録したデータベースからデータを取得する取得部を備える。また、対象の複数のロットの選択、または1つのロットにおけるウェブの長手方向の複数の検査区間の選択を受け付ける選択部と、取得部がデータベースから取得した、選択部で選択されたデータから表示データを生成する表示データ生成部と、表示データを出力する出力部と、を備える。このようにすることで、フィルム等のウェブを製造する際、およびこれを用いて後加工を行う製造工程の双方において工程で欠陥の発生状況を把握できる。特に本実施形態に係る情報処理システムでは、選択部がさらに分類した特徴点の種類の選択を受け付け、表示データ生成部は、受け付けた特徴点の種類のデータで、表示データを生成する。これにより、ロットでの各工程での特徴点の発生状況を個別に把握できる。複数の工程により製品を製造する際に、どの工程で変化が生じているかを把握でき、ひいては、工程トラブルを未然に防いだり、工程トラブルの発生を予見できたりする。 As such, the information processing system of this embodiment includes an acquisition unit that classifies feature points contained in the first and second inspection data into first-type feature points that are present in the first inspection data but not in the second inspection data, second-type feature points that are absent in the first inspection data but present in the second inspection data, and third-type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web for each lot is manufactured or a manufactured web is post-processed, and acquires the data from a recorded database. The system also includes a selection unit that accepts selection of multiple target lots or selection of multiple inspection sections in the longitudinal direction of the web in a single lot, a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit, and an output unit that outputs the display data. This makes it possible to grasp the occurrence of defects in both the manufacturing process of a web such as a film and the manufacturing process in which post-processing is performed using the web. In particular, in the information processing system according to this embodiment, the selection unit accepts the selection of further classified feature point types, and the display data generation unit generates display data using the accepted feature point type data. This makes it possible to individually grasp the occurrence status of feature points in each process within a lot. When a product is manufactured through multiple processes, it is possible to grasp in which process changes are occurring, which in turn makes it possible to prevent process problems before they occur or to predict their occurrence.

 以上に説明した情報処理システム50の構成は、上記の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上記の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な情報処理装置/システムが備える構成を排除するものではない。 The configuration of the information processing system 50 described above is the main configuration used to explain the features of the above embodiment, but is not limited to the above configuration and can be modified in various ways within the scope of the claims. Furthermore, configurations that are commonly found in information processing devices/systems are not excluded.

 (変形例1)
 例えば、上述の表示データの例では、複数のロット間の状況変化を把握できる態様で表示した例を示した。変形例ではロット間に変えて、ユーザーにより、1つのロット内の検査区間が選択された場合には(図16Aの領域b1)、1つのロット内の区間の間の状況変化を把握できる態様で、表示データが生成される。例えば、1つのロットのフィルム長が3000mの場合には、これを3分割し、0~1000m、1000~2000m、2000~3000mの3区間とする。そして表示データ生成部515は、各区間に関して、図19A~図19Eと同様の表示データを生成する。この場合、検査データは、指定された区間に応じて、分割され、分割された検査データ毎に、抽出データが生成される。そして、表示データ生成部515は、取得されたこれらの分割区間に応じた抽出データを解析することで、表示データを生成する。このような変形例においても、図1~図17で示した本実施形態と同様の効果が得られる。例えば、1つのロット内において、時間的な変化に応じた特徴点(欠陥)の発生状況を把握できる。
(Variation 1)
For example, the display data example described above shows an example in which changes in status between multiple lots can be grasped. In a modified example, if the user selects an inspection section within a single lot (area b1 in FIG. 16A ) instead of between lots, display data is generated in a manner that allows changes in status between sections within a single lot to be grasped. For example, if the film length of a single lot is 3,000 m, this is divided into three sections: 0 to 1,000 m, 1,000 to 2,000 m, and 2,000 to 3,000 m. The display data generation unit 515 then generates display data similar to those shown in FIGS. 19A to 19E for each section. In this case, the inspection data is divided according to the specified sections, and extracted data is generated for each divided inspection data. The display data generation unit 515 then generates display data by analyzing the extracted data corresponding to these acquired sections. This modified example also achieves the same effects as the present embodiment shown in FIGS. 1 to 17 . For example, it is possible to grasp the occurrence status of feature points (defects) within a single lot as they change over time.

 (変形例2)
 図16Aに示す例では、ユーザーによる特徴量の種類の選択の受け付けは、種類毎に行える例を示したが、工程毎に種類を選択できるようにしてもよい。例えば、図18Bの条件1のように、工程毎に第3種または第2種の選択を受け付けてもよく、さらに、条件2のように、工程毎に、前後の工程との関係において複数の種類の選択を受け付けるようにしてもよい。例えば、条件2のテーブルに示すように、工程2では、ユーザーにより、前の工程(工程1、2間)との関係で第2種の特徴点を選択され、後の工程(工程2、3)との関係で第3種の特徴点を選択された場合に、これをアンド条件で受け付ける。また、ユーザーによる特徴点の種類の選択に変えて、ユーザーは、要望するグラフの種類を選択することで、これにより制御部51側で自動的に特徴点の種類の選択を行うようにしてもよい。例えば、それぞれの工程であらたに発生した特徴点の状況を視覚的に表示する場合に、ユーザーにより「工程毎に生じた欠陥」の選択を受け付けることで、図18Bに示す条件1または条件2における特徴点の種類を、制御部51側で自動に設定する。
(Variation 2)
In the example shown in FIG. 16A , the user's selection of the type of feature can be made for each type. However, the type may also be selected for each process. For example, as in condition 1 of FIG. 18B , a third or second type selection may be made for each process. Furthermore, as in condition 2, multiple types may be selected for each process in relation to the preceding and succeeding processes. For example, as shown in the table for condition 2, in process 2, if the user selects a second type of feature point in relation to the preceding process (between processes 1 and 2) and a third type of feature point in relation to the succeeding process (processes 2 and 3), this is accepted under an AND condition. Alternatively, instead of the user selecting the type of feature point, the user may select a desired type of graph, and the control unit 51 may automatically select the type of feature point. For example, in a case where the status of newly occurring feature points in each process is to be visually displayed, the control unit 51 may automatically set the type of feature point under condition 1 or condition 2 shown in FIG. 18B by accepting the user's selection of "defects occurring in each process."

 (変形例3)
 なお、上述の図15に示す一連の処理をリアルタイムで行うようにしてもよい。例えば、各工程で得られた検査データを、リアルタイムで処理し、予め設定された条件設定で、表示する。また、その際に、新たに発生した第2種特徴点の個数に応じてアラートを出力するようにしてもよい。具体的には、新たに発生した第2種の特徴点の個数が閾値を超えた場合には、設定先の工程(例えば発生工程やその前後の工程など任意に設定)にアラートを報知する。その結果、故障の改善迅速に判断でき改善を支援することができる。
(Variation 3)
The series of processes shown in FIG. 15 may be performed in real time. For example, inspection data obtained in each process may be processed in real time and displayed under preset conditions. Furthermore, an alert may be output depending on the number of newly occurring second-type feature points. Specifically, when the number of newly occurring second-type feature points exceeds a threshold, an alert is sent to a set process (e.g., the process where the fault occurred or any process before or after it). As a result, it is possible to quickly determine whether the fault should be fixed and to support the improvement.

 (変形例4)
 また、情報処理システム50には、第1製造工程および/または第2製造工程に配置した検査装置90が含まれてもよい。また、検査装置90の画像解析部93の特徴点の生成機能を、情報処理システム50の制御部51が担うようにしてもよい。この場合は、検査装置90からはフィルム面を撮影した画像データおよびその撮影条件(搬送速度、カメラ向き、画角等の情報)が情報処理システム50に送られ、特徴点の生成処理は、制御部51側で行われる。
(Variation 4)
The information processing system 50 may also include an inspection device 90 disposed in the first manufacturing process and/or the second manufacturing process. The feature point generation function of the image analysis unit 93 of the inspection device 90 may be performed by the control unit 51 of the information processing system 50. In this case, the inspection device 90 sends image data of an image of the film surface and the image capture conditions (information such as transport speed, camera orientation, and angle of view) to the information processing system 50, and the feature point generation process is performed on the control unit 51 side.

 また、上述した実施形態に係る情報処理システム50における各種処理を行う手段及び方法は、専用のハードウェア回路、又はプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、USBメモリやDVD(Digital Versatile Disc)-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、装置の一機能としてその装置のソフトウエアに組み込まれてもよい。 Furthermore, the means and methods for performing various processes in the information processing system 50 according to the above-described embodiment can be realized by either a dedicated hardware circuit or a programmed computer. The above program may be provided by a computer-readable recording medium such as a USB memory or a DVD (Digital Versatile Disc)-ROM, or may be provided online via a network such as the Internet. In this case, the program recorded on the computer-readable recording medium is typically transferred to and stored in a storage unit such as a hard disk. Furthermore, the above program may be provided as standalone application software, or may be incorporated into the software of a device as one of its functions.

 本発明の実施形態を詳細に説明および図示したが、開示された実施形態は、図示および例示のみを目的として作成されたものであり、限定するものではない。本発明の範囲は、添付の特許請求の範囲の文言によって解釈されるべきである。 Although embodiments of the present invention have been described and illustrated in detail, the disclosed embodiments are made for purposes of illustration and example only and are not intended to be limiting. The scope of the present invention should be interpreted by the language of the appended claims.

 本出願は、2024年4月12日に出願された日本特許出願(特願2024-064474号)に基づいており、その開示内容は、参照され、全体として組み入れられている。 This application is based on a Japanese patent application (Patent Application No. 2024-064474) filed on April 12, 2024, the disclosure of which is incorporated herein by reference in its entirety.

50 情報処理システム
51 制御部
 511 取得部
 512 対比部
 513 抽出部
 514 選択部
 515 表示データ生成部
 516 出力部
52 記憶部
90、90a1~90a2、90b1~b4 検査装置
91 照明
92 カメラ
1000 フィルムロール製造装置
2000 製品製造装置
 
50 Information processing system 51 Control unit 511 Acquisition unit 512 Comparison unit 513 Extraction unit 514 Selection unit 515 Display data generation unit 516 Output unit 52 Storage unit 90, 90a1 to 90a2, 90b1 to 90b4 Inspection device 91 Lighting 92 Camera 1000 Film roll manufacturing device 2000 Product manufacturing device

Claims (11)

 ウェブを製造または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データに基づき、前記第1、第2検査データのそれぞれに含まれる特徴点を前記第1検査データでは存在し、前記第2検査データでは存在しない第1種特徴点、前記第1検査データでは存在せず、前記第2検査データで存在する第2種特徴点、および前記第1、第2検査データでともに存在する第3種特徴点に分類して、記録したデータベースからデータを取得する取得部と、
 対象の複数のロットの選択、または1つのロットにおけるウェブの長手方向の複数の検査区間の選択を受け付ける選択部と、
 前記取得部が前記データベースから取得した、前記選択部で選択されたデータから表示データを生成する表示データ生成部と、
 前記表示データを出力する出力部と、を備える情報処理システム。
an acquisition unit that classifies feature points included in each of the first and second inspection data into first type feature points that are present in the first inspection data but not in the second inspection data, second type feature points that are not present in the first inspection data but present in the second inspection data, and third type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data from a second manufacturing process in which post-processing using the web is performed after the first manufacturing process, and acquires data from a recorded database;
a selection unit that accepts selection of a plurality of target lots or selection of a plurality of inspection sections in the longitudinal direction of the web in one lot;
a display data generation unit that generates display data from the data selected by the selection unit and acquired from the database by the acquisition unit;
an output unit that outputs the display data.
 前記選択部は、さらに、分類した特徴点の種類の選択を受け付け、
 前記表示データ生成部は、受け付けた特徴点の種類のデータで、前記表示データを生成する、請求項1に記載の情報処理システム。
the selection unit further accepts a selection of the type of the classified feature points;
The information processing system according to claim 1 , wherein the display data generating unit generates the display data using received data on the type of feature points.
 前記表示データは、複数のロットでの製造工程で発生した特徴点を比較したチャートを含む、請求項1に記載の情報処理システム。 The information processing system of claim 1, wherein the display data includes a chart comparing characteristic points that occurred during the manufacturing process for multiple lots.  前記チャートは、後の製造工程で発生した第2種特徴点を、複数のロット間で比較したチャートである、請求項3に記載の情報処理システム。 The information processing system described in claim 3, wherein the chart is a chart comparing second-type features that occur in a later manufacturing process between multiple lots.  前記チャートには、棒グラフ、折れ線グラフ、点グラフおよび積み上げ棒グラフのいずれかが少なくとも含まれる、請求項3に記載の情報処理システム。 The information processing system of claim 3, wherein the chart includes at least one of a bar graph, a line graph, a dot graph, and a stacked bar graph.  ウェブを製造または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データに基づき、前記第1、第2検査データのそれぞれに含まれる特徴点を前記第1検査データでは存在し、前記第2検査データでは存在しない第1種特徴点、前記第1検査データでは存在せず、前記第2検査データで存在する第2種特徴点、および前記第1、第2検査データでともに存在する第3種特徴点に分類して、記録したデータベースからデータを取得するステップ(a)と、
 対象の複数のロットの選択、または1つのロットにおけるウェブの長手方向の複数の検査区間の選択を受け付けるステップ(b)と、
 前記ステップ(a)で前記データベースから取得した、前記ステップ(b)で選択されたデータから表示データを生成するステップ(c)と、
 前記表示データを出力するステップ(d)と、を含む処理を実行する制御方法。
(a) classifying feature points included in each of the first and second inspection data into first type feature points that are present in the first inspection data but not in the second inspection data, second type feature points that are not present in the first inspection data but present in the second inspection data, and third type feature points that are present in both the first and second inspection data, based on first inspection data from a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data from a second manufacturing process in which post-processing using the web is performed after the first manufacturing process, and acquiring data from a recorded database;
(b) accepting a selection of a plurality of target lots or a selection of a plurality of inspection sections along the length of the web within a single lot;
(c) generating display data from the data selected in (b) obtained from the database in (a);
and (d) outputting the display data.
 前記ステップ(b)では、さらに、分類した特徴点の種類の選択を受け付け、
 前記ステップ(c)では、受け付けた特徴点の種類のデータで、前記表示データを生成する、請求項6に記載の制御方法。
In the step (b), a selection of the type of the classified feature points is further received;
The control method according to claim 6 , wherein in said step (c), said display data is generated using data on the type of feature points received.
 前記表示データは、複数のロットでの製造工程で発生した特徴点を比較したチャートを含む、請求項6に記載の制御方法。 The control method described in claim 6, wherein the display data includes a chart comparing characteristic points that occurred in the manufacturing process for multiple lots.  前記チャートは、後の製造工程で発生した第2種特徴点を、複数のロット間で比較したチャートである、請求項8に記載の制御方法。 The control method described in claim 8, wherein the chart is a chart comparing second-type features that occur in a later manufacturing process between multiple lots.  前記チャートには、棒グラフ、折れ線グラフ、点グラフ、および積み上げ棒グラフのいずれかが少なくとも含まれる、請求項8に記載の制御方法。 The control method described in claim 8, wherein the chart includes at least one of a bar graph, a line graph, a dot graph, and a stacked bar graph.  請求項6から10のいずれかに記載の制御方法を、コンピューターに実行させるための制御プログラム。
 
A control program for causing a computer to execute the control method according to any one of claims 6 to 10.
PCT/JP2025/001527 2024-04-12 2025-01-20 Information processing system, control method, and control program Pending WO2025215902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2024-064474 2024-04-12
JP2024064474 2024-04-12

Publications (1)

Publication Number Publication Date
WO2025215902A1 true WO2025215902A1 (en) 2025-10-16

Family

ID=97350180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2025/001527 Pending WO2025215902A1 (en) 2024-04-12 2025-01-20 Information processing system, control method, and control program

Country Status (1)

Country Link
WO (1) WO2025215902A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534833A (en) * 2007-07-26 2010-11-11 スリーエム イノベイティブ プロパティズ カンパニー Method and system for automatic inspection of web materials
JP2013088247A (en) * 2011-10-17 2013-05-13 Toppan Printing Co Ltd Quality monitoring system and quality monitoring method
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534833A (en) * 2007-07-26 2010-11-11 スリーエム イノベイティブ プロパティズ カンパニー Method and system for automatic inspection of web materials
JP2013088247A (en) * 2011-10-17 2013-05-13 Toppan Printing Co Ltd Quality monitoring system and quality monitoring method
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method

Similar Documents

Publication Publication Date Title
US7027934B2 (en) Apparatus and method for automated web inspection
Kuo et al. Automated optical inspection system for surface mount device light emitting diodes
TWI829143B (en) Film inspection equipment, film inspection methods and computer program products
KR20190122550A (en) Inspection management system, inspection management apparatus and inspection management method
TWI785270B (en) Detecting defects in a logic region on a wafer
JP5794629B2 (en) Surface inspection apparatus, surface inspection method, surface inspection program, and computer-readable recording medium
WO2017168630A1 (en) Flaw inspection device and flaw inspection method
CN114372980A (en) Industrial defect detection method and system
JP2015197396A (en) Image inspection method and image inspection device
JP7293907B2 (en) Visual inspection management system, visual inspection management device, visual inspection management method and program
KR20140122938A (en) Method and apparatus of panel inspection
WO2025215902A1 (en) Information processing system, control method, and control program
WO2025215901A1 (en) Feature point extraction method, control program, and information processing system
KR102015620B1 (en) System and Method for detecting Metallic Particles
WO2025204016A1 (en) Information processing system, feature point extraction method, and control program
CN120510103B (en) A method and system for detecting surface defects in wires based on image recognition models
Chow et al. Low-cost automatic visual inspection system for media in hard disk drive mass production
WO2025121178A1 (en) Feature point extraction method, shipment standard setting method, and information processing system
WO2025204015A1 (en) Information processing system, information processing method, and information processing program
WO2025210977A1 (en) Information processing system, information processing method, and information processing program
CN118150581B (en) Method, system, device and storage medium for detecting defective products of pressing points of flexible board
TW202540949A (en) Information processing system, feature point extraction method, and control program
WO2025204014A1 (en) Feature point extraction method, control program, and information processing system
JP2025034377A (en) Film inspection device, film inspection method, and program
WO2025197240A1 (en) Information processing system, information processing method, and information processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 25786565

Country of ref document: EP

Kind code of ref document: A1