[go: up one dir, main page]

WO2025215901A1 - Feature point extraction method, control program, and information processing system - Google Patents

Feature point extraction method, control program, and information processing system

Info

Publication number
WO2025215901A1
WO2025215901A1 PCT/JP2025/001524 JP2025001524W WO2025215901A1 WO 2025215901 A1 WO2025215901 A1 WO 2025215901A1 JP 2025001524 W JP2025001524 W JP 2025001524W WO 2025215901 A1 WO2025215901 A1 WO 2025215901A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
data
inspection data
web
feature points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2025/001524
Other languages
French (fr)
Japanese (ja)
Inventor
絢子 稲垣
達希 萩原
葉月 中江
卓哉 小出
康敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of WO2025215901A1 publication Critical patent/WO2025215901A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined

Definitions

  • the present invention relates to a feature point extraction method, a control program, and an information processing system.
  • Patent Document 1 synchronizes inspection results based on the mutual distance and movement distance between the inspection devices, and is unable to achieve synchronization when the film expands or contracts. Furthermore, synchronization is also unable to be achieved when two inspection devices are wound up with film in a roll and then have offline processing performed to unwind the roll.
  • the present invention was made in consideration of the above circumstances, and aims to efficiently collect information that is useful for process improvement and setting shipping standards both when manufacturing webs and in the manufacturing process where post-processing is performed using these webs.
  • a method for extracting feature points of a web comprising: A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web; (b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process; (c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data; and (d) extracting, based on the comparison result of the step (c), third type feature points present in both the first and second test data, and/or first type feature points present in the first test data but not in the second test data, or second type feature points present in the second test data but not in the first test data, A method for extracting feature points, wherein one of the first inspection data and the second inspection data is inspection data acquired by one or more inspection methods, and the other inspection data is inspection data acquired by one or more inspection methods including an inspection method different from the inspection method of the one inspection data.
  • the first inspection data and the second inspection data are inspection data obtained by photographing a web with an inspection device;
  • the photographing method used to acquire the one of the inspection data includes at least one of a first photographing method for photographing transmitted light traveling straight through the web, a second photographing method for photographing transmitted light reflected within the web, a third photographing method for photographing reflected light specularly reflected from the web surface, and a fourth photographing method for photographing reflected light scattered from the web surface, depending on the positional relationship between the lighting and the photographing unit.
  • the method for extracting feature points described in (2) above, wherein the imaging method of the other test data includes a different imaging method from the imaging method of the one test data among the first to fourth imaging methods.
  • At least one of the first test data and the second test data is The feature point extraction method described in (1) above is inspection data that is integrated by aligning feature point information extracted from multiple primary data acquired by multiple types of inspection methods in the same inspection area on the web surface.
  • step (d) after extracting the third type feature points using the integrated inspection data, the feature point extraction method according to (5) above, further comprising a step (e) of classifying the feature points in the integrated inspection data into feature points in each of the plurality of primary data.
  • step (f) of accepting a selection of the inspection method for the one of the inspection data and (g) displaying, by selection in step (f), feature point information of the primary data classified in step (e) corresponding to the selected inspection method.
  • a method for extracting feature points of a web comprising: A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web; (b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process; (c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data; and (d) extracting third type feature points present in both the first and second inspection data based on the comparison result of the step (c), At least one of the first inspection data and the second inspection data is inspection data obtained by integrating feature point information extracted from a plurality of primary data acquired by a plurality of types of inspection methods in the same inspection area by aligning the feature point information on the web surface; The feature point extraction method further comprises a step (e) of classifying the feature points in the integrated inspection data into feature points in each of a plurality of primary data sets after extracting the third type feature points in the step (d) using the integrated inspection data.
  • the first inspection data and the second inspection data are inspection data obtained by photographing a web with an inspection device, The feature point extraction method according to (8) above, wherein the inspection device of the one of the inspection data is inspection data acquired by a plurality of imaging methods.
  • step (10) a step (f) of accepting a selection of the inspection method for the one of the inspection data; and (g) a step of displaying, by selection in step (f), feature point information of the primary data classified in step (e) corresponding to the selected inspection method.
  • a method for extracting feature points of a web comprising: an acquisition unit that acquires first inspection data in a first manufacturing process that manufactures a web or post-processes a manufactured web, and second inspection data in a second manufacturing process that performs post-processing using the web after the first manufacturing process; a comparison unit that compares the first feature information of the web in the first inspection data with the second feature information of the web in the second inspection data; an extraction unit that extracts, based on a comparison result from the comparison unit, third type feature points that are present in both the first and second test data, and/or first type feature points that are present in the first test data but not in the second test data, or second type feature points that are not present in the first test data but are present in the second test data, An information processing system, wherein one of the first test data and the second test data is test data obtained by one or more test methods, and the other test data is test data obtained by one or more test methods including a test method different from the test method of the one test data.
  • a method for extracting feature points of a web comprising: an acquisition unit that acquires first inspection data in a first manufacturing process that manufactures a web or post-processes a manufactured web, and second inspection data in a second manufacturing process that performs post-processing using the web after the first manufacturing process; a comparison unit that compares the first feature information of the web in the first inspection data with the second feature information of the web in the second inspection data; an extraction unit that extracts third type feature points that exist in both the first and second inspection data based on a comparison result from the comparison unit, At least one of the first inspection data and the second inspection data is inspection data obtained by integrating feature point information extracted from a plurality of primary data acquired by a plurality of types of inspection methods in the same inspection area by aligning the feature point information on the web surface; an information processing system, wherein the extraction unit uses the integrated inspection data to extract the third type feature points, and then classifies the feature points in the integrated inspection data into feature points in each of a plurality of primary data.
  • the method for extracting feature points of a web comprises: A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web; (b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process; (c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data; and (d) extracting, based on the comparison result of the step (c), third type feature points present in both the first and second test data, and/or first type feature points present in the first test data but not in the second test data, or second type feature points present in the second test data but not in the first test data,
  • One of the first inspection data and the second inspection data is inspection data acquired by one or more inspection methods
  • the other inspection data is inspection data acquired by one or more inspection methods including an inspection method different from the inspection method of the one inspection data.
  • FIG. 1 is a schematic diagram illustrating an application example of an information processing system according to an embodiment of the present invention.
  • 1 is a table showing characteristics of various imaging methods.
  • 10A and 10B are schematic diagrams showing the positional relationship between lighting and cameras in the first to fifth imaging methods.
  • 1 is a table showing the correspondence between the image capturing units 1 to 6 and the image capturing methods in this embodiment.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of an inspection device.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of an inspection device.
  • 10 is a table showing a list of inspection devices.
  • FIG. 1 is a block diagram showing a schematic configuration of an information processing system. 4 is an example of various data stored in a storage unit. 10 is an example of an inspection data DB stored in a storage unit. 10 is a flowchart showing a process for generating first inspection data performed in a first manufacturing process. 10 is an example of an inspection data DB stored in a storage unit. 10 is a flowchart showing a process for generating second inspection data performed in a second manufacturing process. 10 is an example of an inspection data DB stored in a storage unit. 10 is a flowchart showing a feature point extraction process executed in the information processing system. 10 is an example of an operation screen displayed on a terminal device. FIG. 10 is a schematic diagram for explaining the extraction processing of feature points.
  • 10 is a subroutine flowchart showing a comparison process 1 in step S34.
  • 10 is an example of a probability density function calculated by kernel density estimation, which shows the positions and intensities of feature points.
  • 10 is an example of a corresponding point list.
  • 10 is a table for explaining first to third type feature points.
  • 10 is an example of feature point extraction result data.
  • 14 is an example of an inspection data DB stored in a storage unit corresponding to FIG. 13.
  • 10 is a subroutine flowchart showing a display process of step S38.
  • 10 is an example of an operation screen that accepts selection of primary data.
  • 10 is a display example displayed on a preview screen.
  • 10 is a display example displayed on a preview screen.
  • the web refers to a sheet-like material, including a resin film and a metal film.
  • the web also includes a laminate.
  • the web refers to a long resin film, such as a film roll, and the film roll to be processed.
  • the processing also includes a process of applying a coating liquid and a lamination process of overlaying another film-like material to produce a laminate.
  • feature points are defects on the film, and are generated by analyzing image data.
  • Image analysis may involve using known techniques to extract, as feature points, pixels whose pixel values deviate from the average value of the surrounding pixels by a predetermined amount (the difference is greater than or equal to a predetermined amount) in image data captured from the film surface.
  • feature points may be calculated using the "image processing for generating feature points" technique described below. In many cases, dozens to thousands of feature points are generated from one or more image data captured from a single film roll 80 (total length of several kilometers). Defects include both defects that could result in product defects and minor defects that do not result in product defects.
  • Factory B is equipped with product manufacturing equipment 2000.
  • Factory B is operated or managed by, for example, a coating manufacturer (hereinafter referred to as a user company or user). Each factory B is operated by multiple user companies.
  • Factory B manufactures products using film rolls 80 shipped and transported from factory A.
  • Factory B includes multiple sub-processes, which involve unwinding film (film F8, described below) from the film roll 80 and coating, or layering or adhering it with other films.
  • the sub-processes correspond to the first and second manufacturing processes.
  • Multiple inspection devices 90b1-90b4 (hereinafter collectively referred to as inspection devices 90) are located before and after the multiple sub-processes. While four inspection devices 90b1, 90b2, 90b3, and 90b4 are shown in Figure 1, the number of inspection devices 90 is not limited to this and may be three or fewer, or five or more.
  • the process of manufacturing a film (web) is called the first manufacturing process
  • the post-processing carried out at factory B using this manufactured film is called the second manufacturing process.
  • the post-processing process includes a coating process to apply a functional layer to the surface, and a lamination process to overlay a web of another film or the like.
  • the film surface of the film roll 80 is also inspected by inspection device 90.
  • the first post-processing step may be referred to as the first manufacturing process
  • the subsequent post-processing step may be referred to as the second manufacturing process.
  • the film roll 80 manufactured in Factory A may be unwound and post-processed in a later process.
  • the sub-processes performed in Factory B include a lamination process (also called a bonding process) in which other films are layered and bonded. The lamination process forms a laminate 80B (see the enlarged cross-sectional view of the bubble in Figure 1).
  • the first imaging method captures transmitted light traveling straight through the transparent film F8.
  • the camera 92 and the lighting device 91 are positioned opposite each other so as to straddle the subject (film F8).
  • the illumination direction of the lighting device 91 and the optical axis of the camera 92 are aligned in a straight line.
  • the defect will obstruct the irradiated light, changing the amount of light received.
  • the object to be inspected is a transparent film.
  • the first imaging method will also be referred to as "transmission 1.”
  • the third imaging method captures light reflected specularly from the surface of the transparent film F8 or the surface of the opaque laminate 80B.
  • the camera 92 and the lighting 91 are placed on the same side of the subject.
  • the angle of incidence of the lighting direction of the lighting 91 relative to the surface of the subject is the same as the angle of incidence of the optical axis of the camera 92.
  • the third imaging method detects the phase difference of the reach due to the apparent shape of the subject.
  • the objects to be inspected are the transparent film and the opaque film (laminated body 80B).
  • the third imaging method will also be referred to as "Reflection 1."
  • the fifth imaging method uses polarized light.
  • the fifth imaging method will also be referred to as "polarized light.”
  • the arrangement of the illumination 91 and the camera 92 can be any of the first to fourth methods.
  • imaging using polarized light the polarization state is inspected.
  • a polarized camera that captures the linearly polarized state may be used, or illumination that irradiates linearly polarized light (referred to as a polarized light source) may be used.
  • Figure 3(E) shows a photography method using polarized light used for the raw film of a polarizer or the protective film of a polarizer.
  • the raw film is a film that is given polarization properties in a later process
  • the protective film is a film that is used by layering it on top of the polarizer (polarizing film) in a later process.
  • unpolarized light is output from the light source 91 (similar to Figure 3(F)).
  • a direct polarizer 99a is placed between the light source 91 and the film F8 (raw film) to be inspected, and a linear polarizer 99b is placed between the film F8 and the camera 92.
  • the linear polarizers 99a and 99b are arranged in a crossed Nicol configuration. That is, when viewed from the Z direction (the direction perpendicular to the film surface), the absorption axes of the two linear polarizers 99a and 99b intersect at a predetermined angle that is close to perpendicular to each other. For example, the absorption axes intersect at approximately 90° (89 to 91°) or so. With this configuration, if film F8 is normal, linearly polarized light that is irradiated through linear polarizer 99a and passes through film F8 is unlikely to pass through linear polarizer 99b. On the other hand, if film F8 has a defect (feature point), light that passes through the defective part will pass through linear polarizer 99b and be observed as a bright spot.
  • Figure 3 (F) shows a photography method using polarized light used in a polarizer (also called polarizing film) that has been given polarization properties.
  • linear polarizer 99b is positioned so that the absorption axis of film F8 and the absorption axis of linear polarizer 99b intersect at approximately right angles.
  • Unpolarized light is output from illumination 91 to film F8 (polarizer). Light that passes through normal areas of film F8 does not easily pass through linear polarizer 99b, but light that passes through defective areas does pass through linear polarizer 99b and is observed as a bright spot.
  • imaging method 1b uses a knife edge to block a portion of the illumination light.
  • transmitted light traveling straight and reflected or scattered within the transparent film F8 is captured.
  • the camera 92 and the illumination 91 are positioned in the same manner as in the first imaging method, and the illumination direction of the illumination 91 and the optical axis of the camera 92 are aligned.
  • a knife-edge light-blocking member 915 is positioned near the subject on the illumination 91 side.
  • the light-blocking member 915 is a flat plate positioned so that its tip is aligned with the optical axis, blocking one side of the illumination light from the optical axis. In the example shown in FIG. 3(G), the left half of the light on the paper surface relative to the optical axis is blocked. Changes in the refractive index of the subject, such as its thickness, change the angle at which the light reaches the subject.
  • the subject is a transparent film.
  • the imaging method 1b can be used as an alternative to the first imaging method.
  • FIG. 4 is a table showing the correspondence between imaging units 1 to 6 and imaging methods in this embodiment. Imaging units 1 to 6 correspond to imaging methods 1 to 5, respectively.
  • Figures 5A and 5B are schematic diagrams showing an example configuration of the inspection device 90.
  • Figures 5A and 5B show an example of the fourth imaging method (Reflection 2) as a representative example of the first to fifth imaging methods. Note that while the example in Figure 5A shows an example in which the inspection device 90 is composed of one imaging unit 95, as will be described later, the inspection device 90 may include multiple imaging units 95 that apply multiple imaging methods.
  • Figure 5A is a schematic diagram showing the configuration of a reflective inspection device 90 as viewed from the width direction (X direction).
  • Figure 5B is a schematic diagram showing the configuration of the inspection device 90 as viewed from the transport direction (Y direction).
  • the inspection device 90 includes a light 91, a camera 92 as an optical sensor, an image analysis unit 93 as a data processing device, and a memory unit 94.
  • the inspection device 90 optically inspects feature points (hereinafter simply referred to as defects) that occur on the film F8 during transport.
  • the camera 92 optically inspects the film F8 in the film roll 80 and generates image data as inspection data.
  • the image data includes not only still images but also video data consisting of a time-series of consecutive still images.
  • feature points may be extracted directly from signal data without being converted into image data.
  • the number of cameras 92, the angle of view, and the distance to the film surface are set so that the entire width of the film F8 is the inspection area (capture range).
  • the number of cameras is determined so that multiple cameras can be arranged in the width direction when a single camera cannot adequately capture the entire width of the film.
  • FIG. 5B illustrates an example in which two cameras 92 are arranged in the width direction (X direction).
  • the image analysis unit 93 may combine multiple images obtained by continuous shooting with one camera 92 to generate a single image data piece that includes the entire film surface of the film roll 80. Alternatively, the image analysis unit 93 may store multiple image data pieces in the storage unit 94 in association with the shooting times.
  • the image analysis unit 93 can determine the longitudinal position of the film F8 by referencing the stored transport speed (winding speed or unwinding speed) and the shooting times associated with the image data. In the following description, it is assumed that multiple image data pieces obtained by continuous shooting are stored for one film roll 80 in association with the shooting times.
  • the image analysis unit 93 generates defect information by analyzing the image data.
  • the inspection device 90 inspects for defects that occur during the manufacturing process, such as when the long film F8 is being wound up.
  • Camera 92 is an optical sensor that optically reads the inspection area of film F8.
  • Camera 92 is equipped with imaging elements such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), lenses, etc.
  • Camera 92 is an area sensor that generates two-dimensional image data from the output signals of each imaging element.
  • Camera 92 is illuminated by illumination 91 and detects diffused light from the light reflected in the inspection area of film F8.
  • a color camera or a black and white camera may be used as camera 92.
  • the one or more cameras 92 have a shooting range that spans the entire width of the film F8, and in one shooting session, the entire width of the film F8 is simultaneously read.
  • the cameras 92 may be those that detect light in the visible light range or those that detect light in the infrared range.
  • the fifth shooting method uses a polarized camera (a normal camera) with a polarizing filter.
  • the contrast between the signal values corresponding to the illuminated areas on film F8 illuminated by light from illumination 91 and the signal values corresponding to the non-illuminated areas not illuminated by light from illumination 91 in the output signal from camera 92 be equal to or greater than a predetermined value. In other words, it is desirable that only the areas on film F8 illuminated by light from illumination 91 (illuminated areas) appear bright.
  • Contrast is expressed as the difference or ratio between two values to be processed (here, the signal value corresponding to the illuminated area and the signal value corresponding to the non-illuminated area), and the greater the difference between the two values, the greater the contrast.
  • strong means that when the illuminance at an irradiation distance of 50 mm is E50, the illuminance E50 is 50,000 lx or more.
  • highly directional means that when the illuminance at an irradiation distance of 50 mm is E50 and the illuminance at an irradiation distance of 100 mm is E100, the relationship (E50 - E100)/E50 ⁇ 0.5 is satisfied.
  • the image analysis unit 93 is composed of a CPU, RAM, etc., and reads various processing programs stored in the memory unit 94, loads them into RAM, and performs various processes in cooperation with these programs.
  • the storage unit 94 is composed of an HDD, SSD (Solid State Drive), etc., and stores various processing programs, data required to execute those programs, etc.
  • the storage unit 94 also stores captured image data (inspection data) linked to the time of capture.
  • the storage unit 94 also stores the winding speed (e.g., 100 m/min) of the film roll manufacturing apparatus 1000, or the unwinding conditions (e.g., 30 m/min) of film F8 in the product manufacturing apparatus 2000. These winding speeds and unwinding conditions may be included in the inspection list of the inspection DB (see table T13 in Figure 9).
  • the image analysis unit 93 performs data processing on the output signal of the camera 92 (optical sensor) to detect characteristic points (position and intensity) of defects, etc. on the film F8.
  • the data processing includes image processing of the image data obtained from the output signal of the camera 92, defect determination processing to determine defects based on the data after image processing, and quantitative evaluation processing to quantitatively evaluate defects based on the data after image processing.
  • FIG. 6 is a table showing a list of inspection devices.
  • inspection devices a to f have one or more inspection instruments.
  • inspection device b has imaging unit 2 and imaging unit 3
  • inspection device c has imaging unit 1 and imaging unit 4.
  • Imaging units 1 to 6 are as shown in FIG. 4 above.
  • imaging unit 1 takes images using the first imaging method as shown in FIG. 3(A).
  • Inspection devices a to f correspond to any of the inspection devices 90 (90a1, 90a2, 90b1, etc.) shown in FIG. 1.
  • the combination of imaging units included in the inspection device (inspection device 90) shown in Table T01 is an example, and other combinations of imaging units may be included.
  • the inspection data (primary data) obtained from the multiple imaging units is integrated into a single piece of inspection data that takes into account positional information between the imaging units.
  • the inspection data before integration is referred to as primary data
  • the inspection data obtained by integrating multiple primary data is also referred to as integrated inspection data.
  • the integrated inspection data corresponds to the first inspection data or the second inspection data.
  • This positional information between the multiple imaging units is recorded as "inter-inspector positional information" as shown in Table T01.
  • the multiple imaging units are set to image the same inspection area of a subject, such as film F8, in the width direction (X direction), but there may be a slight misalignment in the length direction (Y direction). This slight misalignment in the Y direction is adjusted using this "inter-inspector positional information.”
  • Table T02 of Inspection Device List 2 shows the combinations of inspection devices corresponding to the first inspection data and the second inspection data.
  • the selection of the inspection device for each of the first inspection data and the second inspection data can be made by the user, as described below (button b1 in Figure 15).
  • one of the first test data and the second test data is test data acquired using one or more test methods.
  • the other test data is test data acquired using one or more test methods, including a test method different from the test method of the one test data.
  • one test data is test data acquired using multiple test methods.
  • the first test data uses test data acquired from test device a
  • the second test data uses test data acquired from test device c.
  • the first test data is test data acquired using one test method (first test method)
  • the other second test data is test data acquired using two test methods (first and fourth test methods). The same applies to Examples 2 and 3.
  • Fig. 7 is a block diagram showing a schematic configuration of the information processing system 50.
  • the information processing system 50 is, for example, a server. As shown in Fig. 7, the information processing system 50 includes a control unit 51, a storage unit 52, and a communication unit 53.
  • the control unit 51 has a CPU and memories such as RAM, ROM, etc.
  • the CPU is a control circuit configured with a multi-core processor or the like that controls each of the above-mentioned units and executes various arithmetic processing in accordance with a program, and each function of the information processing system 50 is realized by the CPU executing the corresponding program.
  • the control unit 51 functions as an acquisition unit 511 and a reception unit 512 in cooperation with the communication unit 53.
  • the control unit 51 also functions as a comparison unit 513, an analysis unit 514, an extraction unit 515, and a display output unit 516.
  • the acquisition unit 511 acquires the first and second inspection data obtained by inspection in the first and second manufacturing processes.
  • the reception unit 512 accepts the user's selection of an inspection method or inspection device (photographing unit).
  • the comparison unit 513 extracts feature points from each of the first and second inspection data.
  • the comparison unit 513 searches for corresponding feature points between the first and second inspection data through a comparison process.
  • the comparison unit 513 In the comparison process, the comparison unit 513 generates feature point descriptors (descriptor 2 described below) for the two inspection data (image data), and uses these feature point descriptors to perform a feature point matching process between the inspection data and output the comparison results (a corresponding point list shown in Figure 19 described below).
  • the analysis unit 514 uses the corresponding point list to calculate an index indicating the relationship (hereinafter referred to as relationship information).
  • the relationship information includes a scatter plot and statistical information such as the mean, regression line, variance, standard deviation, and correlation coefficient.
  • the extraction unit 515 uses the comparison results to extract (classify) first to third type feature points.
  • the display output unit 516 transmits the feature point extraction results and display data of feature points for each primary data to the terminal device 70, or displays them on a display unit (not shown), in response to a request from the terminal device 70, etc.
  • the memory unit 52 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, a solid-state drive, a flash memory, a ROM, etc. are used as the storage.
  • the memory unit 52 stores a user list, a lot list, an inspection data DB, an authorized device list, etc.
  • the user list and lot list are managed and registered by an administrator through access to the terminal device 70. For example, this administrator is a person in charge of the relevant department of the manufacturer that operates Factory A.
  • the inspection device list is the one shown in FIG. 6 above.
  • Figure 10 is a flowchart showing the process of generating the first inspection data performed in the first manufacturing step.
  • the first test data is obtained by test device a
  • the second test data is obtained by test device c.
  • the first test data is test data obtained by the first test method (first imaging method).
  • the second test data is test data obtained by the two first and fourth test methods (first and second imaging methods).
  • Step S13 If the inspection device 90 has multiple imaging units, the process of step S15 is performed, and if the inspection device 90 has one imaging unit, the process of step S14 is performed. In this example, the inspection device a has one imaging unit 1 (transmission 1), so the process of step S14 is performed.
  • the image analysis unit 93 acquires two-dimensional image data generated by the camera 92 and stored in the storage unit 94 .
  • the image analysis unit 93 performs data processing on the image data (examination data) acquired from the camera 92.
  • the image analysis unit 93 divides the image data into multiple regions. For example, the image analysis unit 93 divides the image data into n regions (e.g., several to several tens) in the width direction (hereinafter referred to as regions a1 to an).
  • the image analysis unit 93 acquires image data for one area a1 and performs mathematical processing on the image data for area a1. Appropriate mathematical processing is provided depending on the type of defect to be detected (gauge band, vertical wrinkles, diagonal wrinkles, etc.).
  • Mathematical processing includes preprocessing, enhancement processing, signal processing, image feature extraction, etc.
  • Pretreatment includes the following: - Image cropping, - Low-pass filter, high-pass filter, Gaussian filter, median filter, bilateral filter, - morphological transformation, color transformation (L*a*b*, sRGB, HSV, HSL), contrast adjustment, noise removal, restoration of blurred and shaken images, mask processing, Hough transform, projection transformation, etc.
  • enhancement processing examples include the Sobel filter, Scharr filter, Laplacian filter, Gabor filter, and Canny algorithm.
  • the signal processing includes the following: - Basic statistical quantities (maximum, minimum, average, median, standard deviation, variance, quartile), square root of the sum of squares, difference, sum, product, ratio, distance matrix calculation, differential and integral calculus, threshold processing (binarization, adaptive binarization, etc.), - Fourier transform, wavelet transform, peak detection (peak value, number of peaks, half-width, etc.), etc.
  • image feature extraction examples include template matching and SIFT features.
  • Threshold processing is a process that determines whether or not the defect is the target of detection based on a predetermined threshold, and also determines the rank (intensity) of the defect.
  • threshold processing determining the presence and type of defect corresponds to “defect determination processing.” Also, in threshold processing, classifying defects into multiple ranks according to the threshold corresponds to “quantitative evaluation processing.”
  • defects are classified into multiple ranks for a parameter (feature) that takes a value between 1 and 100.
  • ranks are classified according to the size (diameter or area) of the defect. Ranks classified by size may also be further subdivided according to the parameter value.
  • the image analysis unit 93 performs similar processing on areas other than area a1.
  • the image analysis unit 93 After processing each of the regions a1-an, the image analysis unit 93 integrates the results for each of the regions a1-an, and data processing ends. Specifically, the image analysis unit 93 generates data that associates the rank of the detected defects with their location (x and y coordinates) for each region (each position in the width direction of the film F8).
  • the image analysis unit 93 stores the results of the data processing in the storage unit 94.
  • the image analysis unit 93 performs this type of data processing on each of the multiple image data obtained in the inspection of one film roll 80, and obtains the processing results. By aggregating these processing results, inspection data such as that shown in Figure 11 is generated.
  • Figure 11 shows an example of the contents of test data (test ID: i0101) in the test list.
  • the test data contains feature point IDs that are automatically assigned consecutive numbers to each feature point, as well as feature point descriptors 1 and 2 (hereinafter simply referred to as descriptor 1, etc.) for each feature point ID.
  • each feature point in the test data is given information indicating which imaging unit used to obtain it (the "imaging unit" column).
  • imaging unit the imaging unit
  • Descriptor 1 is information about a feature point alone, recording its XY coordinate position and intensity. Intensity is the rank of the feature point, which will be described later. Intensity information may also include information about the feature point's size (diameter, area) and brightness.
  • the XY coordinate position is based on the origin of the film surface (for example, the left edge of the leading edge).
  • X is the coordinate in the width direction of the film, and can range, for example, from 0 to 3000 mm depending on the film size (see Table T12).
  • Y is the coordinate in the length direction of the film, and can range, for example, from 0 to 10,000 m depending on the film size.
  • Descriptor 1 is generated by the image analysis unit 93 of the inspection device 90.
  • Descriptor 2 is peripheral information, and is vector or array information that represents surrounding information such as relationships with other feature points.
  • SIFT features may be used as descriptors, or the probability density function of feature points calculated by kernel density estimation may be used as descriptors.
  • Descriptor 2 is mainly generated by the comparison unit 513.
  • Steps S15 to S16 If there are multiple imaging units, the processes of steps S15 and S16 are performed.
  • the processes here are the same as steps S25 and S26 in Fig. 12 described later, and the details of the processes will be explained together in the description of steps S25 and S26 described later.
  • Terminal device 70 in the first manufacturing process sends inspection data including information on multiple feature points obtained in the processing up to step S14 or step S16 to information processing system 50.
  • Acquisition unit 511 of information processing system 50 stores the acquired inspection data as first inspection data in the inspection data DB of storage unit 52.
  • the inspection data shown in FIG. 11 is an example of such first inspection data.
  • FIG. 12 is a flowchart showing the process of generating second inspection data performed in the second manufacturing process.
  • Step S21 In the second manufacturing process, for example, after the first manufacturing process, the product manufacturing apparatus 2000 performs post-processing using the film roll 80 to manufacture a product using the film F8.
  • Step S22 The inspection device 90 photographs the surface of the film F8 before post-processing, or the film F8 during or after post-processing, or the surface of the laminate 80B, and stores the image data.
  • Step S23 If the inspection device 90 has multiple imaging units, the process of step S25 is performed, and if the inspection device 90 has one imaging unit, the process of step S24 is performed.
  • the inspection device c has two imaging units, imaging unit 1 (transmission 1) and imaging unit 4 (reflection 2), so the process of step S15 is performed.
  • Step S24 If the inspection device is configured with one imaging unit (imaging unit 25), step S24 is executed.
  • the processing here is the same as step S14, and therefore a description thereof will be omitted.
  • Step S25 The image analysis unit 93 generates a plurality of feature points from the inspection data (image data) obtained from each imaging unit through processing similar to that of step S14 or S24, and generates primary inspection data.
  • two primary data are generated corresponding to imaging unit 1 and imaging unit 4 of 2.
  • the configuration of each primary data is similar to the inspection data shown in Fig. 11, and is composed of a feature point ID and a feature point descriptor 1 (XY coordinates, size).
  • Step S26 The image analysis unit 93 generates integrated inspection data as one piece of inspection data from the plurality of primary data based on the position information and the inter-inspector position information (see Table T01).
  • the processing in steps S25 and S26 is the same as that in steps S15 and S16.
  • Terminal device 70 in the second manufacturing process sends inspection data including the plurality of feature point information obtained in the processing up to step S24 or step S26 to information processing system 50.
  • Acquisition unit 511 of information processing system 50 stores the acquired inspection data in the inspection data DB of storage unit 52 as second inspection data.
  • Figure 13 shows an example of the contents of the second test data (test ID: i0102) generated and saved in this way.
  • the "Image capture unit" column of the test data describes which image capture unit (image capture method) was used to capture the image, either Image capture unit 1 or Image capture unit 4.
  • Feature point extraction process The feature point extraction process executed by the information processing system 50 will be described below with reference to Figs. 14 to 24C.
  • Fig. 14 is a flowchart showing the feature point extraction process.
  • Fig. 15 is an example of an operation screen 701 displayed on the terminal device 70.
  • Fig. 16 is a schematic diagram for explaining the feature point extraction process.
  • the information processing system 50 starts the processing from step S31 onward in response to a start instruction from the user via the operation screen on the terminal device 70, or when the second inspection data is registered in the inspection data DB of the storage unit 52 and a pair of first and second inspection data is obtained.
  • the user selects a lot and then uses button b1 to select the first and second inspection data from the multiple inspection data linked to that lot.
  • the second inspection data is inspection data obtained in a process downstream of the first inspection data.
  • the selection indicates that the first inspection data was obtained by inspection device a and the second inspection data was obtained by inspection device c.
  • the user operates the analysis start button b0, which causes the control unit 51 to start the feature point extraction process.
  • Step S31 The acquiring unit 511 acquires the same lot of inspection data, that is, a pair of first and second inspection data, from the inspection data DB.
  • the comparison unit 513 performs preprocessing on the first inspection data under a first condition, and performs preprocessing on the second inspection data under a second condition.
  • the comparison unit 513 performs preprocessing to reverse the Y coordinate (up and down) of the second inspection data to match any differences between winding (first manufacturing process) and unwinding (second manufacturing process) of the second inspection data. Furthermore, in the second manufacturing process, the comparison unit 513 performs preprocessing to reverse the X coordinate (left and right) of the second inspection data (or first inspection data) depending on information on whether the shooting area of the camera 92 is set to the front or back of the film F8.
  • the comparison unit 513 performs at least one of the following noise removal processes on the first and second test data as the noise removal processes included in the first and second conditions.
  • Step S34 The comparison unit 513 searches for feature points in one test data that are identical to or correspond to feature points in the other test data through comparison processing, and matches the feature points with each other.
  • Fig. 17 is a subroutine flowchart showing the processing of step S34.
  • the comparison unit 513 generates a descriptor 2 for each feature point of the first and second test data.
  • the comparison unit 513 uses a SIFT feature amount as the descriptor, or a probability density function of the feature points calculated by kernel density estimation as the descriptor.
  • the comparison unit 513 compares the feature points of the first and second test data to search for the most similar feature points.
  • the comparison unit 513 evaluates the similarity between the feature points using Descriptor 1 and Descriptor 2, and regards the most similar feature points as corresponding feature points.
  • the comparison unit 513 may use descriptor 2 in addition to descriptor 1 to extract feature points that are most similar based on the distance between vectors in high-dimensional vector space.
  • the comparison unit 513 may use a probability density function calculated by kernel density estimation as described above as descriptor 2.
  • Figure 18 is an example of a probability density function calculated by kernel density estimation that indicates the position and intensity (density) of feature points.
  • the vertical and horizontal axes are XY coordinates, and it is shown that the higher the concentration, the higher the density.
  • the comparison unit 513 determines that one feature point corresponds to only one other feature point. For example, for a feature point in the second test data, the feature point in the first test data whose descriptor vectors are closest to the feature point in the second test data is registered as the corresponding point in the corresponding point list.
  • Figure 19 is an example of a corresponding point list stored in the memory unit 52.
  • the corresponding point list associates each feature point in the second inspection data with the most similar feature point in the first inspection data.
  • the corresponding point list also describes the X and Y coordinates of the feature points in the second inspection data, the Euclidean distance between the associated feature points, the difference dx in the X coordinate, and the difference dy in the Y coordinate.
  • Step S404 The analysis unit 514 generates correlation information between feature points that exist in both the first and second test data. That is, the analysis unit 514 generates a scatter plot with X or Y on the horizontal axis and dx or dy on the vertical axis and statistical information as data indicating correlation information for feature points that have corresponding feature points in the corresponding point list.
  • the statistical information includes a regression line and a correlation coefficient.
  • Step S35 The extraction unit 515 classifies feature points from the correspondence list, the first test data, and the second test data into first to third type feature points.
  • the first to third type feature points will be described later.
  • the extraction unit 515 classifies, in the correspondence list, feature points of the second test data that are not associated with feature points of the first test data as second type feature points.
  • the extraction unit 515 classifies, among feature points of the first test data that are not included in the correspondence list (feature points that are not associated with feature points of the second test data), as first type feature points.
  • the extraction unit 515 classifies, among feature points in the integrated test data, feature points classified as third type feature points into feature points of each of the multiple primary data.
  • FIG. 20 is a table for explaining the first to third type feature points.
  • the first type feature points are feature points that are present in the first inspection data but not present in the second inspection data.
  • the first type feature points are feature points that disappear in the second manufacturing process (e.g., the coating process or the lamination process). These first type feature points are feature points that do not need to be managed in the first manufacturing process. In this case, the manufacturing conditions that cause the first type feature points to occur may be subject to relaxed standards in the first manufacturing process.
  • the second type feature points are feature points that are not present in the first inspection data but are present in the second inspection data.
  • the second type feature points are feature points that newly appear in the second manufacturing process. Because these second type feature points are feature points that originate in the second manufacturing process, they can be used to improve the second manufacturing process.
  • the third type feature points are feature points that exist in both the first inspection data and the second inspection data. These third type feature points are feature points that originate from the first manufacturing process and require management. Because these third type feature points originate from the first manufacturing process, they can be used to improve the first manufacturing process.
  • Step S36 The control unit 51 outputs the feature point extraction information extracted in the processes up to step S35.
  • the feature point extraction information is output by the control unit 51 registering it in the inspection data DB, or by the display output unit 516 transmitting it to the terminal device 70 and displaying it on the display unit thereof.
  • Figure 21A is an example of extraction result data (hereinafter simply referred to as extracted data).
  • the extracted data records the inspection IDs of the original first and second inspection data, as well as the extraction results for each feature point.
  • the extraction results (types 1 to 3) are classified as shown in Figure 20.
  • Integrated feature point IDs are automatically assigned consecutive numbers, and integrated feature points are generated corresponding to feature points that are present in either or both of the first and second inspection data.
  • the number of integrated feature point IDs is greater than or equal to the number of first inspection and second inspection feature point IDs.
  • FIG. 21B is an example of an inspection DB corresponding to FIG. 13. Although some of the description of feature point descriptors 1 and 2 has been omitted in FIG. 21B, it is the same as FIG. 13.
  • the rightmost column (“Extraction Results") describes the extraction results of second-type or third-type feature points, depending on the processing in step S35. Note that for the first inspection data as well, if multiple primary data sets are obtained using multiple imaging units, an "Extraction Results" column is added, and the extraction results of first-type or third-type feature points are described therein.
  • first and second inspection data may be generated for one lot ID by multiple inspection devices.
  • the film roll 80 in its original wound state may be inspected (photographed), and multiple second inspection data may be generated by inspections in several downstream processes.
  • the information processing system 50 may generate multiple feature point extraction result data for one piece of first inspection data in a one-to-many relationship with multiple pieces of second inspection data.
  • the user may also be able to select which second inspection data to associate with (for example, button b1 in Figure 15 above).
  • Steps S37 and S38 The control unit 51 determines whether at least one of the first and second test data is integrated test data.
  • the second test data is obtained by integrating two primary data generated by the test device c (see FIG. 6) using test data from each of the imaging units using two test methods (step S26 in FIG. 12). In such a case, the control unit 51 proceeds to step S38 and displays information about the feature points.
  • FIG. 22 is a subroutine flowchart showing the processing of step S38.
  • the reception unit 512 receives a selection of primary data or integrated data from the user for display.
  • FIG. 23 shows an operation screen 702 for receiving a selection, which is displayed on the terminal device 70.
  • the operation screen 702 shown in FIG. 23 is displayed following the operation screen 701.
  • the user can select the test data to be displayed on the preview screen by pressing button b2 on the operation screen 702.
  • the example of the operation screen 702 shows a state in which the second test data has been selected. The type of feature point and its display content can be selected.
  • Button b3 allows you to select which of the two imaging units to use for data. If both imaging units are selected, the data will be substantially the same as the integrated data. Additionally, button b4 allows you to select the type of feature points to display and the type of graph to preview. For example, in the example shown on operation screen 702, imaging unit 4 and third type feature points are selected in the second test data. In response to this selection, data for feature point IDs where the imaging unit is "imaging unit 4" and the extraction result is "third type" is extracted from the second test data shown in FIG. 21B, and the extracted data is displayed in the preview display area b10 in the type of graph selected with button b2.
  • 24A is an example of a scatter plot previewed by the settings on the operation screen 702.
  • both image capture unit 1 and image capture unit 4 are selected with button b2
  • both sets of data are plotted on the scatter plot in a manner that allows for differentiation, such as by color coding.
  • the horizontal axis represents the X coordinate of each feature point on the web
  • the vertical axis represents the Y coordinate.
  • the legend Area 0.1 to 0.5 indicates the approximate size (area) of the feature point.
  • an area of 0.1 is plotted in the graph area as a circle corresponding to the size of the small circle shown in the legend.
  • FIG. 24A (similar to FIG.
  • At least one of the first and second inspection data is inspection data that is integrated by aligning on the web surface feature point information extracted from multiple primary data sets acquired in the same inspection area using multiple types of inspection methods. This makes it possible to obtain more appropriate inspection data using one or more appropriate inspection methods according to the state of the web in each process.
  • the configuration of the information processing system 50 described above is the main configuration used to explain the features of the above embodiment, but is not limited to the above configuration and can be modified in various ways within the scope of the claims. Furthermore, configurations that are commonly found in information processing devices/systems are not excluded.
  • the means and methods for performing various processes in the information processing system 50 according to the above-described embodiment can be realized by either a dedicated hardware circuit or a programmed computer.
  • the above program may be provided by a computer-readable recording medium such as a USB memory or a DVD (Digital Versatile Disc)-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is typically transferred to and stored in a storage unit such as a hard disk.
  • the above program may be provided as standalone application software, or may be incorporated into the software of a device as one of its functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

This feature point extraction method includes a step (c) of comparing first feature point information relating to a web in first inspection data and second feature point information relating to the web in second inspection data, and a step (d) of extracting, on the basis of the result of the comparison in step (c), third-type feature points that are present in both the first and second inspection data and/or first-type feature points that are present in the first inspection data but are not present in the second inspection data, or second-type feature points that are not present in the first inspection data but are present in the second inspection data, wherein one of the first inspection data and the second inspection data is inspection data acquired by one or more inspection methods, and the other inspection data is inspection data acquired by one or more inspection methods including an inspection method different from the inspection method of the one inspection data.

Description

特徴点の抽出方法、制御プログラム、および情報処理システムFeature point extraction method, control program, and information processing system

 本発明は、特徴点の抽出方法、制御プログラム、および情報処理システムに関する。 The present invention relates to a feature point extraction method, a control program, and an information processing system.

 液晶表示装置は、大画面テレビや大型モニターに使用されるようになってきており、これにともない液晶表示装置の表示面に用いられるフィルムも広幅化が求められている。例えば、2000mm幅以上の幅広のフィルムが要望されている。また、予め基材ロス(フィルムロス)を見込んだり、輸送コスト削減を図ったりするために、巻き長も1000m以上、更には3000m以上の長尺のフィルムロールの製造が求められる。 Liquid crystal display devices are increasingly being used in large-screen televisions and large monitors, and as a result, there is a demand for wider films to be used on the display surfaces of these devices. For example, there is a demand for wider films of 2000 mm or more. Furthermore, in order to anticipate substrate loss (film loss) and reduce transportation costs, there is a demand for the production of long film rolls with winding lengths of 1000 m or more, and even 3000 m or more.

 フィルム等のウェブを基材とした製品を製造する後加工工程では、欠陥等の品質トラブルが発生したときに、前工程、すなわちそのウェブの製造時に発生し、ウェブ上に元々存在した欠陥なのか、後加工工程で発生したものかの切り分けが必要である。明確に後加工工程で発生したものであるとの切り分けができない場合には、前工程への改善が求められる場合がある。改善要望に対応しようとすると、前工程の出荷規格が必要以上に厳しくなる、結果オーバースペックになる。また、後工程でどのように影響するのかが明確にわからないが、品質トラブルを未然に防ぐために、ウェブ製造時の出荷規格を見込みで過度に厳しくするという対応も行われる場合もある。このような場合もオーバースペックになる。オーバースペックは、歩留まり悪化や、コスト増になり、エコロジー的に好ましくなく、また前工程を行う事業者と後工程を行う事業者の双方にとって好ましくない。 When a defect or other quality issue occurs in a post-processing step that produces a product based on a web such as film, it is necessary to determine whether the defect occurred in the upstream process, i.e., during the production of the web and was originally present on the web, or whether it arose in the downstream process. If it is not possible to clearly determine that the defect occurred in the downstream process, improvements may be required in the upstream process. In attempting to respond to requests for improvement, the shipping standards for the upstream process may become stricter than necessary, resulting in over-specification. Also, in order to prevent quality issues before they occur, it is sometimes necessary to set overly strict shipping standards for web production based on estimates, even though it is not clear how this will affect the downstream process. Such cases also constitute over-specification. Over-specification leads to reduced yields, increased costs, is undesirable from an ecological perspective, and is undesirable for both the upstream and downstream process companies.

 ウェブ上に元々存在した欠陥なのか、後加工工程で発生したものかの切り分けが必要であるが、その際には、前工程でのウェブ上の座標系と後工程の座標系を対応づける必要がある。 It is necessary to determine whether the defect was originally present on the web or whether it occurred during a post-processing step, and in doing so, it is necessary to match the coordinate system on the web from the previous process with the coordinate system from the subsequent process.

 下記の特許文献1は光学フィルムの検査システムにおいて、第1、第2の検査装置で検査する際に両者の検査結果の同期を取る技術が開示されている。この検査システムでは、第1検査装置と移送方向の後段に配置した第2検査装置の距離および、フィルムの移動量を示すエンコーダ信号を利用することで、両検査結果の同期を取っている。 Patent Document 1 below discloses a technology for synchronizing the inspection results of a first and second inspection device in an optical film inspection system. In this inspection system, the inspection results of both devices are synchronized by using an encoder signal that indicates the distance between the first inspection device and the second inspection device, which is placed downstream in the transport direction, and the amount of film movement.

特開2016-161576号公報JP 2016-161576 A

 特許文献1の技術は、検査装置間の相互距離と移動距離により、検査結果の同期を取るものであり、フィルムが伸縮するような場合に同期を取ることはできない。また、2つの検査装置間で、ロール状にフィルムを巻き取り、そのロールを繰り出すオフラインの処理が入るような場合にも同期を取ることはできない。 The technology in Patent Document 1 synchronizes inspection results based on the mutual distance and movement distance between the inspection devices, and is unable to achieve synchronization when the film expands or contracts. Furthermore, synchronization is also unable to be achieved when two inspection devices are wound up with film in a roll and then have offline processing performed to unwind the roll.

 本発明は、上記事情に鑑みてなされたものであり、ウェブを製造する際、およびこれを用いて後加工を行う製造工程の双方において工程改善や出荷規格設定に役立てる情報を、効率的に収集することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to efficiently collect information that is useful for process improvement and setting shipping standards both when manufacturing webs and in the manufacturing process where post-processing is performed using these webs.

 本発明の上記目的は、下記の手段によって達成される。 The above-mentioned object of the present invention is achieved by the following means.

 (1)ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データを取得するステップ(a)と、
 前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得するステップ(b)と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比するステップ(c)と、
 前記ステップ(c)の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点、および/または、前記第1検査データに存在し前記第2検査データに存在しない第1種特徴点もしくは前記第1検査データに存在せず前記第2検査データに存在する第2種特徴点を抽出するステップ(d)、とを有し、
 前記第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データであり、他方の検査データは、前記一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである、特徴点の抽出方法。
(1) A method for extracting feature points of a web, comprising:
A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web;
(b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process;
(c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data;
and (d) extracting, based on the comparison result of the step (c), third type feature points present in both the first and second test data, and/or first type feature points present in the first test data but not in the second test data, or second type feature points present in the second test data but not in the first test data,
A method for extracting feature points, wherein one of the first inspection data and the second inspection data is inspection data acquired by one or more inspection methods, and the other inspection data is inspection data acquired by one or more inspection methods including an inspection method different from the inspection method of the one inspection data.

 (2)前記第1検査データ、および前記第2検査データは、ウェブを検査装置で撮影することにより得られた検査データであり、
 前記他方の検査データの検査装置での撮影方式は、前記一方の検査データの検査装置での撮影方式とは異なる撮影方式を含む1つ以上の撮影方式により取得された検査データである、上記(1)に記載の特徴点の抽出方法。
(2) the first inspection data and the second inspection data are inspection data obtained by photographing a web with an inspection device;
The method for extracting feature points described in (1) above, wherein the imaging method used in the inspection device for the other inspection data is inspection data acquired using one or more imaging methods, including an imaging method different from the imaging method used in the inspection device for the one inspection data.

 (3)前記一方の検査データの取得に用いられた撮影方式には、照明と撮影部との位置関係により、ウェブ内を直進する透過光を撮影する第1の撮影方式、ウェブ内で反射した透過光を撮影する第2の撮影方式、ウェブ表面で正反射した反射光を撮影する第3の撮影方式、および、ウェブ表面で散乱した反射光を撮影する第4の撮影方式の少なくとも一つが含まれ、
 前記他方の検査データの撮影方式には、前記第1~第4の撮影方式のうち、前記一方の検査データの撮影方式とは、異なる撮影方式が含まれる、上記(2)に記載の特徴点の抽出方法。
(3) The photographing method used to acquire the one of the inspection data includes at least one of a first photographing method for photographing transmitted light traveling straight through the web, a second photographing method for photographing transmitted light reflected within the web, a third photographing method for photographing reflected light specularly reflected from the web surface, and a fourth photographing method for photographing reflected light scattered from the web surface, depending on the positional relationship between the lighting and the photographing unit.
The method for extracting feature points described in (2) above, wherein the imaging method of the other test data includes a different imaging method from the imaging method of the one test data among the first to fourth imaging methods.

 (4)前記撮影方式には、光の偏光状態を検出する偏光を用いた撮影方式が含まれる、上記(2)に記載の特徴点の抽出方法。 (4) The feature point extraction method described in (2) above, wherein the imaging method includes an imaging method using polarized light to detect the polarization state of light.

 (5)前記第1検査データまたは第2検査データの少なくとも一方の検査データは、
 同じ検査領域において複数種類の検査方式それぞれにより取得された複数の1次データそれぞれから抽出した特徴点情報を、ウェブ面上での位置合わせすることで統合した検査データである、上記(1)に記載の特徴点の抽出方法。
(5) At least one of the first test data and the second test data is
The feature point extraction method described in (1) above is inspection data that is integrated by aligning feature point information extracted from multiple primary data acquired by multiple types of inspection methods in the same inspection area on the web surface.

 (6)前記ステップ(d)で、前記統合した検査データを用いて、第3種特徴点として抽出した後で、
 前記統合した検査データでの特徴点を、複数の1次データそれぞれでの特徴点に分類する、ステップ(e)をさらに有する、上記(5)に記載の特徴点の抽出方法。
(6) In the step (d), after extracting the third type feature points using the integrated inspection data,
The feature point extraction method according to (5) above, further comprising a step (e) of classifying the feature points in the integrated inspection data into feature points in each of the plurality of primary data.

 (7)前記一方の検査データの前記検査方式の選択を受け付けるステップ(f)と、
 前記ステップ(f)の選択により、選択された検査方式に対応する前記ステップ(e)で分類された1次データの特徴点情報を表示させるステップ(g)と、を含む、上記(6)に記載の特徴点の抽出方法。
(7) a step (f) of accepting a selection of the inspection method for the one of the inspection data;
and (g) displaying, by selection in step (f), feature point information of the primary data classified in step (e) corresponding to the selected inspection method.

 (8)ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データを取得するステップ(a)と、
 前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得するステップ(b)と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比するステップ(c)と、
 前記ステップ(c)の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点を抽出するステップ(d)、とを有し、
 前記第1検査データおよび第2検査データのすくなくとも一方は、同じ検査領域において複数種類の検査方式それぞれにより取得された複数の1次データそれぞれから抽出した特徴点情報を、ウェブ面上での位置合わせすることで統合した検査データであり、
 さらに、前記統合した検査データを用いて、前記ステップ(d)で前記第3種特徴点として抽出した後で、前記統合した検査データでの特徴点を、複数の1次データそれぞれでの特徴点に分類するステップ(e)を有する、特徴点の抽出方法。
(8) A method for extracting feature points of a web, comprising:
A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web;
(b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process;
(c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data;
and (d) extracting third type feature points present in both the first and second inspection data based on the comparison result of the step (c),
At least one of the first inspection data and the second inspection data is inspection data obtained by integrating feature point information extracted from a plurality of primary data acquired by a plurality of types of inspection methods in the same inspection area by aligning the feature point information on the web surface;
The feature point extraction method further comprises a step (e) of classifying the feature points in the integrated inspection data into feature points in each of a plurality of primary data sets after extracting the third type feature points in the step (d) using the integrated inspection data.

 (9)前記第1検査データ、および前記第2検査データは、ウェブを検査装置で撮影することにより得られた検査データであり、
 前記一方の検査データの検査装置は、複数の撮影方式により取得された検査データである、上記(8)に記載の特徴点の抽出方法。
(9) The first inspection data and the second inspection data are inspection data obtained by photographing a web with an inspection device,
The feature point extraction method according to (8) above, wherein the inspection device of the one of the inspection data is inspection data acquired by a plurality of imaging methods.

 (10)前記一方の検査データの前記検査方式の選択を受け付けるステップ(f)と、
 前記ステップ(f)の選択により、選択された検査方式に対応する前記ステップ(e)で分類された1次データの特徴点情報を表示させるステップ(g)と、を含む、上記(8)に記載の特徴点の抽出方法。
(10) a step (f) of accepting a selection of the inspection method for the one of the inspection data;
and (g) a step of displaying, by selection in step (f), feature point information of the primary data classified in step (e) corresponding to the selected inspection method.

 (11)上記(1)~上記(10)のいずれかに記載の抽出方法を、コンピューターに実行させるための制御プログラム。 (11) A control program for causing a computer to execute the extraction method described in any one of (1) to (10) above.

 (12)ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得する取得部と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比する対比部と、
 前記対比部の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点、および/または、前記第1検査データに存在し前記第2検査データに存在しない第1種特徴点もしくは前記第1検査データに存在せず前記第2検査データに存在する第2種特徴点を抽出する抽出部と、を有し、
 前記第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データであり、他方の検査データは、前記一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである、情報処理システム。
(12) A method for extracting feature points of a web, comprising:
an acquisition unit that acquires first inspection data in a first manufacturing process that manufactures a web or post-processes a manufactured web, and second inspection data in a second manufacturing process that performs post-processing using the web after the first manufacturing process;
a comparison unit that compares the first feature information of the web in the first inspection data with the second feature information of the web in the second inspection data;
an extraction unit that extracts, based on a comparison result from the comparison unit, third type feature points that are present in both the first and second test data, and/or first type feature points that are present in the first test data but not in the second test data, or second type feature points that are not present in the first test data but are present in the second test data,
An information processing system, wherein one of the first test data and the second test data is test data obtained by one or more test methods, and the other test data is test data obtained by one or more test methods including a test method different from the test method of the one test data.

 (13)ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得する取得部と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比する対比部と、
 前記対比部の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点を抽出する抽出部と、を有し、
 前記第1検査データおよび第2検査データのすくなくとも一方は、同じ検査領域において複数種類の検査方式それぞれにより取得された複数の1次データそれぞれから抽出した特徴点情報を、ウェブ面上での位置合わせすることで統合した検査データであり、
 前記抽出部は、前記統合した検査データを用いて、前記第3種特徴点として抽出した後で、前記統合した検査データでの特徴点を、複数の1次データそれぞれでの特徴点に分類する、情報処理システム。
(13) A method for extracting feature points of a web, comprising:
an acquisition unit that acquires first inspection data in a first manufacturing process that manufactures a web or post-processes a manufactured web, and second inspection data in a second manufacturing process that performs post-processing using the web after the first manufacturing process;
a comparison unit that compares the first feature information of the web in the first inspection data with the second feature information of the web in the second inspection data;
an extraction unit that extracts third type feature points that exist in both the first and second inspection data based on a comparison result from the comparison unit,
At least one of the first inspection data and the second inspection data is inspection data obtained by integrating feature point information extracted from a plurality of primary data acquired by a plurality of types of inspection methods in the same inspection area by aligning the feature point information on the web surface;
an information processing system, wherein the extraction unit uses the integrated inspection data to extract the third type feature points, and then classifies the feature points in the integrated inspection data into feature points in each of a plurality of primary data.

 本発明に係るウェブの特徴点の抽出方法は、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データを取得するステップ(a)と、
 前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得するステップ(b)と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比するステップ(c)と、
 前記ステップ(c)の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点、および/または、前記第1検査データに存在し前記第2検査データに存在しない第1種特徴点もしくは前記第1検査データに存在せず前記第2検査データに存在する第2種特徴点を抽出するステップ(d)、とを有し、
 前記第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データであり、他方の検査データは、前記一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである。これにより、ウェブを製造する際、およびこれを用いて後加工を行う製造工程の双方において、工程改善や出荷規格設定に役立てる情報を、効率的に収集できる。
The method for extracting feature points of a web according to the present invention comprises:
A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web;
(b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process;
(c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data;
and (d) extracting, based on the comparison result of the step (c), third type feature points present in both the first and second test data, and/or first type feature points present in the first test data but not in the second test data, or second type feature points present in the second test data but not in the first test data,
One of the first inspection data and the second inspection data is inspection data acquired by one or more inspection methods, and the other inspection data is inspection data acquired by one or more inspection methods including an inspection method different from the inspection method of the one inspection data. This makes it possible to efficiently collect information useful for process improvement and setting shipping standards both when manufacturing the web and in a manufacturing process in which post-processing is performed using the web.

 本発明の一つ以上の実施形態によって提供される利点および特徴は、以下の詳細な説明および添付の図面からより完全に理解される。しかし、これらは例示のみを目的としており、本発明を限定することを意図したものではない。
本実施形態に係る情報処理システムの適用例を示す模式図である。 各種の撮影方式についての特徴等を示すテーブルである。 第1~第5の撮影方式での照明とカメラの位置関係を示す模式図である。 本実施形態における撮影部1から撮影部6と、撮影方式との対応関係を示すテーブルである。 検査装置の構成例を示す概略図である。 検査装置の構成例を示す概略図である。 検査装置リストを示すテーブルである。 情報処理システムの概略構成を示すブロック図である。 記憶部に記憶される各種データの例である。 記憶部に記憶される検査データDBの例である。 第1製造工程で行われる第1検査データの生成処理を示すフローチャートである。 記憶部に記憶される検査データDBの例である。 第2製造工程で行われる第2検査データの生成処理を示すフローチャートである。 記憶部に記憶される検査データDBの例である。 情報処理システムで実行される特徴点の抽出処理を示すフローチャートである。 端末装置に表示される操作画面の例である。 特徴点の抽出処理を説明するための模式図である。 ステップS34の対比処理1を示すサブルーチンフローチャートである。 カーネル密度推定により算出した、特徴点の位置と強度を示す確率密度関数の例である。 対応点リストの例である。 第1~第3種特徴点を説明するためのテーブルである。 特徴点の抽出結果データの例である。 図13に対応する記憶部に記憶される検査データDBの例である。 ステップS38の表示処理を示すサブルーチンフローチャートである。 1次データの選択を受け付ける操作画面の例である。 プレビュー画面に表示される表示例である。 プレビュー画面に表示される表示例である。
Advantages and features provided by one or more embodiments of the present invention will be more fully understood from the following detailed description and the accompanying drawings, which are for purposes of illustration only and are not intended to be limiting.
FIG. 1 is a schematic diagram illustrating an application example of an information processing system according to an embodiment of the present invention. 1 is a table showing characteristics of various imaging methods. 10A and 10B are schematic diagrams showing the positional relationship between lighting and cameras in the first to fifth imaging methods. 1 is a table showing the correspondence between the image capturing units 1 to 6 and the image capturing methods in this embodiment. FIG. 1 is a schematic diagram illustrating an example of the configuration of an inspection device. FIG. 1 is a schematic diagram illustrating an example of the configuration of an inspection device. 10 is a table showing a list of inspection devices. 1 is a block diagram showing a schematic configuration of an information processing system. 4 is an example of various data stored in a storage unit. 10 is an example of an inspection data DB stored in a storage unit. 10 is a flowchart showing a process for generating first inspection data performed in a first manufacturing process. 10 is an example of an inspection data DB stored in a storage unit. 10 is a flowchart showing a process for generating second inspection data performed in a second manufacturing process. 10 is an example of an inspection data DB stored in a storage unit. 10 is a flowchart showing a feature point extraction process executed in the information processing system. 10 is an example of an operation screen displayed on a terminal device. FIG. 10 is a schematic diagram for explaining the extraction processing of feature points. 10 is a subroutine flowchart showing a comparison process 1 in step S34. 10 is an example of a probability density function calculated by kernel density estimation, which shows the positions and intensities of feature points. 10 is an example of a corresponding point list. 10 is a table for explaining first to third type feature points. 10 is an example of feature point extraction result data. 14 is an example of an inspection data DB stored in a storage unit corresponding to FIG. 13. 10 is a subroutine flowchart showing a display process of step S38. 10 is an example of an operation screen that accepts selection of primary data. 10 is a display example displayed on a preview screen. 10 is a display example displayed on a preview screen.

 以下、添付した図面を参照して、本発明の実施形態を説明する。しかしながら、本発明の範囲は、開示される実施形態に限定されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Embodiments of the present invention will now be described with reference to the accompanying drawings. However, the scope of the present invention is not limited to the disclosed embodiments. In the description of the drawings, identical elements will be given the same reference numerals, and duplicate explanations will be omitted. Furthermore, the dimensional proportions in the drawings have been exaggerated for the sake of explanation and may differ from the actual proportions.

 (ウェブ)
 本実施形態において、ウェブとは、シート状の材料であり、樹脂フィルム、金属フィルムを含む。また、ウェブには、積層体が含まれる。以下においては、ウェブは、長尺の樹脂フィルムであり、フィルムロール、およびこれに加工するものとして説明する。加工には、塗布液を塗布する加工、および別のフィルム状の材料を重ねて積層体を生成する積層工程も含む。
(web)
In this embodiment, the web refers to a sheet-like material, including a resin film and a metal film. The web also includes a laminate. In the following description, the web refers to a long resin film, such as a film roll, and the film roll to be processed. The processing also includes a process of applying a coating liquid and a lamination process of overlaying another film-like material to produce a laminate.

 (特徴点情報)
 本実施形態においては、特徴点とは、フィルム上の欠陥であり、画像データを解析することにより特徴点を生成する。画像解析は、公知の技術により、フィルム面を撮影した画像データにおいて、画素値が周囲の平均値から、所定以上外れた(差分が所定以上)の画素を特徴点として抽出してもよい。あるいは、後述の「特徴点生成の画像処理」の手法により算出してもよい。1つのフィルムロール80(全長数km)を撮影した1つまたは複数の画像データからは、多くの場合、数十から数千の特徴点が生成される。欠陥には、製品不良に至るレベルの不具合と、製品不良には至らないレベルの軽微な不具合の両方が含まれる。特徴点には、フィルム同士を途中で接着(超音波融着等)した際の接着不良、軸ムラ等に関する欠陥が含まれる。特徴点情報として、大きさ、位置(xy座標)が含まれる。また、特徴点情報としては、近接する複数の特徴点を1つにまとめた(クラスタリングされた)ものが用いられてもよい。特徴点生成の画像処理については後述する。
(Minatorial information)
In this embodiment, feature points are defects on the film, and are generated by analyzing image data. Image analysis may involve using known techniques to extract, as feature points, pixels whose pixel values deviate from the average value of the surrounding pixels by a predetermined amount (the difference is greater than or equal to a predetermined amount) in image data captured from the film surface. Alternatively, feature points may be calculated using the "image processing for generating feature points" technique described below. In many cases, dozens to thousands of feature points are generated from one or more image data captured from a single film roll 80 (total length of several kilometers). Defects include both defects that could result in product defects and minor defects that do not result in product defects. Feature points include defects related to poor adhesion when films are bonded together (by ultrasonic welding, for example) and axial irregularities. Feature point information includes size and position (x-y coordinates). Alternatively, feature point information may be obtained by grouping (clustering) multiple nearby feature points together. The image processing for generating feature points will be described later.

 図1は、本実施形態に係る情報処理システム50の適用例を示す模式図である。図1に示すように、情報処理システム50は、工場A、工場Bの端末装置70等と、ネットワークを通じて相互に通信接続する。ネットワークは、データ通信網等の通信回線である。一部のネットワークでは、有線LANや、無線LAN等(例えばIEEE802.11規格に従ったLAN)が用いられてもよい。情報処理システム50についての詳細は後述する。 FIG. 1 is a schematic diagram showing an application example of an information processing system 50 according to this embodiment. As shown in FIG. 1, the information processing system 50 communicates with terminal devices 70 and the like in factories A and B via a network. The network is a communication line such as a data communication network. Some networks may use a wired LAN or a wireless LAN (for example, a LAN conforming to the IEEE 802.11 standard). Details of the information processing system 50 will be provided later.

 端末装置70は、例えばPC(パーソナルコンピュータ)である。例えば、端末装置70は、工場A、工場Bを操業する製造会社の従業員が用いるPCである。 The terminal device 70 is, for example, a PC (personal computer). For example, the terminal device 70 is a PC used by an employee of a manufacturing company that operates Factory A and Factory B.

 工場Aには上述のフィルムロール製造装置1000が設けられる。工場Aは、例えば製膜メーカーにより操業され、または管理される。工場Aではフィルムロール80を製造する第1製造工程が実施される。第1製造工程では、乾燥工程、延伸工程、巻き取り工程等の複数種類のサブ工程が実施される。複数のサブ工程の前後には、検査装置90a1、a2(以下、これらを総称して検査装置90ともいう)が配置される。フィルムロール80のフィルム面は、複数の検査装置90a1、90a2により検査される。図1では、2つの検査装置90a1、90a2を示しているが検査装置90の個数は、これに限られず、1つでもよく、3つ以上でもよい。 Factory A is equipped with the above-mentioned film roll manufacturing apparatus 1000. Factory A is operated or managed by, for example, a film manufacturer. Factory A carries out a first manufacturing process for manufacturing a film roll 80. In the first manufacturing process, multiple sub-processes are carried out, such as a drying process, a stretching process, and a winding process. Inspection devices 90a1, a2 (hereinafter collectively referred to as inspection devices 90) are placed before and after the multiple sub-processes. The film surface of the film roll 80 is inspected by the multiple inspection devices 90a1, 90a2. While Figure 1 shows two inspection devices 90a1, 90a2, the number of inspection devices 90 is not limited to this and may be one, or three or more.

 工場Bには、製品製造装置2000が設けられる。工場Bは、例えば、塗布メーカー等(以下、ユーザー会社またはユーザーともいう)により操業され、または管理される。工場Bそれぞれを操業するユーザー会社は複数である。工場Bでは、工場Aから出荷され、輸送されたフィルムロール80を用いて製品が製造される。工場Bには、フィルムロール80からフィルム(後述のフィルムF8)を繰り出して、塗布、または他のフィルムと重ね合わせ乃至接着することによる後加工である複数のサブ工程が含まれる。サブ工程は、第1または第2製造工程に相当する。複数のサブ工程の前後には、複数の検査装置90b1~90b4(以下、これらも総称して検査装置90ともいう)が配置される。図1では、4つの検査装置90b1、90b2、90b3、90b4を示しているが検査装置90の個数は、これに限られず、3つ以下でもよく、5つ以上でもよい。 Factory B is equipped with product manufacturing equipment 2000. Factory B is operated or managed by, for example, a coating manufacturer (hereinafter referred to as a user company or user). Each factory B is operated by multiple user companies. Factory B manufactures products using film rolls 80 shipped and transported from factory A. Factory B includes multiple sub-processes, which involve unwinding film (film F8, described below) from the film roll 80 and coating, or layering or adhering it with other films. The sub-processes correspond to the first and second manufacturing processes. Multiple inspection devices 90b1-90b4 (hereinafter collectively referred to as inspection devices 90) are located before and after the multiple sub-processes. While four inspection devices 90b1, 90b2, 90b3, and 90b4 are shown in Figure 1, the number of inspection devices 90 is not limited to this and may be three or fewer, or five or more.

 本実施形態では、典型的な例では、フィルム(ウェブ)を製造する工程を第1製造工程、この製造されたフィルムを用いて、工場Bで行う後加工を第2製造工程という。例えば後加工工程では、表面に機能層を付与する塗布処理、別のフィルム等のウェブを重ねる積層工程等が行われる。第2製造工程においても、フィルムロール80のフィルム面は、検査装置90により検査される。 In this embodiment, as a typical example, the process of manufacturing a film (web) is called the first manufacturing process, and the post-processing carried out at factory B using this manufactured film is called the second manufacturing process. For example, the post-processing process includes a coating process to apply a functional layer to the surface, and a lamination process to overlay a web of another film or the like. In the second manufacturing process, the film surface of the film roll 80 is also inspected by inspection device 90.

 図1に示される製造されるフィルムF8の素材としては、特に限定されないが、一般的には、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、環状オレフィン系樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、酢酸セルロース樹脂、塩化ビニル樹脂等が挙げられる。また、例えば、フィルムF8の幅は、生産性、品質等を考慮し、1000mmから3200mmが好ましい。厚さは、品質、ハンドリング等を考慮し、15μmから500μmが好ましい。 The material of the film F8 produced as shown in Figure 1 is not particularly limited, but typical examples include polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, cyclic olefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, phenolic resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, cellulose acetate resin, and vinyl chloride resin. Furthermore, for example, the width of film F8 is preferably 1000 mm to 3200 mm, taking into consideration productivity, quality, etc. The thickness is preferably 15 μm to 500 μm, taking into consideration quality, handling, etc.

 本実施形態の典型的以外の例として、工場Bでこの製造されたフィルムに複数の後加工を行う場合には、先に行う後加工を第1製造工程といい、これよりも後に行う後加工を第2製造工程という場合もある。また、工場Aで製造されたフィルムロール80を、後の工程で、繰り出して後加工を行う場合がある。典型的な例では、工場Bで行うサブ工程には他のフィルムを重ねて接着する積層工程(接着工程ともいう)が含まれる。積層工程により積層体80Bが形成される(図1の吹き出しの拡大断面図参照)。以下では、工場Bのいくつかのサブ工程により、第1~第3層が原反フィルム(F8)に接着される、または塗布される。なお、吹き出しの拡大断面図では、各層間の接着層の表記は省略している。例えばフィルムF8は、PVA(ポリビニルアルコール樹脂)層であり、第1層はTAC(トリアセチルセルロース)層、第2層は偏光子等の光学機能フィルム層であり、第3層はプロテクターである。また、第3層は、セパレーターまたは防眩フィルム等であってもよい。第3層は、不透明な層である。 As a non-typical example of this embodiment, if the film manufactured in Factory B undergoes multiple post-processing steps, the first post-processing step may be referred to as the first manufacturing process, and the subsequent post-processing step may be referred to as the second manufacturing process. Alternatively, the film roll 80 manufactured in Factory A may be unwound and post-processed in a later process. In a typical example, the sub-processes performed in Factory B include a lamination process (also called a bonding process) in which other films are layered and bonded. The lamination process forms a laminate 80B (see the enlarged cross-sectional view of the bubble in Figure 1). Below, the first to third layers are bonded or applied to the raw film (F8) through several sub-processes performed in Factory B. Note that the enlarged cross-sectional views of the bubbles omit the adhesive layers between each layer. For example, Film F8 is a PVA (polyvinyl alcohol resin) layer, with the first layer being a TAC (triacetyl cellulose) layer, the second layer being an optically functional film layer such as a polarizer, and the third layer being a protector. The third layer may also be a separator, anti-glare film, or the like. The third layer is an opaque layer.

 検査装置90は、フィルム等を撮影し、画像データを生成する。上述のように図1に示す例では、検査装置90は、フィルム製造ラインの延伸工程、積層工程等のサブ工程の前後に複数配置されている。以下、図2~図6を参照し、検査装置90について説明する。 The inspection device 90 photographs the film, etc., and generates image data. As mentioned above, in the example shown in Figure 1, multiple inspection devices 90 are placed before and after the sub-processes, such as the stretching process and lamination process, of the film production line. The inspection device 90 will be explained below with reference to Figures 2 to 6.

 (検査装置90)
 フィルムF8等の透明体を被検査体として、その表面に存在する凹凸や透明体内部に存在する泡、亀裂、内部構造のひずみ等を検出する検査器としては、透過型の撮影方式の撮影部と、反射型の撮影方式の撮影部がある。また、積層体80B等の不透明体を被検査体として、その表面に存在する凹凸が傷等を検出する検査器として、反射型の撮影方式の撮影部がある。また、さらに、透過型、反射型それぞれに、カメラの光軸、光源、および被検査体の位置関係に応じて、表面の非散乱光を受光する明視野型検査装置と散乱光を受光する暗視野型検査装置とがある。明視野型検査装置は、後述の第1、第3、第5の撮影方式に相当し、非散乱光を受光する。暗視野型検査装置は、後述の第2、第4、第5の撮影方式に相当し、散乱光を受光する。明視野型検査装置では、欠陥がない場合には、光の散乱がないので、光源からの光が遮られることなく光検出手段に入射し、欠陥が存在する場合には、該欠陥により光が遮られて光検知手段に入射しない。従って、明るい背景の中に暗い点や筋として欠陥が観察される。これに対して、暗視野型検査装置では、欠陥がない場合、光が散乱しないので光検出手段に入射しないが、欠陥があると、欠陥により光が散乱するので光検出手段に入射する。従って、暗い背景の中に明るい斑点又は筋として欠陥が観察される。
(Inspection device 90)
Inspection devices for detecting surface irregularities, bubbles, cracks, and distortions in the internal structure of a transparent object such as film F8 include transmission-type imaging units and reflection-type imaging units. Inspection devices for detecting surface irregularities and scratches on an opaque object such as laminate 80B include reflection-type imaging units. Furthermore, for both transmission-type and reflection-type inspection devices, there are bright-field inspection devices that receive non-scattered light from the surface and dark-field inspection devices that receive scattered light, depending on the relative positions of the camera's optical axis, light source, and object under inspection. Bright-field inspection devices correspond to the first, third, and fifth imaging methods described below and receive non-scattered light. Dark-field inspection devices correspond to the second, fourth, and fifth imaging methods described below and receive scattered light. In a bright-field inspection system, if there is no defect, there is no scattering of light, so the light from the light source enters the light detection means without being blocked; if there is a defect, the light is blocked by the defect and does not enter the light detection means. Therefore, the defect is observed as a dark spot or streak against a bright background. In contrast, in a dark-field inspection system, if there is no defect, there is no scattering of light, so the light does not enter the light detection means. However, if there is a defect, the light is scattered by the defect and enters the light detection means. Therefore, the defect is observed as a bright spot or streak against a dark background.

 本実施形態における検査装置90としては、いずれの方式の検査装置を採用してもよい。第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データであり、他方の検査データは、一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである。または、一方の検査データは複数の検査方式により取得された検査データ(後述の統合検査データ)である。検査方式は、検出感度の高い検査方式を採用することが好ましいが、検査対象(被写体)の状態により、取り得る検査方式に制限がある場合がある。例えば、偏光子、位相差フィルム等や、光学補償フィルム、液晶層を持つ等の光学機能フィルムの検査は、偏光カメラ等の偏光撮影方式で撮影する必要がある。また、不透明または透明度が低いフィルムの場合には、透過の撮影方式は採用できない、または採用しても感度が低くなる場合がある。そのため、第1、第2検査データは、異なる検査方式を採用する場合が生じる。 The inspection device 90 in this embodiment may be any type of inspection device. One of the first and second inspection data is inspection data acquired using one or more inspection methods, while the other is inspection data acquired using one or more inspection methods, including one different from the inspection method of the first inspection data. Alternatively, one of the inspection data is inspection data acquired using multiple inspection methods (integrated inspection data, described below). It is preferable to use an inspection method with high detection sensitivity, but there may be limitations on the inspection method available depending on the condition of the object being inspected (subject). For example, inspection of polarizers, retardation films, optical compensation films, and optically functional films with liquid crystal layers requires the use of a polarized imaging method, such as a polarization camera. Furthermore, with opaque or low-transparency films, transmission imaging methods may not be possible, or even if they are used, the sensitivity may be low. For this reason, different inspection methods may be used for the first and second inspection data.

 本実施形態では、各検査装置90は、以下の第1から第5の撮影方式のいずれかを適用した撮影部を有する。図2は、各種の撮影方式についての特徴等を説明する表である。図3は、各種の撮影方式での撮影部95の位置関係を示す模式図である。撮影部95は、照明91およびカメラ92で構成される。撮影部95の照明91およびカメラ92の構成例についての説明は後述する。 In this embodiment, each inspection device 90 has a photographing unit that applies one of the following first to fifth photographing methods. Figure 2 is a table explaining the characteristics of the various photographing methods. Figure 3 is a schematic diagram showing the positional relationship of the photographing unit 95 in the various photographing methods. The photographing unit 95 is composed of a light 91 and a camera 92. An example configuration of the light 91 and camera 92 of the photographing unit 95 will be described later.

 (第1の撮影方式)
 図3(A)および、図2の表に示すように第1の撮影方式は、透明のフィルムF8内を直進する透過光を撮影する。カメラ92と照明91は、被写体(フィルムF8)を跨ぐように、対向して配置される。また、照明91の照明方向とカメラ92の光軸は一直線上にある。図2の表に示すように、第1の撮影方式は、被写体に欠陥があると、欠陥により照射光が妨げられ、受光量が変化する。検査対象は、透明フィルムである。以下においては、第1の撮影方式を「透過1」とも表記する。
(First imaging method)
As shown in FIG. 3A and the table in FIG. 2, the first imaging method captures transmitted light traveling straight through the transparent film F8. The camera 92 and the lighting device 91 are positioned opposite each other so as to straddle the subject (film F8). The illumination direction of the lighting device 91 and the optical axis of the camera 92 are aligned in a straight line. As shown in the table in FIG. 2, with the first imaging method, if there is a defect in the subject, the defect will obstruct the irradiated light, changing the amount of light received. The object to be inspected is a transparent film. Hereinafter, the first imaging method will also be referred to as "transmission 1."

 (第2の撮影方式)
 図3(B)および、図2の表に示すように第2の撮影方式は、透明のフィルムF8内で反射乃至散乱する透過光を撮影する。カメラ92と照明91は、被写体(フィルムF8のこと、以下同じ)を跨ぐよう、対向して配置される。また、照明91の照明方向とカメラ92の光軸は一致しないようにずらして配置されている。第2の撮影方式は、被写体内に異物があると、その異物による散乱光を受光する。検査対象は、透明フィルムである。以下においては、第2の撮影方式を「透過2」とも表記する。
(Second imaging method)
As shown in FIG. 3B and the table in FIG. 2, the second imaging method captures transmitted light reflected or scattered within the transparent film F8. The camera 92 and the illuminator 91 are positioned opposite each other so as to straddle the subject (film F8; the same applies below). The illumination direction of the illuminator 91 and the optical axis of the camera 92 are also positioned offset from each other so as not to coincide. The second imaging method receives scattered light from a foreign object present within the subject. The object to be inspected is a transparent film. Hereinafter, the second imaging method will also be referred to as "Transmission 2."

 (第3の撮影方式)
 図3(C)および、図2の表に示すように第3の撮影方式は、透明のフィルムF8の表面または、不透明の積層体80Bの表面で正反射する反射光を撮影する。カメラ92と照明91は、被写体の同じ側に配置される。また、被写体表面に対する照明91の照明方向の入射角とカメラ92の光軸の入射角度は同じである。第3の撮影方式は、被写体の表明形状よる到達距離の位相差による検出である。検査対象は、透明フィルムおよび不透明フィルム(積層体80B)である。以下においては、第3の撮影方式を「反射1」とも表記する。
(Third Shooting Method)
As shown in FIG. 3(C) and the table in FIG. 2, the third imaging method captures light reflected specularly from the surface of the transparent film F8 or the surface of the opaque laminate 80B. The camera 92 and the lighting 91 are placed on the same side of the subject. The angle of incidence of the lighting direction of the lighting 91 relative to the surface of the subject is the same as the angle of incidence of the optical axis of the camera 92. The third imaging method detects the phase difference of the reach due to the apparent shape of the subject. The objects to be inspected are the transparent film and the opaque film (laminated body 80B). Hereinafter, the third imaging method will also be referred to as "Reflection 1."

 (第4の撮影方式)
 図3(D)および、図2の表に示すように第4の撮影方式は、透明のフィルムF8の表面または、不透明の積層体80Bの表面で散乱する反射光を撮影する。カメラ92と照明91は、被写体の同じ側に配置される。また、被写体表面に対する照明91の照明方向の入射角とカメラ92の光軸の入射角度は一致しないようにずらして配置される。第4の撮影方式は、被写体表面の異物による散乱光を受光する。検査対象は、透明フィルムおよび不透明フィルムである。以下においては、第4の撮影方式を「反射2」とも表記する。
(Fourth Shooting Method)
As shown in FIG. 3(D) and the table in FIG. 2, the fourth imaging method captures reflected light scattered on the surface of the transparent film F8 or the surface of the opaque laminate 80B. The camera 92 and the lighting device 91 are placed on the same side of the object. The angle of incidence of the lighting device 91 relative to the object surface and the angle of incidence of the optical axis of the camera 92 are offset so as not to coincide. The fourth imaging method receives scattered light caused by foreign matter on the object surface. The objects to be inspected are transparent and opaque films. Hereinafter, the fourth imaging method will also be referred to as "reflection 2."

 (第5の撮影方式)
 図3(E)、(F)に示すように第5の撮影方式は、偏光を用いた撮影である。以下においては、第5の撮影方式を「偏光」とも表記する。照明91とカメラ92の配置関係は、第1~第4のいずれをも適用できる。偏光を用いた撮影では、偏光状態を検査する。偏光を用いた撮影では、直線偏光状態を撮影する偏光カメラを用いたり、直線偏光光を照射する照明(偏光光源という)を用いたりしてもよい。または、偏光を用いた第5の撮影方式では、図示のように偏光板を用いたり、これを偏光カメラ、偏光光源と組み合わせて用いたりできる。第5の撮影方式は、例えば、偏光板向けフィルムの検査に用いられる。偏光板向けフィルムは、偏光特性を有するフィルム(偏光子)と、この偏光子を製造するために用いるフィルム(以下、原料フィルムともいう)が含まれる。原料フィルムは無偏光の特性が求められる。
(Fifth Shooting Method)
As shown in Figures 3(E) and (F), the fifth imaging method uses polarized light. Hereinafter, the fifth imaging method will also be referred to as "polarized light." The arrangement of the illumination 91 and the camera 92 can be any of the first to fourth methods. In imaging using polarized light, the polarization state is inspected. In imaging using polarized light, a polarized camera that captures the linearly polarized state may be used, or illumination that irradiates linearly polarized light (referred to as a polarized light source) may be used. Alternatively, in the fifth imaging method using polarized light, a polarizing plate may be used as shown, or this may be used in combination with a polarized camera and a polarized light source. The fifth imaging method is used, for example, to inspect films for polarizing plates. Films for polarizing plates include films with polarization properties (polarizers) and films used to manufacture these polarizers (hereinafter also referred to as raw film). The raw film is required to have non-polarized properties.

 図3(E)は、偏光子の原料フィルムまたは偏光子の保護フィルムに用いられる偏光を用いた撮影方式である。原料フィルムは、後工程で偏光特性が付与されるフィルムであり、保護フィルムは、後工程で偏光子(偏光フィルム)の上層に重ねて用いられるフィルムである。図3(E)に示す撮影方式では、照明91からは無偏光光を出力する(図3(F)も同様)。照明91と検査対象のフィルムF8(原料フィルム)との間には、直接偏光板99aが、フィルムF8とカメラ92との間には直線偏光板99bが配置されている。直線偏光板99a、99bは、クロスニコルに配置される。すなわち、Z方向(フィルム面に垂直な方向)から見た場合の両直線偏光板99a、99bの吸収軸は、互いに直交に近い所定角度で交差している。例えば、吸収軸は、90°前後(89~91°)の略直交で交差している。このような構成とすることで、フィルムF8が正常であれば直線偏光板99aを介して照射されフィルムF8を透過した直線偏光光は、直線偏光板99bを透過し難い。一方で、フィルムF8に欠陥(特徴点)があると、その欠陥部分を透過した光は、直線偏光板99bを透過するので、輝点として観察される。 Figure 3(E) shows a photography method using polarized light used for the raw film of a polarizer or the protective film of a polarizer. The raw film is a film that is given polarization properties in a later process, and the protective film is a film that is used by layering it on top of the polarizer (polarizing film) in a later process. In the photography method shown in Figure 3(E), unpolarized light is output from the light source 91 (similar to Figure 3(F)). A direct polarizer 99a is placed between the light source 91 and the film F8 (raw film) to be inspected, and a linear polarizer 99b is placed between the film F8 and the camera 92. The linear polarizers 99a and 99b are arranged in a crossed Nicol configuration. That is, when viewed from the Z direction (the direction perpendicular to the film surface), the absorption axes of the two linear polarizers 99a and 99b intersect at a predetermined angle that is close to perpendicular to each other. For example, the absorption axes intersect at approximately 90° (89 to 91°) or so. With this configuration, if film F8 is normal, linearly polarized light that is irradiated through linear polarizer 99a and passes through film F8 is unlikely to pass through linear polarizer 99b. On the other hand, if film F8 has a defect (feature point), light that passes through the defective part will pass through linear polarizer 99b and be observed as a bright spot.

 図3(F)は、偏光特性が付与された偏光子(偏光フィルムともいう)に用いられる偏光を用いた撮影方式である。図3(F)に示す撮影方式では、フィルムF8の吸収軸と直線偏光板99bの吸収軸は略直交で交差するように、直線偏光板99bが配置される。照明91から無偏光の光がフィルムF8(偏光子)に出力される。フィルムF8の正常領域を透過した光は、直線偏光板99bを透過し難いが、欠陥部分を透過した光は、直線偏光板99bを透過するので、輝点として観察される。 Figure 3 (F) shows a photography method using polarized light used in a polarizer (also called polarizing film) that has been given polarization properties. In the photography method shown in Figure 3 (F), linear polarizer 99b is positioned so that the absorption axis of film F8 and the absorption axis of linear polarizer 99b intersect at approximately right angles. Unpolarized light is output from illumination 91 to film F8 (polarizer). Light that passes through normal areas of film F8 does not easily pass through linear polarizer 99b, but light that passes through defective areas does pass through linear polarizer 99b and is observed as a bright spot.

 (第1の撮影方式の変形例)
 図3(G)に示すように第1の撮影方式の変形例(以下第1bの撮影方式ともいう)は、ナイフエッジにより照明光の一部を遮光する撮影方式である。第1bの撮影方式では、透明のフィルムF8内で直進および反射乃至散乱する透過光を撮影する。カメラ92と照明91の配置は、第1の撮影方式と同様であり、照明91の照明方向とカメラ92の光軸は一直線上にある。また、第1bの撮影方式では、照明91側の被写体の近傍にナイフエッジの遮光部材915を配置している。遮光部材915は平板であり、先端が光軸上になるように配置され、光軸から一方の照射光を遮光する。図3(G)に示す例では、紙面で光軸よりも左側半分の光が遮光される。被写体の厚み等の変化で、屈折率が変化し、光が到達する角度が変化する。検査対象は、透明フィルムである。第1bの撮影方式は、第1の撮影方式に変えて適宜採用できる。
(Modification of the first imaging method)
As shown in FIG. 3(G), a variation of the first imaging method (hereinafter referred to as imaging method 1b) uses a knife edge to block a portion of the illumination light. In imaging method 1b, transmitted light traveling straight and reflected or scattered within the transparent film F8 is captured. The camera 92 and the illumination 91 are positioned in the same manner as in the first imaging method, and the illumination direction of the illumination 91 and the optical axis of the camera 92 are aligned. In addition, in imaging method 1b, a knife-edge light-blocking member 915 is positioned near the subject on the illumination 91 side. The light-blocking member 915 is a flat plate positioned so that its tip is aligned with the optical axis, blocking one side of the illumination light from the optical axis. In the example shown in FIG. 3(G), the left half of the light on the paper surface relative to the optical axis is blocked. Changes in the refractive index of the subject, such as its thickness, change the angle at which the light reaches the subject. The subject is a transparent film. The imaging method 1b can be used as an alternative to the first imaging method.

 図4は、本実施形態における撮影部1から撮影部6と、撮影方式との対応関係を示すテーブルである。撮影部1から6は、第1から第5の撮影方式にそれぞれ対応する。 Figure 4 is a table showing the correspondence between imaging units 1 to 6 and imaging methods in this embodiment. Imaging units 1 to 6 correspond to imaging methods 1 to 5, respectively.

 図5A、図5Bは、検査装置90の構成例を示す模式図である。図5A、図5Bでは、第1~第5の撮影方式のうち、代表例として、第4の撮影方式(反射2)の例を示している。なお、図5Aの例では、検査装置90が、1つの撮影部95で構成される例を示しているが、後述のように、検査装置90には、複数の撮影方式を適用した、複数の撮影部95が含まれる場合がある。 Figures 5A and 5B are schematic diagrams showing an example configuration of the inspection device 90. Figures 5A and 5B show an example of the fourth imaging method (Reflection 2) as a representative example of the first to fifth imaging methods. Note that while the example in Figure 5A shows an example in which the inspection device 90 is composed of one imaging unit 95, as will be described later, the inspection device 90 may include multiple imaging units 95 that apply multiple imaging methods.

 図5Aは、幅方向(X方向)から視た反射型の検査装置90の構成を示す概略図である。図5Bは、搬送方向(Y方向)から視た、検査装置90の構成を示す概略図である。検査装置90は、照明91、光学センサーとしてのカメラ92、データ処理装置としての画像解析部93、及び記憶部94を備える。検査装置90は、搬送中のフィルムF8に発生した特徴点(以下、単に欠陥ともいう)を光学的に検査するものである。検査装置90は、カメラ92が、フィルムロール80のフィルムF8を光学的に検査し、検査データとして画像データを生成する。画像データには、静止画像のみならず時系列の連続した静止画からなる動画データも含まれる。また、検査データとしては、画像データ化せずに、信号データから直接、特徴点を抽出するようにしてもよい。カメラ92は、フィルムF8の幅方向全域が検査領域(撮影範囲)となるように、カメラの台数、画角、およびフィルム面までの距離が設定される。カメラの台数は、1台のカメラでフィルム全幅を適切に撮影できない場合に、複数台のカメラを幅方向に並べるためである。図5Bでは、幅方向(X方向)に例として2台のカメラ92を並べた状態を示した図である。画像解析部93は、1台のカメラ92の連続撮影により得られた複数の画像を結合して、フィルムロール80のフィルム面全体を含む1枚の画像データを生成してもよい。または、画像解析部93は、撮影時刻と対応づけて、複数の画像データを記憶部94に記憶してもよい。また、幅方向に並んだ複数台のカメラ92により得られた同様の画像データを結合してもよい。画像解析部93は、記憶されている搬送速度(巻取速度、又は送り出し速度)を参照することで、画像データと対応付けられる撮影時刻により、フィルムF8の長手方向における位置を判定できる。以下においては、1つのフィルムロール80に対応して、連続する撮影により得られた複数の画像データが撮影時刻と対応づけて記憶されているものとして説明する。画像解析部93は、画像データを解析することで、欠陥情報を生成する。検査装置90は、長尺のフィルムF8の巻き取り中等の製造工程中に発生した欠陥を検査対象とする。 Figure 5A is a schematic diagram showing the configuration of a reflective inspection device 90 as viewed from the width direction (X direction). Figure 5B is a schematic diagram showing the configuration of the inspection device 90 as viewed from the transport direction (Y direction). The inspection device 90 includes a light 91, a camera 92 as an optical sensor, an image analysis unit 93 as a data processing device, and a memory unit 94. The inspection device 90 optically inspects feature points (hereinafter simply referred to as defects) that occur on the film F8 during transport. In the inspection device 90, the camera 92 optically inspects the film F8 in the film roll 80 and generates image data as inspection data. The image data includes not only still images but also video data consisting of a time-series of consecutive still images. Furthermore, feature points may be extracted directly from signal data without being converted into image data. The number of cameras 92, the angle of view, and the distance to the film surface are set so that the entire width of the film F8 is the inspection area (capture range). The number of cameras is determined so that multiple cameras can be arranged in the width direction when a single camera cannot adequately capture the entire width of the film. FIG. 5B illustrates an example in which two cameras 92 are arranged in the width direction (X direction). The image analysis unit 93 may combine multiple images obtained by continuous shooting with one camera 92 to generate a single image data piece that includes the entire film surface of the film roll 80. Alternatively, the image analysis unit 93 may store multiple image data pieces in the storage unit 94 in association with the shooting times. Similar image data pieces obtained by multiple cameras 92 arranged in the width direction may also be combined. The image analysis unit 93 can determine the longitudinal position of the film F8 by referencing the stored transport speed (winding speed or unwinding speed) and the shooting times associated with the image data. In the following description, it is assumed that multiple image data pieces obtained by continuous shooting are stored for one film roll 80 in association with the shooting times. The image analysis unit 93 generates defect information by analyzing the image data. The inspection device 90 inspects for defects that occur during the manufacturing process, such as when the long film F8 is being wound up.

 照明91は、フィルムF8の検査領域に光を照射する。照明91は、ロール状のフィルムF8の幅方向(フィルムF8の長手方向と直交する方向であって、フィルム面に平行な方向)において均一に光を照射するものである。ここで、均一とは、フィルムF8における照度が、フィルムF8の幅方向に亘って略同一(最大値と最小値の差が所定値以下等)であることをいう。 The illumination 91 irradiates the inspection area of the film F8 with light. The illumination 91 irradiates light uniformly across the width of the rolled film F8 (a direction perpendicular to the longitudinal direction of the film F8 and parallel to the film surface). Here, "uniform" means that the illuminance on the film F8 is approximately the same across the width of the film F8 (e.g., the difference between the maximum and minimum values is less than a specified value).

 カメラ92は、フィルムF8の検査領域を光学的に読み取る光学センサーである。カメラ92は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子、レンズ等を備える。カメラ92は、各撮像素子の出力信号から2次元の画像データを生成するエリアセンサーである。カメラ92は、照明91により照射され、フィルムF8の検査領域において反射された光のうち拡散光を検出する。ここでは、カメラ92として、カラーカメラ、または白黒カメラ(モノクロカメラ)のいずれかが用いられてもよい。 Camera 92 is an optical sensor that optically reads the inspection area of film F8. Camera 92 is equipped with imaging elements such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), lenses, etc. Camera 92 is an area sensor that generates two-dimensional image data from the output signals of each imaging element. Camera 92 is illuminated by illumination 91 and detects diffused light from the light reflected in the inspection area of film F8. Here, either a color camera or a black and white camera (monochrome camera) may be used as camera 92.

 1台または複数台のカメラ92は、フィルムF8の幅方向全体に亘る撮影範囲を有しており、1回の撮影で、フィルムF8の幅方向における全範囲を同時に読み取る。カメラ92は、可視光領域の光を検出するものであってもよいし、赤外線領域の光を検出するものであってもよい。また、第5の撮影方式では、偏光フィルターを有する偏光カメラ(通常のカメラ)を用いる。 The one or more cameras 92 have a shooting range that spans the entire width of the film F8, and in one shooting session, the entire width of the film F8 is simultaneously read. The cameras 92 may be those that detect light in the visible light range or those that detect light in the infrared range. The fifth shooting method uses a polarized camera (a normal camera) with a polarizing filter.

 また、カメラ92の出力信号において、フィルムF8上の照明91により光が照射される照射部に対応する信号値と、照明91により光が照射されない非照射部に対応する信号値とのコントラストが所定値以上であることが望ましい。つまり、フィルムF8上の照明91からの光が当たっているところ(照射部)だけ、明るく見える状態が望ましい。 Furthermore, it is desirable that the contrast between the signal values corresponding to the illuminated areas on film F8 illuminated by light from illumination 91 and the signal values corresponding to the non-illuminated areas not illuminated by light from illumination 91 in the output signal from camera 92 be equal to or greater than a predetermined value. In other words, it is desirable that only the areas on film F8 illuminated by light from illumination 91 (illuminated areas) appear bright.

 コントラストは、処理対象の二つの値(ここでは、照射部に対応する信号値と非照射部に対応する信号値)の差や比等で表され、二つの値が異なるほど、コントラストが大きくなる。照射部と非照射部とのコントラストを大きくするためには、強力で直進性の高い照明91を用いることが望ましい。 Contrast is expressed as the difference or ratio between two values to be processed (here, the signal value corresponding to the illuminated area and the signal value corresponding to the non-illuminated area), and the greater the difference between the two values, the greater the contrast. To increase the contrast between the illuminated and non-illuminated areas, it is desirable to use strong, highly directional lighting 91.

 ここで、「強力」とは、照射距離50mmにおける照度をE50としたときに、照度E50が50000lx以上であることをいう。また、「直進性の高い」とは、照射距離50mmにおける照度をE50、照射距離100mmにおける照度をE100としたときに、(E50-E100)/E50<0.5を満たすことをいう。 Here, "strong" means that when the illuminance at an irradiation distance of 50 mm is E50, the illuminance E50 is 50,000 lx or more. Furthermore, "highly directional" means that when the illuminance at an irradiation distance of 50 mm is E50 and the illuminance at an irradiation distance of 100 mm is E100, the relationship (E50 - E100)/E50<0.5 is satisfied.

 画像解析部93は、CPU、RAM等から構成され、記憶部94に記憶されている各種処理プログラムを読み出してRAMに展開し、当該プログラムとの協働により各種処理を行う。 The image analysis unit 93 is composed of a CPU, RAM, etc., and reads various processing programs stored in the memory unit 94, loads them into RAM, and performs various processes in cooperation with these programs.

 記憶部94は、HDD、SSD(Solid State Drive)等により構成され、各種処理プログラム、当該プログラムの実行に必要なデータ等を記憶している。また、記憶部94は、撮影した画像データ(検査データ)を、撮影時刻と紐付けて記憶する。記憶部94には、フィルムロール製造装置1000での巻取速度(例えば100m/min)、または製品製造装置2000におけるフィルムF8の繰り出し条件(例えば30m/min)が記憶されている。これらの巻取速度、送り出し条件は、検査DBの検査リスト(図9のテーブルT13参照)に含まれていてもよい。 The storage unit 94 is composed of an HDD, SSD (Solid State Drive), etc., and stores various processing programs, data required to execute those programs, etc. The storage unit 94 also stores captured image data (inspection data) linked to the time of capture. The storage unit 94 also stores the winding speed (e.g., 100 m/min) of the film roll manufacturing apparatus 1000, or the unwinding conditions (e.g., 30 m/min) of film F8 in the product manufacturing apparatus 2000. These winding speeds and unwinding conditions may be included in the inspection list of the inspection DB (see table T13 in Figure 9).

 画像解析部93は、カメラ92(光学センサー)の出力信号に対してデータ処理を行うことで、フィルムF8の欠陥等の特徴点(位置・強度)を検出する。データ処理は、カメラ92の出力信号から得られた画像データに対する画像処理と、画像処理後のデータに基づいて欠陥を判定する欠陥判定処理と、画像処理後のデータに基づいて欠陥を定量評価する定量評価処理と、を含む。 The image analysis unit 93 performs data processing on the output signal of the camera 92 (optical sensor) to detect characteristic points (position and intensity) of defects, etc. on the film F8. The data processing includes image processing of the image data obtained from the output signal of the camera 92, defect determination processing to determine defects based on the data after image processing, and quantitative evaluation processing to quantitatively evaluate defects based on the data after image processing.

 (検査装置リスト)
 図6は検査装置リストを示すテーブルである。検査装置リスト1のテーブルT01に示すように検査装置a~検査装置fは、1つ以上の検査器を有する。例えば、検査装置bは、撮影部2および撮影部3を有し、検査装置cは、撮影部1および撮影部4を有する。撮影部1から撮影部6は、上述の図4に示したとおりである。例えば撮影部1は、図3(A)に示したような第1の撮影方式で、撮影する。検査装置a~fは、図1に示した検査装置90(90a1、90a2、90b1等)のいずれかに対応する。なお、テーブルT01に示す検査装置(検査装置90)が有する撮影部の組み合わせは、例示であり、他の組み合わせの撮影部を有してもよい。
(Inspection equipment list)
FIG. 6 is a table showing a list of inspection devices. As shown in Table T01 of the inspection device list 1, inspection devices a to f have one or more inspection instruments. For example, inspection device b has imaging unit 2 and imaging unit 3, and inspection device c has imaging unit 1 and imaging unit 4. Imaging units 1 to 6 are as shown in FIG. 4 above. For example, imaging unit 1 takes images using the first imaging method as shown in FIG. 3(A). Inspection devices a to f correspond to any of the inspection devices 90 (90a1, 90a2, 90b1, etc.) shown in FIG. 1. Note that the combination of imaging units included in the inspection device (inspection device 90) shown in Table T01 is an example, and other combinations of imaging units may be included.

 なおテーブルT01に示すように、1つの検査装置に複数の撮影部が含まれる場合には、複数の撮影部から得られた検査データ(1次データ)は、撮影部間の位置情報が加味された、1つの検査データに統合される。以下では、統合される前の検査データを1次データ、複数の1次データを統合した検査データを統合検査データともいう。統合検査データは、第1検査データまたは第2検査データに相当する。この複数の撮影部間の位置情報は、テーブルT01に示すように「検査器間位置情報」として記録されている。複数の撮影部は、幅手方向(X方向)において、フィルムF8等の被写体の同じ検査領域を撮影するように設定されているが、長手方向(Y方向)では、少しずれている場合がある。このY方向の少しのずれは、この「検査器間位置情報」を用いて位置合わせされる。 As shown in Table T01, when an inspection device includes multiple imaging units, the inspection data (primary data) obtained from the multiple imaging units is integrated into a single piece of inspection data that takes into account positional information between the imaging units. Hereinafter, the inspection data before integration is referred to as primary data, and the inspection data obtained by integrating multiple primary data is also referred to as integrated inspection data. The integrated inspection data corresponds to the first inspection data or the second inspection data. This positional information between the multiple imaging units is recorded as "inter-inspector positional information" as shown in Table T01. The multiple imaging units are set to image the same inspection area of a subject, such as film F8, in the width direction (X direction), but there may be a slight misalignment in the length direction (Y direction). This slight misalignment in the Y direction is adjusted using this "inter-inspector positional information."

 検査装置リスト2のテーブルT02は、第1検査データと第2検査データそれぞれに対応する検査装置の組み合わせを示すものである。第1検査データ、第2検査データそれぞれの検査装置の選択は、後述するようにユーザーにより選択可能である(後述の図15のボタンb1)。 Table T02 of Inspection Device List 2 shows the combinations of inspection devices corresponding to the first inspection data and the second inspection data. The selection of the inspection device for each of the first inspection data and the second inspection data can be made by the user, as described below (button b1 in Figure 15).

 本実施形態では、第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データである。他方の検査データは、一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである。または、一方の検査データは、複数の検査方式により取得された検査データである。例えば、テーブルT02の例1では、第1検査データは検査装置aから得られた検査データを用い、第2検査データは検査装置cから得られた検査データを用いる。この場合、一方の第1検査データは、1つの検査方式(第1の検査方式)で得られた検査データであり、他方の第2検査データは、2つの検査方式(第1、第4の検査方式)で得られた検査データある。例2、例3も同様である。 In this embodiment, one of the first test data and the second test data is test data acquired using one or more test methods. The other test data is test data acquired using one or more test methods, including a test method different from the test method of the one test data. Alternatively, one test data is test data acquired using multiple test methods. For example, in Example 1 of Table T02, the first test data uses test data acquired from test device a, and the second test data uses test data acquired from test device c. In this case, the first test data is test data acquired using one test method (first test method), and the other second test data is test data acquired using two test methods (first and fourth test methods). The same applies to Examples 2 and 3.

 以上までは検査装置90の説明である。以下においては、テーブルT02の例1の組み合わせで、第1、第2検査データの検査が取得されたものとして説明する(テーブルT02の破線四角枠内)。 The above is a description of the inspection device 90. In the following, we will assume that the first and second inspection data were acquired using the combination of Example 1 in Table T02 (within the dashed rectangular frame in Table T02).

 (情報処理システム50)
 以下、図7~図9を参照し、情報処理システム50について説明する。図7は、情報処理システム50の概略構成を示すブロック図である。情報処理システム50は、例えばサーバーである。図7に示すように情報処理システム50は、制御部51、記憶部52、および通信部53を備える。
(Information Processing System 50)
The information processing system 50 will be described below with reference to Figs. 7 to 9. Fig. 7 is a block diagram showing a schematic configuration of the information processing system 50. The information processing system 50 is, for example, a server. As shown in Fig. 7, the information processing system 50 includes a control unit 51, a storage unit 52, and a communication unit 53.

 (制御部51)
 制御部51は、CPUと、RAM、ROM等のメモリを有する。CPUは、プログラムにしたがって上記各部の制御や各種の演算処理を実行するマルチコアのプロセッサ等から構成される制御回路であり、情報処理システム50の各機能は、それに対応するプログラムをCPUが実行することにより発揮される。
(Control unit 51)
The control unit 51 has a CPU and memories such as RAM, ROM, etc. The CPU is a control circuit configured with a multi-core processor or the like that controls each of the above-mentioned units and executes various arithmetic processing in accordance with a program, and each function of the information processing system 50 is realized by the CPU executing the corresponding program.

 制御部51は、通信部53と協働することで取得部511、および受付部512として機能する。また、制御部51は、対比部513、解析部514、抽出部515、および表示出力部516として機能する。取得部511は、第1製造工程、第2製造工程での検査により得られた第1、第2検査データを取得する。受付部512は、ユーザーから検査方式または検査器(撮影部)の選択を受け付ける。対比部513は、第1、第2検査データそれぞれにおいて特徴点を抽出する。対比部513は対比処理により、第1、第2検査データ間で対応する特徴点を探索する。対比部513は、対比処理では、2つの検査データ(画像データ)に対して特徴点の記述子(後述の記述子2)を生成し、およびこの特徴点の記述子を用いて検査データ間で特徴点のマッチング処理を行い、対比結果(後述の図19に示す対応点リスト)を出力する。解析部514は、対応点リストを用いて関係性を示す指標(以下、関係性情報という)を算出する。関係性情報には、散布図、および平均、回帰直線、分散、標準偏差、相関係数等の統計情報が含まれる。抽出部515は、対比結果を用いて、第1から第3種特徴点を抽出する(分類する)。表示出力部516は、端末装置70の要求等に応じて、特徴点の抽出結果や1次データ毎の特徴点の表示データを端末装置70に送信したり、表示部(図示せず)に表示したりする。 The control unit 51 functions as an acquisition unit 511 and a reception unit 512 in cooperation with the communication unit 53. The control unit 51 also functions as a comparison unit 513, an analysis unit 514, an extraction unit 515, and a display output unit 516. The acquisition unit 511 acquires the first and second inspection data obtained by inspection in the first and second manufacturing processes. The reception unit 512 accepts the user's selection of an inspection method or inspection device (photographing unit). The comparison unit 513 extracts feature points from each of the first and second inspection data. The comparison unit 513 searches for corresponding feature points between the first and second inspection data through a comparison process. In the comparison process, the comparison unit 513 generates feature point descriptors (descriptor 2 described below) for the two inspection data (image data), and uses these feature point descriptors to perform a feature point matching process between the inspection data and output the comparison results (a corresponding point list shown in Figure 19 described below). The analysis unit 514 uses the corresponding point list to calculate an index indicating the relationship (hereinafter referred to as relationship information). The relationship information includes a scatter plot and statistical information such as the mean, regression line, variance, standard deviation, and correlation coefficient. The extraction unit 515 uses the comparison results to extract (classify) first to third type feature points. The display output unit 516 transmits the feature point extraction results and display data of feature points for each primary data to the terminal device 70, or displays them on a display unit (not shown), in response to a request from the terminal device 70, etc.

 (記憶部52)
 記憶部52は、オペレーティングシステムを含む各種プログラムや各種データを格納する大容量の補助記憶装置である。ストレージには、例えば、ハードディスク、ソリッドステートドライブ、フラッシュメモリー、ROM等が採用される。記憶部52には、ユーザーリスト、ロットリスト、検査データDB、権者装置リスト等が記憶される。このうちユーザーリスト、ロットリストの管理、登録は、管理者による端末装置70のアクセスにより登録される。例えば、この管理者は、工場Aを操業するメーカーの担当部門の担当者である。また、検査装置リストは、上述の図6で示したものである。
(Storage unit 52)
The memory unit 52 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, a solid-state drive, a flash memory, a ROM, etc. are used as the storage. The memory unit 52 stores a user list, a lot list, an inspection data DB, an authorized device list, etc. The user list and lot list are managed and registered by an administrator through access to the terminal device 70. For example, this administrator is a person in charge of the relevant department of the manufacturer that operates Factory A. The inspection device list is the one shown in FIG. 6 above.

 (ユーザーリスト)
 図8は、記憶部52に記憶される各種データの例である。図8に示すテーブルT11は、ユーザーリストの例である。ユーザーリストには、ユーザーID、ユーザー名、連絡先等が記憶される。また、ユーザーは、ユーザー毎の検索データDB(検査データベース)へのアクセス権が設定されており、ユーザー自身が係わるフィルムロール80(ロットIDで識別)に関する各種データ(検査データ、抽出データ等)へのアクセス権が付与される。
(User list)
FIG. 8 shows an example of various data stored in the storage unit 52. Table T11 shown in FIG. 8 is an example of a user list. The user list stores user IDs, user names, contact information, etc. Each user is assigned access rights to a search data DB (inspection database), and is granted access rights to various data (inspection data, extracted data, etc.) related to the film roll 80 (identified by lot ID) that the user is involved in.

 (ロットリスト)
 図8のテーブルT12は、ロットリストの例である。ロットリストには、フィルムロール毎に付与されるロットID、製品名(品種ともいう)、納入先ユーザーID(発注元)、および複数の製造条件、サイズ(幅、長さ、厚さ)、製造日等が記録される。
(Lot list)
Table T12 in Fig. 8 is an example of a lot list. The lot list records a lot ID assigned to each film roll, a product name (also called a type), a delivery destination user ID (orderer), multiple manufacturing conditions, size (width, length, thickness), manufacturing date, etc.

 (検査データDB)
 図9は、記憶部52に記憶される検査DB(データベース)の例である。検査データDBには、図9に示すような第1、第2検査データ、および特徴点の抽出結果等の各種のフィルムロール80の検査に関するデータが記憶される。上述のように第1検査データは、第1製造工程での検査で得られたデータである。第2検査データは、第2製造工程での検査で得られたデータである。特徴点の抽出結果は、これらの第1、第2検査データを用いて、情報処理システム50により生成されたデータである。
(Test data DB)
FIG. 9 is an example of an inspection DB (database) stored in the storage unit 52. The inspection data DB stores data related to the inspection of various film rolls 80, such as the first and second inspection data and feature point extraction results shown in FIG. 9. As described above, the first inspection data is data obtained from the inspection in the first manufacturing process. The second inspection data is data obtained from the inspection in the second manufacturing process. The feature point extraction results are data generated by the information processing system 50 using the first and second inspection data.

 図9に示すテーブルT13は、検査データDBに登録されている検査リストの例である。検査リストには、検査ID、ロットID、検査装置ID、検査データ、検査日時等が記憶される。検査装置IDは、図6のテーブルT01の検査装置名に対応する。検査リストに含まれる検査データの例については、後述する。 Table T13 shown in Figure 9 is an example of an inspection list registered in the inspection data DB. The inspection list stores the inspection ID, lot ID, inspection device ID, inspection data, inspection date and time, etc. The inspection device ID corresponds to the inspection device name in table T01 in Figure 6. Examples of inspection data included in the inspection list will be described later.

 (通信部53)
 通信部53は、PC等の外部の装置とネットワーク接続するインターフェースでもある。
(Communication unit 53)
The communication unit 53 also serves as an interface for network connection with an external device such as a PC.

 (第1、第2検査データの生成処理)
 以下、図10~図13を参照し、第1、第2製造工程で行われる第1、第2検査データの生成処理について説明する。図10は、第1製造工程で行われる第1検査データの生成処理を示すフローチャートである。
(Generation of first and second test data)
The process of generating the first and second inspection data performed in the first and second manufacturing steps will be described below with reference to Figures 10 to 13. Figure 10 is a flowchart showing the process of generating the first inspection data performed in the first manufacturing step.

 上述のように、以下においては図6のテーブルT02の例1の場合であるものとして説明する。すなわち、第1検査データは、検査装置aにより取得されたものであり、第2検査データは、検査装置cにより取得されたものである。この場合、第1の検査データは、第1の検査方式(第1の撮影方式)により取得された検査データである。第2の検査データは、2つの第1、第4の検査方式(第1、第2の撮影方式)により取得された検査データである。 As mentioned above, the following description will be based on Example 1 of Table T02 in Figure 6. That is, the first test data is obtained by test device a, and the second test data is obtained by test device c. In this case, the first test data is test data obtained by the first test method (first imaging method). The second test data is test data obtained by the two first and fourth test methods (first and second imaging methods).

 (第1検査データの生成処理)
 (ステップS11)
 上述の典型的な例においては第1製造工程では、フィルムロール製造装置1000によりフィルムロール80が製造される。
(First test data generation process)
(Step S11)
In the typical example described above, in the first manufacturing step, the film roll 80 is manufactured by the film roll manufacturing apparatus 1000 .

 (ステップS12)
 検査装置90は、フィルムを撮影し、画像データを保存する。検査装置90は、図3~図6等で説明したものである。
(Step S12)
The inspection device 90 photographs the film and stores the image data. The inspection device 90 is the same as that described with reference to FIGS.

 (ステップS13)
 検査装置90の撮影部が複数であれば、ステップS15の処理が行われ、撮影部が1つであればステップS14の処理が行われる。ここでは、検査装置aは、1つの撮影部1(透過1)を有するので、ステップS14の処理が行われる。
(Step S13)
If the inspection device 90 has multiple imaging units, the process of step S15 is performed, and if the inspection device 90 has one imaging unit, the process of step S14 is performed. In this example, the inspection device a has one imaging unit 1 (transmission 1), so the process of step S14 is performed.

 (ステップS14)
 画像解析部93は、画像データに対して以下に説明する画像処理を行い、複数の特徴点を生成する。
(Step S14)
The image analysis unit 93 performs image processing, which will be described below, on the image data to generate a plurality of feature points.

 (特徴点生成の画像処理)
 画像解析部93は、カメラ92により生成され、記憶部94に記憶されている2次元の画像データを取得する。
(Image processing for generating feature points)
The image analysis unit 93 acquires two-dimensional image data generated by the camera 92 and stored in the storage unit 94 .

 画像解析部93は、カメラ92から取得した画像データ(検査データ)に対して、データ処理を行う。 The image analysis unit 93 performs data processing on the image data (examination data) acquired from the camera 92.

 画像解析部93は、画像データを複数の領域に分割する。例えば、画像解析部93は、画像データを幅方向でn個(例えば数個~数十個)の領域(以下、領域a1~領域anと記載する)に分割する。 The image analysis unit 93 divides the image data into multiple regions. For example, the image analysis unit 93 divides the image data into n regions (e.g., several to several tens) in the width direction (hereinafter referred to as regions a1 to an).

 次に、画像解析部93は、1つの領域a1の画像データを取得し、領域a1の画像データに数学的処理を行う。検出対象の欠陥の種類(ゲージバンド、縦シワ、斜めシワ等)に応じて、適した数学的処理が用意されている。 Next, the image analysis unit 93 acquires image data for one area a1 and performs mathematical processing on the image data for area a1. Appropriate mathematical processing is provided depending on the type of defect to be detected (gauge band, vertical wrinkles, diagonal wrinkles, etc.).

 数学的処理には、前処理、強調処理、信号処理、画像特徴量抽出等が含まれる。 Mathematical processing includes preprocessing, enhancement processing, signal processing, image feature extraction, etc.

 前処理として、以下が挙げられる。
・画像のトリミング、
・ローパスフィルター、ハイパスフィルター、ガウシアンフィルター、メディアンフィルター、バイラテラルフィルター、・モルフォロジー変換、色変換(L*a*b*、sRGB、HSV、HSL)、コントラスト調整、ノイズ除去、ぼけ・ぶれ画像の復元、マスク処理、ハフ変換、射影変換等。
Pretreatment includes the following:
- Image cropping,
- Low-pass filter, high-pass filter, Gaussian filter, median filter, bilateral filter, - morphological transformation, color transformation (L*a*b*, sRGB, HSV, HSL), contrast adjustment, noise removal, restoration of blurred and shaken images, mask processing, Hough transform, projection transformation, etc.

 強調処理として、Sobelフィルター、Scharrフィルター、Laplacianフィルター、ガボールフィルター、キャニー法等が挙げられる。 Examples of enhancement processing include the Sobel filter, Scharr filter, Laplacian filter, Gabor filter, and Canny algorithm.

 信号処理として、以下が挙げられる。
・基本統計量(最大値、最小値、平均値、中央値、標準偏差、分散、四分位点)、二乗和平方根、差分、和、積、比、距離行列を求める処理、微分積分、閾値処理(二値化、適応的二値化等)、・フーリエ変換、ウェーブレット変換、ピーク検出(ピーク値、ピーク数、半値幅等)等。
The signal processing includes the following:
- Basic statistical quantities (maximum, minimum, average, median, standard deviation, variance, quartile), square root of the sum of squares, difference, sum, product, ratio, distance matrix calculation, differential and integral calculus, threshold processing (binarization, adaptive binarization, etc.), - Fourier transform, wavelet transform, peak detection (peak value, number of peaks, half-width, etc.), etc.

 画像特徴量抽出として、テンプレートマッチング、SIFT特徴量等が挙げられる。 Examples of image feature extraction include template matching and SIFT features.

 次に、画像解析部93は、領域a1の画像データについて数学的処理により求められた値(特徴量)に対して、閾値処理を行う。閾値処理は、所定の閾値に基づいて、検出対象の欠陥であるか否かを判定し、また、欠陥のランク(強度)を決定する処理である。 Next, the image analysis unit 93 performs threshold processing on the values (feature amounts) obtained by mathematical processing of the image data of area a1. Threshold processing is a process that determines whether or not the defect is the target of detection based on a predetermined threshold, and also determines the rank (intensity) of the defect.

 閾値処理において、欠陥の存在、欠陥の種類を判定することが「欠陥判定処理」に相当する。また、閾値処理において、閾値に従って欠陥を複数のランクに分類することが「定量評価処理」に相当する。 In threshold processing, determining the presence and type of defect corresponds to "defect determination processing." Also, in threshold processing, classifying defects into multiple ranks according to the threshold corresponds to "quantitative evaluation processing."

 例えば、1~100の値をとるパラメーター(特徴量)に対して、欠陥は複数のランクに分類される。例えば、欠陥の大きさ(径や面積)によってランクを分類する。また他にパラメーターの値に応じて大きさで分類したランクをさらに細分してもよい。 For example, defects are classified into multiple ranks for a parameter (feature) that takes a value between 1 and 100. For example, ranks are classified according to the size (diameter or area) of the defect. Ranks classified by size may also be further subdivided according to the parameter value.

 画像解析部93は、領域a1以外の領域に対しても同様に処理を行う。 The image analysis unit 93 performs similar processing on areas other than area a1.

 各領域a1~anに対する処理の後、画像解析部93は、各領域a1~anに対する結果を統合し、データ処理が終了する。具体的には、画像解析部93は、領域ごと(フィルムF8の幅方向における位置ごと)に、検出された欠陥のランクおよび発生位置(xy座標)を対応付けたデータを生成する。 After processing each of the regions a1-an, the image analysis unit 93 integrates the results for each of the regions a1-an, and data processing ends. Specifically, the image analysis unit 93 generates data that associates the rank of the detected defects with their location (x and y coordinates) for each region (each position in the width direction of the film F8).

 データ処理の後、画像解析部93は、データ処理の処理結果を記憶部94に保存する。画像解析部93は、1つのフィルムロール80の検査で得られた複数の画像データそれぞれに対して、このようなデータ処理を行って処理結果を得る。これらの処理結果を集約することで、図11に示すような検査データが生成される。 After data processing, the image analysis unit 93 stores the results of the data processing in the storage unit 94. The image analysis unit 93 performs this type of data processing on each of the multiple image data obtained in the inspection of one film roll 80, and obtains the processing results. By aggregating these processing results, inspection data such as that shown in Figure 11 is generated.

 図11は検査リストにある検査データ(検査ID:i0101)の内容の例を示したものである。検査データには、特徴点それぞれに自動的に連番で付与された特徴点IDと、特徴点ID毎の特徴点記述子1、2(以下、単に記述子1等という)が記述される。また、検査データの各特徴点には、どの撮影部により得られたかを示す情報が付与される(「撮影部」の列)。図11の例では、1つの撮影部1により得られた1次データを用いたので、全て特徴点については、撮影部1が記述されている。 Figure 11 shows an example of the contents of test data (test ID: i0101) in the test list. The test data contains feature point IDs that are automatically assigned consecutive numbers to each feature point, as well as feature point descriptors 1 and 2 (hereinafter simply referred to as descriptor 1, etc.) for each feature point ID. In addition, each feature point in the test data is given information indicating which imaging unit used to obtain it (the "imaging unit" column). In the example of Figure 11, primary data obtained by one imaging unit, 1, was used, so imaging unit 1 is described for all feature points.

 記述子1は、特徴点の単独の情報であり、そのXY座標位置と、強度が記録される。強度は、後述する特徴点のランクである。また、強度情報として、特徴点の大きさ(径、面積)、輝度の情報が含まれてもよい。XY座標位置は、フィルム面の起点(例えば、先端の左端)を基準としてXY座標である。Xはフィルムの幅方向の座標であり、フィルムサイズ(テーブルT12参照)に応じて例えば0~3000mmの範囲を取り得る。Yは、フィルムの長手方向の座標であり、フィルムサイズに応じて、例えば0~10000mの範囲を取り得る。記述子1の生成は、検査装置90の画像解析部93で行われる。 Descriptor 1 is information about a feature point alone, recording its XY coordinate position and intensity. Intensity is the rank of the feature point, which will be described later. Intensity information may also include information about the feature point's size (diameter, area) and brightness. The XY coordinate position is based on the origin of the film surface (for example, the left edge of the leading edge). X is the coordinate in the width direction of the film, and can range, for example, from 0 to 3000 mm depending on the film size (see Table T12). Y is the coordinate in the length direction of the film, and can range, for example, from 0 to 10,000 m depending on the film size. Descriptor 1 is generated by the image analysis unit 93 of the inspection device 90.

 記述子2は、周辺情報であり、他の特徴点との関係等の周囲の情報を表すベクトルや配列情報である。例えばSIFT特徴量を記述子として用いたり、カーネル密度推定を行って算出した特徴点の確率密度関数を記述子として用いたりする。この記述子2の生成は、主に対比部513により行われる。 Descriptor 2 is peripheral information, and is vector or array information that represents surrounding information such as relationships with other feature points. For example, SIFT features may be used as descriptors, or the probability density function of feature points calculated by kernel density estimation may be used as descriptors. Descriptor 2 is mainly generated by the comparison unit 513.

 (ステップS15~S16)
 撮影部が複数である場合には、ステップS15、S16の処理が行われる。ここでの処理は、後述の図12のステップS25、S26と同様の処理であり、処理の内容については、後述のこのステップS25、S26の説明でまとめて行う。
(Steps S15 to S16)
If there are multiple imaging units, the processes of steps S15 and S16 are performed. The processes here are the same as steps S25 and S26 in Fig. 12 described later, and the details of the processes will be explained together in the description of steps S25 and S26 described later.

 (ステップS17)
 第1製造工程にある端末装置70は、ステップS14またはステップS16までの処理で得られた複数の特徴点情報が含まれる検査データを情報処理システム50に送る。情報処理システム50の取得部511は、取得した検査データを第1検査データとして、記憶部52の検査データDBに保存する。図11に示す検査データは、このような第1検査データの例である。
(Step S17)
Terminal device 70 in the first manufacturing process sends inspection data including information on multiple feature points obtained in the processing up to step S14 or step S16 to information processing system 50. Acquisition unit 511 of information processing system 50 stores the acquired inspection data as first inspection data in the inspection data DB of storage unit 52. The inspection data shown in FIG. 11 is an example of such first inspection data.

 (第2検査データの生成処理)
 図12は、第2製造工程で行われる第2検査データの生成処理を示すフローチャートである。
(Generation process of second test data)
FIG. 12 is a flowchart showing the process of generating second inspection data performed in the second manufacturing process.

 (ステップS21)
 第2製造工程では、例えば、第1製造工程の後に、製品製造装置2000によりフィルムロール80を用いた後加工処理が実行され、フィルムF8を用いた製品を製造する。
(Step S21)
In the second manufacturing process, for example, after the first manufacturing process, the product manufacturing apparatus 2000 performs post-processing using the film roll 80 to manufacture a product using the film F8.

 (ステップS22)
 検査装置90は、後加工の前のフィルムF8、または後加工中または後加工後のフィルムF8または積層体80Bの表面を撮影し、画像データを保存する。
(Step S22)
The inspection device 90 photographs the surface of the film F8 before post-processing, or the film F8 during or after post-processing, or the surface of the laminate 80B, and stores the image data.

 (ステップS23)
 検査装置90の撮影部が複数であれば、ステップS25の処理が行われ、撮影部が1つであればステップS24の処理が行われる。ここでは、例としての検査装置cは、2つの撮影部1(透過1)、撮影部4(反射2)を有するので、ステップS15の処理が行われる。
(Step S23)
If the inspection device 90 has multiple imaging units, the process of step S25 is performed, and if the inspection device 90 has one imaging unit, the process of step S24 is performed. In this example, the inspection device c has two imaging units, imaging unit 1 (transmission 1) and imaging unit 4 (reflection 2), so the process of step S15 is performed.

 (ステップS24)
 検査装置が1つの撮影部(撮影部25)で構成された場合には、このステップS24を実行する。ここでの処理は、ステップS14と同様であり、説明を省略する。
(Step S24)
If the inspection device is configured with one imaging unit (imaging unit 25), step S24 is executed. The processing here is the same as step S14, and therefore a description thereof will be omitted.

 (ステップS25)
 画像解析部93は、ステップ14またはS24と同様の処理により、それぞれの撮影部から得られた検査データ(画像データ)により、複数の特徴点を生成し、1次検査データを生成する。この場合、2の撮影部1、撮影部4に対応して、2つの1次データが生成される。それぞれの1次データの構成は、図11に示した検査データと同様であり、特徴点ID、および特徴点記述子1(XY座標、大きさ)で構成される。
(Step S25)
The image analysis unit 93 generates a plurality of feature points from the inspection data (image data) obtained from each imaging unit through processing similar to that of step S14 or S24, and generates primary inspection data. In this case, two primary data are generated corresponding to imaging unit 1 and imaging unit 4 of 2. The configuration of each primary data is similar to the inspection data shown in Fig. 11, and is composed of a feature point ID and a feature point descriptor 1 (XY coordinates, size).

 (ステップS26)
 画像解析部93は、複数の1次データを位置情報および検査器間位置情報(テーブルT01参照)に基づいて、1つの検査データとして統合検査データを生成する。このステップS25、S26の処理は、ステップS15、S16と同様の処理である。
(Step S26)
The image analysis unit 93 generates integrated inspection data as one piece of inspection data from the plurality of primary data based on the position information and the inter-inspector position information (see Table T01). The processing in steps S25 and S26 is the same as that in steps S15 and S16.

 (ステップS27)
 第2製造工程にある端末装置70は、ステップS24またはステップS26までの処理で得られた複数の特徴点情報が含まれる検査データを情報処理システム50に送る。情報処理システム50の取得部511は、取得した検査データを第2検査データとして、記憶部52の検査データDBに保存する。
(Step S27)
Terminal device 70 in the second manufacturing process sends inspection data including the plurality of feature point information obtained in the processing up to step S24 or step S26 to information processing system 50. Acquisition unit 511 of information processing system 50 stores the acquired inspection data in the inspection data DB of storage unit 52 as second inspection data.

 図13は、このようにして生成され、保存された第2検査データ(検査ID:i0102)の内容の例を示したものである。の例である。図13に示す例では、検査データの「撮影部」の列には、撮影部1、撮影部4のうち、どちらの撮影部(撮影方式)で撮影されたかが記述されている。 Figure 13 shows an example of the contents of the second test data (test ID: i0102) generated and saved in this way. In the example shown in Figure 13, the "Image capture unit" column of the test data describes which image capture unit (image capture method) was used to capture the image, either Image capture unit 1 or Image capture unit 4.

 (特徴点の抽出処理)
 以下、図14~図24Cを参照し、情報処理システム50で実行される特徴点の抽出処理について説明する。図14は、特徴点の抽出処理を示すフローチャートである。図15は、端末装置70に表示される操作画面701の例である。図16は、特徴点の抽出処理を説明するための模式図である。
(Feature point extraction process)
The feature point extraction process executed by the information processing system 50 will be described below with reference to Figs. 14 to 24C. Fig. 14 is a flowchart showing the feature point extraction process. Fig. 15 is an example of an operation screen 701 displayed on the terminal device 70. Fig. 16 is a schematic diagram for explaining the feature point extraction process.

 情報処理システム50は、ユーザーからの端末装置70を通じた操作画面を通じた開始指示に応じて、または、第2検査データが記憶部52の検査データDBに登録され、一対の第1、第2検査データが揃ったタイミングで、ステップS31以下の処理を開始させる。図15の操作画面701において、ユーザーは、ロットを選択した後に、このロットに紐付けられている複数の検査データの中から、ボタンb1により第1、第2検査データを選択する。第2検査データは、第1検査データよりも下流側の工程で得られた検査データである。図15の例では、選択に応じて、第1検査データが検査装置a、第2検査データが検査装置cにより得られたものであることが示されている。ユーザーは、解析開始ボタンb0を操作する。これにより制御部51は特徴点抽出処理を開始する。 The information processing system 50 starts the processing from step S31 onward in response to a start instruction from the user via the operation screen on the terminal device 70, or when the second inspection data is registered in the inspection data DB of the storage unit 52 and a pair of first and second inspection data is obtained. On the operation screen 701 in Figure 15, the user selects a lot and then uses button b1 to select the first and second inspection data from the multiple inspection data linked to that lot. The second inspection data is inspection data obtained in a process downstream of the first inspection data. In the example in Figure 15, the selection indicates that the first inspection data was obtained by inspection device a and the second inspection data was obtained by inspection device c. The user operates the analysis start button b0, which causes the control unit 51 to start the feature point extraction process.

 (ステップS31)
 取得部511は、検査データDBから、同一ロット、すなわち一対の第1、第2検査データを取得する。
(Step S31)
The acquiring unit 511 acquires the same lot of inspection data, that is, a pair of first and second inspection data, from the inspection data DB.

 (ステップS32、S33)
 対比部513は、第1検査データに第1条件で前処理を実行し、第2検査データに第2条件で前処理を実行する。
(Steps S32 and S33)
The comparison unit 513 performs preprocessing on the first inspection data under a first condition, and performs preprocessing on the second inspection data under a second condition.

 対比部513は、図16に示すように、第2条件の前処理として、第2検査データに対して、巻き取り(第1製造工程)と繰り出し(第2製造工程)の違いがあれば、これを合わせるためにY座標(上下)を反転させる前処理を行う。また、第2製造工程において、カメラ92の撮影領域がフィルムF8の表面、裏面のどちらを撮影領域として設定しているかの情報に応じて、対比部513は、第2検査データ(または第1検査データ)に対してX座標(左右)を反転させる前処理を行う。 As shown in FIG. 16, as preprocessing for the second condition, the comparison unit 513 performs preprocessing to reverse the Y coordinate (up and down) of the second inspection data to match any differences between winding (first manufacturing process) and unwinding (second manufacturing process) of the second inspection data. Furthermore, in the second manufacturing process, the comparison unit 513 performs preprocessing to reverse the X coordinate (left and right) of the second inspection data (or first inspection data) depending on information on whether the shooting area of the camera 92 is set to the front or back of the film F8.

 また、対比部513は、第1検査データ、第2検査データに対して、第1、第2条件に含まれるノイズ除去処理として、下記の少なくともいずれかを実行する。
(1)低ランクの特徴点の除去。
(2)極小の特徴点を除去。
(3)連続打点を除去。
(4)幅手方向の集中打点を除去。これは、特にフィルムF8の先頭や後端に生じる。
Furthermore, the comparison unit 513 performs at least one of the following noise removal processes on the first and second test data as the noise removal processes included in the first and second conditions.
(1) Removal of low-rank feature points.
(2) Remove extremely small feature points.
(3) Eliminate consecutive hits.
(4) Eliminate concentrated impacts in the width direction. This occurs especially at the leading and trailing edges of film F8.

 (ステップS34)
 対比部513は、対比処理により一方の検査データにある特徴点と同一または対応する特徴点を他方の検査データから探索し、特徴点同士の対応付け(マッチング)を行う。図17は、このステップS34の処理を示すサブルーチンフローチャートである。
(Step S34)
The comparison unit 513 searches for feature points in one test data that are identical to or correspond to feature points in the other test data through comparison processing, and matches the feature points with each other. Fig. 17 is a subroutine flowchart showing the processing of step S34.

 (ステップS401)
 対比部513は、第1、第2検査データの各特徴点の記述子2を生成する。対比部513は、例えばSIFT特徴量を記述子として用いたり、カーネル密度推定を行って算出した特徴点の確率密度関数を記述子として用いたりする。
(Step S401)
The comparison unit 513 generates a descriptor 2 for each feature point of the first and second test data. For example, the comparison unit 513 uses a SIFT feature amount as the descriptor, or a probability density function of the feature points calculated by kernel density estimation as the descriptor.

 (ステップS402、S403)
 対比部513は、第1、第2検査データの特徴点同士を比較し、最も対応する点を検索する。対比部513は、特徴点同士の類似性を記述子1、および記述子2により評価し、最も類似する点を対応する特徴点と見做す。
(Steps S402 and S403)
The comparison unit 513 compares the feature points of the first and second test data to search for the most similar feature points. The comparison unit 513 evaluates the similarity between the feature points using Descriptor 1 and Descriptor 2, and regards the most similar feature points as corresponding feature points.

 例えば、第1、第2検査データの特徴点の比較において、対比部513は、第2の検査データの対象の特徴点に対応する特徴点を第1検査データの特徴点の中から探索する。この際に、対比部513は、第2の検査データの特徴点の記述子1のX、Y座標と、一致し、または強度が最も近い、第1検査データの特徴点を同一点と判定する。または、記述子1のX、Y座標間の距離(ユークリッド距離)が最も近いもの同士を同一点(対応する点)と判定する。対比部513は、設定された閾値よりも距離が離れた特徴点は、対応する点の判定から除外する。なお、本実施形態においては、閾値はX方向に比べてY方向の閾値は、2~3桁大きい値に設定している。例えば、X方向では閾値は数mmであり、Y方向の閾値は数mである。X方向に比べてY方向の閾値の方が2、3桁大きいのは変化量が多いためである。 For example, when comparing feature points between the first and second test data, the comparison unit 513 searches for feature points in the first test data that correspond to feature points of interest in the second test data. In this case, the comparison unit 513 determines that feature points in the first test data that match the X and Y coordinates of descriptor 1 of the feature point in the second test data or that have the closest intensity are the same point. Alternatively, the comparison unit 513 determines that feature points with the closest distance (Euclidean distance) between the X and Y coordinates of descriptor 1 are the same point (corresponding points). The comparison unit 513 excludes feature points that are farther apart than a set threshold from the determination of corresponding points. Note that in this embodiment, the threshold in the Y direction is set to a value that is two to three orders of magnitude larger than the threshold in the X direction. For example, the threshold in the X direction is several millimeters, and the threshold in the Y direction is several meters. The threshold in the Y direction is two to three orders of magnitude larger than the threshold in the X direction because there is a greater amount of change.

 また、対比部513は、記述子1とともに記述子2を用い、高次元ベクトル空間におけるベクトル同士の距離により最も類似する特徴点同士を抽出するようにしてもよい。その場合、対比部513は、記述子2としては上述のようにカーネル密度推定により算出した確率密度関数を用いてもよい。図18は、カーネル密度推定により算出した、特徴点の位置と強度(密度)を示す確率密度関数の例である。図18においては、縦横軸は、XY座標であり、また濃度が高いほど、密度が高いことが示されている。 Furthermore, the comparison unit 513 may use descriptor 2 in addition to descriptor 1 to extract feature points that are most similar based on the distance between vectors in high-dimensional vector space. In this case, the comparison unit 513 may use a probability density function calculated by kernel density estimation as described above as descriptor 2. Figure 18 is an example of a probability density function calculated by kernel density estimation that indicates the position and intensity (density) of feature points. In Figure 18, the vertical and horizontal axes are XY coordinates, and it is shown that the higher the concentration, the higher the density.

 対比部513は、1つの特徴点は、1つの特徴点のみに対応するものとして判定する。例えば、第2検査データの特徴点に対して、第1検査データで最も記述子のベクトル同士が近い特徴点を対応する点として対応点リストに登録する。 The comparison unit 513 determines that one feature point corresponds to only one other feature point. For example, for a feature point in the second test data, the feature point in the first test data whose descriptor vectors are closest to the feature point in the second test data is registered as the corresponding point in the corresponding point list.

 図19は、記憶部52に記憶される対応点リストの例である。対応点リストは、第2検査データの特徴点それぞれに対して、第1検査データ中の最も類似する特徴点が対応付けられたものである。また、対応点リストには、第2検査データの特徴点のXY座標と、対応付けられた特徴点間のユークリッド距離、X座標における差分dx、およびY座標における差分dyが記述されている。 Figure 19 is an example of a corresponding point list stored in the memory unit 52. The corresponding point list associates each feature point in the second inspection data with the most similar feature point in the first inspection data. The corresponding point list also describes the X and Y coordinates of the feature points in the second inspection data, the Euclidean distance between the associated feature points, the difference dx in the X coordinate, and the difference dy in the Y coordinate.

 (ステップS404)
 解析部514は、第1、第2検査データの両方に存在する特徴点同士の関連性情報を生成する。すなわち、解析部514は、対応点リストのうち、対応する特徴点が存在する特徴点に関して、関連性情報を示すデータとして、横軸をXまたはY、縦軸をdxまたはdyとした散布図および統計情報を生成する。統計情報には回帰直線、および相関係数が含まれる。以上で、制御部51は、図17の処理を終了し、図14の処理に戻り、ステップS35以下を行う。
(Step S404)
The analysis unit 514 generates correlation information between feature points that exist in both the first and second test data. That is, the analysis unit 514 generates a scatter plot with X or Y on the horizontal axis and dx or dy on the vertical axis and statistical information as data indicating correlation information for feature points that have corresponding feature points in the corresponding point list. The statistical information includes a regression line and a correlation coefficient. With this, the control unit 51 ends the processing in FIG. 17, returns to the processing in FIG. 14, and performs step S35 and subsequent steps.

 (ステップS35)
 抽出部515は、対応リスト、第1検査データ、第2検査データから特徴点を第1種から第3種特徴点までに分類する。第1~第3種特徴点については後述する。具体的には抽出部515は、対応リストにおいて、第2検査データの特徴点うち、第1検査データの特徴点で対応づけられていない特徴点を第2種特徴点に分類する。また、抽出部515は、第1検査データの特徴点のうち、対応リストに含まれてない特徴点(第2検査データの特徴点と対応づけられていない特徴点)を第1種特徴点に分類する。また、抽出部515は、統合検査データにある特徴点のうちで第3種特徴点に分類された特徴点を、複数の1次データそれぞれの特徴点に分類する。
(Step S35)
The extraction unit 515 classifies feature points from the correspondence list, the first test data, and the second test data into first to third type feature points. The first to third type feature points will be described later. Specifically, the extraction unit 515 classifies, in the correspondence list, feature points of the second test data that are not associated with feature points of the first test data as second type feature points. Furthermore, the extraction unit 515 classifies, among feature points of the first test data that are not included in the correspondence list (feature points that are not associated with feature points of the second test data), as first type feature points. Furthermore, the extraction unit 515 classifies, among feature points in the integrated test data, feature points classified as third type feature points into feature points of each of the multiple primary data.

 (第1~第3種特徴点)
 図20は、第1~第3種特徴点を説明するためのテーブルである。
(First to third type feature points)
FIG. 20 is a table for explaining the first to third type feature points.

 (第1種特徴点)
 第1種特徴点は、第1検査データに存在する特徴点であり、第2検査データには、存在しない特徴点である。第1種特徴点は、第2製造工程(例えば塗布工程や積層工程)で消えた特徴点である。この第1種特徴点は、第1製造工程では管理が不要な特徴点である。この場合、第1種特徴点の発生要因となる製造条件については、第1製造工程では規格緩和の対象となり得る。
(First type feature point)
The first type feature points are feature points that are present in the first inspection data but not present in the second inspection data. The first type feature points are feature points that disappear in the second manufacturing process (e.g., the coating process or the lamination process). These first type feature points are feature points that do not need to be managed in the first manufacturing process. In this case, the manufacturing conditions that cause the first type feature points to occur may be subject to relaxed standards in the first manufacturing process.

 (第2種特徴点)
 第2種特徴点は、第1検査データに存在せず、第2検査データに存在する特徴点である。第2種特徴点は、第2製造工程で新たに発生した特徴点である。この第2種特徴点は、第2製造工程起因の特徴点であることから、第2製造工程の改善に活かせる。
(Second type feature point)
The second type feature points are feature points that are not present in the first inspection data but are present in the second inspection data. The second type feature points are feature points that newly appear in the second manufacturing process. Because these second type feature points are feature points that originate in the second manufacturing process, they can be used to improve the second manufacturing process.

 (第3種特徴点)
 第3種特徴点は、第1検査データと第2検査データの両方に存在する特徴点である。この第3種特徴点は、第1製造工程起因の特徴点であり、また管理が必要な特徴点である。この第3種特徴点は、第1製造工程起因の特徴点であることから、第1製造工程の改善に活かせる。
(Third-class feature point)
The third type feature points are feature points that exist in both the first inspection data and the second inspection data. These third type feature points are feature points that originate from the first manufacturing process and require management. Because these third type feature points originate from the first manufacturing process, they can be used to improve the first manufacturing process.

 (ステップS36)
 制御部51は、ステップS35までの処理で抽出した特徴点抽出情報を出力する。特徴点抽出情報の出力は、制御部51により検査データDBに登録したり、表示出力部516により、端末装置70に送信し、その表示部に表示させたりすることにより行われる。
(Step S36)
The control unit 51 outputs the feature point extraction information extracted in the processes up to step S35. The feature point extraction information is output by the control unit 51 registering it in the inspection data DB, or by the display output unit 516 transmitting it to the terminal device 70 and displaying it on the display unit thereof.

 図21Aは、抽出結果データの例である(以下、単に抽出データともいう)。抽出データには、元になる第1、第2検査データそれぞれの検査IDと、特徴点毎の抽出結果が記録される。抽出結果(第1~第3種)は、図20で示した分類である。統合特徴点IDは、自動的に連番で付与されたものであり、第1、第2検査データのどちらまたは両方にある特徴点に対応して、統合特徴点が生成される。総合特徴点IDの個数≧第1検査、第2検査特徴点IDの個数である。 Figure 21A is an example of extraction result data (hereinafter simply referred to as extracted data). The extracted data records the inspection IDs of the original first and second inspection data, as well as the extraction results for each feature point. The extraction results (types 1 to 3) are classified as shown in Figure 20. Integrated feature point IDs are automatically assigned consecutive numbers, and integrated feature points are generated corresponding to feature points that are present in either or both of the first and second inspection data. The number of integrated feature point IDs is greater than or equal to the number of first inspection and second inspection feature point IDs.

 図21Bは、図13に対応する検査DBの例である。図21Bでは、特徴点記述子1、2について記載は一部省略しているが、図13と同様である。図21Bに示す第2検査データには、ステップS35の処理に応じて、最右欄(「抽出結果」)に第2種特徴点または第3種特徴点の抽出結果が記述されている。なお、第1検査データについても、複数の撮影部により複数の1次データが得られた場合には、同様に「抽出結果」欄が追加され、第1種特徴点または第3種特徴点の抽出結果が記述される。 FIG. 21B is an example of an inspection DB corresponding to FIG. 13. Although some of the description of feature point descriptors 1 and 2 has been omitted in FIG. 21B, it is the same as FIG. 13. In the second inspection data shown in FIG. 21B, the rightmost column ("Extraction Results") describes the extraction results of second-type or third-type feature points, depending on the processing in step S35. Note that for the first inspection data as well, if multiple primary data sets are obtained using multiple imaging units, an "Extraction Results" column is added, and the extraction results of first-type or third-type feature points are described therein.

 なお、1つのロットIDに対して、複数の検査装置による複数の第1、第2検査データが生成される場合もある。例えば、第2製造工程において、元巻き状態のフィルムロール80を検査(撮影)するとともに、その下流側のいくつかの工程で検査することにより複数の第2検査データが生成される場合である。この場合、情報処理システム50は、1つの第1検査データに対して、複数の第2検査データとの間(1対多)で、複数の特徴点の抽出結果データを生成するようにしてもよい。また、いずれの第2検査データと対応づけるかは、ユーザーにより選択できるようにしてもよい(例えば上述の図15のボタンb1)。 It should be noted that multiple first and second inspection data may be generated for one lot ID by multiple inspection devices. For example, in the second manufacturing process, the film roll 80 in its original wound state may be inspected (photographed), and multiple second inspection data may be generated by inspections in several downstream processes. In this case, the information processing system 50 may generate multiple feature point extraction result data for one piece of first inspection data in a one-to-many relationship with multiple pieces of second inspection data. The user may also be able to select which second inspection data to associate with (for example, button b1 in Figure 15 above).

 (ステップS37、S38)
 制御部51は、第1、第2検査データの少なくともいずれかが統合検査データであるか否かを判定する。例えば、第2検査データは検査装置c(図6参照)により2つの検査方式による撮影部それぞれの検査データにより2つの1次データが生成され、これを統合したものである(図12のステップS26)。このような場合、制御部51は、処理をステップS38に進め、特徴点の情報を表示する。図22は、ステップS38の処理を示すサブルーチンフローチャートである。
(Steps S37 and S38)
The control unit 51 determines whether at least one of the first and second test data is integrated test data. For example, the second test data is obtained by integrating two primary data generated by the test device c (see FIG. 6) using test data from each of the imaging units using two test methods (step S26 in FIG. 12). In such a case, the control unit 51 proceeds to step S38 and displays information about the feature points. FIG. 22 is a subroutine flowchart showing the processing of step S38.

 (ステップS501、S502)
 受付部512は、表示に関して、ユーザーから1次データまたは統合データの選択を受け付ける。図23は、端末装置70に表示される、選択受け付け用の操作画面702である。図23に示す操作画面702は、操作画面701に続いて表示される。ユーザーは、操作画面702において、ボタンb2により、プレビュー画面に表示する検査データの選択が行える。操作画面702の例においては、第2検査データが選択された状態を示している。特徴点の種類の選択、およびその表示内容の選択が行える。
(Steps S501 and S502)
The reception unit 512 receives a selection of primary data or integrated data from the user for display. FIG. 23 shows an operation screen 702 for receiving a selection, which is displayed on the terminal device 70. The operation screen 702 shown in FIG. 23 is displayed following the operation screen 701. The user can select the test data to be displayed on the preview screen by pressing button b2 on the operation screen 702. The example of the operation screen 702 shows a state in which the second test data has been selected. The type of feature point and its display content can be selected.

 ボタンb3により、2つの撮影部のうち、どの撮影部のデータを用いるかを選択できる。2つの撮影部を全て選択した場合には、統合データと実質同一になる。また、ボタンb4により、表示する特徴点の種類およびプレビューするグラフの種類を選択できる。例えば、操作画面702に示す例では、第2検査データにおいて、撮影部4および第3種特徴点が選択されている。この選択に応じて図21Bに示す第2の検査データから撮影部が「撮影部4」で、かつ、抽出結果が「第3種」である特徴点IDのデータが抽出され、抽出されたデータにより、ボタンb2で選択されたグラフの種類で、プレビュー表示領域b10に表示される。 Button b3 allows you to select which of the two imaging units to use for data. If both imaging units are selected, the data will be substantially the same as the integrated data. Additionally, button b4 allows you to select the type of feature points to display and the type of graph to preview. For example, in the example shown on operation screen 702, imaging unit 4 and third type feature points are selected in the second test data. In response to this selection, data for feature point IDs where the imaging unit is "imaging unit 4" and the extraction result is "third type" is extracted from the second test data shown in FIG. 21B, and the extracted data is displayed in the preview display area b10 in the type of graph selected with button b2.

 図24Aは、操作画面702の設定によりプレビュー表示された散布図の例である。なお、ボタンb2で撮影部1、撮影部4の両方が選択された場合には、色分け等で区別出来る態様で、両方のデータが散布図上にプロットされる。図24Aにおいて横軸は、ウェブ上の各特徴点のX座標であり、縦軸はY座標である。凡例Area0.1~0.5は、特徴点の大きさ(面積)の目安を示している。例えば面積0.1は凡例に示す小さい丸のサイズに対応した丸がグラフ領域にプロットされる。図24A(図24Bも同様)は、図23のボタンb3で選択された第2検査データを構成する2つの撮影部1、撮影部4の1次データにより得られた特徴点がプロットされている。図24Bは、ステップS502に対応する処理であり、操作画面702の設定によりプレビュー表示されたヒストグラムの例である。図24Bにおいて縦軸は、撮影部毎の特徴点の発生頻度を示しており、横軸は特徴点の面積(Area)である。図24Bでは、1次データにおける2種類の発生頻度を示している。凡例の光学A、Bは、それぞれ撮影部に相当する。例えば光学Aは撮影部1により得られた1次データであり、光学Bは撮影部4により得られた1次データである。 24A is an example of a scatter plot previewed by the settings on the operation screen 702. When both image capture unit 1 and image capture unit 4 are selected with button b2, both sets of data are plotted on the scatter plot in a manner that allows for differentiation, such as by color coding. In FIG. 24A, the horizontal axis represents the X coordinate of each feature point on the web, and the vertical axis represents the Y coordinate. The legend Area 0.1 to 0.5 indicates the approximate size (area) of the feature point. For example, an area of 0.1 is plotted in the graph area as a circle corresponding to the size of the small circle shown in the legend. In FIG. 24A (similar to FIG. 24B), feature points obtained from the primary data of the two image capture units 1 and 4 that make up the second test data selected with button b3 in FIG. 23 are plotted. FIG. 24B is an example of a histogram previewed by the settings on the operation screen 702, which corresponds to step S502. In FIG. 24B, the vertical axis represents the frequency of occurrence of feature points for each image capture unit, and the horizontal axis represents the area (Area) of the feature point. Figure 24B shows two types of occurrence frequencies in the primary data. Optical A and B in the legend correspond to the imaging units, respectively. For example, Optical A is primary data obtained by imaging unit 1, and Optical B is primary data obtained by imaging unit 4.

 このように本実施形態では、第1検査データにおけるウェブの第1の特徴点情報と第2検査データにおけるウェブの第2の特徴点情報とを、対比し、対比結果に基づき、第1、第2検査データの両方に存在する第3種特徴点、および/または、第1検査データに存在し第2検査データに存在しない第1種特徴点もしくは第1検査データに存在せず第2検査データに存在する第2種特徴点を抽出する。そして、第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データであり、他方の検査データは、一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである。このようにすることで、ウェブを製造する際、およびこれを用いて後加工を行う製造工程の双方において工程改善や出荷規格設定に役立てる情報を、効率的に収集できる。 In this manner, in this embodiment, the first feature point information of the web in the first inspection data is compared with the second feature point information of the web in the second inspection data, and based on the comparison results, third type feature points present in both the first and second inspection data and/or first type feature points present in the first inspection data but not in the second inspection data, or second type feature points absent in the first inspection data but present in the second inspection data, are extracted. One of the first inspection data and the second inspection data is inspection data acquired using one or more inspection methods, and the other inspection data is inspection data acquired using one or more inspection methods, including an inspection method different from the inspection method used for the one inspection data. In this manner, information useful for process improvement and setting shipping standards can be efficiently collected both when manufacturing the web and in the manufacturing process where post-processing is performed using the web.

 また、第1検査データまたは第2検査データの少なくとも一方の検査データは、同じ検査領域において複数種類の検査方式それぞれにより取得された複数の1次データそれぞれから抽出した特徴点情報を、ウェブ面上での位置合わせすることで統合した検査データである。これにより、より、各工程でのウェブの状態に応じた、1つまたは複数の適切な検査方式により適切な検査データを得ることができる。 Furthermore, at least one of the first and second inspection data is inspection data that is integrated by aligning on the web surface feature point information extracted from multiple primary data sets acquired in the same inspection area using multiple types of inspection methods. This makes it possible to obtain more appropriate inspection data using one or more appropriate inspection methods according to the state of the web in each process.

 また本実施形態では、図22で示したように第3種特徴点として抽出した後に、統合した検査データでの特徴点を、複数の1次データそれぞれでの特徴点に分類する。このようにすることで、例えば各特徴点について信頼度が高い特徴点なのか、信頼度が低い特徴点であるかを把握できる。例えば、第3種特徴点の場合には、実際に発生した特徴点である可能性が高い。反対に、第2種特徴点で、2つの検査方式の一方でしか発生しなかった(検出された)特徴点は、信頼度が低くノイズの可能性が高い。例えば、不透明なウェブを検査する第2検査データでは、撮影方式が反射1または反射2しか取り得ない。このような場合にはノイズが多くS/N比が低い場合が多いいが、ユーザーは、第1検査データでも特徴点として検出されている第3種特徴点の場合には、より確度高く、特徴点であると認定できる。 Furthermore, in this embodiment, after extracting type 3 feature points as shown in FIG. 22, the feature points in the integrated inspection data are classified into feature points in each of the multiple primary data. By doing this, it is possible to determine, for example, whether each feature point is a highly reliable feature point or a low-reliability feature point. For example, type 3 feature points are likely to be feature points that actually occurred. Conversely, type 2 feature points that occurred (detected) using only one of the two inspection methods are likely to be low-reliability and noisy. For example, in the second inspection data used to inspect an opaque web, the imaging method can only be reflection 1 or reflection 2. In such cases, there is often a lot of noise and a low S/N ratio, but the user can more reliably identify type 3 feature points that were also detected as feature points in the first inspection data as feature points.

 以上に説明した情報処理システム50の構成は、上記の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上記の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な情報処理装置/システムが備える構成を排除するものではない。 The configuration of the information processing system 50 described above is the main configuration used to explain the features of the above embodiment, but is not limited to the above configuration and can be modified in various ways within the scope of the claims. Furthermore, configurations that are commonly found in information processing devices/systems are not excluded.

 また、情報処理システム50には、第1製造工程および/または第2製造工程に配置した検査装置90が含まれてもよい。また、検査装置90の画像解析部93の特徴点の生成機能を、情報処理システム50の制御部51が担うようにしてもよい。この場合は、検査装置90からはフィルム面を撮影した画像データおよびその撮影条件(搬送速度、カメラ向き、画角等の情報)が情報処理システム50に送られ、特徴点の生成処理は、制御部51側で行われる。 The information processing system 50 may also include an inspection device 90 arranged in the first manufacturing process and/or the second manufacturing process. The feature point generation function of the image analysis unit 93 of the inspection device 90 may also be performed by the control unit 51 of the information processing system 50. In this case, the inspection device 90 sends image data of the film surface and the shooting conditions (information such as transport speed, camera direction, and angle of view) to the information processing system 50, and the feature point generation process is performed on the control unit 51 side.

 また、上述した実施形態に係る情報処理システム50における各種処理を行う手段及び方法は、専用のハードウェア回路、又はプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、USBメモリやDVD(Digital Versatile Disc)-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、装置の一機能としてその装置のソフトウエアに組み込まれてもよい。 Furthermore, the means and methods for performing various processes in the information processing system 50 according to the above-described embodiment can be realized by either a dedicated hardware circuit or a programmed computer. The above program may be provided by a computer-readable recording medium such as a USB memory or a DVD (Digital Versatile Disc)-ROM, or may be provided online via a network such as the Internet. In this case, the program recorded on the computer-readable recording medium is typically transferred to and stored in a storage unit such as a hard disk. Furthermore, the above program may be provided as standalone application software, or may be incorporated into the software of a device as one of its functions.

 本発明の実施形態を詳細に説明および図示したが、開示された実施形態は、図示および例示のみを目的として作成されたものであり、限定するものではない。本発明の範囲は、添付の特許請求の範囲の文言によって解釈されるべきである。 Although embodiments of the present invention have been described and illustrated in detail, the disclosed embodiments are made for purposes of illustration and example only and are not intended to be limiting. The scope of the present invention should be interpreted by the language of the appended claims.

 本出願は、2024年4月10日に出願された日本特許出願(特願2024-063185号)に基づいており、その開示内容は、参照され、全体として組み入れられている。 This application is based on a Japanese patent application (Patent Application No. 2024-063185) filed on April 10, 2024, the disclosure of which is incorporated herein by reference in its entirety.

50 情報処理システム
51 制御部
 511 取得部
 512 受付部
 513 対比部
 514 解析部
 515 抽出部
 516 表示出力部
52 記憶部
90、90a1~90a2、90b1~b4 検査装置
91 照明
92 カメラ
95 撮影部
1000 フィルムロール製造装置
2000 製品製造装置
50 Information processing system 51 Control unit 511 Acquisition unit 512 Reception unit 513 Comparison unit 514 Analysis unit 515 Extraction unit 516 Display output unit 52 Memory unit 90, 90a1 to 90a2, 90b1 to 90b4 Inspection device 91 Lighting 92 Camera 95 Photography unit 1000 Film roll manufacturing device 2000 Product manufacturing device

Claims (13)

 ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データを取得するステップ(a)と、
 前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得するステップ(b)と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比するステップ(c)と、
 前記ステップ(c)の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点、および/または、前記第1検査データに存在し前記第2検査データに存在しない第1種特徴点もしくは前記第1検査データに存在せず前記第2検査データに存在する第2種特徴点を抽出するステップ(d)、とを有し、
 前記第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データであり、他方の検査データは、前記一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである、特徴点の抽出方法。
A method for extracting feature points on a web, comprising:
A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web;
(b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process;
(c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data;
and (d) extracting, based on the comparison result of the step (c), third type feature points present in both the first and second test data, and/or first type feature points present in the first test data but not in the second test data, or second type feature points present in the second test data but not in the first test data,
A method for extracting feature points, wherein one of the first inspection data and the second inspection data is inspection data acquired by one or more inspection methods, and the other inspection data is inspection data acquired by one or more inspection methods including an inspection method different from the inspection method of the one inspection data.
 前記第1検査データ、および前記第2検査データは、ウェブを検査装置で撮影することにより得られた検査データであり、
 前記他方の検査データの検査装置での撮影方式は、前記一方の検査データの検査装置での撮影方式とは異なる撮影方式を含む1つ以上の撮影方式により取得された検査データである、請求項1に記載の特徴点の抽出方法。
the first inspection data and the second inspection data are inspection data obtained by photographing a web with an inspection device,
2. The feature point extraction method according to claim 1, wherein the imaging method of the other inspection data in the inspection device is inspection data acquired using one or more imaging methods, including an imaging method different from the imaging method of the one inspection data in the inspection device.
 前記一方の検査データの取得に用いられた撮影方式には、照明と撮影部との位置関係により、ウェブ内を直進する透過光を撮影する第1の撮影方式、ウェブ内で反射した透過光を撮影する第2の撮影方式、ウェブ表面で正反射した反射光を撮影する第3の撮影方式、および、ウェブ表面で散乱した反射光を撮影する第4の撮影方式の少なくとも一つが含まれ、
 前記他方の検査データの撮影方式には、前記第1~第4の撮影方式のうち、前記一方の検査データの撮影方式とは、異なる撮影方式が含まれる、請求項2に記載の特徴点の抽出方法。
The imaging method used to acquire the one of the inspection data includes at least one of a first imaging method for imaging transmitted light traveling straight through the web, a second imaging method for imaging transmitted light reflected within the web, a third imaging method for imaging reflected light specularly reflected from the web surface, and a fourth imaging method for imaging reflected light scattered from the web surface, depending on the positional relationship between the lighting and the imaging unit;
3. The feature point extraction method according to claim 2, wherein the imaging method of the other test data includes an imaging method, among the first to fourth imaging methods, that is different from the imaging method of the one test data.
 前記撮影方式には、光の偏光状態を検出する偏光を用いた撮影方式が含まれる、請求項2に記載の特徴点の抽出方法。 The feature point extraction method described in claim 2, wherein the imaging method includes an imaging method using polarized light that detects the polarization state of light.  前記第1検査データまたは第2検査データの少なくとも一方の検査データは、
 同じ検査領域において複数種類の検査方式それぞれにより取得された複数の1次データそれぞれから抽出した特徴点情報を、ウェブ面上での位置合わせすることで統合した検査データである、請求項1に記載の特徴点の抽出方法。
At least one of the first test data and the second test data is
2. The feature extraction method according to claim 1, wherein the inspection data is integrated by aligning feature information extracted from multiple primary data sets acquired by multiple types of inspection methods in the same inspection area on the web surface.
 前記ステップ(d)で、前記統合した検査データを用いて、第3種特徴点として抽出した後で、
 前記統合した検査データでの特徴点を、複数の1次データそれぞれでの特徴点に分類する、ステップ(e)をさらに有する、請求項5に記載の特徴点の抽出方法。
In the step (d), after extracting the third type feature points using the integrated inspection data,
The feature point extraction method according to claim 5 , further comprising the step (e) of classifying the feature points in the integrated inspection data into feature points in each of the plurality of primary data.
 前記一方の検査データの前記検査方式の選択を受け付けるステップ(f)と、
 前記ステップ(f)の選択により、選択された検査方式に対応する前記ステップ(e)で分類された1次データの特徴点情報を表示させるステップ(g)と、を含む、請求項6に記載の特徴点の抽出方法。
a step (f) of accepting a selection of the inspection method for the one of the inspection data;
and (g) displaying, by selection in step (f), feature point information of the primary data classified in step (e) corresponding to the selected inspection method.
 ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データを取得するステップ(a)と、
 前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得するステップ(b)と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比するステップ(c)と、
 前記ステップ(c)の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点を抽出するステップ(d)、とを有し、
 前記第1検査データおよび第2検査データのすくなくとも一方は、同じ検査領域において複数種類の検査方式それぞれにより取得された複数の1次データそれぞれから抽出した特徴点情報を、ウェブ面上での位置合わせすることで統合した検査データであり、
 さらに、前記統合した検査データを用いて、前記ステップ(d)で前記第3種特徴点として抽出した後で、前記統合した検査データでの特徴点を、複数の1次データそれぞれでの特徴点に分類するステップ(e)を有する、特徴点の抽出方法。
A method for extracting feature points on a web, comprising:
A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web;
(b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process;
(c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data;
and (d) extracting third type feature points present in both the first and second inspection data based on the comparison result of the step (c),
At least one of the first inspection data and the second inspection data is inspection data obtained by integrating feature point information extracted from a plurality of primary data acquired by a plurality of types of inspection methods in the same inspection area by aligning the feature point information on the web surface;
The feature point extraction method further comprises a step (e) of classifying the feature points in the integrated inspection data into feature points in each of a plurality of primary data sets after extracting the third type feature points in the step (d) using the integrated inspection data.
 前記第1検査データ、および前記第2検査データは、ウェブを検査装置で撮影することにより得られた検査データであり、
 前記一方の検査データの検査装置は、複数の撮影方式により取得された検査データである、請求項8に記載の特徴点の抽出方法。
the first inspection data and the second inspection data are inspection data obtained by photographing a web with an inspection device,
The feature point extraction method according to claim 8 , wherein the inspection device of the one inspection data is inspection data acquired by a plurality of imaging methods.
 前記一方の検査データの前記検査方式の選択を受け付けるステップ(f)と、
 前記ステップ(f)の選択により、選択された検査方式に対応する前記ステップ(e)で分類された1次データの特徴点情報を表示させるステップ(g)と、を含む、請求項8に記載の特徴点の抽出方法。
a step (f) of accepting a selection of the inspection method for the one of the inspection data;
and (g) displaying, by selection in step (f), feature point information of the primary data classified in step (e) corresponding to the selected inspection method.
 請求項1~請求項10のいずれかに記載の抽出方法を、コンピューターに実行させるための制御プログラム。 A control program for causing a computer to execute the extraction method described in any one of claims 1 to 10.  ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得する取得部と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比する対比部と、
 前記対比部の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点、および/または、前記第1検査データに存在し前記第2検査データに存在しない第1種特徴点もしくは前記第1検査データに存在せず前記第2検査データに存在する第2種特徴点を抽出する抽出部と、を有し、
 前記第1検査データおよび第2検査データの一方の検査データは1つ以上の検査方式により取得された検査データであり、他方の検査データは、前記一方の検査データの検査方式とは異なる検査方式を含む1つ以上の検査方式により取得された検査データである、情報処理システム。
A method for extracting feature points on a web, comprising:
an acquisition unit that acquires first inspection data in a first manufacturing process that manufactures a web or post-processes a manufactured web, and second inspection data in a second manufacturing process that performs post-processing using the web after the first manufacturing process;
a comparison unit that compares the first feature information of the web in the first inspection data with the second feature information of the web in the second inspection data;
an extraction unit that extracts, based on a comparison result from the comparison unit, third type feature points that are present in both the first and second test data, and/or first type feature points that are present in the first test data but not in the second test data, or second type feature points that are not present in the first test data but are present in the second test data,
An information processing system, wherein one of the first test data and the second test data is test data obtained by one or more test methods, and the other test data is test data obtained by one or more test methods including a test method different from the test method of the one test data.
 ウェブの特徴点の抽出方法であって、
 ウェブを製造、または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得する取得部と、
 前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを、対比する対比部と、
 前記対比部の対比結果に基づき、前記第1、第2検査データの両方に存在する第3種特徴点を抽出する抽出部と、を有し、
 前記第1検査データおよび第2検査データのすくなくとも一方は、同じ検査領域において複数種類の検査方式それぞれにより取得された複数の1次データそれぞれから抽出した特徴点情報を、ウェブ面上での位置合わせすることで統合した検査データであり、
 前記抽出部は、前記統合した検査データを用いて、前記第3種特徴点として抽出した後で、前記統合した検査データでの特徴点を、複数の1次データそれぞれでの特徴点に分類する、情報処理システム。
A method for extracting feature points on a web, comprising:
an acquisition unit that acquires first inspection data in a first manufacturing process that manufactures a web or post-processes a manufactured web, and second inspection data in a second manufacturing process that performs post-processing using the web after the first manufacturing process;
a comparison unit that compares the first feature point information of the web in the first inspection data with the second feature point information of the web in the second inspection data;
an extraction unit that extracts third type feature points that exist in both the first and second inspection data based on a comparison result from the comparison unit,
At least one of the first inspection data and the second inspection data is inspection data that is integrated by aligning feature point information extracted from a plurality of primary data acquired by a plurality of types of inspection methods in the same inspection area on the web surface,
an information processing system, wherein the extraction unit uses the integrated inspection data to extract the third type feature points, and then classifies the feature points in the integrated inspection data into feature points in each of a plurality of primary data.
PCT/JP2025/001524 2024-04-10 2025-01-20 Feature point extraction method, control program, and information processing system Pending WO2025215901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2024063185 2024-04-10
JP2024-063185 2024-04-10

Publications (1)

Publication Number Publication Date
WO2025215901A1 true WO2025215901A1 (en) 2025-10-16

Family

ID=97350190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2025/001524 Pending WO2025215901A1 (en) 2024-04-10 2025-01-20 Feature point extraction method, control program, and information processing system

Country Status (1)

Country Link
WO (1) WO2025215901A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534833A (en) * 2007-07-26 2010-11-11 スリーエム イノベイティブ プロパティズ カンパニー Method and system for automatic inspection of web materials
JP2013088247A (en) * 2011-10-17 2013-05-13 Toppan Printing Co Ltd Quality monitoring system and quality monitoring method
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534833A (en) * 2007-07-26 2010-11-11 スリーエム イノベイティブ プロパティズ カンパニー Method and system for automatic inspection of web materials
JP2013088247A (en) * 2011-10-17 2013-05-13 Toppan Printing Co Ltd Quality monitoring system and quality monitoring method
JP2014163694A (en) * 2013-02-21 2014-09-08 Omron Corp Defect inspection device, and defect inspection method

Similar Documents

Publication Publication Date Title
JP5825278B2 (en) Defect inspection apparatus and defect inspection method
EP1664749B1 (en) Apparatus and method for automated web inspection
CN102834712B (en) Surface detection method for steel plate having resin coating film and surface detection device for same
JP7005930B2 (en) Sheet inspection equipment and inspection system
KR20190122550A (en) Inspection management system, inspection management apparatus and inspection management method
CN112697800A (en) Defect detection device and method
JP2013007689A (en) Defect inspection apparatus and method
KR20230016571A (en) Film inspection apparatus, film inspection method and program
WO2017168630A1 (en) Flaw inspection device and flaw inspection method
JP7293907B2 (en) Visual inspection management system, visual inspection management device, visual inspection management method and program
KR20120129020A (en) Apparatus and method for monitoring defect in film
KR102632190B1 (en) Imaging apparatus for obtaining image of polarizing film, inspection apparatus, and inspection method
CN113624457B (en) Thin film uniformity detection system based on optical diffraction
CN113624458B (en) Film uniformity detecting system based on double-path full-projection light
WO2025215901A1 (en) Feature point extraction method, control program, and information processing system
KR102864461B1 (en) Automatic inspection apparatus for stain and method for inspecting stain using thereof
JP3357968B2 (en) Lenticular lens sheet defect inspection method
TW201530121A (en) Panel defective pixel detection method and system
CN113281351A (en) Printed circuit board appearance detection method based on polarization
WO2025215902A1 (en) Information processing system, control method, and control program
WO2025204016A1 (en) Information processing system, feature point extraction method, and control program
WO2025210977A1 (en) Information processing system, information processing method, and information processing program
Gendre et al. Interest of polarimetric refocused images calibrated in depth for control by vision
TW202540642A (en) Information processing system, information processing method and information processing program
CN113624461B (en) Film uniformity detection system based on line structured light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 25786564

Country of ref document: EP

Kind code of ref document: A1