WO2025204016A1 - Information processing system, feature point extraction method, and control program - Google Patents
Information processing system, feature point extraction method, and control programInfo
- Publication number
- WO2025204016A1 WO2025204016A1 PCT/JP2025/000957 JP2025000957W WO2025204016A1 WO 2025204016 A1 WO2025204016 A1 WO 2025204016A1 JP 2025000957 W JP2025000957 W JP 2025000957W WO 2025204016 A1 WO2025204016 A1 WO 2025204016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection data
- feature points
- information
- web
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
- G01N21/892—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
Definitions
- Patent Document 1 synchronizes inspection results based on the mutual distance and movement distance between the inspection devices, and is unable to achieve synchronization when the film expands or contracts. Furthermore, synchronization is also unable to be achieved when two inspection devices are wound up with film in a roll and then have offline processing performed to unwind the roll.
- the present invention was made in consideration of the above circumstances, and aims to efficiently collect information that is useful for process improvement and setting shipping standards both when manufacturing webs and in the manufacturing process where post-processing is performed using these webs.
- an acquisition unit that acquires first inspection data in a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data in a second manufacturing process in which post-processing using the web is performed after the first manufacturing process; a comparison unit that compares first feature point information of the web in the first inspection data with second feature point information of the web in the second inspection data and extracts identical feature points between the first and second inspection data; an analysis unit that generates relationship information indicating a relationship between a difference value between the coordinates of each of the plurality of feature points extracted by the comparison unit in the first inspection data and the second inspection data and a coordinate position on the entire web; an output unit that outputs the relationship information.
- relationship information is a graph showing the relationship between coordinate difference values and overall coordinate positions.
- the receiving unit receives the correction amount after the output unit displays the relationship information;
- the comparison unit extracts the same feature points again, the analysis unit generates the relationship information, and
- the relationship information is a scatter diagram and a regression equation that represent the relationship between the coordinate difference value and the overall coordinate position,
- the relationship information includes a correlation coefficient indicating the relationship between the coordinate difference value and the overall coordinate position, or a variance of the difference value,
- the information processing system described in (1) above wherein the analysis unit generates an alert when the absolute value of the correlation coefficient is less than or equal to a first predetermined threshold value or when the variance is greater than or equal to a second predetermined threshold value, and the output unit notifies the alert.
- a method for extracting feature points of a web comprising: A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web; (b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process; (c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data; (d) extracting identical feature points between the first and second inspection data based on the comparison result of the step (c); a step (e) of generating relationship information indicating a relationship between a difference value between the coordinates of each of the plurality of feature points extracted in the step (d) in the first inspection data and the second inspection data and a coordinate position on the entire web; and (f) outputting the relationship information generated in the step (e).
- the information processing system of the present invention includes an acquisition unit that acquires first inspection data from a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data from a second manufacturing process in which post-processing using the web is performed after the first manufacturing process.
- the information processing system also includes a comparison unit that compares first feature point information of the web in the first inspection data with second feature point information of the web in the second inspection data and extracts identical feature points in the first and second inspection data, an analysis unit that generates relationship information indicating the relationship between the coordinate difference values in the first inspection data and the second inspection data for each of the multiple feature points extracted by the comparison unit and their coordinate positions across the entire web, and an output unit that outputs the relationship information.
- FIG. 1 is a schematic diagram showing a film roll production line. 2 is a top view of the stretching process, drying process, and trimming process of the production line in FIG. 1.
- FIG. 1 is a schematic diagram illustrating a configuration of an inspection device.
- FIG. 1 is a schematic diagram illustrating a configuration of an inspection device.
- FIG. 1 is a schematic diagram illustrating a configuration of an inspection device.
- FIG. 1 is a schematic diagram illustrating an application example of an information processing system according to an embodiment of the present invention.
- 10 is a table for explaining extracted first to third type feature points.
- FIG. 1 is a block diagram showing a schematic configuration of an information processing system. 4 is an example of various data stored in a storage unit. 10 is an example of an inspection data DB stored in a storage unit. 10 is a flowchart showing a process for generating first inspection data performed in a first manufacturing process. 10 is a flowchart showing a process for generating second inspection data performed in a second manufacturing process. 10 is a flowchart showing a feature point extraction process executed in the information processing system. 10 is an example of an operation screen for accepting a scaling ratio. FIG. 10 is a schematic diagram for explaining the extraction processing of feature points. 10 is a subroutine flowchart showing a comparison process 1 in step S35.
- 10 is an example of a probability density function calculated by kernel density estimation, which shows the positions and intensities of feature points.
- 10 is an example of a corresponding point list.
- 10 is an example of a distribution map as relationship information.
- 10 is an example of a distribution map as relationship information.
- 10 is an example of a distribution map as relationship information.
- 10 is an example of a distribution map as relationship information.
- 10 is an example of an operation screen for accepting a correction amount.
- 10 is a subroutine flowchart showing a comparison process 2 in step S50.
- 10 is an example of a distribution map after applying a correction amount.
- 10 shows an example of a feature point extraction condition.
- FIG. 10 is a schematic diagram for explaining classification according to the distance from the regression equation.
- 10 is a flowchart illustrating a feature point extraction process according to the second embodiment.
- 10A and 10B are diagrams illustrating an example of a distribution map and an alert display.
- the term "web" refers to a sheet-like material, including resin film and metal film.
- the web refers to a long resin film, and is described as a film roll and the material that is processed. Processing also includes the process of applying a coating liquid and the process of layering another film-like material.
- Figure 1 is a schematic diagram showing a film roll production line.
- the production line shown in Figures 1 and 2 illustrates film production using a solution casting method, but is not limited to this and film production using a melt extrusion method is also possible.
- the material of the film F8 produced as shown in Figures 1 and 2 is not particularly limited, but typical examples include polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, cyclic olefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, phenolic resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, cellulose acetate resin, and vinyl chloride resin.
- the width of film F8 is preferably 1000 mm to 3200 mm, taking into account productivity, quality, etc.
- the thickness is preferably 15 ⁇ m to 500 ⁇ m, taking into account quality, handling, etc.
- Camera 92 is an optical sensor that optically reads the inspection area of film F8.
- Camera 92 is equipped with imaging elements such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), lenses, etc.
- Camera 92 is an area sensor that generates two-dimensional image data from the output signals of each imaging element.
- Camera 92 detects diffused light that is irradiated by light source 91 and reflected in the inspection area of film F8.
- either a color camera or a black and white camera (monochrome camera) may be used as camera 92.
- the one or more cameras 92 have a shooting range that spans the entire width of the film F8, and in one shooting session, the entire width of the film F8 is simultaneously read.
- the cameras 92 may be those that detect light in the visible light range or those that detect light in the infrared range.
- the contrast between the signal values corresponding to the illuminated areas on film F8 illuminated by light source 91 and the signal values corresponding to the non-illuminated areas not illuminated by light source 91 in the output signal from camera 92 be equal to or greater than a predetermined value. In other words, it is desirable that only the areas on film F8 illuminated by light from light source 91 (illuminated areas) appear bright.
- Contrast is expressed as the difference or ratio between two values to be processed (here, the signal value corresponding to the irradiated area and the signal value corresponding to the non-irradiated area), and the greater the difference between the two values, the greater the contrast.
- a light source 91 that is powerful and highly directional.
- strong means that when the illuminance at an irradiation distance of 50 mm is E50, the illuminance E50 is 50,000 lx or more.
- highly directional means that when the illuminance at an irradiation distance of 50 mm is E50 and the illuminance at an irradiation distance of 100 mm is E100, the relationship (E50 - E100)/E50 ⁇ 0.5 is satisfied.
- the image analysis unit 93 is composed of a CPU, RAM, etc., and reads various processing programs stored in the memory unit 94, loads them into RAM, and performs various processes in cooperation with these programs.
- the storage unit 94 is composed of an HDD, SSD (Solid State Drive), etc., and stores various processing programs, data required to execute those programs, etc.
- the storage unit 94 also stores captured image data (inspection data) linked to the time of capture.
- the storage unit 94 also stores the winding speed (e.g., 100 m/min) of the film roll manufacturing apparatus 1000, or the unwinding conditions (e.g., 30 m/min) of film F8 in the product manufacturing apparatus 2000. These winding speeds and unwinding conditions may be included in the inspection list of the inspection DB (see table T3 in Figure 8).
- the image analysis unit 93 performs data processing on the output signal of the camera 92 (optical sensor) to detect characteristic points (position and intensity) of defects, etc. on the film F8.
- the data processing includes image processing of the image data obtained from the output signal of the camera 92, defect determination processing to determine defects based on the data after image processing, and quantitative evaluation processing to quantitatively evaluate defects based on the data after image processing.
- the camera 92 may be positioned to avoid receiving specularly reflected light from the light source 91 (in the case of a dark-field inspection method that receives scattered light). In other words, it is preferable to position the camera 92 in a position that receives diffused light reflected from the object being inspected.
- Transmission type inspection device 3C shows an example of a transmission type inspection device 90.
- a transmission type inspection device 90 in which the light source 91 is disposed opposite the camera 92 with the film F8 sandwiched therebetween may be employed.
- FIG. 4 is a schematic diagram showing an application example of an information processing system 50 according to this embodiment.
- the information processing system 50 communicates with terminal devices 70 and the like in factories A and B via a network.
- the network is a communication line such as a data communication network.
- Some networks may use a wired LAN, a wireless LAN, or the like (for example, a LAN conforming to the IEEE 802.11 standard).
- the terminal device 70 is, for example, a PC (personal computer).
- the terminal device 70 is a PC used by an employee of a manufacturing company that operates Factory A and Factory B.
- Factory A is equipped with the above-mentioned film roll manufacturing apparatus 1000.
- Factory A is operated or managed by, for example, a film manufacturer.
- Factory A carries out the first manufacturing process of manufacturing a film roll 80.
- the film surface of the film roll 80 is inspected by an inspection device 90.
- Factory B is equipped with product manufacturing equipment 2000. Factory B is operated or managed, for example, by a coating manufacturer (hereinafter also referred to as a user company or user). There are multiple user companies operating each factory B. Factory B manufactures products using film rolls 80 shipped and transported from factory A. Factory B performs the first or second manufacturing process, which involves unwinding film (film F8, described below) from film roll 80 and coating, or superimposing or adhering it to other films for post-processing.
- film F8 unwinding film
- the process of manufacturing a film (web) is called the first manufacturing process
- the post-processing carried out at factory B using this manufactured film is called the second manufacturing process.
- the post-processing process involves a stretching process, or a stretching process and a coating process in which a functional layer is applied to the surface.
- the film surface of the film roll 80 is also inspected by inspection device 90.
- the first post-processing step may be referred to as the first manufacturing process
- the later post-processing step may be referred to as the second manufacturing process
- the film roll 80 manufactured in factory A may be unwound and post-processed in a later process.
- the process of manufacturing the film roll 80 may be referred to as the first manufacturing process
- the later post-processing step performed in the same factory A after unwounding the film roll 80 may be referred to as the second manufacturing process.
- the second manufacturing process performed in factory A includes stretching and drying steps.
- inspection data also referred to as failure data or defect data
- first inspection data containing feature point information (feature points, positions, and intensity) is generated by analyzing image data obtained by photographing the film's surface.
- Information processing system 50 acquires the first inspection data from terminal device 70 at Factory A (Step S1).
- feature points are defects on the film, and are generated by analyzing image data.
- Image analysis can be performed using known techniques to extract, as feature points, pixels in image data captured of the film surface whose pixel values deviate by a specified amount from the average value of the surrounding pixels (the difference is greater than a specified amount).
- feature points can be calculated using the "image processing for feature point generation" method described below. Tens to thousands of feature points are often generated from one or more image data captured of a single film roll 80 (total length of several km). Defects include both defects that could result in product defects and minor defects that do not result in product defects. Feature points include defects related to poor adhesion when films are bonded together (by ultrasonic welding, etc.), axial irregularities, etc.
- Feature point information includes size and position (x, y coordinates). Feature point information can also be obtained by grouping (clustering) multiple nearby feature points together. The image processing for feature point generation will be described later.
- the film roll 80 manufactured in Factory A is transported to Factory B.
- Factory B's second manufacturing process during product inspection, the film roll 80 is optically inspected by inspection device 90, and inspection data is generated. Image data obtained by photographing the film surface is analyzed to generate inspection data containing feature points (hereinafter referred to as second inspection data).
- the information processing system 50 acquires the second inspection data from the terminal device 70 in Factory B (Step S2). It is preferable that the inspection device 90 in Factory A (first manufacturing process) and the inspection device 90 in Factory B (second manufacturing process) are the same, i.e., have the same measurement system and the same measurement conditions, but this is not limited to this. Factories A and B may have different required performance, quality, and product standards (hereinafter referred to as product standards, etc.), and an inspection device 90 with an appropriate measurement system and measurement conditions may be used depending on the respective product standards, etc.
- the information processing system 50 performs a feature point extraction process by comparing the first and second inspection data for the same film roll 80 (step S3). Specifically, the information processing system 50 performs a feature point extraction process by comparing feature points at corresponding positions on the film surface in the first and second inspection data.
- detecting feature points from image data is referred to as "generating feature points.”
- Comparing the first and second inspection data and classifying the feature points into one of the following first to third type feature points is referred to as "extracting feature points.”
- Figure 5 is a table explaining the first to third type feature points extracted by the feature point extraction process.
- Multiple feature points generated from the inspection data of one film roll 80 may be classified into each of the first to third type feature points. For example, some of the hundreds of feature points may be extracted as first type feature points, some as second type feature points, and the rest as third type feature points.
- the first type feature points are feature points that are present in the first inspection data but not present in the second inspection data.
- the first type feature points are feature points that disappear in the second manufacturing process (e.g., the coating process).
- These first type feature points are feature points that do not need to be managed in the first manufacturing process. In this case, the manufacturing conditions that cause the first type feature points to occur may be subject to relaxed standards in the first manufacturing process.
- the second type feature points are feature points that are not present in the first inspection data but are present in the second inspection data.
- the second type feature points are feature points that newly appear in the second manufacturing process. Because these second type feature points are feature points that originate in the second manufacturing process, they can be used to improve the second manufacturing process.
- the third type feature points are feature points that exist in both the first inspection data and the second inspection data. These third type feature points are feature points that originate from the first manufacturing process and require management. Because these third type feature points originate from the first manufacturing process, they can be used to improve the first manufacturing process.
- the information processing system 50 may also provide feedback on the feature point extraction results to users such as employees of Factory A and Factory B (Step S4).
- the extraction results may be sent to terminal device 70 in response to access from the terminal device 70 of the user of the manufacturer of the target film roll 80 and the terminal device 70 of the user to whom the film roll 80 was delivered. This completes the overview of the feature point extraction process. More detailed content of the process will be described later.
- Fig. 6 is a block diagram showing a schematic configuration of the information processing system 50.
- the information processing system 50 is, for example, a server.
- the information processing system 50 includes a control unit 51, a storage unit 52, and a communication unit 53.
- the control unit 51 functions as an acquisition unit 511 and a reception unit 512 by working in cooperation with the communication unit 53.
- the control unit 51 also functions as a comparison unit 513, an analysis unit 514, an extraction unit 515, and an output unit 516.
- the acquisition unit 511 acquires the first and second inspection data obtained by inspection in the first and second manufacturing processes.
- the reception unit 512 receives input of the amount of correction from the user.
- the reception unit 512 may also receive input of the expansion/contraction ratio from the user.
- the amount of correction includes the X direction, Y direction, ⁇ direction, r direction, and front/back correction. In the following, the correction amount will be described as the X direction, Y direction, and ⁇ direction.
- the comparison unit 513 extracts feature points from each of the first and second inspection data, and performs a comparison process using the received correction amount, etc.
- the comparison unit 513 searches for corresponding feature points between the first and second test data through a comparison process.
- the comparison unit 513 generates feature point descriptors (descriptor 2, described below) for the two test data (image data), performs feature point matching between the test data using the feature point descriptors, and outputs the comparison results (a corresponding point list shown in FIG. 16, described below).
- the analysis unit 514 calculates an index indicating the relationship (hereinafter referred to as relationship information) using the corresponding point list.
- the relationship information includes graphs and statistical information such as averages, regression equations, variances, standard deviations, and correlation coefficients.
- Graphs include scatter plots, histograms, Pareto charts, bubble charts, and the like.
- Regression equations include regression lines and polynomial regressions of second or higher order. In addition to simple regression, regression methods such as multiple regression and logistic regression may be used for the regression equation (regression model).
- the main extraction unit 515 uses the comparison results to extract (classify) first to third type feature points.
- the output unit 516 transmits the feature point extraction results to the terminal device 70 or displays them on a display unit (not shown) in response to a request from the terminal device 70, etc.
- the memory unit 52 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, a solid-state drive, a flash memory, a ROM, etc. are used as the storage.
- the memory unit 52 stores a user list, a lot list, an inspection data DB, etc. Of these, the user list and lot list are managed and registered by an administrator who accesses the terminal device 70. For example, this administrator is a person in charge of the relevant department at the manufacturer that operates Factory A.
- Table T2 in Fig. 7 is an example of a lot list.
- the lot list records a lot ID assigned to each film roll, a product name (also called a type), a delivery destination user ID (orderer), multiple manufacturing conditions, size (width, length, thickness), manufacturing date, etc.
- Descriptor 2 is peripheral information, and is vector or array information that represents surrounding information such as relationships with other feature points.
- SIFT features may be used as descriptors, or the probability density function of feature points calculated by kernel density estimation may be used as descriptors.
- Descriptor 2 is mainly generated by the comparison unit 513.
- Table T5 in Figure 8 is an example of extraction result data (hereinafter simply referred to as extracted data).
- the extracted data records the inspection IDs of the original first and second inspection data, as well as the extraction results for each feature point.
- the extraction results (Types 1 to 3) are classified as shown in Figure 5 above.
- Integrated feature point IDs are automatically assigned consecutive numbers, and integrated feature points are generated corresponding to feature points found in either or both of the first and second inspection data.
- the number of integrated feature point IDs is greater than or equal to the number of first inspection and second inspection feature point IDs.
- the extracted data is updated as correction amounts, etc. are input. This is because descriptors 1 and 2 are updated by accepting correction amounts, etc., as described below (steps S402 and S502 in Figures 14 and 15), and the updated descriptors 1 and 2 are compared.
- the communication unit 53 also serves as an interface for network connection with an external device such as a PC.
- Figure 9 is a flowchart showing the process of generating the first inspection data performed in the first manufacturing step.
- Step S11 (First test data generation process)
- the film roll 80 is manufactured by the film roll manufacturing apparatus 1000 .
- Step S12 The inspection device 90 photographs the film and stores the image data.
- the inspection device 90 is the same as that described with reference to FIG. 3A and other figures.
- Step S13 The image analysis unit 93 performs image processing, which will be described below, on the image data to generate a plurality of feature points.
- the image analysis unit 93 performs data processing on the image data (examination data) acquired from the camera 92.
- the image analysis unit 93 divides the image data into multiple regions. For example, the image analysis unit 93 divides the image data into n regions (e.g., several to several tens) in the width direction (hereinafter referred to as regions a1 to an).
- Mathematical processing includes preprocessing, enhancement processing, signal processing, image feature extraction, etc.
- Pretreatment includes the following: - Image cropping, - Low-pass filter, high-pass filter, Gaussian filter, median filter, bilateral filter, -Morphological transformation, color transformation (L*a*b*, sRGB, HSV, HSL), contrast adjustment, noise removal, restoration of blurred and shaken images, mask processing, Hough transform, projection transformation, etc.
- enhancement processing examples include the Sobel filter, Scharr filter, Laplacian filter, Gabor filter, and Canny algorithm.
- the signal processing includes the following: - Basic statistics (maximum, minimum, average, median, standard deviation, variance, quartile), square root of sum of squares, difference, sum, product, ratio, distance matrix calculation, differential and integral calculus, threshold processing (binarization, adaptive binarization, etc.), -Fourier transform, wavelet transform, peak detection (peak value, number of peaks, half-width, etc.), etc.
- image feature extraction examples include template matching and SIFT features.
- Threshold processing is a process that determines whether or not the defect is the target of detection based on a predetermined defect determination threshold, and also determines the rank (intensity) of the defect.
- threshold processing determining the presence and type of defect corresponds to “defect determination processing.” Also, in threshold processing, classifying defects into multiple ranks according to the threshold corresponds to “quantitative evaluation processing.”
- defects are classified into multiple ranks for a parameter (feature) that takes a value between 1 and 100.
- ranks are classified according to the size (diameter or area) of the defect. Ranks classified by size may also be further subdivided according to the parameter value.
- the image analysis unit 93 performs similar processing on areas other than area a1.
- the image analysis unit 93 After processing each of the regions a1-an, the image analysis unit 93 integrates the results for each of the regions a1-an, and data processing ends. Specifically, the image analysis unit 93 generates data that associates the rank of the detected defects with their location (x and y coordinates) for each region (each position in the width direction of the film F8).
- the image analysis unit 93 stores the results of the data processing in the storage unit 94.
- the image analysis unit 93 performs this type of data processing on each of the multiple image data obtained in the inspection of one film roll 80, and obtains the processing results. By aggregating these processing results, inspection data such as that shown in Table T4 in Figure 8 is generated.
- Terminal device 70 in the first manufacturing process sends inspection data including information on multiple feature points obtained through the processing up to step S13 to information processing system 50.
- Acquisition unit 511 of information processing system 50 stores the acquired inspection data in the inspection data DB of storage unit 52 as first inspection data.
- FIG. 10 is a flowchart showing the process of generating second inspection data performed in the second manufacturing process.
- Step S21 In the second manufacturing process, after the first manufacturing process, the product manufacturing apparatus 2000 performs post-processing using the film roll 80 to manufacture a product using the film F8.
- Step S22 The inspection device 90 photographs the surface of the film F8 before post-processing, or during or after post-processing, and stores the image data.
- Step S23 The image analysis unit 93 stores the generated inspection data including the feature point information of the plurality of feature points in the storage unit 94 by the same process as in step S13.
- Terminal device 70 in the second manufacturing process sends inspection data including information about multiple feature points obtained through the processing up to step S23 to information processing system 50.
- Acquisition unit 511 of information processing system 50 stores the acquired inspection data as second inspection data in the inspection data DB of storage unit 52.
- the second inspection data is described by feature point IDs and feature point descriptors 1 and 2, similar to the first inspection data shown in Table T4.
- Feature point extraction process The feature point extraction process executed by the information processing system 50 will be described below with reference to Figs. 11 to 18.
- Fig. 11 is a flowchart showing the feature point extraction process.
- Fig. 12 is an example of an operation screen displayed on the terminal device 70.
- Fig. 13 is a schematic diagram for explaining the feature point extraction process.
- the information processing system 50 starts the processing from step S31 onward in response to a start instruction from the user via the operation screen on the terminal device 70, or when the second inspection data is registered in the inspection data DB in the storage unit 52 and a pair of first and second inspection data is obtained.
- Figure 12 is an example of the operation screen 701 displayed on the terminal device 70. After selecting a lot, the user selects the first and second inspection data from the multiple inspection data linked to that lot using buttons b1 and b2.
- the second inspection data is inspection data obtained in a process downstream of the first inspection data. In addition, in this embodiment, it is described assuming that a stretching process occurs between the positions where the first inspection data and the second inspection data were collected.
- the comparison unit 513 performs preprocessing to reverse the Y coordinate (up and down) of the second inspection data to match any differences between winding (first manufacturing process) and unwinding (second manufacturing process). Furthermore, in the second manufacturing process, the comparison unit 513 performs preprocessing to reverse the X coordinate (left and right) of the second inspection data (or first inspection data) depending on whether the camera 92's shooting area is set to the front or back of the film F8.
- the comparison unit 513 generates a descriptor 2 for each feature point of the first and second test data.
- the comparison unit 513 uses a SIFT feature amount as the descriptor, or a probability density function of the feature points calculated by kernel density estimation as the descriptor.
- Figure 16 is an example of a corresponding point list stored in the storage unit 52.
- the corresponding point list associates each feature point in the second inspection data with the most similar feature point in the first inspection data.
- the corresponding point list also describes the X and Y coordinates of the feature points in the second inspection data, the Euclidean distance between the associated feature points, the difference dx in the X coordinate, and the difference dy in the Y coordinate.
- a ratio may also be used as the difference.
- the user can determine whether the correspondence is appropriate by referring to the correlation information displayed in the preview area b10 as shown in FIG. 19. By referring to a graph such as a scatter plot, the user can determine whether the correspondence between the feature points of the two test data is satisfactory by reviewing the correction amounts.
- Step S37 If the user determines by looking at the scatter diagram that the correlation is poor, the user inputs a correction amount to see if it can be improved. In response to this, the control unit 51 advances the process to step S50 in response to the reception unit 512 receiving the correction amount from the user (YES).
- Inversion correction is a correction in which the X coordinate or Y coordinate is inverted relative to a reference (the center of the width or the end of the length).
- Tilt correction amount (rotation) ⁇ direction
- X coordinate correction amount X direction
- Y coordinate correction amount Y direction
- This tilt correction amount corresponds to the expansion/contraction ratio. For example, in Figures 17 and 18, applying the tilt correction amount has the same effect as rotating the entire scatter plot.
- the input of (a) may also be accepted as (a11) an X correction amount at the X coordinate correction position, or (a12) a Y correction amount at the Y coordinate correction position.
- the comparison unit 513 shifts the X coordinate of the entire test data in accordance with the input correction amount. For example, the comparison unit 513 shifts the X coordinate of the first test data in accordance with the input correction amount.
- the input example shown in Figure 19 is an example of (a12).
- the user selects the Y-dy scatter plot with button b11 on the operation screen 702 in Figure 19, and in response to the selection, a Y-dy scatter plot like the one shown in Figure 17 is displayed in the preview area b10.
- the user enters -6.0 m in the input area b12 and 0 m in b13.
- a recalculation is performed based on this input correction amount, and the display in the preview area b10 is updated (redisplayed).
- the entire coordinate system rotates counterclockwise so that the left end of the regression equation moves down by 6.0 m.
- FIG. 20 is a subroutine flowchart showing the comparison process 2 in step S50.
- Step S501 The comparison unit 513 moves the position of one of the feature points of the first and second test data in accordance with the correction amount (hereinafter referred to as the input correction amount) received in step S37. That is, the comparison unit 513 converts the coordinate system. In the following description, the comparison unit 513 is assumed to move the feature point of the first test data in accordance with the input correction amount.
- Steps S502 to S505 The processing here is the same as steps S402 to S405 in FIG. 14.
- the comparison unit 513 generates new feature point descriptor information using the coordinates converted in step S501, performs a matching process between feature points, associates corresponding feature points, and stores the associated feature points in a corresponding point list.
- the analysis unit 514 references the updated corresponding point list and generates correlation information between feature points present in both the first and second test data.
- the correlation information includes at least one of a scatter plot and statistical information, as described above. This completes the processing in FIG. 20, and the processing returns to the processing in FIG. 11. For example, a scatter plot like the one in FIG. 21 is displayed in the preview area b10 of the operation screen 702 in FIG. 19.
- FIG. 22 shows an example of the feature point extraction conditions that are determined and recorded in the inspection DB of the storage unit 52.
- the control unit 51 records the expansion/contraction ratio and correction amount received in steps S34 and S37 in association with the lot and the combination of the first and second inspection data. Thereafter, when using film rolls of the same type as the lot, the control unit 51 can read out the feature point extraction conditions to eliminate the need for adjustments, and by comparing the same conditions with the previous lot, it is possible to understand the differences between the lots.
- feature point extraction may be performed and recorded using intermediate correction amounts before they are finalized. For example, feature points may be extracted (classified) according to the correction amount each time a correction amount is input.
- the extraction unit 515 classifies third-type feature points, which are matched feature points in the first and second inspection data, into two types: third-type a (rank A) and third-type b (rank B) based on their distance from the regression equation.
- Figure 23 is a schematic diagram illustrating classification based on distance from the regression equation.
- the extraction unit 515 classifies feature points whose distance from the regression equation is less than a predetermined threshold into third-type a, and feature points whose distance exceeds the predetermined threshold into third-type b. This classification is performed using the Y-dy scatter diagram (3) described above, but other scatter diagrams (e.g., X-dx) may also be used.
- classification may be performed based on both the distance from the regression equation of the Y-dy scatter diagram and the distance from the X-dx scatter diagram, and the two may be compared and presented. For example, if both are classified as rank A, the scatter diagram is classified as A1 (rank S), and if only one of them is ranked A, the scatter diagram is classified as A2.
- the distance between the feature point and the regression equation is measured using the distance on the vertical axis (dy), but it may also be measured using Euclidean distance.
- the predetermined threshold uses a preset value, but may also be set using statistical information such as standard deviation ( ⁇ ).
- the extraction unit 515 classifies feature points that fall within the range of +1 ⁇ to -1 ⁇ from the regression equation into a third type a, and other feature points into a third type b.
- the extraction unit 515 may record the separation of the third types a and b in a corresponding point list. Feature points classified as the third type a with rank A have a higher degree of confidence that they are the same feature point.
- Step S39 The extraction unit 515 classifies feature points from the correspondence list, the first test data, and the second test data. Specifically, the extraction unit 515 classifies, in the correspondence list, feature points of the second test data that are not associated with feature points of the first test data as second-type feature points. Furthermore, the extraction unit 515 classifies, in the correspondence list, feature points of the first test data that are not included in the correspondence list (feature points that are not associated with feature points of the second test data) as first-type feature points (see Table T5 in FIGS. 5 and 8 ).
- Step S40 The output unit 516 registers the extraction results (extraction data) generated in step S38 in the test data DB, and transmits the extraction results to the terminal device 70. This completes the feature point extraction process shown in Fig. 11 (END).
- the information processing system includes a comparison unit that compares first feature point information of a web in the first inspection data with second feature point information of a web in the second inspection data and extracts identical feature points in the first and second inspection data.
- the information processing system also includes an analysis unit that generates relationship information indicating the relationship between the coordinate difference between the first inspection data and the second inspection data for each of the feature points extracted by the comparison unit and the coordinate position on the entire web, and an output unit that outputs the relationship information.
- Fig. 24 is a flowchart showing the process of extracting feature points in the second embodiment.
- steps S71 to S76 and S77 to S91 correspond to steps S31 to S36 and S37 to S51, respectively, in the first embodiment shown in Figure 12.
- step S765 is performed.
- Step S765 The analysis unit 514 calculates the correlation coefficient, and issues an alert if the correlation coefficient is equal to or less than a first predetermined threshold. For example, if the absolute value of the correlation coefficient is 0.5 or less, an alert is displayed on the terminal device 70. Alternatively, if the regression equation is a regression line and its slope is close to zero (i.e., flat), the analysis unit 514 calculates the variance of the difference value (dy or dx) of the feature points, and if the variance is equal to or greater than a second threshold, an alert is displayed.
- a first predetermined threshold For example, if the absolute value of the correlation coefficient is 0.5 or less, an alert is displayed on the terminal device 70.
- the analysis unit 514 calculates the variance of the difference value (dy or dx) of the feature points, and if the variance is equal to or greater than a second threshold, an alert is displayed.
- Figure 25 shows an example of a distribution diagram and an alert display.
- Figure 25 (A) shows a case where the correlation coefficient is high or the variance of the difference dy is small, indicating normality.
- Figures 25 (b) and (c) show a case where the correlation coefficient is low or the variance of the difference dy is large, indicating abnormality.
- the output unit 516 displays an alert on the display unit of the terminal device 70. This allows the user to understand that some kind of malfunction has occurred.
- the information processing system 50 described above is the main configuration used to explain the features of the above embodiment, and is not limited to the above configuration, and various modifications can be made within the scope of the claims. Furthermore, configurations that are included in general information processing devices/systems are not excluded. For example, in this embodiment, it is assumed that there is a stretching process between the positions where the first test data and the second test data are collected, and although an example of accepting an expansion/contraction ratio is shown in Figures 11 and 12, the process of accepting the expansion/contraction ratio (step S34) may be omitted. For example, if there is no stretching process between the first and second test data, the acceptance of the expansion/contraction ratio is omitted. In this case, the comparison unit 513 performs the comparison process at step S35 using a fixed expansion/contraction ratio.
- the information processing system 50 may include an inspection device 90 arranged in the first manufacturing process and/or the second manufacturing process.
- the feature point generation function of the image analysis unit 93 of the inspection device 90 may also be performed by the control unit 51 of the information processing system 50.
- the inspection device 90 sends image data of an image of the film surface and the shooting conditions (information such as transport speed, camera direction, and angle of view) to the information processing system 50, and the feature point generation process is performed on the control unit 51 side.
- the means and methods for performing various processes in the information processing system 50 according to the above-described embodiment can be realized by either a dedicated hardware circuit or a programmed computer.
- the program may be provided by a computer-readable recording medium such as a Digital Versatile Disc-ROM, or may be provided online via a network such as the Internet.
- the program recorded on the computer-readable recording medium is usually transferred to and stored in a storage unit such as a hard disk.
- the program may also be provided as standalone application software, or may be incorporated into the software of a device as one of its functions.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本発明は、情報処理システム、特徴点の抽出方法、および制御プログラムに関する。 The present invention relates to an information processing system, a feature point extraction method, and a control program.
液晶表示装置は、大画面テレビや大型モニターに使用されるようになってきており、これにともない液晶表示装置の表示面に用いられるフィルムも広幅化が求められている。例えば、2000mm幅以上の幅広のフィルムが要望されている。また、予め基材ロス(フィルムロス)を見込んだり、輸送コスト削減を図ったりするために、巻き長も1000m以上、更には3000m以上の長尺のフィルムロールの製造が求められる。 Liquid crystal display devices are increasingly being used in large-screen televisions and large monitors, and as a result, there is a demand for wider films to be used on the display surfaces of these devices. For example, there is a demand for wider films of 2000 mm or more. Furthermore, in order to anticipate substrate loss (film loss) and reduce transportation costs, there is a demand for the production of long film rolls with winding lengths of 1000 m or more, and even 3000 m or more.
フィルム等のウェブを基材とした製品を製造する後加工工程では、欠陥等の品質トラブルが発生したときに、前工程、すなわちそのウェブの製造時に発生し、ウェブ上に元々存在した欠陥なのか、後加工工程で発生したものかの切り分けが必要である。明確に後加工工程で発生したものであるとの切り分けができない場合には、前工程への改善が求められる場合がある。改善要望に対応しようとすると、前工程の出荷規格が必要以上に厳しくなる、結果オーバースペックになる。また、後工程でどのように影響するのかが明確にわからないが、品質トラブルを未然に防ぐために、ウェブ製造時の出荷規格を見込みで過度に厳しくするという対応も行われる場合もある。このような場合もオーバースペックになる。オーバースペックは、歩留まり悪化や、コスト増になり、エコロジー的に好ましくなく、また前工程を行う事業者と後工程を行う事業者の双方にとって好ましくない。 When a defect or other quality issue occurs in a post-processing step that produces a product based on a web such as film, it is necessary to determine whether the defect occurred in the upstream process, i.e., during the production of the web and was originally present on the web, or whether it arose in the downstream process. If it is not possible to clearly determine that the defect occurred in the downstream process, improvements may be required in the upstream process. In attempting to respond to requests for improvement, the shipping standards for the upstream process may become stricter than necessary, resulting in over-specification. Also, in order to prevent quality issues before they occur, it is sometimes necessary to set overly strict shipping standards for web production based on estimates, even though it is not clear how this will affect the downstream process. Such cases also constitute over-specification. Over-specification leads to reduced yields, increased costs, is undesirable from an ecological perspective, and is undesirable for both the upstream and downstream process companies.
ウェブ上に元々存在した欠陥なのか、後加工工程で発生したものかの切り分けが必要であるが、その際には、前工程でのウェブ上の座標系と後工程の座標系を対応づける必要がある。 It is necessary to determine whether the defect was originally present on the web or whether it occurred during a post-processing step, and in doing so, it is necessary to match the coordinate system on the web from the previous process with the coordinate system from the subsequent process.
下記の特許文献1は光学フィルムの検査システムにおいて、第1、第2の検査装置で検査する際に両者の検査結果の同期を取る技術が開示されている。この検査システムでは、第1検査装置と移送方向の後段に配置した第2検査装置の距離および、フィルムの移動量を示すエンコーダ信号を利用することで、両検査結果の同期を取っている。 Patent Document 1 below discloses a technology for synchronizing the inspection results of a first and second inspection device in an optical film inspection system. In this inspection system, the inspection results of both devices are synchronized by using an encoder signal that indicates the distance between the first inspection device and the second inspection device, which is placed downstream in the transport direction, and the amount of film movement.
特許文献1の技術は、検査装置間の相互距離と移動距離により、検査結果の同期を取るものであり、フィルムが伸縮するような場合に同期を取ることはできない。また、2つの検査装置間で、ロール状にフィルムを巻き取り、そのロールを繰り出すオフラインの処理が入るような場合にも同期を取ることはできない。 The technology in Patent Document 1 synchronizes inspection results based on the mutual distance and movement distance between the inspection devices, and is unable to achieve synchronization when the film expands or contracts. Furthermore, synchronization is also unable to be achieved when two inspection devices are wound up with film in a roll and then have offline processing performed to unwind the roll.
本発明は、上記事情に鑑みてなされたものであり、ウェブを製造する際、およびこれを用いて後加工を行う製造工程の双方において工程改善や出荷規格設定に役立てる情報を、効率的に収集することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to efficiently collect information that is useful for process improvement and setting shipping standards both when manufacturing webs and in the manufacturing process where post-processing is performed using these webs.
本発明の上記目的は、下記の手段によって達成される。 The above-mentioned object of the present invention is achieved by the following means.
(1)ウェブを製造する、または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得する取得部と、
前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを対比し、前記第1、第2検査データで同一の特徴点を抽出する対比部と、
前記対比部が抽出した複数の特徴点それぞれの前記第1検査データおよび第2検査データでの座標の差分値と、前記ウェブ全体での座標位置との関係性を示す関係性情報を生成する解析部と、
前記関係性情報を出力する出力部と、を備える情報処理システム。
(1) an acquisition unit that acquires first inspection data in a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data in a second manufacturing process in which post-processing using the web is performed after the first manufacturing process;
a comparison unit that compares first feature point information of the web in the first inspection data with second feature point information of the web in the second inspection data and extracts identical feature points between the first and second inspection data;
an analysis unit that generates relationship information indicating a relationship between a difference value between the coordinates of each of the plurality of feature points extracted by the comparison unit in the first inspection data and the second inspection data and a coordinate position on the entire web;
an output unit that outputs the relationship information.
(2)前記関係性情報は、座標の差分値と、全体での座標位置との関係を表すグラフである、上記(1)に記載の情報処理システム。 (2) The information processing system described in (1) above, wherein the relationship information is a graph showing the relationship between coordinate difference values and overall coordinate positions.
(3)前記関係性情報は、座標の差分値と、全体での座標位置との関係を示す統計情報である、上記(1)、または上記(2)に記載の情報処理システム。 (3) An information processing system according to (1) or (2) above, wherein the relationship information is statistical information indicating the relationship between coordinate difference values and overall coordinate positions.
(4)前記第1検査データおよび/または第2検査データの座標の補正量を受け付ける受付部を、さらに有し、
前記対比部は、前記受付部が受け付けた前記補正量で前記特徴点の座標を補正した後に、前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを対比し、および、前記第1、第2検査データで同一の特徴点を抽出する、上記(1)に記載の情報処理システム。
(4) Further comprising a receiving unit that receives a correction amount of the coordinates of the first inspection data and/or the second inspection data,
The information processing system described in (1) above, wherein the comparison unit corrects the coordinates of the feature points with the correction amount received by the reception unit, then compares the first feature point information of the web in the first inspection data with the second feature point information of the web in the second inspection data, and extracts identical feature points in the first and second inspection data.
(5)前記受付部は、前記出力部が前記関係性情報を表示させた後に、前記補正量を受け付け、
前記受付部が前記補正量を受け付けることに応じて、再度、前記対比部は、前記同一の特徴点の抽出し、前記解析部は、前記関係性情報を生成し、および、
前記出力部は、再度、前記関係性情報を表示させる、上記(4)に記載の情報処理システム。
(5) the receiving unit receives the correction amount after the output unit displays the relationship information;
In response to the reception unit receiving the correction amount, the comparison unit extracts the same feature points again, the analysis unit generates the relationship information, and
The information processing system according to (4), wherein the output unit displays the relationship information again.
(6)前記関係性情報は、座標の差分値と、全体での座標位置との関係を表す散布図および回帰式であり、
さらに、前記散布図における前記特徴点の回帰式までの距離に応じて、前記特徴点を分類する抽出部を、備える、上記(1)に記載の情報処理システム。
(6) The relationship information is a scatter diagram and a regression equation that represent the relationship between the coordinate difference value and the overall coordinate position,
The information processing system according to (1) above, further comprising an extraction unit that classifies the feature points in the scatter diagram according to a distance of the feature points to the regression equation.
(7)前記関係性情報には、座標の差分値と全体での座標位置との関係を示す相関係数、または差分値の分散が含まれ、
前記解析部は、前記相関係数の絶対値が第1所定閾値以下の場合、または前記分散が第2所定閾値値以上の場合には、アラートを生成し、前記出力部は、アラートを報知する、上記(1)に記載の情報処理システム。
(7) The relationship information includes a correlation coefficient indicating the relationship between the coordinate difference value and the overall coordinate position, or a variance of the difference value,
The information processing system described in (1) above, wherein the analysis unit generates an alert when the absolute value of the correlation coefficient is less than or equal to a first predetermined threshold value or when the variance is greater than or equal to a second predetermined threshold value, and the output unit notifies the alert.
(8)ウェブの特徴点の抽出方法であって、
ウェブを製造する、または製造されたウェブに後加工する第1製造工程における第1検査データを取得するステップ(a)と、
前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得するステップ(b)と、
前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを対比するステップ(c)と、
前記ステップ(c)の対比結果に基づき、前記第1、第2検査データで同一の特徴点を抽出するステップ(d)と、
前記ステップ(d)で抽出した複数の特徴点それぞれの前記第1検査データおよび第2検査データでの座標の差分値と、前記ウェブ全体での座標位置との関係性を示す関係性情報を生成するステップ(e)と、
前記ステップ(e)で生成された前記関係性情報を出力するステップ(f)と、を備える、特徴点の抽出方法。
(8) A method for extracting feature points of a web, comprising:
A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web;
(b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process;
(c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data;
(d) extracting identical feature points between the first and second inspection data based on the comparison result of the step (c);
a step (e) of generating relationship information indicating a relationship between a difference value between the coordinates of each of the plurality of feature points extracted in the step (d) in the first inspection data and the second inspection data and a coordinate position on the entire web;
and (f) outputting the relationship information generated in the step (e).
(9)前記関係性情報は、座標の差分値と、全体での座標位置との関係を示すグラフである、上記(7)に記載の特徴点の抽出方法。 (9) The feature point extraction method described in (7) above, wherein the relationship information is a graph showing the relationship between coordinate difference values and overall coordinate positions.
(10)上記(7)、または上記(8)に記載の抽出方法を、コンピューターに実行させるための制御プログラム。 (10) A control program for causing a computer to execute the extraction method described in (7) or (8) above.
本発明に係る情報処理システムは、ウェブを製造する、または製造されたウェブに後加工する第1製造工程における第1検査データ、および前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得する取得部を備える。また、情報処理システムは、前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを対比し、前記第1、第2検査データで同一の特徴点を抽出する対比部と、前記対比部が抽出した複数の特徴点それぞれの前記第1検査データおよび第2検査データでの座標の差分値と、前記ウェブ全体での座標位置との関係性を示す関係性情報を生成する解析部と、前記関係性情報を出力する出力部と、を備える。これにより、ウェブを製造する際、およびこれを用いて後加工を行う製造工程の双方において、工程改善や出荷規格設定に役立てる情報を、効率的に収集できる。 The information processing system of the present invention includes an acquisition unit that acquires first inspection data from a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data from a second manufacturing process in which post-processing using the web is performed after the first manufacturing process. The information processing system also includes a comparison unit that compares first feature point information of the web in the first inspection data with second feature point information of the web in the second inspection data and extracts identical feature points in the first and second inspection data, an analysis unit that generates relationship information indicating the relationship between the coordinate difference values in the first inspection data and the second inspection data for each of the multiple feature points extracted by the comparison unit and their coordinate positions across the entire web, and an output unit that outputs the relationship information. This makes it possible to efficiently collect information useful for process improvement and shipping specification setting both when manufacturing a web and in the manufacturing process in which post-processing is performed using the web.
本発明の一つ以上の実施形態によって提供される利点および特徴は、以下の詳細な説明および添付の図面からより完全に理解される。しかし、これらは例示のみを目的としており、本発明を限定することを意図したものではない。
以下、添付した図面を参照して、本発明の実施形態を説明する。しかしながら、本発明の範囲は、開示される実施形態に限定されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Embodiments of the present invention will now be described with reference to the accompanying drawings. However, the scope of the present invention is not limited to the disclosed embodiments. In the description of the drawings, identical elements will be given the same reference numerals, and duplicate explanations will be omitted. Furthermore, the dimensional proportions in the drawings have been exaggerated for the sake of explanation and may differ from the actual proportions.
本実施形態において、ウェブとは、シート状の材料であり、樹脂フィルム、金属フィルムを含む。以下においては、ウェブは、長尺の樹脂フィルムであり、フィルムロール、およびこれに加工するものとして説明する。加工には、塗布液を塗布する加工、および別のフィルム状の材料を重ねる工程も含む。 In this embodiment, the term "web" refers to a sheet-like material, including resin film and metal film. In the following, the web refers to a long resin film, and is described as a film roll and the material that is processed. Processing also includes the process of applying a coating liquid and the process of layering another film-like material.
最初に、図1、図2を参照し、フィルムロール80の製造ラインについて説明する。図1は、フィルムロールの製造ラインを示す模式図である。図1、図2に示す製造ラインは、溶液流延法での製膜を例示しているが、これに限られず、溶融押し出し法での製膜であってもよい。 First, the production line for film rolls 80 will be described with reference to Figures 1 and 2. Figure 1 is a schematic diagram showing a film roll production line. The production line shown in Figures 1 and 2 illustrates film production using a solution casting method, but is not limited to this and film production using a melt extrusion method is also possible.
図1に示すようにフィルムロール製造装置1000は、流延部01と、第1乾燥部02と延伸部03と、トリミング部05と、第2乾燥部06と、巻取部07(巻取装置ともいう)とを有している。 As shown in FIG. 1, the film roll manufacturing apparatus 1000 has a casting section 01, a first drying section 02, a stretching section 03, a trimming section 05, a second drying section 06, and a winding section 07 (also called a winding device).
フィルムロール製造装置1000においては、複数の工程間には、検査装置90が配置されている。検査装置90は、製造ラインにおいて搬送されているフィルムF8の表面を監視領域として、フィルム面を撮影し、得られたフレーム画像を解析することで、フィルムF8の搬送状態を検出する。検査装置90の構成については、後述する(図3A等)。図1において白抜き矢印は、フィルム等の搬送方向を示す。 In the film roll manufacturing apparatus 1000, an inspection device 90 is positioned between multiple processes. The inspection device 90 monitors the surface of the film F8 being transported on the production line, photographs the film surface, and analyzes the resulting frame images to detect the transport status of the film F8. The configuration of the inspection device 90 will be described later (see Figure 3A, etc.). In Figure 1, the white arrow indicates the transport direction of the film, etc.
流延部01は、エンドレスで走行(図中の矢印方向)する無端支持体の鏡面帯状金属流延ベルト(以下、ベルトという)01aと、樹脂を溶媒に溶解したドープを、ベルト01aに流延するダイス01bとを有している。尚、ダイス01bから流出するドープ膜を安定にするために、ダイス01bのベルトの搬送方向に対して上流側には減圧室(不図示)、下流側には加圧室(不図示)が配設されてもよい。 The casting unit 01 has a mirror-finished, strip-shaped metal casting belt (hereinafter referred to as the belt) 01a, an endless support that runs endlessly (in the direction of the arrow in the figure), and a die 01b that casts a dope, which is made by dissolving a resin in a solvent, onto the belt 01a. To stabilize the dope film that flows out of the die 01b, a decompression chamber (not shown) may be provided upstream of the die 01b in the belt transport direction, and a pressurization chamber (not shown) may be provided downstream.
剥離ロール01dはベルト01aに流延されて形成された流延膜01cを剥離し、未延伸のフィルムF8を生成する。 The peeling roll 01d peels off the cast film 01c formed by casting onto the belt 01a, producing an unstretched film F8.
第1乾燥部02(第1乾燥工程)は、乾燥風取り入れ口02bと排出口02cとを有する乾燥箱02aと、フィルムF8を搬送する上下一組で、複数組から構成されている搬送ロール02dを有している。 The first drying section 02 (first drying process) has a drying box 02a with a dry air intake 02b and an exhaust 02c, and a set of upper and lower transport rolls 02d, each consisting of multiple sets, that transport the film F8.
第1乾燥部02では、延伸部03(延伸工程)に入る前の未延伸のフィルムF8に含まれる溶剤量の調整を行うことが可能である。この溶剤量の調整は、制御装置08により第1乾燥部02での乾燥温度、搬送速度を変更することで行われる。 In the first drying section 02, it is possible to adjust the amount of solvent contained in the unstretched film F8 before it enters the stretching section 03 (stretching process). This adjustment of the solvent amount is performed by changing the drying temperature and conveying speed in the first drying section 02 using the control device 08.
(延伸部03、トリミング部05)
図2は、図1の製造ラインの延伸工程(テンター工程とも称する)、乾燥工程、トリム工程の上面模式図である。図2、図3A等においては、上下方向をZ方向、フィルムF8の搬送方向をY方向、搬送方向に直交する方向であって、フィルムF8の幅方向をX方向とする。Y方向乃至搬送方向は、MD(Machine Direction)ともいう。また、X方向乃
至幅方向は、TD(Transverse Direction)又は左右方向ともいう。また、Y方向を長手方向ともいい、長手方向との対の関係で幅方向を幅手方向とも表記する。
(Stretching section 03, trimming section 05)
Figure 2 is a schematic top view of the stretching process (also referred to as the tenter process), drying process, and trimming process of the production line in Figure 1. In Figures 2, 3A, etc., the vertical direction is the Z direction, the transport direction of film F8 is the Y direction, and the direction perpendicular to the transport direction, the width direction of film F8, is the X direction. The Y direction or transport direction is also referred to as MD (Machine Direction). The X direction or width direction is also referred to as TD (Transverse Direction) or left-right direction. The Y direction is also referred to as the longitudinal direction, and the width direction is also referred to as the width direction in relation to the longitudinal direction.
延伸部03は、MD延伸部03a、及びTD延伸部03bを有する。延伸部03は、第1乾燥部02から搬送されてくる未延伸のフィルムF8を延伸する。図2に示すように、延伸部03は、複数の左右一対の把持部301で、加熱されたフィルムF8の両側端を把持する。延伸部03は、把持部301、チェーン、駆動部、クローザー、オープナー等を備える(把持部301以外は図示を省略している)。 The stretching unit 03 has an MD stretching unit 03a and a TD stretching unit 03b. The stretching unit 03 stretches the unstretched film F8 transported from the first drying unit 02. As shown in Figure 2, the stretching unit 03 grips both side edges of the heated film F8 with multiple pairs of left and right gripping units 301. The stretching unit 03 is equipped with gripping units 301, chains, drive units, closers, openers, etc. (Components other than gripping units 301 are not shown).
上流側のMD延伸部03a(MD延伸工程)では、下流側に搬送されるにつれ加速しながら移動することで、搬送方向における移動速度が徐々に上昇する(図2では黒塗り矢印で示す)。これによりMD延伸工程では、未延伸のフィルムF8は、MD方向に引き伸ばされながら搬送される。 In the upstream MD stretching section 03a (MD stretching process), the film accelerates as it is transported downstream, gradually increasing its movement speed in the transport direction (indicated by the black arrow in Figure 2). As a result, in the MD stretching process, the unstretched film F8 is transported while being stretched in the MD direction.
次段のTD延伸部03b(TD延伸工程)ではフィルムF8等は、把持部301によって搬送される。把持部301は、例えばクリップであり、左右それぞれの把持部301は、例えば無端状のチェーンに連結されており、スプロケットに巻回されたチェーンが駆動部により回転させられることで、把持部301は、搬送方向等に移動する。延伸部03のTD延伸工程の最上流側にクローザーが配置され、最下流側にオープナーが配置される。把持部301は、クローザーの位置に達することで、開状態の把持部301は順次閉じられ、またオープナーの位置に達することで順次開放される。閉状態の把持部301によりフィルムF8の側端が把持され、搬送される。このTD延伸部03b(TD延伸工程)では、フィルムF8等を把持した左右一対の把持部301は、搬送方向に移動するとともに幅方向の外側に徐々に移動する(黒塗り矢印)。これによりTD延伸工程では、一対の把持部301は、幅方向の距離(間隔)が徐々に広がり、これに把持されたフィルムF8等は、TD方向に引き伸ばされながら搬送される。 In the next stage, TD stretching section 03b (TD stretching process), film F8 and the like are transported by gripping sections 301. The gripping sections 301 are, for example, clips, and the left and right gripping sections 301 are connected, for example, to an endless chain. The chain, wound around a sprocket, is rotated by a drive section, causing the gripping sections 301 to move in the transport direction and the like. A closer is located at the most upstream side of the TD stretching process in stretching section 03, and an opener is located at the most downstream side. As the gripping sections 301 reach the closer position, the open gripping sections 301 are sequentially closed, and as they reach the opener position, they are sequentially opened. The closed gripping sections 301 grip the side edges of film F8 and transport it. In this TD stretching section 03b (TD stretching process), the pair of left and right gripping sections 301 gripping film F8 and the like move in the transport direction and gradually move outward in the width direction (black arrows). As a result, during the TD stretching process, the distance (spacing) between the pair of gripping sections 301 gradually increases in the width direction, and the film F8 and other films gripped by these gripping sections are transported while being stretched in the TD direction.
なお、この延伸工程では、TD延伸工程以外の斜め延伸工程を適用してもよい。TD延伸工程は、フィルムの幅方向に並行な方向に延伸するものである。すなわち、TD延伸工程では、フィルムF8は、幅方向とのなす角度0°で広がる。一方で、斜め延伸工程では、フィルムの光学特性を調節するために、加熱したフィルムの両端部を複数の把持具により担持して当該フィルムの幅方向とのなす角度が40~50°の範囲内となる角度で斜め方向に延伸する(「斜め延伸」という)する。またその場合、冷却工程においては、延伸されたフィルムを連続して搬送しながら応力緩和のための熱処理を行う熱緩和工程が含まれてもよい。 In addition, this stretching process may also include an oblique stretching process other than the TD stretching process. The TD stretching process stretches the film in a direction parallel to the width direction. That is, in the TD stretching process, film F8 expands at an angle of 0° with the width direction. On the other hand, in the oblique stretching process, in order to adjust the optical properties of the film, both ends of the heated film are held by multiple gripping devices and the film is stretched obliquely at an angle between 40 and 50° with the width direction (referred to as "oblique stretching"). In this case, the cooling process may also include a heat-relaxing process in which the stretched film is continuously transported while being heat-treated to relieve stress.
トリミング部05(トリム工程)は、切断部05a及び回収部05bを有する。切断部05aは、左右2つのスリッター5110L、R、及び複数のローラー5120等を含む。スリッター5110L、Rは、例えば、回転可能に軸支された円形刃または皿型刃であり、駆動部(不図示)により回転される。スリッター5110L、Rの回転は、切断位置においてフィルムF8の搬送方向と順方向で、略一致する速度で回転駆動するようにしてもよく、反対方向で逆回転駆動するようにしてもよい。2つのスリッター5110L、Rにより、切断位置以降のフィルムF8は、中央部分のフィルムF8、および両側の側端部であるトリミングフィルムF801、F802(耳部、または耳ともいう)に分離される。 The trimming unit 05 (trim process) has a cutting unit 05a and a recovery unit 05b. The cutting unit 05a includes two slitters 5110L, 5110R, one on the left and one on the right, and multiple rollers 5120. The slitters 5110L, 5110R are, for example, circular blades or dish-shaped blades rotatably supported on a shaft, and are rotated by a drive unit (not shown). The slitters 5110L, 5110R may rotate in the same direction as the transport direction of the film F8 at the cutting position, at a speed roughly matching that of the film F8, or may rotate in the opposite direction. The two slitters 5110L, 5110R separate the film F8 from the cutting position onwards into a central portion of the film F8 and trimmed films F801, F802 (also called selvages) on both sides.
中央部分のフィルムF8は、製品となる領域であり、例えば、その幅は1000mmから2500mmの範囲である。トリミングフィルムF801、F802の幅(トリム幅ともいう)は、ともに、数十~百数十mm程度(例えば170mm)である。中央部分のフィルムF8は、搬送方向の下流側に搬送され後段の巻取工程に供給される。一方でトリミングフィルムF801、F802は、ローラー5120により下方に90度向きを変えて搬送され、後段の回収部05bにより回収される。回収部05bは、回転カッターと吸引ダクトを有し(いずれも図示省略)、回転カッター522により、搬送されたトリミングフィルムF801、F802は、数mmサイズの細かいチップに切断され、下流側の掃除機内のダストボックスに回収される。なお、検査装置90が、トリム工程の前に配置された場合には、トリム幅が入力されることで、前処理(後述の図11のステップS32)で、撮影データからトリム幅に応じた、座標変換が行われるようにしてもよい。 The central portion of film F8 is the area that will become the product, and its width, for example, ranges from 1,000 mm to 2,500 mm. The widths (also called trim widths) of trimmed films F801 and F802 are both several tens to several hundred mm (for example, 170 mm). The central portion of film F8 is transported downstream in the transport direction and supplied to the subsequent winding process. Meanwhile, trimmed films F801 and F802 are turned 90 degrees downward by roller 5120 and transported, and are collected by collection unit 05b downstream. Collection unit 05b has a rotary cutter and a suction duct (both not shown), and the transported trimmed films F801 and F802 are cut by rotary cutter 522 into small chips of a few millimeters in size, which are collected in the dust box of the downstream vacuum cleaner. If the inspection device 90 is placed before the trimming process, the trim width may be input so that coordinate conversion according to the trim width is performed from the photographed data in pre-processing (step S32 in FIG. 11, described below).
中央部分のフィルムF8は、下流側の巻取部07に搬送される。トリミング部05と巻取部07の間に、ナーリング工程を設けナーリング処理が施されてもよい。ナーリング工程では、トリミング後のフィルムF8の両端にナーリングが形成される。 The central portion of the film F8 is transported to the downstream winding section 07. A knurling process may be performed between the trimming section 05 and the winding section 07. In the knurling process, knurls are formed on both ends of the trimmed film F8.
第2乾燥部06(第2乾燥工程)は、第1乾燥部02と基本的構成は同じであるので説明は省略する。 The second drying unit 06 (second drying process) has the same basic configuration as the first drying unit 02, so a detailed explanation will be omitted.
(巻取部07)
巻取部07は、トリミング部05で両端にナーリングが形成されたフィルムF8を巻取る巻取り機07a、同伴空気量制御装置07b、延伸フィルムF8の走行速度を検出する為の接触又は非接触式のリニアエンコーダ07cと、巻取り軸回転数測定機07dと、テンション制御装置07eと、厚さ測定装置6fとを有している。
(Winding section 07)
The winding section 07 includes a winder 07a that winds up the film F8, both ends of which have been knurled in the trimming section 05, an entrained air amount control device 07b, a contact or non-contact linear encoder 07c for detecting the running speed of the stretched film F8, a winding shaft rotation speed measuring device 07d, a tension control device 07e, and a thickness measuring device 6f.
図1等に示すように流延部01は、原料の樹脂を溶媒に溶解し、これに必要に応じて可塑剤、紫外線吸収剤、劣化防止剤、滑り剤、剥離促進剤等の各種の添加剤を加えて調製したドープを、無限移行する無端のベルト01aの上に、ダイス01bより吐出する。そしてベルト01a上に流延し形成した流延膜を無端支持体上である程度まで溶媒を除去した後、ベルトから剥離し、次いで各種の搬送手段により乾燥部、延伸部03を通過させて両端部をトリミングし、および適宜ナーリングを形成した後に、巻取部07で巻取り軸に巻き取ることで光学フィルムが製造される。 As shown in Figure 1, the casting unit 01 dissolves the raw resin in a solvent, and then extrudes the resulting dope, which is prepared by adding various additives such as plasticizers, UV absorbers, anti-degradants, slip agents, and release promoters as needed, onto the endless belt 01a through a die 01b. The cast film formed on the belt 01a is then cast onto the endless support, and after the solvent has been removed to a certain extent, it is peeled off from the belt. It is then passed through the drying unit and stretching unit 03 by various conveying means, where both ends are trimmed and knurled as needed, before being wound up around a take-up shaft in the winding unit 07 to produce an optical film.
図1、図2に示される製造されるフィルムF8の素材としては、特に限定されないが、一般的には、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、環状オレフィン系樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、酢酸セルロース樹脂、塩化ビニル樹脂等が挙げられる。また、例えば、フィルムF8の幅は、生産性、品質等を考慮し、1000mmから3200mmが好ましい。厚さは、品質、ハンドリング等を考慮し、15μmから500μmが好ましい。 The material of the film F8 produced as shown in Figures 1 and 2 is not particularly limited, but typical examples include polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, cyclic olefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, phenolic resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, cellulose acetate resin, and vinyl chloride resin. Furthermore, for example, the width of film F8 is preferably 1000 mm to 3200 mm, taking into account productivity, quality, etc. The thickness is preferably 15 μm to 500 μm, taking into account quality, handling, etc.
巻取軸82(図1参照。巻取り軸は巻心ともいう)に巻き取られたフィルムロール80の光学フィルムF8の長さは、生産性、巻取り品質等を考慮し、2000mから8000mが好ましい。巻取り長さは、速度と時間より算出した値を示す。巻取速度は、例えば100m/minである。 The length of the optical film F8 in the film roll 80 wound around the winding shaft 82 (see Figure 1; the winding shaft is also called the winding core) is preferably 2000 m to 8000 m, taking into consideration productivity, winding quality, etc. The winding length is a value calculated from the speed and time. The winding speed is, for example, 100 m/min.
検査装置90は、フィルム等を撮影し、画像データを生成する。図1に示す例では、検査装置90は、フィルム製造ラインの延伸工程を含む各工程の前後に複数配置されている。図1では、検査装置90は、流延工程(流延部01)の直後、乾燥工程(第1乾燥部02)の直後、およびトリミング工程(トリミング部05)の直後で、フィルムF8の表面を撮影するように配置されている。以下、図3A~図3Cを参照し、検査装置90の構成について説明する。 The inspection device 90 photographs the film, etc., and generates image data. In the example shown in Figure 1, multiple inspection devices 90 are placed before and after each process, including the stretching process, on the film production line. In Figure 1, the inspection devices 90 are positioned to photograph the surface of the film F8 immediately after the casting process (casting section 01), immediately after the drying process (first drying section 02), and immediately after the trimming process (trimming section 05). The configuration of the inspection device 90 will be described below with reference to Figures 3A to 3C.
(検査装置90)
フィルムF8等の透明体を被検査体として、その表面に存在する凹凸や透明体内部に存在する泡、亀裂、内部構造のひずみ等を検出する装置としては以下の方式がある。
(1)被検査体を光照射し、被検査体を透過した光を受光することにより被検査体の欠陥を検出する透過型の検査装置。
(2)被検査体を反射した光を受光することにより、被検査体の欠陥を検出する反射型の検査装置。
(Inspection device 90)
The following types of devices are available for detecting irregularities on the surface of a transparent body such as film F8 as an object to be inspected, as well as bubbles, cracks, distortions in the internal structure, and the like present inside the transparent body.
(1) A transmission type inspection device that detects defects in an object to be inspected by irradiating the object with light and receiving the light that has passed through the object to be inspected.
(2) A reflection type inspection device that detects defects in an object by receiving light reflected from the object.
また、さらに、透過型、反射型それぞれに、カメラの光軸、光源、および被検査体の位置関係に応じて、表面の非散乱光を受光する明視野型検査装置と散乱光を受光する暗視野型検査装置とがある。明視野型検査装置では、欠陥がない場合には、光の散乱がないので、光源からの光が遮られることなく光検出手段に入射し、欠陥が存在する場合には、該欠陥により光が遮られて光検知手段に入射しない。従って、明るい背景の中に暗い点や筋として欠陥が観察される。これに対して、暗視野型検査装置では、欠陥がない場合、光が散乱しないので光検出手段に入射しないが、欠陥があると、欠陥により光が散乱するので光検出手段に入射する。従って、暗い背景の中に明るい斑点又は筋として欠陥が観察される。本実施形態における検査装置90としては、いずれの方式の検査装置を採用してもよい。第1検査データと第2検査データが同じ方式の検査装置により取得されることが好ましいが、これに限られない。 Furthermore, for both the transmissive and reflective types, there are bright-field inspection devices that receive non-scattered light from the surface and dark-field inspection devices that receive scattered light, depending on the relative positions of the camera's optical axis, light source, and object being inspected. In a bright-field inspection device, if there is no defect, there is no scattering of light, so light from the light source enters the light detection means without being blocked. If there is a defect, the light is blocked by the defect and does not enter the light detection means. Therefore, the defect is observed as a dark dot or streak against a bright background. In contrast, in a dark-field inspection device, if there is no defect, there is no scattering of light, so light does not enter the light detection means. However, if there is a defect, the light is scattered by the defect and enters the light detection means. Therefore, the defect is observed as a bright dot or streak against a dark background. Either type of inspection device may be used as the inspection device 90 in this embodiment. It is preferable, but not limited to, that the first inspection data and the second inspection data be acquired by the same type of inspection device.
(反射型の検査装置)
図3Aは、幅方向(X方向)から視た反射型の検査装置90の構成を示す概略図である。図3Bは、搬送方向(Y方向)から視た、検査装置90の構成を示す概略図である。検査装置90は、光源91、光学センサーとしてのカメラ92、データ処理装置としての画像解析部93、及び記憶部94を備える。検査装置90は、搬送中のフィルムF8に発生した特徴点(以下、単に欠陥ともいう)を光学的に検査するものである。検査装置90は、カメラ92が、フィルムロール80のフィルムF8を光学的に検査し、検査データとして画像データを生成する。画像データには、静止画像のみならず時系列の連続した静止画からなる動画データも含まれる。また、検査データとしては、画像データ化せずに、信号データから直接、特徴点を抽出するようにしてもよい。カメラ92は、フィルムF8の幅方向全域が検査領域(撮影範囲)となるように、カメラの台数、画角、およびフィルム面までの距離が設定される。カメラの台数は、1台のカメラでフィルム全幅を適切に撮影できない場合に、複数台のカメラを幅方向に並べるためである。図3Bでは、幅方向(X方向)に例として2台のカメラ92を並べた状態を示した図である。画像解析部93は、1台のカメラ92の連続撮影により得られた複数の画像を結合して、フィルムロール80のフィルム面全体を含む1枚の画像データを生成してもよく、撮影時刻と対応づけて、複数の画像データを記憶部94に記憶してもよい。また、幅方向に並んだ複数台のカメラ92により得られた同様の画像データを結合してもよい。画像解析部93は、記憶されている搬送速度(巻取速度、又は送り出し速度)を参照することで、画像データと対応付けられる撮影時刻により、フィルムF8の長手方向における位置を判定できる。以下においては、1つのフィルムロール80に対応して、連続する撮影により得られた複数の画像データが撮影時刻と対応づけて記憶されているものとして説明する。画像解析部93は、画像データを解析することで、欠陥情報を生成する。検査装置90は、長尺のフィルムF8の巻き取り中等の製造工程中に発生した欠陥を検査対象とする。
(Reflection type inspection device)
FIG. 3A is a schematic diagram showing the configuration of a reflective inspection device 90 as viewed from the width direction (X direction). FIG. 3B is a schematic diagram showing the configuration of the inspection device 90 as viewed from the transport direction (Y direction). The inspection device 90 includes a light source 91, a camera 92 as an optical sensor, an image analysis unit 93 as a data processing device, and a memory unit 94. The inspection device 90 optically inspects feature points (hereinafter simply referred to as defects) that occur on the film F8 during transport. In the inspection device 90, the camera 92 optically inspects the film F8 in the film roll 80 and generates image data as inspection data. The image data includes not only still images but also video data consisting of a time-series of consecutive still images. Furthermore, feature points may be extracted directly from signal data without converting the data into image data. The number of cameras 92, the angle of view, and the distance to the film surface are set so that the entire width of the film F8 is the inspection area (capture range). The number of cameras is determined so that multiple cameras can be arranged in the width direction when a single camera cannot adequately capture the entire width of the film. FIG. 3B illustrates an example in which two cameras 92 are arranged in the width direction (X direction). The image analysis unit 93 may combine multiple images obtained by continuous shooting with one camera 92 to generate a single image data piece containing the entire film surface of the film roll 80, or may store multiple image data pieces in the storage unit 94 in association with the shooting times. Similar image data pieces obtained by multiple cameras 92 arranged in the width direction may also be combined. The image analysis unit 93 can determine the longitudinal position of the film F8 by referencing the stored transport speed (winding speed or unwinding speed) and the shooting times associated with the image data. In the following description, it is assumed that multiple image data pieces obtained by continuous shooting are stored for one film roll 80 in association with the shooting times. The image analysis unit 93 generates defect information by analyzing the image data. The inspection device 90 inspects the long film F8 for defects that occur during the manufacturing process, such as while the film F8 is being wound.
光源91は、フィルムF8の検査領域に光を照射する。光源91は、ロール状のフィルムF8の幅方向(フィルムF8の長手方向と直交する方向であって、フィルム面に平行な方向)において均一に光を照射するものである。ここで、均一とは、フィルムF8における照度が、フィルムF8の幅方向に亘って略同一(最大値と最小値の差が所定値以下等)であることをいう。 The light source 91 irradiates the inspection area of the film F8 with light. The light source 91 irradiates light uniformly across the width of the rolled film F8 (a direction perpendicular to the longitudinal direction of the film F8 and parallel to the film surface). Here, "uniform" means that the illuminance on the film F8 is approximately the same across the width of the film F8 (e.g., the difference between the maximum and minimum values is less than a specified value).
カメラ92は、フィルムF8の検査領域を光学的に読み取る光学センサーである。カメラ92は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子、レンズ等を備える。カメラ92は、各撮像素子の出力信号から2次元の画像データを生成するエリアセンサーである。カメラ92は、光源91により照射され、フィルムF8の検査領域において反射された光のうち拡散光を検出する。ここでは、カメラ92として、カラーカメラ、または白黒カメラ(モノクロカメラ)のいずれかが用いられてもよい。 Camera 92 is an optical sensor that optically reads the inspection area of film F8. Camera 92 is equipped with imaging elements such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor), lenses, etc. Camera 92 is an area sensor that generates two-dimensional image data from the output signals of each imaging element. Camera 92 detects diffused light that is irradiated by light source 91 and reflected in the inspection area of film F8. Here, either a color camera or a black and white camera (monochrome camera) may be used as camera 92.
1台または複数台のカメラ92は、フィルムF8の幅方向全体に亘る撮影範囲を有しており、1回の撮影で、フィルムF8の幅方向における全範囲を同時に読み取る。カメラ92は、可視光領域の光を検出するものであってもよいし、赤外線領域の光を検出するものであってもよい。 The one or more cameras 92 have a shooting range that spans the entire width of the film F8, and in one shooting session, the entire width of the film F8 is simultaneously read. The cameras 92 may be those that detect light in the visible light range or those that detect light in the infrared range.
また、カメラ92の出力信号において、フィルムF8上の光源91により光が照射される照射部に対応する信号値と、光源91により光が照射されない非照射部に対応する信号値とのコントラストが所定値以上であることが望ましい。つまり、フィルムF8上の光源91からの光が当たっているところ(照射部)だけ、明るく見える状態が望ましい。 Furthermore, it is desirable that the contrast between the signal values corresponding to the illuminated areas on film F8 illuminated by light source 91 and the signal values corresponding to the non-illuminated areas not illuminated by light source 91 in the output signal from camera 92 be equal to or greater than a predetermined value. In other words, it is desirable that only the areas on film F8 illuminated by light from light source 91 (illuminated areas) appear bright.
コントラストは、処理対象の二つの値(ここでは、照射部に対応する信号値と非照射部に対応する信号値)の差や比等で表され、二つの値が異なるほど、コントラストが大きくなる。照射部と非照射部とのコントラストを大きくするためには、強力で直進性の高い光源91を用いることが望ましい。 Contrast is expressed as the difference or ratio between two values to be processed (here, the signal value corresponding to the irradiated area and the signal value corresponding to the non-irradiated area), and the greater the difference between the two values, the greater the contrast. To increase the contrast between the irradiated and non-irradiated areas, it is desirable to use a light source 91 that is powerful and highly directional.
ここで、「強力」とは、照射距離50mmにおける照度をE50としたときに、照度E50が50000lx以上であることをいう。また、「直進性の高い」とは、照射距離50mmにおける照度をE50、照射距離100mmにおける照度をE100としたときに、(E50-E100)/E50<0.5を満たすことをいう。 Here, "strong" means that when the illuminance at an irradiation distance of 50 mm is E50, the illuminance E50 is 50,000 lx or more. Furthermore, "highly directional" means that when the illuminance at an irradiation distance of 50 mm is E50 and the illuminance at an irradiation distance of 100 mm is E100, the relationship (E50 - E100)/E50<0.5 is satisfied.
画像解析部93は、CPU、RAM等から構成され、記憶部94に記憶されている各種処理プログラムを読み出してRAMに展開し、当該プログラムとの協働により各種処理を行う。 The image analysis unit 93 is composed of a CPU, RAM, etc., and reads various processing programs stored in the memory unit 94, loads them into RAM, and performs various processes in cooperation with these programs.
記憶部94は、HDD、SSD(Solid State Drive)等により構成され、各種処理プログラム、当該プログラムの実行に必要なデータ等を記憶している。また、記憶部94は、撮影した画像データ(検査データ)を、撮影時刻と紐付けて記憶する。記憶部94には、フィルムロール製造装置1000での巻取速度(例えば100m/min)、または製品製造装置2000におけるフィルムF8の繰り出し条件(例えば30m/min)が記憶されている。これらの巻取速度、送り出し条件は、検査DBの検査リスト(図8のテーブルT3参照)に含まれていてもよい。 The storage unit 94 is composed of an HDD, SSD (Solid State Drive), etc., and stores various processing programs, data required to execute those programs, etc. The storage unit 94 also stores captured image data (inspection data) linked to the time of capture. The storage unit 94 also stores the winding speed (e.g., 100 m/min) of the film roll manufacturing apparatus 1000, or the unwinding conditions (e.g., 30 m/min) of film F8 in the product manufacturing apparatus 2000. These winding speeds and unwinding conditions may be included in the inspection list of the inspection DB (see table T3 in Figure 8).
画像解析部93は、カメラ92(光学センサー)の出力信号に対してデータ処理を行うことで、フィルムF8の欠陥等の特徴点(位置・強度)を検出する。データ処理は、カメラ92の出力信号から得られた画像データに対する画像処理と、画像処理後のデータに基づいて欠陥を判定する欠陥判定処理と、画像処理後のデータに基づいて欠陥を定量評価する定量評価処理と、を含む。 The image analysis unit 93 performs data processing on the output signal of the camera 92 (optical sensor) to detect characteristic points (position and intensity) of defects, etc. on the film F8. The data processing includes image processing of the image data obtained from the output signal of the camera 92, defect determination processing to determine defects based on the data after image processing, and quantitative evaluation processing to quantitatively evaluate defects based on the data after image processing.
(カメラ92と光源91の相対的な位置)
カメラ92の配置位置としては、光源91から照射される光の正反射光を受ける位置としてもよい(非散乱光を受光する明視野型検査方式の場合)。
(Relative positions of camera 92 and light source 91)
The camera 92 may be positioned so as to receive specularly reflected light emitted from the light source 91 (in the case of a bright-field inspection method that receives non-scattered light).
また、カメラ92の配置位置としては、光源91から照射される光の正反射光を受ける位置を避ける位置としてもよい(散乱光を受光する暗視野型検査方式の場合)。すなわち、検査対象物で反射された光のうち拡散光を受ける位置に配置されることが好ましい。 Furthermore, the camera 92 may be positioned to avoid receiving specularly reflected light from the light source 91 (in the case of a dark-field inspection method that receives scattered light). In other words, it is preferable to position the camera 92 in a position that receives diffused light reflected from the object being inspected.
(透過型の検査装置)
図3Cは、透過型の検査装置90の例である。このように光源91が、フィルムF8を挟んでカメラ92に対向して配置される透過型の検査装置90を採用してもよい。
(Transmission type inspection device)
3C shows an example of a transmission type inspection device 90. In this way, a transmission type inspection device 90 in which the light source 91 is disposed opposite the camera 92 with the film F8 sandwiched therebetween may be employed.
図4は、本実施形態に係る情報処理システム50の適用例を示す模式図である。図4に示すように、情報処理システム50は、工場A、工場Bの端末装置70等と、ネットワークを通じて相互に通信接続する。ネットワークは、データ通信網等の通信回線である。一部のネットワークでは、有線LANや、無線LAN等(例えばIEEE802.11規格に従ったLAN)が用いられてもよい。 FIG. 4 is a schematic diagram showing an application example of an information processing system 50 according to this embodiment. As shown in FIG. 4, the information processing system 50 communicates with terminal devices 70 and the like in factories A and B via a network. The network is a communication line such as a data communication network. Some networks may use a wired LAN, a wireless LAN, or the like (for example, a LAN conforming to the IEEE 802.11 standard).
端末装置70は、例えばPC(パーソナルコンピュータ)である。例えば、端末装置70は、工場A、工場Bを操業する製造会社の従業員が用いるPCである。 The terminal device 70 is, for example, a PC (personal computer). For example, the terminal device 70 is a PC used by an employee of a manufacturing company that operates Factory A and Factory B.
工場Aには上述のフィルムロール製造装置1000が設けられる。工場Aは、例えば製膜メーカーにより操業され、または管理される。工場Aではフィルムロール80を製造する第1製造工程が実施される。フィルムロール80のフィルム面は、検査装置90により検査される。 Factory A is equipped with the above-mentioned film roll manufacturing apparatus 1000. Factory A is operated or managed by, for example, a film manufacturer. Factory A carries out the first manufacturing process of manufacturing a film roll 80. The film surface of the film roll 80 is inspected by an inspection device 90.
工場Bには、製品製造装置2000が設けられる。工場Bは、例えば、塗布メーカー等(以下、ユーザー会社またはユーザーともいう)により操業され、または管理される。工場Bそれぞれを操業するユーザー会社は複数である。工場Bでは、工場Aから出荷され、輸送されたフィルムロール80を用いて製品が製造される。工場Bでは、フィルムロール80からフィルム(後述のフィルムF8)を繰り出して、塗布、または他のフィルムと重ね合わせ乃至接着することによる後加工である第1または第2製造工程が実施される。 Factory B is equipped with product manufacturing equipment 2000. Factory B is operated or managed, for example, by a coating manufacturer (hereinafter also referred to as a user company or user). There are multiple user companies operating each factory B. Factory B manufactures products using film rolls 80 shipped and transported from factory A. Factory B performs the first or second manufacturing process, which involves unwinding film (film F8, described below) from film roll 80 and coating, or superimposing or adhering it to other films for post-processing.
本実施形態では、典型的な例では、フィルム(ウェブ)を製造する工程を第1製造工程、この製造されたフィルムを用いて、工場Bで行う後加工を第2製造工程という。例えば後加工工程では、延伸工程または、延伸工程および表面に機能層が付与される塗布工程が行われる。第2製造工程においても、フィルムロール80のフィルム面は、検査装置90により検査される。 In this embodiment, as a typical example, the process of manufacturing a film (web) is called the first manufacturing process, and the post-processing carried out at factory B using this manufactured film is called the second manufacturing process. For example, the post-processing process involves a stretching process, or a stretching process and a coating process in which a functional layer is applied to the surface. In the second manufacturing process, the film surface of the film roll 80 is also inspected by inspection device 90.
本実施形態の典型的以外の例として、工場Bでこの製造されたフィルムに複数の後加工を行う場合には、先に行う後加工を第1製造工程といい、これよりも後に行う後加工を第2製造工程という場合もある。また、工場Aで製造されたフィルムロール80を、後の工程で、繰り出して後加工を行う場合がある。この場合、フィルムロール80を製造する工程を第1製造工程といい、同じ工場A内で、このフィルムロール80を繰り出してこれよりも後に行う後加工を第2製造工程という場合もある。工場A内で行う第2製造工程には、延伸、乾燥工程が含まれる。 As a non-typical example of this embodiment, if the film manufactured in factory B undergoes multiple post-processing steps, the first post-processing step may be referred to as the first manufacturing process, and the later post-processing step may be referred to as the second manufacturing process. Also, the film roll 80 manufactured in factory A may be unwound and post-processed in a later process. In this case, the process of manufacturing the film roll 80 may be referred to as the first manufacturing process, and the later post-processing step performed in the same factory A after unwounding the film roll 80 may be referred to as the second manufacturing process. The second manufacturing process performed in factory A includes stretching and drying steps.
(特徴点抽出処理の概要)
特徴点抽出処理の詳細については後述するが、以下、図4を参照して特徴点抽出処理の概要について説明する。以下においては、典型的な例として、フィルム(ウェブ)を製造する工程を第1製造工程、この製造されたフィルムを用いて、工場Bで行う後加工を第2製造工程であるものとして説明する。
(Outline of feature point extraction process)
The feature point extraction process will be described in detail later, but an overview of the feature point extraction process will be described below with reference to Fig. 4. In the following, as a typical example, the process of manufacturing a film (web) will be described as the first manufacturing process, and the post-processing performed at factory B using this manufactured film will be described as the second manufacturing process.
工場Aの第1製造工程では、製品検査の際に、検査装置90によりフィルムが光学的に検査され、検査データ(故障データ、欠陥データとも称される)が生成される。具体的には、フィルムの表面を撮影して得られた画像データを解析することで、特徴点情報(特徴点、位置、強度)が含まれた検査データ(以下、第1検査データという)が生成される。情報処理システム50は、工場Aの端末装置70から第1検査データを取得する(ステップS1)。 In the first manufacturing process at Factory A, during product inspection, the film is optically inspected by inspection device 90, and inspection data (also referred to as failure data or defect data) is generated. Specifically, inspection data (hereinafter referred to as first inspection data) containing feature point information (feature points, positions, and intensity) is generated by analyzing image data obtained by photographing the film's surface. Information processing system 50 acquires the first inspection data from terminal device 70 at Factory A (Step S1).
ここで、特徴点とは、フィルム上の欠陥であり、画像データを解析することにより特徴点を生成する。画像解析は、公知の技術により、フィルム面を撮影した画像データにおいて、画素値が周囲の平均値から、所定以上外れた(差分が所定以上)の画素を特徴点として抽出してもよく、あるいは、後述の「特徴点生成の画像処理」の手法により算出してもよい。1つのフィルムロール80(全長数km)を撮影した1つまたは複数の画像データからは、多くの場合、数十から数千の特徴点が生成される。欠陥には、製品不良に至るレベルの不具合と、製品不良には至らないレベルの軽微な不具合の両方が含まれる。特徴点には、フィルム同士を途中で接着(超音波融着等)した際の接着不良、軸ムラ等に関する欠陥が含まれる。特徴点情報として、大きさ、位置(xy座標)が含まれる。また、特徴点情報としては、近接する複数の特徴点を1つにまとめた(クラスタリングされた)ものが用いられてもよい。特徴点生成の画像処理については後述する。 Here, feature points are defects on the film, and are generated by analyzing image data. Image analysis can be performed using known techniques to extract, as feature points, pixels in image data captured of the film surface whose pixel values deviate by a specified amount from the average value of the surrounding pixels (the difference is greater than a specified amount). Alternatively, feature points can be calculated using the "image processing for feature point generation" method described below. Tens to thousands of feature points are often generated from one or more image data captured of a single film roll 80 (total length of several km). Defects include both defects that could result in product defects and minor defects that do not result in product defects. Feature points include defects related to poor adhesion when films are bonded together (by ultrasonic welding, etc.), axial irregularities, etc. Feature point information includes size and position (x, y coordinates). Feature point information can also be obtained by grouping (clustering) multiple nearby feature points together. The image processing for feature point generation will be described later.
工場Aで製造されたフィルムロール80は、輸送されて工場Bに運ばれる。工場Bの第2製造工程では、製品検査の際に、検査装置90によりフィルムロール80のフィルム光学的に検査され、検査データが生成される。フィルムの表面を撮影して得られた画像データを解析することで、特徴点が含まれた検査データ(以下、第2検査データという)が生成される。情報処理システム50は、工場Bの端末装置70から第2検査データを取得する(ステップS2)。工場A(第1製造工程)の検査装置90と、工場B(第2の製造工程)の検査装置90とは、同じ、すなわち同じ測定系で同じ測定条件であることが好ましいが、これに限られない。工場Aと工場Bでは、求める性能、品質、製品規格(以下、製品規格等という)が異なる場合があり、それぞれの製品規格等に応じて、適切な測定系および測定条件とした検査装置90が用いられる場合がある。 The film roll 80 manufactured in Factory A is transported to Factory B. In Factory B's second manufacturing process, during product inspection, the film roll 80 is optically inspected by inspection device 90, and inspection data is generated. Image data obtained by photographing the film surface is analyzed to generate inspection data containing feature points (hereinafter referred to as second inspection data). The information processing system 50 acquires the second inspection data from the terminal device 70 in Factory B (Step S2). It is preferable that the inspection device 90 in Factory A (first manufacturing process) and the inspection device 90 in Factory B (second manufacturing process) are the same, i.e., have the same measurement system and the same measurement conditions, but this is not limited to this. Factories A and B may have different required performance, quality, and product standards (hereinafter referred to as product standards, etc.), and an inspection device 90 with an appropriate measurement system and measurement conditions may be used depending on the respective product standards, etc.
情報処理システム50は、同じフィルムロール80に関する第1、第2検査データを対比することで、特徴点の抽出処理を行う(ステップS3)。具体的には、情報処理システム50は、第1、第2検査データにおいて、フィルム面上の対応する位置同士で特徴点を比較することで、特徴点の抽出処理を行う。本明細書においては、画像データから特徴点を検出することを「特徴点を生成する」という。第1、第2の検査データを対比することで、以下の第1~第3種特徴点のいずれかに特徴点を分類することを「特徴点を抽出する」という。 The information processing system 50 performs a feature point extraction process by comparing the first and second inspection data for the same film roll 80 (step S3). Specifically, the information processing system 50 performs a feature point extraction process by comparing feature points at corresponding positions on the film surface in the first and second inspection data. In this specification, detecting feature points from image data is referred to as "generating feature points." Comparing the first and second inspection data and classifying the feature points into one of the following first to third type feature points is referred to as "extracting feature points."
図5は、特徴点の抽出処理により抽出された第1~第3種特徴点を説明するためのテーブルである。1つのフィルムロール80の検査データから生成された複数の特徴点は、第1種~第3種特徴点それぞれに分類される場合がある。例えば、数百個の特徴点のいくつかは、第1種特徴点として抽出され、いくつかは第2種特徴点として抽出され、残りは第3種特徴点として抽出される。 Figure 5 is a table explaining the first to third type feature points extracted by the feature point extraction process. Multiple feature points generated from the inspection data of one film roll 80 may be classified into each of the first to third type feature points. For example, some of the hundreds of feature points may be extracted as first type feature points, some as second type feature points, and the rest as third type feature points.
(第1種特徴点)
第1種特徴点は、第1検査データに存在する特徴点であり、第2検査データには、存在しない特徴点である。第1種特徴点は、第2製造工程(例えば塗布工程)で消えた特徴点である。この第1種特徴点は、第1製造工程では管理が不要な特徴点である。この場合、第1種特徴点の発生要因となる製造条件については、第1製造工程では規格緩和の対象となり得る。
(First type feature point)
The first type feature points are feature points that are present in the first inspection data but not present in the second inspection data. The first type feature points are feature points that disappear in the second manufacturing process (e.g., the coating process). These first type feature points are feature points that do not need to be managed in the first manufacturing process. In this case, the manufacturing conditions that cause the first type feature points to occur may be subject to relaxed standards in the first manufacturing process.
(第2種特徴点)
第2種特徴点は、第1検査データに存在せず、第2検査データに存在する特徴点である。第2種特徴点は、第2製造工程で新たに発生した特徴点である。この第2種特徴点は、第2製造工程起因の特徴点であることから、第2製造工程の改善に活かせる。
(Second type feature point)
The second type feature points are feature points that are not present in the first inspection data but are present in the second inspection data. The second type feature points are feature points that newly appear in the second manufacturing process. Because these second type feature points are feature points that originate in the second manufacturing process, they can be used to improve the second manufacturing process.
(第3種特徴点)
第3種特徴点は、第1検査データと第2検査データの両方に存在する特徴点である。この第3種特徴点は、第1製造工程起因の特徴点であり、また管理が必要な特徴点である。この第3種特徴点は、第1製造工程起因の特徴点であることから、第1製造工程の改善に活かせる。
(Third-class feature point)
The third type feature points are feature points that exist in both the first inspection data and the second inspection data. These third type feature points are feature points that originate from the first manufacturing process and require management. Because these third type feature points originate from the first manufacturing process, they can be used to improve the first manufacturing process.
情報処理システム50は、特徴点の抽出結果を工場A、工場Bの従業員等のユーザーにフィードバックするようにしてもよい(ステップS4)。例えば、対象のフィルムロール80の製造元のユーザーの端末装置70、およびこのフィルムロール80が納入されたユーザーの端末装置70からのアクセスに応じて、抽出結果を端末装置70に送信する。以上までが、特徴点抽出処理の概要である。処理のより詳細な内容については後述する。 The information processing system 50 may also provide feedback on the feature point extraction results to users such as employees of Factory A and Factory B (Step S4). For example, the extraction results may be sent to terminal device 70 in response to access from the terminal device 70 of the user of the manufacturer of the target film roll 80 and the terminal device 70 of the user to whom the film roll 80 was delivered. This completes the overview of the feature point extraction process. More detailed content of the process will be described later.
(情報処理システム50)
以下、図6~図8を参照し、情報処理システム50について説明する。図6は、情報処理システム50の概略構成を示すブロック図である。情報処理システム50は、例えばサーバーである。図6に示すように情報処理システム50は、制御部51、記憶部52、および通信部53を備える。
(Information Processing System 50)
The information processing system 50 will be described below with reference to Fig. 6 to Fig. 8. Fig. 6 is a block diagram showing a schematic configuration of the information processing system 50. The information processing system 50 is, for example, a server. As shown in Fig. 6, the information processing system 50 includes a control unit 51, a storage unit 52, and a communication unit 53.
(制御部51)
制御部51は、CPUと、RAM、ROM等のメモリを有する。CPUは、プログラムにしたがって上記各部の制御や各種の演算処理を実行するマルチコアのプロセッサ等から構成される制御回路であり、情報処理システム50の各機能は、それに対応するプログラムをCPUが実行することにより発揮される。
(Control unit 51)
The control unit 51 has a CPU and memories such as RAM, ROM, etc. The CPU is a control circuit configured with a multi-core processor or the like that controls each of the above-mentioned units and executes various arithmetic processing in accordance with a program, and each function of the information processing system 50 is realized by the CPU executing the corresponding program.
制御部51は、通信部53と協働することで取得部511、および受付部512として機能する。また、制御部51は、対比部513、解析部514、抽出部515、および出力部516として機能する。取得部511は、第1製造工程、第2製造工程での検査により得られた第1、第2検査データを取得する。受付部512は、ユーザーから補正量の入力を受け付ける。また、受付部512は、ユーザーから伸縮率の入力を受け付けてもよい。ここで補正量には、X方向、Y方向、θ方向、r方向、表裏補正がある。以下では、補正量は、X方向、Y方向、θ方向であるものとして説明する。また、以下においては、受け付けた伸縮率、補正量を合わせて、補正量等という。対比部513は、第1、第2検査データそれぞれにおいて特徴点を抽出するとともに、受け付けた補正量等を用いて、対比処理を行う。対比部513は対比処理により、第1、第2検査データ間で対応する特徴点を探索する。対比部513は、対比処理では、2つの検査データ(画像データ)に対して特徴点の記述子(後述の記述子2)を生成し、およびこの特徴点の記述子を用いて検査データ間で特徴点のマッチング処理を行い、対比結果(後述の図16に示す対応点リスト)を出力する。解析部514は、対応点リストを用いて関係性を示す指標(以下、関係性情報という)を算出する。関係性情報には、グラフ、および平均、回帰式、分散、標準偏差、相関係数等の統計情報が含まれる。また、グラフには、散布図、ヒストグラム、パレート図、バブルチャート等が含まれる。回帰式には、回帰直線および2次以上の多項式回帰が含まれる。また、回帰式(回帰モデル)には、単回帰以外に、重回帰、ロジスティック回帰等の回帰手法を用いてもよい。主抽出部515は、対比結果を用いて、第1から第3種特徴点を抽出する(分類する)。出力部516は、端末装置70の要求等に応じて、特徴点の抽出結果を端末装置70に送信したり、表示部(図示せず)に表示したりする。 The control unit 51 functions as an acquisition unit 511 and a reception unit 512 by working in cooperation with the communication unit 53. The control unit 51 also functions as a comparison unit 513, an analysis unit 514, an extraction unit 515, and an output unit 516. The acquisition unit 511 acquires the first and second inspection data obtained by inspection in the first and second manufacturing processes. The reception unit 512 receives input of the amount of correction from the user. The reception unit 512 may also receive input of the expansion/contraction ratio from the user. Here, the amount of correction includes the X direction, Y direction, θ direction, r direction, and front/back correction. In the following, the correction amount will be described as the X direction, Y direction, and θ direction. In the following, the received expansion/contraction ratio and correction amount will be collectively referred to as the correction amount, etc. The comparison unit 513 extracts feature points from each of the first and second inspection data, and performs a comparison process using the received correction amount, etc. The comparison unit 513 searches for corresponding feature points between the first and second test data through a comparison process. In the comparison process, the comparison unit 513 generates feature point descriptors (descriptor 2, described below) for the two test data (image data), performs feature point matching between the test data using the feature point descriptors, and outputs the comparison results (a corresponding point list shown in FIG. 16, described below). The analysis unit 514 calculates an index indicating the relationship (hereinafter referred to as relationship information) using the corresponding point list. The relationship information includes graphs and statistical information such as averages, regression equations, variances, standard deviations, and correlation coefficients. Graphs include scatter plots, histograms, Pareto charts, bubble charts, and the like. Regression equations include regression lines and polynomial regressions of second or higher order. In addition to simple regression, regression methods such as multiple regression and logistic regression may be used for the regression equation (regression model). The main extraction unit 515 uses the comparison results to extract (classify) first to third type feature points. The output unit 516 transmits the feature point extraction results to the terminal device 70 or displays them on a display unit (not shown) in response to a request from the terminal device 70, etc.
(記憶部52)
記憶部52は、オペレーティングシステムを含む各種プログラムや各種データを格納する大容量の補助記憶装置である。ストレージには、例えば、ハードディスク、ソリッドステートドライブ、フラッシュメモリー、ROM等が採用される。記憶部52には、ユーザーリスト、ロットリスト、検査データDB等が記憶される。このうちユーザーリスト、ロットリストの管理、登録は、管理者による端末装置70のアクセスにより登録される。例えば、この管理者は、工場Aを操業するメーカーの担当部門の担当者である。
(Storage unit 52)
The memory unit 52 is a large-capacity auxiliary storage device that stores various programs including an operating system and various data. For example, a hard disk, a solid-state drive, a flash memory, a ROM, etc. are used as the storage. The memory unit 52 stores a user list, a lot list, an inspection data DB, etc. Of these, the user list and lot list are managed and registered by an administrator who accesses the terminal device 70. For example, this administrator is a person in charge of the relevant department at the manufacturer that operates Factory A.
(ユーザーリスト)
図7は、記憶部52に記憶される各種データの例である。図7に示すテーブルT1は、ユーザーリストの例である。ユーザーリストには、ユーザーID、ユーザー名、連絡先等が記憶される。また、ユーザーは、ユーザー毎の検索データDB(検査データベース)へのアクセス権が設定されており、ユーザー自身が係わるフィルムロール80(ロットIDで識別)に関する各種データ(検査データ、抽出データ等)へのアクセス権が付与される。
(User list)
7 shows an example of various data stored in the storage unit 52. Table T1 shown in FIG. 7 is an example of a user list. The user list stores user IDs, user names, contact information, etc. Each user is assigned access rights to a search data DB (inspection database), and is granted access rights to various data (inspection data, extracted data, etc.) related to the film roll 80 (identified by lot ID) that the user is involved in.
(ロットリスト)
図7のテーブルT2は、ロットリストの例である。ロットリストには、フィルムロール毎に付与されるロットID、製品名(品種ともいう)、納入先ユーザーID(発注元)、および複数の製造条件、サイズ(幅、長さ、厚さ)、製造日等が記録される。
(Lot list)
Table T2 in Fig. 7 is an example of a lot list. The lot list records a lot ID assigned to each film roll, a product name (also called a type), a delivery destination user ID (orderer), multiple manufacturing conditions, size (width, length, thickness), manufacturing date, etc.
(検査データDB)
図8は、記憶部52に記憶される検査DB(データベース)の例である。検査データDBには、図8に示すような第1、第2検査データ、および特徴点の抽出結果等の各種のフィルムロール80の検査に関するデータが記憶される。上述のように第1検査データは、第1製造工程での検査で得られたデータである。第2検査データは、第2製造工程での検査で得られたデータである。特徴点の抽出結果は、これらの第1、第2検査データを用いて、情報処理システム50により生成されたデータである。
(Test data DB)
FIG. 8 is an example of an inspection DB (database) stored in the storage unit 52. The inspection data DB stores data related to the inspection of various film rolls 80, such as the first and second inspection data and feature point extraction results shown in FIG. 8. As described above, the first inspection data is data obtained from the inspection in the first manufacturing process. The second inspection data is data obtained from the inspection in the second manufacturing process. The feature point extraction results are data generated by the information processing system 50 using the first and second inspection data.
図8に示すテーブルT3は、検査データDBに登録されている検査リストの例である。検査リストには、検査ID、ロットID、検査装置ID、検査データ、検査日時等が記憶される。 Table T3 shown in Figure 8 is an example of an inspection list registered in the inspection data DB. The inspection list stores the inspection ID, lot ID, inspection device ID, inspection data, inspection date and time, etc.
図8のテーブルT4は、検査リストにある検査データ(検査ID:i0101)の内容の例を示したものである。検査データには、特徴点それぞれに自動的に連番で付与された特徴点IDと、特徴点ID毎の特徴点記述子1、2(以下、単に記述子1等という)が記述される。 Table T4 in Figure 8 shows an example of the contents of inspection data (inspection ID: i0101) in the inspection list. The inspection data contains feature point IDs, which are automatically assigned consecutive numbers to each feature point, and feature point descriptors 1 and 2 (hereinafter simply referred to as descriptor 1, etc.) for each feature point ID.
記述子1は、特徴点の単独の情報であり、そのXY座標位置と、強度が記録される。強度は、後述する特徴点のランクである。また、強度情報として、特徴点の大きさ(径、面積)、輝度の情報が含まれてもよい。XY座標位置は、フィルム面の起点(例えば、先端の左端)を基準としてXY座標である。Xはフィルムの幅方向の座標であり、フィルムサイズ(テーブルT2参照)に応じて例えば0~3000mmの範囲を取り得る。Yは、フィルムの長手方向の座標であり、フィルムサイズに応じて、例えば0~10000mの範囲を取り得る。記述子1の生成は、検査装置90の画像解析部93で行われる。 Descriptor 1 is information about a feature point alone, recording its XY coordinate position and intensity. Intensity is the rank of the feature point, which will be described later. Intensity information may also include information about the feature point's size (diameter, area) and brightness. The XY coordinate position is based on the origin of the film surface (for example, the left edge of the leading edge). X is the coordinate in the width direction of the film, and can range from 0 to 3000 mm, for example, depending on the film size (see Table T2). Y is the coordinate in the length direction of the film, and can range from 0 to 10000 m, for example, depending on the film size. Descriptor 1 is generated by the image analysis unit 93 of the inspection device 90.
記述子2は、周辺情報であり、他の特徴点との関係等の周囲の情報を表すベクトルや配列情報である。例えばSIFT特徴量を記述子として用いたり、カーネル密度推定を行って算出した特徴点の確率密度関数を記述子として用いたりする。この記述子2の生成は、主に対比部513により行われる。 Descriptor 2 is peripheral information, and is vector or array information that represents surrounding information such as relationships with other feature points. For example, SIFT features may be used as descriptors, or the probability density function of feature points calculated by kernel density estimation may be used as descriptors. Descriptor 2 is mainly generated by the comparison unit 513.
図8のテーブルT5は、抽出結果データの例である(以下、単に抽出データともいう)。抽出データには、元になる第1、第2検査データそれぞれの検査IDと、特徴点毎の抽出結果が記録される。抽出結果(第1~第3種)は、上述の図5で示した分類である。統合特徴点IDは、自動的に連番で付与されたものであり、第1、第2検査データのどちらまたは両方にある特徴点に対応して、統合特徴点が生成される。総合特徴点IDの個数≧第1検査、第2検査特徴点IDの個数である。なお、抽出データは、補正量等の入力にともない更新される。後述のように補正量等を受け付けることで記述子1、2が更新され(図14、図15のステップS402、S502)、更新後の記述子1、2で対比されるためである。 Table T5 in Figure 8 is an example of extraction result data (hereinafter simply referred to as extracted data). The extracted data records the inspection IDs of the original first and second inspection data, as well as the extraction results for each feature point. The extraction results (Types 1 to 3) are classified as shown in Figure 5 above. Integrated feature point IDs are automatically assigned consecutive numbers, and integrated feature points are generated corresponding to feature points found in either or both of the first and second inspection data. The number of integrated feature point IDs is greater than or equal to the number of first inspection and second inspection feature point IDs. The extracted data is updated as correction amounts, etc. are input. This is because descriptors 1 and 2 are updated by accepting correction amounts, etc., as described below (steps S402 and S502 in Figures 14 and 15), and the updated descriptors 1 and 2 are compared.
なお、1つのロットIDに対して、複数の検査装置による複数の第1、第2検査データが生成される場合もある。例えば、第2製造工程において、元巻き状態のフィルムロール80を検査(撮影)するとともに、その下流側のいくつかの工程で検査することにより複数の第2検査データが生成される場合である。この場合、情報処理システム50は、1つの第1検査データに対して、複数の第2検査データとの間(1対多)で、複数の特徴点の抽出結果データを生成するようにしてもよい。また、いずれの第2検査データと対応づけるかは、ユーザーにより選択できるようにしてもよい(例えば後述の図12のボタンb1、b2等)。 It should be noted that multiple first and second inspection data may be generated for one lot ID by multiple inspection devices. For example, in the second manufacturing process, the film roll 80 in its original wound state may be inspected (photographed), and multiple second inspection data may be generated by inspections in several downstream processes. In this case, the information processing system 50 may generate multiple feature point extraction result data for one piece of first inspection data in a one-to-many relationship with multiple pieces of second inspection data. The user may also be able to select which second inspection data to associate with (for example, buttons b1 and b2 in Figure 12, described below).
(通信部53)
通信部53は、PC等の外部の装置とネットワーク接続するインターフェースでもある。
(Communication unit 53)
The communication unit 53 also serves as an interface for network connection with an external device such as a PC.
(第1、第2検査データの生成処理)
以下、図9、図10を参照し、第1、第2製造工程で行われる第1、第2検査データの生成処理について説明する。図9は、第1製造工程で行われる第1検査データの生成処理を示すフローチャートである。
(Generation of first and second test data)
The process of generating the first and second inspection data performed in the first and second manufacturing steps will be described below with reference to Figures 9 and 10. Figure 9 is a flowchart showing the process of generating the first inspection data performed in the first manufacturing step.
(第1検査データの生成処理)
(ステップS11)
上述の典型的な例においては第1製造工程では、フィルムロール製造装置1000によりフィルムロール80が製造される。
(First test data generation process)
(Step S11)
In the typical example described above, in the first manufacturing step, the film roll 80 is manufactured by the film roll manufacturing apparatus 1000 .
(ステップS12)
検査装置90は、フィルムを撮影し、画像データを保存する。検査装置90は、図3A等で説明したものである。
(Step S12)
The inspection device 90 photographs the film and stores the image data. The inspection device 90 is the same as that described with reference to FIG. 3A and other figures.
(ステップS13)
画像解析部93は、画像データに対して以下に説明する画像処理を行い、複数の特徴点を生成する。
(Step S13)
The image analysis unit 93 performs image processing, which will be described below, on the image data to generate a plurality of feature points.
(特徴点生成の画像処理)
画像解析部93は、カメラ92により生成され、記憶部94に記憶されている2次元の画像データを取得する。
(Image processing for generating feature points)
The image analysis unit 93 acquires two-dimensional image data generated by the camera 92 and stored in the storage unit 94 .
画像解析部93は、カメラ92から取得した画像データ(検査データ)に対して、データ処理を行う。 The image analysis unit 93 performs data processing on the image data (examination data) acquired from the camera 92.
画像解析部93は、画像データを複数の領域に分割する。例えば、画像解析部93は、画像データを幅方向でn個(例えば数個~数十個)の領域(以下、領域a1~領域anと記載する)に分割する。 The image analysis unit 93 divides the image data into multiple regions. For example, the image analysis unit 93 divides the image data into n regions (e.g., several to several tens) in the width direction (hereinafter referred to as regions a1 to an).
次に、画像解析部93は、1つの領域a1の画像データを取得し、領域a1の画像データに数学的処理を行う。検出対象の欠陥の種類(ゲージバンド、縦シワ、斜めシワ、ムラ輝点、光抜け等)に応じて、適した数学的処理が用意されている。 Next, the image analysis unit 93 acquires image data for one area a1 and performs mathematical processing on the image data for area a1. Appropriate mathematical processing is provided depending on the type of defect to be detected (gauge band, vertical wrinkles, diagonal wrinkles, uneven bright spots, light leaks, etc.).
数学的処理には、前処理、強調処理、信号処理、画像特徴量抽出等が含まれる。 Mathematical processing includes preprocessing, enhancement processing, signal processing, image feature extraction, etc.
前処理として、以下が挙げられる。
・画像のトリミング、
・ローパスフィルター、ハイパスフィルター、ガウシアンフィルター、メディアンフィルター、バイラテラルフィルター、
・モルフォロジー変換、色変換(L*a*b*、sRGB、HSV、HSL)、コントラスト調整、ノイズ除去、ぼけ・ぶれ画像の復元、マスク処理、ハフ変換、射影変換等。
Pretreatment includes the following:
- Image cropping,
- Low-pass filter, high-pass filter, Gaussian filter, median filter, bilateral filter,
-Morphological transformation, color transformation (L*a*b*, sRGB, HSV, HSL), contrast adjustment, noise removal, restoration of blurred and shaken images, mask processing, Hough transform, projection transformation, etc.
強調処理として、Sobelフィルター、Scharrフィルター、Laplacianフィルター、ガボールフィルター、キャニー法等が挙げられる。 Examples of enhancement processing include the Sobel filter, Scharr filter, Laplacian filter, Gabor filter, and Canny algorithm.
信号処理として、以下が挙げられる。
・基本統計量(最大値、最小値、平均値、中央値、標準偏差、分散、四分位点)、二乗和平方根、差分、和、積、比、距離行列を求める処理、微分積分、閾値処理(二値化、適応的二値化等)、
・フーリエ変換、ウェーブレット変換、ピーク検出(ピーク値、ピーク数、半値幅等)等。
The signal processing includes the following:
- Basic statistics (maximum, minimum, average, median, standard deviation, variance, quartile), square root of sum of squares, difference, sum, product, ratio, distance matrix calculation, differential and integral calculus, threshold processing (binarization, adaptive binarization, etc.),
-Fourier transform, wavelet transform, peak detection (peak value, number of peaks, half-width, etc.), etc.
画像特徴量抽出として、テンプレートマッチング、SIFT特徴量等が挙げられる。 Examples of image feature extraction include template matching and SIFT features.
次に、画像解析部93は、領域a1の画像データについて数学的処理により求められた値(特徴量)に対して、閾値処理を行う。閾値処理は、所定の欠陥判定閾値に基づいて、検出対象の欠陥であるか否かを判定し、また、欠陥のランク(強度)を決定する処理である。 Next, the image analysis unit 93 performs threshold processing on the values (feature amounts) obtained by mathematical processing of the image data of area a1. Threshold processing is a process that determines whether or not the defect is the target of detection based on a predetermined defect determination threshold, and also determines the rank (intensity) of the defect.
閾値処理において、欠陥の存在、欠陥の種類を判定することが「欠陥判定処理」に相当する。また、閾値処理において、閾値に従って欠陥を複数のランクに分類することが「定量評価処理」に相当する。 In threshold processing, determining the presence and type of defect corresponds to "defect determination processing." Also, in threshold processing, classifying defects into multiple ranks according to the threshold corresponds to "quantitative evaluation processing."
例えば、1~100の値をとるパラメーター(特徴量)に対して、欠陥は複数のランクに分類される。例えば、欠陥の大きさ(径や面積)によってランクを分類する。また他にパラメーターの値に応じて大きさで分類したランクをさらに細分してもよい。 For example, defects are classified into multiple ranks for a parameter (feature) that takes a value between 1 and 100. For example, ranks are classified according to the size (diameter or area) of the defect. Ranks classified by size may also be further subdivided according to the parameter value.
画像解析部93は、領域a1以外の領域に対しても同様に処理を行う。 The image analysis unit 93 performs similar processing on areas other than area a1.
各領域a1~anに対する処理の後、画像解析部93は、各領域a1~anに対する結果を統合し、データ処理が終了する。具体的には、画像解析部93は、領域ごと(フィルムF8の幅方向における位置ごと)に、検出された欠陥のランクおよび発生位置(xy座標)を対応付けたデータを生成する。 After processing each of the regions a1-an, the image analysis unit 93 integrates the results for each of the regions a1-an, and data processing ends. Specifically, the image analysis unit 93 generates data that associates the rank of the detected defects with their location (x and y coordinates) for each region (each position in the width direction of the film F8).
データ処理の後、画像解析部93は、データ処理の処理結果を記憶部94に保存する。画像解析部93は、1つのフィルムロール80の検査で得られた複数の画像データそれぞれに対して、このようなデータ処理を行って処理結果を得る。これらの処理結果を集約することで、図8のテーブルT4に示したような検査データが生成される。 After data processing, the image analysis unit 93 stores the results of the data processing in the storage unit 94. The image analysis unit 93 performs this type of data processing on each of the multiple image data obtained in the inspection of one film roll 80, and obtains the processing results. By aggregating these processing results, inspection data such as that shown in Table T4 in Figure 8 is generated.
(ステップS14)
第1製造工程にある端末装置70は、ステップS13までの処理で得られた複数の特徴点情報が含まれる検査データを情報処理システム50に送る。情報処理システム50の取得部511は、取得した検査データを第1検査データとして、記憶部52の検査データDBに保存する。
(Step S14)
Terminal device 70 in the first manufacturing process sends inspection data including information on multiple feature points obtained through the processing up to step S13 to information processing system 50. Acquisition unit 511 of information processing system 50 stores the acquired inspection data in the inspection data DB of storage unit 52 as first inspection data.
(第2検査データの生成処理)
図10は、第2製造工程で行われる第2検査データの生成処理を示すフローチャートである。
(Generation process of second test data)
FIG. 10 is a flowchart showing the process of generating second inspection data performed in the second manufacturing process.
(ステップS21)
第2製造工程では、第1製造工程の後に、製品製造装置2000によりフィルムロール80を用いた後加工処理が実行され、フィルムF8を用いた製品を製造する。
(Step S21)
In the second manufacturing process, after the first manufacturing process, the product manufacturing apparatus 2000 performs post-processing using the film roll 80 to manufacture a product using the film F8.
(ステップS22)
検査装置90は、後加工の前のフィルムF8、または後加工中または後加工後のフィルムF8の表面を撮影し、画像データを保存する。
(Step S22)
The inspection device 90 photographs the surface of the film F8 before post-processing, or during or after post-processing, and stores the image data.
(ステップS23)
画像解析部93は、ステップS13と同様の処理により、生成した複数の特徴点の特徴点情報を含む検査データを記憶部94に記憶する。
(Step S23)
The image analysis unit 93 stores the generated inspection data including the feature point information of the plurality of feature points in the storage unit 94 by the same process as in step S13.
(ステップS24)
第2製造工程にある端末装置70は、ステップS23までの処理で得られた複数の特徴点情報が含まれる検査データを情報処理システム50に送る。情報処理システム50の取得部511は、取得した検査データを第2検査データとして記憶部52の検査データDBに保存する。第2検査データは、テーブルT4に示した第1検査データと同様に、特徴点id、特徴点記述子1、2で記述されたものである。
(Step S24)
Terminal device 70 in the second manufacturing process sends inspection data including information about multiple feature points obtained through the processing up to step S23 to information processing system 50. Acquisition unit 511 of information processing system 50 stores the acquired inspection data as second inspection data in the inspection data DB of storage unit 52. The second inspection data is described by feature point IDs and feature point descriptors 1 and 2, similar to the first inspection data shown in Table T4.
(特徴点の抽出処理)
以下、図11~図18を参照し、情報処理システム50で実行される特徴点の抽出処理について説明する。図11は、特徴点の抽出処理を示すフローチャートである。図12は、端末装置70に表示される操作画面の例である。図13は、特徴点の抽出処理を説明するための模式図である。
(Feature point extraction process)
The feature point extraction process executed by the information processing system 50 will be described below with reference to Figs. 11 to 18. Fig. 11 is a flowchart showing the feature point extraction process. Fig. 12 is an example of an operation screen displayed on the terminal device 70. Fig. 13 is a schematic diagram for explaining the feature point extraction process.
情報処理システム50は、ユーザーからの端末装置70を通じた操作画面を通じた開始指示に応じて、または、第2検査データが記憶部52の検査データDBに登録され、一対の第1、第2検査データが揃ったタイミングで、ステップS31以下の処理を開始させる。図12は、端末装置70に表示される操作画面701の例である。ユーザーは、ロットを選択した後に、このロットに紐付けられている複数の検査データの中から、ボタンb1、b2により第1、第2検査データを選択する。第2検査データは、第1検査データよりも下流側の工程で得られた検査データである。また、本実施形態では、第1検査データと第2検査データが採取された位置の間に、延伸工程があるものとして説明する。 The information processing system 50 starts the processing from step S31 onward in response to a start instruction from the user via the operation screen on the terminal device 70, or when the second inspection data is registered in the inspection data DB in the storage unit 52 and a pair of first and second inspection data is obtained. Figure 12 is an example of the operation screen 701 displayed on the terminal device 70. After selecting a lot, the user selects the first and second inspection data from the multiple inspection data linked to that lot using buttons b1 and b2. The second inspection data is inspection data obtained in a process downstream of the first inspection data. In addition, in this embodiment, it is described assuming that a stretching process occurs between the positions where the first inspection data and the second inspection data were collected.
(ステップS31)
取得部511は、検査データDBから、同一ロット、すなわち一対の第1、第2検査データを取得する。同一ロットは、検査IDに付与されているロットIDから紐付けられる。同一ロットは、検査IDに付与されているロットIDから紐付けられる。なお、ロットIDは、いずれかの工程で枝番IDまたは新たなロットIDが付与され、一対一対応でなく、一対nまたはn対1の場合がある。例えば、前工程では、1つのlotで3000mのフィルムが、後工程では1000mで3分割される場合がある。この場合、後工程では、ロットIDの枝番または、新たなロットIDが付与される。また、逆に前工程で2つまたは3つのフィルムロールを、接合して1つのフィルムとして、後工程で使用される場合がある。この場合には、前工程では2つまたは3つのロットIDである、後工程では1つのロットIDとなる。いずれの場合も、各工程のロットID同士の対応づけは、ロットリスト(図7参照)に記述される。
(Step S31)
The acquisition unit 511 acquires the same lot, i.e., a pair of first and second inspection data, from the inspection data DB. The same lot is linked by the lot ID assigned to the inspection ID. The same lot is linked by the lot ID assigned to the inspection ID. Note that a branch ID or a new lot ID may be assigned to the lot ID in one of the processes, and the lot ID may not correspond one-to-one, but may correspond one-to-n or n-to-1. For example, a 3,000-meter film lot may be divided into three 1,000-meter pieces in a subsequent process in a pre-process. In this case, a branch ID of the lot ID or a new lot ID is assigned in the subsequent process. Conversely, two or three film rolls may be spliced in a pre-process to form a single film for use in a subsequent process. In this case, the pre-process has two or three lot IDs, and the subsequent process has one lot ID. In either case, the correspondence between the lot IDs in each process is described in the lot list (see FIG. 7 ).
(ステップS32、S33)
対比部513は、第1検査データに第1条件で前処理を実行し、第2検査データに第2条件で前処理を実行する。
(Steps S32 and S33)
The comparison unit 513 performs preprocessing on the first inspection data under a first condition, and performs preprocessing on the second inspection data under a second condition.
対比部513は、図13に示すように、第2条件の前処理として、第2検査データに対して、巻き取り(第1製造工程)と繰り出し(第2製造工程)の違いがあれば、これを合わせるためにY座標(上下)を反転させる前処理を行う。また、第2製造工程において、カメラ92の撮影領域がフィルムF8の表面、裏面のどちらを撮影領域として設定しているかの情報に応じて、対比部513は、第2検査データ(または第1検査データ)に対してX座標(左右)を反転させる前処理を行う。また、第2製造工程における、後加工での加熱温度や引っ張りの設定により、フィルムF8が伸縮する場合において、伸縮率が予め推定できる場合には、受付部512が受け付けた伸縮率で、第1検査データまたは第2検査データに対して座標変換する。 As shown in FIG. 13, as preprocessing for the second condition, the comparison unit 513 performs preprocessing to reverse the Y coordinate (up and down) of the second inspection data to match any differences between winding (first manufacturing process) and unwinding (second manufacturing process). Furthermore, in the second manufacturing process, the comparison unit 513 performs preprocessing to reverse the X coordinate (left and right) of the second inspection data (or first inspection data) depending on whether the camera 92's shooting area is set to the front or back of the film F8. Furthermore, in the second manufacturing process, if the film F8 expands or contracts due to the heating temperature and tension settings in post-processing, and the expansion rate can be estimated in advance, the comparison unit 513 performs coordinate conversion for the first inspection data or second inspection data using the expansion rate received by the reception unit 512.
また、対比部513は、第1検査データ、第2検査データに対して、第1、第2条件に含まれるノイズ除去処理として、下記の少なくともいずれかを実行する。
(1)低ランクの特徴点の除去。
(2)極小の特徴点を除去。
(3)連続打点を除去。
(4)幅手方向の集中打点を除去。これは、特にフィルムF8の先頭や後端に生じる。
Furthermore, the comparison unit 513 performs at least one of the following noise removal processes on the first and second test data as the noise removal processes included in the first and second conditions.
(1) Removal of low-rank feature points.
(2) Remove extremely small feature points.
(3) Eliminate consecutive hits.
(4) Eliminate concentrated impacts in the width direction. This occurs especially at the leading and trailing edges of film F8.
(ステップS34)
受付部512は、ユーザーから伸縮率を受け付ける。例えば、受付部512は、図12に示すような端末装置70に表示された操作画面701を通じて伸縮率の入力を受け付ける。ユーザーは、ボタンb3、b4に所定の範囲内(例えば50~300%)において、
テンキーの入力により任意の数値を入力できる。受付部512は、ユーザーからのボタンb3への入力により、Y方向(長手方向)の伸縮率の入力を受け付ける。また受付部512は、ユーザーからのボタンb4への入力により、X方向(幅手方向)の伸縮率の入力を受け付ける。図12の操作画面701では、それぞれ140%が入力された状態が示されている。数値が100%より大きい場合には、第1検査データよりも第2検査データのフィルムの方が伸びたことを想定している。
(Step S34)
The accepting unit 512 accepts the expansion/contraction ratio from the user. For example, the accepting unit 512 accepts input of the expansion/contraction ratio through an operation screen 701 displayed on the terminal device 70 as shown in FIG. 12. The user presses buttons b3 and b4 within a predetermined range (for example, 50 to 300%).
Any numerical value can be entered using the numeric keypad. The reception unit 512 receives input of the expansion/contraction rate in the Y direction (longitudinal direction) through user input using button b3. The reception unit 512 also receives input of the expansion/contraction rate in the X direction (widthwise direction) through user input using button b4. The operation screen 701 in FIG. 12 shows a state in which 140% has been entered for each value. If the numerical value is greater than 100%, it is assumed that the film in the second inspection data has stretched more than the film in the first inspection data.
なお、図12では、延伸部03は、X方向のTD延伸と、Y方向のMD延伸を行うため、それに合わせてX方向、Y方向のそれぞれに対して伸縮率を受け付ける例を示している。これに限られず、例えば延伸部03で斜め延伸工程を行う場合には、受付部512は、斜め延伸の延伸倍率を受け付けるようにしてもよい。その場合、受付部512は、所定範囲内で(40から50°)延伸角度値の入力を受け付ける。 In Figure 12, the stretching unit 03 performs TD stretching in the X direction and MD stretching in the Y direction, and therefore an example is shown in which the stretching ratios for both the X direction and the Y direction are accepted accordingly. This is not limiting; for example, if the stretching unit 03 performs a diagonal stretching process, the accepting unit 512 may accept the stretching ratio for the diagonal stretching. In this case, the accepting unit 512 accepts input of a stretching angle value within a predetermined range (40 to 50°).
(ステップS35)
対比部513は、対比処理1により一方の検査データにある特徴点と同一または対応する特徴点を他方の検査データから探索し、特徴点同士の対応付け(マッチング)を行う。図14は、このステップS35の処理を示すサブルーチンフローチャートである。
(Step S35)
The comparison unit 513 searches for feature points in one test data that are identical to or correspond to feature points in the other test data by comparison process 1, and matches the feature points with each other. Fig. 14 is a subroutine flowchart showing the processing of step S35.
(ステップS401)
対比部513は、ステップS34で受け付けた伸縮率に応じて第1、第2検査データのうち一方の特徴点の位置を移動させる。すなわち、対比部513は座標系を変換する。以下では、対比部513は、伸縮率に応じて第1検査データの特徴点を移動するものとして説明する。例えば、図12の入力例では、対比部513は、第1検査データの各特徴点のY座標を、原点(0)を基準に伸縮率で乗じた値に変換する。ここで原点は、フィルムロール80の生産時におけるフィルムF8の先頭位置(巻き始め位置)である(繰り出しては最後尾)。また、対比部513は、第1検査データの各特徴点のX座標を、中心点を基準に伸縮率で乗じた値に変換する。すなわち、第1検査データは、中心点を基準に両側に広がるように変換される。ここで中心点は、第1検査データにおける幅方向のフィルムの中心位置である。他の例として斜め延伸の場合には、入力された延伸角度、延伸率に応じて、対比部513は、第1検査データにおける、フィルムの幅方向の位置に応じたX方向の延伸率、およびY方向の延伸率が算出されこれが適用される。なお、さらなる他の例として、第2検査データ側を変換する場合は、対比部513は、伸縮率で除する以外は、第1検査データ側を変換する場合と同様の処理により、座標変換を行える。
(Step S401)
The comparison unit 513 shifts the position of one of the feature points in the first and second inspection data according to the expansion/contraction ratio received in step S34. In other words, the comparison unit 513 converts the coordinate system. In the following description, the comparison unit 513 shifts the feature points in the first inspection data according to the expansion/contraction ratio. For example, in the input example shown in FIG. 12 , the comparison unit 513 converts the Y coordinate of each feature point in the first inspection data into a value multiplied by the expansion/contraction ratio, with the origin (0) as the base. Here, the origin is the leading position (start of winding) of film F8 during production of the film roll 80 (the end when unwound). The comparison unit 513 also converts the X coordinate of each feature point in the first inspection data into a value multiplied by the expansion/contraction ratio, with the center point as the base. In other words, the first inspection data is transformed so that it expands on both sides of the center point. Here, the center point is the center position of the film in the width direction in the first inspection data. As another example, in the case of oblique stretching, the comparison unit 513 calculates the stretch rate in the X direction and the stretch rate in the Y direction corresponding to the position in the width direction of the film in the first inspection data in accordance with the input stretch angle and stretch rate, and applies these. As yet another example, when converting the second inspection data side, the comparison unit 513 can perform coordinate conversion using the same processing as when converting the first inspection data side, except for dividing by the stretch rate.
(S402)
対比部513は、第1、第2検査データの各特徴点の記述子2を生成する。対比部513は、例えばSIFT特徴量を記述子として用いたり、カーネル密度推定を行って算出した特徴点の確率密度関数を記述子として用いたりする。
(S402)
The comparison unit 513 generates a descriptor 2 for each feature point of the first and second test data. For example, the comparison unit 513 uses a SIFT feature amount as the descriptor, or a probability density function of the feature points calculated by kernel density estimation as the descriptor.
(ステップS403、S404)
対比部513は、第1、第2検査データの特徴点同士を比較し、最も対応する点を検索する。対比部513は、特徴点同士の類似性を記述子1、および記述子2により評価し、最も類似する点を対応する特徴点と見做す。
(Steps S403 and S404)
The comparison unit 513 compares the feature points of the first and second test data to search for the most similar feature points. The comparison unit 513 evaluates the similarity between the feature points using Descriptor 1 and Descriptor 2, and regards the most similar feature points as corresponding feature points.
例えば、第1、第2検査データの特徴点の比較において、対比部513は、第2の検査データの対象の特徴点に対応する特徴点を第1検査データの特徴点の中から探索する。この際に、対比部513は、第2の検査データの特徴点の記述子1のX、Y座標と、一致し、または強度が最も近い、第1検査データの特徴点を同一点と判定する。または、記述子1のX、Y座標間の距離(ユークリッド距離)が最も近いもの同士を同一点(対応する点)と判定する。対比部513は、設定された閾値よりも距離が離れた特徴点は、対応する点の判定から除外する。なお、本実施形態においては、閾値はX方向に比べてY方向の閾値は、2~3桁大きい値に設定している。例えば、X方向では閾値は数mmであり、Y方向の閾値は数mである。X方向に比べてY方向の閾値の方が2、3桁大きいのは変化量が多いためである。 For example, when comparing feature points between the first and second test data, the comparison unit 513 searches for feature points in the first test data that correspond to feature points of interest in the second test data. In this case, the comparison unit 513 determines that feature points in the first test data that match the X and Y coordinates of descriptor 1 of the feature point in the second test data or that have the closest intensity are the same point. Alternatively, the comparison unit 513 determines that feature points with the closest distance (Euclidean distance) between the X and Y coordinates of descriptor 1 are the same point (corresponding points). The comparison unit 513 excludes feature points that are farther apart than a set threshold from the determination of corresponding points. Note that in this embodiment, the threshold in the Y direction is set to a value that is two to three orders of magnitude larger than the threshold in the X direction. For example, the threshold in the X direction is several millimeters, and the threshold in the Y direction is several meters. The threshold in the Y direction is two to three orders of magnitude larger than the threshold in the X direction because there is a greater amount of change.
また、対比部513は、記述子1とともに記述子2を用い、高次元ベクトル空間におけるベクトル同士の距離により最も類似する特徴点同士を抽出するようにしてもよい。その場合、対比部513は、記述子2としては上述のようにカーネル密度推定により算出した確率密度関数を用いてもよい。図15は、カーネル密度推定により算出した、特徴点の位置と強度(密度)を示す確率密度関数の例である。図15においては、縦横軸は、XY座標であり、また濃度が高いほど、密度が高いことが示されている。 Furthermore, the comparison unit 513 may use descriptor 2 in addition to descriptor 1 to extract feature points that are most similar based on the distance between vectors in high-dimensional vector space. In this case, the comparison unit 513 may use a probability density function calculated by kernel density estimation as described above as descriptor 2. Figure 15 is an example of a probability density function calculated by kernel density estimation that indicates the position and intensity (density) of feature points. In Figure 15, the vertical and horizontal axes are XY coordinates, and it is shown that the higher the concentration, the higher the density.
対比部513は、1つの特徴点は、1つの特徴点のみに対応するものとして判定する。例えば、第2検査データの特徴点に対して、第1検査データで最も記述子のベクトル同士が近い特徴点を対応する点として対応点リストに登録する。 The comparison unit 513 determines that one feature point corresponds to only one other feature point. For example, for a feature point in the second test data, the feature point in the first test data whose descriptor vectors are closest to the feature point in the second test data is registered as the corresponding point in the corresponding point list.
図16は、記憶部52に記憶される対応点リストの例である。対応点リストは、第2検査データの特徴点それぞれに対して、第1検査データ中の最も類似する特徴点が対応付けられたものである。また、対応点リストには、第2検査データの特徴点のXY座標と、対応付けられた特徴点間のユークリッド距離、X座標における差分dx、およびY座標における差分dyが記述されている。差分として比率を用いてもよい。 Figure 16 is an example of a corresponding point list stored in the storage unit 52. The corresponding point list associates each feature point in the second inspection data with the most similar feature point in the first inspection data. The corresponding point list also describes the X and Y coordinates of the feature points in the second inspection data, the Euclidean distance between the associated feature points, the difference dx in the X coordinate, and the difference dy in the Y coordinate. A ratio may also be used as the difference.
(ステップS405)
解析部514は、第1、第2検査データの両方に存在する特徴点同士の関連性情報を生成する。すなわち、解析部514は、対応点リストのうち、対応する特徴点が存在する特徴点に関して、関連性情報を示すデータとして、以下の4種類の散布図のいずれかを生成する。また、以下の4つの関係について主成分分析し、データの分散を最大化する座標系に射影した散布図を生成してもよい。
(1)横軸X座標、縦軸dx(X-dx散布図)、
(2)横軸X座標、縦軸dy(X-dy散布図)、
(3)横軸Y座標、縦軸dy(Y-dy散布図)、
(4)横軸Y座標、縦軸dx(Y-dx散布図)。
(Step S405)
The analysis unit 514 generates correlation information between feature points that exist in both the first and second test data. That is, the analysis unit 514 generates one of the following four types of scatter diagrams as data indicating correlation information for feature points that have corresponding feature points in the corresponding point list. Furthermore, the analysis unit 514 may perform principal component analysis on the following four relationships and generate a scatter diagram projected onto a coordinate system that maximizes the variance of the data.
(1) Horizontal axis: X coordinate, vertical axis: dx (X-dx scatter diagram),
(2) X-coordinate on the horizontal axis, dy on the vertical axis (X-dy scatter diagram),
(3) Horizontal axis: Y coordinate, vertical axis: dy (Y-dy scatter diagram),
(4) Horizontal axis is Y coordinate, vertical axis is dx (Y-dx scatter diagram).
図17Aは、上記(1)に対応する散布図を示す例である。図17Bは、上記(2)に対応する散布図を示す例である。図17Cは、上記(3)に対応する散布図を示す例である。図17Dは、上記(4)に対応する散布図を示す例である。図18は、上記(1)に対応する散布図を示す別の例であり、延伸工程において、ボーイングとよばれる弓状に伸縮した例である。これらの図で共通し、横軸は、第2検査データにおける特徴点のX座標(またはY座標)を示している。また、解析部514は、関連性情報として、散布図に替えて、または散布図とともに統計情報(例えば、回帰式、相関係数等)を算出してもよい。図17A-図17D、図18では、散布データの回帰式が合わせて示されている。また、散布図に換えて、ヒストグラム、パレート図、またはバブルチャートであってもよい。 FIG. 17A is an example of a scatter plot corresponding to (1) above. FIG. 17B is an example of a scatter plot corresponding to (2) above. FIG. 17C is an example of a scatter plot corresponding to (3) above. FIG. 17D is an example of a scatter plot corresponding to (4) above. FIG. 18 is another example of a scatter plot corresponding to (1) above, showing bowing-like expansion and contraction during the stretching process. Common to these figures, the horizontal axis indicates the X coordinate (or Y coordinate) of the feature point in the second inspection data. Furthermore, the analysis unit 514 may calculate statistical information (e.g., regression equations, correlation coefficients, etc.) as correlation information instead of or in addition to the scatter plot. In FIGS. 17A-17D and 18, the regression equations for the scatter data are also shown. Furthermore, a histogram, Pareto chart, or bubble chart may be used instead of the scatter plot.
(ステップS36)
出力部516は、関連性情報を表示出力したり、アラート出力したりする。例えば、端末装置70に表示出力する。出力部516は、関連性情報を端末装置70の操作画面に表示する。また、出力部516は、アラートのユーザーへの報知を警告音による音声情報で行ったり、携帯端末を振動させる等の触覚情報で行ったりしてもよい。図19は、関連性情報として散布図を表示した補正量受け付け用の操作画面702の例である。この操作画面702は、操作画面701に続いて表示される。例えば、ステップS405で生成した関連性情報としての散布図は、図19に示す操作画面702のプレビュー領域b10に表示される。なお、プレビュー領域b10には、相関係数が重ねて表示されてもよい。ユーザーは、図19のようにプレビュー領域b10に表示された関連性情報を参照することで、対応付けが妥当か否かを判断できる。ユーザーは、散布図等のグラフを参照することで、補正量の見直しにより2つの検査データの特徴点同士の対応付けが良好か否かを判断できる。
(Step S36)
The output unit 516 displays and outputs the correlation information or outputs an alert. For example, it displays and outputs the correlation information on the terminal device 70. The output unit 516 displays the correlation information on the operation screen of the terminal device 70. The output unit 516 may also notify the user of the alert by audio information such as an alarm sound or tactile information such as vibrating the mobile terminal. FIG. 19 shows an example of an operation screen 702 for accepting correction amounts, which displays a scatter plot as correlation information. This operation screen 702 is displayed following the operation screen 701. For example, the scatter plot as correlation information generated in step S405 is displayed in the preview area b10 of the operation screen 702 shown in FIG. 19. Note that the preview area b10 may also display a correlation coefficient. The user can determine whether the correspondence is appropriate by referring to the correlation information displayed in the preview area b10 as shown in FIG. 19. By referring to a graph such as a scatter plot, the user can determine whether the correspondence between the feature points of the two test data is satisfactory by reviewing the correction amounts.
変形例として、表示範囲に関し、ユーザーにより長手または幅手の表示範囲(プレビューX軸)の設定を受け付けるようにし、その受け付けた範囲でプレビュー表示するようにしてもよい。また、その際に、補正量の受け付けを全範囲ではなく、その表示範囲に区切って適用するようにしてもよく、あるいは、別設定により、区間の設定を受け付け、その区間に対して個別に補正量の設定を受け付けるようにしてもよい。 As a variation, the display range may be configured so that the user can set the display range (preview X-axis) in the longitudinal or lateral directions, and the preview displayed within that range. In this case, the amount of correction may be applied to a section of the display range rather than the entire range, or a separate setting may be configured so that the setting of a section is applied individually to each section.
また、別の変形例として、相関係数だけを表示してもよく、また、プレビュー領域b10に相関係数等の統計情報をウィンドウ表示するようにしてもよい。 As another variation, only the correlation coefficient may be displayed, or statistical information such as the correlation coefficient may be displayed in a window in the preview area b10.
また、さらなる変形例として以下の対応をしてもよい。例えば、補正量の入力が行われ、この補正量により再算出した特徴点の表示をプレビュー領域b1に表示する際に、補正量を適用する前のプロット(結果データ)と、補正量適用後のプロットを並べて表示したり、色分けすることで重畳して表示したりする。これにより、ユーザーは、補正前後の結果データを比較でき、入力した補正量の妥当性を把握できる。 Furthermore, as a further modification, the following measures may be taken. For example, when a correction amount is input and the feature points recalculated using this correction amount are displayed in the preview area b1, the plot before the correction amount is applied (result data) and the plot after the correction amount is applied may be displayed side by side, or may be displayed superimposed by using different colors. This allows the user to compare the result data before and after correction and understand the validity of the correction amount they input.
(ステップS37)
ユーザーは、散布図を観ることで、相関性が悪いと判断した場合には、より改善できるかを試すために補正量を入力する。これにより制御部51は、受付部512がユーザーからの補正量を受け付ける(YES)ことに応じて、処理をステップS50に進める。
(Step S37)
If the user determines by looking at the scatter diagram that the correlation is poor, the user inputs a correction amount to see if it can be improved. In response to this, the control unit 51 advances the process to step S50 in response to the reception unit 512 receiving the correction amount from the user (YES).
ここで、受付部512が受け付ける補正量の種類としては以下がある。なお、補正量として反転補正を入れてもよい。反転補正は、X座標またはY座標を、基準(幅手中心または長手最後尾)に対して反転させるものである。
(a)傾き補正量(回転)(θ方向)、
(b)X座標補正量(X方向)、
(c)Y座標補正量(Y方向)。
The types of correction amounts accepted by the accepting unit 512 include the following: Note that inversion correction may also be included as a correction amount. Inversion correction is a correction in which the X coordinate or Y coordinate is inverted relative to a reference (the center of the width or the end of the length).
(a) Tilt correction amount (rotation) (θ direction),
(b) X coordinate correction amount (X direction),
(c) Y coordinate correction amount (Y direction).
(a)傾き補正量を受け付けることで、2つの検査データのうち一方の検査データの座標が変換される。この傾き補正量は、伸縮率に対応するものである。例えば、図17、図18では、傾き補正量を適用することで、散布図全体が回転すると同様の影響がある。また(a)の入力は、(a11)X座標の補正位置におけるX補正量、または(a12)Y座標の補正位置におけるY補正量として受け付けてもよい。(b)X座標補正量では、対比部513は、一方での検査データの全体のX座標を、入力された補正量に応じてシフトする。例えば、対比部513は、入力された補正量に応じて、第1検査データのX座標をシフトさせる。この場合、図18では、散布図のプロット全体が上下方向にシフトすると同様の影響がある。(c)Y座標補正量も同様である。この場合、一方での検査データの全体のY座標が、入力された補正量に応じてシフトされる。例えば、図17の例では、入力されたY座標補正量に応じて全体が上下方向にシフトされる。 (a) By accepting the tilt correction amount, the coordinates of one of the two test data are transformed. This tilt correction amount corresponds to the expansion/contraction ratio. For example, in Figures 17 and 18, applying the tilt correction amount has the same effect as rotating the entire scatter plot. The input of (a) may also be accepted as (a11) an X correction amount at the X coordinate correction position, or (a12) a Y correction amount at the Y coordinate correction position. (b) For the X coordinate correction amount, the comparison unit 513 shifts the X coordinate of the entire test data in accordance with the input correction amount. For example, the comparison unit 513 shifts the X coordinate of the first test data in accordance with the input correction amount. In this case, in Figure 18, the same effect occurs as if the entire scatter plot were shifted up or down. The same applies to (c) the Y coordinate correction amount. In this case, the Y coordinate of the entire test data in accordance with the input correction amount. For example, in the example of Figure 17, the entire data is shifted up or down in accordance with the input Y coordinate correction amount.
図19に示す入力例は(a12)の例を示している。ユーザーにより、図19の操作画面702では、ボタンb11でY-dy散布図が選択されており、選択に対応してプレビュー領域b10には、図17に示すようなY-dy散布図が示される。ユーザーにより、入力領域b12に-6.0m、b13に0mが入力されている。再計算ボタンb14の操作によりこの入力補正量に応じた再計算が行われ、プレビュー領域b10の表示が更新される(再表示される)。この場合、回帰式において中心が固定で、最左側(b13:Y=0m)が-6.0m分移動する。すなわち、回帰式において左端が6.0m分下がるように、座標全体が反時計方向に回転する。 The input example shown in Figure 19 is an example of (a12). The user selects the Y-dy scatter plot with button b11 on the operation screen 702 in Figure 19, and in response to the selection, a Y-dy scatter plot like the one shown in Figure 17 is displayed in the preview area b10. The user enters -6.0 m in the input area b12 and 0 m in b13. By operating the recalculate button b14, a recalculation is performed based on this input correction amount, and the display in the preview area b10 is updated (redisplayed). In this case, the center of the regression equation is fixed, and the leftmost side (b13: Y = 0 m) moves by -6.0 m. In other words, the entire coordinate system rotates counterclockwise so that the left end of the regression equation moves down by 6.0 m.
(ステップS50)
図20は、このステップS50の対比処理2を示すサブルーチンフローチャートである。
(Step S50)
FIG. 20 is a subroutine flowchart showing the comparison process 2 in step S50.
(ステップS501)
対比部513は、ステップS37で受け付けた補正量(以下、入力補正量という)に応じて第1、第2検査データのうち一方の特徴点の位置を移動させる。すなわち、対比部513は座標系を変換する。以下では、対比部513は、入力補正量に応じて第1検査データの特徴点を移動するものとして説明する。
(Step S501)
The comparison unit 513 moves the position of one of the feature points of the first and second test data in accordance with the correction amount (hereinafter referred to as the input correction amount) received in step S37. That is, the comparison unit 513 converts the coordinate system. In the following description, the comparison unit 513 is assumed to move the feature point of the first test data in accordance with the input correction amount.
例えば、図19の入力例では、対比部513は、入力補正量(-6.0m)でY座標が原点0mにある特徴点のY座標を移動する。原点以外のY座標には、中心位置までの距離の比((yc-y)/yc)を入力補正量(-6.0m)に乗じた値で、特徴点のY座標を移動する。ここのycは、中心位置の座標である。ycは、原点からデータの最後尾までの距離の1/2の値である。最後尾は、第1検査データのY座標の最後のデータであり、ロールでのフィルムの長さに相当する(図7のテーブルT2のサイズ)。図21は、補正量を適用した例である。X座標に関しても同様である、ユーザーの入力補正量に応じて特徴点の座標の移動を行う。すなわち、これらの処理による特徴点の座標の移動により、図21に示すように回帰式上の回転軸を中心として、全体が反時計方向(矢印参照)に回転する。 For example, in the input example of Figure 19, the comparison unit 513 shifts the Y coordinate of the feature point whose Y coordinate is at the origin (0 m) using the input correction amount (-6.0 m). For Y coordinates other than the origin, the Y coordinate of the feature point is shifted by a value obtained by multiplying the input correction amount (-6.0 m) by the ratio of the distance to the center position ((yc-y)/yc). Here, yc is the coordinate of the center position. yc is half the value of the distance from the origin to the end of the data. The end is the last Y coordinate data of the first inspection data, and corresponds to the length of the film on the roll (the size of table T2 in Figure 7). Figure 21 shows an example in which a correction amount is applied. The same is true for the X coordinate; the coordinate of the feature point is shifted according to the user's input correction amount. In other words, by shifting the coordinate of the feature point through these processes, the entire system rotates counterclockwise (see arrow) around the axis of rotation on the regression equation, as shown in Figure 21.
(ステップS502~S505)
ここでの処理は、図14のステップS402からS405と同様である。対比部513は、ステップS501で変換した変換後の座標で、新たに特徴点記述子情報を生成し、特徴点同士のマッチング処理を行い、対応する特徴点同士を対応づけし、対応点リストに格納する。解析部514は、更新された対応点リストを参照し、第1、第2検査データの両方に存在する特徴点同士の関連性情報を生成する。関連性情報には、上述のように散布図、および統計情報のいずれかが少なくとも含まれる。以上で、図20の処理を終了し、図11の処理に戻る。例えば図21のような散布図が、図19の操作画面702のプレビュー領域b10に表示される。
(Steps S502 to S505)
The processing here is the same as steps S402 to S405 in FIG. 14. The comparison unit 513 generates new feature point descriptor information using the coordinates converted in step S501, performs a matching process between feature points, associates corresponding feature points, and stores the associated feature points in a corresponding point list. The analysis unit 514 references the updated corresponding point list and generates correlation information between feature points present in both the first and second test data. The correlation information includes at least one of a scatter plot and statistical information, as described above. This completes the processing in FIG. 20, and the processing returns to the processing in FIG. 11. For example, a scatter plot like the one in FIG. 21 is displayed in the preview area b10 of the operation screen 702 in FIG. 19.
(ステップS51)
出力部516は、再度、関連性情報を表示出力する。ここでの処理は、ステップS36と同様である。例えば、図19のプレビュー領域b10は、受け付けた補正量に応じて座標が移動された後の特徴点で、生成された関連性情報がプレビュー領域b10に表示される。
(Step S51)
The output unit 516 again displays the relevance information. The processing here is the same as that in step S36. For example, the preview area b10 in FIG. 19 is the feature point after the coordinates have been moved in accordance with the received correction amount, and the generated relevance information is displayed in the preview area b10.
(ステップS37:NO)
ユーザーは、散布図等の関連性情報を参照することで、相関性がある程度正しいと判断した場合には、補正量の修正(再修正)を不要(NO)と判断した場合には操作画面701で登録ボタンb16を押す。制御部51は、登録ボタンb16が操作されるに応じて、ステップS38に処理を進める。
(Step S37: NO)
When the user determines that the correlation is correct to a certain extent by referring to the correlation information such as a scatter diagram, or when the user determines that correction (re-correction) of the correction amount is unnecessary (NO), the user presses the register button b16 on the operation screen 701. In response to the operation of the register button b16, the control unit 51 advances the process to step S38.
(ステップS38)
図22は、確定され、記憶部52の検査DBに記録された特徴点抽出条件の例である。
制御部51は、ステップS34、およびステップS37で受け付けた伸縮率、および補正量をロット、および第1検査データと第2検査データの組み合わせと紐付けて記録する。以降は、ロットと同種類のフィルムロールを用いる場合には、この特徴点抽出条件を読み出すことで、調整の手間が省けたり、前のロットと同条件で比較することで、ロット毎の違いを把握できたりする。なお、特徴点の抽出は、確定する前の途中経過の補正量で行い、記録してもよい。例えば、補正量が入力したことに応じて、その都度、その補正量に応じて、特徴点の抽出(分類)をするようにしてもよい。
(Step S38)
FIG. 22 shows an example of the feature point extraction conditions that are determined and recorded in the inspection DB of the storage unit 52.
The control unit 51 records the expansion/contraction ratio and correction amount received in steps S34 and S37 in association with the lot and the combination of the first and second inspection data. Thereafter, when using film rolls of the same type as the lot, the control unit 51 can read out the feature point extraction conditions to eliminate the need for adjustments, and by comparing the same conditions with the previous lot, it is possible to understand the differences between the lots. Note that feature point extraction may be performed and recorded using intermediate correction amounts before they are finalized. For example, feature points may be extracted (classified) according to the correction amount each time a correction amount is input.
また、抽出部515は、第1、第2検査データで特徴点同士が対応付けられた第3種特徴点を、回帰式との距離に応じて、ランクAの第3種a、およびランクBの第3種bの2つに分類する。図23は、回帰式との距離に応じた分類を説明するための模式図である。抽出部515は、回帰式との距離が所定閾値以下の特徴点を第3種aに分類し、所定閾値を超える特徴点を第3種bに分類する。この分類は上述の(3)Y-dy散布図により行うが、他の散布図(例えばX-dx)でおこなってもよい。さらに、Y-dyの散布図の回帰式との距離、およびX-dxの回帰式との距離の両方のそれぞれにより分類し、両者を比較して、提示するようにしてもよい。例えば、両方ともランクAに分類された場合には、A1(Sランク)に分類し、一方のみでランクAに分離された場合には、A2ランクに分類する。 Furthermore, the extraction unit 515 classifies third-type feature points, which are matched feature points in the first and second inspection data, into two types: third-type a (rank A) and third-type b (rank B) based on their distance from the regression equation. Figure 23 is a schematic diagram illustrating classification based on distance from the regression equation. The extraction unit 515 classifies feature points whose distance from the regression equation is less than a predetermined threshold into third-type a, and feature points whose distance exceeds the predetermined threshold into third-type b. This classification is performed using the Y-dy scatter diagram (3) described above, but other scatter diagrams (e.g., X-dx) may also be used. Furthermore, classification may be performed based on both the distance from the regression equation of the Y-dy scatter diagram and the distance from the X-dx scatter diagram, and the two may be compared and presented. For example, if both are classified as rank A, the scatter diagram is classified as A1 (rank S), and if only one of them is ranked A, the scatter diagram is classified as A2.
また、特徴点と回帰式との距離は、縦軸(dy)の距離により行うが、ユークリッド距離により行うようにしてもよい。また、所定閾値は、予め設定された値を用いるが、標準偏差(σ)等の統計情報により設定してもよい。抽出部515は、例えば回帰式から+1σ~-1σの範囲内の特徴点を、第3種類aに分類し、それ以外の特徴点を第3種類bに分類する。抽出部515は、第3種類a、bの分離を、対応点リストに記述するようにしてもよい。ランクAの第3種類aに分類された特徴点は、より同一の特徴点であることの信頼度が高い。 The distance between the feature point and the regression equation is measured using the distance on the vertical axis (dy), but it may also be measured using Euclidean distance. The predetermined threshold uses a preset value, but may also be set using statistical information such as standard deviation (σ). The extraction unit 515 classifies feature points that fall within the range of +1σ to -1σ from the regression equation into a third type a, and other feature points into a third type b. The extraction unit 515 may record the separation of the third types a and b in a corresponding point list. Feature points classified as the third type a with rank A have a higher degree of confidence that they are the same feature point.
(ステップS39)
抽出部515は、対応リスト、第1検査データ、第2検査データから特徴点を分類する。具体的には抽出部515は、対応リストにおいて、第2検査データの特徴点うち、第1検査データの特徴点で対応づけられていない特徴点を第2種特徴点に分類する。また、抽出部515は、第1検査データの特徴点のうち、対応リストに含まれてない特徴点(第2検査データの特徴点と対応づけられていない特徴点)を第1種特徴点に分類する(図5、図8のテーブルT5参照)。
(Step S39)
The extraction unit 515 classifies feature points from the correspondence list, the first test data, and the second test data. Specifically, the extraction unit 515 classifies, in the correspondence list, feature points of the second test data that are not associated with feature points of the first test data as second-type feature points. Furthermore, the extraction unit 515 classifies, in the correspondence list, feature points of the first test data that are not included in the correspondence list (feature points that are not associated with feature points of the second test data) as first-type feature points (see Table T5 in FIGS. 5 and 8 ).
(ステップS40)
出力部516は、ステップS38で生成した抽出結果(抽出データ)を検査データDBに登録したり、抽出結果を端末装置70に送信したりする。以上で、図11に示す特徴点の抽出処理は終了する(エンド)。
(Step S40)
The output unit 516 registers the extraction results (extraction data) generated in step S38 in the test data DB, and transmits the extraction results to the terminal device 70. This completes the feature point extraction process shown in Fig. 11 (END).
このように本実施形態に係る情報処理システムは、第1検査データにおけるウェブの第1の特徴点情報と第2検査データにおけるウェブの第2の特徴点情報とを対比し、第1、第2検査データで同一の特徴点を抽出する対比部を有する。また情報処理システムは、対比部が抽出した複数の特徴点それぞれの第1検査データおよび第2検査データでの座標の差分値と、ウェブ全体での座標位置との関係性を示す関係性情報を生成する解析部と、関係性情報を出力する出力部と、を備える。これにより、フィルムロールのフィルムまたはウェブを製造する際、およびこれを用いて後加工を行う製造工程の双方において、工程改善や出荷規格設定に役立てる情報を、効率的に収集できる。特に表示された関係性情報をユーザーが確認することで、第1、第2検査データの特徴点同士の対応付けが正しく行えているかを把握できる。またユーザーによる入力補正量を受けつけることで、より精度よ
い特徴点同士の対応付けが行え(第3種特徴点)、ひいては、第1~第3種の特徴点の分類をより精度よく行える。
As described above, the information processing system according to this embodiment includes a comparison unit that compares first feature point information of a web in the first inspection data with second feature point information of a web in the second inspection data and extracts identical feature points in the first and second inspection data. The information processing system also includes an analysis unit that generates relationship information indicating the relationship between the coordinate difference between the first inspection data and the second inspection data for each of the feature points extracted by the comparison unit and the coordinate position on the entire web, and an output unit that outputs the relationship information. This allows efficient collection of information useful for process improvement and shipping standard setting both during the production of film or web for film rolls and during post-processing processes using such film or web. In particular, by checking the displayed relationship information, the user can determine whether the feature points in the first and second inspection data are correctly matched. Furthermore, by accepting a correction amount input by the user, more accurate feature point matching (third-type feature points) can be achieved, which ultimately leads to more accurate classification of the first, second, and third-type feature points.
(第2の実施形態)
第2の実施形態は、散布図において、相関係数に応じてアラートを報知するものである。図24は、第2の実施形態における特徴点の抽出処理を示すフローチャートである。
Second Embodiment
In the second embodiment, an alert is issued in accordance with the correlation coefficient in a scatter diagram. Fig. 24 is a flowchart showing the process of extracting feature points in the second embodiment.
図24においてステップS71~S76、S77~S91は、図12に示した第1の実施形態におけるステップ31~S36、S37~S51にそれぞれ対応する。第2の実施形態では、ステップS765を実施する。 In Figure 24, steps S71 to S76 and S77 to S91 correspond to steps S31 to S36 and S37 to S51, respectively, in the first embodiment shown in Figure 12. In the second embodiment, step S765 is performed.
(ステップS765)
解析部514は、相関係数を算出し、相関係数が第1所定閾値以下の場合には、アラートを報知する。例えば相関係数の絶対値が0.5以下の場合には、アラートを、端末装置70に表示する。または、回帰式が回帰直線であり、その傾きがゼロに近い場合(すなわちフラット)の場合には、特徴点の差分値(dyまたはdx)の分散を算出し、分散が第2閾値以上の場合には、アラートを表示する。
(Step S765)
The analysis unit 514 calculates the correlation coefficient, and issues an alert if the correlation coefficient is equal to or less than a first predetermined threshold. For example, if the absolute value of the correlation coefficient is 0.5 or less, an alert is displayed on the terminal device 70. Alternatively, if the regression equation is a regression line and its slope is close to zero (i.e., flat), the analysis unit 514 calculates the variance of the difference value (dy or dx) of the feature points, and if the variance is equal to or greater than a second threshold, an alert is displayed.
図25は、分布図とアラート表示の例を示す図である。図25(A)は、相関係数が高い、または差分dyの分散が小さい場合であり、正常であることを示している。一方で、図25(b)、(c)は、相関係数が低い、または差分dyの分散が大きく、異常であることを示している。出力部516は、このような場合には、端末装置70の表示部にアラートを表示する。このようにすることで、ユーザーは、何らかの不具合が生じていることが理解できる。 Figure 25 shows an example of a distribution diagram and an alert display. Figure 25 (A) shows a case where the correlation coefficient is high or the variance of the difference dy is small, indicating normality. On the other hand, Figures 25 (b) and (c) show a case where the correlation coefficient is low or the variance of the difference dy is large, indicating abnormality. In such cases, the output unit 516 displays an alert on the display unit of the terminal device 70. This allows the user to understand that some kind of malfunction has occurred.
以上に説明した情報処理システム50の構成は、上記の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上記の構成に限られず、特許請求の範囲内において、種々改変することができる。また、一般的な情報処理装置/システムが備える構成を排除するものではない。例えば、本実施形態では、第1検査データと第2検査データが採取された位置の間に、延伸工程があるものとし、図11、図12では、伸縮率を受け付ける例を示したが、伸縮率の受け付ける処理(ステップS34)を省略してもよい。例えば、第1、第2検査データの間に延伸工程がない場合に、伸縮率の受け付けを省略する。この場合、対比部513は、ステップS35では、固定の伸縮率で対比処理を行う。 The information processing system 50 described above is the main configuration used to explain the features of the above embodiment, and is not limited to the above configuration, and various modifications can be made within the scope of the claims. Furthermore, configurations that are included in general information processing devices/systems are not excluded. For example, in this embodiment, it is assumed that there is a stretching process between the positions where the first test data and the second test data are collected, and although an example of accepting an expansion/contraction ratio is shown in Figures 11 and 12, the process of accepting the expansion/contraction ratio (step S34) may be omitted. For example, if there is no stretching process between the first and second test data, the acceptance of the expansion/contraction ratio is omitted. In this case, the comparison unit 513 performs the comparison process at step S35 using a fixed expansion/contraction ratio.
また、ロットが選択された場合に、過去に同一の生産条件の製品を生産した実績があり、ユーザーにより設定され確定した補正量等が、特徴点抽出条件(図22参照)として記録されていれば、その過去の同一製品で適用した補正量等を読み出して、ユーザーに提示するようにしてもよい。これによりユーザーは、トライアンドエラーの回数を減らせるので、適正な補正量の設定を簡単にできる。 Furthermore, when a lot is selected, if there is a history of producing products under the same production conditions in the past, and the correction amounts, etc. set and confirmed by the user are recorded as feature point extraction conditions (see Figure 22), the correction amounts, etc. applied to the same product in the past can be read out and presented to the user. This reduces the number of trial and error steps required by the user, making it easier to set the appropriate correction amounts.
また、例えば、情報処理システム50には、第1製造工程および/または第2製造工程に配置した検査装置90が含まれてもよい。また、検査装置90の画像解析部93の特徴点の生成機能を、情報処理システム50の制御部51が担うようにしてもよい。この場合は、検査装置90からはフィルム面を撮影した画像データおよびその撮影条件(搬送速度、カメラ向き、画角等の情報)が情報処理システム50に送られ、特徴点の生成処理は、制御部51側で行われる。 Furthermore, for example, the information processing system 50 may include an inspection device 90 arranged in the first manufacturing process and/or the second manufacturing process. The feature point generation function of the image analysis unit 93 of the inspection device 90 may also be performed by the control unit 51 of the information processing system 50. In this case, the inspection device 90 sends image data of an image of the film surface and the shooting conditions (information such as transport speed, camera direction, and angle of view) to the information processing system 50, and the feature point generation process is performed on the control unit 51 side.
また、上述した実施形態に係る情報処理システム50における各種処理を行う手段及び方法は、専用のハードウェア回路、又はプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、USBメモリやDVD(D
igital Versatile Disc)-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、装置の一機能としてその装置のソフトウエアに組み込まれてもよい。
The means and methods for performing various processes in the information processing system 50 according to the above-described embodiment can be realized by either a dedicated hardware circuit or a programmed computer.
The program may be provided by a computer-readable recording medium such as a Digital Versatile Disc-ROM, or may be provided online via a network such as the Internet. In this case, the program recorded on the computer-readable recording medium is usually transferred to and stored in a storage unit such as a hard disk. The program may also be provided as standalone application software, or may be incorporated into the software of a device as one of its functions.
本発明の実施形態を詳細に説明および図示したが、開示された実施形態は、図示および例示のみを目的として作成されたものであり、限定するものではない。本発明の範囲は、添付の特許請求の範囲の文言によって解釈されるべきである。 Although embodiments of the present invention have been described and illustrated in detail, the disclosed embodiments are made for purposes of illustration and example only and are not intended to be limiting. The scope of the present invention should be interpreted by the language of the appended claims.
本出願は、2024年3月29日に出願された日本特許出願(特願2024-056247号)に基づいており、その開示内容は、参照され、全体として組み入れられている。 This application is based on a Japanese patent application (Patent Application No. 2024-056247) filed on March 29, 2024, the disclosure of which is incorporated herein by reference in its entirety.
50 情報処理システム
51 制御部
511 取得部
512 受付部
513 対比部
514 解析部
515 抽出部
516 出力部
52 記憶部
90 検査装置
1000 フィルムロール製造装置
2000 製品製造装置
50 Information processing system 51 Control unit 511 Acquisition unit 512 Reception unit 513 Comparison unit 514 Analysis unit 515 Extraction unit 516 Output unit 52 Storage unit 90 Inspection device 1000 Film roll manufacturing device 2000 Product manufacturing device
Claims (10)
前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを対比し、前記第1、第2検査データで同一の特徴点を抽出する対比部と、
前記対比部が抽出した複数の特徴点それぞれの前記第1検査データおよび第2検査データでの座標の差分値と、前記ウェブ全体での座標位置との関係性を示す関係性情報を生成する解析部と、
前記関係性情報を出力する出力部と、を備える情報処理システム。 an acquisition unit that acquires first inspection data in a first manufacturing process in which a web is manufactured or a manufactured web is post-processed, and second inspection data in a second manufacturing process in which post-processing using the web is performed after the first manufacturing process;
a comparison unit that compares first feature point information of the web in the first inspection data with second feature point information of the web in the second inspection data and extracts identical feature points between the first and second inspection data;
an analysis unit that generates relationship information indicating a relationship between a difference value between the coordinates of each of the plurality of feature points extracted by the comparison unit in the first inspection data and the second inspection data and a coordinate position on the entire web;
an output unit that outputs the relationship information.
前記対比部は、前記受付部が受け付けた前記補正量で前記特徴点の座標を補正した後に、前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにおける前記ウェブの第2の特徴点情報とを対比し、および、前記第1、第2検査データで同一の特徴点を抽出する、請求項1に記載の情報処理システム。 a receiving unit that receives a correction amount of the coordinates of the first inspection data and/or the second inspection data,
2. The information processing system according to claim 1, wherein the comparison unit corrects the coordinates of the feature points with the correction amount received by the reception unit, then compares the first feature point information of the web in the first inspection data with the second feature point information of the web in the second inspection data, and extracts identical feature points in the first and second inspection data.
前記受付部が前記補正量を受け付けることに応じて、再度、前記対比部は、前記同一の特徴点の抽出し、前記解析部は、前記関係性情報を生成し、および、
前記出力部は、再度、前記関係性情報を表示させる、請求項4に記載の情報処理システム。 the receiving unit receives the correction amount after the output unit displays the relationship information;
In response to the reception unit receiving the correction amount, the comparison unit extracts the same feature points again, the analysis unit generates the relationship information, and
The information processing system according to claim 4 , wherein the output unit displays the relationship information again.
さらに、前記散布図における前記特徴点の回帰式までの距離に応じて、前記特徴点を分類する抽出部を、備える、請求項1に記載の情報処理システム。 the relationship information is a scatter diagram and a regression equation that represent the relationship between the coordinate difference values and the overall coordinate positions;
The information processing system according to claim 1 , further comprising an extraction unit that classifies the feature points in the scatter diagram according to a distance from the feature points to the regression equation.
前記解析部は、前記相関係数の絶対値が第1所定閾値以下の場合、または前記分散が第2所定閾値値以上の場合には、アラートを生成し、前記出力部は、アラートを報知する、請求項1に記載の情報処理システム。 The relationship information includes a correlation coefficient indicating a relationship between a difference value of the coordinates and an overall coordinate position, or a variance of the difference value;
2. The information processing system according to claim 1, wherein the analysis unit generates an alert when an absolute value of the correlation coefficient is equal to or less than a first predetermined threshold value or when the variance is equal to or greater than a second predetermined threshold value, and the output unit issues an alert.
ウェブを製造する、または製造されたウェブに後加工する第1製造工程における第1検査データを取得するステップ(a)と、
前記第1製造工程後に行われる、前記ウェブを用いた後加工処理を行う第2製造工程における第2検査データを取得するステップ(b)と、
前記第1検査データにおける前記ウェブの第1の特徴点情報と前記第2検査データにお
ける前記ウェブの第2の特徴点情報とを対比するステップ(c)と、
前記ステップ(c)の対比結果に基づき、前記第1、第2検査データで同一の特徴点を抽出するステップ(d)と、
前記ステップ(d)で抽出した複数の特徴点それぞれの前記第1検査データおよび第2検査データでの座標の差分値と、前記ウェブ全体での座標位置との関係性を示す関係性情報を生成するステップ(e)と、
前記ステップ(e)で生成された前記関係性情報を出力するステップ(f)と、を備える、特徴点の抽出方法。 A method for extracting feature points on a web, comprising:
A step (a) of acquiring first inspection data in a first manufacturing process of manufacturing a web or post-processing a manufactured web;
(b) acquiring second inspection data in a second manufacturing process that uses the web and is performed after the first manufacturing process;
(c) comparing first feature information of the web in the first inspection data with second feature information of the web in the second inspection data;
(d) extracting identical feature points between the first and second inspection data based on the comparison result of the step (c);
a step (e) of generating relationship information indicating a relationship between a difference value between the coordinates of each of the plurality of feature points extracted in the step (d) in the first inspection data and the second inspection data and a coordinate position on the entire web;
and (f) outputting the relationship information generated in the step (e).
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2024056247 | 2024-03-29 | ||
| JP2024-056247 | 2024-03-29 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025204016A1 true WO2025204016A1 (en) | 2025-10-02 |
Family
ID=97219952
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2025/000957 Pending WO2025204016A1 (en) | 2024-03-29 | 2025-01-15 | Information processing system, feature point extraction method, and control program |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025204016A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010534833A (en) * | 2007-07-26 | 2010-11-11 | スリーエム イノベイティブ プロパティズ カンパニー | Method and system for automatic inspection of web materials |
| JP2013088247A (en) * | 2011-10-17 | 2013-05-13 | Toppan Printing Co Ltd | Quality monitoring system and quality monitoring method |
-
2025
- 2025-01-15 WO PCT/JP2025/000957 patent/WO2025204016A1/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010534833A (en) * | 2007-07-26 | 2010-11-11 | スリーエム イノベイティブ プロパティズ カンパニー | Method and system for automatic inspection of web materials |
| JP2013088247A (en) * | 2011-10-17 | 2013-05-13 | Toppan Printing Co Ltd | Quality monitoring system and quality monitoring method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1664749B1 (en) | Apparatus and method for automated web inspection | |
| US11127134B2 (en) | Film defect detection method and system | |
| KR102696084B1 (en) | Virtual camera array for inspection of manufactured webs | |
| TWI829143B (en) | Film inspection equipment, film inspection methods and computer program products | |
| US20130236082A1 (en) | Rapid processing and detection of non-uniformities in web-based materials | |
| JP2015197396A (en) | Image inspection method and image inspection device | |
| CN102074031A (en) | A method for establishing a standard for a printed circuit board appearance inspection machine | |
| CN116258703A (en) | Defect detection method, device, electronic device, and computer-readable storage medium | |
| WO2025204016A1 (en) | Information processing system, feature point extraction method, and control program | |
| WO2025204014A1 (en) | Feature point extraction method, control program, and information processing system | |
| TW202540949A (en) | Information processing system, feature point extraction method, and control program | |
| TWI793883B (en) | Defect detection method and system for wire rod coating | |
| WO2025215902A1 (en) | Information processing system, control method, and control program | |
| WO2025215901A1 (en) | Feature point extraction method, control program, and information processing system | |
| TW202534623A (en) | Feature extraction method, shipping standard setting method, and information processing system | |
| CN116205840B (en) | Defect detection method and system for wire coating | |
| Yeh et al. | YOLOv5 based Intelligent Defect Detection of Dual-color Gradient Object Fabricated by Fused Deposition Modeling Additive Manufacturing System | |
| TW202540639A (en) | Information processing system, information processing method and information processing program | |
| TW202538268A (en) | Information processing system, information processing method and information processing program | |
| TWI860458B (en) | Plate image recognition method and system | |
| KR20250033003A (en) | Film inspection apparatus, film inspection method, and computer program stored on medium | |
| CN117169241A (en) | Transparent water cup flaw detection method, system and storage medium | |
| CN118671076A (en) | Visual detection product defect equipment and visual detection method | |
| CN118057439A (en) | Manufacturing management system and manufacturing management method | |
| CN116128830A (en) | Special-shaped hole detection method and device, electronic equipment and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 25775393 Country of ref document: EP Kind code of ref document: A1 |