WO2019135412A1 - 診断支援プログラム - Google Patents
診断支援プログラム Download PDFInfo
- Publication number
- WO2019135412A1 WO2019135412A1 PCT/JP2019/000102 JP2019000102W WO2019135412A1 WO 2019135412 A1 WO2019135412 A1 WO 2019135412A1 JP 2019000102 W JP2019000102 W JP 2019000102W WO 2019135412 A1 WO2019135412 A1 WO 2019135412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- frequency
- support program
- diagnostic support
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5258—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
- A61B6/5264—Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5288—Devices using data or image processing specially adapted for radiation diagnosis involving retrospective matching to a physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/503—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/031—Recognition of patterns in medical or anatomical images of internal organs
Definitions
- the present invention relates to a technology for analyzing an image of a human body and displaying an analysis result.
- Non-Patent Document 1 generates a difference image indicating the difference between signal values among a plurality of frame images constituting a dynamic image, and obtains and displays the maximum value of each signal value from the difference image. Is disclosed.
- a lung field area is extracted from each frame image of a plurality of frame images showing the movement of the chest of a human body, and the lung field area is divided into a plurality of small areas.
- a technique is disclosed for analyzing divided small areas in association with each other. According to this technique, a feature that indicates the movement of the divided small area is displayed.
- the present invention has been made in view of such circumstances, and provides a diagnostic support program capable of displaying the movement of a region whose shape changes for each breathing element including all or part of exhalation or inspiration.
- the purpose is to More specifically, for the data of the new object to be measured, numerical values that aid diagnosis can be obtained by quantifying the agreement rate to the wave shape and Hz already acquired and other nonconformity rates.
- the purpose is to generate an image that aids in diagnosis by calculating and further imaging these numerical values.
- a diagnosis support program is a diagnosis support program that analyzes an image of a human body and displays an analysis result, and processing of acquiring a plurality of frame images from a database storing the images;
- a process of identifying at least one frequency of a breathing element including all or part of exhalation or inspiration based on pixels of a specific region of each frame image, and based on at least one frequency of the identified breathing element A process of detecting a lung field, a process of dividing the detected lung field into a plurality of block areas, and calculating a change of an image of the block area in each frame image; and an image of each block area in each frame image
- the diagnostic support program includes the frequency of noise in the spectrum obtained after the Fourier transform, and a frequency other than the frequency of the respiratory element obtained from the frame image, or It is characterized in that it further includes a process of extracting a spectrum within a certain band including a spectrum corresponding to the selected frequency or frequency band using a filter.
- the diagnostic support program according to an aspect of the present invention is characterized by further including a process of generating an image between the frames based on the frequency of the respiratory element and each of the frame images. .
- a diagnosis support program is a diagnosis support program that analyzes an image of a human body and displays an analysis result, and acquires a plurality of frame images from a database storing the image. Based on the processing, processing for identifying at least one frequency of cardiovascular beat elements extracted from the subject's heart beat or blood vessel beat, and all or part of exhalation or inspiration based on pixels of a specific region of each frame image A process of identifying at least one frequency of the respiratory element to be included, a process of detecting a lung field based on the at least one frequency of the identified respiratory element, and dividing the detected lung field into a plurality of block areas; A process of calculating a change in an image of a block area in each frame image, and a change in an image of each block area in each frame image And a process of extracting a spectrum in a certain band including a spectrum corresponding to at least one frequency of the cardiovascular beat element among the spectrum obtained after the Fourier transform, and a process of extracting from the certain band
- a diagnostic support program is a diagnostic support program that analyzes an image of a human body and displays an analysis result, and acquires a plurality of frame images from a database storing the image. Processing, processing for identifying at least one frequency of cardiovascular beat components extracted from the subject's heart beat or blood vessel beat, processing for detecting a lung field, and dividing the detected lung field into a plurality of block regions, The process of calculating the change of the image of the block area in each frame image, the process of performing the Fourier transform on the change of the image of each block area in the each frame image, and the cardiovascular beat in the spectrum obtained after the Fourier transform A process of extracting a spectrum within a certain band including a spectrum corresponding to at least one frequency of an element, and the certain band A process of inverse Fourier transform to spectrum et extracted, characterized in that to execute a process of displaying each image after the inverse Fourier transform on the display, to a computer.
- the diagnostic support program includes a frequency of noise among spectra obtained after the Fourier transform, and a frequency other than a frequency of cardiovascular beat elements obtained from the frame image, or It is characterized in that it further includes a process of extracting a spectrum within a certain band including a spectrum corresponding to the input frequency or frequency band using a filter.
- the diagnostic support program according to an aspect of the present invention is characterized by further including a process of generating an image between the frames based on the specified frequency of the cardiovascular beat element and each of the frame images. I assume.
- a diagnosis support program is a diagnosis support program that analyzes an image of a human body and displays an analysis result, and acquires a plurality of frame images from a database storing the image. Processing, processing for specifying at least one frequency of blood vessel beat elements extracted from blood vessel beats of a subject, and dividing an analysis range set for each of the frame images into a plurality of block areas In the process of calculating the change of the image of the area, the process of performing the Fourier transform of the change of the image of each block area in the frame image, and the spectrum obtained after the Fourier transform, at least one frequency of the blood vessel beat element A process of extracting a spectrum within a certain band including the corresponding spectrum, and extracting from the certain band A process of inverse Fourier transform on spectrum, characterized in that to execute a process of displaying each image after the inverse Fourier transform on the display, to a computer.
- the diagnostic support program includes a frequency of noise among the spectrum obtained after the Fourier transform, and a frequency other than the frequency of a blood vessel beat element obtained from the frame image, or an input. It is characterized in that it further includes a process of extracting a spectrum within a certain band including a spectrum corresponding to the selected frequency or frequency band using a filter.
- the diagnostic support program according to an aspect of the present invention is characterized by further including a process of generating an image between the frames based on the specified frequency of the cardiovascular beat element and each of the frame images. I assume.
- a diagnosis support program is a diagnosis support program that analyzes an image of a human body and displays an analysis result, and acquires a plurality of frame images from a database storing the image. Processing for identifying at least one frequency of a respiratory element including all or part of exhalation or inspiration based on pixels of a specific area of each frame image, and processing for at least one frequency of the specified respiratory element
- the tuning rate is within a predetermined fixed range using a tuning rate which is a value of the ratio of the rate of change of the rate of change to the rate of change of the dynamic site linked to respiration.
- a process of extracting only a certain block area characterized in that to execute a process of displaying each image containing only the block regions the extracted display, to a computer.
- the diagnostic support program according to one aspect of the present invention is at least one frequency of cardiovascular beat elements extracted from the heart rate or blood vessel beats of the subject or at least one blood vessel beat element extracted from blood vessel beats.
- the method further includes a process of specifying a frequency.
- diagnosis support program is characterized in that the value of the log of the tuning rate is defined as a fixed range including zero.
- the diagnostic support program detects lung fields in other frames using at least one Bezier curve on lung fields detected in a specific frame. It is characterized by further including processing.
- the diagnostic support program selects an internal control point in the detected lung field, and divides the lung field by a curve or a straight line passing through the internal control point in the lung field. It is characterized by
- the expansion ratio of the detected lung field and the distance between the control points in the vicinity thereof are relatively increased, and the expansion ratio for each site in the detected lung area And the interval between the internal control points is relatively reduced.
- the interval between control points is made relatively larger as it moves in the head-to-tail direction with respect to the human body, or It is characterized by making it relatively large according to a direction.
- the diagnostic support program detects lung fields in other frames using at least one Bezier surface on lung fields detected in a specific frame. It is characterized by further including processing.
- the diagnostic support program uses the at least one Bezier curve on a predetermined analysis range in a specific frame, and uses the diagnostic support program in the other frame.
- the method further includes processing for detecting a range corresponding to the analysis range.
- the diagnostic support program according to an aspect of the present invention is characterized by further including a process of drawing at least a lung field, a blood vessel or a heart using at least one or more Bezier curves. Do.
- a diagnosis support program is a diagnosis support program that analyzes an image of a human body and displays an analysis result, and acquires a plurality of frame images from a database storing the image. Processing, processing for specifying an analysis range using Bezier curves for all the acquired frame images, and processing for detecting an analysis target based on a change in intensity within the analysis range It is characterized in that
- diagnosis support program is characterized by further including a process of calculating the detected edge feature of the analysis target.
- the diagnosis support program detects the diaphragm by calculating the difference in intensity for each of the successive images, and detects the diaphragm, or the motion associated with the detected diaphragm or respiration. An indicator indicating the position or shape of the target site is displayed.
- the diagnostic support program changes the threshold of intensity to display the diaphragm not blocked by a portion other than the diaphragm, and interpolates the entire shape of the diaphragm. It is characterized by
- the diagnostic support program calculates at least one frequency of the respiratory element from the detected position or shape of the diaphragm, or the position or shape of a dynamic site linked to respiration. And the process of
- the diagnostic support program further includes processing for spatially normalizing the detected lung field or temporally normalizing using a reconstruction. It is characterized by
- the diagnostic support program corrects the respiratory element by changing the phase of at least one frequency of the respiratory element or smoothing the waveform of the respiratory element. It features.
- diagnosis support program identifies the waveform of any part in the analysis range, extracts the component of the identified waveform frequency, and configures the frequency of the waveform. It is characterized in that an image corresponding to the element is output.
- diagnosis support program is characterized in that the density of the analysis range is detected, and a portion where the density changes relatively relatively is removed.
- the diagnostic support program according to one aspect of the present invention is at least one of performing at least one of inverse Fourier transform on the basis of a spectral composition ratio of periodic changes peculiar to organs from the spectrum obtained after the Fourier transform.
- the method further comprises the process of selecting one frequency.
- the diagnostic support program according to one aspect of the present invention is characterized in that the X-ray imaging apparatus is controlled to adjust the irradiation interval of X-rays according to at least one frequency of the respiratory element. Do.
- diagnosis support program is characterized in that after the inverse Fourier transform, only a block having a relatively large amplitude value is extracted and displayed.
- the diagnostic support program identifies the lung field, identifies the diaphragm or thorax, calculates the amount of change in the diaphragm or thorax, and calculates the rate of change from the amount of change. Further comprising processing for
- the diagnostic support program according to an aspect of the present invention further includes a process of multiplying a specific spectrum by a coefficient, and highlighting based on the spectrum is performed on the specific multiplied by the coefficient. Do.
- the diagnostic support program may obtain a plurality of frame images from a database storing images, and then specify the frequency or the waveform of the respiratory element to be analyzed. It is characterized by applying a digital filter.
- the diagnostic support program identifies a plurality of frequencies of respiratory elements including all or part of exhalation or inspiration based on pixels of a specific region of each frame image, Each image corresponding to each of the plurality of frequencies of the respiratory element is displayed on a display.
- the diagnostic support program according to an aspect of the present invention is characterized by selecting an image to be collected to a certain value and displaying it on a display for a specific range of one or more frame images. I assume.
- FIG. 10 is a diagram showing an example in which the lung field contour is drawn using both a Bezier curve and a straight line, and the lung field shows the maximum state.
- FIG. 10 is a diagram showing an example in which a lung field contour is drawn using both a Bezier curve and a straight line, and shows a state in which the lung field is minimum. It is the figure which overlapped the front and back of the image of the lung field between the front and the following flame
- FIG. 4A it is a figure showing the state where "a strong line of a gap" arose.
- FIG. 4B it is a figure which shows the difference value of sum "density" of the "intensity” value in each position of the up-down direction of an image. It is a figure which performed the curve regression and showed the result of having approximated the relative position of the diaphragm.
- the area or volume of breathing, blood vessels, and lung fields in the human body, and other living body movements constant in the time axis with respect to the whole or a certain partial range with respect to movement captured so as to repeat at a constant cycle. Capture and measure the repetition or constant movement (routine) of as a wave. For wave measurement results, (a) wave form itself or (b) wave interval (frequency: Hz) is used. These two concepts are collectively called "base data”.
- the peak of the aortic blood flow does not coincide with the peak or waveform of the ventricular volume, as shown in FIG. 13 “an example comparing the waveform of the aortic blood flow with the waveform of the ventricular volume”.
- the time width at equal intervals is one cycle such as time t1 to t2, time t2 to t3, time t3 to t4 ...
- one cycle of aortic blood flow and one cycle of ventricular volume are It will be repeated many times, and it can be said that each waveform is tuned in frequency. Focusing on this waveform, it is possible to predict the wave form by specifying one cycle from the actual measurement value as shown in FIG. 13 and using the model waveform.
- the “waveform as base data” may be measured, may be generated from a frequency (cycle), or a model waveform may be used, or the waveform between individuals may be averaged. You may use it. If the cycle (period) of an organ having a frequency such as the heart is known, the wave form can be predicted, so waveforms of the aortic blood flow and ventricular volume are grasped, and based on this waveform Image can be displayed.
- a digital filter When acquiring changes in “density” such as respiration, heart, hilar region, etc., a digital filter may be applied in advance so that other elements are not mixed.
- hearing element includes all or part of exhalation or inspiration.
- breath element includes all or part of exhalation or inspiration.
- inspiration can be considered as being divided into “one breath” and “one inspiration”, or "0%, 10%, 20%, 30%, 40%” of "one breath or one inspiration”. It can also be considered limiting to any of 50%, 60%, 70%, 80%, 90%, 100%.
- extract and evaluate only a certain percentage of each exhalation for example only 10% of exhalation. Using any of these data, or data combining them, it is possible to extract an image with higher accuracy. At this time, it may be calculated reciprocally many times.
- the wave axis, width, range and fluctuation of Hz due to mutual component extraction are estimated. That is, with multiple superpositions, the axis setting of Hz is averaged, and the dispersion calculates the optimum range of the axis, width, range, and Hz. At that time, Hz (noise) of other behavior is extracted, and if there is the wave, the degree to which it does not enter may be measured relatively. That is, only a part of the waveform may be extracted from the entire waveform element.
- density and “intensity” are used in distinction.
- “density” means the absorption value, and in the original XP or XP movie, the permeability of air is high, and the value of high permeability is white, and the air is “- It is assumed that 1000 ", water” 0 "and bone” 1000 “.
- “intensity” is assumed to be relatively changed from “density”, for example, normalized and displayed by "converting" to the density width and signal level. That is, “intensity” is a relative value such as light and dark and degree of emphasis in an image.
- a new target to be measured is extracted with the waveform of the above-mentioned base data, a certain width and range of Hz of waves.
- extraction is performed using only respiration extraction, or a width, range, or waveform element of blood vessel extraction.
- width of this waveform, Hz use waveform elements in other functions, “artifact” such as noise, other “modality” waveforms that are considered to have other tunability, and repeatability performed multiple times, etc. , Relatively, and comprehensively based on statistics. Adjustment and experience are needed there (it is also possible to apply machine learning).
- the tendency of image change is described as a tuning coincidence rate.
- a lung field is detected, divided into a plurality of block areas, and an “average density (pixel value x)” of the block areas in each frame image is calculated.
- the ratio (x ′) of the average pixel value of the block area in each frame image to the change width (0% to 100%) of the maximum value from the minimum value of “average density (pixel value x)” is calculated.
- the ratio (x '/ y') of the ratio (y ') of the diaphragm change (y) of each frame image to the change width (0% to 100%) of the minimum position to the maximum position of the diaphragm is used. Then, only block areas whose ratio value (x '/ y') is within a predetermined fixed range are extracted.
- a is a numerical value of the amplitude of the diaphragm or a numerical value of "density"
- a is a numerical value of the amplitude of the diaphragm or a numerical value of "density”
- the present invention can also be applied to the circulatory system, for example, the change in heart “density” is directly related to the change in blood flow "density” from the hilar region to the peripheral lung area, and a series of heart Changes in “density” and changes in “density” in the hilar region are transmitted as they are through a kind of transformation. It is believed that this is caused by obtaining a slight phase difference from the relationship between the change in the heart's "density” and the change in the hilar region "density".
- total inspiratory volume ⁇ total expiratory volume can be set. Therefore, when a relative value is calculated from the difference with the permeability of the surrounding air, it is intended to display as a relative value (Standard Differential Signal Density / Intensity) when the amount of change is 1 from the "density" of the lung field. Then, (1) an image of a difference for each image, an image when assuming 1 for each image (usually assumed), and (2) an image of a difference for each image.
- the amount of change and the rate of change can be depicted for the ratio with the total amount of density being 1.
- a value obtained by summing “intensity (in the case of MR)” and “density” (in the case of CT) of the entire intake in that case, it is 1)
- the difference between “intensity” and “density” can be converted to “peak flow volume deta” of inspiratory (even at rest and effort breathing), and the value can be converted to at least the ratio of “intensity” or “density” to obtain at least MRI or
- the distribution in the "capillary phase" in the "flow” of the lung field can also present an estimated value that is converted to the distribution of the peripheral blood flow and volume. It is.
- the extracted change amount is visualized and rendered in an image. This is respiratory function analysis and blood vessel analysis described below. And visualize the rate of change of thorax and diaphragm. At that time, it is also possible to extract functions from the new data extraction waveform, the first base data waveform, and other waveforms such as other modalities, and the surrounding, multiple waveforms, by excluding artifacts for the result again. is there. The method of excluding an artifact will be described later.
- the feature amount may be grasped even if the variation component extracted from other than the above extracted one is excluded. For example, when grasping the movement of the abdominal intestine, the movement of the abdominal intestine is attempted by excluding the influence of respiration and the influence of blood vessels from the abdomen.
- FIG. 1A is a view showing a schematic configuration of a diagnosis support system according to the present embodiment.
- This diagnosis support system exerts a specific function by causing a computer to execute a diagnosis support program.
- the basic module 1 includes a respiratory function analysis unit 3, a lung blood flow analysis unit 5, other blood flow analysis units 7, a Fourier analysis unit 9, a waveform analysis unit 10, and a visualization / digitization unit 11.
- the basic module 1 acquires image data from the database 15 via the input interface 13.
- the database 15 stores, for example, images according to DICOM (Digital Imaging and Communication in Medicine).
- DICOM Digital Imaging and Communication in Medicine
- the period of the respiratory element is analyzed based on the following index.
- the term "breathing element” as described above is a concept that includes all or part of exhalation or inspiration. That is, at least one frequency of the respiratory component is analyzed using at least one of "density” / "intensity", movement of the diaphragm and movement of the thorax in a certain region in the lung field.
- the frequency component indicated by the respiratory component is one or more, and the concept includes the case where the bandwidth has a constant bandwidth.
- the lung field is considered as a set of blocks and a plurality of frequencies are extracted from each block, in the present embodiment, these are processed as a frequency group.
- the base data has the concept of both "wave form itself” and "wave interval (frequency: Hz)", it is also possible to process it as a wave form.
- a range consisting of a certain volume “density” / “intensity” measured at a site with high permeability of X-rays (other types of multiple modalities such as CT, MRI, etc.) Data obtained from the method or external input information may be used.
- analysis results for each breath can be compared, and trends can be analyzed from a plurality of data to increase the accuracy of the data.
- the movement of the chest, movement of the other diaphragm, ⁇ ⁇ (thorax movement) ((density) ((precision lung function) ((thorax sensor), etc. is used to adjust the phase of the wave.
- the "density" of the lung field average is tracked, and the final change is the wave form, and approximation of the wave square method etc. is performed to identify the wave.
- the change of the "density" of the lung may be evaluated by the evaluation of the "density” of the whole screen.
- the phase may be corrected at the position of the maximum or minimum value of the phase difference, the entire form of the wave, or the like.
- cardiovascular beat analysis and blood vessel beats are analyzed based on the following indexes. That is, the heart, hilar position and major blood vessels are identified from the measurement results of other modalities such as an electrocardiogram and a pulsimeter, or the blood vessel beat is analyzed using changes in "density" / "intensity” of each part . Alternatively, the change may be manually plotted on the image to analyze the change in "density” / "intensity” of the target site. Then, at least one frequency (waveform) of a cardiovascular beat component obtained from the heart beat or blood vessel beat is specified.
- Lung field identification Images are extracted from a database (DICOM), and lung contours are automatically detected using the above-described periodic analysis results of respiratory elements.
- conventionally known techniques can be used.
- the techniques disclosed in JP-A-63-240832 or JP-A-2-250180 can be used.
- the lung field is divided into a plurality of block areas, and changes in each block area are calculated.
- the size of the block area may be determined according to the imaging speed. When the imaging speed is slow, it becomes difficult to identify the corresponding part in the frame image next to a certain frame image, so the block area is enlarged.
- the size of the block area may be calculated according to which timing of the cycle of the respiratory element is selected.
- the movement of the thorax, the movement of the diaphragm, and the positional relationship of the blood vessels throughout the lung field are identified, and the relative position of the lung contour is grasped and relatively evaluated based on the movement. If the block area is too small, flickering of the image may occur. In order to prevent this, the block area needs to have a certain size.
- the lung field can be represented as point and control point coordinates using at least one Bezier curve in the automatically detected lung field region. And it is also possible to represent a lung field by using a plurality of closed curves, so-called "simple closed curves" surrounded by at least one Bezier curve. Similarly, one or more simple closed curves can be used to represent the object of analysis.
- the lung field of each frame can also detect the lung field in other frames using at least one or more Bezier curves on the lung field detected in a particular frame.
- a method of detecting two lung fields of maximum and minimum and calculating the lung fields of other frames using the two lung fields may be mentioned.
- a variable called "rate of change” is defined in other frames.
- the “rate of change” is a value representing the size of the lung field, that is, the state of respiration, and can be calculated from the position of the diaphragm, the “intensity” average value of the entire image, and the like. It is also possible to calculate using measurement data of an external device such as spirography or to use a modeled change rate.
- variable "rate of change" can be arbitrarily determined, for example, calculation should be performed assuming that the lung field changes at a constant rate (10%, 20%, 30% ). You can also. Since the rate of change defined in this way may include errors, the results of automatic / manual removal of errors or results of approximation using the least squares method etc. There are also cases where processing is performed. Assuming that the maximum lung area and the minimum lung area are linearly deformed, the change rate of each frame is used to calculate the lung field in each frame using a technique such as linear transformation.
- the lung field in respiration, repeatedly changes to maximum and minimum, but in actual measurement, the shape at the maximum is not always constant.
- the lung field can be calculated more accurately than defining and calculating the two maximum and minimum lung fields. It is expected.
- the maximum and the minimum have been described as a specific example, the present invention is not limited to this, and because it is an "arbitrary range", for example, 0% and 30 in the middle of breathing It is also possible to perform at%, 30% and 100%.
- the accuracy is reduced, it is also possible to calculate the lung field of each frame from one lung field.
- the change vector of the lung field is defined by analogy with the shape of the thorax and the like.
- the present invention is not limited to this.
- the lung field in each frame is calculated using one lung field and change vector detected, and the change rate in each frame.
- the accuracy can be further improved by correcting the calculation result automatically or manually.
- the above-mentioned method is effective. That is, even in the case of 3D, it is possible to execute processing of detecting lung fields in other frames using at least one Bezier surface on lung fields detected in a specific frame. It is. This makes it possible to obtain an image of the lung field between the frames.
- FIG. 6C is a graph showing the period of the respiratory element.
- a white vertical line is shown, which is a straight line (index) indicating the current position during the period of the respiratory element, and in response to the motion of the moving picture of the lung shown in FIG. It moves to indicate the current position in the cycle of the respiratory element.
- index indicating the current position during the period of the respiratory element
- the subject when the subject "holds breath", it may not be possible to specify the frequency of the respiratory component.
- the Fourier analysis described later is performed using at least one frequency of cardiovascular beat elements extracted from the subject's heart beat or blood vessel beat.
- the manner of division of the block region described later may be changed according to the movement of the dynamic site linked to the heart, diaphragm or respiration.
- the present invention is capable of detecting the edge of the lung and evaluating the edge. For example, after the lung field is calculated by the above-described method, the position and shape of the edge can be detected again with high accuracy. Points are plotted at arbitrary positions in the calculated lung field, lines are drawn in all directions from there, and changes in pixel values are evaluated in each line. For example, as shown in FIG. 14, when the pixel value is calculated along the line segment S that cuts the lung, it can be seen that the pixel largely fluctuates at the edge, but the absolute value of the fluctuation is different. For example, adjusting the threshold at the time of detecting the left edge and the right edge improves the accuracy of edge detection.
- the characteristic of pixel value fluctuation for each region can be used. As shown in FIG. 14, even if the difference between the edge of the S2 region and the edge of the S3 region is small, the edge of the S2 region and the S3 region can be identified from the variance of the variation of the pixel value. Although attention is paid to dispersion here, the present invention is not limited to this.
- the same concept makes it possible to detect the edge of the analysis range of organs other than the lung, blood vessels, tumors and the like.
- a contrast agent is present in a blood vessel
- the inside of the blood vessel can be clearly visualized, but it is not easy to clearly calculate the outside and thickness of the blood vessel.
- the edge since the edge can be accurately detected, it is possible to calculate the shape and characteristics of the blood vessel within the analysis range. This makes it possible to quantitatively grasp the thickness and outer circumference of a blood vessel, which conventionally has not been easy to grasp, and use it for diagnosis.
- FIG. 1B is a diagram showing a method of dividing the lung field radially from the hilum. Since the lungs move more on the diaphragm side than on the lung apical side, it is possible to plot points that are roughly divided closer to the diaphragm side. In FIG. 1B, vertical lines (dotted lines) may be additionally drawn and divided into a plurality of rectangular (square) block areas. This makes it possible to more accurately represent lung motion.
- the method of plotting points in the longitudinal direction of the lung and dividing the lungs transversely “the method of plotting the points in the lateral direction of the lung and dividing the lungs longitudinally”, “tangent and diaphragm at the apex of the lung” Draw a tangent at the center of the circle, define the point where the tangents intersect as a central point, and divide the lungs at a certain angle from the straight line (for example, the vertical line) containing the points. It is also possible to divide the lung field by a method such as “a method of cutting at a plurality of planes orthogonal to the straight line connecting the diaphragm edge from the (or hilar)”.
- each organ is captured as a space surrounded by a plurality of curved surfaces or planes. Organs can be further subdivided. For example, when considering a 3D model of the right lung, it can be divided into the upper lobe, the middle lobe, and the lower lobe.
- the lung field area should identify the relative position of the lung contour by identifying the movement of the thorax, the movement of the diaphragm, and the positional relationship of the blood vessels throughout the lung field, and should be evaluated relatively based on the movement. Therefore, in the present invention, after the lung contour is automatically detected, the region specified by the lung contour is divided into a plurality of block regions, and the values (pixel values) of the change in the image included in each block region are averaged. . For example, as shown in FIG. 10, it is also possible to plot points on the edge of the opposing lung on a Bezier curve, connect them, and use a curve passing through the middle point. As a result, as shown in FIG.
- FIG. 1D is a diagram showing temporal changes when divided into block regions without considering the form of the organ to be analyzed (in this case, the lungs).
- the lung field area shall identify the relative positions of the movement of the thorax, the movement of the diaphragm, and the blood vessels in the entire lung field, grasp the relative position of the lung contour, and evaluate the relative position based on the movement. Although it is a fake, as shown in FIG.
- the region of interest deviates from the lung region due to the temporal change of the lung, resulting in a meaningless image.
- region division can be calculated for 3D.
- an internal control point is selected in the detected lung field, and the lung field is divided by a curve or a straight line passing the internal control point in the lung field. It is possible. That is, control points are provided not only in the frame of the lung field but also in the lung field, and the lung field (A) is divided using these control points.
- the distance between the detected lung field and the control point in the vicinity thereof is relatively increased (1), and the internal control is performed according to the expansion ratio for each site in the detected lung field. The distance between the points may be relatively small (2).
- the distance between control points may be relatively larger as it moves in the head-to-tail direction with respect to the human body, or may be relatively larger according to a specific vector direction.
- the vector may be determined arbitrarily, for example, it may be determined in the direction from the apex of the lung to the opposite side of the lung field, or as shown in FIG. 1B, it may be determined in the direction from the hilum to the opposite side of the lung field. It is good. It is also possible to define the vector in a direction depending on the structure of the lungs. As described above, by setting the method of dividing the lung field to "unequal division", it is possible to display an image in consideration of the features of each area.
- the outer periphery of the lung field has a large movement and a large displacement, so the block is enlarged while the inside of the lung field has a small movement and a small displacement, so the block is made smaller and finer.
- the movement on the diaphragm side of the lung field is large and the deviation is large, so the block is enlarged, while the movement on the head side of the lung area is small and the deviation is also small. .
- This technique is not limited to the lung field, and can be applied to a dynamic site linked to respiration. Such a method can also be applied to the case where the lungs are divided three-dimensionally into lung lobes.
- It can also be used to display the lower part of the diaphragm, for example, the heart and other organs surrounded by a Bezier curve. Also in this case, it is possible to unequally divide the area by defining a vector in a direction according to the structure of the heart or other organs.
- the image data is interpolated while eliminating the artifact. That is, if bones and the like are included in the analysis range, they appear as noise, so it is desirable to remove the noise using a noise cut filter.
- the air is usually -1000 and the bone is 1000. Therefore, the high permeability portion is low in pixel value and displayed black, and the low permeability portion is high in pixel value and white. Is displayed. For example, when the pixel value is represented by 256 gradations, black is 0 and white is 255.
- the pixel value of the X-ray image becomes low and the X-ray image becomes black.
- the least squares method or the like to identify the continuous and smooth wave shape, for example, it may be possible to use it for diaphragm Hz calculation and lung field adjustment.
- the images (1) superimposing the acquired comparison image in which one image is acquired before and after the same, and (2) relatively acquiring the image after acquiring one of the front and back images.
- the number of times may be one or more.
- the present invention can similarly perform “reconstruction” not only on respiration but also on blood flow, chest movement, diaphragm, and other series of movements in conjunction with these. It is also possible to "reconstruction” block by block or pixel by pixel. In addition, it is desirable to calculate with thickness, such as 10% to 20% of “reconstruction” and 10% to 40% of “reconstruction”, including 0 to 100% of “Maximum Differential Intensity Projection”.
- the lung field may be detected by the above-described method, and the detected lung field may be normalized. That is, the detected lung field is spatially normalized or temporally normalized using reconstruction. Although the size and shape of the lung field are different depending on the difference between human bodies, it can be displayed within a certain area by normalizing it.
- the function evaluation from the image can be performed by quantifying the change rate of the average or the curve. it can. Evaluate the above two rates of change as changes relative to each other, and evaluate the function of movement by quantifying and imaging different rates of change (such as parts that do not move in the same way) .
- the “diaphragm and thorax evaluation method” will be described.
- the movement is displayed with the left and right horizontal lines orthogonal to the body axis (so-called midline).
- the diaphragm line is then flattened to baseline. That is, the line of the diaphragm is aligned with the horizontal straight line.
- the diaphragm line is stretched and flattened to assess the orthogonal movement of the curve.
- the movement is evaluated with the line connecting the apex of the lung and the diaphragm thorax as a base line (as an axis).
- FIG. 6B and 6C are diagrams showing an example of an image displayed on the display.
- the motion of the left lung is displayed as a moving image.
- a white horizontal line is shown, which is a straight line (index) indicating the position of the diaphragm, and when the moving image is reproduced, it moves up and down following the movement of the diaphragm.
- the doctor can perform diagnostic imaging by detecting the diaphragm and indicating an index indicating the detected position of the diaphragm, that is, a white horizontal line indicating the position of the diaphragm.
- the movement of the thorax can be determined by a straight line such as tangent position or a straight line of the thorax by lung field recognition. It becomes.
- a straight line such as tangent position or a straight line of the thorax by lung field recognition. It becomes.
- the diaphragm surface is regarded as one coordinate or three-dimensional curved surface
- the coordinates and curved surface are a collection of fine coordinates (a contour of an edge of the diaphragm, a plane and a set of coordinates Group and calculate the position of the function evaluation from the image by "curve fitting" with the rate of change or amount of change downward at the local part of the average or the curved surface, and the diaphragm as a curved surface. It can be done.
- the curved surface of the edge drawn in the chest other than the diaphragm surface is also calculated as a collection of fine coordinates in the same manner, and the functional evaluation from the image is performed by quantifying the average and the change rate of the curved surface.
- the function of movement is evaluated by quantifying and imaging the above two rates of change and changes as relative and mutually interlocked, and different rates of change (such as parts that do not move similarly interlocked).
- FIG. 2A is a diagram showing the “intensity” change of a specific block and the result of Fourier analysis of it.
- FIG. 2B is a diagram showing a result of Fourier transform in which frequency components close to the heart beat are extracted and “intensity” change of frequency components close to the heart beat by inverse Fourier transform. For example, Fourier transform (Fourier analysis) of the "intensity” change of a particular block produces the result shown in FIG. 2A.
- a coefficient to a specific spectrum for weighting.
- this approach to achieve waveform tunability. That is, as a method of selecting a frequency when performing inverse Fourier transform, after selecting a plurality of frequencies and multiplying the ratio, inverse Fourier transform is performed. For example, when it is desired to highlight the highest frequency spectrum in a band to be extracted, it is possible to double its spectral intensity. In this case, the frequency continuity may not be present. It is possible to select the spectra that are present discretely.
- the position of the "density" of the heart is in the form of the left lung (which may be the right core in the case of visceral inversion etc.) (the area of the left lung recessed from the form of lung field extraction), vertebral body, diaphragm It is possible to guess from the position of In this case, the ROI of the heart is taken to extract "density". In this extraction, relative regions of respiration and blood flow are analogized using rough regions. Also, in the case of removing the frequency due to respiration or other "artifact" by performing "filtering" beforehand using the Hz band (40 to 150 Hz, 0.6 0.67 Hz to 2.5 Hz) generated in cardiovascular beats, etc. is there.
- the Hz band 40 to 150 Hz, 0.6 0.67 Hz to 2.5 Hz
- the position of the heart since the position of the heart also changes according to the respiratory condition, the position of the heart is relatively changed from the shape value of the thorax as the position of the thorax changes, and more accurate extraction of cardiovascular beats, hilars, large vessels, etc. There are times when extraction is performed. Furthermore, there is a method to calculate the frequency based on the contour of the regularly moving heart as well as the movement of the diaphragm.
- frequency components (respiration frequency, cardiovascular beat frequency) specified from the "density" of respiration and blood flow, and a spectrum band (BPF: A band pass filter may be used, or both may be added, or an inverse Fourier transform may be performed based on either element.
- BPF A band pass filter
- at least one frequency when performing inverse Fourier transform may be selected from the spectrum obtained after the above-described Fourier transform, based on the spectral composition ratio of periodic change unique to an organ.
- AR method Autoregressive Moving average model
- Yule-walker equation Yule-walker equivalence
- PARE Yule-walker estimates
- FIG. 2C is a diagram showing an example of extracting a certain band from the spectrum obtained after Fourier transform.
- the following method can be taken when extracting a spectrum.
- the present invention does not use a fixed BPF, but extracts a spectrum in a certain band including a spectrum corresponding to the period of the respiratory element. Furthermore, in the present invention, among the spectra obtained after Fourier transform, frequencies other than the respiratory component obtained from the frame image (e.g., also "density” / "intensity" of each part, heartbeat component obtained from heartbeat or blood vessel beat) It is also possible to extract a spectrum within a certain band including a spectrum (for example, a spectral model) corresponding to a frequency input from the outside by the operator or the operator.
- a spectrum for example, a spectral model
- the component of the spectrum of the synthetic wave is 50% + 50% if only two components (respiration, blood flow), and in the case of three components, the distribution is 1/3. For this reason, it is possible to calculate the spectrum of the synthetic wave to some extent from what% of the spectrum of the respiratory component and what% of the spectrum of the blood flow component, the components of the spectrum and their height. It is possible to extract the spectrum where the percentage (%) is high. That is, the ratio between the blood flow component / respiration component and the synthetic wave component is calculated, and the high spectral value of the blood flow component / respiratory component is calculated and extracted.
- the band of the spectrum may be determined in the range in which the change in Hz occurs and the surrounding area when identifying the diaphragm or the like.
- the components of the waveform may be added.
- modeled lung When the lungs are displayed as a moving image, the relative relationship is not easy because the positional relationship moves. For this reason, the deviation in positional relationship is spatially unified and averaged.
- the shape of the lung is applied to a figure such as a fan, and the shape is displayed.
- temporally using the concept of reconstruction. For example, "a lung condition of 20% out of a plurality of breaths" can be extracted and defined as "a lung condition of 20% of one breath”.
- a spatially and temporally unified lung is referred to as a "modeled lung”. This facilitates relative judgment when comparing different patients or comparing the present and past of one patient.
- a value may be displayed relative / logarithmically with an average value of 1 from "density” / "intensity" of the measured lung field.
- changes in a specific direction may be cut out. This makes it possible to retrieve only data of meaningful methods. Pseudo-coloring is performed following changes in the analysis range using lung field identification results. That is, the analysis results of each individual (subject) are applied to relative regions along specific shapes (minimum, maximum, average, median) adjusted to the phase.
- the analysis results are transformed into specific shapes and phases that can be compared.
- the relative positional relationship in the lung field is calculated using the result of the periodic analysis of the respiratory element.
- the modeled lungs are created using a comprehensively averaged line of chest lines, “density”, diaphragm and the like of multiple patients.
- the distance can be measured radially from the hilum to the end of the lung.
- it is necessary to correct according to the movement of the thorax and the diaphragm.
- it may be calculated in combination taking into consideration the distance from the lung apex.
- inverse Fourier transform only blocks having relatively large amplitude values may be extracted and displayed. That is, when performing Fourier analysis for each block, there are a block with a large wave amplitude and a block with a small wave amplitude after inverse Fourier transform. Therefore, it is also effective to extract and visualize only blocks having relatively large amplitudes.
- the real part and imaginary part of each numerical value can be used properly. For example, it is possible to reconstruct an image from only the real part, to reconstruct an image from only the imaginary part, and to reconstruct an image from the absolute values of the real part and the imaginary part.
- Fourier analysis may be performed on the modeled lungs. That is, it is possible to use a modeled lung also when combining images of respiratory rate times or performing Fourier analysis or relative positioning.
- the acquired multiple frames are fitted to the modeled lung, or in the case of blood vessels, fitted to the modeled lung calculated according to the heartbeat (for example, the heartbeat obtained from the hilar region)
- the heartbeat for example, the heartbeat obtained from the hilar region
- the labeling method for relative assessment is as follows. That is, the image is relatively labeled in black and white, color mapping. The value around a few percent of "density” / "intensity” obtained by difference may be cut, and the upper and lower remainder may be displayed relatively. Alternatively, since values around several percent before and after the obtained difference may be a jumped value, this may be removed as "artifact" and the remaining part may be displayed relatively. It may be displayed as a value of 0 to 100% in addition to a method such as 0 to 255 gradation.
- pixels in a vague manner to some extent and display the whole in a blurred state.
- low signal values are mixed between high signal values, but as long as only high signal values can be roughly grasped, they may be vague as a whole.
- a signal above the threshold may be extracted, and in the case of respiration, a signal above the threshold may not be extracted.
- the numbers in the following table are taken as one pixel and the middle numerical value is acquired, the proportion occupied by the middle numerical value is acquired and averaged within one pixel to represent smoothly between adjacent pixels can do. This method can also be used in calculating the average intensity for each block.
- This method can be applied not only to the lung field but also to detect the density of an arbitrary analysis range and remove the location where the density changes relatively greatly. Moreover, the point which greatly exceeds the preset threshold value is cut off. It also recognizes the morphology of ribs, eg, recognizes and removes high / low signal lines that appear suddenly. Also, from the phase, it may remove signals that suddenly appear, for example, sudden signals different from normal wave changes, such as characteristics of a patient whose artifact is recognized at around 15% to 20% of the phase of reconstruction. .
- the phase may be applied to a form that can actually be recognized (the outline of XP).
- the modeled lungs can be created, it is possible to quantify and present the synchrony, match rate, mismatch rate as described above (frequency tunable image or wavelength tunable image display). Thereby, the departure from the normal state can be displayed.
- the present embodiment by performing Fourier analysis, it is possible to discover the possibility of a new disease, to compare with ordinary oneself, to compare with hand and foot, and to compare with opposite hand and foot. Become. Furthermore, it becomes possible to grasp what is wrong with how to move the foot and swallowing etc. by digitization of synchrony. In addition, it is possible to determine whether or not a person in a disease state has changed after a certain period of time, or to compare before and after the change if it is changing.
- the modeled lung when the modeled lung is 100, it is possible to grasp what percentage of difference exists in the human body and display the rate of change.
- the difference can be grasped not only in the whole lung but also in part of the lung.
- the standard blood flow can also be identified by performing "Variation classification". That is, it is possible to specify the cycle of the respiratory element, calculate the relative positional relationship of the blood vessels, and specify the blood flow dynamics of the subject as the standard blood flow.
- the lung may be detected using a pattern matching method.
- 2E to 2H are diagrams showing examples of pattern images of the lung field. As shown in FIGS. 2E to 2H, the shapes of the lungs may be classified into patterns, and the closest one of them may be extracted. By this method, it is possible to identify whether the image of the subject represents one lung or both lungs. It is also possible to identify whether it is the right lung or the left lung. Although the number of patterns is not limited, it is assumed to have 4 to 5 patterns. As described above, there is also a method of recognizing the right lung, the left lung, and both lungs only by the form (shape) of the lung field.
- a thick band "permeability reduction site” due to the vertebral body and mediastinum is recognized, and from the positional relationship with the band permeability reduction site and the positional relationship with the lung field "permeability enhancement site", right or left or It is also possible to adopt a method of recognizing both lungs. This method can also be applied to the lower region of the diaphragm as shown in FIG. 2H. Thereby, it is also possible to recognize the lower part of the diaphragm and the heart.
- air is the region with the highest permeability and higher permeability than the lung field. That is, according to the position of the air on the screen, it can be determined as follows. If (region of air at upper right of screen)> (region of air at upper left of screen), it is recognized as a left lung. This is because the area around the shoulder outside the human body is wider for imaging. If (region of air at upper left of screen)> (region of air at upper right of screen), it is recognized as a right lung. This is also because, as in the above, the area around the shoulder outside of the human body is wider for imaging. Next, if (the area of air at the upper right of the screen) ⁇ (the area of air at the upper left of the screen), it is recognized as both lungs. This is because the area of air is almost the same on the left and right.
- the air of the intestinal tract may enter under the diaphragm, and may not be recognized at that time. For this reason, from the center of the lung field, first recognize the rough lung field and its surrounding area with reduced permeability, such as the mediastinum, the heart side, and the diaphragm side, and recognize the lines in the lung field. You can also.
- This method can also use, for example, the technology disclosed in “https://jp.mathworks.com/help/images/examples/block-processing-large-images_ja_JP.html”.
- modeled lungs and normal blood flow are evaluated by combining various types of typical patients and typical cases of healthy people, modeling them as modeled lungs and standard blood flow, and fitting the shape to a certain patient. It can be used as an indicator of the event.
- the contour of the left lung is expressed by four Bezier curves and one straight line
- the lung contour can be detected with high accuracy by evaluating the conformity using conditions such as “it becomes”.
- the contour of the upper part of the lung where the edge is relatively easy to detect and It is also possible to identify several points from the position of the diaphragm detected by the following method, and it is possible to reduce the number of trials of the above-mentioned simulation. It is also possible to extract and adjust the control point position of the Bezier curve using the least squares method or the like.
- FIGS. 3A and 3B show an example in which the contour of the lung field is drawn using both a Bezier curve and a straight line.
- FIG. 3A shows the case where the area of the lung is the largest (maximum contour)
- FIG. 3B shows the case where the area of the lung is the smallest (minimum contour).
- “cp1 to cp5” indicate control points
- “p1 to p5” indicate points on a Bezier curve or a straight line.
- the maximal contour and the minimal contour can be grasped, it becomes possible to calculate the contour on the way by calculation. For example, it becomes possible to display the state of 10%, 20% ... of exhalation.
- At least one lung field, blood vessel or heart can be drawn using at least one or more Bezier curves.
- the above method is not necessarily limited to the lung, and can be applied to other organs as "detection of an organ".
- using at least one or more Bezier curves on a predetermined analysis range (a tumor, a hypothalamus of a brain, a basal ganglia, a boundary of an inclusion, etc.) in a specific frame It is also possible to execute processing for detecting the range corresponding to the analysis range in the frame.
- the present invention is also applicable to stereoscopic images (3D images).
- 3D images stereoscopic images
- the image of 1024 px in length is divided into 128 rectangles for every 8 px in height, and the signal values included in each rectangle area are summed up, as shown in FIG. It was a bar graph as shown in 4C.
- the peak at the lowermost coordinate shown by a dotted rectangle indicates the position of the diaphragm.
- the diaphragm is displayed as a curve, but this coordinate approximates the position of the diaphragm.
- the "peak position" was detected.
- the movement of the diaphragm is estimated.
- the difference is larger than a certain value, it is regarded as an outlier and excluded (thin solid line in FIG. 5).
- the data excluding the outliers was divided into arbitrary clusters, the fourth-order curve regression was performed for each cluster, and the results were connected (thick solid line in FIG. 5).
- regression analysis is performed in this analysis, the present invention is not limited to this, and it is possible to use any interpolation method such as spline interpolation.
- the contrast of the dynamic site may not be uniform along the line.
- the shape of the dynamic site can be detected more accurately by changing the threshold used for noise removal and performing the detection process multiple times.
- the contrast of the line of the diaphragm tends to become weaker as it goes inside the human body.
- FIG. 4B only the right half of the diaphragm can be detected.
- the remaining part of the left half of the diaphragm can also be detected by changing the setting of the threshold used for noise removal. By repeating this process several times, it becomes possible to detect the shape of the entire diaphragm.
- this method it is possible to quantify not only the position of the diaphragm but also the change rate or change amount of the line or surface with respect to the shape, which can be useful for new diagnosis.
- the position or shape of the diaphragm thus detected can be used for diagnosis. That is, in the present invention, the coordinates of the diaphragm are graphed, and the coordinates of the thorax and the diaphragm are calculated using the curve (phase) or straight line calculated as described above, and heart rate, blood vessel rate, lung field It is possible to graph "density" etc. as a position corresponding to a cycle and coordinates. Such an approach is also applicable to a dynamic site linked to respiration.
- the overall frequency of exhalation or inspiration may be calculated based on the proportion of the respiration element to the total of exhalation or inspiration.
- the detection of the diaphragm it may be performed a plurality of times, and a signal or a waveform which is stable may be selected. According to the above, it is possible to calculate at least one frequency of the respiratory element from the detected position or shape of the diaphragm, or the position or shape of the dynamic site linked to the respiration. Once the position or shape of the diaphragm or dynamic site is known, the frequency of the respiratory element can be known. According to this method, even if part of the waveform is divided, the subsequent waveform can be traced.
- FIG. 6A is a flowchart showing an outline of respiratory function analysis according to the present embodiment.
- the basic module 1 extracts the image of DICOM from the database 15 (step S1). Here, at least a plurality of frame images included in one breathing cycle are acquired. Next, in each of the acquired frame images, the cycle of the respiratory element is specified using the density (density / intensity) at least in a certain area in the lung field (step S2).
- the identified breathing cycle and the waveform identified from this breathing cycle can be used in the following steps.
- the movement of the diaphragm and the movement of the thorax for specifying the cycle of the respiratory element.
- data obtained from other measurement methods such as a certain volume, a range composed of "density” / "intensity”, and spirograms, which are measured at a site where X-ray permeability is high. .
- the frequency possessed by each organ may be specified in advance, and the "density” / "intensity” corresponding to the specified frequency may be extracted.
- the lung field is automatically detected (step S3). Since the lung contour changes continuously, if the largest and smallest shapes can be detected, the shapes in between can be interpolated by calculation.
- the lung contour in each frame image is specified by interpolating each frame image based on the period of the respiratory element specified in step S2.
- the lung field may be detected by performing pattern matching as shown in FIGS. 2E to 2H. In addition, you may perform noise removal by cutoff about the detected lung field.
- the detected lung field is divided into a plurality of block areas (step S4). Then, change of each block area in each frame image is calculated (step S5). Here, the values of change in each block area are averaged and expressed as one data.
- noise removal by cutoff may be performed on the value of change in each block region.
- analysis of Fourier analysis or tuning coincidence rate is performed based on the value of “density” / “intensity” of each block area and the change amount thereof based on the cycle of the above-mentioned breathing element (step S6).
- step S7 noise removal is performed on the result obtained by the analysis of the Fourier analysis or the tuning coincidence rate (step S7).
- cutoffs as described above and removal of artifacts can be performed.
- the operations from step S5 to step S7 are performed one or more times, and it is determined whether or not the process is completed (step S8).
- the feature amount displayed on the display the frequency tunable image of a component having a higher purity due to the mixture of the synthetic wave and other waves, for example, a respiratory element, a blood flow element, and other elements is one spectrum extraction. Sometimes it can not be displayed. In that case, the feature value displayed on the display may be used as a pixel value, and analysis of all or part of the process leading to the display may be repeated again.
- This operation also makes it possible to obtain images of high purity with regard to the synchrony and consistency of elements, such as, for example, respiratory and blood flow elements.
- This operation may be performed manually while the operator visually recognizes the image on the display, or automatically extracting a spectrum from the output result and recalculating the distribution ratio. Furthermore, even after the calculation, depending on the case, noise cut processing, hole filling (interpolation) by the least squares method, or correction using the “density” of the surroundings may be performed.
- step S8 the process proceeds to step S5. If the process is completed, the result obtained by the Fourier analysis or the analysis of the tuning agreement rate is displayed on the display as a pseudo color image (step S9). Note that a black and white image may be displayed. In this way, repeating the multiple cycles may increase the accuracy of the data. This makes it possible to display a desired moving image. Also, a desired moving image may be obtained by correcting the image displayed on the display.
- the desired frequency or frequency band is calculated by calculation, but when viewed as an actual image, it is not always possible to display a good image. Therefore, the following methods may be adopted.
- FIG. 7 is a flowchart showing an outline of lung blood flow analysis according to the present embodiment.
- the basic module 1 extracts the image of DICOM from the database 15 (step T1). Here, at least a plurality of frame images included in one cardiac cycle are acquired. Next, the blood vessel beat cycle is specified based on each acquired frame image (step T2). The identified blood vessel cycle and the waveform specified from the blood vessel cycle can be used in the following steps.
- the blood vessel cycle is, for example, the measurement results of other modalities such as an electrocardiogram and a pulsimeter, and the change of “density” / “intensity” of an arbitrary part such as the heart, hilum, main blood vessel, etc. Analyze beats.
- the frequency possessed by each organ in this case, the pulmonary blood flow
- the “density” / “intensity” corresponding to the specified frequency may be extracted.
- the period of the respiratory element is specified by the method described above (step T3), and the lung field is automatically detected using the period of the respiratory element (step T4).
- lung contours in each frame image are interpolated by interpolating each frame image based on the period of the respiratory element specified in step T3. Identify.
- the lung field may be detected by performing pattern matching as shown in FIGS. 2E to 2H. In addition, you may perform noise removal by cutoff about the detected lung field.
- the detected lung field is divided into a plurality of block areas (step T5). Then, change of each block area in each frame image is calculated (step T6).
- the values of change in each block area are averaged and expressed as one data. Note that noise removal by cutoff may be performed on the value of change in each block region.
- Fourier analysis or tuning agreement rate analysis is performed on the value of “density” / “intensity” of each block area and the variation thereof based on the above-mentioned blood vessel cycle (step T7).
- step T8 noise removal is performed on the result obtained by the analysis of the Fourier analysis or the tuning coincidence rate (step T8).
- cutoffs as described above and removal of artifacts can be performed.
- the operations from step T6 to step T8 described above are performed one or more times, and it is determined whether or not the operation is completed (step T9).
- the feature amount displayed on the display the frequency tunable image of a component having a higher purity due to the mixture of the synthetic wave and other waves, for example, a respiratory element, a blood flow element, and other elements is one spectrum extraction. Sometimes it can not be displayed. In that case, the feature value displayed on the display may be used as a pixel value, and analysis of all or part of the process leading to the display may be repeated again.
- This operation also makes it possible to obtain images of high purity with regard to the synchrony and consistency of elements, such as, for example, respiratory and blood flow elements.
- This operation may be performed manually while the operator visually recognizes the image on the display, or automatically extracting a spectrum from the output result and recalculating the distribution ratio. Furthermore, even after the calculation, depending on the case, noise cut processing, hole filling (interpolation) by the least squares method, or correction using the “density” of the surroundings may be performed.
- step T9 the process proceeds to step T6. If the process is completed, the result obtained by the Fourier analysis or the analysis of the tuning coincidence rate is displayed on the display as a pseudo color image (step T10). Note that a black and white image may be displayed. This makes it possible to increase the accuracy of the data. Also, a desired moving image may be obtained by correcting the image displayed on the display.
- the desired frequency or frequency band is calculated by calculation, but when viewed as an actual image, it is not always possible to display a good image. Therefore, the following methods may be adopted.
- FIG. 8 is a flowchart showing an outline of another blood flow analysis according to the present embodiment.
- the basic module 1 extracts the image of DICOM from the database 15 (step R1). Here, at least a plurality of frame images included in one cardiac cycle are acquired. Next, a blood vessel beat cycle is specified based on each acquired frame image (step R2). The identified blood vessel cycle and the waveform specified from the blood vessel cycle can be used in the following steps.
- the blood vessel cycle is, for example, the measurement results of other modalities such as an electrocardiogram and a pulsimeter, and the change of “density” / “intensity” of an arbitrary part such as the heart, hilum, main blood vessel, etc. Analyze beats.
- the frequency possessed by each organ may be specified in advance, and "density" / "intensity” corresponding to the specified frequency may be extracted.
- an analysis range is set (step R3), and the set analysis range is divided into a plurality of block areas (step R4). Then, the values of change in each block area are averaged and expressed as one data. Note that noise removal by cutoff may be performed on the value of change in each block region.
- analysis of Fourier analysis or tuning coincidence rate is performed based on the above-mentioned blood vessel beat cycle with respect to the value of “density” / “intensity” of each block area and the variation thereof (step R5).
- step R6 noise removal is performed on the result obtained by the analysis of the Fourier analysis or the tuning coincidence rate (step R6).
- cutoffs as described above and removal of artifacts can be performed.
- the operations from step R5 to step R6 are performed one or more times, and it is determined whether or not the process is completed (step R7).
- the feature amount displayed on the display the frequency tunable image of a component having a higher purity due to the mixture of the synthetic wave and other waves, for example, a respiratory element, a blood flow element, and other elements is one spectrum extraction. Sometimes it can not be displayed. In that case, the feature value displayed on the display may be used as a pixel value, and analysis of all or part of the process leading to the display may be repeated again.
- This operation also makes it possible to obtain images of high purity with regard to the synchrony and consistency of elements, such as, for example, respiratory and blood flow elements.
- This operation may be performed manually while the operator visually recognizes the image on the display, or automatically extracting a spectrum from the output result and recalculating the distribution ratio. Furthermore, even after the calculation, depending on the case, noise cut processing, hole filling (interpolation) by the least squares method, or correction using the “density” of the surroundings may be performed.
- step R7 the process proceeds to step R5. If the process is completed, the result obtained by the Fourier analysis or the analysis of the tuning agreement rate is displayed on the display as a pseudo color image (step R8). Note that a black and white image may be displayed. This makes it possible to increase the accuracy of the data. Also, a desired moving image may be obtained by correcting the image displayed on the display.
- the desired frequency or frequency band is calculated by calculation, but when viewed as an actual image, it is not always possible to display a good image. Therefore, the following methods may be adopted.
- the respiratory analysis and the cardiac output of each block region are obtained from the relative values, which are relative values. It is possible to calculate the amount and central blood flow. That is, in the case of respiratory function analysis, it is possible to estimate the lung ventilation volume from the respiratory volume, and in the case of pulmonary blood flow analysis, it is possible to estimate the pulmonary blood flow volume from the cardiac (pulmonary blood vessel) ejection volume. In the case of flow analysis, it is possible to estimate the estimated blood flow rate (percentage) in the branched blood vessel drawn from the central blood flow rate (percentage).
- the X-ray moving image apparatus it is possible to evaluate an image of a human body by the X-ray moving image apparatus. If digital data can be acquired, it can be generally calculated well with existing facility equipment, and the installation cost can be reduced. For example, in an X-ray animation apparatus using a flat panel detector, it becomes possible to simplify the examination of the subject. In addition, pulmonary blood flow can be screened for pulmonary thromboembolism. For example, in an X-ray moving image apparatus using a flat panel detector, unnecessary examination can be excluded by executing the diagnostic support program according to the present embodiment before performing CT. In addition, since the examination is easy, it is possible to detect a highly urgent disease at an early stage and to preferentially respond. In addition, in the imaging method at the present time, there are some problems in other modality such as CT and MRI, but if this can be solved, detailed diagnosis of each area becomes possible.
- the present invention is also applicable to screening of various blood vessels, for example, neck blood flow narrowing, and is also applicable to blood flow evaluation and screening of large blood vessels.
- lung respiratory data can be used as a lung partial function test and can be used as a lung function test. It also enables identification of diseases such as COPD and emphysema. Furthermore, it can be applied to grasping the preoperative and postoperative characteristics. Furthermore, the period of the respiratory element and the blood flow cycle are Fourier-analyzed, and by removing the waveform of the respiration and the blood flow in the X-ray image of the abdomen, abnormal behavior of the remaining living body, such as intestinal ileus etc., is observed It becomes possible.
- the number of pixels is large, which may take time for calculation.
- calculation may be performed after reducing the image to a fixed number of pixels. For example, calculation time can be reduced by actually calculating “4096 ⁇ 4096” pixels after setting “1024 ⁇ 1024”.
- DICOM data Although it is a storage format of DICOM data, it is desirable to store in a non-compression format because compression may reduce the quality of the image. Also, the calculation method may be changed according to the data compression format.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Computer Vision & Pattern Recognition (AREA)
- High Energy & Nuclear Physics (AREA)
- Physiology (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Image Processing (AREA)
Abstract
Description
(ある大雑把な範囲の「density」変化の平均)≒(胸郭の変化)≒(横隔膜の動き)≒(肺機能検査)≒(胸腹呼吸センサ)
本明細書では、画像変化の傾向を、同調一致率として説明する。例えば、肺野を検出し、複数のブロック領域に分割し、各フレーム画像におけるブロック領域の「平均density(画素値x)」を算出する。そして、「平均density(画素値x)」の最小値から最大値の変化幅(0%~100%)に対する各フレーム画像におけるブロック領域の平均画素値の割合(x’)を算出する。一方、横隔膜の最小位置から最大位置の変化幅(0%~100%)に対する各フレーム画像の横隔膜の変化(y)の割合(y’)との比の値(x’/y’)を用いて、比の値(x’/y’)が予め定められた一定の範囲内にあるブロック領域のみを抽出する。
本実施形態では、以下の指標に基づいて呼吸要素の周期を解析する。「呼吸要素」とは、上述したように、呼気または吸気の全部または一部を含む概念である。すなわち、肺野内のある一定領域における「density」/「intensity」、横隔膜の動き、胸郭の動きの少なくとも一つを用いて呼吸要素の少なくとも一つの周波数を解析する。この「呼吸要素の少なくとも一つの周波数」において、呼吸要素が示す周波数スペクトルは一つ以上であり、一定の帯域幅を有する場合を含む概念である。肺野をブロックの集合体と考え、各ブロックから複数の周波数が抽出されることから、本実施形態では、これらを周波数群として処理する。なお、前述したように、ベースデータは、「波の形態自体」、および、「波の間隔(周波数:Hz)」の両方の概念を有するため、波の形態として処理することも可能である。また、X線(その他CT、MRIなどの複数種類のモダリティ)の透過性が高い部位で測定されるある一定のvolume 「density」/「intensity」で構成される範囲、スパイログラムなどの他の測定方法から得られるデータや外部入力情報を用いても良い。
呼吸要素の波形から、波形の周波数の構成要素を算出することができる。これにより、上述した「波形同調性画像」を取得する。具体的には、解析範囲内のいずれかの部位の波形を特定し、前記特定した波形の周波数の構成要素を抽出し、前記波形の周波数の構成要素に対応する画像を出力する。
本実施形態では、以下の指標に基づいて心血管拍解析および血管拍を解析する。すなわち、心電図や脈拍計等の他のモダリティの計測結果、または肺輪郭から心臓・肺門位置・主要血管を特定し、各部位の「density」/「intensity」の変化を用いて血管拍を解析する。また、マニュアルで画像上にプロットし、対象部位の「density」/「intensity」の変化を解析しても良い。そして、心拍または血管拍から得られる心血管拍要素の少なくとも一つの周波数(波形)を特定する。なお、一拍毎の解析結果を比較し、複数のデータから傾向を解析して、データの確度を高めることが望ましい。また、各部位の「density」/「intensity」の抽出は、複数回実施したり、一定の範囲に対して行なうことで精度を高めることが可能となる。また、心血管拍周波数もしくは周波数帯を入力する方法もある。
データベース(DICOM)から画像を抽出し、上記の呼吸要素の周期解析結果を用いて、肺輪郭を自動検出する。この肺輪郭の自動検出については、従来から知られている技術を用いることができる。例えば、特開昭63-240832号公報、または特開平2-250180号公報に開示されている技術を用いることが可能である。次に、肺野を複数のブロック領域に分けて、各ブロック領域の変化を計算する。ここで、撮影速度に応じてブロック領域の大きさを定めても良い。撮影速度が遅い場合は、あるフレーム画像の次のフレーム画像で対応する部位が特定しにくくなるため、ブロック領域を大きくする。一方、撮影速度が速い場合は、単位時間当たりのフレーム画像数が多いため、ブロック領域が小さくても追従することが可能となる。また、呼吸要素の周期のうちどのタイミングを選ぶかに応じて、ブロック領域の大きさを計算しても良い。ここで、肺野領域のずれを補正することが必要になる場合がある。その際には、胸郭の動き、横隔膜の動き、肺野全体の血管の位置関係を同定し、また、肺輪郭の相対位置を把握し、その動きに基づいて相対的に評価する。なお、ブロック領域が小さすぎると、画像のちらつきが発生する場合がある。これを防止するため、ブロック領域は一定の大きさを有する必要がある。
本発明は肺の辺縁を検出し、その辺縁を評価することが可能である。例えば、前述の方法で肺野を算出した後、辺縁の位置および形状を、改めて精度高く検出することができる。算出された肺野内の任意の位置に点をプロットして、そこから四方八方に線を延伸し、各線において画素値の変化を評価する。例えば、図14に示すように、肺を切断する線分Sに沿って画素値を算出すると、辺縁で画素が大きく変動することがわかるが、その変動の絶対値は異なる。例えば、左側の辺縁と右側の辺縁検出時の閾値を調整することで、辺縁検出の精度が高まる。また、領域ごとの画素値変動の特性を利用することもできる。図14に示すように、S2領域とS3領域の縁の差分が小さかったとしても、画素値の変動の分散からS2領域とS3領域の縁を特定することができる。ここでは分散に着目したが、本発明はこれに限定されるわけではない。
肺野を複数のブロック領域に分ける手法について説明する。図1Bは、肺野を肺門から放射状に分割する手法を示す図である。肺は、肺尖側よりも横隔膜側の方が大きく動くため、横隔膜側に近いほど粗く分割した点をプロットするようにしても良い。なお、図1Bにおいて、縦方向の線(点線)を追加的に描画し、複数の矩形(正方形)のブロック領域に分けてもよい。これにより、肺の動作をより正確に表すことが可能となる。なお、「肺の縦方向に点をプロットし、肺を横断的に分ける手法」、「肺の横方向に点をプロットし、肺を縦断的に分ける手法」、「肺尖部における接線と横隔膜における接線を引き、その接線が交わる点を中心点として定め、その点を含む直線(例えば、鉛直線)からある一定の角度で引いた線分で肺を分割する手法」、「肺を肺尖(または肺門)から横隔膜端部を結ぶ直線と直交する複数の平面で切断する手法」などの手法で、肺野を分割することも可能である。なお、これらの手法は、三次元立体画像にも適用可能である。3Dの場合は、複数の曲面または平面で囲まれた空間として、各臓器を捉える。臓器をさらに細かく分けることもできる。例えば、右肺の3Dモデルを考えた場合、上葉、中葉、下葉に分けて取り扱うこともできる。
上記のように肺野を同定すると、横隔膜の動きや胸郭についても把握することが可能となる。すなわち、認識した横隔膜のXp上(2D画像)の横隔膜による曲線や胸郭の曲線を細かな座標の集まりとして計算し、その平均や曲線の局部における下方への変化率や変化量、また横隔膜を曲線として「curve fitting」してその変形率を数値化することにより画像からの機能評価の位置づけを行なうことができる。また、横隔膜面以外の胸部で描いた辺縁の曲線についても、同様に細かな座標の集まりとして計算し、その平均や曲線の変化率を数値化することにより画像からの機能評価を行なうことができる。上記の2つの変化率、変化を、相対的・相互連動として評価し、変化率が異なる(同じように連動して動かない部位など)を数値化、画像化することによりmovementの機能評価を行なう。
上記のように解析した呼吸要素の周期および血管拍周期に基づいて、各ブロック領域の「density」/「intensity」の値や、また、その変化量について、フーリエ解析を実施する。図2Aは、特定ブロックの「intensity」変化と、それをフーリエ解析した結果を示す図である。図2Bは、心拍に近い周波数成分を抜き出したフーリエ変換結果と、これを逆フーリエ変換して心拍に近い周波数成分の「intensity」変化を示す図である。例えば、特定ブロックの「intensity」変化をフーリエ変換(フーリエ解析)すると、図2Aに示すような結果が得られる。そして、図2Aに示した周波数成分から、心拍に近い周波数成分を抜き出すと、図2Bの紙面に対して右側に示すような結果が得られる。これを逆フーリエ変換することによって、図2Bの紙面に対して左側に示すように、心拍の変化に同調した「intensity」変化を得ることができる。
(2)呼吸/血流に対応するスペクトルのピークとその近辺の複数の合成波のピークの中間で区切り、スペクトルを抽出する。
(3)呼吸/血流に対応するスペクトルのピークとその近辺の複数の合成波のスペクトルの谷の部分で区切り、スペクトルを抽出する。
上記のように解析した結果を、視覚化および数値化する。視覚化および数値化をする際に、本明細書では、「モデル化した肺」を定義する。肺を動画像で表示する際、位置関係が動いてしまうため、相対的判断が容易ではない。このため、位置関係のずれを、空間的に統一化・平均化する。例えば、肺の形状を扇形などの図形に当てはめ、形を整えた状態で表示する。そして、リコンストラクションの概念を用いて時間的に統一化する。例えば、「複数の呼吸のうち、20%の肺の状況」を抽出し、それを「一呼吸の20%の肺の状況」として定めることができる。このように、空間的、時間的に統一化した肺を「モデル化した肺」とする。これにより、異なる患者同士を比較したり、一人の患者の現在と過去とを比較したりする際に、相対的判断が容易となる。
(画面の右上の空気の領域)>(画面の左上の空気の領域)である場合は、左肺と認識する。これは、肩周りは人体外の空気の領域が撮影上広くなるからである。
(画面の左上の空気の領域)>(画面の右上の空気の領域)である場合は、右肺と認識する。これも、上記と同様に、肩周りは人体外の空気の領域が撮影上広くなるからである。
次に、(画面の右上の空気の領域)≒(画面の左上の空気の領域)である場合は、両肺と認識する。これは、空気の領域が左右同程度であるからである。
「https://jp.mathworks.com/help/images/examples/block-processing-large-images_ja_JP.html」に開示されている技術を用いることも可能である。
一般的に、肺野には透過性の低い肋骨が含まれるため、「density」のみを指標として肺の輪郭を機械的に同定することは難しい。そこで、本明細書では、ベジエ曲線および直線の組み合わせを用いて肺野の輪郭を仮に描画し、合致性が高くなるように、肺輪郭を調整する手法を採用する。
連続撮影された画像において、横隔膜または呼吸と連動する動的部位の動きを検出することが可能である。連続撮影された画像において、任意の間隔で画像を選択し、画像間の差分を計算すると、特にコントラストの大きい領域について、差分が大きくなる。この差分を適切に可視化することによって、動きのあった領域を検出することができる。可視化の際には、閾値によるノイズ除去や、最小二乗法などを活用したカーブフィッティング等で差分の絶対値が大きいエリアの連続性を強調することもできる。
本手法では、対象画像間において、横隔膜が動いている場合は横隔膜位置を検出可能であるが、横隔膜の動きが緩やかになる箇所の検出は困難となる。すなわち、呼気吸気が切り替わるタイミングや、呼吸を止めている間、撮影の開始直後や終了直前では検出が難しい。本手法においては、任意の補完方法を用いて、横隔膜の動きを推定する。
動的部位のコントラストはラインに沿って一様でない場合がある。その場合はノイズ除去に使用する閾値を変更して、複数回検出処理を行なうことによって、動的部位の形状をより正確に検出することができる。例えば、左肺において、横隔膜のラインのコントラストは、人体内部にいくに従って弱くなる傾向がある。図4Bにおいては、横隔膜の右半分しか検出できていない。このとき、ノイズ除去に利用した閾値の設定を変えることによって、横隔膜の左半分の残りの部分を検出することもできる。この処理を複数回繰り返すことによって、横隔膜全体の形状を検出することが可能となる。本手法によって、横隔膜の位置だけでなく、形状について線や面の変化率や変化量を数値化することも可能となり、新たな診断に役立てることができる。
まず、呼吸機能解析について説明する。図6Aは、本実施形態に係る呼吸機能解析の概要を示すフローチャートである。基本モジュール1がデータベース15からDICOMの画像を抽出する(ステップS1)。ここでは、少なくとも、一呼吸周期内に含まれる複数のフレーム画像を取得する。次に、取得した各フレーム画像において、少なくとも肺野内のある一定領域における密度(density/intensity)を用いて、呼吸要素の周期を特定する(ステップS2)。なお、特定した呼吸周期やこの呼吸周期から特定される波形については、以下の各ステップで用いることが可能である。
(1)いくつかの周波数帯を複数提示し、人的に選択する方法
(2)いくつかの周波数帯を複数提示し、AI技術によりパターン認識でよい画像を抽出する方法
(3)HISTGRAMの傾向、形態から選択する。すなわち、結果の信号における「Histgram」の中心部の値が高くなる傾向があり、また、動きに応じて「histgram」の値が変動するため、HISTGRAMの傾向、形態から選択しても良い。
次に、肺血流解析について説明する。図7は、本実施形態に係る肺血流解析の概要を示すフローチャートである。基本モジュール1がデータベース15からDICOMの画像を抽出する(ステップT1)。ここでは、少なくとも、一心拍周期内に含まれる複数のフレーム画像を取得する。次に、取得した各フレーム画像に基づいて、血管拍周期を特定する(ステップT2)。なお、特定した血管拍周期やこの血管拍周期から特定される波形については、以下の各ステップで用いることが可能である。血管拍周期は、上述したように、例えば、心電図や脈拍計等の他のモダリティの計測結果、心臓・肺門・主要血管など、任意の部位の「density」/「intensity」の変化を用いて血管拍を解析する。なお、予め各臓器(ここでは肺血流)が有する周波数を特定しておき、その特定した周波数に対応する「density」/「intensity」を抽出しても良い。
(1)いくつかの周波数帯を複数提示し、人的に選択する方法
(2)いくつかの周波数帯を複数提示し、AI技術によりパターン認識でよい画像を抽出する方法
(3)HISTGRAMの傾向、形態から選択する。すなわち、結果の信号における「Histgram」の中心部の値が高くなる傾向があり、また、動きに応じて「histgram」の値が変動するため、HISTGRAMの傾向、形態から選択しても良い。
次に、その他の血流解析について説明する。本発明の一態様は、図15に示すように、心臓、大動脈、肺血管、上腕動脈、頸部血管などの血流解析についても適用可能である。さらに、図示しない腹部血管や、末梢の血管などについても、同様に血流解析が可能である。図8は、本実施形態に係るその他の血流解析の概要を示すフローチャートである。基本モジュール1がデータベース15からDICOMの画像を抽出する(ステップR1)。ここでは、少なくとも、一心拍周期内に含まれる複数のフレーム画像を取得する。次に、取得した各フレーム画像に基づいて、血管拍周期を特定する(ステップR2)。なお、特定した血管拍周期やこの血管拍周期から特定される波形については、以下の各ステップで用いることが可能である。血管拍周期は、上述したように、例えば、心電図や脈拍計等の他のモダリティの計測結果、心臓・肺門・主要血管など、任意の部位の「density」/「intensity」の変化を用いて血管拍を解析する。なお、予め各臓器(例えば、主要血管)が有する周波数を特定しておき、その特定した周波数に対応する「density」/「intensity」を抽出しても良い。
(1)いくつかの周波数帯を複数提示し、人的に選択する方法
(2)いくつかの周波数帯を複数提示し、AI技術によりパターン認識でよい画像を抽出する方法
(3)HISTGRAMの傾向、形態から選択する。すなわち、結果の信号における「Histgram」の中心部の値が高くなる傾向があり、また、動きに応じて「histgram」の値が変動するため、HISTGRAMの傾向、形態から選択しても良い。
なお、X線画像を撮影する際に、例えば、AR法(Autoregressive Moving average model)などの予測アルゴリズムを用いることができる。呼吸要素の少なくとも一つの周波数が特定できると、この周波数に応じて、X線の照射間隔を調整するよう、X線撮影装置を制御することも可能である。例えば、呼吸要素の周波数が小さい場合(周期が長い場合)、X線撮影の回数を減らすことができる。これにより、人体の被ばく量を減らすことが可能となる。なお、頻呼吸や頻脈など、呼吸要素や心血管拍要素の周波数が大きい場合(周期が短い場合)は、照射頻度を高めて最適な画像作成を行なっても良い。
3 呼吸機能解析部
5 肺血流解析部
7 その他の血流解析部
9 フーリエ解析部
10 波形解析部
11 視覚化・数値化部
13 入力インタフェース
15 データベース
17 出力インタフェース
19 ディスプレイ
Claims (37)
- 人体の画像を解析し、解析結果を表示する診断支援プログラムであって、
前記画像を格納するデータベースから複数のフレーム画像を取得する処理と、
前記各フレーム画像の特定領域の画素に基づいて、呼気または吸気の全部または一部を含む呼吸要素の少なくとも一つの周波数を特定する処理と、
前記特定した呼吸要素の少なくとも一つの周波数に基づいて、肺野を検出する処理と、
前記検出した肺野を複数のブロック領域に分割し、前記各フレーム画像におけるブロック領域の画像の変化を計算する処理と、
前記各フレーム画像における各ブロック領域の画像の変化をフーリエ変換する処理と、
前記フーリエ変換後に得られるスペクトルのうち、前記呼吸要素の少なくとも一つの周波数に対応するスペクトルを含む一定の帯域内のスペクトルを抽出する処理と、
前記一定の帯域から抽出したスペクトルに対して逆フーリエ変換する処理と、
前記逆フーリエ変換後の各画像をディスプレイに表示する処理と、をコンピュータに実行させることを特徴とする診断支援プログラム。 - 前記フーリエ変換後に得られるスペクトルのうち、ノイズの周波数を含み、前記フレーム画像から得られる呼吸要素の周波数以外の周波数、または入力された周波数若しくは周波数帯域に対応するスペクトルを含む一定の帯域内のスペクトルを、フィルタを用いて抽出する処理をさらに含むことを特徴とする請求項1記載の診断支援プログラム。
- 前記呼吸要素の周波数および前記各フレーム画像に基づいて、前記フレーム間の画像を生成する処理と、をさらに含むことを特徴とする請求項1または請求項2記載の診断支援プログラム。
- 人体の画像を解析し、解析結果を表示する診断支援プログラムであって、
前記画像を格納するデータベースから複数のフレーム画像を取得する処理と、
被写体の心拍または血管拍から抽出される心血管拍要素の少なくとも一つの周波数を特定する処理と、
前記各フレーム画像の特定領域の画素に基づいて、呼気または吸気の全部または一部を含む呼吸要素の少なくとも一つの周波数を特定する処理と、
前記特定した呼吸要素の少なくとも一つの周波数に基づいて、肺野を検出する処理と、
前記検出した肺野を複数のブロック領域に分割し、前記各フレーム画像におけるブロック領域の画像の変化を計算する処理と、
前記各フレーム画像における各ブロック領域の画像の変化をフーリエ変換する処理と、
前記フーリエ変換後に得られるスペクトルのうち、前記心血管拍要素の少なくとも一つの周波数に対応するスペクトルを含む一定の帯域内のスペクトルを抽出する処理と、
前記一定の帯域から抽出したスペクトルに対して逆フーリエ変換する処理と、
前記逆フーリエ変換後の各画像をディスプレイに表示する処理と、をコンピュータに実行させることを特徴とする診断支援プログラム。 - 人体の画像を解析し、解析結果を表示する診断支援プログラムであって、
前記画像を格納するデータベースから複数のフレーム画像を取得する処理と、
被写体の心拍または血管拍から抽出される心血管拍要素の少なくとも一つの周波数を特定する処理と、
肺野を検出する処理と、
前記検出した肺野を複数のブロック領域に分割し、前記各フレーム画像におけるブロック領域の画像の変化を計算する処理と、
前記各フレーム画像における各ブロック領域の画像の変化をフーリエ変換する処理と、
前記フーリエ変換後に得られるスペクトルのうち、前記心血管拍要素の少なくとも一つの周波数に対応するスペクトルを含む一定の帯域内のスペクトルを抽出する処理と、
前記一定の帯域から抽出したスペクトルに対して逆フーリエ変換する処理と、
前記逆フーリエ変換後の各画像をディスプレイに表示する処理と、をコンピュータに実行させることを特徴とする診断支援プログラム。 - 前記フーリエ変換後に得られるスペクトルのうち、ノイズの周波数を含み、前記フレーム画像から得られる心血管拍要素の周波数以外の周波数、または入力された周波数若しくは周波数帯域に対応するスペクトルを含む一定の帯域内のスペクトルを、フィルタを用いて抽出する処理をさらに含むことを特徴とする請求項4または請求項5記載の診断支援プログラム。
- 前記特定した心血管拍要素の周波数および前記各フレーム画像に基づいて、前記フレーム間の画像を生成する処理をさらに含むことを特徴とする請求項4から請求項6のいずれかに記載の診断支援プログラム。
- 人体の画像を解析し、解析結果を表示する診断支援プログラムであって、
前記画像を格納するデータベースから複数のフレーム画像を取得する処理と、
被写体の血管拍から抽出される血管拍要素の少なくとも一つの周波数を特定する処理と、
前記各フレーム画像について設定された解析範囲を複数のブロック領域に分割し、前記各フレーム画像におけるブロック領域の画像の変化を計算する処理と、
前記各フレーム画像における各ブロック領域の画像の変化をフーリエ変換する処理と、
前記フーリエ変換後に得られるスペクトルのうち、前記血管拍要素の少なくとも一つの周波数に対応するスペクトルを含む一定の帯域内のスペクトルを抽出する処理と、
前記一定の帯域から抽出したスペクトルに対して逆フーリエ変換する処理と、
前記逆フーリエ変換後の各画像をディスプレイに表示する処理と、をコンピュータに実行させることを特徴とする診断支援プログラム。 - 前記フーリエ変換後に得られるスペクトルのうち、ノイズの周波数を含み、前記フレーム画像から得られる血管拍要素の周波数以外の周波数、または入力された周波数若しくは周波数帯域に対応するスペクトルを含む一定の帯域内のスペクトルを、フィルタを用いて抽出する処理をさらに含むことを特徴とする請求項8記載の診断支援プログラム。
- 前記特定した心血管拍要素の周波数および前記各フレーム画像に基づいて、前記フレーム間の画像を生成する処理をさらに含むことを特徴とする請求項8または請求項9記載の診断支援プログラム。
- 人体の画像を解析し、解析結果を表示する診断支援プログラムであって、
前記画像を格納するデータベースから複数のフレーム画像を取得する処理と、
前記各フレーム画像の特定領域の画素に基づいて、呼気または吸気の全部または一部を含む呼吸要素の少なくとも一つの周波数を特定する処理と、
前記特定した呼吸要素の少なくとも一つの周波数に基づいて、肺野および横隔膜を検出する処理と、
前記検出した肺野を複数のブロック領域に分割し、前記各フレーム画像におけるブロック領域の画素の変化率を算出する処理と、
前記ブロック領域の画素の変化率と、呼吸と連動する動的部位の変化率との比の値である同調率を用いて、前記同調率が予め定められた一定の範囲内にあるブロック領域のみを抽出する処理と、
前記抽出したブロック領域のみを含む各画像をディスプレイに表示する処理と、をコンピュータに実行させることを特徴とする診断支援プログラム。 - 被写体の心拍または血管拍から抽出される心血管拍要素の少なくとも一つの周波数または血管拍から抽出される血管拍要素の少なくとも一つの周波数を特定する処理をさらに含むことを特徴とする請求項11記載の診断支援プログラム。
- 前記同調率の対数の値が、0を含む一定の範囲として定められることを特徴とする請求項11または請求項12記載の診断支援プログラム。
- 特定のフレームにおいて検出した肺野上の少なくとも一つ以上のベジエ曲線(Bezier curve)を用いて、他のフレームにおける肺野を検出する処理をさらに含むことを特徴とする請求項1から請求項13のいずれかに記載の診断支援プログラム。
- 前記検出した肺野内に内部制御点を選定し、前記肺野内の内部制御点を通る曲線または直線によって前記肺野を分割することを特徴とする請求項14記載の診断支援プログラム。
- 前記検出した肺野の外延およびその近傍における制御点の間隔を相対的に大きくし、前記検出した肺野内における部位毎の膨張比率に応じて、前記内部制御点の間隔を相対的に小さくすることを特徴とする請求項15記載の診断支援プログラム。
- 前記検出した肺野において、制御点の間隔を、人体に対して頭尾方向に進むに従って相対的に大きくし、または特定のベクトル方向に従って相対的に大きくすることを特徴とする請求項15記載の診断支援プログラム。
- 特定のフレームにおいて検出した肺野上の少なくとも一つ以上のベジエ曲面(Bezier surface)を用いて、他のフレームにおける肺野を検出する処理をさらに含むことを特徴とする請求項1から請求項13のいずれかに記載の診断支援プログラム。
- 特定のフレームにおいて予め定められた解析範囲上に、少なくとも一つ以上のベジエ曲線(Bezier curve)を用いて、他のフレームにおいて前記解析範囲に対応する範囲を検出する処理をさらに含むことを特徴とする請求項1から請求項13のいずれかに記載の診断支援プログラム。
- 少なくとも一つ以上のベジエ曲線(Bezier curve)を用いて、少なくとも肺野、血管または心臓を描画する処理をさらに含むことを特徴とする請求項1から請求項13のいずれかに記載の診断支援プログラム。
- 人体の画像を解析し、解析結果を表示する診断支援プログラムであって、
前記画像を格納するデータベースから複数のフレーム画像を取得する処理と、
前記取得したすべてのフレーム画像について、ベジエ曲線を用いて解析範囲を特定する処理と、
前記解析範囲内のインテンシティ(intensity)の変化に基づいて解析対象を検出する処理と、をコンピュータに実行させることを特徴とする診断支援プログラム。 - 前記検出した解析対象の辺縁の特徴を算出する処理をさらに含むことを特徴とする請求項21記載の診断支援プログラム。
- 連続する各画像について、インテンシティ(intensity)の差分を算出することで横隔膜を検出し、
前記検出した横隔膜または呼吸と連動する動的部位の位置または形状を示す指標を表示することを特徴とする請求項1から請求項22のいずれかに記載の診断支援プログラム。 - インテンシティ(intensity)の閾値を変化させることで、横隔膜以外の部位によって遮られていない横隔膜を表示し、横隔膜の全体形状を補間することを特徴とする請求項23記載の診断支援プログラム。
- 前記検出した横隔膜の位置若しくは形状、または呼吸と連動する動的部位の位置若しくは形状から、前記呼吸要素の少なくとも一つの周波数を計算する処理と、をさらに含むことを特徴とする請求項23または請求項24記載の診断支援プログラム。
- 前記検出した肺野を空間的に正規化し、またはリコンストラクション(reconstruction)を利用して時間的に正規化する処理をさらに含むことを特徴とする請求項1から請求項22のいずれかに記載の診断支援プログラム。
- 前記呼吸要素の少なくとも一つの周波数の位相を変化させ、または呼吸要素の波形を円滑化させることで、呼吸要素を補正することを特徴とする請求項1から請求項22のいずれかに記載の診断支援プログラム。
- 解析範囲内のいずれかの部位の波形を特定し、前記特定した波形の周波数の構成要素を抽出し、前記波形の周波数の構成要素に対応する画像を出力することを特徴とする請求項1から請求項27のいずれかに記載の診断支援プログラム。
- 解析範囲のデンシティ(density)を検出し、デンシティが相対的に大きく変化する箇所を除去することを特徴とする請求項1から請求項28のいずれかに記載の診断支援プログラム。
- 前記フーリエ変換後に得られるスペクトルから、臓器特有の周期的な変化のスペクトル構成比に基づいて、逆フーリエ変換を行なう際の少なくとも一つの周波数を選択する処理をさらに含むことを特徴とする請求項1から請求項29のいずれかに記載の診断支援プログラム。
- 前記呼吸要素の少なくとも一つの周波数に応じて、X線の照射間隔を調整するよう、X線撮影装置を制御することを特徴とする請求項1から請求項30のいずれかに記載の診断支援プログラム。
- 前記逆フーリエ変換後に、振幅値が相対的に大きいブロックのみを抽出して表示することを特徴とする請求項1から請求項10のいずれかに記載の診断支援プログラム。
- 前記肺野を同定した後、横隔膜または胸郭を特定し、横隔膜または胸郭の変化量を算出し、前記変化量から変化率を算出する処理をさらに含むことを特徴とする請求項1から請求項32のいずれかに記載の診断支援プログラム。
- 特定のスペクトルに係数を乗算する処理をさらに含み、前記係数が乗算された特定にスペクトルに基づいて強調表示を行なうことを特徴とする請求項1から請求項32のいずれかに記載の診断支援プログラム。
- 画像を格納するデータベースから複数のフレーム画像を取得した後、呼吸要素の周波数または波形を特定するために、解析対象となる部位にデジタルフィルタを施すことを特徴とする請求項1から請求項34のいずれかに記載の診断支援プログラム。
- 前記各フレーム画像の特定領域の画素に基づいて、呼気または吸気の全部または一部を含む呼吸要素の複数の周波数を特定し、
前記呼吸要素の複数の周波数のそれぞれに対応する各画像をディスプレイに表示することを特徴とする請求項1から請求項35のいずれかに記載の診断支援プログラム。 - ある一枚以上のフレーム画像の特定の範囲について、ある一定の値に集簇する画像を選択し、ディスプレイに表示することを特徴とする請求項1から請求項35のいずれかに記載の診断支援プログラム。
Priority Applications (17)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201980016993.2A CN111867471A (zh) | 2018-01-05 | 2019-01-07 | 诊断辅助程序 |
| MX2020006984A MX2020006984A (es) | 2018-01-05 | 2019-01-07 | Programa de soporte de diagnostico. |
| AU2019205878A AU2019205878A1 (en) | 2018-01-05 | 2019-01-07 | Diagnostic support program |
| BR112020013421-0A BR112020013421A2 (pt) | 2018-01-05 | 2019-01-07 | programa de suporte de diagnóstico |
| EA202091648A EA202091648A1 (ru) | 2018-03-09 | 2019-01-07 | Программа поддержки диагностики |
| EP19736110.8A EP3735906A4 (en) | 2018-01-05 | 2019-01-07 | DIAGNOSIS ASSISTANCE PROGRAM |
| US16/959,497 US12458313B2 (en) | 2018-01-05 | 2019-01-07 | Diagnostic support program |
| KR1020207021913A KR20200106050A (ko) | 2018-01-05 | 2019-01-07 | 진단 지원 프로그램 |
| SG11202006059WA SG11202006059WA (en) | 2018-01-05 | 2019-01-07 | Diagnostic support program |
| JP2019563986A JP7462898B2 (ja) | 2018-01-05 | 2019-01-07 | 診断支援プログラム |
| CA3087702A CA3087702A1 (en) | 2018-01-05 | 2019-01-07 | Computer diagnosis support program product and diagnosis support method |
| PH12020551042A PH12020551042A1 (en) | 2018-01-05 | 2020-07-03 | Diagnostic support program |
| ZA2020/04575A ZA202004575B (en) | 2018-01-05 | 2020-07-23 | Diagnostic support program |
| JP2022066013A JP7169514B2 (ja) | 2018-01-05 | 2022-04-13 | 診断支援プログラム |
| JP2022141459A JP7310048B2 (ja) | 2018-01-05 | 2022-09-06 | 診断支援プログラム |
| JP2023126624A JP2023153937A (ja) | 2018-01-05 | 2023-08-02 | 診断支援プログラム |
| AU2024267070A AU2024267070A1 (en) | 2018-01-05 | 2024-11-30 | Diagnostic support program |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018-000855 | 2018-01-05 | ||
| JP2018000855 | 2018-01-05 | ||
| JP2018043511 | 2018-03-09 | ||
| JP2018-043511 | 2018-03-09 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019135412A1 true WO2019135412A1 (ja) | 2019-07-11 |
Family
ID=67144237
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2019/000102 Ceased WO2019135412A1 (ja) | 2018-01-05 | 2019-01-07 | 診断支援プログラム |
Country Status (13)
| Country | Link |
|---|---|
| US (1) | US12458313B2 (ja) |
| EP (1) | EP3735906A4 (ja) |
| JP (4) | JP7462898B2 (ja) |
| KR (1) | KR20200106050A (ja) |
| CN (1) | CN111867471A (ja) |
| AU (2) | AU2019205878A1 (ja) |
| BR (1) | BR112020013421A2 (ja) |
| CA (1) | CA3087702A1 (ja) |
| MX (1) | MX2020006984A (ja) |
| PH (1) | PH12020551042A1 (ja) |
| SG (1) | SG11202006059WA (ja) |
| WO (1) | WO2019135412A1 (ja) |
| ZA (1) | ZA202004575B (ja) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021002478A1 (ja) * | 2019-07-04 | 2021-01-07 | パラメヴィア プライベート リミテッド | 診断支援プログラム |
| JPWO2021019809A1 (ja) * | 2019-08-01 | 2021-02-04 | ||
| JP2021132994A (ja) * | 2020-02-28 | 2021-09-13 | コニカミノルタ株式会社 | 動態解析装置及びプログラム |
| JP2022135243A (ja) * | 2021-03-05 | 2022-09-15 | コニカミノルタ株式会社 | 動態解析装置及びプログラム |
| JP2022175516A (ja) * | 2021-05-13 | 2022-11-25 | 株式会社ナ・デックス | 溶接判定装置、溶接判定装置システム、溶接判定方法、及び溶接判定プログラム |
| JP2023153937A (ja) * | 2018-01-05 | 2023-10-18 | ラドウィスプ プライベート リミテッド | 診断支援プログラム |
| WO2024214802A1 (ja) * | 2023-04-11 | 2024-10-17 | ラドウィスプ プライベート リミテッド | 診断支援プログラムおよび診断支援システム |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7047574B2 (ja) * | 2018-04-26 | 2022-04-05 | コニカミノルタ株式会社 | 動態画像解析装置、動態画像解析システム、動態画像解析プログラム及び動態画像解析方法 |
| JP2020141841A (ja) * | 2019-03-06 | 2020-09-10 | コニカミノルタ株式会社 | 動態解析装置及びプログラム |
| TWI684433B (zh) * | 2019-04-19 | 2020-02-11 | 鉅怡智慧股份有限公司 | 生物影像處理方法以及生理資訊檢測裝置 |
| JP7435242B2 (ja) * | 2020-05-15 | 2024-02-21 | コニカミノルタ株式会社 | 動態画像解析装置、動態画像解析方法及びプログラム |
| CN111879724B (zh) * | 2020-08-05 | 2021-05-04 | 中国工程物理研究院流体物理研究所 | 基于近红外光谱成像的人皮面具识别方法及系统 |
| JP7643875B2 (ja) * | 2021-01-15 | 2025-03-11 | キヤノン株式会社 | 情報処理装置、情報処理方法、及びプログラム |
| CN114241138A (zh) * | 2021-12-29 | 2022-03-25 | 零氪科技(天津)有限公司 | 肺小结节三维重建方法、装置、电子设备及存储介质 |
| CN115517654B (zh) * | 2022-09-21 | 2025-09-05 | 鲍尚琦 | 呼吸监测方法、装置、设备及计算机可读存储介质 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010187723A (ja) * | 2009-02-16 | 2010-09-02 | Konica Minolta Medical & Graphic Inc | 画像処理装置、画像処理方法、およびプログラム |
| US20160189394A1 (en) * | 2014-12-30 | 2016-06-30 | Huazhong University Of Science And Technology | Method for iteratively extracting motion parameters from angiography images |
| JP2017131310A (ja) * | 2016-01-26 | 2017-08-03 | 株式会社日立製作所 | X線透視撮影装置、撮影方法 |
| JP2017200565A (ja) * | 2016-05-03 | 2017-11-09 | コニカミノルタ株式会社 | 動態解析装置及び動態解析システム |
Family Cites Families (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07100060B2 (ja) | 1987-03-30 | 1995-11-01 | コニカ株式会社 | 肺野部輪郭線を求める画像計測方法 |
| JP3222273B2 (ja) * | 1993-07-09 | 2001-10-22 | 株式会社日立製作所 | 核磁気共鳴診断装置における動画像の画質改善方法 |
| JP4226829B2 (ja) * | 2001-03-06 | 2009-02-18 | 株式会社東芝 | X線診断装置及び画像処理装置 |
| US6577752B2 (en) | 2001-06-15 | 2003-06-10 | Arch Development Corporation | Automated method and system for the delineation of the chest wall in computed tomography scans for the assessment of pleural disease |
| US20040260188A1 (en) * | 2003-06-17 | 2004-12-23 | The General Hospital Corporation | Automated auscultation system |
| JP4439882B2 (ja) * | 2003-11-14 | 2010-03-24 | キヤノン株式会社 | 放射線画像処理装置及び処理方法 |
| JP2006239195A (ja) * | 2005-03-04 | 2006-09-14 | Fuji Photo Film Co Ltd | コンピュータによる画像診断支援方法および画像診断支援装置ならびにプログラム |
| IL188569A (en) | 2007-01-17 | 2014-05-28 | Mediguide Ltd | Method and system for coordinating a 3D image coordinate system with a medical position coordinate system and a 2D image coordinate system |
| JP4854546B2 (ja) | 2007-03-06 | 2012-01-18 | キヤノン株式会社 | 画像処理装置及び画像処理方法 |
| WO2009090894A1 (ja) | 2008-01-15 | 2009-07-23 | Konica Minolta Medical & Graphic, Inc. | 動態画像診断支援システム |
| JP5446443B2 (ja) * | 2009-05-15 | 2014-03-19 | 日産自動車株式会社 | 心拍数測定装置および心拍数測定方法 |
| JP5804340B2 (ja) * | 2010-06-10 | 2015-11-04 | 株式会社島津製作所 | 放射線画像領域抽出装置、放射線画像領域抽出プログラム、放射線撮影装置および放射線画像領域抽出方法 |
| JP5556413B2 (ja) | 2010-06-18 | 2014-07-23 | コニカミノルタ株式会社 | 動態画像処理装置及びプログラム |
| CN104887258B (zh) | 2010-08-27 | 2018-04-03 | 柯尼卡美能达医疗印刷器材株式会社 | 诊断支援系统 |
| JP5625799B2 (ja) | 2010-11-22 | 2014-11-19 | コニカミノルタ株式会社 | 動態診断支援情報生成システム |
| FI20115053A0 (fi) * | 2011-01-19 | 2011-01-19 | Delfin Technologies Oy | Menetelmä ja järjestelmä kardiovaskulaaristen sykeaaltojen visualisoimiseksi |
| JP5672147B2 (ja) * | 2011-05-24 | 2015-02-18 | コニカミノルタ株式会社 | 胸部診断支援情報生成システム |
| CN102949240B (zh) | 2011-08-26 | 2014-11-26 | 高欣 | 一种影像导航肺部介入手术系统 |
| CN104363833B (zh) | 2012-04-04 | 2017-03-01 | 柯尼卡美能达株式会社 | 图像生成装置以及图像生成方法 |
| JP5962237B2 (ja) | 2012-06-11 | 2016-08-03 | コニカミノルタ株式会社 | 胸部診断支援情報生成方法 |
| JP6217241B2 (ja) | 2013-08-28 | 2017-10-25 | コニカミノルタ株式会社 | 胸部診断支援システム |
| JP5907185B2 (ja) * | 2014-01-27 | 2016-04-26 | コニカミノルタ株式会社 | 動態画像診断支援システム |
| JP6381972B2 (ja) * | 2014-06-02 | 2018-08-29 | キヤノンメディカルシステムズ株式会社 | 医用画像処理装置および医用画像診断装置 |
| JP6361435B2 (ja) * | 2014-10-07 | 2018-07-25 | コニカミノルタ株式会社 | 画像処理装置及びプログラム |
| US10631811B2 (en) * | 2015-03-04 | 2020-04-28 | Dmytro Volkov | Method and system for processing of medical images for generating a prognosis of cardiac function |
| JP6348865B2 (ja) * | 2015-03-30 | 2018-06-27 | 株式会社リガク | Ct画像処理装置および方法 |
| CN107113190B (zh) | 2015-04-03 | 2019-12-17 | 华为技术有限公司 | 一种网络管理系统、设备及方法 |
| JP6413927B2 (ja) | 2015-05-25 | 2018-10-31 | コニカミノルタ株式会社 | 動態解析装置及び動態解析システム |
| KR102449249B1 (ko) | 2015-05-27 | 2022-09-30 | 삼성전자주식회사 | 자기 공명 영상 장치 및 그 방법 |
| WO2017013895A1 (ja) * | 2015-07-22 | 2017-01-26 | コニカミノルタ株式会社 | コンソール及び動態画像撮影診断システム |
| JP6264361B2 (ja) | 2015-11-30 | 2018-01-24 | コニカミノルタ株式会社 | 動態画像解析装置 |
| JP2017113344A (ja) | 2015-12-25 | 2017-06-29 | コニカミノルタ株式会社 | 動態撮影装置及び動態撮影システム |
| JP6701880B2 (ja) * | 2016-03-30 | 2020-05-27 | コニカミノルタ株式会社 | 動態解析装置、動態解析システム、動態解析方法及びプログラム |
| JP2017217047A (ja) | 2016-06-03 | 2017-12-14 | コニカミノルタ株式会社 | 画像表示システム |
| JP6746114B2 (ja) * | 2016-07-19 | 2020-08-26 | パラメヴィア プライベート リミテッド | 診断支援プログラム |
| JP2018110637A (ja) * | 2017-01-10 | 2018-07-19 | コニカミノルタ株式会社 | 動態画像処理装置 |
| US12458313B2 (en) * | 2018-01-05 | 2025-11-04 | Paramevia Pte. Ltd. | Diagnostic support program |
-
2019
- 2019-01-07 US US16/959,497 patent/US12458313B2/en active Active
- 2019-01-07 CA CA3087702A patent/CA3087702A1/en active Pending
- 2019-01-07 BR BR112020013421-0A patent/BR112020013421A2/pt unknown
- 2019-01-07 EP EP19736110.8A patent/EP3735906A4/en active Pending
- 2019-01-07 WO PCT/JP2019/000102 patent/WO2019135412A1/ja not_active Ceased
- 2019-01-07 CN CN201980016993.2A patent/CN111867471A/zh active Pending
- 2019-01-07 JP JP2019563986A patent/JP7462898B2/ja active Active
- 2019-01-07 MX MX2020006984A patent/MX2020006984A/es unknown
- 2019-01-07 AU AU2019205878A patent/AU2019205878A1/en not_active Abandoned
- 2019-01-07 SG SG11202006059WA patent/SG11202006059WA/en unknown
- 2019-01-07 KR KR1020207021913A patent/KR20200106050A/ko active Pending
-
2020
- 2020-07-03 PH PH12020551042A patent/PH12020551042A1/en unknown
- 2020-07-23 ZA ZA2020/04575A patent/ZA202004575B/en unknown
-
2022
- 2022-04-13 JP JP2022066013A patent/JP7169514B2/ja active Active
- 2022-09-06 JP JP2022141459A patent/JP7310048B2/ja active Active
-
2023
- 2023-08-02 JP JP2023126624A patent/JP2023153937A/ja active Pending
-
2024
- 2024-11-30 AU AU2024267070A patent/AU2024267070A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010187723A (ja) * | 2009-02-16 | 2010-09-02 | Konica Minolta Medical & Graphic Inc | 画像処理装置、画像処理方法、およびプログラム |
| US20160189394A1 (en) * | 2014-12-30 | 2016-06-30 | Huazhong University Of Science And Technology | Method for iteratively extracting motion parameters from angiography images |
| JP2017131310A (ja) * | 2016-01-26 | 2017-08-03 | 株式会社日立製作所 | X線透視撮影装置、撮影方法 |
| JP2017200565A (ja) * | 2016-05-03 | 2017-11-09 | コニカミノルタ株式会社 | 動態解析装置及び動態解析システム |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2023153937A (ja) * | 2018-01-05 | 2023-10-18 | ラドウィスプ プライベート リミテッド | 診断支援プログラム |
| WO2021002478A1 (ja) * | 2019-07-04 | 2021-01-07 | パラメヴィア プライベート リミテッド | 診断支援プログラム |
| JPWO2021019809A1 (ja) * | 2019-08-01 | 2021-02-04 | ||
| JP7152077B2 (ja) | 2019-08-01 | 2022-10-12 | 国立大学法人大阪大学 | 血管壁厚み推定方法、血管壁厚み推定装置及び血管壁厚み推定システム |
| JP2021132994A (ja) * | 2020-02-28 | 2021-09-13 | コニカミノルタ株式会社 | 動態解析装置及びプログラム |
| JP2022135243A (ja) * | 2021-03-05 | 2022-09-15 | コニカミノルタ株式会社 | 動態解析装置及びプログラム |
| JP7721925B2 (ja) | 2021-03-05 | 2025-08-13 | コニカミノルタ株式会社 | 動態解析装置及びプログラム |
| JP2022175516A (ja) * | 2021-05-13 | 2022-11-25 | 株式会社ナ・デックス | 溶接判定装置、溶接判定装置システム、溶接判定方法、及び溶接判定プログラム |
| JP7676014B2 (ja) | 2021-05-13 | 2025-05-14 | 株式会社ナ・デックス | 溶接判定装置、溶接判定装置システム、溶接判定方法、及び溶接判定プログラム |
| WO2024214802A1 (ja) * | 2023-04-11 | 2024-10-17 | ラドウィスプ プライベート リミテッド | 診断支援プログラムおよび診断支援システム |
Also Published As
| Publication number | Publication date |
|---|---|
| ZA202004575B (en) | 2022-12-21 |
| US12458313B2 (en) | 2025-11-04 |
| KR20200106050A (ko) | 2020-09-10 |
| CN111867471A (zh) | 2020-10-30 |
| JP7169514B2 (ja) | 2022-11-11 |
| AU2024267070A1 (en) | 2024-12-19 |
| JPWO2019135412A1 (ja) | 2021-02-25 |
| EP3735906A4 (en) | 2021-11-03 |
| US20210052228A1 (en) | 2021-02-25 |
| BR112020013421A2 (pt) | 2020-12-01 |
| JP7462898B2 (ja) | 2024-04-08 |
| JP2022172305A (ja) | 2022-11-15 |
| SG11202006059WA (en) | 2020-07-29 |
| EP3735906A1 (en) | 2020-11-11 |
| JP2022095871A (ja) | 2022-06-28 |
| MX2020006984A (es) | 2020-10-05 |
| CA3087702A1 (en) | 2019-07-11 |
| PH12020551042A1 (en) | 2021-09-06 |
| AU2019205878A1 (en) | 2020-08-06 |
| JP7310048B2 (ja) | 2023-07-19 |
| JP2023153937A (ja) | 2023-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7310048B2 (ja) | 診断支援プログラム | |
| US20210233243A1 (en) | Diagnostic support program | |
| US20250061576A1 (en) | Diagnostic support program | |
| TWI828661B (zh) | 診斷支援系統 | |
| CN118401177A (zh) | 一种诊断支援程序 | |
| TWI864040B (zh) | 診斷支援系統 | |
| HK40041610A (en) | Diagnostic support program | |
| HK40060267A (en) | Diagnosis assisting program | |
| OA20419A (en) | Diagnostic support program | |
| EA040692B1 (ru) | Программа поддержки диагностики | |
| WO2024214802A1 (ja) | 診断支援プログラムおよび診断支援システム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19736110 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2019563986 Country of ref document: JP Kind code of ref document: A Ref document number: 3087702 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20207021913 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2019205878 Country of ref document: AU Date of ref document: 20190107 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2019736110 Country of ref document: EP Effective date: 20200805 |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020013421 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112020013421 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200630 |
|
| WWG | Wipo information: grant in national office |
Ref document number: MX/A/2020/006984 Country of ref document: MX |
|
| WWG | Wipo information: grant in national office |
Ref document number: 202047032660 Country of ref document: IN |
|
| WWG | Wipo information: grant in national office |
Ref document number: 16959497 Country of ref document: US |