[go: up one dir, main page]

WO2006082522A1 - Methode diagnostique de la steatose hepatique utilisant des marqueurs biochimiques - Google Patents

Methode diagnostique de la steatose hepatique utilisant des marqueurs biochimiques Download PDF

Info

Publication number
WO2006082522A1
WO2006082522A1 PCT/IB2006/000333 IB2006000333W WO2006082522A1 WO 2006082522 A1 WO2006082522 A1 WO 2006082522A1 IB 2006000333 W IB2006000333 W IB 2006000333W WO 2006082522 A1 WO2006082522 A1 WO 2006082522A1
Authority
WO
WIPO (PCT)
Prior art keywords
log
interval
comprised
hepatic steatosis
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2006/000333
Other languages
English (en)
Inventor
Thierry Poynard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Assistance Publique Hopitaux de Paris APHP
Original Assignee
Assistance Publique Hopitaux de Paris APHP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assistance Publique Hopitaux de Paris APHP filed Critical Assistance Publique Hopitaux de Paris APHP
Priority to BRPI0606840-5A priority Critical patent/BRPI0606840A2/pt
Priority to EP06710408A priority patent/EP1856536B1/fr
Priority to CA002596682A priority patent/CA2596682A1/fr
Priority to MX2007009427A priority patent/MX2007009427A/es
Priority to US11/815,332 priority patent/US20090111132A1/en
Priority to DE602006003414T priority patent/DE602006003414D1/de
Priority to JP2007553738A priority patent/JP2008529030A/ja
Publication of WO2006082522A1 publication Critical patent/WO2006082522A1/fr
Priority to IL185021A priority patent/IL185021A0/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/706Specific hybridization probes for hepatitis
    • C12Q1/707Specific hybridization probes for hepatitis non-A, non-B Hepatitis, excluding hepatitis D
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention is drawn to a new diagnosis method for detecting the extent of hepatic steatosis in a patient, in particular in a patient who suffers from a disease involving hepatic steatosis or who already had a positive diagnosis test of liver fibrosis and/or presence of liver necroinfiammatory lesions, by using the serum concentration of easily detectable biological markers.
  • the invention is also drawn to diagnosis kits for the implementation of the method.
  • Fatty liver also named hepatic steatosis, is defined as an excessive accumulation of fat in hepatocytes (Bravo AA, et al. N. Engl. J. Med. 2001:344;495-500; Angulo P. N. Engl. J.
  • Fatty liver disease involves the accumulation of triglycerides in hepatocytes, necrosis of hepatocytes, inflammation (Day CP. Best Pract.
  • hepatic steatosis Worldwide the prevalence of hepatic steatosis is very high, associated with several factors such as alcohol, diabetes, overweight, hyperlipidemia, insulin resistance, hepatitis C genotype 3, abetalipoproteinemia and some drugs (Bellentani S, et al. Ann. Intern. Med. 2000; 132: 112-7; Levitsky J, Mailliard ME. Semin. Liver Dis. 2004;24:233-47).
  • Non-alcoholic fatty liver disease is an adaptive response of the liver to insulin resistance that can trigger non-alcoholic steatohepatitis (NASH), which can itself induce a fibrogenic response that can result in cirrhosis (Day CP. Best Pract. Res. Clin. Gastroenterol. 2002; 16:663-78).
  • NASH non-alcoholic steatohepatitis
  • hepatic steatosis In patients with alcoholic liver disease (Sorensen TI, et al. Lancet. 1984;2:241-4), chronic hepatitis C (Fabris P, et al. J. Hepatol. 2004;41 :644-51), and perhaps in hepatitis B (Phillips MJ, et al. Am. J. Pathol. 1992;140: 1295-308), the presence of hepatic steatosis is also associated with fibrosis progression, with or without associated necroinflammatory lesions (alcoholic or viral hepatitis).
  • liver biopsy is still an invasive and costly procedure, with a potential sampling error, it could be advantageous to have a fast and easy to perform test that would give a good predictive value of the level of hepatic steatosis in the patient.
  • FT non-invasive FibroTest
  • the present invention provides a method of diagnosis that assesses prospectively the predictive value of a combination of simple serum biochemical markers for the diagnosis of hepatic steatosis, in particular in the liver of a patient who suffers from a disease involving hepatic steatosis or who already had a positive diagnosis test of liver fibrosis and/or presence of liver necroinflammatory lesions.
  • the reach of high positive predictive values (prediction of significant hepatic steatosis) or negative predictive values the number of biopsy indications could be reduced. This could be useful for patients and society in order to reduce the cost and the risk of liver biopsies.
  • FIG. 1 Flow chart of patients analyzed and included in the training and validation groups.
  • FIG. 2 Relationship between SteatoTest, GGT (IU/L) and ALT (IU/L) and the grade of liver steatosis.
  • Notched box plots showing the relationship in the training group (FIG.2A); in validation group 1, HCV patients before treatment (FIG.2B); in validation group 2, cured HCV patients (FIG.2C); in validation group 3, alcoholic liver disease (FIG.2D); and in controls, healthy volunteers fasting and non-fasting and non-fasting blood donors (FIG.2E).
  • the horizontal line inside each box represents the median and the width of each box the median ⁇ 1.57 interquartile rangeA ⁇ i to assess the 95% level of significance between group medians. Failure of the shaded boxes to overlap signifies statistical significance (P ⁇ 0.05).
  • the horizontal lines above and below each box encompass the interquartile range (from 25"' to 75th percentile), and the vertical lines from the ends of the box encompass the adjacent values (upper: 75th percentile plus 1.5 times interquartile range, lower 25th percentile minus 1.5 times interquartile range).
  • group 3 almost all patients had steatosis and group SO and Sl were combined.
  • FIG. 3 Relationship between SteatoTest, GGT (IU/L) and ALT (IU/L) and the grade of liver steatosis in the integrated database combining controls, training group and validation groups.
  • the present invention is therefore drawn to a method for diagnosis of hepatic steatosis in a patient or from a serum or a plasma sample from a patient, comprising the steps of:
  • Hepatic steatosis may be associated with several factors such as alcohol, diabetes, overweight, hyperlipidemia, insulin resistance, hepatitis C genotype 3, abetalipoproteinemia and some drugs.
  • the present invention is directed to the diagnosis of both alcoholic and non-alcoholic steatosis.
  • the best index (“Steatosis score") in term of discrimination was the logistic regression function combining the independent factors.
  • the logistic function is obtained by combining the relative weight of each parameter, as individually determined in the logistic regression, with a negative sign when the markers harbor a negative correlation with the stage of hepatic steatosis. Logarithms are used for markers whose values have a very large range.
  • ROC Receiver Operating Characteristic
  • the diagnosis of the presence or absence hepatic steatosis in the patient can be further refined by the data concerning the expected prevalence of hepatic steatosis in the population.
  • the logistic function may further comprise other clinical or biochemical markers.
  • the logistic function also comprises the age and gender of the patient.
  • the logistic function may also comprise other biochemical markers, such as total bilirubin, haptoglobin, AST (aspartate aminotransferase), glucose, and (cholesterol or HDL-cholesterol).
  • the logistic function will comprise at least 1 or 2, more preferably 3 to 5 of these other biochemical markers.
  • the logistic function may also comprise total bilirubin, haptoglobin, glucose, and cholesterol.
  • biochemical markers that are dosed in step a) of the method according to the present invention are "simple" biochemical markers, which means that they are easily dosed with methods already known in the art (chromatography, electrophoresis, ELISA assay . . . ).
  • the different coefficients used for the values obtained for the different markers in the logistic function can be calculated through statistical analysis, as described in the examples.
  • a suitable logistic function that can be used for the implementation of the method of the invention is as follows:
  • al comprised in the interval of [6.68805 -x% ; 6.68805 +x%], a2 comprised in the interval of [1.55337E-02-x% ; 1.55337E-02+x%], a3 comprised in the interval of [1.161531 -x% ; 1.161531+x%], a4 comprised in the interval of [0.11889-x% ; 0.11889+x%], a5 comprised in the interval of [1.74791-x% ; 1.74791+x%], a6 comprised in the interval of [0.96453-x% ; 0.96453+x%], a7 comprised in the interval of [0.11958-x% ; 0.11958+x%], a8 comprised in the interval of [0.68125-x% ; 0.68125+x%], a9 comprised in the interval of [ 1.17922-x% ; 1.17922+x%] , alO comprised in the interval of [1.46963-x%
  • An "interval of [a-x% ; a+x%]" means an interval of [(100-x)/100.a ; (100+x)/100.a].
  • x is at most 90, 80 or 70, more preferably at most 60, 50, or 40, even more preferably at most 30, 20, 10 or 5. All a, coefficients are truncated to a number of 5 decimals. For instance, for x equal to 90, al3 is comprised in the interval of [0.03505; 0.66598].
  • the numerical definitions for the coefficients in the different functions can vary depending on the number and characteristics of the patients studied. Therefore, the value given for the coefficients of the different markers have to be interpreted as capable to being slightly different, without reducing the scope of the invention.
  • a specific usable function, when x is equal to zero, is:
  • the invention thus concerns a method as previously described, wherein the end value of the logistic function is further used for the diagnosis of hepatic steatosis grade.
  • the different grades of hepatic steatosis are defined according to histological features of liver biopsies. A more precise definition of hepatic steatosis grades is provided in Example 1.
  • the method according to the invention may further comprise a step of prediction of the evolution of the disease, based on the hepatic steatosis grade deducted from the end value of the logistic function, hi particular, a Steatosis score at the 0.30 cut off has a very high sensitivity ranging from 85% to 100% according to different groups (Table 4) and a Steatosis score at the 0.70 cutoff has a very high specificity ranging from 83% to 100%. Furthermore as already demonstrated for Fibrotest (Poynard 2004 Clin Chem 2004) many of the discordances between Steato-score and biopsy were due to error of the biopsy (small sample size). It is expected that the method of the invention will reduce the need of liver biopsy by more than 80%.
  • a clinician can have an estimate of major histological features leading to cirrhosis or explaining liver tests abnormalities: Steatosis score for steatosis, Fibrosis score (FibroTest, Biopredictive, Paris, France) for fibrosis, Activity score (ActiTest, Biopredictive, Paris, France) for the necrotico-inflammatory features of chronic hepatitis C and B. Biopsy should be indicated only in second line in case of non interpretable components as described for the Fibrosis score (FibroTest), i.e acute inflammation, Gilbert syndrome or hemolysis (Poynard Clin Chem 2004).
  • the hepatic steatosis grade deducted from the end value of the logistic function can also be very valuable for the physician to choose a suitable treatment for the patient, according to the stage of the disease.
  • said hepatic steatosis grade may be used by the physician to decide whether to perform a liver biopsy on the patient or not.
  • the data obtained with the method of the invention can be used to determine the need to perform a liver biopsy on the patient. It is expected that the method of the invention will reduce the need of liver biopsy by around 80%.
  • the method of the invention is intended to be used for patients suffering of any disease involving hepatic steatosis, that could develop to cirrhosis.
  • a "disease involving hepatic steatosis" is meant any disease that may lead to the development of hepatic steatosis.
  • the method of the invention is advantageously performed for detecting hepatic steatosis in patients suffering from a disease included in the group consisting of hepatitis B and C, alcoholism, hemochromatosis, metabolic disease, diabetes, obesity, autoimmune hepatitis, primary biliary cirrhosis, .alpha.1 -antitrypsin deficit, Wilson disease.
  • the method of the invention is particularly intended to be used for a patient who was already subjected to a diagnosis test of liver fibrosis and/or presence of liver necroinflammatory lesions.
  • the method of the invention is intended to be used for a patient who was already subjected to a FibroTest/Acti-Test diagnostic test, as described in patent US 6,631,330, which is herein incorporated by reference.
  • the invention is also drawn to a kit of diagnosis of hepatic steatosis in a patient, comprising instructions allowing to determine the presence or absence of hepatic steatosis in said patient, after dosage of biochemical markers.
  • the instructions may comprise the logistic function that has to be used after determination of the dosage of the biochemical markers. It can appear as a printed support as well as a computer usable support, such as a software.
  • the instructions may also comprise the ROC curve depending of the threshold that is looked for, to allow the analysis of the end data obtained from the logistic function. They may also comprise different tables that allow to obtain the predictive values, depending of the expected prevalence of hepatic steatosis in the patient population.
  • the diagnosis kit according to the present invention may also contain elements allowing the dosage of the biological markers of interest.
  • the method of the invention can easily be automated, the dosage of the markers being performed automatically, the data being sent to a computer or a calculator that will calculate the value of the logistic function and analyze it with the aid of the ROC curve, and eventually the prevalence of hepatic steatosis in the patient population.
  • the data obtained by the physician is therefore more easily interpretable, and will allow for an improvement in the process for deciding the need of a biopsy or the adequate treatment to prescribe.
  • Consecutive patients with available serum, a consistent liver biopsy and a duration of time between serum and biopsy shorter than 3 months were included (FIG.l).
  • Non-inclusion criteria included non-available serum, and non-available biopsies and patients because biopsy and serum were collected more than 3 month apart.
  • the analysis was performed on a first group (training group) and validated on 3 different groups (validation groups). Training group patients were retrospectively included for this specific analysis, but have been analyzed in previous prospective validation studies of Fibrotest between September 2000 and August 2004 (Poynard T, et al. Comp. Hepatol. 2004;3:8; Myers RP, et al. J Hepatol. 2003;39:222-30; Ratziu V, et al.
  • Validation group 1 patients were retrospectively analyzed from a study of hepatic steatosis in patients with chronic hepatitis C (Poynard T, et al. Hepatology. 2003;38:75-85). For this purpose, previously non-treated patients of a prospective multicentre randomized trial of PEG-IFN and Ribavirin were included. The biomarkers and the biopsy results at baseline were used.
  • Validation group 2 patients (former Hepatitis C with undetectable HCV patients) were the patients of the same randomized trial as in validation group 1 (Poynard T, et al.
  • Validation group 3 patients were retrospectively included for this specific analysis, but were prospectively included between 1998 and 2000 in a cohort of alcoholic patients for which one primary endpoint was the identification of biochemical markers. The details of this cohort have been recently published in a validation study of FibroTest (Naria S, et al. Clin. Gastroenterol. Hepatol. 2005 in press). All were inpatients hospitalized in the Hepato-Gastroenterology Department of H ⁇ pital Antoine Beclere for complications of alcoholic liver disease. Patients' characteristics of the different groups are listed in Table 1. Characteristics Training Validation Validation ⁇ alidation gioup group 1 group 2 group 3
  • I ⁇ glyce ⁇ des > 17 mmol/L 67 (22%) 36 (21%) 54 (27%) 20 (32%)
  • GGT U/L (7-32 female, 11-49 male) 112(183) 84 (96) 21 (18) 323 (443)
  • Haptoglobin g/L (035-200)* 095 (057) 078 (045) 086 (043) 139(063)
  • SteatoTest 049 (025) 053 (022) 036 (022) 058 (025) Data are mean (SD) or proportion.
  • AST aspartate aminotransferase.
  • ALT alanine aminotransferase.
  • GGT glutamyl transpeptidase.
  • ApoAl apolipoprotein al .
  • a control group was also analyzed. It was constituted of fasting and non- fasting apparently healthy volunteers previously included in a validation of FibroTest (Munteanu M,et al. Comp. Hepatol. 2004;3,3) and additional non-fasting blood donors.
  • the 10 following biochemical markers were assessed for the different groups : ApoAl, ALT (alanine aminotransferase), AST (aspartate aminotransferase), alpha.2-macroglobulin, GGT (gammaglutamyl transpeptidase), total bilirubin, haptoglobin, cholesterol, glucose, and triglycerides.
  • biochemical markers include the 6 components of the FibroTest- ActiTest adjusted by age and gender (patented artificial intelligence algorithm USPTO 6,631,330) plus the AST, cholesterol, glucose, and triglycerides markers and the BMI.
  • FibroTest Biopredictive, Paris, France; FibroSURE LabCorp, Burlington, NC, USA was determined as previously published (Poynard T, et al. Comp Hepatol. 2004;3:8; Myers RP, et al. J Hepatol. 2003;39:222-30; Callewaert N, et al. Nature Med 2004;10;l-6; Naria S, et al. Clin Gastroenterol Hepatol in press; Imbert-Bismut F, et al. Clin Chem Lab Med 2004;42:323-33; Sloanu M, et al.Comp Hepatol 2004;3:3).
  • Alpha2- macroglobulin, apolipoprotein Al, and haptoglobin were measured using an automatic nephelemeter BNII (Dade Behring; Marburg, Germany).
  • ALT, GGT, serum glucose, triglycerides, cholesterol, total bilirubin and haptoglobin were measured by autoanalyzer (Olympus AU 640 Automate) using manufacturer's reagents (Olympus, Rungis France); alpha2-macroglobulin and apolipoprotein Al were measured using an automatic nephelometer (BNII, Dade Behring; Marburg, Germany).
  • the primary outcome was the identification of patients with hepatic steatosis grade 2, 3 or 4 (moderate, marked or severe).
  • the first stage consisted of identifying factors which differed significantly between these groups by unidimensional analysis using the chi-square, Student t test or Mann-Whitney test.
  • the second stage consisted of logistic regression analysis to assess the independent discriminative value of markers for the diagnosis of fibrosis.
  • the third step was to construct an index combining these identified independent factors.
  • the best index (“Steatosis score”) in term of discrimination was the logistic regression function combining the independent factors.
  • the Steatosis score is further referred to as "SteatoTest score”.
  • the SteatoTest score ranges from zero to 1.00, with higher scores indicating a greater probability of significant lesions.
  • the diagnostic values of the markers were assessed using sensitivities, specificities, positive (PPV) and negative predictive values (NPV), and the areas under the Receiver Operating characteristic (ROC) curves (Hintze JL. NCSS 2003 User Guide. Number Cruncher Statistical Systems 2003 software NCSS, Kaysville, Utah).
  • the respective overall diagnostic values were compared by the area under the ROC curves.
  • the ROC curve is drawn by plotting the sensitivity versus (1 -specificity), after classification of the patients, according to the value obtained for the logistic function, for different thresholds (from 0 to 1). It is usually acknowledged that a ROC curve the area under which has a value superior to 0.7 is a good predictive curve for diagnosis.
  • the ROC curve has to be acknowledged as a curve allowing to predict the quality of a diagnosis method.
  • StepTest score is defined as the logistic regression function combining the independent factors that returns the best index in term of discrimination between the presence or absence of hepatic steatosis.
  • Apolipoprotein Al 1.46(0.34) 1.42(0.33) 0.30 1.27(0.26) 1.20(0.24) 0.18 1.16(0.28) 1.07(0.25) 0.2 1.67(0.43) 1.48(0.49) 0.49 g/L Haptoglobin, g/L 0.93 (0.60) 0.96 (0.52) 0.19 0.77 (0.45) 0.78 (0.44) 0.84 0.85(0.41) 0.94 (0.56) 0.85 1.55(0.92) 1.38(0.62) 0.85
  • Triglycerides mmol/L 1.24(0.95) ' 1.88(1.78) ⁇ 0.0001 1.26(0.72) 1.72(1.0) 0.0008 1.49(0.98) 2.05(1.22) 0.003 1.05(0.51) 1.96(3.15) 0.28
  • ALT alanine aminotransferase
  • AST aspartate aminotransferase
  • GGT ⁇ - glutamyl-transpeptidase
  • SteatoTest combines in a multivariate regression analysis adjusted for gender, age and body mass index: alanine and aspartate aminotransferases, alpha-macroglobulin, apolipoprotein A-I, haptoglobin, total bilirubin, and ⁇ -glutamyl-transpeptidase
  • Table 2 Characteristics of patients according to the presence of steatosis
  • Step 2 The best logistic function (SteatoTest score) combining 9 markers and age, gender and BMI was determined on the training group to be as follows:
  • the value of the SteatoTest score combining 9 markers (alpha2-macroglobulin, ALT, apo Al, haptoglobin, GGT, and total bilirubin), adjusted by age, gender and BMI, had a high correlation with the presence or absence of hepatic steatosis, on the training sample as well as on validation samples (Table 2).
  • Table 3 Values [Area under the ROC curves (AUROCs)] of Steatosis score, GGT and ALT for the diagnosis of steatosis, in training and validation groups
  • Table 4 Diagnostic value of Steatosis score for predicting hepatic steatosis greater than 5%
  • the diagnostic value (area under the ROC curve) of the SteatoTest score was highly reproducible between the training group and validation groups 1, 2 and 3 (Table 3).
  • the sensitivity was also quite reproducible between the training group and validation groups 1, 2 and 3 (Table 4).
  • the sensitivities and specificities of the SteatoTest score observed in the different populations studied will probably increase in a more general population because of the excellent specificity observed in volunteers and blood donors ( Figure 2E), and because of the fact that the present studies have included a limited number of patients with several metabolic risk factors such as morbid obesity.
  • the results obtained with the SteatoTest score were compared to those obtained with the use of isolated markers such as GGT and ALT, which are usually considered to be useful markers to indicate the presence or absence of hepatic steatosis.
  • isolated markers such as GGT and ALT, which are usually considered to be useful markers to indicate the presence or absence of hepatic steatosis.
  • the same standard cut-off value is used for GGT and ALT: 50 IU/L. Under said cut-off value, the diagnostic of hepatic steatosis is considered to be negative, over, it is considered to be positive.
  • the SteatoTest score allows a much better discrimination between the presence or absence of hepatic steatosis in all groups analyzed, in particular for the training group and validation group 2 (Table 2).
  • Diagnostic values (areas under ROC curves) of the SteatoTest score, GGT 50 IU/L and ALT 50 IU/L for the diagnosis of the main end point (that is, grade 2-4 hepatic steatosis), are displayed in Table 3.
  • the SteatoTest score has higher areas under ROC curves than GGT 50 IU/L in all groups analyzed, and that ALT 50 IU/L in the training group and validation group 1 (Table 3).
  • Sensitivity, specificity and positive and negative predictive values of the SteatoTest score with a cut-off of 0.30, 0.50, or 0.70, and of GGT 50 IU/L and ALT 50 IU/L are displayed in Table 4.
  • a SteatoTest score with a 0.50 cut-off achieved a good sensitivity (0.69, 0.89, 0.68 and 0.62) and a good specificity (0.74, 0.58, 0.79, 1.00), according to training and validation groups respectively. Moreover, such a SteatoTest score with a 0.50 cut-off displays higher positive and negative values than GGT 50 IU/L and ALT 50 IU/L in all groups analyzed, excepted for the negative predictive value of ALT 50 IU/L in validation group 1.
  • the discrimination between hepatic steatosis different grades was also analyzed on an integrated base constituted of all the included subjects of the training group, the three validation groups and the control group (884 subjects).
  • the present invention presents a combination of at least 5, preferably 9, biochemical markers, adjusted by age, gender and BMI, to be used for the detection of the presence or absence of hepatic steatosis.
  • the markers used in the present invention had never been combined in such a way, particularly with the age, gender, and BMI of the patients to give such a good predictive value, as illustrated by the area under the ROC curve.
  • the diagnosis method of the invention can be analyzed automatically, after an automatic measurement of the values of the markers, and can advantageously be applied for patients with a hepatic steatosis involving disease to reduce the indication of liver biopsy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Evolutionary Biology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioethics (AREA)
  • Evolutionary Computation (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Artificial Intelligence (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)

Abstract

L'invention porte sur une nouvelle méthode diagnostique permettant de détecter l'étendu d'une stéatose hépatique chez un patient, et en particulier chez un patient souffrant d'une maladie impliquant une stéatose hépatique, ou ayant déjà subi un test positif de détection de fibrose hépatique, et/ou présentant des lésions nécroinflammatoires du foie. Ladite méthode consiste à utiliser la concentration sérique de marqueurs biologiques aisément détectables. L'invention porte également sur des trousses de diagnostic permettant la mise en oeuvre de ladite méthode.
PCT/IB2006/000333 2005-02-03 2006-02-03 Methode diagnostique de la steatose hepatique utilisant des marqueurs biochimiques Ceased WO2006082522A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0606840-5A BRPI0606840A2 (pt) 2005-02-03 2006-02-03 método para o diagnóstico in vitro de esteatose hepática ou de um soro ou amostra de soro de um paciente, e, kit para o diagnóstico de esteatose hepática em um paciente
EP06710408A EP1856536B1 (fr) 2005-02-03 2006-02-03 Méthode diagnostique de la stéatose hépatique utilisant des marqueurs biochimiques
CA002596682A CA2596682A1 (fr) 2005-02-03 2006-02-03 Methode diagnostique de la steatose hepatique utilisant des marqueurs biochimiques
MX2007009427A MX2007009427A (es) 2005-02-03 2006-02-03 Metodo diagnostico de la esteatosis hepatica utilizando marcadores bioquimicos.
US11/815,332 US20090111132A1 (en) 2005-02-03 2006-02-03 Diagnosis method of hepatic steatosis using biochemical markers
DE602006003414T DE602006003414D1 (de) 2005-02-03 2006-02-03 Diagnoseverfahren für lebersteatose unter verwendung biochemischer marker
JP2007553738A JP2008529030A (ja) 2005-02-03 2006-02-03 生化学マーカーを使用する肝臓脂肪症の診断方法
IL185021A IL185021A0 (en) 2005-02-03 2007-08-02 Diagnosis method of hepatic steatosis using biochemical markers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/050,396 US7860656B2 (en) 2005-02-03 2005-02-03 Diagnosis method of hepatic steatosis using biochemical markers
US11/050,396 2005-02-03

Publications (1)

Publication Number Publication Date
WO2006082522A1 true WO2006082522A1 (fr) 2006-08-10

Family

ID=36097137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2006/000333 Ceased WO2006082522A1 (fr) 2005-02-03 2006-02-03 Methode diagnostique de la steatose hepatique utilisant des marqueurs biochimiques

Country Status (13)

Country Link
US (2) US7860656B2 (fr)
EP (1) EP1856536B1 (fr)
JP (1) JP2008529030A (fr)
CN (1) CN101175998A (fr)
AT (1) ATE412905T1 (fr)
BR (1) BRPI0606840A2 (fr)
CA (1) CA2596682A1 (fr)
DE (1) DE602006003414D1 (fr)
IL (1) IL185021A0 (fr)
MA (1) MA29282B1 (fr)
MX (1) MX2007009427A (fr)
RU (1) RU2403576C2 (fr)
WO (1) WO2006082522A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157431A1 (fr) 2008-08-11 2010-02-24 One Way Liver Genomics, S.L. Procédé pour le diagnostic de la stéato-hépatite non alcoolique utilisant des profils métaboliques
WO2010058295A2 (fr) 2008-11-18 2010-05-27 Universite D'angers Procédé in vitro non invasif pour quantifier des lésions hépatiques
JP2011503547A (ja) * 2007-11-02 2011-01-27 メタボロン、インコーポレイテッド 脂肪肝疾患用のバイオマーカー及びその使用方法
WO2011036117A1 (fr) 2009-09-22 2011-03-31 One Way Liver Genomics, S.L. Méthode diagnostique de la stéatose hépatique non alcoolique basée sur le profil métabolique
EP2327988A1 (fr) 2009-11-28 2011-06-01 Assistance Publique Hôpitaux De Paris Procédé de diagnostic de maladies fibrogènes
EP2469283A1 (fr) * 2006-09-08 2012-06-27 University of Oxford Diagnostic clinique de la fibrose hépatique utilisant le biomarqueur APOL1 du sérum humain
WO2012107530A1 (fr) 2011-02-09 2012-08-16 Bio-Rad Innovations Combinaison de biomarqueurs pour la détection et l'évaluation d'une fibrose hépatique
EP2600266A1 (fr) 2011-12-02 2013-06-05 Biopredictive Procédé de diagnostic de maladies fibrogènes
US8889364B2 (en) 2009-05-14 2014-11-18 The Chancellor, Masters And Scholars Of The University Of Oxford Clinical diagnosis of hepatic fibrosis using a novel panel of low abundant human plasma protein biomarkers
RU2557927C1 (ru) * 2014-06-05 2015-07-27 Государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО ТГМУ Минздрава России) Способ диагностики фиброза печени при хроническом вирусном гепатите с
WO2016146745A1 (fr) 2015-03-17 2016-09-22 Servicio Andaluz De Salud Procédés d'analyse optique informatisée d'images par rm (résonance magnétique) pour la quantification ou la détermination de lésions du foie
WO2017210147A1 (fr) 2016-05-29 2017-12-07 Wei Jia Biomarqueurs liés aux maladies hépatiques et leurs méthodes d'utilisation
EP3296744A1 (fr) * 2016-09-16 2018-03-21 Biopredictive Procédé de diagnostic de stéatoses hépatiques d'origine non alcoolique
EP3373012A1 (fr) 2017-03-07 2018-09-12 Biopredictive Procédé de diagnostic d'une lésion hépatique induite par un médicament
EP3470843A1 (fr) 2017-10-16 2019-04-17 Biopredictive Procédé de pronostic de cancer primitif du foie
WO2019076830A1 (fr) 2017-10-16 2019-04-25 Biopredictive Procédé de pronostic et de suivi de cancer du foie primitif
US10976324B2 (en) 2014-06-27 2021-04-13 Bio-Rad Innovations Synergistic combination of biomarkers for detecting and assessing hepatic fibrosis
RU2753455C1 (ru) * 2020-12-11 2021-08-16 Федеральное государственное унитарное предприятие «Государственный научно-исследовательский институт особо чистых биопрепаратов» Федерального медико-биологического агентства Способ дифференциальной диагностики стеатоза печени и неалкогольного стеатогепатита у мужчин
RU2763257C1 (ru) * 2021-05-14 2021-12-28 Федеральное государственное бюджетное учреждение "Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства" Способ диагностики стадии фиброза печени при хронических заболеваниях печени у детей
RU2806496C1 (ru) * 2023-07-19 2023-11-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Западный государственный медицинский университет имени И.И. Мечникова" Министерства здравоохранения Российской Федерации Способ определения риска выраженного стеатоза печени
US11808772B2 (en) 2017-07-19 2023-11-07 Bio-Rad Europe Gmbh Biomarker combinations to simultaneously evaluate non-alcoholic steatohepatitis and hepatic fibrosis status
EP4555924A1 (fr) 2023-11-15 2025-05-21 Assistance Publique - Hôpitaux de Paris Procédé de détermination de fragilité à l'aide de données d'anesthésie

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178294B2 (en) * 2002-06-14 2012-05-15 Cedars-Sinai Medical Center Method of haplotype-based genetic analysis for determining risk for developing insulin resistance, coronary artery disease and other phenotypes
US20100130600A1 (en) * 2007-03-30 2010-05-27 Cedars-Sinai Medical Center Lipoprotein lipase and its effect on statin treatments
JP2009114092A (ja) * 2007-11-02 2009-05-28 Mcbi:Kk 慢性肝炎、肝硬変、肝がんの分別診断のための新規バイオマーカーおよび該バイオマーカーを用いた慢性肝炎、肝硬変、肝がんの分別診断方法
EP2508888A1 (fr) * 2007-11-30 2012-10-10 National University Corporation Hokkaido University Procédé de diagnostic d'une maladie hépatique par analyse de la chaîne de sucre
CN102105792A (zh) * 2008-05-28 2011-06-22 巴斯夫欧洲公司 评估肝毒性的工具和方法
EP2342569A4 (fr) * 2008-08-28 2012-07-04 Salutria Pharmaceuticals Llc Procédé d'analyse permettant d'identifier des patients risquant des complications hépatologiques indésirables pathologiques
WO2010051483A1 (fr) * 2008-10-31 2010-05-06 Cedars-Sinai Medical Center Procédés de diagnostic de résistance et de sensibilité à l’insuline
JP5887141B2 (ja) * 2009-02-26 2016-03-16 ユニバーシティ ダンガース 肝線維症または肝硬変の向上した診断方法
WO2011140093A2 (fr) * 2010-05-03 2011-11-10 The Cleveland Clinic Foundation Détection et suivi d'une hépatite graisseuse non alcoolique
EP2418285A1 (fr) * 2010-08-09 2012-02-15 Universiteit Maastricht Procédé de diagnostic de stéatose hépatique, en particulier de stéatose hépatique non alcoolique
RU2476154C1 (ru) * 2011-08-12 2013-02-27 Государственное образовательное учреждение высшего профессионального образования "Смоленская государственная медицинская академия" Министерства здравоохранения и социального развития Российской Федерации Способ диагностики алкогольной болезни печени
WO2013045500A1 (fr) * 2011-09-26 2013-04-04 Universite Pierre Et Marie Curie (Paris 6) Procédé de détermination d'une fonction prédictive pour discriminer des patients selon leur état d'activité de maladie
EP2810079A4 (fr) * 2012-01-31 2015-08-05 Teknologian Tutkimuskeskus Vtt Oy Méthode destinée à déterminer la quantité de graisses dans le foie et méthode destinée à diagnostiquer la shna
WO2014049131A1 (fr) * 2012-09-28 2014-04-03 Université d'Angers Test sanguin précis pour le diagnostic non invasif de la stéatohépatite non alcoolique
EP2909334B1 (fr) * 2012-10-17 2020-06-24 Enterome Signatures génétiques de troubles métaboliques liés au foie et de la maladie de crohn
RU2545990C2 (ru) * 2013-07-16 2015-04-10 Государственное бюджетное учреждение здравоохранения города Москвы Московский клинический научно-практический центр Департамента здравоохранения города Москвы Способ дифференциальной диагностики стеатоза печени и стеатогепатита
CN106127256A (zh) * 2016-06-30 2016-11-16 张云超 一种肝纤维化检测方法及装置
EP3267199A1 (fr) * 2016-07-06 2018-01-10 One Way Liver S.L. Procédés de diagnostic basés sur des profils lipidiques
CN106771201A (zh) * 2016-12-05 2017-05-31 江西惠肽生物科技有限公司 用于肝纤维化诊断试剂盒及其检测方法
US10548710B2 (en) 2017-02-24 2020-02-04 The Cleveland Clinic Foundation Method and apparatus for time-differential deployment of an endovascular device within a body lumen
CN108565024B (zh) * 2018-03-19 2020-05-05 首都医科大学附属北京地坛医院 一种确定单发的hbv相关原发性小肝癌术后1年内复发风险的系统
CN108417267B (zh) * 2018-03-19 2020-05-05 首都医科大学附属北京地坛医院 一种确定肝硬化肝肾综合征患者短期预后的系统
CN108932976A (zh) * 2018-06-11 2018-12-04 西安医学院 一种非酒精性脂肪性肝病无创性诊断程序
RU2684201C1 (ru) * 2018-07-05 2019-04-04 Федеральное государственное бюджетное военное образовательное учреждение высшего образования Военно-медицинская академия имени С.М. Кирова Министерства обороны Российской Федерации (ВМедА) Способ скрининговой диагностики жировой дегенерации печени при абдоминальном ожирении
EP3599615A1 (fr) * 2018-07-27 2020-01-29 Biopredictive Procédé de diagnostic de la stéatose du foie
US20220107328A1 (en) * 2018-08-14 2022-04-07 Camp4 Therapeutics Corporation Methods of treating liver diseases
CN111583993A (zh) * 2020-05-29 2020-08-25 杭州广科安德生物科技有限公司 构建体外检测癌症的数学模型的方法及其应用
RU2755974C1 (ru) * 2021-03-11 2021-09-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский государственный медицинский университет имени академика Е.А. Вагнера" Министерства здравоохранения Российской Федерации Способ диагностики неалкогольного стеатоза печени
IL313660A (en) 2021-12-22 2024-08-01 Camp4 Therapeutics Corp Modulation of gene transcription using antisense oligonucleotides targeting regulatory RNAs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2183326C2 (ru) * 2000-03-03 2002-06-10 Харламова Флора Семеновна Способ диагностики фиброза печени при хроническом гепатите у детей
US6631330B1 (en) * 2000-08-21 2003-10-07 Assistance Publique-Hopitaux De Paris (Ap-Hp) Diagnosis method of inflammatory, fibrotic or cancerous disease using biochemical markers
RU2261441C2 (ru) * 2003-10-06 2005-09-27 Ягода Александр Валентинович Способ неинвазивной диагностики степени выраженности фиброза печени у больных хроническим вирусным гепатитом
US7856319B2 (en) * 2005-02-03 2010-12-21 Assistance Publique-Hopitaux De Paris (Ap-Hp) Diagnosis method of alcoholic steato-hepatitis using biochemical markers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BELLENTANI STEFANO ET AL: "Prevalence of and risk factors for hepatic steatosis in northern Italy", ANNALS OF INTERNAL MEDICINE, vol. 132, no. 2, 18 January 2000 (2000-01-18), pages 112 - 117, XP002376179, ISSN: 0003-4819 *
HALFON P ET AL: "A prospective assessment of the inter-laboratory variability of biochemical markers of fibrosis (FibroTest) and activity (ActiTest) in patients with chronic liver disease", COMPARATIVE HEPATOLOGY 30 DEC 2002 UNITED KINGDOM, vol. 1, 30 December 2002 (2002-12-30), pages 10p, XP002376180, ISSN: 1476-5926 *
MUNTEANU M ET AL: "Intra-individual fasting versus postprandial variation of biochemical markers of liver fibrosis (Fibro Test) and activity (ActiTest)", COMPARATIVE HEPATOLOGY 23 JUN 2004 UNITED KINGDOM, vol. 3, 23 June 2004 (2004-06-23), pages 9p, XP002376178, ISSN: 1476-5926 *
NAVEAU S ET AL: "ALPHA-2-MACROGLOBULIN AND HEPATIC FIBROSIS DIAGNOSTIC INTEREST", DIGESTIVE DISEASES AND SCIENCES, PLENUM PUBLISHING CO, US, vol. 39, no. 11, November 2004 (2004-11-01), pages 2426 - 2432, XP008044495, ISSN: 0163-2116 *
POYNARD T ET AL: "The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis", COMPARATIVE HEPATOLOGY 23 DEC 2005 UNITED KINGDOM, vol. 4, 23 December 2005 (2005-12-23), pages 32p, XP002376181, ISSN: 1476-5926 1476-5926 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469283A1 (fr) * 2006-09-08 2012-06-27 University of Oxford Diagnostic clinique de la fibrose hépatique utilisant le biomarqueur APOL1 du sérum humain
US9012162B2 (en) 2006-09-08 2015-04-21 The Chancellor, Masters And Scholars Of The University Of Oxford Clinical diagnosis of hepatic fibrosis using a novel panel of human serum protein biomarkers
JP2011503547A (ja) * 2007-11-02 2011-01-27 メタボロン、インコーポレイテッド 脂肪肝疾患用のバイオマーカー及びその使用方法
US9977034B2 (en) 2007-11-02 2018-05-22 Meabolon, Inc. Biomarkers for fatty liver disease and methods using the same
US8563318B2 (en) 2008-08-11 2013-10-22 One Way Liver Genomics, S.L. Method for the diagnosis of non-alcoholic steatohepatitis based on a metabolomic profile
EP2157431A1 (fr) 2008-08-11 2010-02-24 One Way Liver Genomics, S.L. Procédé pour le diagnostic de la stéato-hépatite non alcoolique utilisant des profils métaboliques
WO2010058295A2 (fr) 2008-11-18 2010-05-27 Universite D'angers Procédé in vitro non invasif pour quantifier des lésions hépatiques
US8889364B2 (en) 2009-05-14 2014-11-18 The Chancellor, Masters And Scholars Of The University Of Oxford Clinical diagnosis of hepatic fibrosis using a novel panel of low abundant human plasma protein biomarkers
WO2011036117A1 (fr) 2009-09-22 2011-03-31 One Way Liver Genomics, S.L. Méthode diagnostique de la stéatose hépatique non alcoolique basée sur le profil métabolique
WO2011064324A1 (fr) 2009-11-28 2011-06-03 Assistance Publique - Hopitaux De Paris Procédé de diagnostic de maladies fibrotiques
EP2327988A1 (fr) 2009-11-28 2011-06-01 Assistance Publique Hôpitaux De Paris Procédé de diagnostic de maladies fibrogènes
WO2012107530A1 (fr) 2011-02-09 2012-08-16 Bio-Rad Innovations Combinaison de biomarqueurs pour la détection et l'évaluation d'une fibrose hépatique
US9624541B2 (en) 2011-02-09 2017-04-18 Bio-Rad Innovations Combination of biomarkers for the detection and evaluation of hepatitis fibrosis
US12110551B2 (en) 2011-02-09 2024-10-08 Bio-Rad Europe Gmbh Combination of biomarkers for detecting and evaluating a hepatic fibrosis
US10435744B2 (en) 2011-02-09 2019-10-08 Bio-Rad Europe Gmbh Combination of biomarkers for detecting and evaluating a hepatic fibrosis
WO2013079711A1 (fr) 2011-12-02 2013-06-06 Assistance Publique - Hopitaux De Paris Procédé de diagnostic de maladies fibrotiques
EP2600266A1 (fr) 2011-12-02 2013-06-05 Biopredictive Procédé de diagnostic de maladies fibrogènes
US10198552B2 (en) 2011-12-02 2019-02-05 Assistance Publique—Hopitaux de Paris Method of diagnosis of fibrotic diseases
RU2557927C1 (ru) * 2014-06-05 2015-07-27 Государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО ТГМУ Минздрава России) Способ диагностики фиброза печени при хроническом вирусном гепатите с
US10976324B2 (en) 2014-06-27 2021-04-13 Bio-Rad Innovations Synergistic combination of biomarkers for detecting and assessing hepatic fibrosis
WO2016146745A1 (fr) 2015-03-17 2016-09-22 Servicio Andaluz De Salud Procédés d'analyse optique informatisée d'images par rm (résonance magnétique) pour la quantification ou la détermination de lésions du foie
WO2017210147A1 (fr) 2016-05-29 2017-12-07 Wei Jia Biomarqueurs liés aux maladies hépatiques et leurs méthodes d'utilisation
WO2018050804A1 (fr) * 2016-09-16 2018-03-22 Biopredictive Méthode de diagnostic de stéatoses hépatiques non alcooliques
EP3296744A1 (fr) * 2016-09-16 2018-03-21 Biopredictive Procédé de diagnostic de stéatoses hépatiques d'origine non alcoolique
EP3373012A1 (fr) 2017-03-07 2018-09-12 Biopredictive Procédé de diagnostic d'une lésion hépatique induite par un médicament
WO2018162502A1 (fr) 2017-03-07 2018-09-13 Biopredictive Procédé de diagnostic de lésion au foie provoquée par les médicaments
US11808772B2 (en) 2017-07-19 2023-11-07 Bio-Rad Europe Gmbh Biomarker combinations to simultaneously evaluate non-alcoholic steatohepatitis and hepatic fibrosis status
WO2019076830A1 (fr) 2017-10-16 2019-04-25 Biopredictive Procédé de pronostic et de suivi de cancer du foie primitif
EP3470843A1 (fr) 2017-10-16 2019-04-17 Biopredictive Procédé de pronostic de cancer primitif du foie
RU2753455C1 (ru) * 2020-12-11 2021-08-16 Федеральное государственное унитарное предприятие «Государственный научно-исследовательский институт особо чистых биопрепаратов» Федерального медико-биологического агентства Способ дифференциальной диагностики стеатоза печени и неалкогольного стеатогепатита у мужчин
RU2763257C1 (ru) * 2021-05-14 2021-12-28 Федеральное государственное бюджетное учреждение "Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства" Способ диагностики стадии фиброза печени при хронических заболеваниях печени у детей
RU2806496C1 (ru) * 2023-07-19 2023-11-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Западный государственный медицинский университет имени И.И. Мечникова" Министерства здравоохранения Российской Федерации Способ определения риска выраженного стеатоза печени
EP4555924A1 (fr) 2023-11-15 2025-05-21 Assistance Publique - Hôpitaux de Paris Procédé de détermination de fragilité à l'aide de données d'anesthésie
WO2025104213A1 (fr) 2023-11-15 2025-05-22 Assistance Publique - Hôpitaux De Paris Méthode de détermination de fragilité à l'aide de données d'anesthésie
RU2834902C1 (ru) * 2024-05-28 2025-02-17 Федеральное бюджетное учреждение науки "Санкт-Петербургский научно-исследовательский институт эпидемиологии и микробиологии им. Пастера Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека" (ФБУН НИИ эпидемиологии и микробиологии имени Пастера) Способ дифференциальной диагностики хронического гепатита В, хронического гепатита С и аутоиммунных заболеваний печени у пациентов с тяжелым фиброзом и циррозом печени

Also Published As

Publication number Publication date
EP1856536B1 (fr) 2008-10-29
US7860656B2 (en) 2010-12-28
MA29282B1 (fr) 2008-02-01
BRPI0606840A2 (pt) 2010-03-09
EP1856536A1 (fr) 2007-11-21
US20090111132A1 (en) 2009-04-30
CN101175998A (zh) 2008-05-07
JP2008529030A (ja) 2008-07-31
CA2596682A1 (fr) 2006-08-10
IL185021A0 (en) 2007-12-03
DE602006003414D1 (de) 2008-12-11
US20060173629A1 (en) 2006-08-03
RU2007132921A (ru) 2009-03-10
MX2007009427A (es) 2008-03-06
ATE412905T1 (de) 2008-11-15
RU2403576C2 (ru) 2010-11-10

Similar Documents

Publication Publication Date Title
US7860656B2 (en) Diagnosis method of hepatic steatosis using biochemical markers
Poynard et al. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis
EP1846862B1 (fr) Methode de diagnostic d'une steato-hepatite alcoolique comprenant l'utilisation de marqueurs biochimiques
Naveau et al. Biomarkers for the prediction of liver fibrosis in patients with chronic alcoholic liver disease
EP1311857B1 (fr) Diagnostic de maladie fibrogene a l'aide de marqueurs biochimiques
Cushman et al. Coagulation factors IX through XIII and the risk of future venous thrombosis: the Longitudinal Investigation of Thromboembolism Etiology
Ioannou et al. Incidence and predictors of hepatocellular carcinoma in patients with cirrhosis
Olesen et al. Hypertriglyceridemia is often under recognized as an aetiologic risk factor for acute pancreatitis: a population-based cohort study
US9740819B2 (en) Method for determining risk of diabetes
Chandran et al. Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness
Poynard et al. Applicability and precautions of use of liver injury biomarker FibroTest. A reappraisal at 7 years of age
US9952226B2 (en) Methods of treatment of primary sclerosing cholangitis
Poynard et al. Methodological aspects of the interpretation of non-invasive biomarkers of liver fibrosis: a 2008 update
Crous-Bou et al. Interactions of established risk factors and a GWAS-based genetic risk score on the risk of venous thromboembolism
Semmler et al. Simple blood tests to diagnose compensated advanced chronic liver disease and stratify the risk of clinically significant portal hypertension
Harasymiw et al. The combined use of the early detection of alcohol consumption (EDAC) test and carbohydrate-deficient transferrin to identify heavy drinking behaviour in males
Palladino et al. Analytical performance of the Enhanced liver fibrosis (ELF) test on the atellica IM analyzer
Enomoto et al. An increased ratio of glycated albumin to HbA1c is associated with the degree of liver fibrosis in hepatitis B virus‐positive patients
CN114068026A (zh) 一种超早期代谢相关脂肪性肝病的预测装置
Cho et al. Serum markers for predicting significant necroinflammatory activity in patients with chronic hepatitis B
Risch et al. Prevalence of decreased glomerular filtration rate in patients seeking non-nephrological medical care—an evaluation using IDMS-traceable creatinine based MDRD as well as Mayo Clinic quadratic equation estimates
Sonagra et al. Laboratory Evaluation of Hereditary Hemochromatosis
Taibi et al. Diagnostic accuracy of the Coopscore© to predict liver fibrosis in human immunodeficiency virus/hepatitis B virus co-infection
Fiacre et al. Evaluation of liver fibrosis by non-invasive markers (transient elastography vs. APRI, FIB-4, and FORNS) in chronic hepatitis C virus carriers in a low-income country
Saarinen et al. The use of ELF in predicting liver fibrosis prevalence and fibrosis progression in the general population

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2596682

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 185021

Country of ref document: IL

Ref document number: 2007553738

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/009427

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006710408

Country of ref document: EP

Ref document number: 2007132921

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200680007206.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006710408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11815332

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0606840

Country of ref document: BR

Kind code of ref document: A2