[go: up one dir, main page]

US7314639B2 - Process for the production of crystals of a benzoic acid derivative - Google Patents

Process for the production of crystals of a benzoic acid derivative Download PDF

Info

Publication number
US7314639B2
US7314639B2 US10/344,690 US34469003A US7314639B2 US 7314639 B2 US7314639 B2 US 7314639B2 US 34469003 A US34469003 A US 34469003A US 7314639 B2 US7314639 B2 US 7314639B2
Authority
US
United States
Prior art keywords
crystal
benzoic acid
carbamoyl
tetrahydro
tetramethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/344,690
Other languages
English (en)
Other versions
US20030191342A1 (en
Inventor
Hiroyuki Kagechika
Hiroo Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Yakuhin Kogyo KK
Original Assignee
Toko Yakuhin Kogyo KK
Itsuu Laboratory Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Yakuhin Kogyo KK, Itsuu Laboratory Research Foundation filed Critical Toko Yakuhin Kogyo KK
Assigned to TOKO PHARMACEUTICAL IND. CO., LTD., RESEARCH FOUNDATION ITSUU LABORATORY reassignment TOKO PHARMACEUTICAL IND. CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAGECHIKA, HIROYUKI, NAGANO, HIROO
Publication of US20030191342A1 publication Critical patent/US20030191342A1/en
Application granted granted Critical
Publication of US7314639B2 publication Critical patent/US7314639B2/en
Assigned to TOKO PHARMACEUTICAL IND. CO., LTD. reassignment TOKO PHARMACEUTICAL IND. CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RESEARCH FOUNDATION ITSUU LABORATORY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/65Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • C07C231/24Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Definitions

  • the present invention relates to a method for selective preparation of a particular crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid useful as an active ingredient of a medicament.
  • this compound is known to exist at least as two kinds of crystal polymorphs, that is, (1) a crystal melting at 193° C. and (2) a crystal melting at 233° C. [see, Japanese Patent No. 3001632 as for (1), and Japanese Patent Unexamined Publication (Kokai) No. 61-76440 as for (2). (3) A crystal melting at 205.5° C. to 206.5° C. is disclosed in Chem. Pharm. Bull., 32, p.4209, 1984. However, this crystal was later reported to actually have the melting point of 231° C. to 232° C. and thus revealed to be identical to the crystal (2) (J. Cellular Physiology, 135, pp.179-188, 1988)].
  • the crystal described in Japanese Patent No. 3001632, which melts at 193° C. is prepared by using a mixture of methanol and water as a recrystallization solvent.
  • the crystal that melts at 233° C. is prepared by using a mixture of ethyl acetate and hexane as a recrystallization solvent.
  • the latter crystal (melting point: 233° C.) contains 1200 ppm and 190 ppm of residual ethyl acetate and hexane, respectively, and thus has a problem that the crystal can hardly satisfy the standard values of residual solvents provided by the Ministry of Health and Welfare (ethyl acetate: 5000 ppm or less; hexane: 290 ppm).
  • the crystal that melts at 193° C. has a characteristic feature that a residual methanol level can be significantly lowered.
  • the crystal that melts at 193° C. has a problem that the crystalline form readily occurs transition by physical impact, and thus preparation thereof as a uniform crystal is extremely difficult. Accordingly, this crystal lacks an aptitude as a raw material for large scale manufacture of a pharmaceutical product that constantly meets quality standard. Whilst the crystal that melts at 233° C. has been revealed to have high stability against physical impact, as well as against heat, temperature, light and the like. However, a method for selective preparation of this crystal has not been known so far. Further, a method is known for preparation of the crystal that melts at 233° C. in which a mixture of ethyl acetate and hexane are used as a recrystallization solvent. However, hexane is classified as Class 2 solvent according to the guidelines for residual solvents of pharmaceutical products, and is undesirable solvent to be remained in pharmaceutical preparations. Accordingly, a crystal is strongly desired that does not contain hexane as a residual solvent.
  • An object of the present invention is to provide a method for selective preparation of the crystal that melts at 233° C. among crystals of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid, and the above crystal that does not contain hexane as residual solvent.
  • the inventors of the present invention conducted various studies to achieve the foregoing object. As a result, they found that the crystal that melts at 233° C. can be selectively prepared by recrystallization using a mixture of ethanol and water. Conventionally, it has been known that the crystal that melts at 193° C. can be selectively prepared by using a mixture of ethanol and water. It is indeed surprising that the crystal of different crystalline form can be selectively obtained by using the mixture of ethanol and water.
  • the present invention thus provides a method for preparing a crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid having a single endothermic peak approximately at 233° C. in differential scanning calorimetry, which comprises the step of recrystallizing a crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid from a mixture of water and ethanol.
  • the aforementioned method wherein a volume ratio of ethanol and water is in the range of 8:5 to 1:1 is provided.
  • the present invention also provides a method for preparing a crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid having a single endothermic peak approximately at 233° C. in differential scanning calorimetry, which comprises the step of heating a crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid having endothermic peaks approximately at 193° C. and 233° C. in differential scanning calorimetry.
  • the crystal can be heated at a temperature around 200° C.
  • the present invention further provides a crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid having a single endothermic peak approximately at 233° C.
  • the present invention provides use of a crystal of the 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid having a single endothermic peak approximately at 233° C. in differential scanning calorimetry, which is characterized not to contain hexane and/or ethyl acetate as a residual solvent, for manufacture of a pharmaceutical product, and a medicament comprising the aforementioned crystal as an active ingredient.
  • the aforementioned medicament include a medicament for therapeutic treatment of acute promyelocytic leukemia, a medicament for therapeutic treatment of psoriasis and pustulosis palmaris et plantaris and the like.
  • Types of crystals of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid used as a raw material for the method of the present invention are not particularly limited. Any crystals may be used in addition to the crystal that melts at 193° C. (the aforementioned crystal (1)). According to the studies of the inventors of the present invention, the crystal that melts at 193° C. (referred to as “type-I crystal”) described in Japanese Patent No. 3001632 gives a single endothermic peak approximately at 194° C. in differential scanning calorimetry (DSC). Further, the crystal that melts at 233° C.
  • DSC differential scanning calorimetry
  • type-I crystal described in Japanese Patent Unexamined Publication No. 61-76440 gives a single endothermic peak approximately at 233° C. in differential scanning calorimetry.
  • the inventors of the present invention has recognized the existence of a crystal that gives an endothermic peak approximately at 193° C. in differential scanning calorimetry and simultaneously occurs exothermic transition to give an endothermic peak approximately at 233° C. (referred to as “type-III crystal”, see, Example 3 of the specification).
  • this crystal is defined as a crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-aphthalenyl)carbamoyl]benzoic acid that has endothermic peaks approximately at 193° C. and 233° C. in differential scanning calorimetry. Any of the aforementioned crystals may be used as a raw material for the method of the present invention.
  • Crystalline forms can be reliably identified by performing powder X-ray diffraction analysis in addition to differential scanning calorimetry.
  • Powder X-ray diffraction patterns of the aforementioned type-I and type-II crystals are shown in FIGS. 5 and 6 of Japanese Patent No. 3001632 and can be easily identified by those skilled in the art. Further, the results of thermal analyses of the aforementioned type-I and type-II crystals are shown in FIGS. 3 and 4 of the aforementioned patent document, respectively.
  • An experimental error in measurement of melting point, differential scanning calorimetry and the like is approximately a few degrees, usually within 2° C., preferably within 1° C., more preferably within 0.5° C.
  • the method of the present invention is characterized in that a mixture of ethanol and water is used as a recrystallization solvent for 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid.
  • a mixing ratio of ethanol and water at crystallization is not particularly limited.
  • ethanol:water is preferably in the range of about 8:5 to 1:1. When the proportion of ethanol become higher than the above range, a mixture of type-I crystals and type-II crystals may sometimes be obtained.
  • a process for recrystallization is not particularly limited, and an ordinary recrystallization process may be employed.
  • a crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid as a raw material may be completely dissolved in a mixture of ethanol and water, and then the solution may be gradually cooled and precipitated crystals are collected by filtration.
  • a crystal as a raw material may be dissolved in ethanol with heating, and then the solution may be added with an appropriate amount of hot water to prepare an ethanol-water mixture in a given ratio for crystallization of the desired substance.
  • a seed crystal may be added.
  • An amount of the seed crystal is not particularly limited.
  • the amount may be about 1/1,000 to 1/1,000,000, preferably about 1/80,000, based on the weight of the crystal used as a raw material.
  • the crystals collected by filtration can be generally dried with heating at about 110° C. to 120° C. under reduced pressure to remove the recrystallization solvent.
  • a heating temperature may generally be 180° C. or higher, preferably 200° C. or higher, most preferably about 200° C. to 210° C.
  • the crystal of 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid provided by the method of the present invention is manufactured without using a recrystallization solvent containing hexane, and accordingly, the crystal is characterized not to substantially contain hexane as a residual solvent.
  • residual ethanol contained in the crystals is usually 2,000 ppm or less, preferably 1,000 ppm or less, more preferably 500 ppm or less.
  • Ethanol is a low toxic solvent which is classified as Class 3 solvent among residual solvents in pharmaceutical products according to provisions by the Ministry of Health and Welfare. Accordingly, the crystal of the present invention can be preferably used as an active ingredient of pharmaceuticals.
  • Crystals were obtained in the same manner as in Example 1 except that the recrystallization solvent was changed to a mixture of ethanol (150 mL) and water (100 mL). The resulting crystals were subjected to differential scanning calorimetry, and as a result, the crystals gave a single endothermic peak approximately at 233° C. Further, the powder X-ray diffraction pattern of these crystals was identical to the powder X-ray diffraction pattern shown in FIG. 6 in Japanese Patent No. 3001632, which verified that the crystals were type-II crystals.
  • Crystals were obtained in the same manner as in Example 1 except that the recrystallization solvent was changed to a mixture of ethanol (170 mL) and water (80 mL). The resulting crystals were subjected to differential scanning calorimetry, and as a result, the crystals gave two endothermic peaks approximately at 193° C. and 233° C. These crystals were termed as “type-III crystals”.
  • the type-III crystals obtained in Example 3 were heated at 200° C. to 205° C. for 2 hours under reduced pressure.
  • the resulting crystals were subjected to differential scanning calorimetry, and as a result, the crystals gave a single endothermic peak approximately at 233° C.
  • the powder X-ray diffraction pattern of the resulting crystals was identical to the powder X-ray diffraction pattern shown in FIG. 6 in Japanese Patent No. 3001632, which verified that the crystals were type-II crystals.
  • Example 1 and Comparative Example 1 Grain size distributions of the crystals obtained in Example 1 and Comparative Example 1 were measured.
  • a laser-type grain size analyzer (Microtrac FRA) was used.
  • a 1% aqueous solution of Soprophor FL (3 ml, Rhone-Poulenc) was added with water (15 ml), and an appropriate amount of the crystals obtained in Example 1 or Comparative Example 1 were dispersed in the mixture to obtain a sample dispersion.
  • the results are shown in Table 1. As a result, the crystals obtained by the method of the present invention were revealed to have a smaller fluctuation in the average grain size, and found to be suitable for manufacture of tablets with uniform quality.
  • the type-II crystals stable against physical impact can be selectively prepared, and the crystals obtained are free from highly toxic hexane as a residual solvent. Accordingly, these crystals can be suitably used as active ingredients of pharmaceutical products. Further, the crystals obtained by the method of the present invention are characterized to have small fluctuation in average grain size, and enable preparation of tablets with a uniform content by a compression process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US10/344,690 2000-09-01 2001-08-31 Process for the production of crystals of a benzoic acid derivative Expired - Lifetime US7314639B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-264733 2000-09-01
JP2000264733 2000-09-01
PCT/JP2001/007526 WO2002018322A1 (en) 2000-09-01 2001-08-31 Process for the production of crystals of a benzoic acid derivative

Publications (2)

Publication Number Publication Date
US20030191342A1 US20030191342A1 (en) 2003-10-09
US7314639B2 true US7314639B2 (en) 2008-01-01

Family

ID=18752109

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/344,690 Expired - Lifetime US7314639B2 (en) 2000-09-01 2001-08-31 Process for the production of crystals of a benzoic acid derivative

Country Status (12)

Country Link
US (1) US7314639B2 (ja)
EP (1) EP1314720B1 (ja)
JP (1) JP4754768B2 (ja)
KR (1) KR100715092B1 (ja)
CN (2) CN1267409C (ja)
AT (1) ATE482926T1 (ja)
AU (2) AU2001284416B2 (ja)
CA (1) CA2420962C (ja)
DE (1) DE60143166D1 (ja)
ES (1) ES2349461T3 (ja)
TW (1) TWI288129B (ja)
WO (1) WO2002018322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11039995B2 (en) 2013-03-15 2021-06-22 Samson Pharma, Llc Topical compositions for reducing the effects of aging

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084133B2 (en) 2001-02-09 2006-08-01 Hiroyuki Kagechika Dicarba-closo-dodecaborane derivatives
US20070161105A1 (en) 2003-03-20 2007-07-12 Reasearch Foundation Itsuu Laboratory Method of forming organ
CN101200435B (zh) * 2006-12-12 2011-12-07 江苏恒瑞医药股份有限公司 他米巴罗汀ⅱ型结晶的制备方法
KR20100016048A (ko) 2007-03-30 2010-02-12 테무릭크 가부시키가이샤 타미바로텐 캡슐제
WO2009114966A1 (zh) * 2008-03-19 2009-09-24 江苏恒瑞医药股份有限公司 他米巴罗汀ii型结晶的制备方法
JP2013216647A (ja) * 2012-03-14 2013-10-24 Toppan Forms Co Ltd β−ケトカルボン酸銀の製造方法
US20210002209A1 (en) * 2018-02-13 2021-01-07 Transgenex Nanobiotech, Inc. Novel crystalline forms of tamibarotene for treatment of cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104297A (en) * 1976-05-12 1978-08-01 Ciba-Geigy Corporation Thermoplastic polyesters prepared from dicarboxylic acids containing N-heterocyclic rings
JPS6122047A (ja) 1984-07-07 1986-01-30 Koichi Shiyudo 安息香酸誘導体
EP0170105A2 (en) 1984-07-07 1986-02-05 Koichi Prof. Dr. Shudo Benzoic acid derivatives
JPS6176440A (ja) 1984-09-19 1986-04-18 Koichi Shiyudo 安息香酸誘導体
WO1991014673A1 (fr) 1990-03-20 1991-10-03 Shionogi & Co., Ltd. Procede nouveau pour fabriquer un derive d'acide benzoique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031632A (ja) * 1989-05-29 1991-01-08 Nec Corp 電子メールシステム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104297A (en) * 1976-05-12 1978-08-01 Ciba-Geigy Corporation Thermoplastic polyesters prepared from dicarboxylic acids containing N-heterocyclic rings
JPS6122047A (ja) 1984-07-07 1986-01-30 Koichi Shiyudo 安息香酸誘導体
EP0170105A2 (en) 1984-07-07 1986-02-05 Koichi Prof. Dr. Shudo Benzoic acid derivatives
US4703110A (en) 1984-07-07 1987-10-27 Koichi Shudo Benzoic acid derivatives having a para substituent which is a substituted phenyl group connected by a linking radical; useful in neoplastic cell differentiation and diagnosis
JPS6176440A (ja) 1984-09-19 1986-04-18 Koichi Shiyudo 安息香酸誘導体
WO1991014673A1 (fr) 1990-03-20 1991-10-03 Shionogi & Co., Ltd. Procede nouveau pour fabriquer un derive d'acide benzoique
EP0478787A1 (en) 1990-03-20 1992-04-08 Shionogi & Co., Ltd. Novel process for producing benzoic acid derivative
US5214202A (en) * 1990-03-20 1993-05-25 Shionogi & Co., Ltd. Method for preparing benzoic acid derivatives
JP3001632B2 (ja) 1990-03-20 2000-01-24 首藤 紘一 安息香酸誘導体の新規製造法
JP2000034262A (ja) 1990-03-20 2000-02-02 Shudo Koichi 安息香酸誘導体の新規製造法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Chem. Pharm. Bull., 32, p. 4209-4212, (1984).
English Language Abstract of JP 2000-34262.
English Language Abstract of JP 61-22047.
English Language Abstract of JP 61-76440.
English Language Abstract of WO91/14673.
J. Cellular Physiology, 135, 179-188 (1988).
Kagechika, H. et al., J. Med. Chem. 31, vol. 31 (No. 11), 2182-2192 (1988).
Toriumi, Y. et al., J. Org. Chem., vol. 55 (No. 1), 259-263(1990).

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11039995B2 (en) 2013-03-15 2021-06-22 Samson Pharma, Llc Topical compositions for reducing the effects of aging

Also Published As

Publication number Publication date
CA2420962C (en) 2009-11-24
CN1267409C (zh) 2006-08-02
ES2349461T3 (es) 2011-01-03
CA2420962A1 (en) 2003-02-28
ATE482926T1 (de) 2010-10-15
WO2002018322A1 (en) 2002-03-07
DE60143166D1 (de) 2010-11-11
EP1314720B1 (en) 2010-09-29
JP4754768B2 (ja) 2011-08-24
JPWO2002018322A1 (ja) 2004-04-08
US20030191342A1 (en) 2003-10-09
AU8441601A (en) 2002-03-13
AU2001284416B2 (en) 2007-02-15
TWI288129B (en) 2007-10-11
KR20030059117A (ko) 2003-07-07
EP1314720A4 (en) 2004-08-18
KR100715092B1 (ko) 2007-05-07
EP1314720A1 (en) 2003-05-28
CN1449376A (zh) 2003-10-15
CN1817856A (zh) 2006-08-16

Similar Documents

Publication Publication Date Title
DE69115229T2 (de) Arzneimittel.
EP0956281A1 (de) Neue modifikationen des 2-amino-4-(4-fluorbenzylamino)-1-ethoxycarbonyl-aminobenzen sowie verfahren zu ihrer herstellung
EP3173400B1 (de) Arzneimittel enthaltend kristalline modifikationen von (1r,2r)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol
DE69229339T2 (de) Kristallines tiagabinehydrochlorid-monohydrat, seine herstellung und verwendung
US7314639B2 (en) Process for the production of crystals of a benzoic acid derivative
CH626612A5 (ja)
DE69510999T2 (de) Terazosinmonohydrochlorid und Verfahren und Zwischenprodukte für seine Herstellung
DE69105338T2 (de) Verfahren zur Herstellung von 1-(2,3,4-Trimethoxybenzyl)-Piperazin durch reduktive Aminierung.
DD143605A5 (de) Verfahren zur herstellung von 2,6-dialkoxybenzamiden
US20080234323A1 (en) Amorphous and Three Crystalline Forms of Rimonabant Hydrochloride
DE69908951T2 (de) Kristallformen von osanetant
JPS5835967B2 (ja) 微細結晶ワルフアリンの製造方法
DE69715196T2 (de) Modifizierte form des hydrochlorids der r(-)-n-(4,4-di(-3-methylthien-2-yl)but-3-enyl)-nipecotinsäure
EP0018360A1 (de) N-(5-Methoxybentofuran-2-ylcarbonyl)-N'-benzylpiperazin und Verfahren zu dessen Herstellung.
CN106866533B (zh) 吡唑醚菌酯晶型及制备方法
DE3218743C2 (ja)
DE69211258T2 (de) (R)-3-Methoxy-4-(1-Methyl)-5-(2-Methyl-4,4,4-Trifluorbutylcarbamoyl)Indol-3-Ylmethyl)-N-(2-Methylsulfonyl)-Benzamid in kristalliner Form
EP0593976A1 (de) Kristallines (R)-(-)-2-Cycloheptyl-N-methylsulfonyl-[4-(2-chinolinyl-methoxy)-phenyl]-acetamid
DE2354931C2 (de) trans-2-Phenylbicyclooctan-Verbindungen, Verfahren zu ihrer Herstellung und sie enthaltende pharmazeutische Zubereitungen
DD143251A5 (de) Verfahren zur herstellung von phenylnitraminverbindungen
JP2004530725A (ja) フェニルエタノールアミンの結晶形、その製造、およびそれを含む医薬組成物
DE69313839T2 (de) 3,4-Dihydroxychalkonderivate
WO2001007404A1 (de) Kristallmodifikation iii von n-(4-(5-dimethylamino-naphthalin-1-sulfonylamino)-phenyl)-3-hydroxy-2,2-dimethyl-propionamid
AT395005B (de) Verfahren zur herstellung von nitroaminodiarylsulfoxiden
AT222109B (de) Verfahren zur Herstellung von neuen 4-Chlor-3-sulfamylbenzaniliden und ihren Alkalimetallsalzen

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKO PHARMACEUTICAL IND. CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAGECHIKA, HIROYUKI;NAGANO, HIROO;REEL/FRAME:013993/0746

Effective date: 20030410

Owner name: RESEARCH FOUNDATION ITSUU LABORATORY, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAGECHIKA, HIROYUKI;NAGANO, HIROO;REEL/FRAME:013993/0746

Effective date: 20030410

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: TOKO PHARMACEUTICAL IND. CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESEARCH FOUNDATION ITSUU LABORATORY;REEL/FRAME:032996/0957

Effective date: 20140519

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12