US20130248134A1 - Method and Apparatus for Casting - Google Patents
Method and Apparatus for Casting Download PDFInfo
- Publication number
- US20130248134A1 US20130248134A1 US13/586,252 US201213586252A US2013248134A1 US 20130248134 A1 US20130248134 A1 US 20130248134A1 US 201213586252 A US201213586252 A US 201213586252A US 2013248134 A1 US2013248134 A1 US 2013248134A1
- Authority
- US
- United States
- Prior art keywords
- chamber
- mould
- pressure
- moving
- quenchant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000005266 casting Methods 0.000 title claims abstract description 38
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 42
- 239000000956 alloy Substances 0.000 claims abstract description 42
- 238000013022 venting Methods 0.000 claims description 9
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/09—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
- B22D27/13—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D30/00—Cooling castings, not restricted to casting processes covered by a single main group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D33/00—Equipment for handling moulds
- B22D33/02—Turning or transposing moulds
Definitions
- the invention relates to a method of casting an alloy, and apparatus for the same.
- the invention relates in particular, but not exclusively, to casting aluminium alloys.
- Known methods for casting alloys involve pouring molten alloys into a mould, placing the mould inside a chamber, and cooling the mould using a quenchant such as water, or the like.
- the molten alloy within the mould solidifies as the mould is cooled, and is cast into the general shape of the mould.
- Gas porosity defects may reduce the strength of the metal, and potentially affect its appearance. Gas porosity defects occur because liquid metals, in general, hold a large amount of dissolved gas, whereas by comparison a solidified metal cannot. Therefore, as the metal cools during the casting process, bubbles of gas may form within the metal.
- the mechanical properties of metals formed using casting processes are affected by various aspects of the process used. Variation in the rate of cooling of the metal can alter the properties of the metal. By maintaining the quenchant in its liquid form for longer higher levels of heat removal may be sustained, yielding a metal with enhanced mechanical properties.
- a method of casting an alloy comprising the steps of pouring molten alloy into a mould, moving the mould to a first position inside a chamber, the chamber including a volume of quenchant, increasing a pressure within the chamber to above atmospheric pressure, and moving the mould to a second position in which at least a portion of the mould is submersed in the quenchant, so as to reduce the temperature of the mould.
- a method of casting an alloy comprising the steps of moving a mould to a position within a chamber, the chamber including a volume of quenchant, reducing a pressure within the chamber to below atmospheric pressure, and causing molten alloy to enter the chamber, and to enter the mould under the reduced pressure within the chamber.
- a casting apparatus comprising a pressurisable chamber having a part for receiving a quenchant, a pressurising means for altering a pressure within the chamber, a sealable opening to provide access to an interior of the chamber, and a support part for supporting a mould, the support part being moveable between a first, non-quenching, position and a second, quenching, position wherein the second position is closer than the first position to a lowermost portion of the part for receiving a quenchant.
- a casting apparatus comprising a pressurisable chamber having a part for receiving a quenchant, a sealable opening to provide access to an interior of the chamber, and a container for receiving molten alloy, the container being connected to an interior of the chamber by a passageway, and being closable by a meltable sacrificial seal to separate the container from the interior of the chamber.
- FIG. 1 is a side view of a casting apparatus of the present invention, containing a mould
- FIG. 2 is a plan view of a support part
- FIG. 3 is a side view of the casting apparatus of FIG. 1 , showing the mould being positioned relative to the support part;
- FIG. 4 is a side view of the casting apparatus of FIG. 1 , showing the support part in a lowered position, wherein the mould is partially submersed in quenchant;
- FIG. 5 is a side view of the casting apparatus of FIG. 1 , showing the mould being removed from the chamber;
- FIG. 6 is a side view of another embodiment of a casting apparatus according to the invention, containing a mould, in which the pressure within the body of the chamber is lowered;
- FIG. 7 is a side view of the casting apparatus of FIG. 6 , showing the mould being positioned relative to the support part;
- FIG. 8 is a side view of the casting apparatus of FIG. 6 , wherein the pressure within the chamber is raised;
- FIG. 9 is a side view of the casting apparatus of FIG. 6 , showing the support part in a lowered position, wherein the mould is partially submersed in quenchant;
- FIG. 10 is a side view of the casting apparatus of FIG. 6 , showing the mould being removed from the casting apparatus;
- FIG. 11 is a side view of the passageway of the casting apparatus of FIG. 6 .
- a casting apparatus 10 including a chamber having an upper portion 14 and a lower portion 12 .
- the upper portion 14 forms a ‘lid’ which is connected by a hinge 40 to the lower portion 12 , forming a sealable opening to provide access to the interior of the chamber.
- a clamp 42 is provided to ensure a tight seal is maintained between the upper portion 14 and lower portion 12 when the lid is sealed in a closed position.
- a support arrangement is provided within the chamber, for supporting a mould 18 .
- the mould may be a conventional investment cast mould, for example.
- the support arrangement comprises a generally flat support part 20 onto which a mould 18 may be placed.
- the support part 22 is perforated to allow a fluid to pass through it.
- An embodiment of the support part 20 is shown in FIG. 2 , in which the support part 20 comprises a plurality of bars 22 disposed in a grid. In this manner, the support part 20 provides a perforated, and generally flat, surface for supporting the base of a mould 18 . It will be apparent that while the support part 20 has a general cross-hatch pattern in this embodiment, other forms of support part 20 suitable for supporting a mould 18 may be used.
- the support part 20 is connected to a support arm 28 and one or more guide members 26 .
- the support arm 28 is secured to the support part 20 at one end, and to an actuator 24 at its other end.
- the actuator 24 comprises a drive mechanism that is operable to move the support arm 28 axially in a first (downward) and a second (upward) direction, thereby causing the support part 20 to move in the first or second direction, respectively.
- the actuator 24 includes a hydraulic drive mechanism. It should be understood that other types of drive mechanism may be used, such as a pneumatic drive mechanism.
- a pair of guide members 26 is provided, the guide members 26 being spaced from on either side of the support arm 28 .
- the support part 20 may comprise a pair of guide rings 27 , each configured to surround a portion of a respective guide member 26 , and each guide member 26 may be disposed generally upright within the chamber, and generally parallel to the support arm 28 .
- the actuator 24 may move the support arm 28 upwardly and downwardly, thereby causing upward and downward movement of the support part 20 within the chamber.
- the guide rings 27 engage with the guide members 26 , to guide the support part 20 upwards and downwards, and prevent lateral rotation of the support about the support arm 28 .
- the lower portion 12 of the chamber is adapted to receive a volume of quenchant 16 , which may be water (which may include additives), for example.
- the quenchant 16 should be fluid having a relatively high specific heat capacity, compared to that of air, for example, such that submersing the mould 18 within the quenchant 16 will result in increased heat transfer from the mould 18 .
- the lower portion 12 of the chamber includes one or more conduits forming inlets and/or outlets 30 , 32 , which may be provided with valves, to allow quenchant to flow into or out of the chamber.
- the support arrangement is operable to move the support part 20 between a first position in which at least a portion of a mould 18 supported on the support part 20 is not submersed in the quenchant 16 , and a second position in which the mould 18 is at least partially submersed in the quenchant 16 .
- the quenchant 16 is held within a lowermost portion of the lower portion 12 , and therefore the first position of the support part is further that the second position from the lowermost part of the lower portion of the chamber.
- FIG. 1 shows the support part 20 in its first position, in which the mould 18 is supported in a position clear of the quenchant 16 .
- FIG. 4 shows the support part 20 in its second position, in which the mould 18 is largely submersed in the quenchant 16 .
- the heat of the quenchant 16 rises as heat is transferred to the quenchant 16 from the mould 18 .
- the quenchant 16 is water
- the water will vaporise and turn into steam once it reaches its vaporisation point, which at sea-level pressure is 100° C. It is preferable to maintain the water in its liquid state, since the specific heat capacity of water is much higher than the specific heat capacity of steam, and therefore the heat will be transferred from the mould 18 more effectively (and quickly) when submersed in water, than if it was submersed in steam.
- the pressure within the chamber is increased.
- this aspect of the invention is not limited to any particular combination of pressure within the chamber and temperature of quenchant 16 .
- the method is limited only by the limitations of chamber construction (i.e. it must remain sealed under pressure), and available compressed air pressure. However, it is envisaged that the pressure within the chamber is raised to a pressure significantly above atmospheric air pressure during the casting process.
- the casting apparatus 10 is provided with a pressurising means, for increasing the pressure within the chamber.
- the chamber is provided with an inlet valve 36 , that is connected to a source of compressed air.
- the inlet valve 36 is opened and compressed air is introduced into the chamber.
- a venting valve 34 is provided for venting pressure from the chamber, to the atmosphere. By using the inlet valve 36 and venting valve 34 , the pressure within the chamber may be controlled accordingly.
- the pressurising means may include a pump of a known type (such as a positive displacement pump, velocity pump, centrifugal pump, impulse pump, or any other suitable pump), or a compressor of a known type (such as a diaphragm compressor, a rotary screw or vain compressor, a scroll compressor, a reciprocating compressor, an axial flow compressor, a centrifugal compressor, or a mixed-flow compressor, for example).
- a pump of a known type such as a positive displacement pump, velocity pump, centrifugal pump, impulse pump, or any other suitable pump
- a compressor of a known type such as a diaphragm compressor, a rotary screw or vain compressor, a scroll compressor, a reciprocating compressor, an axial flow compressor, a centrifugal compressor, or a mixed-flow compressor, for example.
- Pressure and temperature sensors may be provided within the chamber (or within pipes connected to the chamber), so that the pressure and temperature within the chamber, and of the quenchant, may be monitored and/or controlled.
- a pressure-relief valve 44 is provided, through which pressure may be vented if the pressure within the chamber exceeds a maximum desired pressure.
- the pressure-relief valve 44 may be adjustable to a pre-determined level to be set by an operator.
- FIG. 3 shows the chamber lid (upper portion 14 ) in its open position, and a mould 18 being placed within the chamber, on the support part 20 which is in its first (i.e. raised) position.
- the chamber is at atmospheric pressure.
- FIG. 1 shows the chamber in a closed configuration, with the upper portion 14 being sealed against the lower portion 12 , and held closed by the clamp 42 .
- the pressure within the chamber is increased. Compressed air is introduced into the chamber through the inlet valve 36 until a pre-determined increase over atmospheric pressure is achieved. Readings from one or more pressure sensors 38 within the chamber, or within pipes connected to the chamber, may be used to detect whether the desired pressure level has been achieved. Once the pressure within the chamber has reached the desired level, the inlet valve 36 is closed to seal the pressure within the chamber.
- the support arrangement is controlled so that the support part 20 and the mould 18 , are lowered from the first position to the second position.
- This controlled lowering may take place at a pre-determined, constant rate, set by an operator.
- the support arrangement moves the support part 20 from the second position back to the first position, lifting the mould 18 to be lifted out of the quenchant (out of the liquid quenchant, at least).
- the pressure within the chamber may be reduced back to atmospheric levels, by operating the venting valve 34 .
- the upper portion 14 of the chamber may then be opened, providing access to the mould 18 , which may then be removed from the chamber.
- the temperature of the quenchant 16 may be monitored by temperature sensors, to allow an operator to assess the heat within the chamber.
- the temperature of the quenchant 16 may be regulated by removing heated quenchant 16 from the chamber via the one or more outlets 30 , 32 , and/or cooled quenchant may be introduced via the one or more inlets 30 , 32 .
- FIGS. 6 to 11 of the drawings a further embodiment of the invention is described. Many of the features of this embodiment are equivalent, or identical to, respective features of the first embodiment described, in which case the integers of the second embodiment are numbered with corresponding reference numerals with a prefix of ‘1’ (for example, lower portion 12 of the first embodiment, is labelled 112 in the second embodiment).
- FIG. 6 shows casting apparatus 110 including all of the features of the previously described embodiment. While in the embodiment described, the apparatus and method include the features of the previous embodiment, it should be understood that the additional features described below, that are not included in the previous embodiment, may be applied to alternative casting apparatus and methods. It is not envisaged that the use of the additional features should be limited to use in conjunction with the features of the previous embodiment.
- the venting valve 134 includes an additional exhaust valve 152 , for switching between venting the pressure of the chamber to atmospheric pressure, and venting to a pressure-reduction means, which in this example is a vacuum pump 154 .
- a pressure-reduction means which in this example is a vacuum pump 154 .
- the use of the vacuum pump 154 enables the pressure within the chamber to be reduced to a level below that of atmospheric pressure.
- the pressure-reduction means may include any form of pump (or compressor-type apparatus) also suitable for use as a pressurising means, as described herein, configured to cause flow of gas from the chamber so as to reduce the pressure within the chamber.
- the upper portion 114 of the chamber engages with an inlet arrangement, defining a passageway for providing molten alloy from a container 146 to a mould 18 whilst the mould 18 is positioned inside the chamber.
- the inlet arrangement comprises the container 146 for receiving molten alloy, the lower end of the container 146 forming a neck 158 that is engageable with the upper portion 114 of the chamber.
- the neck 158 has a screw-threaded portion on an outer surface, for engagement with a corresponding screw-threaded portion 156 defined within an opening in the upper portion 114 of the chamber.
- a sacrificial seal 148 is provided, which preferably comprises a disc of material that will melt when exposed to molten alloy.
- the disc is formed of aluminium, having properties similar or identical to the molten alloy to be cast.
- the ridge defined by the opening within the upper portion 114 of the chamber is configured to receive the sacrificial seal 148 .
- the sacrificial seal 148 is held in position against the ridge by the lowermost portion of the neck 158 , so that the sacrificial seal 148 is sandwiched between the two. In this manner, the passageway is sealable to separate the container 146 from the interior of the chamber.
- a pouring valve 150 is provided in the upper portion 114 of the chamber, disposed below the inlet arrangement.
- the pouring valve 150 may be a ball valve, for example. When open, the pouring valve 150 provides communication between the interior of the chamber and the inlet arrangement.
- a mould 18 is placed inside the chamber on the support part 120 , as shown in FIG. 7 . Following that, the chamber is closed and sealed, using the clamp 142 . The vacuum pump 154 is then operated, to reduce the pressure within the chamber, to a pre-determined level below atmospheric pressure.
- Molten alloy is poured into the container 146 at its upper end 147 , so as to contact the sacrificial seal 148 disposed at the lower end of the container 146 , separating the container 146 and the interior of the chamber.
- the mould 18 has an opening defined at its upper surface, for receiving a molten alloy.
- the opening of the mould 18 is disposed directly beneath the pouring valve 150 , such that melting of the seal 148 permits molten alloy to flow from the container into the interior of the chamber, and into the mould 18 .
- the lowered pressure within the chamber means that there are reduced gas levels within the mould cavity. This enables the molten alloy to flow freely into the chamber and ensures that the molten alloy fills the lower portions of the mould 18 . Furthermore, by assisting the mould-filling process in this way, the need to heat the molten alloy and the mould 18 to very high temperatures is reduced. This provides a more energy-efficient method of filling a mould 18 .
- the molten alloy flows from the container 146 , through the passageway and pouring valve 150 , and into the interior of the chamber, the molten alloy blocks the opening between the interior of the chamber and atmospheric pressure outside the chamber. In this way, the lowered pressure within the chamber is preserved, until the metal has finished flowing into the chamber, and into the mould 18 .
- the pouring technique described above enhances the ability of the molten alloy to access thin and awkwardly-shaped parts of the mould cavity.
- a further advantage of this method is that the likelihood and/or extent of premature solidification of some portions of the metal within the mould 18 is reduced, resulting in an improved casting quality.
- the sacrificial seal 148 can be replaced for future operation of the casting apparatus by unscrewing the neck 158 from the upper portion 114 of the chamber.
- the remainder of the method is identical to that of the first embodiment, wherein the pressure is increased within the chamber by operating the inlet valve 136 , and the support part 120 is lowered into the quenchant 16 , thereby accelerating the mould-cooling process.
- the proposed method of enhanced solidification will offer mechanical properties superior to existing available levels, thus offering the possibility of weight and material reductions and/or improved performance of the cast product.
- Combining casting in an increased-pressure environment, with pouring the molten alloy into the mould under a reduced pressure, may result in reduced material costs due to reduced scrap being produced at the initial casting stage.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
A method of casting an alloy is provided, comprising the steps of pouring molten alloy into a mould (18), moving the mould (18) to a first position inside a chamber (12), the chamber (12) including a volume of quenchant (16), increasing the pressure within the chamber (12), and moving the mould (18) to a second position in which at least a portion of the mould (18) is submersed in the quenchant (16), so as to reduce the temperature of the mould (18).
Description
- The invention relates to a method of casting an alloy, and apparatus for the same. The invention relates in particular, but not exclusively, to casting aluminium alloys.
- Known methods for casting alloys involve pouring molten alloys into a mould, placing the mould inside a chamber, and cooling the mould using a quenchant such as water, or the like. The molten alloy within the mould solidifies as the mould is cooled, and is cast into the general shape of the mould.
- Known casting methods have a number of problems associated with them. One such problem is the formation of bubbles within a cast metal, known as a gas porosity defect. Gas porosity defects may reduce the strength of the metal, and potentially affect its appearance. Gas porosity defects occur because liquid metals, in general, hold a large amount of dissolved gas, whereas by comparison a solidified metal cannot. Therefore, as the metal cools during the casting process, bubbles of gas may form within the metal.
- It is also a common problem for defects to occur, and for cast material to be wasted, where molten alloy has not filled the mould adequately. Molten alloy may not entirely fill the mould, particularly thin sections of mould. Furthermore, if the mould is cooled whilst the molten alloy is poured into it, portions of the material within the mould may solidify prematurely, before other portions of the mould have been filled.
- The mechanical properties of metals formed using casting processes are affected by various aspects of the process used. Variation in the rate of cooling of the metal can alter the properties of the metal. By maintaining the quenchant in its liquid form for longer higher levels of heat removal may be sustained, yielding a metal with enhanced mechanical properties.
- According to an aspect of the invention we provide a method of casting an alloy, comprising the steps of pouring molten alloy into a mould, moving the mould to a first position inside a chamber, the chamber including a volume of quenchant, increasing a pressure within the chamber to above atmospheric pressure, and moving the mould to a second position in which at least a portion of the mould is submersed in the quenchant, so as to reduce the temperature of the mould.
- According to an aspect of the invention we provide a method of casting an alloy, comprising the steps of moving a mould to a position within a chamber, the chamber including a volume of quenchant, reducing a pressure within the chamber to below atmospheric pressure, and causing molten alloy to enter the chamber, and to enter the mould under the reduced pressure within the chamber.
- According to another aspect of the invention we provide a casting apparatus, comprising a pressurisable chamber having a part for receiving a quenchant, a pressurising means for altering a pressure within the chamber, a sealable opening to provide access to an interior of the chamber, and a support part for supporting a mould, the support part being moveable between a first, non-quenching, position and a second, quenching, position wherein the second position is closer than the first position to a lowermost portion of the part for receiving a quenchant.
- According to another aspect of the invention we provide a casting apparatus, comprising a pressurisable chamber having a part for receiving a quenchant, a sealable opening to provide access to an interior of the chamber, and a container for receiving molten alloy, the container being connected to an interior of the chamber by a passageway, and being closable by a meltable sacrificial seal to separate the container from the interior of the chamber.
- Further features of the various aspects of the invention are set out in the claims appended hereto.
- Embodiments of the invention will be described by way of example only with reference to the accompanying drawings.
-
FIG. 1 is a side view of a casting apparatus of the present invention, containing a mould; -
FIG. 2 is a plan view of a support part; -
FIG. 3 is a side view of the casting apparatus ofFIG. 1 , showing the mould being positioned relative to the support part; -
FIG. 4 is a side view of the casting apparatus ofFIG. 1 , showing the support part in a lowered position, wherein the mould is partially submersed in quenchant; -
FIG. 5 is a side view of the casting apparatus ofFIG. 1 , showing the mould being removed from the chamber; -
FIG. 6 is a side view of another embodiment of a casting apparatus according to the invention, containing a mould, in which the pressure within the body of the chamber is lowered; -
FIG. 7 is a side view of the casting apparatus ofFIG. 6 , showing the mould being positioned relative to the support part; -
FIG. 8 is a side view of the casting apparatus ofFIG. 6 , wherein the pressure within the chamber is raised; -
FIG. 9 is a side view of the casting apparatus ofFIG. 6 , showing the support part in a lowered position, wherein the mould is partially submersed in quenchant; -
FIG. 10 is a side view of the casting apparatus ofFIG. 6 , showing the mould being removed from the casting apparatus; and -
FIG. 11 is a side view of the passageway of the casting apparatus ofFIG. 6 . - With reference to the
FIGS. 1 to 5 of the drawings, acasting apparatus 10 is provided, including a chamber having anupper portion 14 and alower portion 12. Theupper portion 14 forms a ‘lid’ which is connected by ahinge 40 to thelower portion 12, forming a sealable opening to provide access to the interior of the chamber. Aclamp 42 is provided to ensure a tight seal is maintained between theupper portion 14 andlower portion 12 when the lid is sealed in a closed position. - A support arrangement is provided within the chamber, for supporting a
mould 18. The mould may be a conventional investment cast mould, for example. The support arrangement comprises a generallyflat support part 20 onto which amould 18 may be placed. Preferably, thesupport part 22 is perforated to allow a fluid to pass through it. An embodiment of thesupport part 20 is shown inFIG. 2 , in which thesupport part 20 comprises a plurality ofbars 22 disposed in a grid. In this manner, thesupport part 20 provides a perforated, and generally flat, surface for supporting the base of amould 18. It will be apparent that while thesupport part 20 has a general cross-hatch pattern in this embodiment, other forms ofsupport part 20 suitable for supporting amould 18 may be used. - The
support part 20 is connected to asupport arm 28 and one ormore guide members 26. Thesupport arm 28 is secured to thesupport part 20 at one end, and to anactuator 24 at its other end. Theactuator 24 comprises a drive mechanism that is operable to move thesupport arm 28 axially in a first (downward) and a second (upward) direction, thereby causing thesupport part 20 to move in the first or second direction, respectively. In an embodiment, theactuator 24 includes a hydraulic drive mechanism. It should be understood that other types of drive mechanism may be used, such as a pneumatic drive mechanism. In an embodiment, a pair ofguide members 26 is provided, theguide members 26 being spaced from on either side of thesupport arm 28. Thesupport part 20 may comprise a pair ofguide rings 27, each configured to surround a portion of arespective guide member 26, and eachguide member 26 may be disposed generally upright within the chamber, and generally parallel to thesupport arm 28. - The
actuator 24 may move thesupport arm 28 upwardly and downwardly, thereby causing upward and downward movement of thesupport part 20 within the chamber. The guide rings 27 engage with theguide members 26, to guide thesupport part 20 upwards and downwards, and prevent lateral rotation of the support about thesupport arm 28. - The
lower portion 12 of the chamber is adapted to receive a volume ofquenchant 16, which may be water (which may include additives), for example. Thequenchant 16 should be fluid having a relatively high specific heat capacity, compared to that of air, for example, such that submersing themould 18 within thequenchant 16 will result in increased heat transfer from themould 18. Thelower portion 12 of the chamber includes one or more conduits forming inlets and/or 30, 32, which may be provided with valves, to allow quenchant to flow into or out of the chamber.outlets - The support arrangement is operable to move the
support part 20 between a first position in which at least a portion of amould 18 supported on thesupport part 20 is not submersed in thequenchant 16, and a second position in which themould 18 is at least partially submersed in thequenchant 16. Thequenchant 16 is held within a lowermost portion of thelower portion 12, and therefore the first position of the support part is further that the second position from the lowermost part of the lower portion of the chamber.FIG. 1 shows thesupport part 20 in its first position, in which themould 18 is supported in a position clear of the quenchant 16.FIG. 4 shows thesupport part 20 in its second position, in which themould 18 is largely submersed in the quenchant 16. In this second position, a large surface area of themould 18 is in contact with quenchant 16, and therefore the heat from themould 18 will transfer to thequenchant 16, cooling themould 18 and its contents. The perforations in thesupport part 20 allow thesupport part 20 to be raised and lowered through thequenchant 16 without meeting significant resistance. - When the
mould 18 is lowered into thequenchant 16, the heat of thequenchant 16 rises as heat is transferred to thequenchant 16 from themould 18. In the case in which thequenchant 16 is water, the water will vaporise and turn into steam once it reaches its vaporisation point, which at sea-level pressure is 100° C. It is preferable to maintain the water in its liquid state, since the specific heat capacity of water is much higher than the specific heat capacity of steam, and therefore the heat will be transferred from themould 18 more effectively (and quickly) when submersed in water, than if it was submersed in steam. - In order to maintain the
quenchant 16 in its liquid state as long as possible, and to as high a temperature as possible, the pressure within the chamber is increased. An increase from atmospheric pressure at sea-level, of 1 bar, yields a vaporisation point of approximately 120° C., and an increase of 3 bar yields a vaporisation point of approximately 144° C. Therefore, by increasing the pressure within the chamber, thequenchant 16 will stay in its liquid state until it reaches a higher temperature, allowing a greater amount of heat energy to be transferred from themould 18 to thequenchant 16, prior to its vaporisation (at which point heat transfer becomes less efficient). - It should be understood that this aspect of the invention is not limited to any particular combination of pressure within the chamber and temperature of
quenchant 16. The method is limited only by the limitations of chamber construction (i.e. it must remain sealed under pressure), and available compressed air pressure. However, it is envisaged that the pressure within the chamber is raised to a pressure significantly above atmospheric air pressure during the casting process. - The
casting apparatus 10 is provided with a pressurising means, for increasing the pressure within the chamber. In this example, the chamber is provided with aninlet valve 36, that is connected to a source of compressed air. When the pressure within the chamber needs to be raised, theinlet valve 36 is opened and compressed air is introduced into the chamber. A ventingvalve 34 is provided for venting pressure from the chamber, to the atmosphere. By using theinlet valve 36 and ventingvalve 34, the pressure within the chamber may be controlled accordingly. The pressurising means may include a pump of a known type (such as a positive displacement pump, velocity pump, centrifugal pump, impulse pump, or any other suitable pump), or a compressor of a known type (such as a diaphragm compressor, a rotary screw or vain compressor, a scroll compressor, a reciprocating compressor, an axial flow compressor, a centrifugal compressor, or a mixed-flow compressor, for example). - Pressure and temperature sensors may be provided within the chamber (or within pipes connected to the chamber), so that the pressure and temperature within the chamber, and of the quenchant, may be monitored and/or controlled. A pressure-
relief valve 44 is provided, through which pressure may be vented if the pressure within the chamber exceeds a maximum desired pressure. The pressure-relief valve 44 may be adjustable to a pre-determined level to be set by an operator. - A method of casting will now be described with reference to
FIGS. 1 , and 3 to 5.FIG. 3 shows the chamber lid (upper portion 14) in its open position, and amould 18 being placed within the chamber, on thesupport part 20 which is in its first (i.e. raised) position. At this stage, the chamber is at atmospheric pressure.FIG. 1 shows the chamber in a closed configuration, with theupper portion 14 being sealed against thelower portion 12, and held closed by theclamp 42. Once the chamber has been closed, and sealed, the pressure within the chamber is increased. Compressed air is introduced into the chamber through theinlet valve 36 until a pre-determined increase over atmospheric pressure is achieved. Readings from one ormore pressure sensors 38 within the chamber, or within pipes connected to the chamber, may be used to detect whether the desired pressure level has been achieved. Once the pressure within the chamber has reached the desired level, theinlet valve 36 is closed to seal the pressure within the chamber. - Before, during or after the pressure has been increased within the chamber, the support arrangement is controlled so that the
support part 20 and themould 18, are lowered from the first position to the second position. This controlled lowering may take place at a pre-determined, constant rate, set by an operator. - As the heat transfers from the
mould 18 to thequenchant 16, the metal within themould 18 cools, and eventually solidifies. After a pre-determined time, or when initiated by an operator, the support arrangement moves thesupport part 20 from the second position back to the first position, lifting themould 18 to be lifted out of the quenchant (out of the liquid quenchant, at least). At this point, the pressure within the chamber may be reduced back to atmospheric levels, by operating the ventingvalve 34. Theupper portion 14 of the chamber may then be opened, providing access to themould 18, which may then be removed from the chamber. - The temperature of the
quenchant 16 may be monitored by temperature sensors, to allow an operator to assess the heat within the chamber. On completion of the casting operation (or at any other stage of the process), and prior to opening the sealed chamber to extract themould 18, the temperature of thequenchant 16 may be regulated by removingheated quenchant 16 from the chamber via the one or 30, 32, and/or cooled quenchant may be introduced via the one ormore outlets 30, 32.more inlets - With reference to
FIGS. 6 to 11 of the drawings, a further embodiment of the invention is described. Many of the features of this embodiment are equivalent, or identical to, respective features of the first embodiment described, in which case the integers of the second embodiment are numbered with corresponding reference numerals with a prefix of ‘1’ (for example,lower portion 12 of the first embodiment, is labelled 112 in the second embodiment). -
FIG. 6 shows casting apparatus 110 including all of the features of the previously described embodiment. While in the embodiment described, the apparatus and method include the features of the previous embodiment, it should be understood that the additional features described below, that are not included in the previous embodiment, may be applied to alternative casting apparatus and methods. It is not envisaged that the use of the additional features should be limited to use in conjunction with the features of the previous embodiment. - In addition to those features previously described, the venting
valve 134 includes anadditional exhaust valve 152, for switching between venting the pressure of the chamber to atmospheric pressure, and venting to a pressure-reduction means, which in this example is avacuum pump 154. The use of thevacuum pump 154 enables the pressure within the chamber to be reduced to a level below that of atmospheric pressure. The pressure-reduction means may include any form of pump (or compressor-type apparatus) also suitable for use as a pressurising means, as described herein, configured to cause flow of gas from the chamber so as to reduce the pressure within the chamber. - The
upper portion 114 of the chamber engages with an inlet arrangement, defining a passageway for providing molten alloy from acontainer 146 to amould 18 whilst themould 18 is positioned inside the chamber. The inlet arrangement comprises thecontainer 146 for receiving molten alloy, the lower end of thecontainer 146 forming aneck 158 that is engageable with theupper portion 114 of the chamber. In an embodiment, theneck 158 has a screw-threaded portion on an outer surface, for engagement with a corresponding screw-threadedportion 156 defined within an opening in theupper portion 114 of the chamber. When theneck 158 is engaged with theupper portion 114, the lowermost portion of theneck 158 lies adjacent, or abuts, a ridge defined within the opening. - A
sacrificial seal 148 is provided, which preferably comprises a disc of material that will melt when exposed to molten alloy. Preferably, the disc is formed of aluminium, having properties similar or identical to the molten alloy to be cast. The ridge defined by the opening within theupper portion 114 of the chamber is configured to receive thesacrificial seal 148. Thesacrificial seal 148 is held in position against the ridge by the lowermost portion of theneck 158, so that thesacrificial seal 148 is sandwiched between the two. In this manner, the passageway is sealable to separate thecontainer 146 from the interior of the chamber. - A pouring
valve 150 is provided in theupper portion 114 of the chamber, disposed below the inlet arrangement. The pouringvalve 150 may be a ball valve, for example. When open, the pouringvalve 150 provides communication between the interior of the chamber and the inlet arrangement. - In use, a
mould 18 is placed inside the chamber on thesupport part 120, as shown inFIG. 7 . Following that, the chamber is closed and sealed, using theclamp 142. Thevacuum pump 154 is then operated, to reduce the pressure within the chamber, to a pre-determined level below atmospheric pressure. - Molten alloy is poured into the
container 146 at itsupper end 147, so as to contact thesacrificial seal 148 disposed at the lower end of thecontainer 146, separating thecontainer 146 and the interior of the chamber. - The
mould 18 has an opening defined at its upper surface, for receiving a molten alloy. The opening of themould 18 is disposed directly beneath the pouringvalve 150, such that melting of theseal 148 permits molten alloy to flow from the container into the interior of the chamber, and into themould 18. - The lowered pressure within the chamber means that there are reduced gas levels within the mould cavity. This enables the molten alloy to flow freely into the chamber and ensures that the molten alloy fills the lower portions of the
mould 18. Furthermore, by assisting the mould-filling process in this way, the need to heat the molten alloy and themould 18 to very high temperatures is reduced. This provides a more energy-efficient method of filling amould 18. - As the molten alloy flows from the
container 146, through the passageway and pouringvalve 150, and into the interior of the chamber, the molten alloy blocks the opening between the interior of the chamber and atmospheric pressure outside the chamber. In this way, the lowered pressure within the chamber is preserved, until the metal has finished flowing into the chamber, and into themould 18. - When molten alloy has filled the
mould 18, the atmospheric pressure is immediately allowed to enter the chamber, through the passageway. At this point, the pouringvalve 150 is closed, sealing the chamber once again from atmospheric pressure. - By reducing the mass of gas within the mould cavity, the pouring technique described above enhances the ability of the molten alloy to access thin and awkwardly-shaped parts of the mould cavity. A further advantage of this method is that the likelihood and/or extent of premature solidification of some portions of the metal within the
mould 18 is reduced, resulting in an improved casting quality. - Once the
sacrificial seal 148 has been used, it can be replaced for future operation of the casting apparatus by unscrewing theneck 158 from theupper portion 114 of the chamber. - The remainder of the method is identical to that of the first embodiment, wherein the pressure is increased within the chamber by operating the
inlet valve 136, and thesupport part 120 is lowered into thequenchant 16, thereby accelerating the mould-cooling process. - The proposed method of enhanced solidification will offer mechanical properties superior to existing available levels, thus offering the possibility of weight and material reductions and/or improved performance of the cast product. Combining casting in an increased-pressure environment, with pouring the molten alloy into the mould under a reduced pressure, may result in reduced material costs due to reduced scrap being produced at the initial casting stage.
- When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
- The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Claims (22)
1. A method of casting an alloy, comprising the steps of:
pouring molten alloy into a mould;
moving the mould to a first position inside a chamber, the chamber including a volume of quenchant;
increasing a pressure within the chamber to above atmospheric pressure; and
moving the mould to a second position in which at least a portion of the mould is submersed in the quenchant, so as to reduce the temperature of the mould.
2. A method of casting an alloy, comprising the steps of:
moving a mould to a position within a chamber, the chamber including a volume of quenchant;
reducing a pressure within the chamber to below atmospheric pressure; and
causing molten alloy to enter the chamber, and to enter the mould under the reduced pressure within the chamber.
3. A method according to claim 2 , further comprising the steps of:
increasing the pressure within the chamber to above atmospheric pressure; and
moving the mould to a second position in which at least a portion of the mould is submersed in the quenchant, so as to reduce the temperature of the mould.
4. A method according to claim 3 , wherein the step of increasing the pressure within the chamber to above atmospheric pressure is performed before the step of moving the mould to a second position.
5. A method according to claim 3 , wherein the step of increasing the pressure within the chamber to above atmospheric pressure is performed after the step of moving the mould to a second position.
6. A method according to claim 3 , wherein the step of increasing the pressure within the chamber to above atmospheric pressure is performed as the mould is moved to the second position.
7. A method according to claim 3 , further comprising the step of:
before causing molten alloy to enter the chamber, sealing an inlet to the chamber with a sacrificial seal, and
wherein the step of causing molten alloy to enter the chamber comprises causing the molten alloy to melt the sacrificial seal.
8. A method according to claim 7 , wherein the sacrificial seal is formed substantially from the alloy being cast.
9. A method according to claim 3 , wherein the step of moving the mould to a second position comprises moving the mould at a constant rate.
10. A method according to claim 3 , further comprising the step of moving the mould back towards the first position once the mould is quenched.
11. A method according to claim 3 , further comprising the step of venting gas from inside the chamber at a time period after the mould is moved to the second position.
12. A casting apparatus, comprising:
a pressurisable chamber having a part for receiving a quenchant;
a pressurising means for altering a pressure within the chamber;
a sealable opening to provide access to an interior of the chamber; and
a support part for supporting a mould, the support part being moveable between a first, non-quenching, position and a second, quenching, position wherein the second position is closer than the first position to a lowermost portion of the part for receiving a quenchant.
13. A casting apparatus, comprising:
a pressurisable chamber having a part for receiving a quenchant;
a sealable opening to provide access to an interior of the chamber; and
a container for receiving molten alloy, the container being connected to an interior of the chamber by a passageway, and being closable by a meltable sacrificial seal to separate the container from the interior of the chamber.
14-31. (canceled)
32. A method according to claim 1 , wherein the step of increasing the pressure within the chamber to above atmospheric pressure is performed before the step of moving the mould to a second position.
33. A method according to claim 1 , wherein the step of increasing the pressure within the chamber to above atmospheric pressure is performed after the step of moving the mould to a second position.
34. A method according to claim 1 , wherein the step of increasing the pressure within the chamber to above atmospheric pressure is performed as the mould is moved to the second position.
35. A method according to claim 1 , further comprising the step of:
before causing molten alloy to enter the chamber, sealing an inlet to the chamber with a sacrificial seal, and
wherein the step of causing molten alloy to enter the chamber comprises causing the molten alloy to melt the sacrificial seal.
36. A method according to claim 35 , wherein the sacrificial seal is formed substantially from the alloy being cast.
37. A method according to claim 1 , wherein the step of moving the mould to a second position comprises moving the mould at a constant rate.
38. A method according to claim 1 , further comprising the step of moving the mould back towards the first position once the mould is quenched.
39. A method according to claim 1 , further comprising the step of venting gas from inside the chamber at a time period after the mould is moved to the second position.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1204884.9A GB2500407A (en) | 2012-03-20 | 2012-03-20 | Method and apparatus for casting |
| GBGB1204884.9 | 2012-03-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130248134A1 true US20130248134A1 (en) | 2013-09-26 |
Family
ID=46052235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/586,252 Abandoned US20130248134A1 (en) | 2012-03-20 | 2012-08-15 | Method and Apparatus for Casting |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20130248134A1 (en) |
| GB (1) | GB2500407A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115533082A (en) * | 2022-10-10 | 2022-12-30 | 河北钢研德凯科技有限公司 | Method for solidification of investment casting magnesium alloy and investment casting method |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104550879A (en) * | 2013-10-20 | 2015-04-29 | 宁夏嘉翔自控技术有限公司 | Energy-saving large casting cooling device |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110303384A1 (en) * | 2010-06-10 | 2011-12-15 | Steven Kennerknecht | Investment castings and process |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4832105A (en) * | 1988-01-13 | 1989-05-23 | The Interlake Corporation | Investment casting method and apparatus, and cast article produced thereby |
| SU1710186A1 (en) * | 1988-12-29 | 1992-02-07 | Институт проблем литья АН УССР | Method for producing casting from gas-saturated alloys |
| DE19721483A1 (en) * | 1997-05-23 | 1998-11-26 | Suban Ag | Casting and quenching apparatus |
| JP2934220B2 (en) * | 1998-01-22 | 1999-08-16 | 川崎重工業株式会社 | Semi-solid and semi-solid casting |
| DE10345937B4 (en) * | 2003-09-30 | 2008-02-14 | Ald Vacuum Technologies Ag | Device for investment casting of metals |
| JP2008531289A (en) * | 2005-02-22 | 2008-08-14 | ミルウォーキー・スクール・オブ・エンジニアリング | Casting process |
-
2012
- 2012-03-20 GB GB1204884.9A patent/GB2500407A/en not_active Withdrawn
- 2012-08-15 US US13/586,252 patent/US20130248134A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110303384A1 (en) * | 2010-06-10 | 2011-12-15 | Steven Kennerknecht | Investment castings and process |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115533082A (en) * | 2022-10-10 | 2022-12-30 | 河北钢研德凯科技有限公司 | Method for solidification of investment casting magnesium alloy and investment casting method |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2500407A (en) | 2013-09-25 |
| GB201204884D0 (en) | 2012-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3900064A (en) | Metal casting | |
| EP3570994B1 (en) | Method and apparatus for counter-gravity mold filling | |
| JP5527451B1 (en) | Casting equipment | |
| US8870999B2 (en) | Apparatus and method for degassing cast aluminum alloys | |
| JPH07294150A (en) | Induction furnace for both vacuum melting and pressurized pouring | |
| CN113199008A (en) | Vacuum low-pressure casting device and method for large aluminum and magnesium alloy castings | |
| CN109434075B (en) | A differential pressure casting machine | |
| CN104690249A (en) | Copper alloy vacuum counter-pressure casting machine | |
| US10500635B2 (en) | Equipment for continuous or semi-continuous casting of metal with improved metal filling arrangement | |
| US20130248134A1 (en) | Method and Apparatus for Casting | |
| JP3160842B2 (en) | Low pressure casting machine and low pressure casting method | |
| US6019158A (en) | Investment casting using pour cup reservoir with inverted melt feed gate | |
| CN206083799U (en) | A New Amorphous Master Alloy Ingot Continuous Casting System | |
| US6070644A (en) | Investment casting using pressure cap sealable on gas permeable investment mold | |
| CN1270851C (en) | Casting method of vacuum thin wall | |
| KR100738998B1 (en) | Compound casting machine for automobile wheel manufacturing | |
| JP2006347413A (en) | Vehicle wheel and casting method for vehicle wheel | |
| JP2006346719A (en) | Casting device, and casting method | |
| GB2456918A (en) | Metal casting using varaiable pressure | |
| JPH05146865A (en) | Casting device | |
| SU399702A1 (en) | Vacuum skull casting machine for producing castings from refractory metal | |
| CN120885671A (en) | Casting process method, equipment and medium | |
| JPH05192758A (en) | Low pressure casting apparatus | |
| HK1248181B (en) | Equipment for continuous or semi-continuous casting of metal with improved metal filling arrangement |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HONEYWELL UK LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEDFORD, PAUL;REEL/FRAME:029211/0684 Effective date: 20121004 Owner name: HONEYWELL AEROSPACE BV, NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEDFORD, PAUL;REEL/FRAME:029211/0684 Effective date: 20121004 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |