US20070208252A1 - Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses - Google Patents
Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses Download PDFInfo
- Publication number
- US20070208252A1 US20070208252A1 US11/436,892 US43689206A US2007208252A1 US 20070208252 A1 US20070208252 A1 US 20070208252A1 US 43689206 A US43689206 A US 43689206A US 2007208252 A1 US2007208252 A1 US 2007208252A1
- Authority
- US
- United States
- Prior art keywords
- working device
- sensor
- lumen
- subject
- extender
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/233—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the nose, i.e. nasoscopes, e.g. testing of patency of Eustachian tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6851—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/10—Furniture specially adapted for surgical or diagnostic appliances or instruments
- A61B50/13—Trolleys, e.g. carts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/14—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
- A61B90/16—Bite blocks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M29/00—Dilators with or without means for introducing media, e.g. remedies
- A61M29/02—Dilators made of swellable material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00787—Surgery of the ear
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2048—Tracking techniques using an accelerometer or inertia sensor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2065—Tracking using image or pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2074—Interface software
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
- A61B2090/365—Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3983—Reference marker arrangements for use with image guided surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M29/00—Dilators with or without means for introducing media, e.g. remedies
- A61M29/02—Dilators made of swellable material
- A61M2029/025—Dilators made of swellable material characterised by the guiding element
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/06—Head
- A61M2210/0681—Sinus (maxillaris)
Definitions
- the present invention relates generally to medical devices, systems and methods and more particularly to methods and devices for performing image guided interventional procedures to treat disorders of the paranasal sinuses, ears, nose or throat (ENT).
- ENT paranasal sinuses, ears, nose or throat
- New devices, systems and techniques are being developed for the treatment of sinusitis and other disorders of the ear, nose, throat and paranasal sinuses.
- various catheters, guidewires and other devices useable to perform minimally invasive, minimally traumatic ear, nose and throat surgery have been described in U.S. patent applications Ser. No. 10/829,917 entitled “Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat,” Ser. No. 10/912,578 entitled “Implantable Device and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders,” Ser. No.
- a dilation catheter e.g., a balloon catheter or other type of dilator
- FTSI Flexible Transnasal Sinus Intervention
- a dilation catheter e.g., a balloon catheter or other type of dilator
- the dilation catheter is then used to dilate the ostium or other anatomical structures to facilitate natural drainage from the sinus cavity.
- a tubular guide may be initially inserted through the nose and advanced to a position near the sinus ostium and a guidewire may then be advanced through the tubular guide and into the affected paranasal sinus.
- the dilation catheter may then be advanced over the guidewire and through the tubular guide to a position where its dilator (e.g., balloon) is positioned within the sinus ostium.
- the dilator e.g., balloon
- the dilator is then expanded causing the ostium to dilate.
- dilation of the ostium may fracture, move or remodel bony structures that surround or are adjacent to the ostium.
- irrigation solution and/or therapeutic agents may be infused through a lumen of the dilation catheter and/or other working devices (e.g., guidewires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices, drills, rasps, saws, etc.) may be advanced through the tubular guide and/or over the guidewire to deliver other therapy to the sinus or adjacent tissues during the same procedure in which the FTSI is carried out.
- working devices e.g., guidewires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light
- FTSI in FTSI procedures, structures and passageways other than sinus ostia may be dilated using the tools described above, tissue may be resected or ablated, bone may be restructured, drugs or drug delivery systems may be deployed, etc., as described in the documents incorporated here by reference.
- FTSI will generally used to refer broadly to all of those procedures, not just dilation of sinus ostia.
- IGS Image guided surgery
- a digital tomographic scan e.g., a CT or MRI scan
- the operative field e.g., the nasal cavities and paranasal sinuses
- a specially programmed computer is then used to convert the digital tomographic scan data into a digital map.
- sensors mounted on the surgical instruments send data to the computer indicating the position of each surgical instrument.
- the computer correlates the data received from the instrument-mounted sensors with the digital map that was created from the preoperative tomographic scan.
- One or more image(s) is/are then displayed on a monitor showing the tomographic scan along with an indicator (e.g., cross hairs or an illuminated dot) of the real time position of each surgical instrument.
- an indicator e.g., cross hairs or an illuminated dot
- a typical IGS surgery system of the prior art includes a) a computer work station, b) a video monitor, c) one or more surgical instruments having sensors mounted thereon, d) a localizer and e) a sensor tracking system.
- the sensor(s) mounted on the surgical instruments and the corresponding tracing system may be optical, electromagnetic or electromechanical.
- the localizer functions to localize or “register” the preoperative tomographic image data with the real time physical positioning of the patient's body during surgery.
- the sensor tracking system serves to track the position of each sensor equipped surgical instrument during the surgery and to communicate such information to the computer workstation.
- optical navigation elements e.g., infrared light emitting LEDs or passive markers
- Camera(s) is/are positioned to receive light emitted or reflected from the navigation elements.
- An optical IGS system that is useable in ENT and sinus surgery is the LandmarX Evolutions ENT II Image Guidance System available from Medtronic Xomed Surgical Products, Inc., Jacksonville, Fla.
- Other optical IGS systems useable in ENT surgery include the VectorVision® system and Kolibri® system available from BrainLAB, Inc., Westchester, Ill.
- a sensor assembly known as a STARLINKTM Universal Instrument Adapter
- a plurality of passive markers in the nature of reflective members is positioned at spaced apart locations on the navigation element assembly.
- An infrared light source and cameras are positioned to receive light reflected from the passive markers located on the navigation element assembly.
- a computer then receives input from the cameras and uses software tracking algorithms to determine the real time position of the instrument within the subject's body based on the relative spatial positions of the passive markers.
- the instrument's current position is then displayed on a monitor along with stored tomographic images, thereby enabling the operator to monitor the position and movement of the instrument relative to anatomical structures of interest.
- radiofrequency electromagnetic sensors e.g., electromagnetic coils
- a transmitter is positioned near the operative field.
- the transmitter transmits signals that are received by the instrument-mounted sensors.
- the tracking system detects variations in the electromagnetic field caused by the movement of the instrument-mounted sensors relative to the transmitter. Examples of commercially available electromagnetic IGS systems that have been used in ENT and sinus surgery include the ENTrak plusTM and InstaTrak ENTTM systems available from GE Medical Systems, Salt Lake City, Utah.
- electromagnetic image guidance systems that may be modified for use in accordance with the present invention include but are not limited to those available from Surgical Navigation Technologies, Inc., Louiville, Colo., Biosense-Webster, Inc., Diamond Bar, Calif. and Calypso Medical Technologies, Inc., Seattle, Wash.
- Electromechanical systems have not been widely used in ENT or sinus surgery.
- Registration is the process of matching two sets of data (i.e., the preoperative tomographic scan data and the intraoperative patient body position data) so that the image displayed on the monitor will accurately show the position(s) of the surgical instrument(s) relative to the locations of anatomical structures shown on the tomographic scan.
- a number of different registration strategies have been used, including intrinsic strategies as well as extrinsic strategies.
- fiducial registration The registration strategy most widely used in sinus surgery and other ENT procedures is an intrinsic registration strategy known as anatomical fiducial registration.
- a number of fiducial markers are placed at specific anatomical locations on the patient's body during the preoperative tomographic scan and during the surgical procedure. These fiducial markers are typically positioned on the patient's head or face at locations that correspond to specific anatomical landmarks within the ears, nose and/or throat.
- the fiducial markers may be mounted on a head set or frame that is worn by the patient or the fiducial markers may be affixed directly to the patient's body (e.g., by adhesive attachment to the skin, anchoring into bone, etc.).
- the sinus surgery or other ENT procedure is performed.
- the fiducial markers must remain in fixed position on or in the patient's body until after the surgery has been completed.
- IGS systems that use fiducial markers mounted on or in the patient's body allow for free movement and repositioning of the patient's head during surgery.
- image guidance systems When applied to functional endoscopic sinus surgery (FESS) the use of image guidance systems allows the surgeon to achieve more precise movement and positioning of the surgical instruments than can be achieved by viewing through an endoscope alone. This is so because a typical endoscopic image is a spatially limited, two dimensional, line-of-sight view.
- image guidance systems provides a real time, three dimensional view of all of the anatomy surrounding the operative field, not just that which is actually visible in the spatially limited, two dimensional, direct line-of-sight endoscopic view.
- One shortcoming of the prior art IGS systems used in sinus surgery and other ENT procedures is that the sensors have been mounted on proximal portions of the instruments (e.g., on the handpiece of the instrument) such that the sensors remain outside of the patient's body during the surgical procedure. Because these prior art surgical instruments were of rigid, pre-shaped construction, the proximally mounted sensors could be used to accurately indicate to real time position of the distal tip of the instrument. However, in the new FTSI procedures and other new ENT procedures that use flexible and/or malleable catheters and instruments, it is no longer suitable to mount the sensors on proximal portions of the surgical instruments such that the sensors remain outside of the body. Rather, it will be necessary to mount or integrate the sensors at the distal tips of the instruments and/or at other locations on portions of the instruments that are actually inserted into the patient's body, thereby allowing for flexibility or malleability of the instrument shaft.
- the present invention provides new sensor-equipped devices that are useable to perform image guided FTSI procedures as well as a variety of other image guided ENT procedures. Additionally, the present invention provides improvements and modifications to the prior art IGS systems and methods to facilitate the performance of image guided FTSI and other image ENT procedures with minimal or less iatrogenic trauma to and/or alteration of anatomical structures that are not involved in the disorder being treated.
- the present invention generally provides methods, systems and devices for performing image guided FTSI procedures as well as other image guided procedures for the treatment of sinusitis and other disorders of the paranasal sinuses, ears, nose and/or throat.
- a method and system for performing an image guided treatment procedure to treat a disease or disorder of an ear, nose, throat or a paranasal sinus in a human or animal subject e.g., guidewires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices, drills, rasps, saws, etc.
- a working device e.g., guidewires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices, drills, rasps, saws, etc.
- a sensor is positioned on or in the portion of the working device that becomes inserted into the ear, nose, throat or paranasal sinus of the subject.
- An image guidance system is used to determine the location of the sensor when the sensor is positioned within an ear, nose, throat or paranasal sinus of the subject, thereby providing a real time indication of the positioning and movement of the working device during the treatment procedure.
- a preoperative tomographic scan (e.g., a CT scan, MRI scan, PET scan, 3 dimensional fluoroscopy such as FluoroCT, etc.) may be obtained and the image guidance system may be programmed to display the tomographic images on a video monitor along with a real time indication (e.g., cross hairs, an illuminated dot, etc.) of the location of the working device relative to the anatomical structures shown on the tomographic image.
- a real time indication e.g., cross hairs, an illuminated dot, etc.
- an endoscope or intranasal camera may additionally be used to provide a direct line-of-sight video image through the nasal cavity.
- Such direct line-of-sight video image may be displayed on a separate monitor or may be integrated with the tomographic image data to provide a single monitor display combining 1) the real time line-of-sight video image, 2) indicia (e.g., dotted lines) depicting anatomical structures that are hidden from view on the real time line-of-sight video image and 3) indicia of instrument position provided by the image guidance system.
- the indicia of instrument position may consist of a single indicator (e.g., cross hairs or a dot) indicating the current position of the working device within the subject's body.
- the indicia of instrument position may consist of a series of marks (e.g., a sharp dot followed by a series of phantom dots) indicating the path of prior or future advancement or movement of the working device.
- the working device may optionally include a rotation indicator (e.g., an accelerometer) and the image guidance system may be further programmed to sense and indicate the rotational orientation of the working device within the subject's body.
- sensor-equipped working devices e.g., guidewires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices, drills, rasps, saws, etc.
- image guided FTSI procedures e.g., guidewires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices, drills, rasps, saws, etc.
- These image guided working devices of the present invention generally comprise an elongate shaft that is insertable through the nose to a location within a paranasal sinus, ear, nose or throat of the subject and one or more sensor(s) is/are positioned on or in the device at a location that becomes inserted into the subject's body during the procedure.
- a sensor may be located at the distal tip of the device.
- sensor(s) may be located at other locations on the shaft of the device, such as at the location of a particular working element (e.g., a dilator, balloon, substance injector, needle, penetrator, cutter, debrider, microdebrider, hemostatic device, cautery device, cryosurgical device, heater, cooler, scope, lense, port, endoscope, light guide, phototherapy device, drill, rasp, saw, etc.).
- a particular working element e.g., a dilator, balloon, substance injector, needle, penetrator, cutter, debrider, microdebrider, hemostatic device, cautery device, cryosurgical device, heater, cooler, scope, lense, port, endoscope, light guide, phototherapy device, drill, rasp, saw, etc.
- the shaft of the working device proximal to the sensor(s) may be flexible or malleable.
- Such flexibility or malleability may allow the working device to be advanced though tortuous regions of the intra nasal anatomy and/or to be positioned behind obstructive anatomical structure(s) (e.g., behind the uncinate process) without traumatizing or requiring removal or surgical modification of the obstructive anatomical structure(s).
- obstructive anatomical structure(s) e.g., behind the uncinate process
- a system of working devices specifically useable to perform an image guided FTSI procedure generally comprises a flexible guidewire that is advanceable into the ostium of a paranasal sinus and a dilation catheter that is advanceable over the guidewire and useable to dilate the ostium of the paranasal sinus.
- a sensor is located on a portion of the guidewire and/or dilation catheter that becomes positioned within the subject's body.
- the sensor communicates with the image guidance system to provide real time indicia of the position of the guidewire and/or dilation catheter such that the operator may precisely position the dilator within the desired sinus ostium without the need for obtaining direct line-of-sight endoscope view of that sinus ostium.
- the system may additionally comprise a tubular guide through which the guidewire and/or dilation catheter may be advanced.
- the tubular guide may be rigid, flexible or malleable and may be specifically configured to be advanced through the nose to a position within or near the ostium of the affected paranasal sinus.
- fiducial marker devices may be precisely and reproducibly positioned within the mouth of a human subject.
- these fiducial marker devices may incorporate brackets, projection of other configurational attributes for mounting of a transmitter useable in conjunction with an electromagnetic image guidance system.
- a single sensor is mounted on a working device that is inserted into the body (e.g., into a paranasal sinus, and a plurality of transmitters are positioned outside of the subject's body such that the device-mounted sensor will receive signals from at least 3 transmitters, thereby enabling a computer within the image guidance system to compute (e.g., triangulate) the three dimensional position of the sensor within the subject's body.
- a system that is useable to perform a procedure in which a working device is inserted to a position within an ear, nose, throat or paranasal sinus of a human or animal subject.
- such system comprises a) a working device that has a proximal end and a distal end, said working device being insertable into an ear, nose, throat or paranasal sinus of a human or animal subject and useable to facilitate performance of a diagnostic or therapeutic procedure; b) an extender that is attachable to the proximal end of the working device; c) a marker assembly that is attachable to or part of the extender, said marker assembly comprising a plurality of active or passive markers; and d) an image guidance system that is adapted to receive signals from the sensors and to determine, on the basis of said signals, the current position of the working device within the subject's body.
- the working device may have a lumen through which a second working device may be inserted or through which a fluid or substance may be infused.
- the extender may also have a lumen that becomes substantially continuous with the working device lumen to facilitate delivery of such second working device or substance.
- the marker assembly may be attachable to and detachable from the extender by way of a clamp or other connector apparatus. Still further in accordance with the invention, there is provided a method for image guided performance of a treatment procedure to treat a disease or disorder of an ear, nose, throat or a paranasal sinus in a human or animal subject.
- Such method generally comprises the steps of a) providing a working device that is useable to carry out or facilitate at least a portion of said treatment procedure, said working device having a distal end that becomes inserted into the subject's body and a proximal end that remains outside of the subjects body; b) providing an extension member that is attachable to the proximal end of the working device; c) providing a marker assembly that comprises a plurality of markers, said marker assembly being attachable to the extension member; c) providing an image guidance system that is useable to determine the location of the working device within the ear, nose, throat or paranasal sinus of the subject on the basis of signals received from the markers of the marker assembly; d) attaching the extension member to the proximal end of the working device; e) attaching the marker assembly to the extension member; g) inserting the distal end of the working device into the subject's body; and h) using the image guidance system to detect the position of the working device within the subject's body on the basis of signals received
- FIG. 1 is a side view of a sensor-equipped guidewire of the present invention.
- FIG. 1A is an enlarged cut-away view of the distal end of the sensor-equipped guidewire of FIG. 1 .
- FIG. 2A is a perspective view of a sensor-equipped guide tube of the present invention.
- FIG. 2B is a perspective view of another sensor-equipped guide tube of the present invention.
- FIG. 3 is a schematic perspective view of a sensor-equipped working device useable to perform a therapeutic or diagnostic procedure within an ear, nose, throat or paranasal sinus.
- FIG. 4 is a perspective view of a sensor-equipped dilation catheter of the present invention.
- FIG. 4A is a partial cut away view of a first embodiment of a sensor equipped balloon dilation catheter of the present invention.
- FIG. 4B is a cross sectional view through line 4 B- 4 B of FIG. 4A .
- FIG. 4C is a partial cut away view of a second embodiment of a sensor equipped balloon dilation catheter of the present invention.
- FIG. 4D is a cross sectional view through line 4 D- 4 D of FIG. 4C .
- FIG. 4E is a partial cut away view of a third embodiment of a sensor equipped balloon dilation catheter of the present invention.
- FIG. 4F is a cross sectional view through line 4 F- 4 F of FIG. 4E .
- FIG. 4G is a partial cut away view of a fourth embodiment of a sensor equipped balloon dilation catheter of the present invention.
- FIG. 4H is a cross sectional view through line 4 H- 4 H of FIG. 4G .
- FIG. 4I is a partial cut away view of a fifth embodiment of a sensor equipped balloon dilation catheter of the present invention.
- FIG. 4J is a cross sectional view through line 4 J- 4 J of FIG. 4I .
- FIG. 5 is a perspective view of a sensor-equipped sub-selective sheath of the present invention.
- FIG. 5A is a cross sectional view through line 5 A- 5 A of FIG. 5 .
- FIG. 6 is a side view of a sensor equipped penetrator of the present invention.
- FIG. 7A shows a human subject undergoing a preoperative tomographic scan while wearing a head frame having fiducial anatomical markers thereon.
- FIG. 7B is a schematic showing of data from the preoperative tomographic scan being loaded into the computer workstation of the image guidance system in accordance with this invention.
- FIG. 7C shows an example of the image guidance system being used to provide a single image display (which may or may not incorporate superimposed data or indicia from multiple sources).
- FIG. 7D an example of the image guidance system being used to provide separate displays of multiple images.
- FIG. 7E shows the human subject positioned on the operating table and wearing the head frame having fiducial anatomical markers and a transmitter thereon.
- FIG. 8 is a schematic depiction of an electromagnetic field having a sensor equipped working device of the present invention positioned therein.
- FIG. 8A is a perspective view of one embodiment of a localizer apparatus mountable transmitter having one or more transmitter locations.
- FIG. 8B is a perspective view of another embodiment of a localizer apparatus mountable transmitter having three transmitter locations.
- FIG. 8C is a perspective view of another embodiment of a localizer apparatus mountable transmitter having three transmitter locations.
- FIG. 9 shows the human subject positioned on the operating table during performance of an image guided interventional procedures using sensor equipped device(s) of the present invention.
- FIG. 9A is a schematic showing of a video monitor displaying indicia of the path of advancement or movement of a sensor equipped working device in accordance with the present invention.
- FIG. 10A shows a first orthogonal view of an anatomical image with indicators of the current position of the distal tip of a working device and indicia of the path of advancement of that working device, as seen on a video monitor screen during performance of a procedure according to this invention.
- FIG. 10B shows a second orthogonal view of the procedure shown in FIG. 10A as viewed on a separate video monitor screen during performance of a procedure according to this invention.
- FIGS. 11A-11C show examples of direct line-of-sight endoscopic images with superimposed indicia indicating the positions of anatomical structure(s) and/or apparatus that are hidden from view on the line-of-sight endoscopic images, as viewed on video monitors during performance of procedures according to this invention.
- FIG. 12 shows a sensor-equipped working device of the present invention that is additionally equipped with a rotation sensor to indicate the rotational orientation of the device while it is positioned within a subject's body.
- FIGS. 13A and 13B are schematic showings of examples of anatomical images viewed on a video monitor with indicia of the current position and prior path of advancement of an image guided working device shown in relation to a) adjacent anatomical structures and b) “keep in” and/or “keep out” zones that have been delineated to assist the operator in safely and correctly performing the procedure.
- FIG. 14A is a top perspective view of a first embodiment of a fiducial marker mouthpiece according to the present invention.
- FIG. 14B is a side perspective view of the fiducial marker mouthpiece of FIG. 14 A .
- FIG. 15A is a top perspective view of a second embodiment of a fiducial marker mouthpiece according to the present invention.
- FIG. 15B is a side perspective view of the fiducial marker mouthpiece of FIG. 15 A .
- FIG. 15 C is a front view of the mouth of a human subject having the fiducial marker mouthpiece of FIGS. 15A and 15B in its operative position.
- FIG. 16 is a partial cut-away side view of a sensor equipped guidewire of the present invention attached to a cable/connector assembly of the present invention.
- FIG. 17 is a partial cut-away side view of a sensor equipped working device of the present invention having a cable/connector assembly of the present invention attached thereto.
- FIG. 18 is an exploded view of a system of the present invention that includes a tubular guide working device, an extension that is attachable to the proximal end of the tubular guide working device and a navigation elements assembly that is attachable to the extender to facilitate tracking of the working device by an IGS system.
- FIG. 19 is a fully assembled view of the device of FIG. 18 along with an IGS system useable therewith.
- FIGS. 1-6 and 11 show examples of sensor equipped working devices of the present invention.
- FIGS. 7A-17 show various components and operational aspects of an image guidance system of the present invention and its use in conjunction with the sensor equipped working devices of the present invention.
- FIGS. 1 and 1 A show a sensor equipped guidewire 10 that may be inserted through a nostril (with or without a guide tube or guide catheter) and advanced to a desired location within a paransal sinus, ear, nose or throat.
- This sensor-equipped guidewire 10 comprises an elongate flexible body 12 having a proximal end PE and a distal end DE.
- the elongate body 12 comprises a core member 19 which may be solid or tubular.
- the core member 19 is tubular and comprises stainless steel hypotube.
- an outer member 18 such as a helical strand or wire may be wound or otherwise disposed about the core member 19 , as is well known in the art of guidewire manufacturing.
- a distal tip member 15 formed of electrically insulating material e.g., plastic
- electrically insulating material e.g., plastic
- any appropriate means such as adhesive (e.g., epoxy), mechanical innerlocking, frictional fit, etc.
- An electromagnetic sensor 16 e.g., an electromagnetic coil
- an electrically insulating cylindrical cover 17 e.g. a plastic sheath, plastic shrink wrap, etc
- cover 17 may be substantially flush with the adjacent outer surface of the outer member 18 , if present, as shown in FIG. 1A .
- sensor leads 14 may extend from the electromagnetic sensor coil 16 , through the lumen of the core member 19 and to or out of the proximal end PE of the guidewire 10 .
- a connector 21 e.g., a jack located on the proximal end PE of the guidewire 10 may be configured to connect to a corresponding connector 27 (e.g., a plug) located on one end of a cable 25 .
- a connector 23 on the other end of the cable 25 is then connectable to an image guidance system that is programmed for use in combination with such guidewire, as described more fully herebelow.
- the guidewire's proximal connector 21 may be connected to another types of cable/connector assembly 400 as shown in FIGS. 16 and 17 and described herebelow.
- the sensor 16 may be in wireless communication with an image guidance system, as explained more fully hereblow.
- the outer helical wire wrap 18 may formed of wire, a plastic strand, a helically cut metal or plastic tube, or any other suitable material.
- the guidewire 10 may be constructed such that at least a distal portion of the outer member 18 or other outer material (e.g., helically cut tube) may be made of substantially nonferromagnetic material and may extend over the sensor 16 such that the sensor is disposed within a substantially nonferromagnetic portion of the outer member 18 .
- the sensor leads 14 may then extend through the outer member 18 .
- the senor 16 need not necessarily be longitudinally aligned with or disposed about the longitudinal axis of the device. Rather, the sensor may be disposed transversely within the device or in any other suitable attitude, position or alignment.
- a crossmember may extend transversely across such lumen or cavity and the sensor 16 may be disposed about such crossmember (e.g., an electromagnetic coil may be wound about the cross member).
- Such construction may allow for better selectivity and control of the magnetic permeability of the material lying under and/or over the sensor 16 and may allow for a more robust design and construction of certain devices.
- Examples of commercially available image guidance systems that may be modified and programmed for use in connection with this sensor equipped guidewire 10 , as well as the other sensor equipped working devices described in this patent application, include the ENTrak PlusTM and InstaTrak ENTTM systems available from GE Medical Systems, Salt Lake City, Utah as well as systems available from Surgical Navigation Technologies, Inc., Louisville, Colo., Biosense-Webster, Inc., Diamond Bar, Calif. and Calypso Medical Technologies, Inc., Seattle, Wash.
- the guidewire body 12 and any proximal connector 21 may be small enough in diameter to allow the desired catheter(s) and/or other devices(s) to be advanced over the guidewire body 12 and any proximal connector 21 .
- FIGS. 2A and 2B show examples of sensor equipped tubular guides 20 a , 20 b that may be inserted through a nostril (with or without a guidewire) and advanced to a desired location within a paranasal sinus, ear, nose or throat. All of portions of tubular guides of the present invention may be rigid, flexible or malleable. In the particular examples shown in FIGS.
- the tubular guides 20 a , 20 b are substantially rigid and preformed to a specific shape to facilitate advancement of the tubular guide 20 a or 20 b to locations that are immediately adjacent to the ostia of paranasal sinuses such that working devices such as dilation catheters and the like may be advanced through the tubular guide 20 a or 20 b and into or through the adjacent sinus ostium.
- FIG. 2A shows an example of a tubular guide 20 a that is configured for use in accessing the ostium of a maxillary sinus of a human subject.
- This tubular guide 20 a comprises a substantially straight proximal portion 22 a and a curved distal portion 24 a .
- a Luer hub 28 a is mounted on the proximal end PE of the proximal portion 20 a .
- a sensor 16 such as an n electromagnetic sensor coil, is positioned on the curved distal portion 24 a .
- Wire leads 14 may extend from the electromagnetic sensor coil 16 , though the proximal portion 22 a and out of the proximal end PE of the tubular guide 20 a , as shown, for attachment of the tubular guide 20 a to an image guidance system that is programmed for use in combination with such guidewire as described more fully herebelow.
- the proximal portion 22 a comprises stainless steel hypotube of approximately 0.040 inch to approximately 0.200 inch outer diameter. It will be appreciated that in embodiments where stainless steel or other metal is used, such metal will be separated from the sensor 16 by insulating material(s) and/or sufficient distance to avoid any affect that the meal may have on the accuracy or function of the sensor 16 .
- a plastic tube formed of rigid plastic e.g., pebax, polyurethane, etc
- This protruding portion of the plastic tube is then plastically deformed (e.g., thermally formed) to the desired curvature, thereby forming the curved distal portion 24 a of the tubular guide 20 a .
- the sensor 16 comprises a coil that is wound about or positioned about the outer surface of the curved distal portion 24 a of the tube.
- a plastic film or other electrically insulating cover may be heat shrunk or otherwise disposed and secured about the electromagnetic sensor 16 to provide a smooth outer surface in the area where the electromagnetic sensor 16 is mounted.
- the electromagnetic sensor 16 may be mounted at or near the distal tip of the tubular guide 20 a to permit the associated image guidance system to monitor the real time position of the distal tip of the guide 20 a .
- Wire leads 14 may extend from the electromagnetic sensor 16 , through or along the distal portion 24 a , through or along the proximal portion and out of the proximal end PE of the tubular guide 20 a , as shown.
- the plastic tube that extends through the metal hypotube and protrudes thereform to form the curved distal portion 14 a may have a large working lumen as well as one or two additional lumens through which the wire leads 14 may pass.
- the wire leads 14 may pass along the outer surface of the distal portion 24 a , the through the lumen of the hupotube, between the outer surface of the inner plastic tube and inner surface of the outer hypotube.
- the distal portion 24 a is substantially rigid and is preformed to a curve of from approximately 70 degrees through approximately 135 degrees, so as to be useable for accessing the ostium of a maxillary sinus without requiring substantial cutting or surgical modification of the uncinate process or other normal anatomical structures within the nose.
- the distal portion 24 a may be malleable (e.g., a malleable metal, polymer or metal-polymer composite) so that the operator may shape the distal portion 24 a as desired, depending on the particular sinus ostium or other location to be accessed, anatomical irregularities of the subject, etc. So long as the electromagnetic sensor coil 16 is located distal to any curve(s) introduced in the malleable distal segment, the introduction of such custom made curve(s) will not require any recalibration or otherwise hamper the ability of the image guidance system to sense the position of the distal end of the tubular guide 20 a .
- malleable e.g., a malleable metal, polymer or metal-polymer composite
- this tubular guide 20 a is inserted through the subject's nostril, either alone, over a previously inserted guidewire or with a guidewire pre-inserted into the lumen of the tubular guide 20 a .
- the tubular guide 20 a is then advanced through the medial meatus and rotated to cause the curve of the distal portion 24 a to pass over the uncinate process such that the open distal end DE of the tubular guide 20 a is positioned adjacent to and in substantial alignment with the ostium of the maxillary sinus.
- the tubular guide 20 b shown in FIG. 2B may be constructed and used in the same manner as the tubular guide 20 a of FIG. 2A except that the curved distal portion 24 b has a less severe curvature than the distal portion of the 24a of the guide shown in FIG. 2A .
- the distal portion 24 b is substantially rigid and is preformed to a curve of from approximately 30 degrees through approximately 90 degrees, thereby being useable for accessing the ostia of frontal sinuses.
- tubular guides 20 a , 20 b shown in FIGS. 2A and 2B are merely examples of the many shapes and configurations in which tubular guides of the present invention may be configured to accesses specific locations within the nose, paranasal sinuses, Eustacian tubes, etc. Additionally, it is to be appreciated that any of the guidewires 10 , tubular guides 20 a , 20 b or other working devices 30 of this invention may be steerable, bendable, malleable or capable of being articulated.
- FIG. 3 shows a generic example of a sensor-equipped working device 30 of the present invention.
- This device 30 comprises an elongate shaft 32 , a sensor 16 , a working element 36 and wires 14 that extend from the sensor 16 through the shaft 32 and out of the proximal end PE of the device 30 .
- the outer diameter of the working device 30 may be less than the inner diameter of a sensor-equipped tubular guide 20 a or 20 b or other tubular guide such that the working device 30 may be advanced through a tubular guide to a desired location where treatment is to be applied.
- the working device 30 may have a guidewire lumen extending through or adjacent to the shaft 32 such that the working device 30 may be advanced over a sensor-equipped guidewire 10 or other guide member to a desired location where the treatment is to be applied.
- the senor 16 comprises a coil that is wound about or positioned about the outer surface of shaft 32 a known distance from the distal end DE of the device 30 .
- the spatial relationship of the sensor 16 to the distal end DE will remain constant and, thus, the position of the distal end DE of the device 30 may be determined and displayed on a video screen on the basis of the sensed location of the sensor 16 .
- one or more sensors may be positioned in known spatial relation to the working element so as to provide the ability to determine and display the real time location of the working element on the basis of the sensed location of the sensor(s) 16 .
- the senor comprises a wire coil
- such coil may be positioned within or wound about the outer surface of the elongate shaft 32 .
- a plastic film or other electrically insulating cover e.g, an outer skin
- Wire leads 14 may extend from the sensor 16 , through the shaft 32 to facilitate connection of the sensor 16 to an image guidance console (e.g., a computer workstation) as described herein.
- the wire leads 14 may pass along the outer surface of the shaft 32 and may be secured by adhesive, a surrounding wrap, sheath or skin, etc.
- wire leads 14 or the sensor 16 itself may be connected directly, indirectly through an intervening apparatus (e.g., a cable, self-calibrating instrument system or other intervening apparatus) or by wireless connection to the console 76 and/or computer 78 .
- an intervening apparatus e.g., a cable, self-calibrating instrument system or other intervening apparatus
- such self-calibrating instrument system may comprise a sensor-equipped distal instrument attached to a proximal handpiece.
- the instrument system would be initially calibrated by touching the sensor-equipped distal instrument to fiducial markers. Once the instrument system was calibrated, the sensor-equipped distal instrument could be exchanged for other sensor-equipped distal instruments without requiring the user to recalibrate the instrument system. Instead, the instrument system would self calibrate by means of the proximal handpiece reading calibration information embedded electronically in a tag on the distal instrument.
- the working element 36 may be positioned at a location between the proximal end PE and distal end DE, as shown in the example of FIG. 3 .
- the working element 36 may be positioned at or on the distal end DE of the device 30 , depending on the mode of action and intended use of the working element.
- the working element 36 may perform or facilitate any type of therapeutic or diagnostic function. Examples of working elements 36 that may be used include but are not limited to: dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, lenses, ports, endoscopes, light guides, phototherapy devices, drills, rasps, saws, etc.
- any working device 30 of this invention may include a guide member 37 , such as a flexible, malleable or rigid wire or other elongate member, that extends from the distal end DE of the device, as shown in phantom in FIG. 3 .
- This guide member 37 may be tapered or nontapered.
- the guide member 37 will typically be smaller in diameter than the body 32 of the working device 30 such that the guide member may be easily advanced through an ostium of other anatomical opening, thereby facilitating or “guiding” placement of the body 32 of the device 30 in a position adjacent to that ostium or opening and/or thereby facilitating or guiding further advancement of the body 32 of the device 30 through that ostium or opening.
- FIGS. 4-4J show some specific examples of sensor equipped working devices in the nature of dilation catheters (e.g., balloon catheters) for dilation of the ostia of paranasal sinuses or other anatomical or pathological structures.
- FIGS. 4-4B show an embodiment of a sensor equipped dilation catheter 40 a comprising a shaft 42 comprising a single, multi-lumen tube, a proximal Luer hub 48 , a balloon 46 , sensor(s) 16 and sensor leads 14 . While any number of sensors 16 may be used, the example shown in FIGS. 4-4B incorporates two (2) sensors 16 , wherein one sensor 16 is located near the proximal end of the balloon 46 and the other sensor 16 is located near the distal end of the balloon 46 .
- a through lumen 94 extends from the bore of the proximal Luer hub 48 , through the shaft 42 and terminates distally in a distal end opening.
- This through lumen 94 may be used for fluid infusion/aspiration and/or for guidewire passage.
- Lead lumens 98 also extend through the shaft 42 and the sensor leads 14 extend through such lead lumens 98 .
- An inflation/deflation lumen 96 extends from a sidearm port 49 on the proximal hub 48 , through the shaft 42 and terminates in an aperture 91 within the balloon 46 to facilitate inflation and deflation of the balloon 46 .
- the balloon will typically be formed of a relatively non-compliant material such as polyethylene teraphthalate (PET) or nylon of a thickness and density that renders the balloon capable of withstanding inflation pressures of up to approximately 25 atmospheres.
- PET polyethylene teraphthalate
- the balloon 46 may have a straight cylindrical side wall with tapered ends, as shown, and if the balloon 46 is so constructed, the sensors 16 may be positioned directly beneath the proximal and distal ends of the straight cylindrical mid-portion MP of the balloon 46 as seen in FIG. 4A . As explained more fully herebelow, this catheter 40 may be advanced to a position where the deflated balloon 46 is positioned within a stenotic ostium of a paranasal sinus with the distal sensor 16 on one side of the ostium and the proximal sensor 16 on the other side of the ostium.
- FIGS. 4C and 4D show another way in which a sensor equipped dilation catheter 40 b may be constructed.
- the catheter 40 b differs from that shown in FIGS. 4-4B because its shaft 104 comprises an outer tube 100 and an inner tube 102 .
- the inner tube 102 extends through the outer tube 100 and protrudes out of the distal end of the outer tube 100 by a fixed distance.
- the sensors 16 are mounted on the outer tube 100 at spaced apart locations such that one sensor 16 is directly beneath the proximal end of the straight walled midportion MP of the balloon 46 and the other sensor 16 is directly beneath the distal end of the straight walled midportion MP of the balloon 46 .
- the outer tube 100 has a main through lumen 106 and two lead lumens 108 through which the sensor leads 14 extend.
- the inner tube 102 has a through lumen 103 which may be used as a guidewire lumen and/or an infusion/aspiration lumen or for other purposes.
- the outer diameter of the inner tube 102 is smaller than the inner diameter of the outer tube 100 such that a space exists to allow balloon inflation fluid to be infused into or removed from the balloon 46 through the lumen of the outer tube 100 .
- This embodiment of the dilation catheter 40 shown in FIGS. 4C-4D may be positioned and used to dilate the ostium of a paranasal sinus in the same manner as that described above with respect to the embodiment of FIG
- FIGS. 4E and 4F show yet another way in which a sensor equipped dilation catheter 40 c may be constructed.
- the catheter 40 c has a shaft 114 that comprises an outer tube 100 a and an inner tube 102 a , wherein the outer tube 100 a terminates near the longitudinal midpoint of the balloon 46 and the inner tube 102 a extends through the outer tube 100 a and protrudes out of the distal end of the outer tube 100 a by a fixed distance.
- the proximal sensor 16 is positioned on the outer tube 100 a at a location that is directly beneath the proximal end of the straight walled midportion MP of the balloon 46 and the other sensor 16 is positioned on the inner tube 102 a at a location that is directly beneath the distal end of the straight walled midportion MP of the balloon 46 .
- the outer tube 100 a has a main through lumen 106 a and one lead lumen 120 through which the sensor leads 14 from the proximal sensor 16 extend.
- the inner tube 102 a has a through lumen 103 a which may be used as a guidewire lumen and/or an infusion/aspiration lumen.
- the outer diameter of the inner tube 102 a is smaller than the inner diameter of the lumen 106 a of outer tube 100 a such that a space exists to allow balloon inflation fluid to be infused into or removed from the balloon 46 through the lumen 106 a of outer tube 100 a.
- the sensor leads 14 from the distal sensor 16 extend along the outer surface of the inner tube 102 a , as shown, and may be secured to the outer surface of the inner tube 102 a by any suitable means such as adhesive, clips, bands, sheathing, shrink wrapping, etc. It is to be appreciated, however, that in any of the embodiments, any of the sensor leads 14 may extend outside of, within or through a lumen of any portion of the catheter shaft, as may be desirable or expedient for manufacturing or operative purposes and/or to minimize electrical interference and optimize signal transmission.
- FIGS. 4G and 4H show another way in which a sensor equipped dilation catheter 40 d may be constructed. In this example, like the example shown in FIGS.
- the catheter 40 d has a shaft 126 that comprises an outer tube 100 b and an inner tube 102 b .
- the outer tube 100 b terminates near the longitudinal midpoint of the balloon 46 and the inner tube 102 b extends through the outer tube 100 b and protrudes out of the distal end of the outer tube 100 b by a fixed distance.
- the proximal sensor 16 is positioned on the outer tube 100 b at a location that is directly beneath the proximal end of the straight walled midportion MP of the balloon 46 and the other sensor 16 is positioned on the inner tube 102 b at a location that is directly beneath the distal end of the straight walled midportion MP of the balloon 46 .
- the outer tube 100 b has a main through lumen 106 b and one lead lumen 126 through which the sensor leads 14 from the proximal sensor 16 extend.
- the inner tube 102 b has a through lumen 103 b which may be used as a guidewire lumen and/or an infusion/aspiration lumen.
- the outer diameter of the inner tube 102 b is smaller than the inner diameter of the outer tube 100 b such that a space exists to allow balloon inflation fluid to be infused into or removed from the balloon 46 through the lumen 106 b of the outer tube 100 b .
- a second lead lumen 128 is formed in the wall of the inner tube 102 b and the wire leads 14 from the distal sensor 16 extend through such second lead lumen 128 , as shown.
- FIGS. 4I and 4J show yet another way in which a sensor equipped dilation catheter 40 e may be constructed.
- the shaft 136 comprises an outer tube 100 c that terminates within the proximal region of the balloon 46 and the inner tube 102 c extends through the outer tube 100 c such that it protrudes out of the distal end of the outer tube 100 c by a fixed distance.
- both the proximal and distal sensors 16 are positioned on the inner tube 102 c .
- the proximal sensor 16 is positioned on the inner tube 100 c at a location that is directly beneath the proximal end of the straight walled midportion MP of the balloon 46 and a distal sensor 16 is positioned on the inner tube 102 c at a location that is directly beneath the distal end of the straight walled midportion MP of the balloon 46 .
- the outer tube 100 c has a main through lumen 106 c through which the inner tube 102 c extends.
- the inner tube 102 c has a through lumen 103 c which may be used as a guidewire lumen and/or an infusion/aspiration lumen and two lead lumens 142 , 144 through which the sensor leads 14 from the proximal and distal sensors 16 extend.
- the outer diameter of the inner tube 102 c is smaller than the inner diameter of the lumen 106 c of outer tube 100 c such that a space exists to allow balloon inflation fluid to be infused into or removed from the balloon 46 through the lumen 106 c of outer tube 100 c.
- balloons 46 shown in FIGS. 4-4J are straight walled cylindrical balloons having tapered ends, it is to be appreciated that various other shapes and configurations of balloons may be employed in any embodiments of the dilation catheter 40 .
- one or more depressions or indentations e.g., an annular depression or groove
- examples of balloons having such depressions or indentations are described in U.S. patent application Ser. Nos. 10/829,917, 10/944,270 and 11/037,548, which are expressly incorporated herein by reference.
- sensors 16 may be positioned at many other locations other than those shown in these examples.
- sensor(s) may be located in the center of the balloon 46 or other working element and/or elsewhere on or in the catheter shaft within the balloon 46 or other working element and/or distal to the balloon 46 or other working element and/or proximal to the balloon 46 or other dilator and/or within the wall(s) of the balloon 46 or other dilator.
- the shaft of the device e.g., the catheter body
- the shaft of the device need not be of coaxial (e.g., tube within a tube) design, but alternatively may be a single catheter body having a plurality of lumens.
- a catheter shaft having four lumens may be used.
- One lumen may serve as a guidewire/working lumen
- one lumen may serve as a balloon 46 inflation/deflation lumen
- the other two lumens may serve as passageways for the sensor leads 14 .
- a fixed guide tip and/or sensor 16 may be located at the distal end DE of the device.
- the balloon 46 may be replaced by other types of dilators or expandable structures, such as expandable mesh cages and the like.
- the balloon 46 or other dilator may be coated, textured, equipped with injection ports or otherwise equipped and/or constructed to deliver additional treatment(s) in addition to the primary anatomical dilation.
- the balloon 46 may be coated with or may comprise a drug or any other substance (e.g., a hemostatic agent or a substance that deters scarring or adhesion formation) that will transfer onto or into the tissue contacted by the balloon. Examples of balloons having such additional treatment delivering capabilities are described in U.S. patent application Ser. Nos. 10/912,578 and 11/037,548, which are expressly incorporated herein by reference.
- a stent or other radially expandable implantable device may be mounted on the exterior of the balloon 46 or other dilator such that, when the balloon 46 is inflated (or when any other type of dilator is expanded) the stent or other radially expandable implantable device will be expanded and will remain within the body after the balloon has been deflated (or the other type of dilator contracted) and the dilation catheter 40 removed.
- Examples of stents and other radially expandable implantable devices that may be used in conjunction with these sensor equipped dilation catheters 40 are described in U.S. patent application Ser. Nos. 10/829,917; 10/912,578; 10/944,270 and 11/037,548, which are expressly incorporated herein by reference.
- the sheath 50 shown in FIGS. 5 and 5 A comprises an elongate tubular body 52 having a Luer hub 54 on its proximal end PE and a sensor 16 , such as an electromagnetic coil located at some desired location, such as at or near the distal end DE of the tubular body 52 .
- a main lumen 216 extends through the tubular body 52 in communication and direct alignment with the bore of the Luer hub 54 .
- a separate lead lumen 56 also extends through the tubular body 52 .
- Sensor lead wires 14 extend through such lead lumen 56 and out of the proximal hub 54 such that the lead wires 14 may be connected to the computer of an image guidance system as described more fully herebelow.
- the inner diameter D 1 of the sheath lumen 216 will be large enough to allow a guidewire 10 and/or working device 30 , 40 , 60 to be advanced through the lumen 216 of the subselective sheath 50 and/or the outer diameter D 2 of the tubular body 52 will be small enough to advance through a tubular guide 20 a , 20 b .
- the tubular body 52 of the subselective sheath 50 may be formed of a polymer such as Pebax, polyimide, high density polyethylene (HDPE), low density polyethylene (LDPE), blends of HDPE/LDPE, etc. and may have a wall thickness from approximately 0.001 inches through approximately 0.050 inches.
- a lubricious liner or coating may be disposed within the main lumen 216 to facilitate sliding of guidewires or working devices therethrough.
- the penetrator 60 comprises a solid or hollow elongate body 62 (e.g., a plastic or stainless steel rod or hypotube of approximately 14 gage through approximately 27 gage having a sharp tip 64 at its distal end DE.
- a sensor 16 such as an electromagnetic coil, is positioned at a desired location on the penetrator, such as at or near its distal end DE. In some embodiments a sensor coil may be wrapped about the elongate body 62 .
- a notch or depression may be formed in the elongate body to accommodate such coil wrap and a covering, such as a plastic coating, sleeve, shrink wrap, etc. may be disposed about the coil, thereby providing a smooth outer surface and deterring direct contact of the sensor coil with body fluids or tissues.
- Sensor lead wires 14 extend through the elongate body 62 exiting near its proximal end PE such that they may be connected to the computer of an image guidance system as described more fully herebelow.
- any of the sensor equipped working devices may incorporate biocompatible outer layers or coatings of lubricious material to facilitate smooth advancement of the device through the nasal anatomy, unless the inclusion of such coating would render the device unusable for its intended purpose.
- any of the sensor equipped working devices may incorporate a vibrator or other movement imparting apparatus to cause vibration, reciprocation, vacillation or other movement of the working device to facilitate passage of the working device through tight or tortuous anatomical passages, unless the inclusion of such vibrator or other movement imparting apparatus would render the device unusable for its intended purpose.
- any of the sensor equipped working devices may incorporate internal guidewire lumens for over-the-wire use or rapid exchange type guidewire lumens (e.g., tubes, split lumens or rails on that extend along a portion of the outer wall of the catheter) to facilitate rapid device and/or guidewire exchange during the procedure, unless the inclusion of such guidewire lumen would render the working device unusable for its intended purpose.
- guidewire lumens e.g., tubes, split lumens or rails on that extend along a portion of the outer wall of the catheter
- such rapid exchange guidewire lumen may have a length of from about 0.5 cm through about 10 cm.
- the guidewire lumen may have a distal aperture at the distal end of the device and a proximal aperture located less than 10 cm proximal to the distal aperture.
- the sensor equipped working devices of the present invention may be used in conjunction with an image guidance system to perform a variety of image guided procedures for the treatment of sinusitis or other disorders of the paranasal sinuses, ears, nose or throat.
- An example of an electromagnetic image guidance system is shown in FIGS. 7-9 .
- This image guidance system comprises a localizer apparatus 70 and a console 76 that includes a computer workstation 78 and a video monitor 80 .
- the video monitor 80 may be used in a single screen mode 80 a to single screen image or in split screen mode 80 b to simultaneously display 2 or more images.
- the localizer apparatus 70 which in this example comprises a headset, has positioning projections 71 that are configured to rest on or to insert within the ear canals and on either side of the bridge of the subject's nose such that each time the localizer apparatus 70 is worn by the subject it will remain in the same substantially fixed position relative to the subject's paranasal sinuses and intranasal anatomy, even when the subject's head is turned or moved about.
- Two or more radiopaque fiducial markers 72 are mounted at fixed locations on either side of the portion of the localizer apparatus 70 that resides over the subject's forehead, as shown. Also, as seen in FIGS.
- the localizer apparatus 70 is adapted to have a transmitter assembly 75 mounted at a specific location in the center of the portion of the localizer apparatus 70 that resides over the subject's forehead.
- the transmitter assembly 75 has one or more transmitter locations or sites 73 which emit electrical signals that are sensed by the sensor(s) 16 located on the working devices that will later be inserted into the subjects nose.
- a single transmitter 75 a having single or plural (e.g., one, two, three or more) transmitter site(s) 73 may be used.
- the transmitter 71 a may emit a variable signal from the single transmitter site 73 to create a non-uniform electromagnetic field such that the position of a single sensor 16 may be determined within that electromagnetic field. If three (3) or more transmitter sites 73 are used, the transmitter 75 a may emit separate signals through each transmitter site 73 such that the location of an individual sensor 16 may be determined by a process of triangulation, similar to the manner in which GPS technology is used to determine the positions of objects on the earth's surface. In this regard, FIGS.
- transmitters 75 b , 75 c show alternative transmitters 75 b , 75 c , each of which has three (3) transmitter sites 73 at spaced apart locations which may be used for real time triangulation of the position of a single electromagnetic coil sensor 16 located on a working device 10 , 20 a , 20 b , 30 , 40 , 60 , etc.
- These transmitters 75 a , 75 b are constructed such that the transmission sites 73 are positioned on arm members 79 a , 79 b that emanate or extend from a central post 77 , such arm members 75 a , 75 b being configured and positioned so as to provided the needed signal transmission while not obstructing the surgeon's access to the operative field.
- the subject is initially placed in a CT scanner S while wearing the localizer apparatus 70 (without the transmitter 75 mounted thereon).
- a pre-procedure CT scan of the head is obtained using a protocol that is compatible with the image guidance system to be used.
- the CT scan data is down-loaded onto a transfer disc 82 .
- the pre-procedure CT scan may be used for planning of the procedure.
- anatomical structures of interest e.g., ostia and sinuses
- desired instrument trajectories may be plotted (e.g., the surgeon may plan the trajectory on which a curved penetrator 60 will be advanced to create openings in or between the ethmoid air cells) and “keep out” areas may be defined (e.g., skull base, posterior/superior wall of sphenoid near pituitary, orbital floor, facial nerves, etc.)
- the CT scan data is uploaded from the transfer disc 82 into the computer 78 of the image guidance system.
- the localizer apparatus 70 is again placed on the subject's head and a transmitter 75 is attached to the localizer apparatus 70 .
- the positioning projections 71 are placed in the same locations as during the pre-procedure CT scan, thereby ensuring that the localizer apparatus 70 and its fiducial markers 72 are in the same positions relative to the subject's head as they were during the pre-procedure CT scan.
- the transmitter 75 is connected to the computer 78 .
- the computer 78 then initiates and performs a localization protocol to accomplish the “registration” process whereby the positions of the fiducial markers 72 are used to correlate the stored CT scan data with the subject's current body position.
- Such localization protocol may require the physician to touch the tip of a sensor equipped working device 30 or a non-sterile sensor equipped localization wand to each fiducial marker and signaling to the computer 78 when such is accomplished, thereby enabling the computer to correlate the current positions of each fiducial marker 72 within the electromagnetic field with the position of that fiducial marker 72 on the stored CT scan images.
- the sensor equipped tubular guide 20 may be initially inserted into the subject's nose and the sensor lead wires 14 of the tubular guide 20 connected to the console 76 .
- the sensor equipped tubular guide 20 may be pre-calibrated at the point of manufacture.
- Calibration details e.g., length of instrument, position of sensor relative to distal tip, baseline output from additional sensors, etc.
- Calibration details may be stored in an electronically readable medium (e.g., a read-only tag) on or in each working device 30 such that, when each working device 30 is connected to the console 76 or a precalibrated handpiece, the computer 78 will read the calibration tag and will cause the image guidance system to self-calibrate accordingly.
- the sensor(s) 16 of the tubular guide 20 receive signals from the transmitter site(s) 76 and in turn send signals to the computer 78 .
- the computer 78 uses such signals to determine the position of the sensor(s) 16 and/or the position of a desired portion (e.g., the distal tip) of the tubular guide 20 within the patient's body.
- the computer 78 also causes an indicator of the position of the sensor 16 and/or desired portion of the tubular guide 20 to appear on the video monitor 80 relative to the CT scan image displayed on the monitor 80 .
- the computer 78 will cause the displayed CT scan image to scroll from cross section to cross section, thereby providing real time monitoring of the anatomical structures in the area of the sensor 16 and/or desired portion of the tubular guide 20 .
- the physician advances the tubular guide 20 to a position where its distal tip is adjacent to (and in substantial alignment with) a sinus ostium or other structure to be treated by a working device 30 .
- a non-sensor equipped or sensor equipped guidewire may then be advanced through the tubular guide 20 into or through the sinus ostium or other area to be treated by the working device 30 .
- the guidewire may be initially inserted within the lumen of the tubular guide 20 and may be advanced along with the tubular guide 20 .
- the tubular guide 20 may be inserted first and the guidewire may subsequently be advanced through the lumen of the tubular guide 20 .
- a sensor equipped guidewire 10 is used.
- the sensor lead wires 14 of the sensor equipped guidewire 14 are attached to the console 76 and the computer 78 performs the self-calibration in the same manner as described above.
- the guidewire is advanced as the sensor(s) 16 on the guidewire 10 receive signals from the transmitter site(s) 76 and in turn the sensor(s) 16 send signals to the computer 78 .
- the computer 78 uses such signals to determine the position of the guidewire's sensor 16 and/or a desired location on the guidewire 10 (e.g., its distal tip).
- the computer 78 also causes an indicator of the position of the sensor 16 and/or desired portion of the guidewire 10 to appear on the video monitor 80 relative to the CT scan image displayed on the monitor 80 .
- the monitor 80 will display indicators of the positions of both the tubular guide 10 and guidewire 20 .
- the indicator of tubular guide 20 position may be deactivated so that it no longer appears on the monitor 80 and the only device position indicator appearing will then be that of the guidewire 10 .
- the position indicators may be color coded or otherwise made to be distinguishable from one another.
- the surgeon or system must choose which device is the “master” (the device whose movement controls the position of the cross hairs and therefore which image slices are displayed) and which device is the “reference” (ie, its relative position is displayed, but movement of this device does not move the cross hairs or change which image slices are displayed.
- the guidewire 10 could be equipped with a plurality of sensors 16 , such that a primary sensor 16 is located at or near the distal tip and one or more secondary sensors are located along the shaft of the guidewire 10 .
- the primary sensor 10 could remain active while the secondary sensors could be actuated and deactuated on demand. This would enable the physician to confirm that a sufficient amount of the guidewire 10 has been advanced into or past a particular anatomical location (e.g., confirm that enough of the guidewire 10 has been advanced into and coiled within a paranasal sinus.
- the sensor equipped working device 30 is inserted over the guidewire 10 .
- the tubular guide 20 may remain in place and the sensor equipped working device 30 will be inserted over the guidewire 10 and through the tubular guide 20 , as shown in the example of FIG. 9 .
- the tubular guide 20 may be removed leaving the guidewire 10 in place and the working device 30 may then be inserted over the guidewire 10 alone.
- the sensor lead wires 14 of the sensor equipped working device 30 are attached to the console 76 .
- the computer 78 performs a self-calibration as described above.
- the sensor equipped working device 30 is advanced over the guidewire 10 .
- the computer 78 receives signals from the transmitter site(s) 76 and sensor(s) 16 on the working device 30 .
- the computer 78 will cause one or more indicator(s) of the position of the working device 30 to appear on the video monitor 80 relative to the CT scan image displayed on the monitor 80 .
- the physician may advance the working device 30 to a precise location within the body where its working element 36 is operatively positioned within the sinus ostium or other area to be treated.
- a one or more sensor(s) 16 may be positioned on the working device 30 so as to delineate or mark the location of its working element 36 (e.g., sensors may be located at the proximal and distal ends of a dilation balloon or a single sensor may be positioned a known distance form the distal tip of a penetrator), thereby facilitating precise positioning of the working element 36 relative to the sinus ostium or other anatomical area to be treated by the working element 36 .
- the monitor 80 may display indicators of the positions of some or all of those other devices along with the indicator of the position of the working device 30 .
- the position indicator(s) of the other devices may be deactivated or caused not to be displayed on the video monitor 80 so that only the position of the working device 30 is visible.
- the position indicator for the working device 30 may be displayed simultaneously with position indications of the other indwelling sensor equipped devices (e.g. tubular guide 20 and guidewire 10 ) and the position indicators for each of the separate devices may be color coded or otherwise distinguishable from one another when viewed on the monitor 80 .
- more than one working device 30 may be used. Accordingly, in such procedures, after one working device has been used to deliver a desired treatment or portion of a treatment (e.g., a balloon used to dilate the ostium of a paranasal sinus), that first working device may be removed, leaving the guidewire 30 in place. Thereafter, another working device 30 may then be advanced over the guidewire 30 and used to deliver another stage of the treatment to the same location. Or, the guidewire 10 may be moved to a different location and another working device 30 (or even the same working device 30 ) may then be used to deliver a treatment to a different treatment location. This may be repeated numerous times with various different types of working devices 30 .
- a desired treatment or portion of a treatment e.g., a balloon used to dilate the ostium of a paranasal sinus
- a first working device 30 in the form of a balloon dilation catheter 40 may be advanced over the guidewire 10 , used to dilate the ostium of a paranasal sinus and then removed, leaving the guidewire 10 in place.
- a second working device in the form of a penetrator 60 may be advanced over the guidewire 10 into the paranasal sinus and used to puncture a mucocele, mucocyst or other vesicle located on the wall of the sinus or elsewhere. The penetrator 60 may then be removed leaving the guidewire 10 in place.
- another working device 30 in the form of a tube or sheath 50 may be advanced over the guidewire 30 and used to lavage (e.g., wash out) the sinus.
- the tube or sheath 50 may be removed, leaving the guidewire 10 in place, and yet another working device in the nature of a substance eluting implant delivery catheter may be advanced over the guidewire 10 and used to place a substance eluting implant (e.g., a therapeutic implant as described in incorporated U.S. patent application Ser. Nos. 10/829,917 and 10/912,578) in or near the affected paranasal sinus.
- the guidewire 30 and the tubular guide 20 if it remains at that point
- the guidewire 30 may be withdrawn and removed from the subject's nasal cavity.
- the computer 78 may be programmed to display on the video monitor 80 not only an indicator 94 of the current position of a sensor equipped device 10 , 20 , 30 , 40 , 50 , 60 , 220 but also path indicator(s) 97 (e.g., ghosts, dotted lines, etc.) indicating the prior positions (e.g., the path of advancement) of that sensor equipped device 10 , 20 , 30 , 40 , 50 , 60 , 220 such that the device's path of advancement or retraction can be visualized on the monitor 80 .
- path indicator(s) 97 e.g., ghosts, dotted lines, etc.
- some distance measurement markings 95 may also be displayed to allow the physician to easily determine the relative distance by which a sensor equipped device 10 , 20 , 30 , 40 , 50 , 60 , 220 is advanced or retracted.
- the computer 78 may optionally be programmed to display path indicator(s) 97 indicating a planned path of device advancement that is intended to be followed.
- the computer 78 may be programmed such that, as a sensor equipped device 30 is advanced or moved over a particular path, that path may be converted into a different type of indicia (e.g., a solid or color coded line) and displayed on the video monitor 80 .
- a sensor equipped device 30 e.g., a solid or color coded line
- the tip of a sensor-equipped working device 30 could be advanced, passed or swept over an anatomical surface or boundary and the computer 78 could then cause the monitor 80 to display an indication (e.g., a solid or colored line) delineating or demarcating that anatomical surface or boundary.
- This aspect of the invention could be used, for example, to provide on the displayed video image an outline of the inner surface of a paranasal sinus.
- this aspect of the invention could be used intraoperatively to provide a current image of the shape of an anatomical structure that is being modified in the procedure (e.g., the shape of the nasal septum during a septoplasty procedure intended to straighten the septum).
- the surgeon could trace with the distal tip of the sensor-equipped device the boundary of anatomical structures to be “erased” from the displayed images.
- the device so the present invention may include one or more radiopaque markers or radiographically visible region(s) to facilitate their use with fluoroscopy or x-ray.
- the computer 78 of the image guidance system may be programmed to accept operator input as to points or locations along a path of device advancement that should be tagged or flagged on the displayed image and/or on a recorded image maintained as a record of the procedure. These tags can then be correlated with the image guidance system so that as the physician reviews the case on the CT, the endoscopic images are linked and being “flown through” as well.
- an endoscope 84 within the subject's body to obtain an endoscopic image that may be viewed separately or concurrently with the pre-procedure scan images and indicia of device position indicators 97 , 97 , 95 provided on the video monitor 80 .
- the endoscope 84 may or may not be equipped with sensor(s) 16 to allow its position to be monitored by the image guidance system.
- Standard endoscopes used during functional endoscopic sinus surgery may be used for this purpose, including but not limited to the Karl Storz Hopkins II rigid scope (7210AA) and the Karl Storz Flexible Rhino-Laryngoscope (11101RP) which are available commercially from Karl Storz Endoscopy—America, Culver City, Calif.
- the sensor(s) mounted on the endoscope will provide a real time indication of the position of the endoscope 84 within the subject's body.
- another sensor equipped guidewire 10 or device 30 may be inserted into the endoscope 84 to provide an indication of the endoscope's location within the body.
- a non-sensor equipped endoscope 84 such as a flexible endoscope (e.g., Karl Storz Flexible Rhino-Laryngoscope (11101RP), Karl Storz Endoscopy—America, Culver City, Calif.), may be used and a sensor equipped guidewire 10 may be inserted into (e.g., “parked” within) the working lumen of that endoscope 84 .
- the sensor(s) 16 on the guidewire will provide to the computer indicia of the position of the endoscope 84 as it is navigated through the anatomy.
- an indicator of the position of an endoscope 84 (or any other device into which the sensor equipped guidewire 10 may be inserted) may be displayed on the image guidance system monitor 80 , even though that endoscope 84 (or other device) is not itself equipped with a sensor 16 .
- a window or signal transitionable region may be formed in the endoscope to allow the sensor(s) on the guidewire 10 to receive signals from the transmitter 75 , or the portion of the guidewire 10 on which the sensor(s) is/are located my protrude out of an opening in the endoscope to allow the sensor(s) on the guidewire 10 to receive signals from the transmitter 75 .
- this procedure is useable not only with endoscopes 84 , but also with any other devices into which a sensor-equipped guidewire 10 may be inserted.
- a sensor equipped guidewire 10 may be inserted into a needle and used to guide the needle to a desired submucosal position where it is desired to deliver a substance (e.g., a drug or other therapeutic substance) or implant.
- the visual image obtained from the endoscope 84 may be displayed on a monitor that is separate from the image guidance system monitor 80 (e.g., on a separate endoscopic tower commonly used with endoscopes during FESS).
- the endoscopic image may be displayed on the image guidance system monitor 80 interchangeably with the pre-procedure scan images and indicia of device position indicators 97 , 97 , 95 (e.g., such that the physician may switch back and forth between a real time, line-of-sight image provided by the endoscope 84 and the pre-procedure scan images and device position indicators 97 , 97 , 95 provided by the image guidance system.
- the image guidance system may incorporate two separate monitors 80 , one of which displays a real time, line-of-sight image provided by the endoscope 84 and the other of which displays the pre-procedure scan images and device position indicators 97 , 97 , 95 provided by the image guidance system.
- the image guidance system may incorporate a single monitor 80 that is operable in split screen mode such that one portion of the monitor screen displays a real time, line-of-sight image provided by the endoscope 84 and another portion of the monitor screen displays the pre-procedure scan images and device position indicators 97 , 97 , 95 provided by the image guidance system.
- the computer 78 of the image guidance system may be programmed to combine or integrate a real time, line-of-sight image that is received from the endoscope 84 with the stored pre-procedure scan images or with computer models that have been derived from the pre-procedure scan images and loaded into the image guidance system computer 78 .
- FIGS. 10A and 10B show one example of the manner in which an endoscopic image may be used in conjunction with CT scan images to provide unique displays and images to the physician.
- a standard rigid endoscope is used.
- a vasoconstricting agent e.g., cocaine, ephedrine, etc.
- the endoscope 84 is then inserted into the nares and positioned to view the medial meatus MM, which is an open passageway adjacent to the middle turbinate MT.
- the uncinate process UP is a rigid structure that protrudes from the lateral wall of the nose, near the anterior end of the middle turbinate, preventing the endoscope 84 from viewing structures that lie behind the uncinate process UP.
- Such structures include the ethmoid bulla and an opening called the hiatus semilunaris as well as the ostium of the maxillary sinus which drains into the hiatus semilunaris.
- the computer 78 of the image guidance system has used the stored CT scan data to integrate, into the displayed endoscopic image, an anatomical structure indicator 202 (e.g., a dotted line or other demarcation) showing the position of an anatomical structure of interest that is hidden from view of the endoscope 84 by the protruding uncinate process UP and/or portions of the midal turbinate MT.
- anatomical structure indicator 202 is in the form of a generally circular dotted line showing the perimeter of the maxillary sinus ostium MO.
- a flexible sensor equipped working device 30 is being advanced through the medial meatus MM, around the intact uncinate process UP and into the maxillary ostium MO, as indicated by a device position indicator 94 and advancement path indicators 95 .
- a separate video screen displays a sagital tomographic image of the maxillary ostium MO based on the pre-procedure CT scan images that are stored in the computer 78 of the image guidance system.
- the computer 78 is programmed to cause an indicator 94 b of the position of the distal end of the working device 30 relative to the maxillary ostium MO.
- the indicator 94 b is a circle, but any suitable marking or demarcation may be used.
- This view shown in FIG. 10B aids the physician in advancing the distal end of the working device 30 through the maxillary ostium MO, without having to incise or remove the uncinate process UP.
- the computer 78 may be programmed to use the distal tip of the guidewire 10 or any other location on any other working device 30 as a “virtual viewpoint” from which a virtual endoscopic view is created from the pre-procedure CT scan images and displayed on the monitor 80 .
- an endoscope 84 having an electromagnetic sensor 16 thereon may be advanced though a portion for the subject's body while the image guidance system computer 78 receives and uses signals received from the sensor 16 on the endoscope 84 to determine the position of the endoscope within the subject's body, stores endoscopic images received from the endoscope and correlates the stored endoscopic images with locations within the subject's body. Thereafter, the operator may request an endoscopic image obtained from a specified location within the subject's body and the computer 78 may display on the video monitor 84 the stored endoscopic image obtained at the selected location.
- the selected location may be the current location of a working device 30 within the subject's body.
- a working device 30 that has an electromagnetic sensor 16 thereon may be positioned within the subject's body, the computer 78 may determine the position of the working device based on signals received from the sensor on the working device 30 and the computer 78 may display on the video monitor a stored endoscopic image that was previously obtained from the current location of the working device 30 . In this manner, the operator is provided with an endoscopic image of the anatomy near the working device even though the working device may not be equipped with an endoscope. In other cases, this system and method may be used to compare a real time endoscopic image to a previously stored endoscopic image.
- an endoscope 84 having a sensor 16 thereon may be positioned within the subject's body and used to obtain a real time endoscopic image.
- the computer 78 may use signals received from the sensor 16 on the endoscope 84 to determine its real time position and to display a real time endoscopic image obtained from the endoscope currently positioned within the body and ii) a stored endoscopic image that was previously obtained at the same location where the endoscope 84 is currently positioned.
- the real time and stored endoscopic images may be displayed side by side (e.g., on separate screens or using a split screen on a single monitor 84 . This technique may be used, for example, to compare a post-operative or intra-operative endoscopic image to a previously obtained pre-operative endoscopic image for the purpose of assessing efficacy, changes, etc.
- the computer 78 of the image guidance system may also be programmed to display on the image guidance system monitor 80 and/or on a separate endoscopic monitor, one or more virtual images generated from the stored CT scan data and/or the device position data received from the sensor(s) 16 .
- virtual images of ostia, bones and portions of devices e.g., inflated balloons
- FIGS. 11A-11C Examples of this are shown in FIGS. 11A-11C .
- FIG. 11A shows an image obtained from an endoscope 84 wherein an image guided dilation catheter 40 having a dilation balloon 46 has been advanced partially through an anatomical opening 209 and the balloon has been inflated.
- the computer 78 is programmed to use the information received from the sensor(s) on this balloon dilation catheter 40 to superimpose or otherwise display on the endoscopic image a virtual image (e.g., dotted line) 208 representing the portion of the inflated balloon 46 that is hidden from actual view of the endoscope.
- a virtual image e.g., dotted line
- FIG. 11B shows an image obtained from an endoscope 84 viewing an anatomical structure AS within the body.
- This particular anatomical structure AS is made up of bone covered with mucous membrane or other soft tissue, as is typical of structures located within the nose and paranasal sinuses.
- An ostium OS or opening is formed in the anatomical structure AS, as shown.
- the computer 78 is programmed to use information from the stored pre-procedure CT scan data to superimpose or otherwise display, on the endoscopic image, virtual images (e.g., dotted lines) 210 showing the edges of the bones that underlie the anatomical structure AS and ostium OS being viewed by the endoscope 84 .
- virtual images e.g., dotted lines
- FIG. 11C shows an image obtained from an endoscope 84 positioned within the middle meatus MM, anterior to the uncinate process UP.
- the computer 78 is programmed to use information from the stored pre-procedure CT scan data to superimpose or otherwise display, on the endoscopic image, virtual images (e.g., dotted lines) 214 showing the maxillary ostium MO and openings into the ethmoid air cells EO, which are hidden from the endoscope's view by the uncinate process UP.
- virtual images e.g., dotted lines
- the ability to view virtual images 214 of the maxillary ostium MO and/or openings into ethmoid air cells EO may enable the physician to advance flexible or curved devices (e.g., the guidewires, catheters, penetrators and any other working devices 30 ) into or through those openings MO, EO to perform treatment procedures directed at the maxillary sinuses and/or ethmoid air cells without requiring removal or surgical modification of the protruding uncinate process UP.
- An example of a procedure for dilation the maxillary ostium and/or delivering other treatment to the maxillary sinus is described above.
- Various other procedures may be performed to treat or ablate the ethmoid air cells.
- Some examples of the types of procedures that may be performed to treat and/or ablate the ethmoid air cells include those described in U.S.
- any of the working devices 10 , 20 , 30 , 40 , 50 , 60 of the present invention may include, in addition to one or more of the image guidance system sensors 16 , one or more other sensors or movement indicators that may provide further information regarding the 3 dimensional position and/or orientation of the device 10 , 20 , 30 , 40 , 50 , 60 .
- the types of other sensors or movement indication apparatus include, for example, accelerometers, strain gages (for flexible instruments), pitch/roll sensors, and capacitive sensors.
- a working device 220 e.g., a guidewire, catheter, cannula, tube, dilator, balloon, substance injector, needle, penetrator, cutter, debrider, microdebrider, hemostatic device, cautery device, cryosurgical device, heater, cooler, scope, endoscope, light guide, phototherapy device, drill, rasp, saw, etc.
- a working element 36 e.g., a dilator, balloon, injector, light delivery lens, endoscopic lens, cutter, opening, port, heater, cooler, probe, or other treatment delivering apparatus or structure.
- All or portion(s) of the shaft 222 may be rigid, flexible or malleable.
- An accelerometer 228 is mounted on one side of the hub 226 , as shown. This accelerometer 228 sends signals to the computer 78 indicating rotational movement of the device 220 .
- the computer 78 is programmed to process those signals and to provide, on the basis of those signals, an indicator of the current rotational orientation of the device 220 within the subject's body.
- the device may be inserted into the subject's nostril with a specific maker (not shown) or structure (e.g., one or more wings 227 ) of the device 220 in specific radial orientation (e.g., such that the wings 227 on the hub 226 extend vertically up and down—at the 12 o'clock and 6 o'clock positions).
- a foot pedal or button on the console 76 may be depressed to cause the computer 78 to identify the current position of the accelerometer 228 as the “zero” or starting position. Thereafter, any clockwise or counterclockwise rotation of the device 220 will cause signals to be sent from the accelerometer 228 to the computer 78 and the computer will cause indicia of such rotational movement of the device 220 to be shown on the monitor 80 or elsewhere.
- the present invention is also useable to aid the operator in maintaining the operative instruments within predefined areas of the subject's body (e.g., “keep in zones”) and/or to avoid advancing operative instruments into other predefined areas of the subject's body (e.g., “keep out zones”). Examples of this are shown in FIGS. 13A and 13B .
- the computer 78 may be programmed to display indicia (e.g., shaded and unshaded areas) demarcating keep out zones 90 and a keep in zone 92 .
- the intended keep in zone(s) and keep out zone(s) may be electronically marked on the CT scan images during the physician's pre-procedure planning. As shown in FIG.
- device position indicators 94 and path indicators 95 will appear only within the keep in zone 92 and no alarm (e.g., visual or audible alarm) will be provided to the operator.
- the device position indicator 94 will appear in the keep in zone 92 and, optionally, the computer 78 may be programmed to cause an alarm (e.g., visual or audible alarm) to be provided to the operator.
- the transmitter assembly 75 need not be mounted on a localizer apparatus 70 or otherwise affixed to the subject's head. Instead, in such cases, it may be possible for just the fiducial markers 72 to be affixed to the subject's body while the transmitter assembly 75 and fiducial markers 72 may be mounted on or within the operating table, on a nearby IV pole, on or in a fluoroscopic c-arm or elsewhere near the subject's body.
- image guided ENT procedures including many FTSI procedures
- the transmitter assembly 75 and fiducial markers 72 may be mounted on a localizer apparatus 70 or otherwise affixed to subject's body such that after the fiducial markers 72 have been used to perform the initial localization/registration protocol, the transmitter sites 73 will subsequently move in fixed spatial relationship to the subject's head.
- a localizer apparatus 70 as shown in FIGS. 7E and 9 may be used for this purpose.
- such headset may be uncomfortable for an unanesthetized subject and/or may be an unwelcome or non-sterile obstacle located near the operative field during the procedure.
- the present invention provides other head attachment devices that may be used to attach the fiducial markers 72 and transmitter(s) 75 to the subject's head during the pre-procedure CT scan and also during the procedure.
- these head attachment devices may comprise adhesive patches that contain the fiducial markers 72 and to which the transmitter 75 is attachable.
- a mouthpiece may be used as a head affixation device. Examples of such mouthpieces 240 , 240 a are shown in FIGS. 14A-15C .
- a dental mouthpiece 242 is formed of silicon or other plastic.
- This mouthpiece 242 may be configured based on an impression of the subject's teeth such that the positioning of the mouthpiece 242 will be reproducible from wearing to wearing.
- the methods for making mouthpieces 242 of this type are well known and such mouthpieces are sometimes worn by athletes who play contact sports and by some individuals who tend gnash or grind their teeth during sleep.
- Radiopaque fiducial markers 244 such as metal articles, are mounted at locations on the mouthpiece 242 , as shown.
- fiducial markers 72 may be located on the buccal sides of the mouthpiece 242 so as to be easily accessible during the localization/registration protocol where it may be necessary for a sensor equipped device 30 or a sensor equipped wand to be touched against or placed in juxtaposition to each fiducial marker 72 .
- a transmitter assembly 75 mounting location is provided on the mouthpiece such that the transmitter 75 may be attached to the mouthpiece 242 at a predetermined, reproducible position.
- the embodiment 240 a shown in FIGS. 15A-15C is the same as that shown in FIGS. 14A and 14B except that it includes a transmitter mounting member 244 that is attached to the front of the mouthpiece 242 .
- the transmitter assembly 75 may be attached to this transmitter mounting member 244 .
- a plurality of transmitter locations or sites 73 may be at spaced apart locations along the transmitter mounting member 73 to facilitate determination (e.g., by triangulation) of the position of a single sensor 16 positioned within the subject's ears, nose, throat or paranasal sinuses.
- FIGS. 16 and 17 show examples of a cable connector assembly 400 that may be used in connection with any of the sensor equipped devices of the present invention, as well a other sensor equipped devices, to facilitate transmission of signal(s) between the sensor equipped device and an image guidance system, console 76 and/or computer 78 .
- This cable/connector assembly 400 comprises a cable 402 one end of which is connected to the sensor equipped device and the other end of which terminates in a connector 402 .
- the sensor leads 14 extend through the cable 402 to connector 404 .
- a corresponding connector 406 is mounted on the image guidance system console 76 or computer 78 .
- the connectors 404 , 406 may comprise multi-pin connectors as shown, or any other suitable type of connector.
- the connectors 404 , 406 may transmit either information or signals in addition to signals from the sensor(s) mounted on the device.
- the sensor equipped device and/or connector 402 may contain a PROM, memory chip or other storage medium that holds magnetic or digitally encoded information relating to the device (e.g., calibration information, information relating the position of a sensor 16 to the distal end DE of the device, information relating the position of the sensor 16 to a working element on the device, information relating to the length, diameter or other sizing of the device, information as to the type of device (e.g., balloon catheter, guidewire, penetrator, cutter, tubular guide, etc.) being employed or numerous other types of information).
- the type of device e.g., balloon catheter, guidewire, penetrator, cutter, tubular guide, etc.
- That other information may be transmitted through certain prongs, pins, channels or other contact points in the connectors 404 , 406 while the signals form the sensor(s) is/are transmitted through other prongs, pins, channels or other contact points in the connectors 404 , 406 . transmitted to the image guidance system console 76 and/or computer 78 and the connectors 404 , 406 .
- an optional handpiece 408 may be attached to the end of the cable 402 opposite the connector 404 .
- Such handpiece may perform the dual function of 1) connecting the cable 402 to the sensor equipped device and 2) providing a handpiece that the operator may use to manipulate, torque or otherwise move the device.
- the proximal end of a sensor equipped guidewire 10 as shown in FIGS. 1-1A and described above is inserted into a bore of the handpiece 408 causing the connector 21 on the proximal end of the guidewire body 12 to engage a corresponding connector (not seen in FIG. 16 ) located within the handpiece 408 .
- signals from the guidewire's sensor 16 will travel from the guidewire 10 , through cable 402 , to cable connector 404 and into console/computer connector 406 , thereby providing communication between the guidewire 10 and the image guidance system console 76 and/or computer 78 .
- the handpiece may be disengaged from the proximal end of the guidewire to permit such advancement of another device over the guidewire.
- the cable 402 may be connected directly to the proximal portion of a sensor equipped device.
- the cable 402 is attached to the proximal hub 38 of a working device 30 that is equipped with a working element 36 and sensor 16 , as shown in FIG. 3 and described hereabove.
- the attachment of the cable 402 to the working device 30 may be permanent or disconnectable.
- a plug and jack arrangement may be used to allow the cable 402 to be volitionally connected to and disconnected form the device 30 .
- the image guidance components (e.g., markers and/or sensors) need not be integrated into or attached to the device at the time of manufacture. Rather, in some embodiments, the image guidance components may be attachable to a working device (e.g., guidewire, guide catheter, balloon catheter, lavage catheter, needle, electrosurgical probe, stent delivery catheter, substance eluting implant delivery catheter, debrider, seeker, cannula, tube, dilator, balloon, substance injector, penetrator, cutter, debrider, microdebrider, hemostatic device, cautery device, cryosurgical device, heater, cooler, scope, endoscope, phototherapy device, drill, rasp, saw, punch, forceps and laser, etc.) at the time of the procedure.
- a working device e.g., guidewire, guide catheter, balloon catheter, lavage catheter, needle, electrosurgical probe, stent delivery catheter, substance eluting implant delivery catheter, debrider, seeker, cannula, tube, dilator, balloon, substance inject
- FIGS. 18-19 show an example wherein an extender 500 is attached to the proximal end of a working device 502 and an optical navigation element assembly 506 is attached by way of clamp 504 to the extender 500 .
- an optical IGS system 508 such as the VectorVision® ENT image guidance system (available from BrainLAB AG, Westchester, Ill.) or LandmarX® image guidance system (available from Medtronic Xomed Surgical Products, Inc., Jacksonville, Fla.), may be used to monitor the position of the working device within a subject's body.
- VectorVision® ENT image guidance system available from BrainLAB AG, Westchester, Ill.
- LandmarX® image guidance system available from Medtronic Xomed Surgical Products, Inc., Jacksonville, Fla.
- the working device 502 comprises a tubular guide having a curved distal end DE, a female Luer connector 510 on its proximal end and a lumen extending therethrough.
- This tubular guide working device 502 is similar to the tubular guides 20 a and 20 b shown in FIGS. 2A and 2B , except that this tubular guide working device 502 does not incorporate any sensor 16 or wire leads 14 .
- the extender 500 comprises a substantially cylindrical elongate body 514 having a lumen that extends longitudinally therethrough, a male Luer connector 516 on its distal end and a female Luer connector 518 on its proximal end.
- the male Luer connector 516 on the distal end of extender 500 is connectable to the female Luer connector 510 on the proximal end of the tubular guide working device 502 .
- the lumen of the extender 500 is substantially continuous with the lumen of the tubular guide working device 502 such that other working devices (e.g., guidewires, balloon catheters, lavage catheters, needles, electrosurgical probes, stent delivery catheters and substance eluting implant delivery catheters, debriders, seekers, cannulae, tubes, dilators, balloons, substance injectors, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, phototherapy devices, drills, rasps, saws, punches, forceps and lasers, etc.) may be inserted into the proximal end PE of the extender 500 and advanced through the extender 500 , through the tubular guide working
- the extender 500 may perform other optional functions. For example, prior to or after the clamp 530 has been attached to the extender 500 , the extender 500 may be used as a handle to facilitate grasping and control of the tubular guide working device 502 .
- the tubular guide working device 502 has a curve 520 formed near its distal end.
- the angle A of such curve may range from 0 to about 110 degrees.
- all or part of this tubular guide working device 502 may be made of plastically deformable or malleable material such that the operator may customize the shape of this device 502 before or during the procedure.
- the navigation element assembly 506 comprises a hub member 522 , a plurality of radiating arms 524 that extend radially from the hub member 522 and a plurality of active or passive navigation elements 526 attached to the radiating arms 524 .
- active optical navigation elements include light emitters, such as light emitting diodes (LEDs).
- passive optical navigation elements include reflective members (e.g., spheres) that reflect light, such as infrared light emitted from one or more infrared light sources located in proximity to the device.
- the bottom end of the hub member 522 is configured to be received by or otherwise attached to the clamp 504 .
- the bottom end of the hub member 522 is received within an upstanding sleeve portion 528 of clamp 504 and a locking pin 530 is used to hold the navigation element assembly 506 in substantially fixed rotational position relative to the clamp 504 .
- the body portion 532 of clamp 504 is designed to fit upon and frictionally engage the cylindrical body 514 of the extender 500 such that the clamp 504 and navigation element assembly 506 will be firmly attached to the extender and, thus, will be held in substantially fixed position relative to the extender 500 and the tubular guide working device 502 to which the extender 500 has been attached.
- the extender 500 in some embodiments can have features to enhance the attachment of the navigation element assembly to the extender in substantially fixed rotational position such as knurling, indentations, etc.
- One commercially available example of a navigation element assembly 506 and clamp 504 having the general configuration shown in FIGS. 18 and 19 is the STARLINKTM Universal Instrument Adapter manufactured by BrainLAB, Inc., Westchester, Ill.
- FIGS. 18 and 19 show an embodiment where the navigation element assembly 506 is attachable to and detachable from the extender 500 , it is to be appreciated that, in some other embodiments of this invention, the clamp 504 and/or navigation element assembly 506 may be integrated into or pre-attached to the extender 500 .
- a clamp or other fitting designed to receive and attach the navigation element assembly 506 may be molded into or pre-attached to the extender 500 .
- all or part of the navigation element assembly 506 (e.g., with or without inclusion of the active or passive navigation elements 526 ) may be molded into or pre-attached to the extender 500 .
- the IGS system 508 generally comprises a monitor 534 and one or more camera(s) 538 . Additionally, when the navigation elements 525 are passive (e.g., reflective) rather than active (e.g., light emitting), the IGS system 508 may further comprise one or more light emitter(s) 536 (e.g., infrared lamps) which emit light that is reflected by the passive markers 526 . Additionally, the IGS system incorporates a computing device (e.g., a computer or microprocessor) that is loaded with software for calibration and tracking of the distal end DE of tubular guide working device 502 and/or other working devices within the subject's body.
- a computing device e.g., a computer or microprocessor
- a user interface may also be provided to enable the user to enter parameters or information into the system 508 .
- the computing device 540 may be programmed with software that includes a database containing design parameters (e.g., length, curvature/shape, etc.) for a number of tubular guides and/or other working devices to which the extender 500 may be attached.
- the user interface device is used to enter or detect the particular type of working device.
- the user enters the type of guide device 100 (e.g. a maxillary sinus ostium access guide device) in the surgical navigation system.
- the software in the surgical navigation system then calibrates the position and/or orientation of the distal tip of guide device 100 to navigational unit 118 , and hence to the surgical navigation system.
- the male Luer connector on the distal end of the extender 500 is firmly attached to the female Luer connector 510 on the proximal end of the tubular guide working device 502 .
- the navigation element assembly 506 is attached to the clamp 504 and the clamp 504 is firmly mounted on the extender 500 , as described above.
- Stored anatomical images, such as CT scan images are displayed on the monitor 534 of the IGS system 508 .
- a facemask or other headgear containing fiducial markers may have been worn by the subject as the CT scan images (or other anatomical images) are obtained and the locations of the fiducial markers on the scanned images may then be used for purposes of registration in accordance with the instructions provided by the manufacturer of the IGS system.
- headgear containing fiducial markers examples include those devices shown in FIGS. 7E, 9 and 14 A- 15 C of this application as well as those devices commercially available as the Reference Headband/Reference Star (BrainLAB, Inc., Westchester, Ill.) and the FramelockTM kit (Medtronic Xomed Surgical Products, Inc., Jacksonville, Fla.)
- the subject may not have worn fiducial markers during the prior CT scan (or other anatomical imaging procedure) and, instead, an alternative calibration technique may be used.
- the position and/or the trajectory of the distal end DE of the tubular guide working device 502 may be calibrated to the surgical navigation system using an anatomical landmark of the patient's body.
- a device such as the Z-Touch® Registration System (BrainLAB, Inc., Westchester, Ill.) may be used.
- Z-Touch® Registration System is a special laser pointer that allows the VectorVision® IGS system to utilize the surface anatomy of the subject's face and head to calculate an advanced surface-matching algorithm and calibrate the system to the patient's scan.
- the position of the distal tip of guide device 100 may be calibrated to the surgical navigation system using a calibration device such as VectorVision® ENT ICM4 Instrument Calibration Tool (Brainlab, Inc., Westchester, Ill.) that comprises one or more fiducial markers used for calibration purposes.
- the distal end DE of the tubular guide working device 502 may be inserted trans-nasally and advanced to a position where the distal end DE is in alignment with or adjacent to a desired treatment sight, such as the ostium of a paranasal sinus.
- a second working device e.g., guidewire, guide catheter, balloon catheter, lavage catheter, needle, electrosurgical probe, stent delivery catheter, substance eluting implant delivery catheter, debrider, seeker, cannula, tube, dilator, balloon, substance injector, penetrator, cutter, debrider, microdebrider, hemostatic device, cautery device, cryosurgical device, heater, cooler, scope, endoscope, phototherapy device, drill, rasp, saw, punch, forceps and laser, etc.
- a second working device e.g., guidewire, guide catheter, balloon catheter, lavage catheter, needle, electrosurgical probe, stent delivery catheter, substance eluting implant delivery catheter, debrider, seeker, cannula, tube, dilator, balloon, substance injector, penetrator, cutter, debrider, microdebrider, hemostatic device, cautery device, cryosurgical device, heater, cooler, scope, endoscope, phototherapy device, drill, rasp, saw, punch, forcep
- One such therapeutic function would be to dilate an opening of a paranasal sinus by a) using the IGS system to position the distal end DE of the tubular guide working device 502 adjacent to or in alignment with the opening of the paranasal sinus, b) advancing a dilation catheter through the extender 500 and through the tubular guide working device 500 and into the opening of the paranasal sinus and c) using the dilation catheter to dilate the opening of the paransal sinus. Additionally or alternatively, fluids or substances may be infused through the extender 500 and through the tubular guide working device 502 for purposes of lavage, imaging or treatment delivery.
- FluoroCT is a relatively new technology in which a C-arm type three-dimensional (3D) imaging device (e.g., the ISO-C3D available from Siemens Medical Systems) is used to obtain a fluoroscopic computed tomogram. Because these C-arm devices may be mobile, Fluoro CT scans may be obtained intraoperatively and immediately postoperatively, as well as preoperatively. In some cases, FluoroCT may be used to obtain the pre-procedure imaging data stored in the image guidance system computer 78 . Additionally, in some cases, one or more FluoroCT scans may be obtained during or after the procedure and data sets from such intraoperative or postoperative FluoroCT scans may be loaded into the computer 78 .
- 3D three-dimensional
- the computer 78 may be programmed to use such FluoroCT scan data to update the previously stored imaging data that has been obtained by traditional CT, MRI, FluoroCT or other means, thereby adjusting the stored anatomical image data to show changes to the anatomy that have occurred subsequent to the pre-operative scan. Additionally or alternatively, the computer may be programmed 78 to display the newly added FluoroCT data in addition to or in comparison with other images based on the preoperative scan, thereby allowing the surgeon to compare the current (e.g., intraoperative or postoperative) anatomy to the preoperative anatomy.
- the current e.g., intraoperative or postoperative
- the computer 78 of the image guidance system may be programmed with a number of optional programs (e.g., software bundles) to provide additional or different features.
- optional programs e.g., software bundles
- the following are non-limiting examples of some of the optional capabilities that may be programmed into the computer 78 :
- the computer 78 may, in some embodiments, be programmed to automatically suggest path(s) of advancement or vector(s) along which a desired device (e.g., a sensor equipped working device 30 ) may be advanced to reach a desired location (e.g., the ostium of a particular paranasal sinus, the ethnoid air cells, a site of infection, a bulla, a mucocele, a mucocyst, etc.)
- the suggested path(s) of advancement or vector(s) may be selected based on operator-input criteria (e.g., least complex path, least tortuous path, least traumatic path, safest path, etc.)
- the computer 78 may cause indicia of such desired path(s) or vector(s) (e.g., dotted lines) to appear on the video monitor 80 in relation to the displayed anatomical CT and/or endoscopic images.
- the computer 78 may, in some embodiments, be programmed to display not only the anatomical structures that are adjacent to or near the current position of a sensor equipped working device 30 , but also anatomical structures that are located ahead on one or more path(s) on which the device 30 may be advanced from its current position to reach its target position.
- the computer 78 may cause the monitor 80 to display 1) a tomographic section or other anatomical image of the area in which the working device 30 is currently located (the “current location image”) and 2) one or more other tomographic sections or other images showing anatomical structures that lie ahead on one or more intended path(s) of advancement (the “path ahead image(s)).
- the current location image and the path ahead image(s) may be displayed simultaneously (e.g., on separate monitors, on a split screen monitor or on a single screen where with one image is inset within a larger image).
- current location image and the path ahead image(s) may be displayed one at a time such that the operator may switch back and forth between the current location image and the path ahead image(s).
- the computer 78 may, in some embodiments, be programmed to take the stored pre-procedure imaging scan data and compare it to subsequently input a post-procedural or intra-operative imaging scan data such that the effects or anatomical changes caused by the procedure may be assessed.
- the computer 78 may, in some embodiments, be programmed to provide a turn indicator (e.g., an audible signal or visual indicator shown on the monitor screen) to indicate the direction that a guidewire 10 or other sensor equipped working device 30 should be turned to navigate toward a desired target location.
- a turn indicator e.g., an audible signal or visual indicator shown on the monitor screen
- the computer 78 may, in some embodiments, be programmed to utilize the stored anatomical image data (e.g., CT scan data) to provides prompts or suggestions of 1) anatomical structures or pathological lesions that may be amenable to a particular treatment and/or 2) optimal or suggested locations and/or rotational orientations in which working device(s) 30 may be placed in order to effect a particular treatment and/or 3) the optimal or suggested size or dimensions of the working device(s) 30 to be used (e.g., for regions marked in red a 6 mm balloon diameter is suggested and for regions marked in blue a 7 mm balloon is suggested).
- CT scan data e.g., CT scan data
- the computer 78 may, in some embodiments, be programmed to provide a simulated result of a particular procedure before the procedure is actually performed.
- the ability to generate a simulated result may be particularly advantageous in cases where it is not feasible for the physician to actually view the area being treated and, thus, is unable to make a visual assessment of such area as may be needed to arrive at an accurate prediction of the likely therapeutic and/or untoward results of a proposed treatment or maneuver.
- the console 76 and computer 78 may be adapted to receive operator input of the particular diameter (or other dimensions/characteristics) of a dilator balloon that the physician proposes to use for dilation of a particular passageway.
- the computer 78 will be programmed with software that it will use to provide a simulated view of what that passageway would look like after it has been dilated by that proposed balloon and what submucosal, adjacent or hidden anatomical structures would likely be compressed or otherwise affected by such dilation procedure, if the procedure were actually performed using a balloon having the proposed diameter, dimensions and/or characteristics.
- the computer 78 may, in some embodiments, be programmed to provide a simulated view of a particular device that is positioned within the subject's body.
- the computer 78 may be programmed with device information (e.g., the dimensions, shape and appearance of the device) and, after tracking the trajectory of a the sensor 16 mounted on that device through the anatomy, the computer 78 may generate and display on the monitor 80 , a “virtual” image of the device as it is positioned relative to the adjacent anatomy.
- This aspect of the invention may provide to the operator some “feel” for the relative 3 dimensional size and position of the device within the body.
- the computer 78 may, in some embodiments, be programmed to provide a simulated view from a vantage point on a device that has been inserted into the subject's body. For example, the computer 78 may cause the monitor to display a forward looking view from the distal tip of an advancing guidewire as if the operator were sitting on the distal tip of the guidewire and looking forward at the anatomy as the guidewire is advanced.
- any working device 30 may incorporate endoscopic components (e.g., fiber optic light guide, fiber optic image transmission bundle, lenses, etc.) as well as other working elements 36 .
- the working device 30 may comprise an on board endoscope that is useable to view some or all of the procedure wherein that working device 30 is employed.
- any working device 30 may be inserted or incorporated into an endoscope such that the endoscope may be used to view some or all of the procedure wherein that working device 30 is employed.
- the locations of the sensor(s) 16 and transmitter(s) 75 or transmitter sites 73 may be switched.
- one or more transmitter sites 73 may be located on a transmitter equipped device (e.g., a guidewire, tubular guide, sheath, dilation catheter or other device having a working element as described herein) and one or more sensors 16 may be located on a localizer apparatus 70 such as a localizer frame or headset.
- the use of the sensor equipped working devices 30 and methods of the present invention may serve a number of purposes and may provide a number of advantages over the prior art.
- the use of such image guided devices and methods may permit very precise positioning and movement of devices within the subject's body, thereby improving the safety of the procedure, causing less trauma or unnecessary iatrogenic tissue modification, requiring less use of fluoroscopy or x-ray and hence less radiation exposure to the subject or the operator(s), etc.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Human Computer Interaction (AREA)
- Robotics (AREA)
- Neurosurgery (AREA)
- Theoretical Computer Science (AREA)
- Vascular Medicine (AREA)
- Otolaryngology (AREA)
- Surgical Instruments (AREA)
- Endoscopes (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Priority Applications (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/436,892 US20070208252A1 (en) | 2004-04-21 | 2006-05-17 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| PCT/US2007/011474 WO2007136589A2 (fr) | 2006-05-17 | 2007-05-10 | Systèmes et procédés pour effectuer des interventions guidées par des images dans les oreilles, le nez, la gorge et les sinus paranasaux |
| US11/804,309 US8932276B1 (en) | 2004-04-21 | 2007-05-16 | Shapeable guide catheters and related methods |
| US11/804,308 US10188413B1 (en) | 2004-04-21 | 2007-05-16 | Deflectable guide catheters and related methods |
| US12/949,708 US20110060214A1 (en) | 2004-04-21 | 2010-11-18 | Systems and Methods for Performing Image Guided Procedures Within the Ear, Nose, Throat and Paranasal Sinuses |
| US14/464,948 US20140364725A1 (en) | 2004-04-21 | 2014-08-21 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US15/083,826 US11065061B2 (en) | 2004-04-21 | 2016-03-29 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US16/212,864 US11020136B2 (en) | 2004-04-21 | 2018-12-07 | Deflectable guide catheters and related methods |
| US16/532,681 US20200022718A1 (en) | 2004-04-21 | 2019-08-06 | Deflectable guide catheters and related methods |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/829,917 US7654997B2 (en) | 2004-04-21 | 2004-04-21 | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
| US10/912,578 US7361168B2 (en) | 2004-04-21 | 2004-08-04 | Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders |
| US10/944,270 US20060004323A1 (en) | 2004-04-21 | 2004-09-17 | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US11/037,548 US7462175B2 (en) | 2004-04-21 | 2005-01-18 | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US11/116,118 US7720521B2 (en) | 2004-04-21 | 2005-04-26 | Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses |
| US11/436,892 US20070208252A1 (en) | 2004-04-21 | 2006-05-17 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
Related Parent Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/912,578 Continuation-In-Part US7361168B2 (en) | 2004-04-21 | 2004-08-04 | Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders |
| US10/912,587 Continuation-In-Part US7057079B2 (en) | 2002-02-08 | 2004-08-06 | Method of synthesizing alkenone compounds |
| US11/116,118 Continuation-In-Part US7720521B2 (en) | 2004-04-21 | 2005-04-26 | Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses |
Related Child Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/829,917 Continuation-In-Part US7654997B2 (en) | 2004-04-21 | 2004-04-21 | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
| US11/804,308 Continuation-In-Part US10188413B1 (en) | 2004-04-21 | 2007-05-16 | Deflectable guide catheters and related methods |
| US12/949,708 Continuation US20110060214A1 (en) | 2004-04-21 | 2010-11-18 | Systems and Methods for Performing Image Guided Procedures Within the Ear, Nose, Throat and Paranasal Sinuses |
| US14/464,948 Continuation US20140364725A1 (en) | 2004-04-21 | 2014-08-21 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070208252A1 true US20070208252A1 (en) | 2007-09-06 |
Family
ID=38723784
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/436,892 Abandoned US20070208252A1 (en) | 2004-04-21 | 2006-05-17 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US12/949,708 Abandoned US20110060214A1 (en) | 2004-04-21 | 2010-11-18 | Systems and Methods for Performing Image Guided Procedures Within the Ear, Nose, Throat and Paranasal Sinuses |
| US14/464,948 Abandoned US20140364725A1 (en) | 2004-04-21 | 2014-08-21 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US15/083,826 Active 2028-06-05 US11065061B2 (en) | 2004-04-21 | 2016-03-29 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/949,708 Abandoned US20110060214A1 (en) | 2004-04-21 | 2010-11-18 | Systems and Methods for Performing Image Guided Procedures Within the Ear, Nose, Throat and Paranasal Sinuses |
| US14/464,948 Abandoned US20140364725A1 (en) | 2004-04-21 | 2014-08-21 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US15/083,826 Active 2028-06-05 US11065061B2 (en) | 2004-04-21 | 2016-03-29 | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
Country Status (2)
| Country | Link |
|---|---|
| US (4) | US20070208252A1 (fr) |
| WO (1) | WO2007136589A2 (fr) |
Cited By (289)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050076914A1 (en) * | 2000-12-06 | 2005-04-14 | Intumed Ltd. | Extendable tube |
| US20080009714A1 (en) * | 2006-06-12 | 2008-01-10 | Olympus Medical Systems Corp. | Endoscope insertion shape detecting device |
| US20080077220A1 (en) * | 2006-09-22 | 2008-03-27 | Cardiac Pacemakers, Inc. | Means to securely fixate pacing leads and/or sensors in vessels |
| US20080132911A1 (en) * | 2006-11-27 | 2008-06-05 | Mediguide Ltd. | System and method for navigating a surgical needle toward an organ of the body of a patient |
| US20080140180A1 (en) * | 2006-12-07 | 2008-06-12 | Medtronic Vascular, Inc. | Vascular Position Locating Apparatus and Method |
| US20080147173A1 (en) * | 2006-12-18 | 2008-06-19 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
| US20080171934A1 (en) * | 2007-01-12 | 2008-07-17 | Medtronic Vascular, Inc. | Vessel Position and Configuration Imaging Apparatus and Methods |
| US20080172119A1 (en) * | 2007-01-12 | 2008-07-17 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
| US20080188921A1 (en) * | 2007-02-02 | 2008-08-07 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
| US20080194945A1 (en) * | 2007-02-13 | 2008-08-14 | Siemens Medical Solutions Usa, Inc. | Apparatus and Method for Aligning a Light Pointer With a Medical Interventional Device Trajectory |
| US20080255446A1 (en) * | 2007-04-16 | 2008-10-16 | General Electric Company | System and method of integrating electromagnetic microsensors in guidewires |
| US20090005641A1 (en) * | 2007-06-28 | 2009-01-01 | Jens Fehre | Imaging method for medical diagnostics and device operating according to this method |
| US20090018531A1 (en) * | 2007-06-08 | 2009-01-15 | Cynosure, Inc. | Coaxial suction system for laser lipolysis |
| US20090054908A1 (en) * | 2005-04-15 | 2009-02-26 | Jason Matthew Zand | Surgical instruments with sensors for detecting tissue properties, and system using such instruments |
| US20090074140A1 (en) * | 2007-09-18 | 2009-03-19 | Moshe Ein-Gal | Radiotherapy system with turntable |
| US20090082838A1 (en) * | 2007-09-26 | 2009-03-26 | Cardiac Pacemakers, Inc. | Left-ventricular lead fixation device in coronary veins |
| US20090087050A1 (en) * | 2007-08-16 | 2009-04-02 | Michael Gandyra | Device for determining the 3D coordinates of an object, in particular of a tooth |
| US7544192B2 (en) | 2003-03-14 | 2009-06-09 | Sinexus, Inc. | Sinus delivery of sustained release therapeutics |
| US20090177272A1 (en) * | 2007-12-18 | 2009-07-09 | Abbate Anthony J | Self-expanding devices and methods therefor |
| US20090259284A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Resonating Stent or Stent Element |
| US20090259296A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Gate Cannulation Apparatus and Methods |
| US20090287048A1 (en) * | 2008-05-16 | 2009-11-19 | Sterling Lc | Method and apparatus for imaging within a living body |
| US20090326368A1 (en) * | 2008-06-30 | 2009-12-31 | General Electric Company | System and Method For Integrating Electromagnetic Microsensors in Guidewires |
| US20100057049A1 (en) * | 2008-09-03 | 2010-03-04 | Levin Paul D | Multi-lumen catheter for the withdrawal of blood samples |
| US20100078030A1 (en) * | 2008-09-29 | 2010-04-01 | Nellcor Puritan Bennett Llc | Airway system with carbon dioxide sensor for determining tracheal cuff inflation and technique for using the same |
| US20100141742A1 (en) * | 2006-11-21 | 2010-06-10 | Swiss Medical Technology Gmbh | System and method for displaying images in an overlaying relationship |
| WO2010078145A1 (fr) | 2008-12-22 | 2010-07-08 | Acclarent, Inc. | Sonde pour sinus frontal |
| US20100217279A1 (en) * | 2009-02-20 | 2010-08-26 | Tyco Healthcare Group Lp | Marking Articulating Direction For Surgical Instrument |
| WO2010102197A3 (fr) * | 2009-03-05 | 2010-11-11 | Cynosure, Inc. | Surveillance chirurgicale thermique |
| US20100312101A1 (en) * | 2009-06-05 | 2010-12-09 | Entellus Medical, Inc. | Frontal sinus dilation catheter |
| US20110030680A1 (en) * | 2009-07-30 | 2011-02-10 | Nellcor Puritan Bennett Llc | Tracheal tube with drug delivery device and method of using the same |
| US20110228907A1 (en) * | 2008-11-26 | 2011-09-22 | Oregon Health & Science University | Head and neck radiation localization using oral appliance |
| US8025635B2 (en) | 2005-04-04 | 2011-09-27 | Intersect Ent, Inc. | Device and methods for treating paranasal sinus conditions |
| US20110251457A1 (en) * | 2010-04-08 | 2011-10-13 | Eric James Kezirian | Endoscopic device and system |
| US20110270081A1 (en) * | 2010-04-30 | 2011-11-03 | Medtronic Xomed, Inc. | Navigated Malleable Surgical Instrument |
| WO2011140518A1 (fr) * | 2010-05-06 | 2011-11-10 | West Wireless Health Institute | Plateforme modulaire polyvalente pour instrumentation médicale mobile |
| WO2011121516A3 (fr) * | 2010-04-01 | 2011-12-08 | Koninklijke Philips Electronics N.V. | Déploiement d'endroprothèse virtuel |
| US8080000B2 (en) | 2004-04-21 | 2011-12-20 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US8088101B2 (en) | 2004-04-21 | 2012-01-03 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US8100933B2 (en) | 2002-09-30 | 2012-01-24 | Acclarent, Inc. | Method for treating obstructed paranasal frontal sinuses |
| US20120017923A1 (en) * | 2010-07-26 | 2012-01-26 | Lior Sobe | Removable Navigation System and Method for a Medical Device |
| US8114062B2 (en) | 2004-04-21 | 2012-02-14 | Acclarent, Inc. | Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders |
| US8114113B2 (en) | 2005-09-23 | 2012-02-14 | Acclarent, Inc. | Multi-conduit balloon catheter |
| US20120038761A1 (en) * | 2010-08-12 | 2012-02-16 | Leica Microsystems (Schweiz) Ag | Microscope System |
| US8118757B2 (en) | 2007-04-30 | 2012-02-21 | Acclarent, Inc. | Methods and devices for ostium measurement |
| US8142422B2 (en) | 2004-04-21 | 2012-03-27 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat |
| US8146400B2 (en) | 2004-04-21 | 2012-04-03 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US8172828B2 (en) | 2004-04-21 | 2012-05-08 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US8182432B2 (en) | 2008-03-10 | 2012-05-22 | Acclarent, Inc. | Corewire design and construction for medical devices |
| US8190389B2 (en) | 2006-05-17 | 2012-05-29 | Acclarent, Inc. | Adapter for attaching electromagnetic image guidance components to a medical device |
| US20120143203A1 (en) * | 2009-08-27 | 2012-06-07 | Yukihiro Nishio | Device for detecting tool tip position of remote-controlled actuator |
| US20120253200A1 (en) * | 2009-11-19 | 2012-10-04 | The Johns Hopkins University | Low-cost image-guided navigation and intervention systems using cooperative sets of local sensors |
| US8358462B2 (en) | 2007-06-05 | 2013-01-22 | Jacobsen Stephen C | Mini-scope for multi-directional imaging |
| US8388642B2 (en) | 2005-01-18 | 2013-03-05 | Acclarent, Inc. | Implantable devices and methods for treating sinusitis and other disorders |
| US8414473B2 (en) | 2004-04-21 | 2013-04-09 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US20130110134A1 (en) * | 2011-04-20 | 2013-05-02 | William R. Pratt | Shapeable passer for surgical cable or suture |
| WO2013061318A1 (fr) * | 2011-10-28 | 2013-05-02 | Navigate Surgical Technologies Inc. | Système et procédé de surveillance de champ opératoire |
| US8435033B2 (en) | 2010-07-19 | 2013-05-07 | Rainbow Medical Ltd. | Dental navigation techniques |
| US8435290B2 (en) | 2009-03-31 | 2013-05-07 | Acclarent, Inc. | System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx |
| US8439687B1 (en) | 2006-12-29 | 2013-05-14 | Acclarent, Inc. | Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices |
| US8486735B2 (en) | 2008-07-30 | 2013-07-16 | Raytheon Company | Method and device for incremental wavelength variation to analyze tissue |
| US8485199B2 (en) | 2007-05-08 | 2013-07-16 | Acclarent, Inc. | Methods and devices for protecting nasal turbinate during surgery |
| US20130184571A1 (en) * | 2012-01-12 | 2013-07-18 | Siemens Medical Solutions Usa, Inc. | Active system and method for imaging with an intra-patient probe |
| US20130237973A1 (en) * | 2012-03-09 | 2013-09-12 | Snu R&Db Foundation | Laser emission system and robot laser emission device comprising the same |
| US8535707B2 (en) | 2006-07-10 | 2013-09-17 | Intersect Ent, Inc. | Devices and methods for delivering active agents to the osteomeatal complex |
| WO2013144208A1 (fr) * | 2012-03-28 | 2013-10-03 | Navigate Surgical Technologies, Inc. | Enregistrement automatique du tissu corporel mou et système de surveillance de l'emplacement chirurgical et méthode avec référence de centrage appliquée à la peau |
| US20130261433A1 (en) * | 2012-03-28 | 2013-10-03 | Navident Technologies, Inc. | Haptic simulation and surgical location monitoring system and method |
| CN103417291A (zh) * | 2012-05-25 | 2013-12-04 | 韦伯斯特生物官能(以色列)有限公司 | 具有带有用于偏置偏转的弹簧部分的远侧节段的导管 |
| US20130324863A1 (en) * | 2010-11-03 | 2013-12-05 | Daquan Yu | Guide wire arrangement, strip arrangement and methods of forming the same |
| US8614768B2 (en) | 2002-03-18 | 2013-12-24 | Raytheon Company | Miniaturized imaging device including GRIN lens optically coupled to SSID |
| WO2014037524A1 (fr) * | 2012-09-06 | 2014-03-13 | Norwegian University Of Science And Technology (Ntnu) | Dispositif d'intervention |
| US8690762B2 (en) | 2008-06-18 | 2014-04-08 | Raytheon Company | Transparent endoscope head defining a focal length |
| EP2627392A4 (fr) * | 2010-12-29 | 2014-04-16 | St Jude Medical Atrial Fibrill | Fil-guide pour dispositif médical équipé d'un capteur de position |
| US8702626B1 (en) | 2004-04-21 | 2014-04-22 | Acclarent, Inc. | Guidewires for performing image guided procedures |
| US8717428B2 (en) | 2009-10-01 | 2014-05-06 | Raytheon Company | Light diffusion apparatus |
| US8715169B2 (en) | 2004-04-21 | 2014-05-06 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US20140128726A1 (en) * | 2012-11-05 | 2014-05-08 | Medtronic, Inc. | Alignment of Imaging Modalities |
| US8740929B2 (en) | 2001-02-06 | 2014-06-03 | Acclarent, Inc. | Spacing device for releasing active substances in the paranasal sinus |
| US8747389B2 (en) | 2004-04-21 | 2014-06-10 | Acclarent, Inc. | Systems for treating disorders of the ear, nose and throat |
| WO2014100458A1 (fr) * | 2012-12-21 | 2014-06-26 | Volcano Corporation | Structures de montage pour composants de dispositifs intravasculaires |
| US8763222B2 (en) | 2008-08-01 | 2014-07-01 | Intersect Ent, Inc. | Methods and devices for crimping self-expanding devices |
| US20140187970A1 (en) * | 2012-12-28 | 2014-07-03 | The General Hospital Corporation | Optical probe apparatus, systems, methods for guiding tissue asessment |
| US20140234804A1 (en) * | 2012-05-02 | 2014-08-21 | Eped Inc. | Assisted Guidance and Navigation Method in Intraoral Surgery |
| US8828028B2 (en) | 2009-11-03 | 2014-09-09 | Raytheon Company | Suture device and method for closing a planar opening |
| US8834513B2 (en) | 2009-06-05 | 2014-09-16 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US8864787B2 (en) | 2004-04-21 | 2014-10-21 | Acclarent, Inc. | Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis |
| US8894614B2 (en) | 2004-04-21 | 2014-11-25 | Acclarent, Inc. | Devices, systems and methods useable for treating frontal sinusitis |
| US8908918B2 (en) | 2012-11-08 | 2014-12-09 | Navigate Surgical Technologies, Inc. | System and method for determining the three-dimensional location and orientation of identification markers |
| US8915948B2 (en) | 2002-06-19 | 2014-12-23 | Palomar Medical Technologies, Llc | Method and apparatus for photothermal treatment of tissue at depth |
| US8932276B1 (en) | 2004-04-21 | 2015-01-13 | Acclarent, Inc. | Shapeable guide catheters and related methods |
| US8938282B2 (en) | 2011-10-28 | 2015-01-20 | Navigate Surgical Technologies, Inc. | Surgical location monitoring system and method with automatic registration |
| US8945142B2 (en) | 2008-08-27 | 2015-02-03 | Cook Medical Technologies Llc | Delivery system for implanting nasal ventilation tube |
| US8951225B2 (en) | 2005-06-10 | 2015-02-10 | Acclarent, Inc. | Catheters with non-removable guide members useable for treatment of sinusitis |
| US8971993B2 (en) | 2010-11-19 | 2015-03-03 | Mediguide Ltd. | Systems and methods for navigating a surgical device |
| US8979888B2 (en) | 2008-07-30 | 2015-03-17 | Acclarent, Inc. | Paranasal ostium finder devices and methods |
| US9022967B2 (en) | 2010-10-08 | 2015-05-05 | Sinopsys Surgical, Inc. | Implant device, tool, and methods relating to treatment of paranasal sinuses |
| US9028536B2 (en) | 2006-08-02 | 2015-05-12 | Cynosure, Inc. | Picosecond laser apparatus and methods for its operation and use |
| US9039657B2 (en) | 2004-08-04 | 2015-05-26 | Acclarent, Inc. | Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders |
| US9044581B2 (en) | 2012-03-19 | 2015-06-02 | Cook Medical Technologies Llc | Medical devices, methods, and kits for delivering medication to a bodily passage |
| US9060704B2 (en) | 2008-11-04 | 2015-06-23 | Sarcos Lc | Method and device for wavelength shifted imaging |
| US9072626B2 (en) | 2009-03-31 | 2015-07-07 | Acclarent, Inc. | System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx |
| US9089631B2 (en) | 2011-07-22 | 2015-07-28 | Cook Medical Technologies Llc | Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages |
| US9089258B2 (en) | 2004-04-21 | 2015-07-28 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US9101384B2 (en) | 2004-04-21 | 2015-08-11 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat |
| US9107574B2 (en) | 2004-04-21 | 2015-08-18 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US9144664B2 (en) | 2009-10-01 | 2015-09-29 | Sarcos Lc | Method and apparatus for manipulating movement of a micro-catheter |
| US9155492B2 (en) | 2010-09-24 | 2015-10-13 | Acclarent, Inc. | Sinus illumination lightwire device |
| US9161679B2 (en) | 2009-08-18 | 2015-10-20 | Olaf Christiansen | Image processing system having an additional piece of scale information to be processed together with the image information |
| US9198737B2 (en) | 2012-11-08 | 2015-12-01 | Navigate Surgical Technologies, Inc. | System and method for determining the three-dimensional location and orientation of identification markers |
| US9226689B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit sheet |
| US9226688B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit assemblies |
| US20160001447A1 (en) * | 2012-12-20 | 2016-01-07 | Olympus Corporation | Position detection sensor and manipulator |
| US9232985B2 (en) | 2009-03-10 | 2016-01-12 | Medtronic Xomed, Inc. | Navigating a surgical instrument |
| WO2016007595A1 (fr) | 2014-07-09 | 2016-01-14 | Acclarent, Inc. | Navigation par fil-guide pour sinuplastie |
| US9248266B2 (en) | 2013-12-17 | 2016-02-02 | Biovision Technologies, Llc | Method of performing a sphenopalatine ganglion block procedure |
| US9265407B2 (en) | 2004-04-21 | 2016-02-23 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US20160051134A1 (en) * | 2014-08-19 | 2016-02-25 | United Sciences, Llc | Guidance of three-dimensional scanning device |
| US9283360B2 (en) | 2011-11-10 | 2016-03-15 | Entellus Medical, Inc. | Methods and devices for treating sinusitis |
| US9351750B2 (en) | 2004-04-21 | 2016-05-31 | Acclarent, Inc. | Devices and methods for treating maxillary sinus disease |
| US9375138B2 (en) | 2011-11-25 | 2016-06-28 | Cook Medical Technologies Llc | Steerable guide member and catheter |
| US9399121B2 (en) | 2004-04-21 | 2016-07-26 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US9433437B2 (en) | 2013-03-15 | 2016-09-06 | Acclarent, Inc. | Apparatus and method for treatment of ethmoid sinusitis |
| US9456122B2 (en) | 2013-08-13 | 2016-09-27 | Navigate Surgical Technologies, Inc. | System and method for focusing imaging devices |
| US9457173B2 (en) | 2011-09-10 | 2016-10-04 | Cook Medical Technologies Llc | Methods of providing access to a salivary duct |
| US9468362B2 (en) | 2004-04-21 | 2016-10-18 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| WO2016171938A1 (fr) | 2015-04-22 | 2016-10-27 | Acclarent, Inc. | Système et procédé pour cartographier des structures de cavité nasale |
| US9489738B2 (en) | 2013-04-26 | 2016-11-08 | Navigate Surgical Technologies, Inc. | System and method for tracking non-visible structure of a body with multi-element fiducial |
| US20160354049A1 (en) * | 2015-06-04 | 2016-12-08 | Biosense Webster (Israel) Ltd. | Registration of coronary sinus catheter image |
| US9516995B2 (en) | 2013-12-17 | 2016-12-13 | Biovision Technologies, Llc | Surgical device for performing a sphenopalatine ganglion block procedure |
| US9554763B2 (en) | 2011-10-28 | 2017-01-31 | Navigate Surgical Technologies, Inc. | Soft body automatic registration and surgical monitoring system |
| US9561350B2 (en) | 2013-01-25 | 2017-02-07 | Sinopsys Surgical, Inc. | Paranasal sinus access implant devices and related tools, methods and kits |
| US9566123B2 (en) | 2011-10-28 | 2017-02-14 | Navigate Surgical Technologies, Inc. | Surgical location monitoring system and method |
| US9572964B2 (en) | 2012-04-11 | 2017-02-21 | Sinapsys Surgical, Inc. | Implantation tools, tool assemblies, kits and methods |
| US9585721B2 (en) | 2011-10-28 | 2017-03-07 | Navigate Surgical Technologies, Inc. | System and method for real time tracking and modeling of surgical site |
| WO2017055976A1 (fr) * | 2015-10-02 | 2017-04-06 | Koninklijke Philips N.V. | Dispositif de navigation électromagnétique pour le guidage et la poursuite d'un outil d'intervention |
| US9629684B2 (en) | 2013-03-15 | 2017-04-25 | Acclarent, Inc. | Apparatus and method for treatment of ethmoid sinusitis |
| USD785794S1 (en) | 2014-12-23 | 2017-05-02 | Gyrus Acmi, Inc. | Adapter for a surgical device |
| WO2017074977A1 (fr) | 2015-10-30 | 2017-05-04 | Acclarent, Inc. | Système et procédé pour la navigation d'instruments chirurgicaux |
| EP3170455A1 (fr) * | 2015-11-17 | 2017-05-24 | Biosense Webster (Israel) Ltd. | Fil-guide à capacité de lancer de rayon |
| US9661996B2 (en) | 2009-10-01 | 2017-05-30 | Sarcos Lc | Needle delivered imaging device |
| US20170150993A1 (en) * | 2015-11-30 | 2017-06-01 | Robert A. Ganz | Blockage removal |
| US9694163B2 (en) | 2013-12-17 | 2017-07-04 | Biovision Technologies, Llc | Surgical device for performing a sphenopalatine ganglion block procedure |
| US9700459B2 (en) | 2013-10-16 | 2017-07-11 | Sinopsys Surgical, Inc. | Apparatuses, tools and kits relating to fluid manipulation treatments of paranasal sinuses |
| US20170209073A1 (en) * | 2016-01-26 | 2017-07-27 | Auris Surgical Robotics, Inc. | Surgical tools having electromagnetic tracking components |
| US9717554B2 (en) | 2012-03-26 | 2017-08-01 | Biosense Webster (Israel) Ltd. | Catheter with composite construction |
| US9717412B2 (en) | 2010-11-05 | 2017-08-01 | Gary And Mary West Health Institute | Wireless fetal monitoring system |
| US20170215801A1 (en) * | 2016-02-03 | 2017-08-03 | Eugene J. Jung, Jr. | Modular Sensing Guidewire |
| US9750486B2 (en) | 2011-10-25 | 2017-09-05 | Medtronic Navigation, Inc. | Trackable biopsy needle |
| US9780518B2 (en) | 2012-04-18 | 2017-10-03 | Cynosure, Inc. | Picosecond laser apparatus and methods for treating target tissues with same |
| US9820688B2 (en) | 2006-09-15 | 2017-11-21 | Acclarent, Inc. | Sinus illumination lightwire device |
| US20180036009A1 (en) * | 2016-08-04 | 2018-02-08 | Biosense Webster (Israel) Ltd. | Balloon positioning in a sinuplasty procedure |
| US9918657B2 (en) | 2012-11-08 | 2018-03-20 | Navigate Surgical Technologies, Inc. | Method for determining the location and orientation of a fiducial reference |
| WO2018057334A1 (fr) | 2016-09-23 | 2018-03-29 | Acclarent, Inc. | Dispositif d'aspiration destiné à être utilisé dans une procédure médicale de sinus guidée par image |
| EP3300679A1 (fr) * | 2016-09-14 | 2018-04-04 | Biosense Webster (Israel), Ltd. | Antenne d'outil oto-rhinolaryngologique |
| WO2018075273A1 (fr) | 2016-10-18 | 2018-04-26 | Acclarent, Inc. | Ballonnet de dilatation à fonction de distribution d'énergie rf |
| US9956384B2 (en) | 2014-01-24 | 2018-05-01 | Cook Medical Technologies Llc | Articulating balloon catheter and method for using the same |
| US9956383B2 (en) | 2013-03-15 | 2018-05-01 | Cook Medical Technologies Llc | Medical devices and methods for providing access to a bodily passage during dilation |
| US9974501B2 (en) | 2011-01-28 | 2018-05-22 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
| US10016580B2 (en) | 2013-12-17 | 2018-07-10 | Biovision Technologies, Llc | Methods for treating sinus diseases |
| US10022192B1 (en) * | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
| WO2018144500A1 (fr) | 2017-02-01 | 2018-08-09 | Acclarent, Inc. | Fil-guide de navigation à bobines imbriquées |
| WO2018144702A1 (fr) | 2017-02-01 | 2018-08-09 | Acclarent, Inc. | Instrument chirurgical avec caractéristiques d'interface de fil de navigation |
| US20180261009A1 (en) * | 2015-09-28 | 2018-09-13 | Montefiore Medical Center | Methods and devices for intraoperative viewing of patient 3d surfact images |
| WO2018175412A1 (fr) | 2017-03-20 | 2018-09-27 | Acclarent, Inc. | Fil-guide de navigation avec bobine de capteur protégée |
| US20180288361A1 (en) * | 2017-03-28 | 2018-10-04 | Olympus Corporation | Endoscope apparatus, endoscope system, and endoscope image recording method |
| WO2018183394A1 (fr) | 2017-03-30 | 2018-10-04 | Acclarent, Inc. | Fil-guide à tube optique contenant un fil central |
| EP3395247A1 (fr) | 2017-04-26 | 2018-10-31 | Acclarent, Inc. | Appareil pour fixer un dispositif de création de champ pour chaise |
| US10123755B2 (en) | 2013-03-13 | 2018-11-13 | Auris Health, Inc. | Reducing incremental measurement sensor error |
| US10130345B2 (en) | 2013-03-15 | 2018-11-20 | Auris Health, Inc. | System and methods for tracking robotically controlled medical instruments |
| US10143360B2 (en) | 2010-06-24 | 2018-12-04 | Auris Health, Inc. | Methods and devices for controlling a shapeable medical device |
| EP3409219A1 (fr) | 2017-05-31 | 2018-12-05 | Acclarent, Inc. | Instrument d'aspiration navigable comportant un capteur annulaire coaxial |
| US10159586B2 (en) | 2015-06-29 | 2018-12-25 | 480 Biomedical Inc. | Scaffold loading and delivery systems |
| US10169875B2 (en) | 2015-09-18 | 2019-01-01 | Auris Health, Inc. | Navigation of tubular networks |
| US10188413B1 (en) | 2004-04-21 | 2019-01-29 | Acclarent, Inc. | Deflectable guide catheters and related methods |
| US10201639B2 (en) | 2017-05-01 | 2019-02-12 | 480 Biomedical, Inc. | Drug-eluting medical implants |
| US10206821B2 (en) | 2007-12-20 | 2019-02-19 | Acclarent, Inc. | Eustachian tube dilation balloon with ventilation path |
| EP3446741A1 (fr) | 2017-08-25 | 2019-02-27 | Acclarent, Inc. | Ensemble de fil d'âme pour fil de guidage |
| WO2019048964A1 (fr) | 2017-09-05 | 2019-03-14 | Acclarent, Inc. | Instrument guidé par capteur à élément de pénétration |
| WO2019049037A1 (fr) | 2017-09-08 | 2019-03-14 | Acclarent, Inc. | Appareil comprenant un cathéter de dilatation, un cathéter de guidage et un indicateur d'éclairage pour faciliter le positionnement rotationnel |
| WO2019049039A1 (fr) | 2017-09-08 | 2019-03-14 | Acclarent, Inc. | Ensemble fil-guide avec fil central entrelacé |
| US10232082B2 (en) | 2015-06-29 | 2019-03-19 | 480 Biomedical, Inc. | Implantable scaffolds for treatment of sinusitis |
| US10232152B2 (en) | 2013-03-14 | 2019-03-19 | Intersect Ent, Inc. | Systems, devices, and method for treating a sinus condition |
| US10238362B2 (en) | 2010-04-26 | 2019-03-26 | Gary And Mary West Health Institute | Integrated wearable device for detection of fetal heart rate and material uterine contractions with wireless communication capability |
| US10245107B2 (en) | 2013-03-15 | 2019-04-02 | Cynosure, Inc. | Picosecond optical radiation systems and methods of use |
| EP3476271A2 (fr) | 2017-10-30 | 2019-05-01 | Acclarent, Inc. | Cathéter de dilatation avec détecteur de navigation et passage de purge en pointe |
| US10278729B2 (en) | 2013-04-26 | 2019-05-07 | Medtronic Xomed, Inc. | Medical device and its construction |
| US10278812B2 (en) | 2015-06-29 | 2019-05-07 | 480 Biomedical, Inc. | Implantable scaffolds and methods for treatment of sinusitis |
| WO2019102339A1 (fr) | 2017-11-27 | 2019-05-31 | Acclarent, Inc. | Fil-guide avec dilatateur extensible intégré |
| US10314488B2 (en) * | 2006-11-20 | 2019-06-11 | St. Jude Medical Coordination Center Bvba | Measurement system |
| WO2019111156A2 (fr) | 2017-12-04 | 2019-06-13 | Acclarent, Inc. | Instrument de dilatation avec capteur de navigation et capteur de force situé de manière distale |
| WO2019111158A1 (fr) | 2017-12-05 | 2019-06-13 | Acclarent, Inc. | Système de suivi de mouvements de patient pendant un acte médical guidé |
| US20190175888A1 (en) * | 2017-12-11 | 2019-06-13 | Acclarent, Inc. | Force measurement instrument for sinuplasty procedure |
| WO2019116314A2 (fr) | 2017-12-14 | 2019-06-20 | Acclarent, Inc. | Composant de suivi de patient monté pour système de navigation chirurgicale |
| WO2019116313A1 (fr) | 2017-12-14 | 2019-06-20 | Acclarent, Inc. | Ensemble fil-guide avec fils centraux décalés |
| WO2019116222A1 (fr) | 2017-12-12 | 2019-06-20 | Acclarent, Inc. | Instrument de rasage de tissu ayant un capteur de navigation |
| US10357640B2 (en) | 2009-05-15 | 2019-07-23 | Intersect Ent, Inc. | Expandable devices and methods for treating a nasal or sinus condition |
| US20190232036A1 (en) * | 2016-03-18 | 2019-08-01 | Procept Biorobotics Corporation | Minimally invasive systems with expandable support and proximal opening for hemostasis in a bleeding closed tissue volume |
| US20190261943A1 (en) * | 2010-06-30 | 2019-08-29 | Muffin Incorporated | Percutaneous, ultrasound-guided introduction of medical devices |
| CN110269681A (zh) * | 2018-03-16 | 2019-09-24 | 阿克拉伦特公司 | 用于医疗器械的导航套筒 |
| US10426424B2 (en) | 2017-11-21 | 2019-10-01 | General Electric Company | System and method for generating and performing imaging protocol simulations |
| US10434324B2 (en) | 2005-04-22 | 2019-10-08 | Cynosure, Llc | Methods and systems for laser treatment using non-uniform output beam |
| WO2019224631A1 (fr) | 2018-05-21 | 2019-11-28 | Acclarent, Inc. | Rasoir doté de caractéristiques de surveillance de vaisseaux sanguins et de nerfs |
| US10492868B2 (en) | 2011-01-28 | 2019-12-03 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
| WO2019234705A2 (fr) | 2018-06-08 | 2019-12-12 | Acclarent, Inc. | Appareil et procédé d'exécution d'une procédure de neurectomie vidienne |
| WO2019234540A1 (fr) | 2018-06-08 | 2019-12-12 | Acclarent, Inc. | Système de navigation chirurgicale avec endoscope à commande automatique |
| WO2019243918A1 (fr) | 2018-06-20 | 2019-12-26 | Acclarent, Inc. | Rasoir chirurgical doté d'une caractéristique pour détecter un état de fenêtre |
| US10524814B2 (en) | 2009-03-20 | 2020-01-07 | Acclarent, Inc. | Guide system with suction |
| US10524866B2 (en) | 2018-03-28 | 2020-01-07 | Auris Health, Inc. | Systems and methods for registration of location sensors |
| US10524820B2 (en) | 2017-05-16 | 2020-01-07 | Biosense Webster (Israel) Ltd. | Deflectable shaver tool |
| US10525240B1 (en) | 2018-06-28 | 2020-01-07 | Sandler Scientific LLC | Sino-nasal rinse delivery device with agitation, flow-control and integrated medication management system |
| US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
| US10617374B2 (en) | 2011-01-28 | 2020-04-14 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
| GB2546055B (en) * | 2014-10-14 | 2020-05-20 | Synaptive Medical Barbados Inc | Patient reference tool |
| WO2020115613A1 (fr) | 2018-12-04 | 2020-06-11 | Acclarent, Inc. | Rasoir chirurgical articulé bidirectionnel |
| US20200246070A1 (en) * | 2007-05-11 | 2020-08-06 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
| US10772489B2 (en) | 2014-07-09 | 2020-09-15 | Acclarent, Inc. | Guidewire navigation for sinuplasty |
| US10806535B2 (en) | 2015-11-30 | 2020-10-20 | Auris Health, Inc. | Robot-assisted driving systems and methods |
| US10814098B2 (en) | 2014-02-28 | 2020-10-27 | Cook Medical Technologies Llc | Deflectable catheters, systems, and methods for the visualization and treatment of bodily passages |
| US10827913B2 (en) | 2018-03-28 | 2020-11-10 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
| US20200363782A1 (en) * | 2018-02-02 | 2020-11-19 | Carl Zeiss lndustrielle Messtechnik GmbH | Method and device for generating a control signal, marker array and controllable system |
| US10874839B2 (en) | 2017-07-13 | 2020-12-29 | Acclarent, Inc. | Adjustable instrument for dilation of anatomical passageway |
| US10898375B2 (en) | 2014-07-24 | 2021-01-26 | Sinopsys Surgical, Inc. | Paranasal sinus access implant devices and related products and methods |
| US10898286B2 (en) | 2018-05-31 | 2021-01-26 | Auris Health, Inc. | Path-based navigation of tubular networks |
| US10898275B2 (en) | 2018-05-31 | 2021-01-26 | Auris Health, Inc. | Image-based airway analysis and mapping |
| US10905499B2 (en) | 2018-05-30 | 2021-02-02 | Auris Health, Inc. | Systems and methods for location sensor-based branch prediction |
| US10932861B2 (en) | 2016-01-14 | 2021-03-02 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
| US10973664B2 (en) | 2015-12-30 | 2021-04-13 | Lyra Therapeutics, Inc. | Scaffold loading and delivery systems |
| US10973504B2 (en) * | 2014-08-05 | 2021-04-13 | Paulino Edwardo Goco | Retractor suction catheter |
| US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
| WO2021123958A1 (fr) | 2019-12-19 | 2021-06-24 | Biosense Webster (Israel) Ltd. | Sélection d'emplacements de curseur sur une image médicale en utilisant les sens depuis l'extrémité distale de la sonde |
| US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
| US11065061B2 (en) | 2004-04-21 | 2021-07-20 | Acclarent, Inc. | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US11129972B2 (en) | 2017-09-20 | 2021-09-28 | Sinopsys Surgical, Inc. | Paranasal sinus fluid access implantation tools, assemblies, kits and methods |
| US20210308435A1 (en) * | 2018-06-22 | 2021-10-07 | Acclarent, Inc. | Guidewire for dilating eustachian tube via middle ear |
| US11141177B2 (en) | 2015-11-30 | 2021-10-12 | Piranha Medical Llc | Blockage clearing devices, systems, and methods |
| US11147633B2 (en) | 2019-08-30 | 2021-10-19 | Auris Health, Inc. | Instrument image reliability systems and methods |
| US11160615B2 (en) | 2017-12-18 | 2021-11-02 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
| US11207141B2 (en) | 2019-08-30 | 2021-12-28 | Auris Health, Inc. | Systems and methods for weight-based registration of location sensors |
| US11234650B2 (en) | 2006-11-20 | 2022-02-01 | St. Jude Medical Coordination Center Bvba | Measurement system |
| US20220061922A1 (en) * | 2020-08-25 | 2022-03-03 | Acclarent, Inc. | Apparatus and method for posterior nasal nerve ablation |
| US20220108475A1 (en) * | 2020-10-06 | 2022-04-07 | Asensus Surgical Us, Inc. | Camera calibration using fiducial markers on surgical tools |
| US11298195B2 (en) | 2019-12-31 | 2022-04-12 | Auris Health, Inc. | Anatomical feature identification and targeting |
| US11304777B2 (en) | 2011-10-28 | 2022-04-19 | Navigate Surgical Technologies, Inc | System and method for determining the three-dimensional location and orientation of identification markers |
| US11324558B2 (en) | 2019-09-03 | 2022-05-10 | Auris Health, Inc. | Electromagnetic distortion detection and compensation |
| US11324554B2 (en) | 2016-04-08 | 2022-05-10 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
| US11382650B2 (en) | 2015-10-30 | 2022-07-12 | Auris Health, Inc. | Object capture with a basket |
| US11395703B2 (en) | 2017-06-28 | 2022-07-26 | Auris Health, Inc. | Electromagnetic distortion detection |
| US11418000B2 (en) | 2018-02-26 | 2022-08-16 | Cynosure, Llc | Q-switched cavity dumped sub-nanosecond laser |
| US20220257969A1 (en) * | 2008-07-01 | 2022-08-18 | Ralph Zipper | Method for treating pelvic pain, chronic prostatitis, and or overactive bladder symptoms |
| US11426095B2 (en) | 2013-03-15 | 2022-08-30 | Auris Health, Inc. | Flexible instrument localization from both remote and elongation sensors |
| US20220273367A1 (en) * | 2008-07-01 | 2022-09-01 | Ralph Zipper | System and method for applying controlled dosage light therapy for treatment of body tissue |
| US11439419B2 (en) | 2019-12-31 | 2022-09-13 | Auris Health, Inc. | Advanced basket drive mode |
| US11439420B2 (en) * | 2018-12-11 | 2022-09-13 | Acclarent, Inc. | Nasal suction instrument with interchangeable tip insert |
| US11471650B2 (en) | 2019-09-20 | 2022-10-18 | Biosense Webster (Israel) Ltd. | Mechanism for manipulating a puller wire |
| US11481909B2 (en) | 2018-12-06 | 2022-10-25 | Biosense Webster (Israel) Ltd. | Method and apparatus for performing facial registration |
| US11490782B2 (en) | 2017-03-31 | 2022-11-08 | Auris Health, Inc. | Robotic systems for navigation of luminal networks that compensate for physiological noise |
| US11504064B2 (en) * | 2016-07-28 | 2022-11-22 | Evalve, Inc. | Systems and methods for intra-procedural cardiac pressure monitoring |
| US11504187B2 (en) | 2013-03-15 | 2022-11-22 | Auris Health, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
| US11503986B2 (en) | 2018-05-31 | 2022-11-22 | Auris Health, Inc. | Robotic systems and methods for navigation of luminal network that detect physiological noise |
| US11510692B2 (en) * | 2019-05-31 | 2022-11-29 | Biosense Webster (Israel) Ltd. | Ear-nose-throat (ENT) navigable shaver with ferromagnetic components |
| US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
| US11529502B2 (en) | 2004-04-21 | 2022-12-20 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US11534249B2 (en) * | 2015-10-30 | 2022-12-27 | Auris Health, Inc. | Process for percutaneous operations |
| US11571229B2 (en) | 2015-10-30 | 2023-02-07 | Auris Health, Inc. | Basket apparatus |
| US11602372B2 (en) | 2019-12-31 | 2023-03-14 | Auris Health, Inc. | Alignment interfaces for percutaneous access |
| WO2023081089A1 (fr) * | 2021-11-05 | 2023-05-11 | Avent, Inc. | Système configurable et procédé pour indiquer un écart par rapport à une voie de placement de dispositif médical |
| US11660147B2 (en) | 2019-12-31 | 2023-05-30 | Auris Health, Inc. | Alignment techniques for percutaneous access |
| US11771309B2 (en) | 2016-12-28 | 2023-10-03 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
| WO2023218433A1 (fr) | 2022-05-13 | 2023-11-16 | Stryker European Operations Limited | Procédés et systèmes de navigation chirurgicale utilisant l'enregistrement spatial de la fluorescence tissulaire lors d'une intervention de résection |
| US11832889B2 (en) | 2017-06-28 | 2023-12-05 | Auris Health, Inc. | Electromagnetic field generator alignment |
| US11883121B2 (en) | 2004-03-05 | 2024-01-30 | Auris Health, Inc. | Robotic catheter system |
| US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
| AU2020346080B2 (en) * | 2019-09-13 | 2024-02-15 | Stryker Corporation | Image guided surgery system guide wire and methods of manufacture and use |
| US20240207005A1 (en) * | 2018-10-05 | 2024-06-27 | Intuitive Surgical Operations, Inc. | Systems and methods for positioning medical instruments |
| US12064577B2 (en) | 2015-01-22 | 2024-08-20 | Intersect Ent, Inc. | Drug-coated balloon |
| US12070365B2 (en) | 2012-03-28 | 2024-08-27 | Navigate Surgical Technologies, Inc | System and method for determining the three-dimensional location and orientation of identification markers |
| US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
| WO2024201224A1 (fr) * | 2023-03-29 | 2024-10-03 | Covidien Lp | Cathéter à guidage automatique ayant un capteur de proximité |
| WO2024211458A1 (fr) * | 2023-04-04 | 2024-10-10 | Entellus Medical, Inc. | Dispositifs de dilatation de ballonnet, procédés d'utilisation et procédés de fabrication |
| US12220178B2 (en) | 2018-09-13 | 2025-02-11 | Norwegian University Of Science And Technology (Ntnu) | Method and apparatus for calibrating an instrument for surgical intervention |
| US12220226B2 (en) * | 2020-10-06 | 2025-02-11 | Asensus Surgical Europe S.à.R.L. | Surgical site measurement, and camera calibration using fiducial markers on surgical tools |
| WO2025035035A1 (fr) * | 2023-08-09 | 2025-02-13 | Acclarent, Inc. | Manchon adaptateur de guidage pour instrument d'orl |
| US20250090239A1 (en) * | 2023-09-20 | 2025-03-20 | Acclarent, Inc. | Method of registering a patient with medical instrument navigation system |
| WO2025081187A1 (fr) | 2023-10-11 | 2025-04-17 | Stryker Corporation | Détection de tissu avec un outil de résection à ultrasons |
| US12403291B2 (en) | 2019-08-30 | 2025-09-02 | Intersect Ent, Inc. | Submucosal bioresorbable drug eluting platform |
| US12414686B2 (en) | 2020-03-30 | 2025-09-16 | Auris Health, Inc. | Endoscopic anatomical feature tracking |
| US12419550B2 (en) | 2014-04-05 | 2025-09-23 | Surgisense Corporation | Apparatus, systems, and methods for mapping of tissue oxygenation |
| US12478444B2 (en) | 2019-03-21 | 2025-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for localization based on machine learning |
| US12491042B2 (en) | 2013-10-24 | 2025-12-09 | Auris Health, Inc. | Endoscopic device with helical lumen design |
Families Citing this family (104)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7816975B2 (en) * | 2005-09-20 | 2010-10-19 | Hewlett-Packard Development Company, L.P. | Circuit and method for bias voltage generation |
| US8792688B2 (en) | 2007-03-01 | 2014-07-29 | Titan Medical Inc. | Methods, systems and devices for three dimensional input and control methods and systems based thereon |
| US11576736B2 (en) | 2007-03-01 | 2023-02-14 | Titan Medical Inc. | Hand controller for robotic surgery system |
| US8382834B2 (en) * | 2010-04-12 | 2013-02-26 | Enteroptyx | Induction heater system for shape memory medical implants and method of activating shape memory medical implants within the mammalian body |
| DE102011078212B4 (de) | 2011-06-28 | 2017-06-29 | Scopis Gmbh | Verfahren und Vorrichtung zum Darstellen eines Objektes |
| US9123155B2 (en) * | 2011-08-09 | 2015-09-01 | Covidien Lp | Apparatus and method for using augmented reality vision system in surgical procedures |
| US10279155B1 (en) | 2012-11-02 | 2019-05-07 | Michael B. Siegel | Methods and systems for bathing nose and sinus passages |
| JP6382833B2 (ja) | 2012-12-07 | 2018-08-29 | ボルケーノ コーポレイション | 高圧の治療用および画像化用カテーテル |
| US9463307B2 (en) | 2012-12-21 | 2016-10-11 | Medtronic Xomed, Inc. | Sinus dilation system and method |
| DE102013211055B3 (de) | 2013-06-13 | 2014-09-18 | Scopis Gmbh | Adapter zur Aufnahme eines medizintechnischen Geräts sowie eines Lageerfassungssystems |
| DE102013213727A1 (de) | 2013-07-12 | 2015-01-15 | Siemens Aktiengesellschaft | Interventionelles Bildgebungssystem |
| DE202013012313U1 (de) | 2013-07-17 | 2016-02-25 | Fiagon Gmbh | Vorrichtung zur Anbindung eines medizinischen Instruments an ein Lageerfassungssystem und medizinisches Zeigerinstrument |
| US11260208B2 (en) | 2018-06-08 | 2022-03-01 | Acclarent, Inc. | Dilation catheter with removable bulb tip |
| DE102013222230A1 (de) | 2013-10-31 | 2015-04-30 | Fiagon Gmbh | Chirurgisches Instrument |
| US20150151095A1 (en) * | 2013-11-29 | 2015-06-04 | Muaaz Tarabichi | Combined balloon dilation catheter and introducer for dilation of eustachian tube |
| GB2524955A (en) | 2014-04-01 | 2015-10-14 | Scopis Gmbh | Method for cell envelope segmentation and visualisation |
| WO2016040237A1 (fr) * | 2014-09-11 | 2016-03-17 | Acclarent, Inc. | Système de dilatation de trompe d'eustache à profil bas |
| GB201501157D0 (en) | 2015-01-23 | 2015-03-11 | Scopis Gmbh | Instrument guidance system for sinus surgery |
| USD772406S1 (en) | 2014-12-16 | 2016-11-22 | Biovision Technologies, Llc | Surgical device |
| US10322269B1 (en) | 2015-01-19 | 2019-06-18 | Dalent, LLC | Dilator device |
| CN107072514A (zh) * | 2015-06-10 | 2017-08-18 | 奥林巴斯株式会社 | 细长部件的信号线架设构造 |
| US10271906B2 (en) * | 2015-11-06 | 2019-04-30 | Biosense Webster (Israel) Ltd. | Updating a volumetric map |
| US9554869B1 (en) * | 2016-01-08 | 2017-01-31 | Eped Inc. | Bite tray having fiducial markers for head scan registration and method of use |
| RU2615273C1 (ru) * | 2016-01-11 | 2017-04-04 | Сергей Геннадиевич Вахрушев | Устройство для исследования и лечения заболеваний слуховой трубы |
| US10825177B2 (en) * | 2016-05-16 | 2020-11-03 | TrackX Technology, LLC | Imaging system and method for image localization of effecters during a medical procedure |
| US11026747B2 (en) * | 2017-04-25 | 2021-06-08 | Biosense Webster (Israel) Ltd. | Endoscopic view of invasive procedures in narrow passages |
| US10786311B2 (en) | 2017-12-22 | 2020-09-29 | Acclarent, Inc. | Apparatus and method for registering facial landmarks for surgical navigation system |
| US20190192177A1 (en) | 2017-12-22 | 2019-06-27 | Acclarent, Inc. | Reusable navigation guidewire |
| US20190192176A1 (en) | 2017-12-22 | 2019-06-27 | Acclarent, Inc. | Dilation instrument with guide catheter type sensor |
| US11103266B2 (en) | 2017-12-28 | 2021-08-31 | Acclarent, Inc. | Medical instrument with integral navigation control features |
| US20190262512A1 (en) | 2018-02-27 | 2019-08-29 | Acclarent, Inc. | Medical Instrument with Self-Collapsing Channel |
| US11272946B2 (en) | 2018-03-09 | 2022-03-15 | Acclarent, Inc. | Fluid fitting for dilation instrument |
| US20190282306A1 (en) | 2018-03-16 | 2019-09-19 | Acclarent, Inc. | Navigation instrument with obliquely oriented sensing coil |
| US11832890B2 (en) | 2018-04-17 | 2023-12-05 | Acclarent, Inc. | Curette with navigation sensor |
| US11297495B2 (en) | 2018-05-08 | 2022-04-05 | Biosense Webster (Israel) Ltd. | Medical image transfer system |
| DE102018208203B4 (de) * | 2018-05-24 | 2020-02-13 | Carl Zeiss Industrielle Messtechnik Gmbh | Targetkörper, Anordnung mit Targetkörper und Verfahren zum Ermitteln einer Position und/oder einer Ausrichtung eines Targetkörpers |
| US20190374129A1 (en) | 2018-06-07 | 2019-12-12 | Acclarent, Inc. | Endoscope with integral navigation sensor |
| US20190388156A1 (en) | 2018-06-20 | 2019-12-26 | Acclarent, Inc. | Medical instrument with multi-coil position sensor |
| US20190388157A1 (en) | 2018-06-21 | 2019-12-26 | Acclarent, Inc. | Surgical navigation system with pattern recognition for fail-safe tissue removal |
| EP3818496A4 (fr) * | 2018-07-02 | 2022-04-20 | Tempus Labs, Inc. | Plate-forme radiomique 3d destinée au développement de biomarqueurs d'imagerie |
| US20200054243A1 (en) | 2018-08-17 | 2020-02-20 | Acclarent, Inc. | Endoscope with anatomy elevation assembly |
| US11457981B2 (en) | 2018-10-04 | 2022-10-04 | Acclarent, Inc. | Computerized tomography (CT) image correction using position and direction (P andD) tracking assisted optical visualization |
| US20200107726A1 (en) | 2018-10-05 | 2020-04-09 | Acclarent, Inc. | Suction instrument with dissecting tip and axially offset sensors |
| US11883618B2 (en) | 2018-10-05 | 2024-01-30 | Acclarent, Inc. | Dilation catheter tip removal instrument |
| US11839729B2 (en) | 2018-10-05 | 2023-12-12 | Acclarent, Inc. | Dilation instrument with malleable guide and dilation catheter with integral position sensor |
| US12042163B2 (en) | 2018-10-05 | 2024-07-23 | Acclarent, Inc. | Hollow tube surgical instrument with single axis sensor |
| US11602619B2 (en) | 2018-10-05 | 2023-03-14 | Biosense Webster (Israel) Ltd. | Coupling assembly for variable diameter surgical instrument |
| US11204677B2 (en) | 2018-10-22 | 2021-12-21 | Acclarent, Inc. | Method for real time update of fly-through camera placement |
| US11484366B2 (en) | 2018-11-29 | 2022-11-01 | Acclarent, Inc. | Adapter assembly to enable navigation for ENT instruments |
| US11583393B2 (en) | 2018-12-05 | 2023-02-21 | Acclarent, Inc. | Apparatus and method to maintain patency of dilated anatomical opening |
| US11998284B2 (en) | 2018-12-07 | 2024-06-04 | Acclarent, Inc. | Articulating guide with integral position sensor |
| US11883048B2 (en) | 2018-12-07 | 2024-01-30 | Acclarent, Inc. | Instrument with integral imaging and irrigation features |
| US11826068B2 (en) | 2018-12-10 | 2023-11-28 | Acclarent, Inc. | Method of forming suction instrument end and shaver instrument end |
| US11395906B2 (en) | 2018-12-12 | 2022-07-26 | Acclarent, Inc. | Combined sinuplasty and seeker instrument with navigation and illumination modalities |
| US11744646B2 (en) | 2018-12-12 | 2023-09-05 | Acclarent, Inc. | Registration probe for image guided surgery system |
| US11419623B2 (en) | 2018-12-12 | 2022-08-23 | Acclarent, Inc. | Sinuplasty instrument with moveable navigation sensor |
| US11514576B2 (en) | 2018-12-14 | 2022-11-29 | Acclarent, Inc. | Surgical system with combination of sensor-based navigation and endoscopy |
| US11576662B2 (en) * | 2018-12-14 | 2023-02-14 | Acclarent, Inc. | Posterior nasal packing with integrated sensor as patient tracker |
| US11547493B2 (en) | 2018-12-17 | 2023-01-10 | Acclarent, Inc. | Connector to couple surgical instrument with navigation system |
| US10955657B2 (en) * | 2018-12-20 | 2021-03-23 | Acclarent, Inc. | Endoscope with dual image sensors |
| US11633083B2 (en) | 2018-12-20 | 2023-04-25 | Acclarent, Inc. | 3D scanning of nasal tract with deflectable endoscope |
| US11786296B2 (en) | 2019-02-15 | 2023-10-17 | Accularent, Inc. | Instrument for endoscopic posterior nasal nerve ablation |
| US11712548B2 (en) | 2019-03-29 | 2023-08-01 | Acclarent, Inc. | Eustachian tube dilation catheter with depth indicia |
| US12011213B2 (en) | 2019-03-29 | 2024-06-18 | Acclarent, Inc. | System and method for treating epistaxis |
| US20200305982A1 (en) | 2019-03-29 | 2020-10-01 | Acclarent, Inc. | Apparatus and method for measuring depth of bit in ent drill |
| EP3719749A1 (fr) | 2019-04-03 | 2020-10-07 | Fiagon AG Medical Technologies | Procédé et configuration d'enregistrement |
| US11534235B2 (en) | 2019-04-04 | 2022-12-27 | Acclarent, Inc. | Needle instrument for posterior nasal neurectomy ablation |
| EP3738542A1 (fr) | 2019-05-15 | 2020-11-18 | Stryker European Holdings I, LLC | Unité de poursuite pour un système de navigation chirurgical |
| USD877325S1 (en) | 2019-06-06 | 2020-03-03 | Dalent, LLC | Inflatable therapeutic treatment balloon device |
| EP3982851A4 (fr) | 2019-06-11 | 2023-08-16 | Dalent, LLC | Dispositif de dilatation de ballonnet |
| WO2020254875A1 (fr) * | 2019-06-19 | 2020-12-24 | Sunnybrook Research Institute | Cathéter à suivi magnétique et procédé de suivi de cathéter |
| US20210121238A1 (en) | 2019-10-24 | 2021-04-29 | Acclarent, Inc. | Visualization system and method for ent procedures |
| US12220162B2 (en) | 2019-12-03 | 2025-02-11 | Acclarent, Inc. | Turbinate reduction instrument |
| US20210177523A1 (en) | 2019-12-16 | 2021-06-17 | Acclarent, Inc. | Low profile ent probe with distal shaft length and rigidity adjustment |
| US11944758B2 (en) | 2019-12-16 | 2024-04-02 | Acclarent, Inc. | Atraumatic tip assembly for guidewire |
| US20210186305A1 (en) * | 2019-12-23 | 2021-06-24 | Biosense Webster (Israel) Ltd. | Deflectable medical probe having improved resistance to forces applied in rotation |
| US12213737B2 (en) | 2020-04-09 | 2025-02-04 | Acclarent, Inc. | User interface for image guided surgery system |
| US12042233B2 (en) | 2020-05-12 | 2024-07-23 | Acclarent, Inc. | Malleable suction instrument with offset position sensor |
| US11964114B2 (en) | 2020-05-22 | 2024-04-23 | Acclarent, Inc. | Shaft deflection control assembly for ENT guide instrument |
| US12207858B2 (en) | 2020-06-24 | 2025-01-28 | Acclarent, Inc. | Apparatus and method for ablating Eustachian tube |
| US12414684B2 (en) | 2020-08-19 | 2025-09-16 | Acclarent, Inc. | ENT instrument with deformable guide having translatable imaging feature |
| US12016612B2 (en) | 2020-08-19 | 2024-06-25 | Acclarent, Inc. | ENT ablation instrument with electrode loop |
| US20220080165A1 (en) | 2020-09-15 | 2022-03-17 | Acclarent, Inc. | Grip adjustment assembly for ent instrument |
| US20220087739A1 (en) | 2020-09-18 | 2022-03-24 | Acclarent, Inc. | Ent instrument with expandable ablation feature |
| US11211159B1 (en) * | 2020-12-29 | 2021-12-28 | Kpn Innovations, Llc. | System and method for generating an otolaryngological disease nourishment program |
| EP4294292A2 (fr) | 2021-02-18 | 2023-12-27 | Acclarent, Inc. | Ensemble capteur flexible pour instrument ent |
| WO2022214953A1 (fr) | 2021-04-06 | 2022-10-13 | Acclarent, Inc. | Instrument orl doté d'électrodes rf sur un cadre métallique |
| US20220370143A1 (en) | 2021-05-20 | 2022-11-24 | Acclarent, Inc. | Registration probe for enhanced information capture |
| CN114190960B (zh) * | 2021-12-02 | 2024-11-01 | 海南大学 | 定位片成像方法、装置、电子设备及存储介质 |
| WO2023119022A1 (fr) | 2021-12-21 | 2023-06-29 | Acclarent, Inc. | Instrument ent avec guide déformable comprenant un élément d'imagerie translatable |
| WO2023144668A1 (fr) | 2022-01-27 | 2023-08-03 | Acclarent, Inc. | Dispositif de suivi de patient personnalisé pour chirurgie guidée par image |
| WO2023187511A2 (fr) | 2022-03-31 | 2023-10-05 | Acclarent, Inc. | Arbre de guidage orl doté d'une pointe pouvant être déviée et d'un capuchon d'endoscope distal |
| WO2024150063A1 (fr) | 2023-01-12 | 2024-07-18 | Acclarent, Inc. | Appareil et procédé pour déterminer une orientation de roulis d'endoscope sur la base d'une analyse d'image |
| US20240285158A1 (en) | 2023-02-24 | 2024-08-29 | Acclarent, Inc. | Dilation instrument with malleable guide |
| US20240350204A1 (en) | 2023-04-18 | 2024-10-24 | Acclarent, Inc. | Apparatus and method to overlay information on endoscopic images |
| WO2024228065A1 (fr) | 2023-05-02 | 2024-11-07 | Acclarent, Inc. | Manchon de capteur de position d'instrument médical avec élément chauffant intégré |
| WO2024241099A1 (fr) | 2023-05-19 | 2024-11-28 | Acclarent, Inc. | Instrument de dilatation par ballonnet avec élément de pointe de guidage en translation |
| WO2025035036A1 (fr) | 2023-08-09 | 2025-02-13 | Acclarent, Inc. | Instrument médical à capteur de position intégré et capteur à effet hall |
| WO2025059624A1 (fr) | 2023-09-15 | 2025-03-20 | Acclarent, Inc. | Adaptateur pour navigation |
| US20250090237A1 (en) | 2023-09-19 | 2025-03-20 | Biosense Webster (Israel) Ltd. | 3d virtual image with virtual lighting to track movement of sensor-equipped medical instrument |
| US20250099667A1 (en) | 2023-09-25 | 2025-03-27 | Acclarent, Inc. | Suction instrument with deformable multi-piece grip assembly |
| US20250152035A1 (en) | 2023-11-10 | 2025-05-15 | Acclarent, Inc. | Flex circuit with longitudinally-spaced position sensors for steerable medical instrument |
| US20250195147A1 (en) | 2023-12-13 | 2025-06-19 | Biosense Webster (Israel) Ltd. | Smart port splitter for multiple medical instruments |
| US20250195837A1 (en) | 2023-12-18 | 2025-06-19 | Acclarent, Inc. | Medical instrument with component movement tracking and real-time position sensing |
Citations (109)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US446173A (en) * | 1891-02-10 | Hasp and staple | ||
| US513667A (en) * | 1894-01-30 | Sliding staple for hasps | ||
| US2493326A (en) * | 1949-03-01 | 1950-01-03 | John H Trinder | Tampon for control of intractable nasal hemorrhages |
| US3552384A (en) * | 1967-07-03 | 1971-01-05 | American Hospital Supply Corp | Controllable tip guide body and catheter |
| US3792391A (en) * | 1972-12-18 | 1974-02-12 | L Ewing | Electrically operated two position electromechanical mechanism |
| US3859993A (en) * | 1973-08-27 | 1975-01-14 | Daniel G Bitner | Operating table accessory |
| US4069307A (en) * | 1970-10-01 | 1978-01-17 | Alza Corporation | Drug-delivery device comprising certain polymeric materials for controlled release of drug |
| US4138151A (en) * | 1976-07-30 | 1979-02-06 | Olympus Optical Company Limited | Detent device for locking the lid of a cassette receiving compartment of a tape recorder |
| US4184497A (en) * | 1977-08-26 | 1980-01-22 | University Of Utah | Peritoneal dialysis catheter |
| US4312353A (en) * | 1980-05-09 | 1982-01-26 | Mayfield Education And Research Fund | Method of creating and enlarging an opening in the brain |
| US4499899A (en) * | 1983-01-21 | 1985-02-19 | Brimfield Precision, Inc. | Fiber-optic illuminated microsurgical scissors |
| US4564364A (en) * | 1983-05-26 | 1986-01-14 | Alza Corporation | Active agent dispenser |
| US4571239A (en) * | 1982-03-01 | 1986-02-18 | Heyman Arnold M | Catheter-stylet assembly for slipover urethral instruments |
| US4571240A (en) * | 1983-08-12 | 1986-02-18 | Advanced Cardiovascular Systems, Inc. | Catheter having encapsulated tip marker |
| US4637389A (en) * | 1985-04-08 | 1987-01-20 | Heyden Eugene L | Tubular device for intubation |
| US4639244A (en) * | 1983-05-03 | 1987-01-27 | Nabil I. Rizk | Implantable electrophoretic pump for ionic drugs and associated methods |
| US4645495A (en) * | 1985-06-26 | 1987-02-24 | Vaillancourt Vincent L | Vascular access implant needle patch |
| US4682607A (en) * | 1985-12-02 | 1987-07-28 | Vlv Associates | Wire guide |
| US4726772A (en) * | 1986-12-01 | 1988-02-23 | Kurt Amplatz | Medical simulator |
| US4795439A (en) * | 1986-06-06 | 1989-01-03 | Edward Weck Incorporated | Spiral multi-lumen catheter |
| US4796629A (en) * | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
| US4803076A (en) * | 1986-09-04 | 1989-02-07 | Pfizer Inc. | Controlled release device for an active substance |
| US4897651A (en) * | 1985-10-15 | 1990-01-30 | Ing. C. Olivetti & C., S.P.A. | Key with selective symbol display and keyboard using such key |
| US4898577A (en) * | 1988-09-28 | 1990-02-06 | Advanced Cardiovascular Systems, Inc. | Guiding cathether with controllable distal tip |
| US4984581A (en) * | 1988-10-12 | 1991-01-15 | Flexmedics Corporation | Flexible guide having two-way shape memory alloy |
| US4994033A (en) * | 1989-05-25 | 1991-02-19 | Schneider (Usa) Inc. | Intravascular drug delivery dilatation catheter |
| US5087244A (en) * | 1989-01-31 | 1992-02-11 | C. R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
| US5087246A (en) * | 1988-12-29 | 1992-02-11 | C. R. Bard, Inc. | Dilation catheter with fluted balloon |
| US5090910A (en) * | 1988-10-14 | 1992-02-25 | Narlo Jeanie R | Multiple three dimensional facial display system |
| US5090595A (en) * | 1988-06-29 | 1992-02-25 | Jaico C.V., Cooperatieve Venootschap | Pressure capsule for spray can, and spray can which utilizes such a capsule |
| US5180368A (en) * | 1989-09-08 | 1993-01-19 | Advanced Cardiovascular Systems, Inc. | Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels |
| US5183470A (en) * | 1991-03-04 | 1993-02-02 | International Medical, Inc. | Laparoscopic cholangiogram catheter and method of using same |
| US5189110A (en) * | 1988-12-23 | 1993-02-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Shape memory polymer resin, composition and the shape memorizing molded product thereof |
| US5275593A (en) * | 1992-04-30 | 1994-01-04 | Surgical Technologies, Inc. | Ophthalmic surgery probe assembly |
| US5286254A (en) * | 1990-06-15 | 1994-02-15 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
| US5325847A (en) * | 1991-10-25 | 1994-07-05 | Asahi Kogaku Kogyo Kabushiki Kaisha | Distal end part of endoscope |
| USD355031S (en) * | 1992-04-20 | 1995-01-31 | Terumo Kabushiki Kaisha | Catheter |
| US5386817A (en) * | 1991-06-10 | 1995-02-07 | Endomedical Technologies, Inc. | Endoscope sheath and valve system |
| US5391179A (en) * | 1992-09-04 | 1995-02-21 | Mezzoli; Giorgio | Nasal and/or rhinopharyngeal tampon |
| US5391147A (en) * | 1992-12-01 | 1995-02-21 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location and/or radius and method |
| US5486181A (en) * | 1994-08-04 | 1996-01-23 | Implex Corporation | Acetabular cup, method and tool and installing the same |
| US5591194A (en) * | 1994-02-18 | 1997-01-07 | C. R. Bard, Inc. | Telescoping balloon catheter and method of use |
| US5599304A (en) * | 1994-05-10 | 1997-02-04 | Mount Sinai School Of Medicine Of The City University Of New York | Sinonasal suction apparatus |
| US5599284A (en) * | 1995-02-08 | 1997-02-04 | Shea; John P. | Pre-operative nasal splint for endoscopic sinus surgery and method |
| US5708175A (en) * | 1995-05-26 | 1998-01-13 | Ishihara Sangyo Kaisha Ltd. | Process for producing 4-trifluoromethylnicotinic acid |
| US5707389A (en) * | 1995-06-07 | 1998-01-13 | Baxter International Inc. | Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway |
| US5707376A (en) * | 1992-08-06 | 1998-01-13 | William Cook Europe A/S | Stent introducer and method of use |
| US5711315A (en) * | 1996-02-15 | 1998-01-27 | Jerusalmy; Israel | Sinus lift method |
| US5718702A (en) * | 1992-08-12 | 1998-02-17 | Somnus Medical Technologies, Inc. | Uvula, tonsil, adenoid and sinus tissue treatment device and method |
| US5857998A (en) * | 1994-06-30 | 1999-01-12 | Boston Scientific Corporation | Stent and therapeutic delivery system |
| US5862693A (en) * | 1997-05-02 | 1999-01-26 | Fort Lock Corporation | Electronically controlled security lock |
| US6010511A (en) * | 1995-05-04 | 2000-01-04 | Murphy; Richard | Lesion diameter measurement catheter and method |
| US6013019A (en) * | 1998-04-06 | 2000-01-11 | Isostent, Inc. | Temporary radioisotope stent |
| US6016439A (en) * | 1996-10-15 | 2000-01-18 | Biosense, Inc. | Method and apparatus for synthetic viewpoint imaging |
| US6016429A (en) * | 1997-05-28 | 2000-01-18 | Northern Telecom Limited | Method and apparatus for minimizing cellular network costs when upgrading the electronics in an existing cellular system |
| US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
| US6171303B1 (en) * | 1996-01-08 | 2001-01-09 | Biosense, Inc. | Methods and apparatus for myocardial revascularization |
| US6171298B1 (en) * | 1996-05-03 | 2001-01-09 | Situs Corporation | Intravesical infuser |
| US6174280B1 (en) * | 1998-11-19 | 2001-01-16 | Vision Sciences, Inc. | Sheath for protecting and altering the bending characteristics of a flexible endoscope |
| US6176829B1 (en) * | 1998-02-26 | 2001-01-23 | Echocath, Inc. | Multi-beam diffraction grating imager apparatus and method |
| US6179811B1 (en) * | 1997-11-25 | 2001-01-30 | Medtronic, Inc. | Imbedded marker and flexible guide wire shaft |
| US6179788B1 (en) * | 1989-12-19 | 2001-01-30 | Scimed Life Systems, Inc. | Guide wire with multiple radiopaque sections and method of use |
| US6304768B1 (en) * | 1997-11-12 | 2001-10-16 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
| US20020002349A1 (en) * | 1996-10-11 | 2002-01-03 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
| US20020006961A1 (en) * | 1999-05-14 | 2002-01-17 | Katz Stanley E. | Method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response |
| US6340360B1 (en) * | 1993-07-02 | 2002-01-22 | Med Usa | System for cell growth |
| US20020010426A1 (en) * | 1999-04-30 | 2002-01-24 | Applied Medical Resources Corporation | Guidewire |
| US6379319B1 (en) * | 1996-10-11 | 2002-04-30 | Transvascular, Inc. | Systems and methods for directing and snaring guidewires |
| US6381485B1 (en) * | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies, Inc. | Registration of human anatomy integrated for electromagnetic localization |
| US20020072729A1 (en) * | 2000-12-13 | 2002-06-13 | Hoste John H. | Catheter with enhanced reinforcement |
| US6503185B1 (en) * | 1994-10-27 | 2003-01-07 | Novoste Corporation | Method and apparatus for treating a desired area in the vascular system of a patient |
| US6503087B1 (en) * | 1996-05-08 | 2003-01-07 | Gaumard Scientific, Inc. | Interactive education system for teaching patient care |
| US6503263B2 (en) * | 2000-09-24 | 2003-01-07 | Medtronic, Inc. | Surgical micro-shaving instrument with elevator tip |
| US20030014036A1 (en) * | 2001-06-12 | 2003-01-16 | Varner Signe Erickson | Reservoir device for intraocular drug delivery |
| US20030013985A1 (en) * | 2001-07-12 | 2003-01-16 | Vahid Saadat | Method for sensing temperature profile of a hollow body organ |
| US20030018291A1 (en) * | 1999-12-08 | 2003-01-23 | Hill Frank C. | Ear tube and method of insertion |
| US20030017111A1 (en) * | 2000-07-19 | 2003-01-23 | Carlos Rabito | Fluorescent agents for real-time measurement of organ function |
| US6511418B2 (en) * | 2000-03-30 | 2003-01-28 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for calibrating and endoscope |
| US20030130598A1 (en) * | 2002-01-07 | 2003-07-10 | Cardiac Pacemaker, Inc. | Steerable guide catheter with pre-shaped rotatable shaft |
| US20030163156A1 (en) * | 2002-02-28 | 2003-08-28 | Stephen Hebert | Guidewire loaded stent for delivery through a catheter |
| US20030220551A1 (en) * | 1995-07-06 | 2003-11-27 | Kimball Victor E. | Device for assessing perfusion failure in a patient by measurement of blood flow |
| US6672773B1 (en) * | 2000-12-29 | 2004-01-06 | Amkor Technology, Inc. | Optical fiber having tapered end and optical connector with reciprocal opening |
| US6673025B1 (en) * | 1993-12-01 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Polymer coated guidewire |
| US20040015150A1 (en) * | 1996-05-20 | 2004-01-22 | Gholam-Reza Zadno-Azizi | Method and apparatus for emboli containment |
| US20040018980A1 (en) * | 1998-04-24 | 2004-01-29 | Genentech, Inc. | Novel FIZZ proteins |
| US20040162516A1 (en) * | 2001-06-20 | 2004-08-19 | Evgenia Mandrusov | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
| US20060004323A1 (en) * | 2004-04-21 | 2006-01-05 | Exploramed Nc1, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US20060004286A1 (en) * | 2004-04-21 | 2006-01-05 | Acclarent, Inc. | Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses |
| US6984203B2 (en) * | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
| US6991597B2 (en) * | 2001-03-09 | 2006-01-31 | Boston Scientific Scimed, Inc. | System for implanting an implant and method thereof |
| US20070005094A1 (en) * | 2005-04-04 | 2007-01-04 | Eaton Donald J | Device and methods for treating paranasal sinus conditions |
| US7160255B2 (en) * | 2001-07-12 | 2007-01-09 | Vahid Saadat | Method and device for sensing and mapping temperature profile of a hollow body organ |
| US20070020196A1 (en) * | 2003-12-31 | 2007-01-25 | Pipkin James D | Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid prepared from a unit dose suspension |
| US7169163B2 (en) * | 2002-09-30 | 2007-01-30 | Bruce Becker | Transnasal method and catheter for lacrimal system |
| US7169140B1 (en) * | 1994-02-22 | 2007-01-30 | Boston Scientific Scimed, Inc. | Methods of using an intravascular balloon catheter in combination with an angioscope |
| US7316168B2 (en) * | 2002-11-23 | 2008-01-08 | Fag Kugelfischer Ag | Force-sensing bearing |
| US7318831B2 (en) * | 2002-07-13 | 2008-01-15 | Stryker Corporation | System and method for performing irrigated nose and throat surgery |
| US20080015540A1 (en) * | 2004-04-21 | 2008-01-17 | Acclarent, Inc. | Implantable devices and methods for treating sinusitis and other disorders |
| US20080015544A1 (en) * | 2006-04-21 | 2008-01-17 | Entellus Medical, Inc. | Method for accessing a sinus cavity and related anatomical features |
| US7322934B2 (en) * | 2003-06-24 | 2008-01-29 | Olympus Corporation | Endoscope |
| US20090017090A1 (en) * | 2006-07-10 | 2009-01-15 | Arensdorf Patrick A | Devices and methods for delivering active agents to the osteomeatal complex |
| US7481800B2 (en) * | 2000-02-04 | 2009-01-27 | Conmed Endoscopic Technologies | Triple lumen stone balloon catheter and method |
| US20090030274A1 (en) * | 2006-09-15 | 2009-01-29 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US7641668B2 (en) * | 2003-05-16 | 2010-01-05 | Scimed Life Systems, Inc. | Fluid delivery system and related methods of use |
| US7645272B2 (en) * | 2004-04-21 | 2010-01-12 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| USD630321S1 (en) * | 2009-05-08 | 2011-01-04 | Angio Dynamics, Inc. | Probe handle |
| US20110004057A1 (en) * | 2004-04-21 | 2011-01-06 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US20110015482A1 (en) * | 2003-02-19 | 2011-01-20 | Boston Scientific Scimed, Inc. | Guidewire Locking Device and Method |
| US7875050B2 (en) * | 1997-09-30 | 2011-01-25 | Target Therapeutics, Inc. | Mechanical clot treatment device |
Family Cites Families (855)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US504424A (en) | 1893-09-05 | Oscar de pezzer | ||
| US2899227A (en) | 1959-08-11 | Charles-louis gschwend | ||
| US705346A (en) | 1901-11-02 | 1902-07-22 | Jonathan R Hamilton | Dilator. |
| US816792A (en) | 1904-09-06 | 1906-04-03 | Oliver H P Green | Lock. |
| US798775A (en) | 1905-04-13 | 1905-09-05 | Valorus A Bradbury | Dispensing-bottle. |
| US1080934A (en) | 1912-08-19 | 1913-12-09 | Walter L Shackleford | Rectal tube. |
| US1200267A (en) | 1915-02-04 | 1916-10-03 | Motors Lock Company Of America | Lock for automobile-hoods. |
| US1650959A (en) | 1926-04-08 | 1927-11-29 | Louis K Pitman | Surgical instrument |
| US1735519A (en) | 1926-07-17 | 1929-11-12 | Arlyn T Vance | Physician's dilator |
| US1878671A (en) * | 1929-07-02 | 1932-09-20 | John Murray | Dilator |
| US1828986A (en) | 1929-09-26 | 1931-10-27 | Golder E Stevens | Dilating irrigator |
| US2201749A (en) | 1939-02-15 | 1940-05-21 | Vandegrift Middleton | Expanding vein tube |
| US2525183A (en) | 1947-03-20 | 1950-10-10 | Jehu M Robison | Antral pressure device |
| US2847997A (en) | 1956-01-13 | 1958-08-19 | James J Tibone | Catheter |
| US2906179A (en) | 1957-01-28 | 1959-09-29 | North American Aviation Inc | Vector gage |
| US3037286A (en) | 1957-01-28 | 1962-06-05 | North American Aviation Inc | Vector gage |
| US3009265A (en) | 1960-05-09 | 1961-11-21 | Superior Plastics Inc | Anatomical device |
| US2995832A (en) | 1960-08-01 | 1961-08-15 | Alderson Res Lab Inc | Training aid for intravenous therapy |
| US3173418A (en) | 1961-01-10 | 1965-03-16 | Ostap E Baran | Double-wall endotracheal cuff |
| US3435826A (en) | 1964-05-27 | 1969-04-01 | Edwards Lab Inc | Embolectomy catheter |
| US3347061A (en) | 1965-01-11 | 1967-10-17 | Eaton Yale & Towne | Flexible drive mechanism |
| US3393073A (en) | 1965-04-16 | 1968-07-16 | Eastman Kodak Co | High contrast photographic emulsions |
| US3376659A (en) | 1965-06-09 | 1968-04-09 | Bard Inc C R | Demonstration device |
| US3447061A (en) * | 1965-07-12 | 1969-05-27 | Basic Inc | Multi-phase rectifier with inherent phase balance |
| US3384970A (en) | 1965-09-22 | 1968-05-28 | Boice Gages Inc | Precision coordinates measurement apparatus for gaging and layout operations |
| US3486539A (en) | 1965-09-28 | 1969-12-30 | Jacuzzi Bros Inc | Liquid dispensing and metering assembly |
| US3469578A (en) | 1965-10-12 | 1969-09-30 | Howard R Bierman | Infusion device for ambulatory patients with flow control means |
| US3509638A (en) | 1966-08-04 | 1970-05-05 | Midland Ross Corp | Treating apparatus |
| US3506005A (en) | 1967-02-23 | 1970-04-14 | Arthur S Gilio | Pressure infusion device for medical use |
| US3515888A (en) | 1967-10-27 | 1970-06-02 | California Computer Products | Manual optical digitizer |
| US3481043A (en) | 1967-12-12 | 1969-12-02 | Bendix Corp | Gaging machine |
| US3531868A (en) | 1968-04-18 | 1970-10-06 | Ford Motor Co | Surface scanner for measuring the coordinates of points on a three-dimensional surface |
| US3527220A (en) | 1968-06-28 | 1970-09-08 | Fairchild Hiller Corp | Implantable drug administrator |
| US3993073A (en) | 1969-04-01 | 1976-11-23 | Alza Corporation | Novel drug delivery device |
| US3948262A (en) | 1969-04-01 | 1976-04-06 | Alza Corporation | Novel drug delivery device |
| US3967618A (en) | 1969-04-01 | 1976-07-06 | Alza Corporation | Drug delivery device |
| US3624661A (en) | 1969-05-14 | 1971-11-30 | Honeywell Inc | Electrographic printing system with plural staggered electrode rows |
| US3834394A (en) | 1969-11-21 | 1974-09-10 | R Sessions | Occlusion device and method and apparatus for inserting the same |
| US3903893A (en) | 1970-05-04 | 1975-09-09 | Alexander L Scheer | Nasal hemostatic device |
| GB1340788A (en) | 1971-02-04 | 1974-01-30 | Matburn Holdings Ltd | Nasal tampons |
| US3731963A (en) | 1971-04-20 | 1973-05-08 | R Pond | Electrically actuated lock mechanism |
| US3804081A (en) | 1971-07-29 | 1974-04-16 | Olympus Optical Co | Endoscope |
| US3802096A (en) | 1971-08-09 | 1974-04-09 | H Matern | Composite model for medical study |
| US3948254A (en) | 1971-11-08 | 1976-04-06 | Alza Corporation | Novel drug delivery device |
| US3850176A (en) | 1972-02-07 | 1974-11-26 | G Gottschalk | Nasal tampon |
| US3910617A (en) | 1972-02-20 | 1975-10-07 | Square D Co | Solenoid operated electric strike |
| JPS4920979A (fr) | 1972-06-19 | 1974-02-23 | ||
| JPS4932484U (fr) | 1972-06-19 | 1974-03-20 | ||
| US3800788A (en) | 1972-07-12 | 1974-04-02 | N White | Antral catheter for reduction of fractures |
| CH557178A (de) | 1972-08-10 | 1974-12-31 | Siemens Ag | Geraet fuer die zufuehrung von medikamenten. |
| US4016251A (en) | 1972-08-17 | 1977-04-05 | Alza Corporation | Vaginal drug dispensing device |
| US3921636A (en) | 1973-01-15 | 1975-11-25 | Alza Corp | Novel drug delivery device |
| US3993069A (en) | 1973-03-26 | 1976-11-23 | Alza Corporation | Liquid delivery device bladder |
| US3847145A (en) | 1973-04-13 | 1974-11-12 | M Grossan | Nasal irrigation system |
| US4450150A (en) | 1973-05-17 | 1984-05-22 | Arthur D. Little, Inc. | Biodegradable, implantable drug delivery depots, and method for preparing and using the same |
| US3993072A (en) | 1974-08-28 | 1976-11-23 | Alza Corporation | Microporous drug delivery device |
| US4052505A (en) | 1975-05-30 | 1977-10-04 | Alza Corporation | Ocular therapeutic system manufactured from copolymer |
| DE2541084C3 (de) | 1975-09-15 | 1978-12-07 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Verfahren zur Herstellung einer im Wicklungsbereich freitragend ausgebildeten Spule |
| US4102342A (en) | 1975-12-29 | 1978-07-25 | Taichiro Akiyama | Valved device |
| US4471779A (en) | 1976-08-25 | 1984-09-18 | Becton, Dickinson And Company | Miniature balloon catheter |
| JPS5367935A (en) | 1976-11-29 | 1978-06-16 | Mitsubishi Electric Corp | Device for automatically opening window with lock |
| US4207890A (en) | 1977-01-04 | 1980-06-17 | Mcneilab, Inc. | Drug-dispensing device and method |
| JPS567971Y2 (fr) | 1977-07-23 | 1981-02-21 | ||
| US4198766A (en) | 1978-06-21 | 1980-04-22 | Baxter Travenol Laboratories, Inc. | Intravenous training/demonstration aid |
| USRE31351E (en) | 1978-08-04 | 1983-08-16 | Bell Telephone Laboratories, Incorporated | Feedback nonlinear equalization of modulated data signals |
| US4213095A (en) | 1978-08-04 | 1980-07-15 | Bell Telephone Laboratories, Incorporated | Feedforward nonlinear equalization of modulated data signals |
| US4217898A (en) | 1978-10-23 | 1980-08-19 | Alza Corporation | System with microporous reservoir having surface for diffusional delivery of agent |
| US4268115A (en) | 1979-06-01 | 1981-05-19 | Tetra-Tech, Inc. | Quick-release fiber-optic connector |
| US4299226A (en) | 1979-08-08 | 1981-11-10 | Banka Vidya S | Coronary dilation method |
| JPS5628334A (en) | 1979-08-14 | 1981-03-19 | Nissan Motor Co Ltd | Automatic change gear |
| US4299227A (en) | 1979-10-19 | 1981-11-10 | Lincoff Harvey A | Ophthalmological appliance |
| US4338941A (en) | 1980-09-10 | 1982-07-13 | Payton Hugh W | Apparatus for arresting posterior nosebleeds |
| DE3041873C2 (de) | 1980-11-06 | 1982-12-23 | Danfoss A/S, 6430 Nordborg | Vorrichtung zur Erzeugung eines drehzahlabhängigen Steuerdrucks |
| USD269204S (en) | 1981-02-05 | 1983-05-31 | Trepp Charles A | Dental hygiene device |
| US4437856A (en) | 1981-02-09 | 1984-03-20 | Alberto Valli | Peritoneal catheter device for dialysis |
| FR2502499B1 (fr) | 1981-03-27 | 1987-01-23 | Farcot Jean Christian | Appareil pour la retroperfusion sanguine, destine notamment au traitement d'infarctus par injection de sang arteriel dans le sinus coronaire |
| US4592357A (en) | 1981-05-21 | 1986-06-03 | Ersek Robert A | Septal splint |
| CH653400A5 (de) | 1981-06-17 | 1985-12-31 | Bauer Kaba Ag | Schlosszylinder. |
| US4435716A (en) | 1981-09-14 | 1984-03-06 | Adrian Zandbergen | Method of making a conical spiral antenna |
| DE3202878C2 (de) | 1982-01-29 | 1985-10-31 | Geze Gmbh, 7250 Leonberg | Elektromagnetisch betätigbare Verriegelung für Schiebeflügel von Türen o.dgl. |
| US4445892A (en) | 1982-05-06 | 1984-05-01 | Laserscope, Inc. | Dual balloon catheter device |
| US5370675A (en) * | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
| GB2125874B (en) | 1982-08-17 | 1985-08-14 | Michael David Dunn | Solenoid operated locks |
| US4464175A (en) | 1982-08-25 | 1984-08-07 | Altman Alan R | Multipurpose tamponade and thrombosclerotherapy tube |
| US4581017B1 (en) | 1983-03-07 | 1994-05-17 | Bard Inc C R | Catheter systems |
| EP0129634B1 (fr) | 1983-06-27 | 1988-05-04 | Börje Drettner | Dispositif pour le traitement de la sinusite |
| USD283921S (en) | 1983-06-27 | 1986-05-20 | Difco Laboratories Incorporated | Blood collector |
| US4554929A (en) | 1983-07-13 | 1985-11-26 | Advanced Cardiovascular Systems, Inc. | Catheter guide wire with short spring tip and method of using the same |
| NL8302648A (nl) | 1983-07-26 | 1985-02-18 | Fundatech Sa | Inrichting voor toe- en afvoer van een vloeibare substantie naar resp. uit de kaakholte. |
| US4675613A (en) | 1983-08-11 | 1987-06-23 | Hewlett-Packard Company | Noise compensated synchronous detector system |
| CA1232814A (fr) | 1983-09-16 | 1988-02-16 | Hidetoshi Sakamoto | Fil directeur pour catheter |
| US4585000A (en) | 1983-09-28 | 1986-04-29 | Cordis Corporation | Expandable device for treating intravascular stenosis |
| USD284892S (en) | 1983-09-29 | 1986-07-29 | Glassman Jacob A | Biliary exploratory balloon catheter with replaceable lead-tip |
| SE442164B (sv) | 1984-01-11 | 1985-12-09 | Olle Berg | Anordning vid nesskiljeveggsoperationer |
| US4700694A (en) | 1984-02-20 | 1987-10-20 | Olympus Optical Co., Ltd. | Endoscope means and ovum picker employed by inserting through endoscope means |
| US4589868A (en) | 1984-03-12 | 1986-05-20 | Dretler Stephen P | Expandable dilator-catheter |
| JPS60253428A (ja) | 1984-05-30 | 1985-12-14 | 住友電気工業株式会社 | 屈曲機構付フアイバスコ−プ |
| US4851228A (en) | 1984-06-20 | 1989-07-25 | Merck & Co., Inc. | Multiparticulate controlled porosity osmotic |
| US4596528A (en) | 1984-07-02 | 1986-06-24 | Lewis Leonard A | Simulated skin and method |
| US4705801A (en) | 1984-10-16 | 1987-11-10 | Ciba-Geigy Corporation | Production for producing 3-cyano-4-phenyl indoles and intermediates |
| US5019075A (en) | 1984-10-24 | 1991-05-28 | The Beth Israel Hospital | Method and apparatus for angioplasty |
| DE3504292C1 (de) | 1985-02-08 | 1986-07-24 | Richard Wolf Gmbh, 7134 Knittlingen | Instrument fuer endoskopische Eingriffe,insbesondere zur perkutanen Gallensteinentfernung oder Gallenblasenveroedung |
| US4607622A (en) | 1985-04-11 | 1986-08-26 | Charles D. Fritch | Fiber optic ocular endoscope |
| US4619274A (en) | 1985-04-18 | 1986-10-28 | Advanced Cardiovascular Systems, Inc. | Torsional guide wire with attenuated diameter |
| US4641654A (en) | 1985-07-30 | 1987-02-10 | Advanced Cardiovascular Systems, Inc. | Steerable balloon dilatation catheter assembly having dye injection and pressure measurement capabilities |
| US4696544A (en) | 1985-11-18 | 1987-09-29 | Olympus Corporation | Fiberscopic device for inspection of internal sections of construction, and method for using same |
| US4748986A (en) | 1985-11-26 | 1988-06-07 | Advanced Cardiovascular Systems, Inc. | Floppy guide wire with opaque tip |
| US4691948A (en) | 1985-11-27 | 1987-09-08 | A-Dec, Inc. | Fail-secure lock system |
| DE3704247A1 (de) | 1986-02-14 | 1987-08-20 | Olympus Optical Co | Endoskopeinfuehrunterstuetzungseinrichtung |
| US4669469A (en) | 1986-02-28 | 1987-06-02 | Devices For Vascular Intervention | Single lumen atherectomy catheter device |
| US4834709A (en) | 1986-03-26 | 1989-05-30 | Sherwood Medical Company | Preformable catheter |
| US5040548A (en) * | 1989-06-01 | 1991-08-20 | Yock Paul G | Angioplasty mehtod |
| US5350395A (en) | 1986-04-15 | 1994-09-27 | Yock Paul G | Angioplasty apparatus facilitating rapid exchanges |
| US4708834A (en) | 1986-05-01 | 1987-11-24 | Pharmacaps, Inc. | Preparation of gelatin-encapsulated controlled release composition |
| US4672961A (en) | 1986-05-19 | 1987-06-16 | Davies David H | Retrolasing catheter and method |
| CH668188A5 (en) | 1986-06-09 | 1988-12-15 | Franz Rappai | Corticosteroid ointment compsns. - comprise e.g. dexamethasone in poly:alkylene glycol base, and are used esp. for treating rhinitis |
| US5019372A (en) | 1986-06-27 | 1991-05-28 | The Children's Medical Center Corporation | Magnetically modulated polymeric drug release system |
| US4854330A (en) | 1986-07-10 | 1989-08-08 | Medrad, Inc. | Formed core catheter guide wire assembly |
| US4920967A (en) | 1986-07-18 | 1990-05-01 | Pfizer Hospital Products Group, Inc. | Doppler tip wire guide |
| US4991588A (en) * | 1986-07-21 | 1991-02-12 | Pfizer Hospital Products Group, Inc. | Doppler guide wire |
| US4698730A (en) * | 1986-08-01 | 1987-10-06 | Stanley Electric Co., Ltd. | Light-emitting diode |
| US4847258A (en) | 1986-08-26 | 1989-07-11 | Ciba-Geigy Corporation | Substituted benzoylphenylureas compounds useful as pesticides |
| US5527336A (en) | 1986-12-09 | 1996-06-18 | Boston Scientific Corporation | Flow obstruction treatment method |
| US5030227A (en) | 1988-06-02 | 1991-07-09 | Advanced Surgical Intervention, Inc. | Balloon dilation catheter |
| US5312430A (en) * | 1986-12-09 | 1994-05-17 | Rosenbluth Robert F | Balloon dilation catheter |
| US4771776A (en) | 1987-01-06 | 1988-09-20 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with angled balloon and method |
| US4819619A (en) | 1987-01-16 | 1989-04-11 | Augustine Scott D | Device for inserting a nasal tube |
| US4815478A (en) | 1987-02-17 | 1989-03-28 | Medtronic Versaflex, Inc. | Steerable guidewire with deflectable tip |
| US4736970A (en) | 1987-03-09 | 1988-04-12 | Mcgourty Thomas K | Electrically controlled door lock |
| US4811743A (en) | 1987-04-21 | 1989-03-14 | Cordis Corporation | Catheter guidewire |
| US4793359A (en) | 1987-04-24 | 1988-12-27 | Gv Medical, Inc. | Centering balloon structure for transluminal angioplasty catheter |
| US5090959A (en) | 1987-04-30 | 1992-02-25 | Advanced Cardiovascular Systems, Inc. | Imaging balloon dilatation catheter |
| US4748969A (en) | 1987-05-07 | 1988-06-07 | Circon Corporation | Multi-lumen core deflecting endoscope |
| US4867138A (en) | 1987-05-13 | 1989-09-19 | Olympus Optical Co., Ltd. | Rigid electronic endoscope |
| US4755171A (en) | 1987-05-29 | 1988-07-05 | Tennant Jerald L | Tubular surgical device |
| DE3719250A1 (de) | 1987-06-10 | 1988-12-22 | Kellner Hans Joerg Dr Med | Endoskop |
| US4953553A (en) * | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
| SE8704767L (sv) | 1987-11-30 | 1989-05-31 | Sigmund Johannes Loefstedt | Ny metod foer administrering av laekemedel |
| US5041089A (en) | 1987-12-11 | 1991-08-20 | Devices For Vascular Intervention, Inc. | Vascular dilation catheter construction |
| US4846186A (en) | 1988-01-12 | 1989-07-11 | Cordis Corporation | Flexible guidewire |
| US4917667A (en) | 1988-02-11 | 1990-04-17 | Retroperfusion Systems, Inc. | Retroperfusion balloon catheter and method |
| US5372138A (en) | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
| US4883465A (en) | 1988-05-24 | 1989-11-28 | Brennan H George | Nasal tampon and method for using |
| US4940062A (en) | 1988-05-26 | 1990-07-10 | Advanced Cardiovascular Systems, Inc. | Guiding member with deflectable tip |
| US4998917A (en) | 1988-05-26 | 1991-03-12 | Advanced Cardiovascular Systems, Inc. | High torque steerable dilatation catheter |
| WO1989012477A1 (fr) | 1988-06-13 | 1989-12-28 | Yaroslavsky Mezhotraslevoi Nauchno-Tekhnichesky Ts | Dispositif pour diagnostiquer et traiter des affections nasales |
| US5267965A (en) | 1988-07-06 | 1993-12-07 | Ethicon, Inc. | Safety trocar |
| EP0355996A3 (fr) | 1988-07-21 | 1990-05-02 | Advanced Interventional Systems, Inc. | Système de guidage et d'alimentation pour laser pulsé à haute énergie et pour endoscope |
| DE8810044U1 (de) | 1988-08-03 | 1988-11-17 | Effner Biomet Gmbh, 12247 Berlin | Optische Einstellvorrichtung |
| US5067489A (en) | 1988-08-16 | 1991-11-26 | Flexmedics Corporation | Flexible guide with safety tip |
| US4917419A (en) | 1988-08-22 | 1990-04-17 | Mora Jr Saturnino F | Electromechanical door lock system |
| JPH0296072A (ja) | 1988-09-30 | 1990-04-06 | Aisin Seiki Co Ltd | リッドロック装置 |
| US4943275A (en) | 1988-10-14 | 1990-07-24 | Abiomed Limited Partnership | Insertable balloon with curved support |
| JPH066342B2 (ja) | 1988-10-14 | 1994-01-26 | 三菱重工業株式会社 | 形状記憶性フィルム及びその使用法 |
| US4961433A (en) | 1988-11-02 | 1990-10-09 | Cardiometrics, Inc. | Guide wire assembly with electrical functions and male and female connectors for use therewith |
| US5001825A (en) | 1988-11-03 | 1991-03-26 | Cordis Corporation | Catheter guidewire fabrication method |
| US4998916A (en) | 1989-01-09 | 1991-03-12 | Hammerslag Julius G | Steerable medical device |
| US5221260A (en) | 1989-01-13 | 1993-06-22 | Scimed Life Systems, Inc. | Innerless dilatation balloon catheter |
| US5662674A (en) | 1989-02-03 | 1997-09-02 | Debbas; Elie | Apparatus for locating a breast mass |
| US4966163A (en) | 1989-02-14 | 1990-10-30 | Advanced Cardiovascular Systems, Inc. | Extendable guidewire for vascular procedures |
| US5024650A (en) | 1989-02-15 | 1991-06-18 | Matsushita Electric Works, Ltd. | Stress dissolving refreshment system |
| SU1662571A1 (ru) | 1989-03-01 | 1991-07-15 | Курский Государственный Медицинский Институт | Способ получени рентгеноконтрастного средства дл исследовани околоносовых пазух |
| US4946466A (en) | 1989-03-03 | 1990-08-07 | Cordis Corporation | Transluminal angioplasty apparatus |
| RU1768142C (ru) | 1989-03-29 | 1992-10-15 | Ярославский Межотраслевой Научно-Технический Центр | Устройство дл лечени синуитов |
| US4919112B1 (en) | 1989-04-07 | 1993-12-28 | Low-cost semi-disposable endoscope | |
| EP0395098B1 (fr) | 1989-04-28 | 1994-04-06 | Tokin Corporation | Fil de guidage pour cathéters, prêt à être mis rapidement en service, sous utilisation d'un alliage à mémoire à pseudo-élasticité |
| US5219334A (en) | 1989-05-24 | 1993-06-15 | Tsukada Medical Research Co., Ltd. | Infuser with balloon for continuously infusing liquid drug |
| US5009655A (en) * | 1989-05-24 | 1991-04-23 | C. R. Bard, Inc. | Hot tip device with optical diagnostic capability |
| CN1049287A (zh) * | 1989-05-24 | 1991-02-20 | 住友电气工业株式会社 | 治疗导管 |
| EP0478589A1 (fr) | 1989-06-07 | 1992-04-08 | Checkmate International Limited | Appareil d'exercice et de musculation |
| US5207695A (en) | 1989-06-19 | 1993-05-04 | Trout Iii Hugh H | Aortic graft, implantation device, and method for repairing aortic aneurysm |
| DK0574378T3 (da) | 1989-06-28 | 1996-03-11 | David S Zimmon | Ballon-tamponeringsanordning |
| DE3923851C1 (fr) | 1989-07-19 | 1990-08-16 | Richard Wolf Gmbh, 7134 Knittlingen, De | |
| DE3927001A1 (de) | 1989-08-16 | 1991-02-21 | Lucien C Dr Med Olivier | Kathetersystem |
| US5484409A (en) | 1989-08-25 | 1996-01-16 | Scimed Life Systems, Inc. | Intravascular catheter and method for use thereof |
| US5169386A (en) | 1989-09-11 | 1992-12-08 | Bruce B. Becker | Method and catheter for dilatation of the lacrimal system |
| US5021043A (en) | 1989-09-11 | 1991-06-04 | C. R. Bard, Inc. | Method and catheter for dilatation of the lacrimal system |
| DK0420488T3 (da) | 1989-09-25 | 1993-08-30 | Schneider Usa Inc | Flerlags-ekstrusion som fremgangsmåde til fremstilling af angioplastik-balloner |
| US5256144A (en) | 1989-11-02 | 1993-10-26 | Danforth Biomedical, Inc. | Low profile, high performance interventional catheters |
| US5335671A (en) * | 1989-11-06 | 1994-08-09 | Mectra Labs, Inc. | Tissue removal assembly with provision for an electro-cautery device |
| US5026384A (en) | 1989-11-07 | 1991-06-25 | Interventional Technologies, Inc. | Atherectomy systems and methods |
| US5112228A (en) | 1989-11-13 | 1992-05-12 | Advanced Cardiovascular Systems, Inc. | Vascular model |
| US5215105A (en) | 1989-11-14 | 1993-06-01 | Custom Medical Concepts, Inc. | Method of treating epidural lesions |
| US5137517A (en) | 1989-11-28 | 1992-08-11 | Scimed Life Systems, Inc. | Device and method for gripping medical shaft |
| US5053007A (en) | 1989-12-14 | 1991-10-01 | Scimed Life Systems, Inc. | Compression balloon protector for a balloon dilatation catheter and method of use thereof |
| US5439446A (en) | 1994-06-30 | 1995-08-08 | Boston Scientific Corporation | Stent and therapeutic delivery system |
| US5843089A (en) | 1990-12-28 | 1998-12-01 | Boston Scientific Corporation | Stent lining |
| US5156595A (en) | 1989-12-28 | 1992-10-20 | Scimed Life Systems, Inc. | Dilatation balloon catheter and method of manufacturing |
| USD329496S (en) | 1990-02-20 | 1992-09-15 | Celia Clarke | Needle depth gauge |
| US5084010A (en) | 1990-02-20 | 1992-01-28 | Devices For Vascular Intervention, Inc. | System and method for catheter construction |
| US5060660A (en) | 1990-02-28 | 1991-10-29 | C. R. Bard, Inc. | Steerable extendable guidewire with adjustable tip |
| US5125915A (en) | 1990-03-02 | 1992-06-30 | Cardiopulmonics, Inc. | Locking y-connector for selective attachment to exterior of medical tubing |
| USD340111S (en) | 1990-03-07 | 1993-10-05 | Terumo Kabushiki Kaisha | Catheter |
| US5478565A (en) | 1990-03-27 | 1995-12-26 | Warner-Lambert Company | Treatment of sinus headache |
| US5147315A (en) | 1990-04-06 | 1992-09-15 | C. R. Bard, Inc. | Access catheter and system for use in the female reproductive system |
| US5238004A (en) * | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
| US5171233A (en) | 1990-04-25 | 1992-12-15 | Microvena Corporation | Snare-type probe |
| WO1991017788A1 (fr) | 1990-05-11 | 1991-11-28 | Saab Mark A | Catheters d'une seule piece a parois minces de haute resistance |
| FR2662083A1 (fr) | 1990-05-21 | 1991-11-22 | Perouse Sa Laboratoires | Appareil dilatateur, notamment de vaisseau sanguin. |
| SE502055C2 (sv) | 1990-05-23 | 1995-07-31 | Atos Medical Ab | Anordning för applicering av ett dränage |
| CA2044867C (fr) | 1990-06-25 | 1999-10-12 | James J. Rudnick | Catheter a ballonnet permettant une vision directe de la prostate |
| US5044678A (en) | 1990-07-25 | 1991-09-03 | Lectron Products, Inc. | Solenoid operated latch device with movable pole piece |
| US5055051A (en) | 1990-08-03 | 1991-10-08 | Dornier Medical Systems, Inc. | Semi-anthropomorphic biliary/renal training phantom for medical imaging and lithotripsy training |
| US5167220A (en) | 1990-08-09 | 1992-12-01 | Brown Cathy K | Systems and methods for maintaining a clear visual field during endoscopic procedures |
| US5163989A (en) | 1990-08-27 | 1992-11-17 | Advanced Cardiovascular Systems, Inc. | Method for forming a balloon mold and the use of such mold |
| US5345945A (en) | 1990-08-29 | 1994-09-13 | Baxter International Inc. | Dual coil guidewire with radiopaque distal tip |
| US5197457A (en) | 1990-09-12 | 1993-03-30 | Adair Edwin Lloyd | Deformable and removable sheath for optical catheter |
| DE4032096C2 (de) | 1990-10-10 | 1995-03-30 | Boehringer Ingelheim Kg | Verwendung emulgatorfreier Emulsionspolymere in pharmazeutischen Zubereitungen mit verzögerter Wirkstofffreigabe |
| JP2699641B2 (ja) | 1990-10-11 | 1998-01-19 | 日本電気株式会社 | 位相ジッタ抑圧回路 |
| JPH0683726B2 (ja) | 1990-10-12 | 1994-10-26 | 日本精線株式会社 | カテーテル用ガイドワイヤ |
| JPH06502331A (ja) | 1990-10-29 | 1994-03-17 | サイメッド・ライフ・システムズ・インコーポレーテッド | 血管形成術ガイドカテーテル用のガイドカテーテル装置 |
| US5341818A (en) | 1992-12-22 | 1994-08-30 | Advanced Cardiovascular Systems, Inc. | Guidewire with superelastic distal portion |
| DE69129098T2 (de) | 1990-12-18 | 1998-09-17 | Advanced Cardiovascular System | Verfahren zur Herstellung eines super-elastischen Führungsteils |
| US5102402A (en) * | 1991-01-04 | 1992-04-07 | Medtronic, Inc. | Releasable coatings on balloon catheters |
| US5368558A (en) * | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having endoscopic component and method of using same |
| US6006126A (en) | 1991-01-28 | 1999-12-21 | Cosman; Eric R. | System and method for stereotactic registration of image scan data |
| US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
| US5139510A (en) | 1991-02-22 | 1992-08-18 | Xomed-Treace Inc. | Nasal packing device |
| AU1579092A (en) | 1991-02-27 | 1992-10-06 | Nova Pharmaceutical Corporation | Anti-infective and anti-inflammatory releasing systems for medical devices |
| US5195168A (en) | 1991-03-15 | 1993-03-16 | Codex Corporation | Speech coder and method having spectral interpolation and fast codebook search |
| US6733473B1 (en) | 1991-04-05 | 2004-05-11 | Boston Scientific Corporation | Adjustably stiffenable convertible catheter assembly |
| US5211952A (en) | 1991-04-12 | 1993-05-18 | University Of Southern California | Contraceptive methods and formulations for use therein |
| US5226302A (en) | 1991-04-15 | 1993-07-13 | Loctec Corporation | Six-way self-adjusting lock for use on truck storage boxes and the like |
| CA2069052A1 (fr) | 1991-05-21 | 1992-11-22 | L. Venkata Raman | Fil-guide faconnable superelastique |
| US5127393A (en) | 1991-05-28 | 1992-07-07 | Medilase, Inc. | Flexible endoscope with rigid introducer |
| US5201908A (en) | 1991-06-10 | 1993-04-13 | Endomedical Technologies, Inc. | Sheath for protecting endoscope from contamination |
| US5213576A (en) | 1991-06-11 | 1993-05-25 | Cordis Corporation | Therapeutic porous balloon catheter |
| US5429582A (en) | 1991-06-14 | 1995-07-04 | Williams; Jeffery A. | Tumor treatment |
| CA2068584C (fr) | 1991-06-18 | 1997-04-22 | Paul H. Burmeister | Guide metallique intravasculaire et mode de fabrication |
| US5264260A (en) | 1991-06-20 | 1993-11-23 | Saab Mark A | Dilatation balloon fabricated from low molecular weight polymers |
| US5236422A (en) | 1991-06-24 | 1993-08-17 | Eplett Jr James D | Antiseptic urinary catheter cuff |
| US5766151A (en) | 1991-07-16 | 1998-06-16 | Heartport, Inc. | Endovascular system for arresting the heart |
| US5269752A (en) | 1991-09-12 | 1993-12-14 | Bennett Laurence M | Method of extracorporeal treatment using a kink resistant catheter |
| US5252183A (en) | 1991-09-13 | 1993-10-12 | Abb Lummus Crest Inc. | Process of pulping and bleaching fibrous plant material with tert-butyl alcohol and tert-butyl peroxide |
| US5168864A (en) | 1991-09-26 | 1992-12-08 | Clarus Medical Systems, Inc. | Deflectable endoscope |
| US5304123A (en) | 1991-10-24 | 1994-04-19 | Children's Medical Center Corporation | Detachable balloon catheter for endoscopic treatment of vesicoureteral reflux |
| US5333620A (en) | 1991-10-30 | 1994-08-02 | C. R. Bard, Inc. | High performance plastic coated medical guidewire |
| US5290310A (en) * | 1991-10-30 | 1994-03-01 | Howmedica, Inc. | Hemostatic implant introducer |
| US5246016A (en) | 1991-11-08 | 1993-09-21 | Baxter International Inc. | Transport catheter and multiple probe analysis method |
| US5251092A (en) | 1991-11-27 | 1993-10-05 | Protek Devices, Lp | Receptacle assembly with both insulation displacement connector bussing and friction connector coupling of power conductors to surge suppressor circuit |
| AU3321893A (en) * | 1991-12-23 | 1993-07-28 | Pharmacia Deltec Inc. | Guide wire apparatus with location sensing member |
| US5243996A (en) | 1992-01-03 | 1993-09-14 | Cook, Incorporated | Small-diameter superelastic wire guide |
| US6190381B1 (en) | 1995-06-07 | 2001-02-20 | Arthrocare Corporation | Methods for tissue resection, ablation and aspiration |
| US6053172A (en) | 1995-06-07 | 2000-04-25 | Arthrocare Corporation | Systems and methods for electrosurgical sinus surgery |
| US6109268A (en) | 1995-06-07 | 2000-08-29 | Arthrocare Corporation | Systems and methods for electrosurgical endoscopic sinus surgery |
| US6086585A (en) | 1995-06-07 | 2000-07-11 | Arthrocare Corporation | System and methods for electrosurgical treatment of sleep obstructive disorders |
| US6063079A (en) * | 1995-06-07 | 2000-05-16 | Arthrocare Corporation | Methods for electrosurgical treatment of turbinates |
| US5273052A (en) | 1992-01-08 | 1993-12-28 | Danforth Biomedical, Incorporated | Guidewire with reversible contact seal for releasable securement to catheter |
| JPH07509379A (ja) | 1992-01-09 | 1995-10-19 | アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド | ガイドワイヤ交換装置 |
| US5250059A (en) | 1992-01-22 | 1993-10-05 | Devices For Vascular Intervention, Inc. | Atherectomy catheter having flexible nose cone |
| US5699796A (en) | 1993-01-29 | 1997-12-23 | Cardima, Inc. | High resolution intravascular signal detection |
| US5341240A (en) | 1992-02-06 | 1994-08-23 | Linvatec Corporation | Disposable endoscope |
| JPH05211985A (ja) | 1992-02-07 | 1993-08-24 | Olympus Optical Co Ltd | 脳室用内視鏡ガイド装置 |
| US5195971A (en) * | 1992-02-10 | 1993-03-23 | Advanced Cardiovascular Systems, Inc. | Perfusion type dilatation catheter |
| US5263926A (en) | 1992-02-18 | 1993-11-23 | Wilk Peter J | Device and related method for reducing swelling of hemorrhoidal tissues |
| DE4206524C2 (de) | 1992-03-02 | 1997-04-24 | Andris Raimund Gmbh & Co Kg | Dosierpumpe für zähflüssige, insbesondere pastenartige Stoffe |
| US5409444A (en) | 1992-03-04 | 1995-04-25 | Kensey Nash Corporation | Method and apparatus to reduce injury to the vascular system |
| EP0566245B1 (fr) | 1992-03-19 | 1999-10-06 | Medtronic, Inc. | Dilatateur intraluminal |
| US5334143A (en) | 1992-04-17 | 1994-08-02 | Carroll Brendon J | Method to remove common bile duct stones |
| US5346075A (en) | 1992-04-17 | 1994-09-13 | Johnson & Johnson Medical, Inc. | Apparatus and method for holding a medical instrument |
| US5368566A (en) | 1992-04-29 | 1994-11-29 | Cardiovascular Dynamics, Inc. | Delivery and temporary stent catheter having a reinforced perfusion lumen |
| US5817102A (en) | 1992-05-08 | 1998-10-06 | Schneider (Usa) Inc. | Apparatus for delivering and deploying a stent |
| US5584827A (en) | 1992-05-18 | 1996-12-17 | Ultracell Medical Technologies, Inc | Nasal-packing article |
| US5713848A (en) | 1993-05-19 | 1998-02-03 | Dubrul; Will R. | Vibrating catheter |
| US5255679A (en) | 1992-06-02 | 1993-10-26 | Cardiac Pathways Corporation | Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method |
| US5772680A (en) | 1992-06-02 | 1998-06-30 | General Surgical Innovations, Inc. | Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization |
| US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
| US5348537A (en) | 1992-07-15 | 1994-09-20 | Advanced Cardiovascular Systems, Inc. | Catheter with intraluminal sealing element |
| US5313967A (en) | 1992-07-24 | 1994-05-24 | Medtronic, Inc. | Helical guidewire |
| US5395367A (en) | 1992-07-29 | 1995-03-07 | Wilk; Peter J. | Laparoscopic instrument with bendable shaft and removable actuator |
| US5720719A (en) | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Ablative catheter with conformable body |
| DE69325692T2 (de) | 1992-08-18 | 2000-01-05 | The Spectranetics Corp., Colorado Springs | Führungsdraht mit Faseroptik |
| US5647361A (en) | 1992-09-28 | 1997-07-15 | Fonar Corporation | Magnetic resonance imaging method and apparatus for guiding invasive therapy |
| JP3660678B2 (ja) | 1992-10-15 | 2005-06-15 | ザ ゼネラル ホスピタル コーポレーション | 電子的にロード可能な薬剤ライブラリ付き注入ポンプ |
| US5356418A (en) | 1992-10-28 | 1994-10-18 | Shturman Cardiology Systems, Inc. | Apparatus and method for rotational atherectomy |
| US5295694A (en) | 1992-10-27 | 1994-03-22 | Levin John M | Laparoscopic surgery simulating game |
| US5306272A (en) | 1992-11-02 | 1994-04-26 | Neuro Navigational Corporation | Advancer for surgical instrument |
| US5336178A (en) | 1992-11-02 | 1994-08-09 | Localmed, Inc. | Intravascular catheter with infusion array |
| US5314408A (en) * | 1992-11-13 | 1994-05-24 | Cardiovascular Imaging Systems, Inc. | Expandable member for a catheter system |
| US5549542A (en) | 1992-11-17 | 1996-08-27 | Life Medical Technologies, Inc. | Deflectable endoscope |
| ATE151615T1 (de) | 1992-11-18 | 1997-05-15 | Spectrascience Inc | Diagnosebildgerät |
| US5314417A (en) | 1992-12-22 | 1994-05-24 | Ethicon, Inc. | Safety trocar |
| US5368564A (en) | 1992-12-23 | 1994-11-29 | Angeion Corporation | Steerable catheter |
| US5336163A (en) | 1993-01-06 | 1994-08-09 | Smith & Nephew Richards, Inc. | Expandable nasal stent |
| CN2151720Y (zh) | 1993-01-08 | 1994-01-05 | 陈吉峰 | 鼻腔鼻咽腔止血器 |
| WO1994015533A2 (fr) | 1993-01-18 | 1994-07-21 | John Crowe | Forceps pour endoscopes |
| JP3345147B2 (ja) | 1993-01-26 | 2002-11-18 | テルモ株式会社 | 血管拡張器具およびカテーテル |
| US5407433A (en) | 1993-02-10 | 1995-04-18 | Origin Medsystems, Inc. | Gas-tight seal accommodating surgical instruments with a wide range of diameters |
| US5329927A (en) | 1993-02-25 | 1994-07-19 | Echo Cath, Inc. | Apparatus and method for locating an interventional medical device with a ultrasound color imaging system |
| WO1994021320A1 (fr) | 1993-03-15 | 1994-09-29 | Advanced Cardiovascular Systems, Inc. | Catheter d'administration de liquides |
| JP3553067B2 (ja) | 1993-04-13 | 2004-08-11 | ボストン・サイエンティフィック・リミテッド | 拡張先端を有するプロテーゼ導入装置 |
| US5318528A (en) * | 1993-04-13 | 1994-06-07 | Advanced Surgical Inc. | Steerable surgical devices |
| US5985307A (en) | 1993-04-14 | 1999-11-16 | Emory University | Device and method for non-occlusive localized drug delivery |
| US5350396A (en) | 1993-04-15 | 1994-09-27 | Hood Laboratories | Nasal splint |
| US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
| US5824048A (en) | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
| ATE161819T1 (de) | 1993-04-27 | 1998-01-15 | Solvay Fluor & Derivate | Verfahren zur herstellung von carbonsäureestern aus carbonsäurehalogeniden und alkoholen |
| US5617870A (en) | 1993-04-29 | 1997-04-08 | Scimed Life Systems, Inc. | Intravascular flow measurement system |
| US5450853A (en) | 1993-10-22 | 1995-09-19 | Scimed Life Systems, Inc. | Pressure sensor |
| US5873835A (en) | 1993-04-29 | 1999-02-23 | Scimed Life Systems, Inc. | Intravascular pressure and flow sensor |
| US5346508A (en) | 1993-04-29 | 1994-09-13 | Scimed Life Systems, Inc. | Apparatus and method for performing diagnostics and intravascular therapies |
| US6832996B2 (en) * | 1995-06-07 | 2004-12-21 | Arthrocare Corporation | Electrosurgical systems and methods for treating tissue |
| DE4315821A1 (de) | 1993-05-12 | 1994-11-17 | Christian Dr Med Milewski | Vorrichtung zur Tamponade und zum Offenhalten von knochenbegrenzten Körperhöhlen und Gängen nach chirurgischer Manipulation |
| US5334187A (en) * | 1993-05-21 | 1994-08-02 | Cathco, Inc. | Balloon catheter system with slit opening handle |
| US5372584A (en) | 1993-06-24 | 1994-12-13 | Ovamed Corporation | Hysterosalpingography and selective salpingography |
| JP3337272B2 (ja) | 1993-06-29 | 2002-10-21 | 株式会社町田製作所 | 医療器具 |
| US5402799A (en) | 1993-06-29 | 1995-04-04 | Cordis Corporation | Guidewire having flexible floppy tip |
| US5370640A (en) | 1993-07-01 | 1994-12-06 | Kolff; Jack | Intracorporeal catheter placement apparatus and method |
| WO1995002430A1 (fr) | 1993-07-15 | 1995-01-26 | Advanced Cardiovascular Systems, Inc. | Catheter intraluminal type echange rapide avec element de guidage |
| US5391199A (en) | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
| US5827323A (en) | 1993-07-21 | 1998-10-27 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
| US5472449A (en) | 1993-07-26 | 1995-12-05 | Chou; Kuei C. | Permanent pigment applicator having a detachable needle coupler |
| US5415633A (en) | 1993-07-28 | 1995-05-16 | Active Control Experts, Inc. | Remotely steered catheterization device |
| US5441494A (en) | 1993-07-29 | 1995-08-15 | Ethicon, Inc. | Manipulable hand for laparoscopy |
| US6277107B1 (en) | 1993-08-13 | 2001-08-21 | Daig Corporation | Guiding introducer for introducing medical devices into the coronary sinus and process for using same |
| US5562619A (en) | 1993-08-19 | 1996-10-08 | Boston Scientific Corporation | Deflectable catheter |
| US5578048A (en) | 1993-09-15 | 1996-11-26 | United States Surgical Corporation | Manipulator apparatus |
| EP0722286B1 (fr) | 1993-09-20 | 2002-08-21 | Boston Scientific Corporation | Dispositif de biopsie permettant de prelever des echantillons multiples |
| US5607386A (en) | 1993-09-21 | 1997-03-04 | Flam; Gary H. | Malleable fiberoptic intubating stylet and method |
| US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
| US5400783A (en) | 1993-10-12 | 1995-03-28 | Cardiac Pathways Corporation | Endocardial mapping apparatus with rotatable arm and method |
| US5465733A (en) | 1993-10-14 | 1995-11-14 | Hinohara; Tomoaki | Guide wire for catheters and method for its use |
| US5445646A (en) * | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
| US5437282A (en) | 1993-10-29 | 1995-08-01 | Boston Scientific Corporation | Drive shaft for acoustic imaging catheters and flexible catheters |
| US5720300A (en) | 1993-11-10 | 1998-02-24 | C. R. Bard, Inc. | High performance wires for use in medical devices and alloys therefor |
| US5334167A (en) | 1993-11-19 | 1994-08-02 | Cocanower David A | Modified nasogastric tube for use in enteral feeding |
| US5507301A (en) | 1993-11-19 | 1996-04-16 | Advanced Cardiovascular Systems, Inc. | Catheter and guidewire system with flexible distal portions |
| US5459700A (en) | 1993-11-22 | 1995-10-17 | Advanced Cardiovascular Systems, Inc. | Manual timer control for inflation device |
| US5451221A (en) | 1993-12-27 | 1995-09-19 | Cynosure, Inc. | Endoscopic light delivery system |
| US6716216B1 (en) | 1998-08-14 | 2004-04-06 | Kyphon Inc. | Systems and methods for treating vertebral bodies |
| US5538510A (en) | 1994-01-31 | 1996-07-23 | Cordis Corporation | Catheter having coextruded tubing |
| SE9400364D0 (sv) | 1994-02-02 | 1994-02-02 | Sven Eric Stangerup | Näskateter och förfarande för behandling av näsblödning |
| US5904701A (en) | 1994-02-14 | 1999-05-18 | Daneshvar; Yousef | Device for aiding procedural and therapeutic interventions of the gastrointestinal tract |
| DE4405720C1 (de) | 1994-02-23 | 1995-10-19 | Wolf Gmbh Richard | Instrument zur endoskopischen Therapie des Karpaltunnelsyndroms |
| AUPM409094A0 (en) | 1994-02-25 | 1994-03-24 | Trimec Securities Pty. Limited | Improvements in electromagnetic locks |
| US5582167A (en) | 1994-03-02 | 1996-12-10 | Thomas Jefferson University | Methods and apparatus for reducing tracheal infection using subglottic irrigation, drainage and servoregulation of endotracheal tube cuff pressure |
| US5425370A (en) | 1994-03-23 | 1995-06-20 | Echocath, Inc. | Method and apparatus for locating vibrating devices |
| US5887467A (en) | 1994-03-30 | 1999-03-30 | U-Code, Inc. | Pawl & solenoid locking mechanism |
| US5454817A (en) | 1994-04-11 | 1995-10-03 | Katz; David L. | Oto-nasal foreign body extractor |
| US5533985A (en) | 1994-04-20 | 1996-07-09 | Wang; James C. | Tubing |
| US5507795A (en) * | 1994-04-29 | 1996-04-16 | Devices For Vascular Intervention, Inc. | Catheter with perfusion system |
| US6139510A (en) | 1994-05-11 | 2000-10-31 | Target Therapeutics Inc. | Super elastic alloy guidewire |
| US5824044A (en) | 1994-05-12 | 1998-10-20 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system |
| US5882333A (en) | 1994-05-13 | 1999-03-16 | Cardima, Inc. | Catheter with deflectable distal section |
| US5551946A (en) | 1994-05-17 | 1996-09-03 | Bullard; James R. | Multifunctional intubating guide stylet and laryngoscope |
| US5497783A (en) | 1994-05-18 | 1996-03-12 | Scimed Life Systems, Inc. | Guidewire having radioscopic tip |
| US5478309A (en) * | 1994-05-27 | 1995-12-26 | William P. Sweezer, Jr. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
| US5569183A (en) | 1994-06-01 | 1996-10-29 | Archimedes Surgical, Inc. | Method for performing surgery around a viewing space in the interior of the body |
| JPH07327916A (ja) | 1994-06-02 | 1995-12-19 | Olympus Optical Co Ltd | 視野方向可変型内視鏡 |
| DE69532503T2 (de) | 1994-06-17 | 2004-11-04 | Hisamitsu Pharmaceutical Co., Inc., Tosu | Elektrode für iontophorese und vorrichtung dafür |
| US5633000A (en) | 1994-06-23 | 1997-05-27 | Axxia Technologies | Subcutaneous implant |
| US5458572A (en) | 1994-07-01 | 1995-10-17 | Boston Scientific Corp. | Catheter with balloon folding into predetermined configurations and method of manufacture |
| US5441497A (en) | 1994-07-14 | 1995-08-15 | Pdt Cardiovascular, Inc. | Light diffusing guidewire |
| US6579285B2 (en) | 1994-09-09 | 2003-06-17 | Cardiofocus, Inc. | Photoablation with infrared radiation |
| US5803089A (en) * | 1994-09-15 | 1998-09-08 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications |
| US5673707A (en) | 1994-09-23 | 1997-10-07 | Boston Scientific Corporation | Enhanced performance guidewire |
| US5558652A (en) | 1994-10-06 | 1996-09-24 | B. Braun Medical, Inc. | Introducer with radiopaque marked tip and method of manufacture therefor |
| US5722401A (en) | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
| US5814029A (en) | 1994-11-03 | 1998-09-29 | Daig Corporation | Guiding introducer system for use in ablation and mapping procedures in the left ventricle |
| EP0788351B1 (fr) | 1994-11-10 | 2003-02-05 | The University of Kentucky Research Foundation | Dispositif implantable et rechargeable a diffusion controlee pour l'administration de medicaments directement dans une partie interne du corps |
| US6059752A (en) | 1994-12-09 | 2000-05-09 | Segal; Jerome | Mechanical apparatus and method for dilating and irradiating a site of treatment |
| US5637113A (en) | 1994-12-13 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
| US5664580A (en) | 1995-01-31 | 1997-09-09 | Microvena Corporation | Guidewire having bimetallic coil |
| US5599576A (en) | 1995-02-06 | 1997-02-04 | Surface Solutions Laboratories, Inc. | Medical apparatus with scratch-resistant coating and method of making same |
| US6830785B1 (en) | 1995-03-20 | 2004-12-14 | Toto Ltd. | Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof |
| AU5426096A (en) | 1995-03-21 | 1996-10-08 | Dippert, William H. | Uses of antibacterial compounds |
| DE69628344T2 (de) | 1995-03-23 | 2004-04-01 | Advanced Animal Technology Ltd. | Vorrichtung zur Verabreichung einer Substanz |
| WO1996030073A1 (fr) | 1995-03-30 | 1996-10-03 | Heartport, Inc. | Catheter intravasculaire de decharge cardiaque et procede associe |
| KR960032597U (ko) | 1995-03-31 | 1996-10-24 | 테이프레코더의 예약녹화기능 개폐장치 | |
| US5685838A (en) | 1995-04-17 | 1997-11-11 | Xomed-Treace, Inc. | Sinus debrider apparatus |
| US5837313A (en) | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
| US6638291B1 (en) | 1995-04-20 | 2003-10-28 | Micrus Corporation | Three dimensional, low friction vasoocclusive coil, and method of manufacture |
| US6122541A (en) | 1995-05-04 | 2000-09-19 | Radionics, Inc. | Head band for frameless stereotactic registration |
| US5735817A (en) | 1995-05-19 | 1998-04-07 | Shantha; T. R. | Apparatus for transsphenoidal stimulation of the pituitary gland and adjoining brain structures |
| US5749357A (en) | 1995-05-19 | 1998-05-12 | Linder; Gerald S. | Malleable introducer |
| US5656030A (en) | 1995-05-22 | 1997-08-12 | Boston Scientific Corporation | Bidirectional steerable catheter with deflectable distal tip |
| JPH08317989A (ja) | 1995-05-24 | 1996-12-03 | Piolax Inc | 医療用ガイドワイヤ |
| US5833650A (en) | 1995-06-05 | 1998-11-10 | Percusurge, Inc. | Catheter apparatus and method for treating occluded vessels |
| US6238391B1 (en) | 1995-06-07 | 2001-05-29 | Arthrocare Corporation | Systems for tissue resection, ablation and aspiration |
| JPH11507251A (ja) | 1995-06-07 | 1999-06-29 | カーディマ・インコーポレイテッド | 冠状静脈洞用のガイドカテーテル |
| US5729129A (en) | 1995-06-07 | 1998-03-17 | Biosense, Inc. | Magnetic location system with feedback adjustment of magnetic field generator |
| US5752513A (en) | 1995-06-07 | 1998-05-19 | Biosense, Inc. | Method and apparatus for determining position of object |
| US5782795A (en) * | 1995-06-30 | 1998-07-21 | Xomed Surgical Products, Inc. | Surgical suction cutting instrument with internal irrigation |
| JPH11508790A (ja) | 1995-06-30 | 1999-08-03 | ボストン・サイエンティフィック・コーポレイション | 切断エレメントを備えた超音波映写カテーテル |
| US5645789A (en) | 1995-07-20 | 1997-07-08 | Navius Corporation | Distensible pet balloon and method of manufacture |
| US5638819A (en) | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
| US5669388A (en) | 1995-09-06 | 1997-09-23 | Echocath, Inc. | Apparatus and method for automatic placement of transducer |
| US5601594A (en) | 1995-09-14 | 1997-02-11 | Best; Barry D. | Nasal stent |
| GB2305174A (en) | 1995-09-15 | 1997-04-02 | Zeneca Ltd | Chemical process |
| US5810715A (en) | 1995-09-29 | 1998-09-22 | Olympus Optical Co., Ltd. | Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member |
| US6027461A (en) | 1995-10-11 | 2000-02-22 | Micro Therapeutics, Inc. | Infusion guidewire having fixed core wire and flexible radiopaque marker |
| IL124038A (en) | 1995-10-13 | 2004-02-19 | Transvascular Inc | Apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
| US6375615B1 (en) | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
| US6302875B1 (en) * | 1996-10-11 | 2001-10-16 | Transvascular, Inc. | Catheters and related devices for forming passageways between blood vessels or other anatomical structures |
| US6113567A (en) | 1995-10-25 | 2000-09-05 | Becker; Bruce B. | Lacrimal silicone tube with reduced friction |
| US5916149A (en) | 1995-10-25 | 1999-06-29 | Ryan, Jr.; Edwin H. | Shielded illumination device for ophthalmic surgery and the like |
| US6287315B1 (en) | 1995-10-30 | 2001-09-11 | World Medical Manufacturing Corporation | Apparatus for delivering an endoluminal prosthesis |
| US6019736A (en) | 1995-11-06 | 2000-02-01 | Francisco J. Avellanet | Guidewire for catheter |
| US5749848A (en) * | 1995-11-13 | 1998-05-12 | Cardiovascular Imaging Systems, Inc. | Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment |
| US5843050A (en) | 1995-11-13 | 1998-12-01 | Micro Therapeutics, Inc. | Microcatheter |
| US5827224A (en) | 1995-11-22 | 1998-10-27 | Shippert; Ronald D. | Pressure applying fluid transfer medical device |
| FI100318B (sv) | 1995-11-23 | 1997-11-14 | Fiskars Consumer Oy Ab | Ledat handverktyg |
| US5733248A (en) | 1995-11-29 | 1998-03-31 | Scimed Life Systems, Inc. | Universal guide catheter |
| US5722984A (en) | 1996-01-16 | 1998-03-03 | Iso Stent, Inc. | Antithrombogenic radioactive coating for an intravascular stent |
| US6039699A (en) | 1996-01-22 | 2000-03-21 | Cordis Corporation | Stiff catheter guidewire with flexible distal portion |
| WO1997029709A1 (fr) | 1996-02-15 | 1997-08-21 | Biosense, Inc. | Interventions medicales et dispositif mettant en application des sondes intra-corporelles |
| CA2197614C (fr) | 1996-02-20 | 2002-07-02 | Charles S. Taylor | Instruments chirurgicaux et procedes de stabilisation du coeur palpitant en cours de pontage aortocoronarien |
| RU2108764C1 (ru) | 1996-02-20 | 1998-04-20 | Московский государственный институт стали и сплавов (технологический университет) | Устройство для доставки и способ имплантации спирального рентгеноэндопротеза сосудов и полых органов человека |
| US6860264B2 (en) | 1996-02-26 | 2005-03-01 | Evergreen Medical Incorporated | Method and apparatus for endotracheal intubation using a light wand and curved guide |
| US5817013A (en) | 1996-03-19 | 1998-10-06 | Enable Medical Corporation | Method and apparatus for the minimally invasive harvesting of a saphenous vein and the like |
| US6679833B2 (en) | 1996-03-22 | 2004-01-20 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
| US5682199A (en) | 1996-03-28 | 1997-10-28 | Jedmed Instrument Company | Video endoscope with interchangeable endoscope heads |
| US5779699A (en) | 1996-03-29 | 1998-07-14 | Medtronic, Inc. | Slip resistant field focusing ablation catheter electrode |
| US5980503A (en) | 1996-04-08 | 1999-11-09 | Guidant Corporation | Endoscopic cardioplegia infusion cannula and method of use |
| DE59701917C5 (de) | 1996-04-10 | 2013-06-06 | Curaden Ag | Vorrichtung zum bestimmen einer approximalen gängigkeit eines zahnzwischenraums |
| US7022105B1 (en) | 1996-05-06 | 2006-04-04 | Novasys Medical Inc. | Treatment of tissue in sphincters, sinuses and orifices |
| US6050972A (en) | 1996-05-20 | 2000-04-18 | Percusurge, Inc. | Guidewire inflation system |
| US6652480B1 (en) | 1997-03-06 | 2003-11-25 | Medtronic Ave., Inc. | Methods for reducing distal embolization |
| US5693065A (en) | 1996-06-25 | 1997-12-02 | Rains, Iii; B. Manrin | Frontal sinus stent |
| US6167296A (en) | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
| US5789391A (en) | 1996-07-03 | 1998-08-04 | Inspire Pharmaceuticals, Inc. | Method of treating sinusitis with uridine triphosphates and related compounds |
| JPH1024098A (ja) | 1996-07-10 | 1998-01-27 | Terumo Corp | バルーン及びバルーンカテーテル |
| US5865767A (en) | 1996-07-10 | 1999-02-02 | Cordis Corporation | Guidewire having compound taper |
| US5882346A (en) | 1996-07-15 | 1999-03-16 | Cardiac Pathways Corporation | Shapable catheter using exchangeable core and method of use |
| US5820592A (en) | 1996-07-16 | 1998-10-13 | Hammerslag; Gary R. | Angiographic and/or guide catheter |
| US5664567A (en) | 1996-07-16 | 1997-09-09 | Linder; Gerald S. | Fenestrated nasopharyngeal airway for drainage |
| JP3693762B2 (ja) | 1996-07-26 | 2005-09-07 | 株式会社ニホンゲンマ | 無鉛はんだ |
| US6569147B1 (en) | 1996-07-26 | 2003-05-27 | Kensey Nash Corporation | Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes |
| US5826576A (en) | 1996-08-08 | 1998-10-27 | Medtronic, Inc. | Electrophysiology catheter with multifunction wire and method for making |
| US6126682A (en) | 1996-08-13 | 2000-10-03 | Oratec Interventions, Inc. | Method for treating annular fissures in intervertebral discs |
| US5797878A (en) | 1996-08-15 | 1998-08-25 | Guidant Corporation | Catheter having optimized balloon taper angle |
| US5833682A (en) | 1996-08-26 | 1998-11-10 | Illumenex Corporation | Light delivery system with blood flushing capability |
| CA2209366C (fr) | 1996-09-13 | 2004-11-02 | Interventional Technologies, Inc. | A ballonnet effile |
| US6322498B1 (en) | 1996-10-04 | 2001-11-27 | University Of Florida | Imaging scope |
| US5843113A (en) | 1996-10-08 | 1998-12-01 | High; Kenneth | Endocystotomy tool |
| US5971975A (en) | 1996-10-09 | 1999-10-26 | Target Therapeutics, Inc. | Guide catheter with enhanced guidewire tracking |
| US5820568A (en) | 1996-10-15 | 1998-10-13 | Cardiac Pathways Corporation | Apparatus and method for aiding in the positioning of a catheter |
| US5779669A (en) | 1996-10-28 | 1998-07-14 | C. R. Bard, Inc. | Steerable catheter with fixed curve |
| US6913763B2 (en) | 1996-11-19 | 2005-07-05 | Intrabrain International Nv | Method and device for enhanced delivery of a biologically active agent through the spinal spaces into the central nervous system of a mammal |
| US5872879A (en) | 1996-11-25 | 1999-02-16 | Boston Scientific Corporation | Rotatable connecting optical fibers |
| US5836638A (en) | 1996-12-09 | 1998-11-17 | Illinois Tool Works Inc. | Fuel door assembly |
| US5830188A (en) | 1996-12-11 | 1998-11-03 | Board Of Regents, The University Of Texas System | Curved cannula for continuous spinal anesthesia |
| US5766194A (en) | 1996-12-23 | 1998-06-16 | Georgia Skin And Cancer Clinic, Pc | Surgical apparatus for tissue removal |
| DK0893967T3 (da) | 1997-01-03 | 2004-06-21 | Biosense Inc | Konformt kateter |
| US5935061A (en) | 1997-01-03 | 1999-08-10 | Biosense, Inc. | Obstetrical instrument system and method |
| US6007516A (en) | 1997-01-21 | 1999-12-28 | Vasca, Inc. | Valve port and method for vascular access |
| US5980551A (en) | 1997-02-07 | 1999-11-09 | Endovasc Ltd., Inc. | Composition and method for making a biodegradable drug delivery stent |
| US5928248A (en) * | 1997-02-14 | 1999-07-27 | Biosense, Inc. | Guided deployment of stents |
| US6669689B2 (en) | 1997-02-27 | 2003-12-30 | Cryocath Technologies Inc. | Cryosurgical catheter |
| WO1998038929A1 (fr) | 1997-03-06 | 1998-09-11 | Percusurge, Inc. | Systeme d'aspiration intravasculaire |
| US6190332B1 (en) | 1998-02-19 | 2001-02-20 | Percusurge, Inc. | Core wire with shapeable tip |
| US5879324A (en) * | 1997-03-06 | 1999-03-09 | Von Hoffmann; Gerard | Low profile catheter shaft |
| US6159170A (en) | 1997-03-13 | 2000-12-12 | Borodulin; German | Universal mechanical dilator combined with massaging action |
| US6007991A (en) | 1997-03-28 | 1999-12-28 | The Research Foundation Of Suny | Antisense oligonucleotides for mitogen-activated protein kinases as therapy for cancer |
| US6524299B1 (en) | 1997-04-09 | 2003-02-25 | Target Therapeutics, Inc. | Flow-directed catheter |
| US5941816A (en) | 1997-04-15 | 1999-08-24 | Clarus Medical Systems, Inc. | Viewing system with adapter handle for medical breathing tubes |
| US6019777A (en) | 1997-04-21 | 2000-02-01 | Advanced Cardiovascular Systems, Inc. | Catheter and method for a stent delivery system |
| WO1998055173A1 (fr) | 1997-06-04 | 1998-12-10 | Advanced Cardiovascular Systems, Inc. | Fil-guide orientable a support distal ameliore |
| US6146402A (en) | 1997-06-09 | 2000-11-14 | Munoz; Cayetano S. | Endotracheal tube guide introducer and method of intubation |
| US5997562A (en) | 1997-06-13 | 1999-12-07 | Percusurge, Inc. | Medical wire introducer and balloon protective sheath |
| US5938660A (en) | 1997-06-27 | 1999-08-17 | Daig Corporation | Process and device for the treatment of atrial arrhythmia |
| DE19728273C1 (de) | 1997-07-02 | 1998-12-10 | Fuss Fritz Gmbh & Co | Verriegelungseinrichtung für Möbel |
| US6514249B1 (en) | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
| US6432986B2 (en) | 1997-07-21 | 2002-08-13 | Bruce H. Levin | Compositions, kits, and methods for inhibiting cerebral neurovascular disorders and muscular headaches |
| US20010004644A1 (en) * | 1997-07-21 | 2001-06-21 | Levin Bruce H. | Compositions, kits, apparatus, and methods for inhibiting cephalic inflammation |
| US7799337B2 (en) | 1997-07-21 | 2010-09-21 | Levin Bruce H | Method for directed intranasal administration of a composition |
| US6491940B1 (en) | 1999-01-27 | 2002-12-10 | Bruce H. Levin | Apparatus for administering composition for inhibiting cerebral neurovascular disorders and muscular headaches |
| US5928192A (en) | 1997-07-24 | 1999-07-27 | Embol-X, Inc. | Arterial aspiration |
| US5908407A (en) | 1997-07-25 | 1999-06-01 | Neuroperfusion, Inc. | Retroperfusion catheter apparatus and method |
| DE19732031C1 (de) | 1997-07-25 | 1999-04-22 | Solvay Fluor & Derivate | 2-Phasen-Herstellung von Carbonsäureestern |
| US5902247A (en) | 1997-09-09 | 1999-05-11 | Bioenterics Corporation | Transilluminating catheter |
| AU739331B2 (en) | 1997-10-01 | 2001-10-11 | Boston Scientific Limited | Dilation systems and related methods |
| US6201387B1 (en) * | 1997-10-07 | 2001-03-13 | Biosense, Inc. | Miniaturized position sensor having photolithographic coils for tracking a medical probe |
| US6027478A (en) | 1997-10-09 | 2000-02-22 | Medical Purchasing Group, Inc. | Nasal cavity drainage and stoppage system |
| US6042561A (en) | 1997-10-22 | 2000-03-28 | Ash Medical Systems, Inc. | Non-intravascular infusion access device |
| US6056702A (en) | 1998-10-02 | 2000-05-02 | Cordis Corporation | Guidewire with outer sheath |
| FR2770409B1 (fr) | 1997-10-31 | 2000-06-23 | Soprane Sa | Catheter universel |
| JP4121615B2 (ja) | 1997-10-31 | 2008-07-23 | オリンパス株式会社 | 内視鏡 |
| US6048299A (en) | 1997-11-07 | 2000-04-11 | Radiance Medical Systems, Inc. | Radiation delivery catheter |
| EP0920882A3 (fr) | 1997-12-04 | 2000-01-05 | Schneider Inc. | Cathéter à ballonet pour dilatation et apport de médicament et cathéter pour placer une prothèse à remplacement rapide |
| AU1712599A (en) * | 1997-12-08 | 1999-06-28 | Cardeon Corporation | Aortic catheter and methods for inducing cardioplegic arrest and for selective aortic perfusion |
| WO1999030655A1 (fr) | 1997-12-15 | 1999-06-24 | Arthrocare Corporation | Systemes et procedes de traitement electrochirurgical de la tete et du cou |
| EP1049413A1 (fr) | 1997-12-23 | 2000-11-08 | Somnus Medical Technologies, Inc. | Appareil de necrose cellulaire |
| US6093150A (en) | 1997-12-31 | 2000-07-25 | Acuson Corporation | Ultrasound otoscope |
| US7008412B2 (en) | 1998-01-06 | 2006-03-07 | Cathlogic, Inc. | Subcutaneous port catheter system and associated method |
| US5989231A (en) | 1998-01-15 | 1999-11-23 | Scimed Life Systems, Inc. | Optical gastrostomy and jejunostomy |
| NL1008051C2 (nl) | 1998-01-16 | 1999-07-19 | Cordis Europ | Ballonkatheter. |
| US6159178A (en) | 1998-01-23 | 2000-12-12 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
| US6295990B1 (en) | 1998-02-03 | 2001-10-02 | Salient Interventional Systems, Inc. | Methods and systems for treating ischemia |
| US6083188A (en) | 1998-02-04 | 2000-07-04 | Becker; Bruce B. | Lacrimal silicone stent with very large diameter segment insertable transnasally |
| US7169141B2 (en) | 1998-02-24 | 2007-01-30 | Hansen Medical, Inc. | Surgical instrument |
| US6183461B1 (en) | 1998-03-11 | 2001-02-06 | Situs Corporation | Method for delivering a medication |
| JPH11265567A (ja) | 1998-03-17 | 1999-09-28 | Mitsumi Electric Co Ltd | ディスクドライブ |
| DE19813383A1 (de) * | 1998-03-26 | 1999-10-07 | Storz Karl Gmbh & Co | Vorrichtung, mit einer Sendereinheit, über die die Position eines medizinischen Instruments im Rahmen eines CAS-Systems erfaßbar ist |
| IL138666A0 (en) | 1998-03-31 | 2001-10-31 | Transvascular Inc | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
| US6364856B1 (en) * | 1998-04-14 | 2002-04-02 | Boston Scientific Corporation | Medical device with sponge coating for controlled drug release |
| US5968085A (en) | 1998-04-20 | 1999-10-19 | Medtronic, Inc. | Pacing lead with integral guidance using ultrasound |
| US6450989B2 (en) | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
| US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
| US6306105B1 (en) | 1998-05-14 | 2001-10-23 | Scimed Life Systems, Inc. | High performance coil wire |
| US6280411B1 (en) | 1998-05-18 | 2001-08-28 | Scimed Life Systems, Inc. | Localized delivery of drug agents |
| US6183464B1 (en) | 1998-06-01 | 2001-02-06 | Inviro Medical Devices Ltd. | Safety syringe with retractable needle and universal luer coupling |
| US6048358A (en) | 1998-07-13 | 2000-04-11 | Barak; Shlomo | Method and apparatus for hemostasis following arterial catheterization |
| US6290689B1 (en) * | 1999-10-22 | 2001-09-18 | Corazón Technologies, Inc. | Catheter devices and methods for their use in the treatment of calcified vascular occlusions |
| US6352503B1 (en) | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
| US5979290A (en) | 1998-07-20 | 1999-11-09 | Simeone; Salvatore | Mine clearing device |
| US6226542B1 (en) | 1998-07-24 | 2001-05-01 | Biosense, Inc. | Three-dimensional reconstruction of intrabody organs |
| NL1009738C2 (nl) | 1998-07-24 | 2000-01-25 | Cordis Europ | Ballonkatheter met vullichaam voor het plaatsen van een stent. |
| US20040064105A1 (en) | 2002-09-27 | 2004-04-01 | Capes David Francis | Single-use syringe |
| US5954694A (en) | 1998-08-07 | 1999-09-21 | Embol-X, Inc. | Nested tubing sections and methods for making same |
| US6129713A (en) | 1998-08-11 | 2000-10-10 | Embol-X, Inc. | Slidable cannula and method of use |
| CN2352818Y (zh) | 1998-08-12 | 1999-12-08 | 李平 | 医用发光导管 |
| US6152943A (en) | 1998-08-14 | 2000-11-28 | Incept Llc | Methods and apparatus for intraluminal deposition of hydrogels |
| WO2000009192A1 (fr) | 1998-08-17 | 2000-02-24 | Kazuhiro Noda | Dispositif de ballon pour operation |
| JP3244660B2 (ja) | 1998-08-17 | 2002-01-07 | 旭光学工業株式会社 | 内視鏡用処置具 |
| USD413629S (en) | 1998-08-18 | 1999-09-07 | HA-LO Industries, Inc. | Nasal tract model |
| JP2002523152A (ja) | 1998-08-19 | 2002-07-30 | クック インコーポレイティド | 予備成形ワイヤ・ガイド |
| US6741884B1 (en) | 1998-09-03 | 2004-05-25 | Hypermed, Inc. | Infrared endoscopic balloon probes |
| ATE314871T1 (de) | 1998-09-08 | 2006-02-15 | Lumend Inc | Vorrichtung zum behandeln von blutgefässokklusionen |
| US6149213A (en) | 1998-10-01 | 2000-11-21 | Southco, Inc. | Blind latch keeper |
| DE69939655D1 (de) * | 1998-10-05 | 2008-11-13 | Kaneka Corp | Balloonkatheter |
| WO2000023009A1 (fr) | 1998-10-21 | 2000-04-27 | Frauens John T | Appareil pour arthroplastie percutanee avec interposition de ballonnet |
| JP2000126303A (ja) | 1998-10-26 | 2000-05-09 | Asahi Intecc Co Ltd | 血管治療用多機能ワイヤ |
| AU3098400A (en) | 1998-11-09 | 2000-05-29 | Datascope Investment Corp. | Intra-aortic balloon catheter having an ultra-thin stretch blow molded balloon membrane |
| US6234958B1 (en) * | 1998-11-30 | 2001-05-22 | Medical Access Systems, Llc | Medical device introduction system including medical introducer having a plurality of access ports and methods of performing medical procedures with same |
| US6464650B2 (en) | 1998-12-31 | 2002-10-15 | Advanced Cardiovascular Systems, Inc. | Guidewire with smoothly tapered segment |
| US6206870B1 (en) | 1999-01-21 | 2001-03-27 | Quest Medical, Inc. | Catheter stylet handle |
| DE19906191A1 (de) | 1999-02-15 | 2000-08-17 | Ingo F Herrmann | Endoskop |
| US6398758B1 (en) | 1999-02-16 | 2002-06-04 | Stephen C. Jacobsen | Medicament delivery system |
| US6332891B1 (en) | 1999-02-16 | 2001-12-25 | Stryker Corporation | System and method for performing image guided surgery |
| US6468297B1 (en) | 1999-02-24 | 2002-10-22 | Cryovascular Systems, Inc. | Cryogenically enhanced intravascular interventions |
| US10973397B2 (en) * | 1999-03-01 | 2021-04-13 | West View Research, Llc | Computerized information collection and processing apparatus |
| BR0008650B1 (pt) | 1999-03-03 | 2010-12-28 | dispositivo de transmissão via nasal. | |
| AU2876200A (en) | 1999-03-08 | 2000-09-28 | University Of Virginia Patent Foundation | Device and method for delivering a material into the paranasal sinus cavities |
| US6179776B1 (en) | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
| US6148823A (en) | 1999-03-17 | 2000-11-21 | Stereotaxis, Inc. | Method of and system for controlling magnetic elements in the body using a gapped toroid magnet |
| US6200257B1 (en) | 1999-03-24 | 2001-03-13 | Proxima Therapeutics, Inc. | Catheter with permeable hydrogel membrane |
| US6258065B1 (en) | 1999-03-26 | 2001-07-10 | Core Dynamics, Inc. | Surgical instrument seal assembly |
| US6328730B1 (en) | 1999-03-26 | 2001-12-11 | William W. Harkrider, Jr. | Endoluminal multi-luminal surgical sheath and method |
| US6389313B1 (en) | 1999-03-26 | 2002-05-14 | Kevin S. Marchitto | Laser probes for drug permeation |
| DK1040843T3 (da) | 1999-03-29 | 2006-01-30 | William Cook Europe As | En guidewire |
| ATE266442T1 (de) | 1999-03-29 | 2004-05-15 | Cook William Europ | Ein führungsdraht |
| US6425877B1 (en) | 1999-04-02 | 2002-07-30 | Novasys Medical, Inc. | Treatment of tissue in the digestive circulatory respiratory urinary and reproductive systems |
| US6328564B1 (en) | 1999-04-06 | 2001-12-11 | Raymond C. Thurow | Deep ear canal locating and head orienting device |
| US6319275B1 (en) | 1999-04-07 | 2001-11-20 | Medtronic Ave, Inc. | Endolumenal prosthesis delivery assembly and method of use |
| US6231543B1 (en) | 1999-04-15 | 2001-05-15 | Intella Interventional Systems, Inc. | Single lumen balloon catheter |
| WO2000062672A1 (fr) | 1999-04-15 | 2000-10-26 | Surgi-Vision | Procedes pour imagerie par resonance magnetique in vivo |
| DE59900101D1 (de) | 1999-04-29 | 2001-06-28 | Storz Karl Gmbh & Co Kg | Medizinisches Instrument zum Präparieren von Gewebe |
| US6268574B1 (en) | 1999-04-29 | 2001-07-31 | Rudolph R. Edens | Electrical and pneumatic lock-out device |
| US6689146B1 (en) | 1999-04-29 | 2004-02-10 | Stryker Corporation | Powered surgical handpiece with integrated irrigator and suction application |
| DE20080298U1 (de) * | 1999-05-07 | 2001-12-20 | Salviac Ltd., Dublin | Embolieschutzgerät |
| US6146415A (en) | 1999-05-07 | 2000-11-14 | Advanced Cardiovascular Systems, Inc. | Stent delivery system |
| WO2000067834A1 (fr) | 1999-05-11 | 2000-11-16 | Zynergy Cardiovascular, Inc. | Catheter pouvant etre guide |
| US6758830B1 (en) | 1999-05-11 | 2004-07-06 | Atrionix, Inc. | Catheter positioning system |
| US6394093B1 (en) | 1999-05-13 | 2002-05-28 | Scott Lethi | Nasopharyngeal airway with inflatable cuff |
| DE19924440A1 (de) | 1999-05-28 | 2000-12-07 | Storz Karl Gmbh & Co Kg | Schaft für ein flexibles Endoskop |
| US6264087B1 (en) | 1999-07-12 | 2001-07-24 | Powermed, Inc. | Expanding parallel jaw device for use with an electromechanical driver device |
| US6079755A (en) | 1999-06-07 | 2000-06-27 | Chang; Chih Chung | Electromagnetic lock device |
| US6206900B1 (en) * | 1999-06-11 | 2001-03-27 | The General Hospital Corporation | Clot evacuation catheter |
| US6890329B2 (en) | 1999-06-15 | 2005-05-10 | Cryocath Technologies Inc. | Defined deflection structure |
| WO2000076570A2 (fr) | 1999-06-15 | 2000-12-21 | Cryocath Technologies, Inc. | Structure de deviation |
| US6280433B1 (en) | 1999-09-09 | 2001-08-28 | Medtronic, Inc. | Introducer system |
| DE29923582U1 (de) | 1999-07-08 | 2000-12-14 | Hintersdorf, Steffen, 09126 Chemnitz | Vorrichtung zur Anwendung innerhalb des Nasenbereichs, insbesondere zum Einsetzen in die Nasenhöhlen |
| US6364900B1 (en) | 1999-07-14 | 2002-04-02 | Richard R. Heuser | Embolism prevention device |
| JP3447984B2 (ja) | 1999-07-21 | 2003-09-16 | 朝日インテック株式会社 | 医療用ガイドワイヤ |
| US6596009B1 (en) | 1999-07-28 | 2003-07-22 | Jeffrey Jelic | Retrievable endoscopic orbital floor splint |
| US6445939B1 (en) | 1999-08-09 | 2002-09-03 | Lightlab Imaging, Llc | Ultra-small optical probes, imaging optics, and methods for using same |
| EP1202771A1 (fr) | 1999-08-12 | 2002-05-08 | Wilson-Cook Medical Inc. | Ballonnet de dilatation a diametres multiples |
| US6638233B2 (en) | 1999-08-19 | 2003-10-28 | Fox Hollow Technologies, Inc. | Apparatus and methods for material capture and removal |
| EP1207931A2 (fr) | 1999-08-24 | 2002-05-29 | Neuron Therapeutics, Inc. | Catheter de drainage lombaire |
| US6249180B1 (en) | 1999-09-08 | 2001-06-19 | Atmel Corporation | Phase noise and additive noise estimation in a QAM demodulator |
| US6221042B1 (en) | 1999-09-17 | 2001-04-24 | Scimed Life Systems, Inc. | Balloon with reversed cones |
| US6939361B1 (en) | 1999-09-22 | 2005-09-06 | Nmt Medical, Inc. | Guidewire for a free standing intervascular device having an integral stop mechanism |
| CA2384866C (fr) | 1999-09-28 | 2012-07-10 | Stuart D. Edwards | Traitement des tissus par l'application d'energie et de medicaments |
| JP2001095815A (ja) | 1999-09-28 | 2001-04-10 | Olympus Optical Co Ltd | マイクロ波凝固アプリケータ |
| US6436119B1 (en) | 1999-09-30 | 2002-08-20 | Raymedica, Inc. | Adjustable surgical dilator |
| US6398775B1 (en) * | 1999-10-21 | 2002-06-04 | Pulmonx | Apparatus and method for isolated lung access |
| AU2614901A (en) | 1999-10-22 | 2001-04-30 | Boston Scientific Corporation | Double balloon thrombectomy catheter |
| US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
| US6536437B1 (en) | 1999-10-29 | 2003-03-25 | Branislav M. Dragisic | Cuffed nasal airway and anesthetic wand system |
| US6529756B1 (en) | 1999-11-22 | 2003-03-04 | Scimed Life Systems, Inc. | Apparatus for mapping and coagulating soft tissue in or around body orifices |
| US6533754B1 (en) | 1999-11-26 | 2003-03-18 | Terumo Kabushiki Kaisha | Catheter |
| US6156294A (en) | 1999-11-28 | 2000-12-05 | Scientific Development And Research, Inc. | Composition and method for treatment of otitis media |
| JP4054521B2 (ja) | 1999-11-29 | 2008-02-27 | キヤノン株式会社 | 現像剤補給カートリッジ及び現像剤補給システム |
| DK200001852A (da) | 1999-12-14 | 2001-06-15 | Asahi Optical Co Ltd | Manipuleringssektion til et endoskopisk behandlingsinstrument |
| DE10042330A1 (de) * | 1999-12-22 | 2002-03-14 | Hans Sachse | Dünndarmsonde, wandverstärkt |
| JP2003517870A (ja) | 1999-12-22 | 2003-06-03 | ボストン サイエンティフィック リミテッド | 血管内閉塞潅注カテーテルとその使用方法 |
| US6450975B1 (en) | 1999-12-30 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Ultrasonic transmission guide wire |
| DE10102433B4 (de) | 2000-01-21 | 2008-07-10 | Pentax Corp. | Flexibles Rohr für ein Endoskop |
| US7184827B1 (en) | 2000-01-24 | 2007-02-27 | Stuart D. Edwards | Shrinkage of dilatations in the body |
| US20010034530A1 (en) | 2000-01-27 | 2001-10-25 | Malackowski Donald W. | Surgery system |
| US6386197B1 (en) | 2000-01-27 | 2002-05-14 | Brook D. Miller | Nasal air passageway opening device |
| US6312438B1 (en) | 2000-02-01 | 2001-11-06 | Medtronic Xomed, Inc. | Rotary bur instruments having bur tips with aspiration passages |
| US6589164B1 (en) * | 2000-02-15 | 2003-07-08 | Transvascular, Inc. | Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices |
| US6527753B2 (en) | 2000-02-29 | 2003-03-04 | Olympus Optical Co., Ltd. | Endoscopic treatment system |
| US6443947B1 (en) | 2000-03-01 | 2002-09-03 | Alexei Marko | Device for thermal ablation of a cavity |
| US6485475B1 (en) | 2000-03-01 | 2002-11-26 | The Board Of Regents Of The University Texas System | Introducer needle for continuous perineural catheter placement |
| WO2001068178A1 (fr) | 2000-03-10 | 2001-09-20 | Cardiofocus, Inc. | Catheter orientable |
| US6494894B2 (en) | 2000-03-16 | 2002-12-17 | Scimed Life Systems, Inc. | Coated wire |
| AU143359S (en) | 2000-03-17 | 2001-03-28 | Astrazeneca Ab | Connector for a catheter |
| US6485500B1 (en) | 2000-03-21 | 2002-11-26 | Advanced Cardiovascular Systems, Inc. | Emboli protection system |
| US6440061B1 (en) | 2000-03-24 | 2002-08-27 | Donald E. Wenner | Laparoscopic instrument system for real-time biliary exploration and stone removal |
| US6517478B2 (en) | 2000-03-30 | 2003-02-11 | Cbyon, Inc. | Apparatus and method for calibrating an endoscope |
| US6478776B1 (en) | 2000-04-05 | 2002-11-12 | Biocardia, Inc. | Implant delivery catheter system and methods for its use |
| US6638268B2 (en) | 2000-04-07 | 2003-10-28 | Imran K. Niazi | Catheter to cannulate the coronary sinus |
| US6471644B1 (en) | 2000-04-27 | 2002-10-29 | Medtronic, Inc. | Endoscopic stabilization device and method of use |
| US6283908B1 (en) | 2000-05-04 | 2001-09-04 | Radioactive Isolation Consortium, Llc | Vitrification of waste with conitnuous filling and sequential melting |
| US6860849B2 (en) | 2000-05-08 | 2005-03-01 | Pentax Corporation | Flexible tube for an endoscope |
| GB0011053D0 (en) | 2000-05-09 | 2000-06-28 | Hudson John O | Medical device and use thereof |
| JP2003534056A (ja) | 2000-05-19 | 2003-11-18 | シー・アール・バード・インク | 観察機能を備えるガイドワイヤ |
| US7108677B2 (en) | 2000-05-31 | 2006-09-19 | Kerberos Proximal Solutions, Inc. | Embolization protection system for vascular procedures |
| US6719749B1 (en) * | 2000-06-01 | 2004-04-13 | Medical Components, Inc. | Multilumen catheter assembly and methods for making and inserting the same |
| US6409863B1 (en) | 2000-06-12 | 2002-06-25 | Scimed Life Systems, Inc. | Methods of fabricating a catheter shaft having one or more guidewire ports |
| FR2810458B1 (fr) * | 2000-06-16 | 2004-04-09 | Entrelec Sa | Peigne d'interconnexion electrique |
| JP3345645B2 (ja) | 2000-06-20 | 2002-11-18 | 東京大学長 | 体腔内観察装置 |
| US6663589B1 (en) | 2000-06-20 | 2003-12-16 | Haim Halevy | Catheter system |
| US6875212B2 (en) | 2000-06-23 | 2005-04-05 | Vertelink Corporation | Curable media for implantable medical device |
| US6572590B1 (en) | 2000-07-13 | 2003-06-03 | Merit Medical Systems, Inc. | Adjustable quick-release valve with toggle capability |
| JP2002028166A (ja) | 2000-07-18 | 2002-01-29 | Olympus Optical Co Ltd | 鼻腔用処置具 |
| US20050107738A1 (en) | 2000-07-21 | 2005-05-19 | Slater Charles R. | Occludable intravascular catheter for drug delivery and method of using the same |
| US6817364B2 (en) | 2000-07-24 | 2004-11-16 | Stereotaxis, Inc. | Magnetically navigated pacing leads, and methods for delivering medical devices |
| RU2213530C2 (ru) | 2000-07-26 | 2003-10-10 | Сунцов Виктор Владимирович | Способ лечения параназальных синуитов и устройство для его осуществления |
| JP4429495B2 (ja) | 2000-07-28 | 2010-03-10 | オリンパス株式会社 | 内視鏡 |
| DE10038376C2 (de) | 2000-08-07 | 2003-04-30 | Zangenstein Elektro | Türverriegelung für die Tür eines elektrischen Haushaltsgerätes |
| US6569146B1 (en) | 2000-08-18 | 2003-05-27 | Scimed Life Systems, Inc. | Method and apparatus for treating saphenous vein graft lesions |
| US7625335B2 (en) | 2000-08-25 | 2009-12-01 | 3Shape Aps | Method and apparatus for three-dimensional optical scanning of interior surfaces |
| US6607546B1 (en) | 2000-09-01 | 2003-08-19 | Roger E. Murken | Nasal catheter |
| US6719763B2 (en) * | 2000-09-29 | 2004-04-13 | Olympus Optical Co., Ltd. | Endoscopic suturing device |
| US7052474B2 (en) | 2000-10-02 | 2006-05-30 | Sandhill Scientific, Inc. | Pharyngoesophageal monitoring systems |
| US6537294B1 (en) | 2000-10-17 | 2003-03-25 | Advanced Cardiovascular Systems, Inc. | Delivery systems for embolic filter devices |
| US6702735B2 (en) | 2000-10-17 | 2004-03-09 | Charlotte Margaret Kelly | Device for movement along a passage |
| US6585639B1 (en) | 2000-10-27 | 2003-07-01 | Pulmonx | Sheath and method for reconfiguring lung viewing scope |
| US20020055746A1 (en) | 2000-11-03 | 2002-05-09 | Alan Burke | Method and apparatus for extracting foreign bodies from nasal passages and the like |
| JP2002146659A (ja) | 2000-11-07 | 2002-05-22 | Sumitomo Electric Ind Ltd | 金属不織布及びその製造方法 |
| US6571131B1 (en) | 2000-11-10 | 2003-05-27 | Biosense Webster, Inc. | Deflectable catheter with modifiable handle |
| US6682555B2 (en) | 2000-11-13 | 2004-01-27 | Wit Ip Corporation | Methods for treating the prostate and inhibiting obstruction of the prostatic urethra using biodegradable stents |
| US6543452B1 (en) | 2000-11-16 | 2003-04-08 | Medilyfe, Inc. | Nasal intubation device and system for intubation |
| CA2468252A1 (fr) | 2000-11-20 | 2002-05-23 | Surgi-Vision, Inc. | Connecteur et fil de guidage pouvant y etre connecte |
| US6716813B2 (en) | 2000-11-28 | 2004-04-06 | House Ear Institute | Use of antimicrobial proteins and peptides for the treatment of otitis media and paranasal sinusitis |
| JP2005501573A (ja) | 2000-12-01 | 2005-01-20 | ネフロス セラピューティクス, インコーポレイテッド | 血管内薬物送達デバイスおよびその使用 |
| AU2002235159A1 (en) | 2000-12-05 | 2002-06-18 | Lumend, Inc. | Catheter system for vascular re-entry from a sub-intimal space |
| US6500130B2 (en) | 2000-12-21 | 2002-12-31 | Scimed Life Systems, Inc. | Steerable guidewire |
| US6511471B2 (en) | 2000-12-22 | 2003-01-28 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
| US6544223B1 (en) * | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
| KR100731007B1 (ko) | 2001-01-15 | 2007-06-22 | 앰코 테크놀로지 코리아 주식회사 | 적층형 반도체 패키지 |
| CN100491914C (zh) | 2001-01-30 | 2009-05-27 | Z-凯特公司 | 器具的校准器及跟踪器系统 |
| DE10104663A1 (de) | 2001-02-02 | 2002-08-08 | Solvay Fluor & Derivate | Herstellung von Fluorverbindungen |
| US6997931B2 (en) | 2001-02-02 | 2006-02-14 | Lsi Solutions, Inc. | System for endoscopic suturing |
| DE10105592A1 (de) | 2001-02-06 | 2002-08-08 | Achim Goepferich | Platzhalter zur Arzneistofffreigabe in der Stirnhöhle |
| JP3939158B2 (ja) | 2001-02-06 | 2007-07-04 | オリンパス株式会社 | 内視鏡装置 |
| US6585718B2 (en) * | 2001-05-02 | 2003-07-01 | Cardiac Pacemakers, Inc. | Steerable catheter with shaft support system for resisting axial compressive loads |
| US6796960B2 (en) | 2001-05-04 | 2004-09-28 | Wit Ip Corporation | Low thermal resistance elastic sleeves for medical device balloons |
| US7041046B2 (en) | 2001-05-07 | 2006-05-09 | Xoft, Inc. | Combination ionizing radiation and immunomodulator delivery devices and methods for inhibiting hyperplasia |
| US6712757B2 (en) | 2001-05-16 | 2004-03-30 | Stephen Becker | Endoscope sleeve and irrigation device |
| US8403954B2 (en) | 2001-05-22 | 2013-03-26 | Sanostec Corp. | Nasal congestion, obstruction relief, and drug delivery |
| US7532920B1 (en) | 2001-05-31 | 2009-05-12 | Advanced Cardiovascular Systems, Inc. | Guidewire with optical fiber |
| US7140480B2 (en) | 2001-06-07 | 2006-11-28 | Drussel Wilfley Design, Llc | Centrifugal clutch and cover mount assembly therefor |
| US6966906B2 (en) | 2001-06-08 | 2005-11-22 | Joe Denton Brown | Deflection mechanism for a surgical instrument, such as a laser delivery device and/or endoscope, and method of use |
| DE10131224C1 (de) * | 2001-06-28 | 2002-12-05 | St Microelectronics Gmbh | Elektrischer Filter mit Sperrverhalten für eine vorbestimmmte Sperrfrequenz |
| US6827701B2 (en) | 2001-07-17 | 2004-12-07 | Kerberos Proximal Solutions | Fluid exchange system for controlled and localized irrigation and aspiration |
| AUPR649601A0 (en) | 2001-07-20 | 2001-08-09 | Redfern Polymer Optics Pty Ltd | Casting preforms for optical fibres |
| US7438701B2 (en) | 2001-07-26 | 2008-10-21 | Durect Corporation | Local concentration management system |
| US6616659B1 (en) | 2001-07-27 | 2003-09-09 | Starion Instruments Corporation | Polypectomy device and method |
| US20030040697A1 (en) | 2001-08-17 | 2003-02-27 | Antares Pharma, Inc. | Administration of insulin by jet injection |
| JP4761671B2 (ja) | 2001-08-29 | 2011-08-31 | テルモ株式会社 | 形状記憶バルーン、その製造方法およびバルーンカテーテル |
| US20040127820A1 (en) | 2001-09-05 | 2004-07-01 | Clayman Ralph V. | Guidewire |
| US20070112358A1 (en) | 2001-09-06 | 2007-05-17 | Ryan Abbott | Systems and Methods for Treating Septal Defects |
| AUPR785001A0 (en) | 2001-09-21 | 2001-10-18 | Kleiner, Daniel E. | Tamponade apparatus and method of using same |
| US6918882B2 (en) | 2001-10-05 | 2005-07-19 | Scimed Life Systems, Inc. | Guidewire with stiffness blending connection |
| JP3772107B2 (ja) | 2001-10-12 | 2006-05-10 | オリンパス株式会社 | 内視鏡システム |
| US20030073900A1 (en) * | 2001-10-12 | 2003-04-17 | Pranitha Senarith | System and method for monitoring the movement of an interventional device within an anatomical site |
| FR2832516B1 (fr) | 2001-11-19 | 2004-01-23 | Tokendo Sarl | Endoscopes rotatifs a visee distale deviee |
| US7488313B2 (en) | 2001-11-29 | 2009-02-10 | Boston Scientific Scimed, Inc. | Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment |
| US6832715B2 (en) | 2001-12-03 | 2004-12-21 | Scimed Life Systems, Inc. | Guidewire distal tip soldering method |
| CA2468835A1 (fr) | 2001-12-03 | 2003-06-12 | Ekos Corporation | Catheter a ultrasons pour petits vaisseaux |
| US6612999B2 (en) | 2001-12-06 | 2003-09-02 | Cardiac Pacemakers, Inc. | Balloon actuated guide catheter |
| US6755812B2 (en) * | 2001-12-11 | 2004-06-29 | Cardiac Pacemakers, Inc. | Deflectable telescoping guide catheter |
| US20030144683A1 (en) | 2001-12-13 | 2003-07-31 | Avantec Vascular Corporation | Inflatable members having concentrated force regions |
| US6748255B2 (en) * | 2001-12-14 | 2004-06-08 | Biosense Webster, Inc. | Basket catheter with multiple location sensors |
| EP1319366A1 (fr) | 2001-12-14 | 2003-06-18 | BrainLAB AG | Navigation magnétique pour un cathéter |
| US20030114732A1 (en) | 2001-12-18 | 2003-06-19 | Advanced Cardiovascular Systems, Inc. | Sheath for guiding imaging instruments |
| US7736301B1 (en) | 2001-12-18 | 2010-06-15 | Advanced Cardiovascular Systems, Inc. | Rotatable ferrules and interfaces for use with an optical guidewire |
| US6939374B2 (en) | 2001-12-21 | 2005-09-06 | Scimed Life Systems, Inc. | Stents, stenting systems, and related methods for agent delivery |
| US6955657B1 (en) | 2001-12-31 | 2005-10-18 | Advanced Cardiovascular Systems, Inc. | Intra-ventricular substance delivery catheter system |
| US6979319B2 (en) | 2001-12-31 | 2005-12-27 | Cardiac Pacemakers, Inc. | Telescoping guide catheter with peel-away outer sheath |
| US6740030B2 (en) | 2002-01-04 | 2004-05-25 | Vision Sciences, Inc. | Endoscope assemblies having working channels with reduced bending and stretching resistance |
| US20040158229A1 (en) | 2002-01-24 | 2004-08-12 | Quinn David G. | Catheter assembly and method of catheter insertion |
| SE0200300D0 (sv) | 2002-02-01 | 2002-02-01 | Aerocrine Ab | Diagnostic device and method |
| DE50207343D1 (de) | 2002-02-07 | 2006-08-03 | Carag Ag | Auslenkvorrichtung für katheter |
| US6610059B1 (en) * | 2002-02-25 | 2003-08-26 | Hs West Investments Llc | Endoscopic instruments and methods for improved bubble aspiration at a surgical site |
| JP2003320031A (ja) | 2002-02-26 | 2003-11-11 | Buaayu:Kk | バルーンカテーテル |
| US7128718B2 (en) | 2002-03-22 | 2006-10-31 | Cordis Corporation | Guidewire with deflectable tip |
| US7074426B2 (en) | 2002-03-27 | 2006-07-11 | Frank Kochinke | Methods and drug delivery systems for the treatment of orofacial diseases |
| US6942635B2 (en) | 2002-04-04 | 2005-09-13 | Angiodynamics, Inc. | Blood treatment catheter and method |
| US6953431B2 (en) | 2002-04-11 | 2005-10-11 | University Of South Florida | Eccentric dilation balloons for use with endoscopes |
| WO2003086498A2 (fr) | 2002-04-17 | 2003-10-23 | Super Dimension Ltd. | Structures et techniques associees a un endoscope permettant de naviguer jusqu'a une cible dans une structure ramifiee |
| DE10217559B4 (de) | 2002-04-19 | 2004-02-19 | Universitätsklinikum Freiburg | Vorrichtung zur minimalinvasiven, intravasalen Aortenklappenextraktion |
| US20040020492A1 (en) * | 2002-05-02 | 2004-02-05 | Dubrul William R. | Upper airway device and method |
| US7610104B2 (en) | 2002-05-10 | 2009-10-27 | Cerebral Vascular Applications, Inc. | Methods and apparatus for lead placement on a surface of the heart |
| US20040043052A1 (en) | 2002-05-24 | 2004-03-04 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for coating medical implants |
| AU2003240831A1 (en) | 2002-05-30 | 2003-12-19 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for coronary sinus access |
| US7993353B2 (en) | 2002-06-04 | 2011-08-09 | Brainlab Ag | Medical tracking system with universal interface |
| US20030229332A1 (en) | 2002-06-11 | 2003-12-11 | Scimed Life Systems, Inc. | Adjustable double balloon catheter with a through lumen for stone management |
| IL150189A0 (en) | 2002-06-12 | 2002-12-01 | Acoustitech Ltd | Acoustic diagnosis of sinusitis |
| US7248914B2 (en) | 2002-06-28 | 2007-07-24 | Stereotaxis, Inc. | Method of navigating medical devices in the presence of radiopaque material |
| GB0215270D0 (en) | 2002-07-02 | 2002-08-14 | Optinose As | Nasal devices |
| JP2004049583A (ja) | 2002-07-22 | 2004-02-19 | Piolax Medical Device:Kk | 管状器官用治療具の挿入装置 |
| US7309334B2 (en) | 2002-07-23 | 2007-12-18 | Von Hoffmann Gerard | Intracranial aspiration catheter |
| EP1552722A4 (fr) | 2002-08-20 | 2006-06-21 | Univ California | Detecteurs de vibrations, detecteurs sonores, aides auditives, implants cochleaires et procedes connexes |
| US6849062B2 (en) | 2002-08-23 | 2005-02-01 | Medtronic Vascular, Inc. | Catheter having a low-friction guidewire lumen and method of manufacture |
| US7174774B2 (en) | 2002-08-30 | 2007-02-13 | Kimberly-Clark Worldwide, Inc. | Method and apparatus of detecting pooling of fluid in disposable or non-disposable absorbent articles |
| US6783522B2 (en) | 2002-09-09 | 2004-08-31 | Angel Medical Systems, Inc. | Implantable catheter having an improved check valve |
| US6619085B1 (en) | 2002-09-12 | 2003-09-16 | Hui-Hua Hsieh | Remote-controlled lock |
| MXPA05003044A (es) | 2002-09-18 | 2006-01-27 | Asap Breathe Assist Pty Ltd | Dilatador de la cavidad nasal. |
| ITVR20020094A1 (it) | 2002-09-25 | 2002-12-24 | Vittorio Marinello | Apparecchio per la lavorazione del nuovo sistema di cura delle sinusiti mascellari, di quelle frontali e delle nevriti e nevralgie del trige |
| US7488337B2 (en) | 2002-09-30 | 2009-02-10 | Saab Mark A | Apparatus and methods for bone, tissue and duct dilatation |
| US8317816B2 (en) * | 2002-09-30 | 2012-11-27 | Acclarent, Inc. | Balloon catheters and methods for treating paranasal sinuses |
| US6909263B2 (en) | 2002-10-23 | 2005-06-21 | Honeywell International Inc. | Gas turbine engine starter-generator exciter starting system and method including a capacitance circuit element |
| ES2236422T3 (es) | 2002-10-25 | 2005-07-16 | Brainlab Ag | Aparato y procedimiento para calibrar un elemento. |
| US20040220516A1 (en) | 2002-11-04 | 2004-11-04 | Stephen Solomon | Food extraction apparatus and method |
| US6899672B2 (en) | 2002-11-08 | 2005-05-31 | Scimed Life Systems, Inc. | Endoscopic imaging system including removable deflection device |
| US7881769B2 (en) * | 2002-11-18 | 2011-02-01 | Mediguide Ltd. | Method and system for mounting an MPS sensor on a catheter |
| WO2004045387A2 (fr) | 2002-11-18 | 2004-06-03 | Stereotaxis, Inc. | Catheter a ballonnet a navigation magnetique |
| US7697972B2 (en) * | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
| US7172562B2 (en) | 2002-11-22 | 2007-02-06 | Mckinley Laurence M | System, method and apparatus for locating, measuring and evaluating the enlargement of a foramen |
| AU2003279472A1 (en) * | 2002-12-04 | 2004-06-23 | Koninklijke Philips Electronics N.V. | Medical viewing system and method for detecting borders of an object of interest in noisy images |
| US7343920B2 (en) | 2002-12-20 | 2008-03-18 | Toby E Bruce | Connective tissue repair system |
| TW589170B (en) * | 2002-12-25 | 2004-06-01 | De-Yang Tian | Endoscopic device |
| EP1435757A1 (fr) | 2002-12-30 | 2004-07-07 | Andrzej Zarowski | Dispositif implantable dans une paroi osseuse de l'oreille interne |
| US20060047261A1 (en) * | 2004-06-28 | 2006-03-02 | Shailendra Joshi | Intra-arterial catheter for drug delivery |
| US8016752B2 (en) | 2003-01-17 | 2011-09-13 | Gore Enterprise Holdings, Inc. | Puncturable catheter |
| EP1438942A1 (fr) | 2003-01-17 | 2004-07-21 | Schering Oy | Dispositif d'administration de médicament otologique et rhinologique |
| US20040230156A1 (en) | 2003-02-13 | 2004-11-18 | Schreck Stefan Georg | Methods and devices for in-situ crosslinking of vascular tissue |
| JP4887138B2 (ja) | 2003-02-21 | 2012-02-29 | エレクトロ−キャット リミテッド ライアビリティ カンパニー | 内腔を有する器官の断面積および圧力勾配を測定するシステムおよび方法 |
| US8167821B2 (en) | 2003-02-26 | 2012-05-01 | Boston Scientific Scimed, Inc. | Multiple diameter guidewire |
| US7182735B2 (en) | 2003-02-26 | 2007-02-27 | Scimed Life Systems, Inc. | Elongated intracorporal medical device |
| US10376711B2 (en) | 2003-03-14 | 2019-08-13 | Light Sciences Oncology Inc. | Light generating guide wire for intravascular use |
| CA2518960C (fr) | 2003-03-14 | 2013-08-27 | Sinexus, Inc. | Administration dans un sinus d'agents therapeutiques a liberation prolongee |
| US7252677B2 (en) | 2003-03-14 | 2007-08-07 | Light Sciences Oncology, Inc. | Light generating device to intravascular use |
| US20040193073A1 (en) | 2003-03-31 | 2004-09-30 | Demello Richard M. | Composite guidewire with a linear elastic distal portion |
| US7303533B2 (en) | 2003-04-10 | 2007-12-04 | Intraluminal Therapeutics, Inc. | Shapeable intraluminal device and method therefor |
| US20040267347A1 (en) | 2003-05-01 | 2004-12-30 | Cervantes Marvin John | Protective elongated sleeve for stent systems |
| US7615005B2 (en) | 2003-05-16 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Medical apparatus for use with an endoscope |
| US20040236231A1 (en) | 2003-05-23 | 2004-11-25 | Embro Corporation | Light catheter for illuminating tissue structures |
| US7108706B2 (en) | 2003-05-28 | 2006-09-19 | Rose Biomedical Development Corporation | Inflatable nasal packing device with two non-elastic, flexible bags oversized relative to nasal cavities |
| US7056314B1 (en) | 2003-05-30 | 2006-06-06 | Pacesetter, Inc. | Steerable obturator |
| JP4323221B2 (ja) | 2003-05-30 | 2009-09-02 | テルモ株式会社 | カテーテル組立体 |
| US20050234431A1 (en) | 2004-02-10 | 2005-10-20 | Williams Michael S | Intravascular delivery system for therapeutic agents |
| US7632291B2 (en) | 2003-06-13 | 2009-12-15 | Trivascular2, Inc. | Inflatable implant |
| US7758497B2 (en) | 2003-06-20 | 2010-07-20 | Contura A/S | Endoscopic attachment device |
| US7097612B2 (en) | 2003-07-29 | 2006-08-29 | Endoscopic Technologies, Inc. | Tissue positioner |
| US7359755B2 (en) | 2003-08-08 | 2008-04-15 | Advanced Neuromodulation Systems, Inc. | Method and apparatus for implanting an electrical stimulation lead using a flexible introducer |
| US6851290B1 (en) | 2003-08-11 | 2005-02-08 | Absolute Access & Security Products, Inc. | Door lock assembly and locking system for hinged double-acting impact-traffic doors |
| US20050038319A1 (en) | 2003-08-13 | 2005-02-17 | Benad Goldwasser | Gastrointestinal tool over guidewire |
| US8740844B2 (en) | 2003-08-20 | 2014-06-03 | Boston Scientific Scimed, Inc. | Medical device with drug delivery member |
| ATE416678T1 (de) * | 2003-08-26 | 2008-12-15 | Zimmer Spine Inc | Zugangssysteme für die minimal invasive chirurgie |
| US7313430B2 (en) | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
| US20050055077A1 (en) | 2003-09-05 | 2005-03-10 | Doron Marco | Very low profile medical device system having an adjustable balloon |
| US20050113687A1 (en) | 2003-09-15 | 2005-05-26 | Atrium Medical Corporation | Application of a therapeutic substance to a tissue location using a porous medical device |
| US20050059931A1 (en) | 2003-09-16 | 2005-03-17 | Venomatrix | Methods and apparatus for localized and semi-localized drug delivery |
| US20050059930A1 (en) * | 2003-09-16 | 2005-03-17 | Michi Garrison | Method and apparatus for localized drug delivery |
| US20050113850A1 (en) | 2003-10-08 | 2005-05-26 | Tagge Bryan C. | Apparatus, system, and method for middle turbinate medializer |
| US7004176B2 (en) * | 2003-10-17 | 2006-02-28 | Edwards Lifesciences Ag | Heart valve leaflet locator |
| US8014849B2 (en) | 2003-11-21 | 2011-09-06 | Stryker Corporation | Rotational markers |
| US7237313B2 (en) | 2003-12-05 | 2007-07-03 | Boston Scientific Scimed, Inc. | Elongated medical device for intracorporal use |
| JP3864344B2 (ja) | 2003-12-05 | 2006-12-27 | フジノン株式会社 | 内視鏡の挿入補助具 |
| USD501677S1 (en) | 2003-12-11 | 2005-02-08 | Bruce B. Becker | Dilatation balloon catheter |
| US20050131316A1 (en) | 2003-12-15 | 2005-06-16 | Cook Incorporated | Guidewire with flexible tip |
| WO2005079492A2 (fr) | 2004-02-17 | 2005-09-01 | Traxtal Technologies Inc. | Procede et appareil d'enregistrement, de verification et de referencement d'organes internes |
| US7988705B2 (en) | 2004-03-06 | 2011-08-02 | Lumen Biomedical, Inc. | Steerable device having a corewire within a tube and combination with a functional medical component |
| US20100016267A1 (en) | 2004-03-15 | 2010-01-21 | Felix Theeuwes | Pharmaceutical compositions for administraton to a sinus |
| US20060211752A1 (en) | 2004-03-16 | 2006-09-21 | Kohn Leonard D | Use of phenylmethimazoles, methimazole derivatives, and tautomeric cyclic thiones for the treatment of autoimmune/inflammatory diseases associated with toll-like receptor overexpression |
| US7282057B2 (en) * | 2004-03-30 | 2007-10-16 | Wilson-Cook Medical, Inc. | Pediatric atresia magnets |
| JP2005296412A (ja) | 2004-04-13 | 2005-10-27 | Olympus Corp | 内視鏡治療装置 |
| US7566300B2 (en) | 2004-04-15 | 2009-07-28 | Wilson-Cook Medical, Inc. | Endoscopic surgical access devices and methods of articulating an external accessory channel |
| US7452351B2 (en) | 2004-04-16 | 2008-11-18 | Kyphon Sarl | Spinal diagnostic methods and apparatus |
| US20050234507A1 (en) | 2004-04-16 | 2005-10-20 | Jeff Geske | Medical tool for access to internal tissue |
| US9351750B2 (en) * | 2004-04-21 | 2016-05-31 | Acclarent, Inc. | Devices and methods for treating maxillary sinus disease |
| US7654997B2 (en) * | 2004-04-21 | 2010-02-02 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat |
| US20070208252A1 (en) | 2004-04-21 | 2007-09-06 | Acclarent, Inc. | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US8932276B1 (en) | 2004-04-21 | 2015-01-13 | Acclarent, Inc. | Shapeable guide catheters and related methods |
| US20060063973A1 (en) | 2004-04-21 | 2006-03-23 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear, nose and throat |
| US8747389B2 (en) | 2004-04-21 | 2014-06-10 | Acclarent, Inc. | Systems for treating disorders of the ear, nose and throat |
| US7410480B2 (en) | 2004-04-21 | 2008-08-12 | Acclarent, Inc. | Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders |
| US9101384B2 (en) | 2004-04-21 | 2015-08-11 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat |
| US7361168B2 (en) | 2004-04-21 | 2008-04-22 | Acclarent, Inc. | Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders |
| US8894614B2 (en) | 2004-04-21 | 2014-11-25 | Acclarent, Inc. | Devices, systems and methods useable for treating frontal sinusitis |
| US20150250992A1 (en) | 2004-04-21 | 2015-09-10 | Acclarent, Inc. | Mechanical dilation of the ostia of paranasal sinuses and other passageways of the ear, nose and throat |
| US8146400B2 (en) * | 2004-04-21 | 2012-04-03 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US20060284428A1 (en) | 2005-06-13 | 2006-12-21 | Darryl Beadle | High reliability gate lock for exterior use |
| US8414473B2 (en) | 2004-04-21 | 2013-04-09 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US8702626B1 (en) | 2004-04-21 | 2014-04-22 | Acclarent, Inc. | Guidewires for performing image guided procedures |
| US9399121B2 (en) | 2004-04-21 | 2016-07-26 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US7559925B2 (en) * | 2006-09-15 | 2009-07-14 | Acclarent Inc. | Methods and devices for facilitating visualization in a surgical environment |
| US7803150B2 (en) | 2004-04-21 | 2010-09-28 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US20070167682A1 (en) | 2004-04-21 | 2007-07-19 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US8764729B2 (en) | 2004-04-21 | 2014-07-01 | Acclarent, Inc. | Frontal sinus spacer |
| WO2005110374A1 (fr) | 2004-04-30 | 2005-11-24 | Allergan, Inc. | Systemes de distribution de medicaments intraoculaires contenant un agent therapeutique, une cyclodextrine et un composant polymere |
| JP2005323702A (ja) | 2004-05-13 | 2005-11-24 | Asahi Intecc Co Ltd | 医療用処置具 |
| JP4767252B2 (ja) | 2004-06-14 | 2011-09-07 | ヌームアールエックス・インコーポレーテッド | 肺のアクセス装置 |
| US9289576B2 (en) | 2004-06-17 | 2016-03-22 | W. L. Gore & Associates, Inc. | Catheter assembly |
| US7207981B2 (en) * | 2004-06-28 | 2007-04-24 | Medtronic Vascular, Inc. | Multi-exchange catheter guide member with improved seal |
| WO2006006169A2 (fr) | 2004-07-14 | 2006-01-19 | By-Pass, Inc. | Systeme de distribution de matiere |
| US8075476B2 (en) | 2004-07-27 | 2011-12-13 | Intuitive Surgical Operations, Inc. | Cannula system and method of use |
| US8277386B2 (en) | 2004-09-27 | 2012-10-02 | Volcano Corporation | Combination sensor guidewire and methods of use |
| FR2859377B1 (fr) | 2004-10-22 | 2006-05-12 | Bertrand Lombard | Dispositif de localisation tridimensionnelle |
| US7347868B2 (en) * | 2004-10-26 | 2008-03-25 | Baronova, Inc. | Medical device delivery catheter |
| US7235099B1 (en) | 2004-12-14 | 2007-06-26 | Micromedics, Inc. | Sphenoid sinus stent |
| WO2006078805A2 (fr) | 2005-01-18 | 2006-07-27 | The Regents Of The University Of California | Systeme destine a la mise en place d'un tube endoscopique |
| CA2587986A1 (fr) | 2005-01-18 | 2006-07-27 | Traxtal Inc. | Dispositif a fil k guide electromagnetiquement |
| US8109981B2 (en) | 2005-01-25 | 2012-02-07 | Valam Corporation | Optical therapies and devices |
| US20060173382A1 (en) | 2005-01-31 | 2006-08-03 | John Schreiner | Guidewire with superelastic core |
| US20080188803A1 (en) * | 2005-02-03 | 2008-08-07 | Jang G David | Triple-profile balloon catheter |
| US7195612B2 (en) | 2005-03-31 | 2007-03-27 | Gordis Corporation | Esophageal balloon catheter with visual marker |
| US20060247750A1 (en) | 2005-04-28 | 2006-11-02 | Seifert Kevin R | Guide catheters for accessing cardiac sites |
| US7896891B2 (en) * | 2005-05-20 | 2011-03-01 | Neotract, Inc. | Apparatus and method for manipulating or retracting tissue and anatomical structure |
| US7955339B2 (en) * | 2005-05-24 | 2011-06-07 | Kyphon Sarl | Low-compliance expandable medical device |
| US8951225B2 (en) | 2005-06-10 | 2015-02-10 | Acclarent, Inc. | Catheters with non-removable guide members useable for treatment of sinusitis |
| US8197433B2 (en) * | 2005-06-20 | 2012-06-12 | Otomedics Advanced Technologies, Ltd. | Ear tubes |
| CA2623516A1 (fr) | 2005-09-20 | 2007-04-12 | Medsys S.A. | Dispositif et procede permettant de commander un appareil distant |
| GB0519259D0 (en) | 2005-09-21 | 2005-10-26 | Imp College Innovations Ltd | A device |
| US8114113B2 (en) | 2005-09-23 | 2012-02-14 | Acclarent, Inc. | Multi-conduit balloon catheter |
| USD534216S1 (en) | 2005-09-23 | 2006-12-26 | Acclarent, Inc. | Anatomical model and demonstration/training device |
| US7648367B1 (en) | 2005-09-23 | 2010-01-19 | Acclarent, Inc. | Anatomical models and methods for training and demonstration of medical procedures |
| US7833282B2 (en) | 2006-02-27 | 2010-11-16 | Mandpe Aditi H | Eustachian tube device and method |
| US8585753B2 (en) | 2006-03-04 | 2013-11-19 | John James Scanlon | Fibrillated biodegradable prosthesis |
| WO2007134215A2 (fr) | 2006-05-12 | 2007-11-22 | Entrigue Surgical, Inc. | Dispositif de médialisation du cornet nasal moyen |
| US7927271B2 (en) | 2006-05-17 | 2011-04-19 | C.R. Bard, Inc. | Endoscope tool coupling |
| US20070269385A1 (en) | 2006-05-18 | 2007-11-22 | Mercator Medsystems, Inc | Devices, methods, and systems for delivering therapeutic agents for the treatment of sinusitis, rhinitis, and other disorders |
| US8475360B2 (en) | 2006-06-09 | 2013-07-02 | Cook Medical Technologies Llc | Endoscopic apparatus having an expandable balloon delivery system |
| US9820688B2 (en) | 2006-09-15 | 2017-11-21 | Acclarent, Inc. | Sinus illumination lightwire device |
| WO2008036368A2 (fr) | 2006-09-20 | 2008-03-27 | University Of Virginia Patent Foundation | Dispositif d'introduction de tube, de stent et de collier |
| US7535991B2 (en) * | 2006-10-16 | 2009-05-19 | Oraya Therapeutics, Inc. | Portable orthovoltage radiotherapy |
| WO2008051918A2 (fr) | 2006-10-23 | 2008-05-02 | Allux Medical, Inc. | Procédés, dispositifs et kits pour le traitement par photothérapie et par thérapie photodynamique de cavités corporelles |
| US8104483B2 (en) | 2006-12-26 | 2012-01-31 | The Spectranetics Corporation | Multi-port light delivery catheter and methods for the use thereof |
| JP2008161491A (ja) | 2006-12-28 | 2008-07-17 | Asahi Intecc Co Ltd | 医療用ガイドワイヤ |
| US20080172033A1 (en) * | 2007-01-16 | 2008-07-17 | Entellus Medical, Inc. | Apparatus and method for treatment of sinusitis |
| CN201005758Y (zh) | 2007-03-16 | 2008-01-16 | 北京米道斯医疗器械有限公司 | 内窥镜血管采集系统 |
| WO2008124787A2 (fr) | 2007-04-09 | 2008-10-16 | Acclarent, Inc. | Système d'ethmoïdotomie et dispositifs espaceurs implantables capables de délivrer une substance thérapeutique pour le traitement de la sinusite paranasale |
| US8425488B2 (en) | 2007-04-19 | 2013-04-23 | Acclarent, Inc. | System and method for the simultaneous bilateral treatment of target tissues within the ears using a guide block structure |
| FR2916144A1 (fr) | 2007-05-14 | 2008-11-21 | Olivier Pascal Bruno Rollet | Sonde endotracheale du type a element coulissant |
| US8147545B2 (en) * | 2007-06-26 | 2012-04-03 | Galit Avior | Eustachian tube device |
| WO2009037689A2 (fr) * | 2007-09-20 | 2009-03-26 | Estimme Ltd | Stimulation électrique dans l'oreille moyenne pour le traitement de troubles auditifs |
| US20090088728A1 (en) | 2007-09-28 | 2009-04-02 | Dollar Michael L | Malleable sleeve for balloon catheter and endoscopic surgical method |
| USD590502S1 (en) | 2007-11-13 | 2009-04-14 | Karl Storz Gmbh & Co. Kg | Grip for laparoscope |
| US20090163890A1 (en) | 2007-12-20 | 2009-06-25 | Acclarent, Inc. | Method and System for Accessing, Diagnosing and Treating Target Tissue Regions Within the Middle Ear and the Eustachian Tube |
| US20100198191A1 (en) | 2007-12-20 | 2010-08-05 | Acclarent, Inc. | Method and system for treating target tissue within the eustachian tube |
| JP5117263B2 (ja) | 2008-04-11 | 2013-01-16 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム |
| USD586465S1 (en) | 2008-05-09 | 2009-02-10 | Lifescan Scotland Limited | Handheld lancing device |
| USD586916S1 (en) | 2008-05-09 | 2009-02-17 | Lifescan Scotland, Ltd. | Handheld lancing device |
| US8642631B2 (en) * | 2008-05-27 | 2014-02-04 | University Of Melbourne | Methods of treating mammals with eustachian tube dysfunctions |
| US20100087811A1 (en) | 2008-10-06 | 2010-04-08 | Coaptus Medical Corporation | Systems and Methods for Controlling Patient Catheters |
| US9101739B2 (en) | 2009-02-17 | 2015-08-11 | Entellus Medical, Inc. | Balloon catheter inflation apparatus and methods |
| US8141473B2 (en) * | 2009-03-18 | 2012-03-27 | Alliant Techsystems Inc. | Apparatus for synthetic weapon stabilization and firing |
| USD632791S1 (en) | 2009-09-11 | 2011-02-15 | Stryker Trauma Ag | Connector |
-
2006
- 2006-05-17 US US11/436,892 patent/US20070208252A1/en not_active Abandoned
-
2007
- 2007-05-10 WO PCT/US2007/011474 patent/WO2007136589A2/fr not_active Ceased
-
2010
- 2010-11-18 US US12/949,708 patent/US20110060214A1/en not_active Abandoned
-
2014
- 2014-08-21 US US14/464,948 patent/US20140364725A1/en not_active Abandoned
-
2016
- 2016-03-29 US US15/083,826 patent/US11065061B2/en active Active
Patent Citations (110)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US446173A (en) * | 1891-02-10 | Hasp and staple | ||
| US513667A (en) * | 1894-01-30 | Sliding staple for hasps | ||
| US2493326A (en) * | 1949-03-01 | 1950-01-03 | John H Trinder | Tampon for control of intractable nasal hemorrhages |
| US3552384A (en) * | 1967-07-03 | 1971-01-05 | American Hospital Supply Corp | Controllable tip guide body and catheter |
| US4069307A (en) * | 1970-10-01 | 1978-01-17 | Alza Corporation | Drug-delivery device comprising certain polymeric materials for controlled release of drug |
| US3792391A (en) * | 1972-12-18 | 1974-02-12 | L Ewing | Electrically operated two position electromechanical mechanism |
| US3859993A (en) * | 1973-08-27 | 1975-01-14 | Daniel G Bitner | Operating table accessory |
| US4138151A (en) * | 1976-07-30 | 1979-02-06 | Olympus Optical Company Limited | Detent device for locking the lid of a cassette receiving compartment of a tape recorder |
| US4184497A (en) * | 1977-08-26 | 1980-01-22 | University Of Utah | Peritoneal dialysis catheter |
| US4312353A (en) * | 1980-05-09 | 1982-01-26 | Mayfield Education And Research Fund | Method of creating and enlarging an opening in the brain |
| US4571239A (en) * | 1982-03-01 | 1986-02-18 | Heyman Arnold M | Catheter-stylet assembly for slipover urethral instruments |
| US4499899A (en) * | 1983-01-21 | 1985-02-19 | Brimfield Precision, Inc. | Fiber-optic illuminated microsurgical scissors |
| US4639244A (en) * | 1983-05-03 | 1987-01-27 | Nabil I. Rizk | Implantable electrophoretic pump for ionic drugs and associated methods |
| US4564364A (en) * | 1983-05-26 | 1986-01-14 | Alza Corporation | Active agent dispenser |
| US4571240A (en) * | 1983-08-12 | 1986-02-18 | Advanced Cardiovascular Systems, Inc. | Catheter having encapsulated tip marker |
| US4637389A (en) * | 1985-04-08 | 1987-01-20 | Heyden Eugene L | Tubular device for intubation |
| US4645495A (en) * | 1985-06-26 | 1987-02-24 | Vaillancourt Vincent L | Vascular access implant needle patch |
| US4897651A (en) * | 1985-10-15 | 1990-01-30 | Ing. C. Olivetti & C., S.P.A. | Key with selective symbol display and keyboard using such key |
| US4682607A (en) * | 1985-12-02 | 1987-07-28 | Vlv Associates | Wire guide |
| US4795439A (en) * | 1986-06-06 | 1989-01-03 | Edward Weck Incorporated | Spiral multi-lumen catheter |
| US4803076A (en) * | 1986-09-04 | 1989-02-07 | Pfizer Inc. | Controlled release device for an active substance |
| US4726772A (en) * | 1986-12-01 | 1988-02-23 | Kurt Amplatz | Medical simulator |
| US4796629A (en) * | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
| US5090595A (en) * | 1988-06-29 | 1992-02-25 | Jaico C.V., Cooperatieve Venootschap | Pressure capsule for spray can, and spray can which utilizes such a capsule |
| US4898577A (en) * | 1988-09-28 | 1990-02-06 | Advanced Cardiovascular Systems, Inc. | Guiding cathether with controllable distal tip |
| US4984581A (en) * | 1988-10-12 | 1991-01-15 | Flexmedics Corporation | Flexible guide having two-way shape memory alloy |
| US5090910A (en) * | 1988-10-14 | 1992-02-25 | Narlo Jeanie R | Multiple three dimensional facial display system |
| US5189110A (en) * | 1988-12-23 | 1993-02-23 | Asahi Kasei Kogyo Kabushiki Kaisha | Shape memory polymer resin, composition and the shape memorizing molded product thereof |
| US5087246A (en) * | 1988-12-29 | 1992-02-11 | C. R. Bard, Inc. | Dilation catheter with fluted balloon |
| US5087244A (en) * | 1989-01-31 | 1992-02-11 | C. R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
| US4994033A (en) * | 1989-05-25 | 1991-02-19 | Schneider (Usa) Inc. | Intravascular drug delivery dilatation catheter |
| US5180368A (en) * | 1989-09-08 | 1993-01-19 | Advanced Cardiovascular Systems, Inc. | Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels |
| US6179788B1 (en) * | 1989-12-19 | 2001-01-30 | Scimed Life Systems, Inc. | Guide wire with multiple radiopaque sections and method of use |
| US5286254A (en) * | 1990-06-15 | 1994-02-15 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
| US5183470A (en) * | 1991-03-04 | 1993-02-02 | International Medical, Inc. | Laparoscopic cholangiogram catheter and method of using same |
| US5386817A (en) * | 1991-06-10 | 1995-02-07 | Endomedical Technologies, Inc. | Endoscope sheath and valve system |
| US5325847A (en) * | 1991-10-25 | 1994-07-05 | Asahi Kogaku Kogyo Kabushiki Kaisha | Distal end part of endoscope |
| USD355031S (en) * | 1992-04-20 | 1995-01-31 | Terumo Kabushiki Kaisha | Catheter |
| US5275593A (en) * | 1992-04-30 | 1994-01-04 | Surgical Technologies, Inc. | Ophthalmic surgery probe assembly |
| US5707376A (en) * | 1992-08-06 | 1998-01-13 | William Cook Europe A/S | Stent introducer and method of use |
| US5718702A (en) * | 1992-08-12 | 1998-02-17 | Somnus Medical Technologies, Inc. | Uvula, tonsil, adenoid and sinus tissue treatment device and method |
| US5391179A (en) * | 1992-09-04 | 1995-02-21 | Mezzoli; Giorgio | Nasal and/or rhinopharyngeal tampon |
| US5391147A (en) * | 1992-12-01 | 1995-02-21 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location and/or radius and method |
| US6340360B1 (en) * | 1993-07-02 | 2002-01-22 | Med Usa | System for cell growth |
| US6673025B1 (en) * | 1993-12-01 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Polymer coated guidewire |
| US5591194A (en) * | 1994-02-18 | 1997-01-07 | C. R. Bard, Inc. | Telescoping balloon catheter and method of use |
| US7169140B1 (en) * | 1994-02-22 | 2007-01-30 | Boston Scientific Scimed, Inc. | Methods of using an intravascular balloon catheter in combination with an angioscope |
| US5599304A (en) * | 1994-05-10 | 1997-02-04 | Mount Sinai School Of Medicine Of The City University Of New York | Sinonasal suction apparatus |
| US5857998A (en) * | 1994-06-30 | 1999-01-12 | Boston Scientific Corporation | Stent and therapeutic delivery system |
| US5486181A (en) * | 1994-08-04 | 1996-01-23 | Implex Corporation | Acetabular cup, method and tool and installing the same |
| US6503185B1 (en) * | 1994-10-27 | 2003-01-07 | Novoste Corporation | Method and apparatus for treating a desired area in the vascular system of a patient |
| US5599284A (en) * | 1995-02-08 | 1997-02-04 | Shea; John P. | Pre-operative nasal splint for endoscopic sinus surgery and method |
| US6010511A (en) * | 1995-05-04 | 2000-01-04 | Murphy; Richard | Lesion diameter measurement catheter and method |
| US5708175A (en) * | 1995-05-26 | 1998-01-13 | Ishihara Sangyo Kaisha Ltd. | Process for producing 4-trifluoromethylnicotinic acid |
| US5707389A (en) * | 1995-06-07 | 1998-01-13 | Baxter International Inc. | Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway |
| US20030220551A1 (en) * | 1995-07-06 | 2003-11-27 | Kimball Victor E. | Device for assessing perfusion failure in a patient by measurement of blood flow |
| US6171303B1 (en) * | 1996-01-08 | 2001-01-09 | Biosense, Inc. | Methods and apparatus for myocardial revascularization |
| US5711315A (en) * | 1996-02-15 | 1998-01-27 | Jerusalmy; Israel | Sinus lift method |
| US6171298B1 (en) * | 1996-05-03 | 2001-01-09 | Situs Corporation | Intravesical infuser |
| US6503087B1 (en) * | 1996-05-08 | 2003-01-07 | Gaumard Scientific, Inc. | Interactive education system for teaching patient care |
| US20040015150A1 (en) * | 1996-05-20 | 2004-01-22 | Gholam-Reza Zadno-Azizi | Method and apparatus for emboli containment |
| US6379319B1 (en) * | 1996-10-11 | 2002-04-30 | Transvascular, Inc. | Systems and methods for directing and snaring guidewires |
| US20020002349A1 (en) * | 1996-10-11 | 2002-01-03 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
| US6016439A (en) * | 1996-10-15 | 2000-01-18 | Biosense, Inc. | Method and apparatus for synthetic viewpoint imaging |
| US5862693A (en) * | 1997-05-02 | 1999-01-26 | Fort Lock Corporation | Electronically controlled security lock |
| US6016429A (en) * | 1997-05-28 | 2000-01-18 | Northern Telecom Limited | Method and apparatus for minimizing cellular network costs when upgrading the electronics in an existing cellular system |
| US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
| US7875050B2 (en) * | 1997-09-30 | 2011-01-25 | Target Therapeutics, Inc. | Mechanical clot treatment device |
| US6304768B1 (en) * | 1997-11-12 | 2001-10-16 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
| US6179811B1 (en) * | 1997-11-25 | 2001-01-30 | Medtronic, Inc. | Imbedded marker and flexible guide wire shaft |
| US6176829B1 (en) * | 1998-02-26 | 2001-01-23 | Echocath, Inc. | Multi-beam diffraction grating imager apparatus and method |
| US6013019A (en) * | 1998-04-06 | 2000-01-11 | Isostent, Inc. | Temporary radioisotope stent |
| US20040018980A1 (en) * | 1998-04-24 | 2004-01-29 | Genentech, Inc. | Novel FIZZ proteins |
| US6174280B1 (en) * | 1998-11-19 | 2001-01-16 | Vision Sciences, Inc. | Sheath for protecting and altering the bending characteristics of a flexible endoscope |
| US20020010426A1 (en) * | 1999-04-30 | 2002-01-24 | Applied Medical Resources Corporation | Guidewire |
| US20020006961A1 (en) * | 1999-05-14 | 2002-01-17 | Katz Stanley E. | Method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response |
| US6381485B1 (en) * | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies, Inc. | Registration of human anatomy integrated for electromagnetic localization |
| US20030018291A1 (en) * | 1999-12-08 | 2003-01-23 | Hill Frank C. | Ear tube and method of insertion |
| US7481800B2 (en) * | 2000-02-04 | 2009-01-27 | Conmed Endoscopic Technologies | Triple lumen stone balloon catheter and method |
| US6511418B2 (en) * | 2000-03-30 | 2003-01-28 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for calibrating and endoscope |
| US6984203B2 (en) * | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
| US20030017111A1 (en) * | 2000-07-19 | 2003-01-23 | Carlos Rabito | Fluorescent agents for real-time measurement of organ function |
| US6503263B2 (en) * | 2000-09-24 | 2003-01-07 | Medtronic, Inc. | Surgical micro-shaving instrument with elevator tip |
| US20020072729A1 (en) * | 2000-12-13 | 2002-06-13 | Hoste John H. | Catheter with enhanced reinforcement |
| US6672773B1 (en) * | 2000-12-29 | 2004-01-06 | Amkor Technology, Inc. | Optical fiber having tapered end and optical connector with reciprocal opening |
| US6991597B2 (en) * | 2001-03-09 | 2006-01-31 | Boston Scientific Scimed, Inc. | System for implanting an implant and method thereof |
| US20030014036A1 (en) * | 2001-06-12 | 2003-01-16 | Varner Signe Erickson | Reservoir device for intraocular drug delivery |
| US20040162516A1 (en) * | 2001-06-20 | 2004-08-19 | Evgenia Mandrusov | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
| US7160255B2 (en) * | 2001-07-12 | 2007-01-09 | Vahid Saadat | Method and device for sensing and mapping temperature profile of a hollow body organ |
| US20030013985A1 (en) * | 2001-07-12 | 2003-01-16 | Vahid Saadat | Method for sensing temperature profile of a hollow body organ |
| US20030130598A1 (en) * | 2002-01-07 | 2003-07-10 | Cardiac Pacemaker, Inc. | Steerable guide catheter with pre-shaped rotatable shaft |
| US20030163156A1 (en) * | 2002-02-28 | 2003-08-28 | Stephen Hebert | Guidewire loaded stent for delivery through a catheter |
| US7318831B2 (en) * | 2002-07-13 | 2008-01-15 | Stryker Corporation | System and method for performing irrigated nose and throat surgery |
| US7169163B2 (en) * | 2002-09-30 | 2007-01-30 | Bruce Becker | Transnasal method and catheter for lacrimal system |
| US7316168B2 (en) * | 2002-11-23 | 2008-01-08 | Fag Kugelfischer Ag | Force-sensing bearing |
| US20110015482A1 (en) * | 2003-02-19 | 2011-01-20 | Boston Scientific Scimed, Inc. | Guidewire Locking Device and Method |
| US7641668B2 (en) * | 2003-05-16 | 2010-01-05 | Scimed Life Systems, Inc. | Fluid delivery system and related methods of use |
| US7322934B2 (en) * | 2003-06-24 | 2008-01-29 | Olympus Corporation | Endoscope |
| US20070020196A1 (en) * | 2003-12-31 | 2007-01-25 | Pipkin James D | Inhalant formulation containing sulfoalkyl ether cyclodextrin and corticosteroid prepared from a unit dose suspension |
| US20080015540A1 (en) * | 2004-04-21 | 2008-01-17 | Acclarent, Inc. | Implantable devices and methods for treating sinusitis and other disorders |
| US20110004057A1 (en) * | 2004-04-21 | 2011-01-06 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US20060004323A1 (en) * | 2004-04-21 | 2006-01-05 | Exploramed Nc1, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US7645272B2 (en) * | 2004-04-21 | 2010-01-12 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US20060004286A1 (en) * | 2004-04-21 | 2006-01-05 | Acclarent, Inc. | Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses |
| US20090028923A1 (en) * | 2005-01-18 | 2009-01-29 | Acclarent, Inc. | Implantable Devices and Methods for Treating Sinusitis and Other Disorders |
| US20070005094A1 (en) * | 2005-04-04 | 2007-01-04 | Eaton Donald J | Device and methods for treating paranasal sinus conditions |
| US20080015544A1 (en) * | 2006-04-21 | 2008-01-17 | Entellus Medical, Inc. | Method for accessing a sinus cavity and related anatomical features |
| US20090017090A1 (en) * | 2006-07-10 | 2009-01-15 | Arensdorf Patrick A | Devices and methods for delivering active agents to the osteomeatal complex |
| US20090030274A1 (en) * | 2006-09-15 | 2009-01-29 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| USD630321S1 (en) * | 2009-05-08 | 2011-01-04 | Angio Dynamics, Inc. | Probe handle |
Non-Patent Citations (1)
| Title |
|---|
| Christopher Brown; "Safety and feasibility of balloon catheter dilation of paranasal sinus ostia: a preliminary investigation", Annals of Otology, Rhinology and Laryngology, 2006, 115 (5): 2930299. * |
Cited By (629)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050076914A1 (en) * | 2000-12-06 | 2005-04-14 | Intumed Ltd. | Extendable tube |
| US8740929B2 (en) | 2001-02-06 | 2014-06-03 | Acclarent, Inc. | Spacing device for releasing active substances in the paranasal sinus |
| US8614768B2 (en) | 2002-03-18 | 2013-12-24 | Raytheon Company | Miniaturized imaging device including GRIN lens optically coupled to SSID |
| US10500413B2 (en) | 2002-06-19 | 2019-12-10 | Palomar Medical Technologies, Llc | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
| US8915948B2 (en) | 2002-06-19 | 2014-12-23 | Palomar Medical Technologies, Llc | Method and apparatus for photothermal treatment of tissue at depth |
| US10556123B2 (en) | 2002-06-19 | 2020-02-11 | Palomar Medical Technologies, Llc | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
| US8764786B2 (en) | 2002-09-30 | 2014-07-01 | Acclarent, Inc. | Balloon catheters and methods for treating paranasal sinuses |
| US8317816B2 (en) | 2002-09-30 | 2012-11-27 | Acclarent, Inc. | Balloon catheters and methods for treating paranasal sinuses |
| US9457175B2 (en) | 2002-09-30 | 2016-10-04 | Acclarent, Inc. | Balloon catheters and methods for treating paranasal sinuses |
| US8100933B2 (en) | 2002-09-30 | 2012-01-24 | Acclarent, Inc. | Method for treating obstructed paranasal frontal sinuses |
| US7951134B2 (en) | 2003-03-14 | 2011-05-31 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US20090192490A1 (en) * | 2003-03-14 | 2009-07-30 | Eaton Donald J | Sinus delivery of sustained release therapeutics |
| US7951132B2 (en) | 2003-03-14 | 2011-05-31 | Intersect, ENT, Inc. | Sinus delivery of sustained release therapeutics |
| US7951130B2 (en) | 2003-03-14 | 2011-05-31 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US7662142B2 (en) | 2003-03-14 | 2010-02-16 | Sinexus, Inc. | Sinus delivery of sustained release therapeutics |
| US7951135B2 (en) | 2003-03-14 | 2011-05-31 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US11291812B2 (en) | 2003-03-14 | 2022-04-05 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US7544192B2 (en) | 2003-03-14 | 2009-06-09 | Sinexus, Inc. | Sinus delivery of sustained release therapeutics |
| US7951133B2 (en) | 2003-03-14 | 2011-05-31 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US7951131B2 (en) | 2003-03-14 | 2011-05-31 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US20090192491A1 (en) * | 2003-03-14 | 2009-07-30 | Eaton Donald J | Sinus delivery of sustained release therapeutics |
| US20090192492A1 (en) * | 2003-03-14 | 2009-07-30 | Eaton Donald J | Sinus delivery of sustained release therapeutics |
| US20090192489A1 (en) * | 2003-03-14 | 2009-07-30 | Eaton Donald J | Sinus delivery of sustained release therapeutics |
| US20090192488A1 (en) * | 2003-03-14 | 2009-07-30 | Eaton Donald J | Sinus delivery of sustained release therapeutics |
| US7662141B2 (en) | 2003-03-14 | 2010-02-16 | Sinexus, Inc. | Sinus delivery of sustained release therapeutics |
| US8109918B2 (en) | 2003-03-14 | 2012-02-07 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US7713255B2 (en) | 2003-03-14 | 2010-05-11 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US7691094B2 (en) | 2003-03-14 | 2010-04-06 | Intersect Ent, Inc. | Sinus delivery of sustained release therapeutics |
| US7686798B2 (en) | 2003-03-14 | 2010-03-30 | Sinexus, Inc. | Sinus delivery of sustained release therapeutics |
| US11883121B2 (en) | 2004-03-05 | 2024-01-30 | Auris Health, Inc. | Robotic catheter system |
| US10779752B2 (en) | 2004-04-21 | 2020-09-22 | Acclarent, Inc. | Guidewires for performing image guided procedures |
| US10188413B1 (en) | 2004-04-21 | 2019-01-29 | Acclarent, Inc. | Deflectable guide catheters and related methods |
| US9554691B2 (en) | 2004-04-21 | 2017-01-31 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US10702295B2 (en) | 2004-04-21 | 2020-07-07 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US10631756B2 (en) | 2004-04-21 | 2020-04-28 | Acclarent, Inc. | Guidewires for performing image guided procedures |
| US9610428B2 (en) | 2004-04-21 | 2017-04-04 | Acclarent, Inc. | Devices, systems and methods useable for treating frontal sinusitis |
| US9468362B2 (en) | 2004-04-21 | 2016-10-18 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US9649477B2 (en) | 2004-04-21 | 2017-05-16 | Acclarent, Inc. | Frontal sinus spacer |
| US11065061B2 (en) | 2004-04-21 | 2021-07-20 | Acclarent, Inc. | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
| US9399121B2 (en) | 2004-04-21 | 2016-07-26 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US9370649B2 (en) | 2004-04-21 | 2016-06-21 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US9351750B2 (en) | 2004-04-21 | 2016-05-31 | Acclarent, Inc. | Devices and methods for treating maxillary sinus disease |
| US11529502B2 (en) | 2004-04-21 | 2022-12-20 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US9265407B2 (en) | 2004-04-21 | 2016-02-23 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US11202644B2 (en) | 2004-04-21 | 2021-12-21 | Acclarent, Inc. | Shapeable guide catheters and related methods |
| US10500380B2 (en) | 2004-04-21 | 2019-12-10 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US9826999B2 (en) | 2004-04-21 | 2017-11-28 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US10492810B2 (en) | 2004-04-21 | 2019-12-03 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat |
| US10441758B2 (en) | 2004-04-21 | 2019-10-15 | Acclarent, Inc. | Frontal sinus spacer |
| US10034682B2 (en) | 2004-04-21 | 2018-07-31 | Acclarent, Inc. | Devices, systems and methods useable for treating frontal sinusitis |
| US10856727B2 (en) | 2004-04-21 | 2020-12-08 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US9241834B2 (en) | 2004-04-21 | 2016-01-26 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US9220879B2 (en) | 2004-04-21 | 2015-12-29 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US11020136B2 (en) | 2004-04-21 | 2021-06-01 | Acclarent, Inc. | Deflectable guide catheters and related methods |
| US9167961B2 (en) | 2004-04-21 | 2015-10-27 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US9107574B2 (en) | 2004-04-21 | 2015-08-18 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US9101384B2 (en) | 2004-04-21 | 2015-08-11 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat |
| US8080000B2 (en) | 2004-04-21 | 2011-12-20 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US8090433B2 (en) | 2004-04-21 | 2012-01-03 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US8088101B2 (en) | 2004-04-21 | 2012-01-03 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US11957318B2 (en) | 2004-04-21 | 2024-04-16 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US9089258B2 (en) | 2004-04-21 | 2015-07-28 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US11864725B2 (en) | 2004-04-21 | 2024-01-09 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat |
| US8114062B2 (en) | 2004-04-21 | 2012-02-14 | Acclarent, Inc. | Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders |
| US8702626B1 (en) | 2004-04-21 | 2014-04-22 | Acclarent, Inc. | Guidewires for performing image guided procedures |
| US9055965B2 (en) | 2004-04-21 | 2015-06-16 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US8715169B2 (en) | 2004-04-21 | 2014-05-06 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US8123722B2 (en) | 2004-04-21 | 2012-02-28 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US8142422B2 (en) | 2004-04-21 | 2012-03-27 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat |
| US8146400B2 (en) | 2004-04-21 | 2012-04-03 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
| US8172828B2 (en) | 2004-04-21 | 2012-05-08 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US8721591B2 (en) | 2004-04-21 | 2014-05-13 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US8961398B2 (en) | 2004-04-21 | 2015-02-24 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear, nose and throat |
| US8961495B2 (en) | 2004-04-21 | 2015-02-24 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US8945088B2 (en) | 2004-04-21 | 2015-02-03 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures |
| US8932276B1 (en) | 2004-04-21 | 2015-01-13 | Acclarent, Inc. | Shapeable guide catheters and related methods |
| US10098652B2 (en) | 2004-04-21 | 2018-10-16 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US10806477B2 (en) | 2004-04-21 | 2020-10-20 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US8905922B2 (en) | 2004-04-21 | 2014-12-09 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat |
| US8894614B2 (en) | 2004-04-21 | 2014-11-25 | Acclarent, Inc. | Devices, systems and methods useable for treating frontal sinusitis |
| US8870893B2 (en) | 2004-04-21 | 2014-10-28 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat |
| US8864787B2 (en) | 2004-04-21 | 2014-10-21 | Acclarent, Inc. | Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis |
| US10695080B2 (en) | 2004-04-21 | 2020-06-30 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat |
| US11589742B2 (en) | 2004-04-21 | 2023-02-28 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US8858586B2 (en) | 2004-04-21 | 2014-10-14 | Acclarent, Inc. | Methods for enlarging ostia of paranasal sinuses |
| US11511090B2 (en) | 2004-04-21 | 2022-11-29 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US8852143B2 (en) | 2004-04-21 | 2014-10-07 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US8414473B2 (en) | 2004-04-21 | 2013-04-09 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US8425457B2 (en) | 2004-04-21 | 2013-04-23 | Acclarent, Inc. | Devices, systems and methods for diagnosing and treating sinusitus and other disorder of the ears, nose and/or throat |
| US8828041B2 (en) | 2004-04-21 | 2014-09-09 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US11019989B2 (en) | 2004-04-21 | 2021-06-01 | Acclarent, Inc. | Methods and apparatus for treating disorders of the ear nose and throat |
| US8777926B2 (en) | 2004-04-21 | 2014-07-15 | Acclarent, Inc. | Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures |
| US8764709B2 (en) | 2004-04-21 | 2014-07-01 | Acclarent, Inc. | Devices, systems and methods for treating disorders of the ear, nose and throat |
| US8764729B2 (en) | 2004-04-21 | 2014-07-01 | Acclarent, Inc. | Frontal sinus spacer |
| US8764726B2 (en) | 2004-04-21 | 2014-07-01 | Acclarent, Inc. | Devices, systems and methods useable for treating sinusitis |
| US10874838B2 (en) | 2004-04-21 | 2020-12-29 | Acclarent, Inc. | Systems and methods for transnasal dilation of passageways in the ear, nose or throat |
| US8747389B2 (en) | 2004-04-21 | 2014-06-10 | Acclarent, Inc. | Systems for treating disorders of the ear, nose and throat |
| US9039657B2 (en) | 2004-08-04 | 2015-05-26 | Acclarent, Inc. | Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders |
| US9039680B2 (en) | 2004-08-04 | 2015-05-26 | Acclarent, Inc. | Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders |
| US9084876B2 (en) | 2004-08-04 | 2015-07-21 | Acclarent, Inc. | Implantable devices and methods for delivering drugs and other substances to treat sinusitis and other disorders |
| US8388642B2 (en) | 2005-01-18 | 2013-03-05 | Acclarent, Inc. | Implantable devices and methods for treating sinusitis and other disorders |
| US9308361B2 (en) | 2005-01-18 | 2016-04-12 | Acclarent, Inc. | Implantable devices and methods for treating sinusitis and other disorders |
| US8337454B2 (en) | 2005-04-04 | 2012-12-25 | Intersect Ent, Inc. | Device and methods for treating paranasal sinus conditions |
| US8740839B2 (en) | 2005-04-04 | 2014-06-03 | Intersect Ent, Inc. | Device and methods for treating paranasal sinus conditions |
| US8858974B2 (en) | 2005-04-04 | 2014-10-14 | Intersect Ent, Inc. | Device and methods for treating paranasal sinus conditions |
| US11123091B2 (en) | 2005-04-04 | 2021-09-21 | Intersect Ent, Inc. | Device and methods for treating paranasal sinus conditions |
| US9585681B2 (en) | 2005-04-04 | 2017-03-07 | Intersect Ent, Inc. | Device and methods for treating paranasal sinus conditions |
| US8025635B2 (en) | 2005-04-04 | 2011-09-27 | Intersect Ent, Inc. | Device and methods for treating paranasal sinus conditions |
| US11517213B2 (en) | 2005-04-15 | 2022-12-06 | Surgisense Corporation | Surgical instruments with sensors for detecting tissue properties, and system using such instruments |
| US10231634B2 (en) | 2005-04-15 | 2019-03-19 | Surgisense Corporation | Surgical instruments with sensors for detecting tissue properties, and system using such instruments |
| US9204830B2 (en) * | 2005-04-15 | 2015-12-08 | Surgisense Corporation | Surgical instruments with sensors for detecting tissue properties, and system using such instruments |
| US20090054908A1 (en) * | 2005-04-15 | 2009-02-26 | Jason Matthew Zand | Surgical instruments with sensors for detecting tissue properties, and system using such instruments |
| US11324412B2 (en) | 2005-04-15 | 2022-05-10 | Surgisense Coporation | Surgical instruments with sensors for detecting tissue properties, and system using such instruments |
| US10434324B2 (en) | 2005-04-22 | 2019-10-08 | Cynosure, Llc | Methods and systems for laser treatment using non-uniform output beam |
| US8951225B2 (en) | 2005-06-10 | 2015-02-10 | Acclarent, Inc. | Catheters with non-removable guide members useable for treatment of sinusitis |
| US10124154B2 (en) | 2005-06-10 | 2018-11-13 | Acclarent, Inc. | Catheters with non-removable guide members useable for treatment of sinusitis |
| US10842978B2 (en) | 2005-06-10 | 2020-11-24 | Acclarent, Inc. | Catheters with non-removable guide members useable for treatment of sinusitis |
| US8968269B2 (en) | 2005-09-23 | 2015-03-03 | Acclarent, Inc. | Multi-conduit balloon catheter |
| US10639457B2 (en) | 2005-09-23 | 2020-05-05 | Acclarent, Inc. | Multi-conduit balloon catheter |
| US9999752B2 (en) | 2005-09-23 | 2018-06-19 | Acclarent, Inc. | Multi-conduit balloon catheter |
| US9050440B2 (en) | 2005-09-23 | 2015-06-09 | Acclarent, Inc. | Multi-conduit balloon catheter |
| US8114113B2 (en) | 2005-09-23 | 2012-02-14 | Acclarent, Inc. | Multi-conduit balloon catheter |
| US20160058469A1 (en) * | 2006-05-17 | 2016-03-03 | Acclarent, Inc. | Adapter for attaching electromagnetic image guidance components to a medical device |
| US9629656B2 (en) * | 2006-05-17 | 2017-04-25 | Acclarent, Inc. | Adapter for attaching electromagnetic image guidance components to a medical device |
| US20120245456A1 (en) * | 2006-05-17 | 2012-09-27 | Acclarent, Inc. | Adapter for Attaching Electromagnetic Image Guidance Components to a Medical Device |
| US9198736B2 (en) * | 2006-05-17 | 2015-12-01 | Acclarent, Inc. | Adapter for attaching electromagnetic image guidance components to a medical device |
| US8190389B2 (en) | 2006-05-17 | 2012-05-29 | Acclarent, Inc. | Adapter for attaching electromagnetic image guidance components to a medical device |
| US8257247B2 (en) * | 2006-06-12 | 2012-09-04 | Olympus Medical Systems Corp. | Endoscope insertion shape detecting device |
| US20080009714A1 (en) * | 2006-06-12 | 2008-01-10 | Olympus Medical Systems Corp. | Endoscope insertion shape detecting device |
| US8802131B2 (en) | 2006-07-10 | 2014-08-12 | Intersect Ent, Inc. | Devices and methods for delivering active agents to the osteomeatal complex |
| US8535707B2 (en) | 2006-07-10 | 2013-09-17 | Intersect Ent, Inc. | Devices and methods for delivering active agents to the osteomeatal complex |
| US10966785B2 (en) | 2006-08-02 | 2021-04-06 | Cynosure, Llc | Picosecond laser apparatus and methods for its operation and use |
| US10849687B2 (en) | 2006-08-02 | 2020-12-01 | Cynosure, Llc | Picosecond laser apparatus and methods for its operation and use |
| US11712299B2 (en) | 2006-08-02 | 2023-08-01 | Cynosure, LLC. | Picosecond laser apparatus and methods for its operation and use |
| US9028536B2 (en) | 2006-08-02 | 2015-05-12 | Cynosure, Inc. | Picosecond laser apparatus and methods for its operation and use |
| US9179823B2 (en) | 2006-09-15 | 2015-11-10 | Acclarent, Inc. | Methods and devices for facilitating visualization in a surgical environment |
| US9603506B2 (en) | 2006-09-15 | 2017-03-28 | Acclarent, Inc. | Methods and devices for facilitating visualization in a surgical environment |
| US9572480B2 (en) | 2006-09-15 | 2017-02-21 | Acclarent, Inc. | Methods and devices for facilitating visualization in a surgical environment |
| US10716629B2 (en) | 2006-09-15 | 2020-07-21 | Acclarent, Inc. | Methods and devices for facilitating visualization in a surgical environment |
| US9820688B2 (en) | 2006-09-15 | 2017-11-21 | Acclarent, Inc. | Sinus illumination lightwire device |
| US20080077220A1 (en) * | 2006-09-22 | 2008-03-27 | Cardiac Pacemakers, Inc. | Means to securely fixate pacing leads and/or sensors in vessels |
| US8712553B2 (en) | 2006-09-22 | 2014-04-29 | Cardiac Pacemakers, Inc. | Means to securely fixate pacing leads and/or sensors in vessels |
| US20110077661A1 (en) * | 2006-09-22 | 2011-03-31 | Reddy G Shantanu | Means to securely fixate pacing leads and/or sensors in vessels |
| US7865249B2 (en) * | 2006-09-22 | 2011-01-04 | Cardiac Pacemakers, Inc. | Means to securely fixate pacing leads and/or sensors in vessels |
| US11813086B2 (en) | 2006-11-20 | 2023-11-14 | St. Jude Medical Coordination Center Bvba | Measurement system |
| US11234650B2 (en) | 2006-11-20 | 2022-02-01 | St. Jude Medical Coordination Center Bvba | Measurement system |
| US10736573B2 (en) | 2006-11-20 | 2020-08-11 | St. Jude Medical Coordination Center Bvba | Measurement system |
| US10314488B2 (en) * | 2006-11-20 | 2019-06-11 | St. Jude Medical Coordination Center Bvba | Measurement system |
| US20100141742A1 (en) * | 2006-11-21 | 2010-06-10 | Swiss Medical Technology Gmbh | System and method for displaying images in an overlaying relationship |
| US20080132911A1 (en) * | 2006-11-27 | 2008-06-05 | Mediguide Ltd. | System and method for navigating a surgical needle toward an organ of the body of a patient |
| US20080140180A1 (en) * | 2006-12-07 | 2008-06-12 | Medtronic Vascular, Inc. | Vascular Position Locating Apparatus and Method |
| US20080147173A1 (en) * | 2006-12-18 | 2008-06-19 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
| US8439687B1 (en) | 2006-12-29 | 2013-05-14 | Acclarent, Inc. | Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices |
| US20080172119A1 (en) * | 2007-01-12 | 2008-07-17 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
| US8473030B2 (en) | 2007-01-12 | 2013-06-25 | Medtronic Vascular, Inc. | Vessel position and configuration imaging apparatus and methods |
| US20080171934A1 (en) * | 2007-01-12 | 2008-07-17 | Medtronic Vascular, Inc. | Vessel Position and Configuration Imaging Apparatus and Methods |
| US20080188921A1 (en) * | 2007-02-02 | 2008-08-07 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
| US8265731B2 (en) * | 2007-02-13 | 2012-09-11 | Siemens Medical Solutions Usa, Inc. | Apparatus and method for aligning a light pointer with a medical interventional device trajectory |
| US20080194945A1 (en) * | 2007-02-13 | 2008-08-14 | Siemens Medical Solutions Usa, Inc. | Apparatus and Method for Aligning a Light Pointer With a Medical Interventional Device Trajectory |
| US8239003B2 (en) * | 2007-04-16 | 2012-08-07 | General Electric Company | System and method of integrating electromagnetic microsensors in guidewires |
| US20080255446A1 (en) * | 2007-04-16 | 2008-10-16 | General Electric Company | System and method of integrating electromagnetic microsensors in guidewires |
| US8118757B2 (en) | 2007-04-30 | 2012-02-21 | Acclarent, Inc. | Methods and devices for ostium measurement |
| US9615775B2 (en) | 2007-04-30 | 2017-04-11 | Acclarent, Inc. | Methods and devices for ostium measurements |
| US8485199B2 (en) | 2007-05-08 | 2013-07-16 | Acclarent, Inc. | Methods and devices for protecting nasal turbinate during surgery |
| US9463068B2 (en) | 2007-05-08 | 2016-10-11 | Acclarent, Inc. | Methods and devices for protecting nasal turbinates |
| US20200246070A1 (en) * | 2007-05-11 | 2020-08-06 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
| US8358462B2 (en) | 2007-06-05 | 2013-01-22 | Jacobsen Stephen C | Mini-scope for multi-directional imaging |
| US8190243B2 (en) | 2007-06-08 | 2012-05-29 | Cynosure, Inc. | Thermal surgical monitoring |
| US20090018531A1 (en) * | 2007-06-08 | 2009-01-15 | Cynosure, Inc. | Coaxial suction system for laser lipolysis |
| US20090005641A1 (en) * | 2007-06-28 | 2009-01-01 | Jens Fehre | Imaging method for medical diagnostics and device operating according to this method |
| US8870750B2 (en) * | 2007-06-28 | 2014-10-28 | Siemens Aktiengesellschaft | Imaging method for medical diagnostics and device operating according to this method |
| US8411917B2 (en) * | 2007-08-16 | 2013-04-02 | Steinbichler Optotechnik Gmbh | Device for determining the 3D coordinates of an object, in particular of a tooth |
| US8913814B2 (en) * | 2007-08-16 | 2014-12-16 | Steinbichler Optotechnik Gmbh | Device for determining the 3D coordinates of an object, in particular of a tooth |
| US20090087050A1 (en) * | 2007-08-16 | 2009-04-02 | Michael Gandyra | Device for determining the 3D coordinates of an object, in particular of a tooth |
| US20090074140A1 (en) * | 2007-09-18 | 2009-03-19 | Moshe Ein-Gal | Radiotherapy system with turntable |
| US7634057B2 (en) * | 2007-09-18 | 2009-12-15 | Moshe Ein-Gal | Radiotherapy system with turntable |
| US20090082838A1 (en) * | 2007-09-26 | 2009-03-26 | Cardiac Pacemakers, Inc. | Left-ventricular lead fixation device in coronary veins |
| US8585731B2 (en) | 2007-12-18 | 2013-11-19 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US8585730B2 (en) | 2007-12-18 | 2013-11-19 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US11654216B2 (en) | 2007-12-18 | 2023-05-23 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US10471185B2 (en) | 2007-12-18 | 2019-11-12 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US11497835B2 (en) | 2007-12-18 | 2022-11-15 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US8986341B2 (en) | 2007-12-18 | 2015-03-24 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US11110210B2 (en) | 2007-12-18 | 2021-09-07 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US20090177272A1 (en) * | 2007-12-18 | 2009-07-09 | Abbate Anthony J | Self-expanding devices and methods therefor |
| US10010651B2 (en) | 2007-12-18 | 2018-07-03 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US11826494B2 (en) | 2007-12-18 | 2023-11-28 | Intersect Ent, Inc. | Self-expanding devices and methods therefor |
| US11311419B2 (en) | 2007-12-20 | 2022-04-26 | Acclarent, Inc. | Eustachian tube dilation balloon with ventilation path |
| US10206821B2 (en) | 2007-12-20 | 2019-02-19 | Acclarent, Inc. | Eustachian tube dilation balloon with ventilation path |
| US11850120B2 (en) | 2007-12-20 | 2023-12-26 | Acclarent, Inc. | Eustachian tube dilation balloon with ventilation path |
| US9861793B2 (en) | 2008-03-10 | 2018-01-09 | Acclarent, Inc. | Corewire design and construction for medical devices |
| US8182432B2 (en) | 2008-03-10 | 2012-05-22 | Acclarent, Inc. | Corewire design and construction for medical devices |
| US20090259284A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Resonating Stent or Stent Element |
| US20090259296A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Gate Cannulation Apparatus and Methods |
| US20090287048A1 (en) * | 2008-05-16 | 2009-11-19 | Sterling Lc | Method and apparatus for imaging within a living body |
| US8690762B2 (en) | 2008-06-18 | 2014-04-08 | Raytheon Company | Transparent endoscope head defining a focal length |
| US9521946B2 (en) | 2008-06-18 | 2016-12-20 | Sarcos Lc | Transparent endoscope head defining a focal length |
| US9002435B2 (en) * | 2008-06-30 | 2015-04-07 | General Electric Company | System and method for integrating electromagnetic microsensors in guidewires |
| US20090326368A1 (en) * | 2008-06-30 | 2009-12-31 | General Electric Company | System and Method For Integrating Electromagnetic Microsensors in Guidewires |
| US20220273367A1 (en) * | 2008-07-01 | 2022-09-01 | Ralph Zipper | System and method for applying controlled dosage light therapy for treatment of body tissue |
| US20220257969A1 (en) * | 2008-07-01 | 2022-08-18 | Ralph Zipper | Method for treating pelvic pain, chronic prostatitis, and or overactive bladder symptoms |
| US8979888B2 (en) | 2008-07-30 | 2015-03-17 | Acclarent, Inc. | Paranasal ostium finder devices and methods |
| US9750401B2 (en) | 2008-07-30 | 2017-09-05 | Acclarent, Inc. | Paranasal ostium finder devices and methods |
| US8486735B2 (en) | 2008-07-30 | 2013-07-16 | Raytheon Company | Method and device for incremental wavelength variation to analyze tissue |
| US10271719B2 (en) | 2008-07-30 | 2019-04-30 | Acclarent, Inc. | Paranasal ostium finder devices and methods |
| US11116392B2 (en) | 2008-07-30 | 2021-09-14 | Acclarent, Inc. | Paranasal ostium finder devices and methods |
| US8763222B2 (en) | 2008-08-01 | 2014-07-01 | Intersect Ent, Inc. | Methods and devices for crimping self-expanding devices |
| US9782283B2 (en) | 2008-08-01 | 2017-10-10 | Intersect Ent, Inc. | Methods and devices for crimping self-expanding devices |
| US8945142B2 (en) | 2008-08-27 | 2015-02-03 | Cook Medical Technologies Llc | Delivery system for implanting nasal ventilation tube |
| US20100057049A1 (en) * | 2008-09-03 | 2010-03-04 | Levin Paul D | Multi-lumen catheter for the withdrawal of blood samples |
| US8905029B2 (en) * | 2008-09-29 | 2014-12-09 | Covidien Lp | Airway system with carbon dioxide sensor for determining tracheal cuff inflation and technique for using the same |
| US20100078030A1 (en) * | 2008-09-29 | 2010-04-01 | Nellcor Puritan Bennett Llc | Airway system with carbon dioxide sensor for determining tracheal cuff inflation and technique for using the same |
| US10420906B2 (en) | 2008-09-29 | 2019-09-24 | Coviden Lp | Airway products and technique for using the same |
| US9060704B2 (en) | 2008-11-04 | 2015-06-23 | Sarcos Lc | Method and device for wavelength shifted imaging |
| US9717418B2 (en) | 2008-11-04 | 2017-08-01 | Sarcos Lc | Method and device for wavelength shifted imaging |
| US20110228907A1 (en) * | 2008-11-26 | 2011-09-22 | Oregon Health & Science University | Head and neck radiation localization using oral appliance |
| WO2010078145A1 (fr) | 2008-12-22 | 2010-07-08 | Acclarent, Inc. | Sonde pour sinus frontal |
| US20100217279A1 (en) * | 2009-02-20 | 2010-08-26 | Tyco Healthcare Group Lp | Marking Articulating Direction For Surgical Instrument |
| US10070849B2 (en) | 2009-02-20 | 2018-09-11 | Covidien Lp | Marking articulating direction for surgical instrument |
| WO2010102197A3 (fr) * | 2009-03-05 | 2010-11-11 | Cynosure, Inc. | Surveillance chirurgicale thermique |
| US9226688B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit assemblies |
| US9226689B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit sheet |
| US9232985B2 (en) | 2009-03-10 | 2016-01-12 | Medtronic Xomed, Inc. | Navigating a surgical instrument |
| US10568699B2 (en) | 2009-03-10 | 2020-02-25 | Medtronic Xomed, Inc. | Navigating a surgical instrument |
| US10524814B2 (en) | 2009-03-20 | 2020-01-07 | Acclarent, Inc. | Guide system with suction |
| US11207087B2 (en) | 2009-03-20 | 2021-12-28 | Acclarent, Inc. | Guide system with suction |
| US12303154B2 (en) | 2009-03-20 | 2025-05-20 | Acclarent, Inc. | Guide system with suction |
| US9072626B2 (en) | 2009-03-31 | 2015-07-07 | Acclarent, Inc. | System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx |
| US9636258B2 (en) | 2009-03-31 | 2017-05-02 | Acclarent, Inc. | System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx |
| US10376416B2 (en) | 2009-03-31 | 2019-08-13 | Acclarent, Inc. | System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx |
| US8435290B2 (en) | 2009-03-31 | 2013-05-07 | Acclarent, Inc. | System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx |
| US11484693B2 (en) | 2009-05-15 | 2022-11-01 | Intersect Ent, Inc. | Expandable devices and methods for treating a nasal or sinus condition |
| US10357640B2 (en) | 2009-05-15 | 2019-07-23 | Intersect Ent, Inc. | Expandable devices and methods for treating a nasal or sinus condition |
| US8882795B2 (en) | 2009-06-05 | 2014-11-11 | Entellus Medical, Inc. | Frontal sinus dilation catheter |
| US8277478B2 (en) | 2009-06-05 | 2012-10-02 | Entellus Medical, Inc. | Frontal sinus dilation catheter |
| US9282986B2 (en) | 2009-06-05 | 2016-03-15 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US8282667B2 (en) | 2009-06-05 | 2012-10-09 | Entellus Medical, Inc. | Sinus dilation catheter |
| US10363402B2 (en) | 2009-06-05 | 2019-07-30 | Entellus Medical, Inc. | Sinus dilation catheter |
| US12064580B2 (en) | 2009-06-05 | 2024-08-20 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US10022525B2 (en) | 2009-06-05 | 2018-07-17 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US11541214B2 (en) | 2009-06-05 | 2023-01-03 | Entellus Medical, Inc. | Balloon dilation catheter for use in sinus passageways |
| US11090472B2 (en) | 2009-06-05 | 2021-08-17 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US8834513B2 (en) | 2009-06-05 | 2014-09-16 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US8986340B2 (en) | 2009-06-05 | 2015-03-24 | Entellus Medical, Inc. | Frontal sinus dilation catheter |
| US11083878B2 (en) | 2009-06-05 | 2021-08-10 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US10835723B2 (en) | 2009-06-05 | 2020-11-17 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US9339637B2 (en) | 2009-06-05 | 2016-05-17 | Entellus Medical, Inc. | Method for treating outflow tracts |
| US10561829B2 (en) | 2009-06-05 | 2020-02-18 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US10369337B2 (en) | 2009-06-05 | 2019-08-06 | Entellus Medical, Inc. | Balloon dilation catheter for use in sinus passageways |
| US20110224652A1 (en) * | 2009-06-05 | 2011-09-15 | Entellus Medical, Inc. | Frontal sinus dilation catheter |
| US9370650B2 (en) | 2009-06-05 | 2016-06-21 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US9550049B2 (en) | 2009-06-05 | 2017-01-24 | Entellus Medical, Inc. | Method and articles for treating the sinus system |
| US20100312101A1 (en) * | 2009-06-05 | 2010-12-09 | Entellus Medical, Inc. | Frontal sinus dilation catheter |
| US12274847B2 (en) | 2009-06-05 | 2025-04-15 | Stryker Corporation | Method and articles for treating the sinus system |
| US20110030680A1 (en) * | 2009-07-30 | 2011-02-10 | Nellcor Puritan Bennett Llc | Tracheal tube with drug delivery device and method of using the same |
| US9161679B2 (en) | 2009-08-18 | 2015-10-20 | Olaf Christiansen | Image processing system having an additional piece of scale information to be processed together with the image information |
| US20120143203A1 (en) * | 2009-08-27 | 2012-06-07 | Yukihiro Nishio | Device for detecting tool tip position of remote-controlled actuator |
| US9126270B2 (en) * | 2009-08-27 | 2015-09-08 | Ntn Corporation | Device for detecting tool tip position of remote-controlled actuator |
| US8717428B2 (en) | 2009-10-01 | 2014-05-06 | Raytheon Company | Light diffusion apparatus |
| US9661996B2 (en) | 2009-10-01 | 2017-05-30 | Sarcos Lc | Needle delivered imaging device |
| US9144664B2 (en) | 2009-10-01 | 2015-09-29 | Sarcos Lc | Method and apparatus for manipulating movement of a micro-catheter |
| US8828028B2 (en) | 2009-11-03 | 2014-09-09 | Raytheon Company | Suture device and method for closing a planar opening |
| US20120253200A1 (en) * | 2009-11-19 | 2012-10-04 | The Johns Hopkins University | Low-cost image-guided navigation and intervention systems using cooperative sets of local sensors |
| WO2011121516A3 (fr) * | 2010-04-01 | 2011-12-08 | Koninklijke Philips Electronics N.V. | Déploiement d'endroprothèse virtuel |
| US20110251457A1 (en) * | 2010-04-08 | 2011-10-13 | Eric James Kezirian | Endoscopic device and system |
| US8764632B2 (en) * | 2010-04-08 | 2014-07-01 | Eric James Kezirian | Endoscopic device and system |
| US20140350335A1 (en) * | 2010-04-08 | 2014-11-27 | Eric James Kezirian | Endoscopic device and system |
| US10064683B2 (en) | 2010-04-08 | 2018-09-04 | Eric James Kezirian | Endoscopic device and system |
| US10238362B2 (en) | 2010-04-26 | 2019-03-26 | Gary And Mary West Health Institute | Integrated wearable device for detection of fetal heart rate and material uterine contractions with wireless communication capability |
| KR101478264B1 (ko) * | 2010-04-30 | 2014-12-31 | 메드트로닉 좀드 인코퍼레이티드 | 내비게이션되는 가단성 수술 기구 |
| CN103068332A (zh) * | 2010-04-30 | 2013-04-24 | 美敦力施美德公司 | 被导航的可塑性外科器械 |
| CN103068332B (zh) * | 2010-04-30 | 2016-05-04 | 美敦力施美德公司 | 被导航的可塑性外科器械 |
| US20110270081A1 (en) * | 2010-04-30 | 2011-11-03 | Medtronic Xomed, Inc. | Navigated Malleable Surgical Instrument |
| JP2013534832A (ja) * | 2010-04-30 | 2013-09-09 | メドトロニック ゾームド,インコーポレイテッド | 誘導される可鍛の外科用機器 |
| AU2011245296B2 (en) * | 2010-04-30 | 2014-03-06 | Medtronic Xomed, Inc. | Surgical Instrument |
| US9226800B2 (en) * | 2010-04-30 | 2016-01-05 | Medtronic Xomed, Inc. | Navigated malleable surgical instrument |
| WO2011140518A1 (fr) * | 2010-05-06 | 2011-11-10 | West Wireless Health Institute | Plateforme modulaire polyvalente pour instrumentation médicale mobile |
| US10143360B2 (en) | 2010-06-24 | 2018-12-04 | Auris Health, Inc. | Methods and devices for controlling a shapeable medical device |
| US11857156B2 (en) | 2010-06-24 | 2024-01-02 | Auris Health, Inc. | Methods and devices for controlling a shapeable medical device |
| US11051681B2 (en) | 2010-06-24 | 2021-07-06 | Auris Health, Inc. | Methods and devices for controlling a shapeable medical device |
| US12383223B2 (en) * | 2010-06-30 | 2025-08-12 | Muffin Incorporated | Percutaneous, ultrasound-guided introduction of medical devices |
| US20190261943A1 (en) * | 2010-06-30 | 2019-08-29 | Muffin Incorporated | Percutaneous, ultrasound-guided introduction of medical devices |
| US8435033B2 (en) | 2010-07-19 | 2013-05-07 | Rainbow Medical Ltd. | Dental navigation techniques |
| US10390889B2 (en) * | 2010-07-26 | 2019-08-27 | St Jude Medical International Holding S.Á R.L. | Removable navigation system and method for a medical device |
| US20120017923A1 (en) * | 2010-07-26 | 2012-01-26 | Lior Sobe | Removable Navigation System and Method for a Medical Device |
| EP2574173A4 (fr) * | 2010-07-26 | 2016-04-13 | St Jude Medical Atrial Fibrill | Système de navigation amovible d'un dispositif médical et méthode associée |
| US20120038761A1 (en) * | 2010-08-12 | 2012-02-16 | Leica Microsystems (Schweiz) Ag | Microscope System |
| US9155492B2 (en) | 2010-09-24 | 2015-10-13 | Acclarent, Inc. | Sinus illumination lightwire device |
| US11110256B2 (en) | 2010-10-08 | 2021-09-07 | Sinopsys Surgical, Inc. | Kit for treatment of sinusitis |
| US9901721B2 (en) | 2010-10-08 | 2018-02-27 | Sinopsys Surgical, Inc. | Method for delivery of treatment formulation to paranasal sinus |
| US10940297B2 (en) | 2010-10-08 | 2021-03-09 | Sinopsys Surgical, Inc. | Method for providing access to a paranasal sinus |
| US9022967B2 (en) | 2010-10-08 | 2015-05-05 | Sinopsys Surgical, Inc. | Implant device, tool, and methods relating to treatment of paranasal sinuses |
| US9308358B2 (en) | 2010-10-08 | 2016-04-12 | Sinopsys Surgical, Inc. | Implant device, tool, and methods relating to treatment of paranasal sinuses |
| US10035004B2 (en) | 2010-10-08 | 2018-07-31 | Sinopsys Surgical, Inc. | Implant device, tool, and methods relating to treatment of paranasal sinuses |
| US20130324863A1 (en) * | 2010-11-03 | 2013-12-05 | Daquan Yu | Guide wire arrangement, strip arrangement and methods of forming the same |
| US9717412B2 (en) | 2010-11-05 | 2017-08-01 | Gary And Mary West Health Institute | Wireless fetal monitoring system |
| US9888970B2 (en) | 2010-11-19 | 2018-02-13 | St. Jude Medical Internaiional Holding S.àr.l. | Systems and methods for navigating a surgical device |
| US8971993B2 (en) | 2010-11-19 | 2015-03-03 | Mediguide Ltd. | Systems and methods for navigating a surgical device |
| US10028705B2 (en) | 2010-12-29 | 2018-07-24 | St. Jude Medical International Holding S.À R.L. | Medical device guidewire with a position sensor |
| EP2627392A4 (fr) * | 2010-12-29 | 2014-04-16 | St Jude Medical Atrial Fibrill | Fil-guide pour dispositif médical équipé d'un capteur de position |
| US8764683B2 (en) | 2010-12-29 | 2014-07-01 | Mediguide Ltd. | Medical device guidewire with a position sensor |
| US9974501B2 (en) | 2011-01-28 | 2018-05-22 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
| US10492868B2 (en) | 2011-01-28 | 2019-12-03 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
| US10617374B2 (en) | 2011-01-28 | 2020-04-14 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
| EP2688489B1 (fr) * | 2011-04-20 | 2017-09-20 | Kinamed, Inc. | Passeur façonnable pour câble ou suture chirurgical |
| US20130110134A1 (en) * | 2011-04-20 | 2013-05-02 | William R. Pratt | Shapeable passer for surgical cable or suture |
| US10786242B2 (en) * | 2011-04-20 | 2020-09-29 | Kinamed, Inc. | Shapeable passer for surgical cable or suture |
| US9089631B2 (en) | 2011-07-22 | 2015-07-28 | Cook Medical Technologies Llc | Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages |
| US9833130B2 (en) | 2011-07-22 | 2017-12-05 | Cook Medical Technologies Llc | Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages |
| US9980631B2 (en) | 2011-07-22 | 2018-05-29 | Cook Medical Technologies Llc | Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages |
| US9457173B2 (en) | 2011-09-10 | 2016-10-04 | Cook Medical Technologies Llc | Methods of providing access to a salivary duct |
| US9750486B2 (en) | 2011-10-25 | 2017-09-05 | Medtronic Navigation, Inc. | Trackable biopsy needle |
| US11304777B2 (en) | 2011-10-28 | 2022-04-19 | Navigate Surgical Technologies, Inc | System and method for determining the three-dimensional location and orientation of identification markers |
| US9452024B2 (en) | 2011-10-28 | 2016-09-27 | Navigate Surgical Technologies, Inc. | Surgical location monitoring system and method |
| US9585721B2 (en) | 2011-10-28 | 2017-03-07 | Navigate Surgical Technologies, Inc. | System and method for real time tracking and modeling of surgical site |
| WO2013061318A1 (fr) * | 2011-10-28 | 2013-05-02 | Navigate Surgical Technologies Inc. | Système et procédé de surveillance de champ opératoire |
| US8938282B2 (en) | 2011-10-28 | 2015-01-20 | Navigate Surgical Technologies, Inc. | Surgical location monitoring system and method with automatic registration |
| US9566123B2 (en) | 2011-10-28 | 2017-02-14 | Navigate Surgical Technologies, Inc. | Surgical location monitoring system and method |
| US9554763B2 (en) | 2011-10-28 | 2017-01-31 | Navigate Surgical Technologies, Inc. | Soft body automatic registration and surgical monitoring system |
| US10086181B2 (en) | 2011-11-10 | 2018-10-02 | Entellus Medical, Inc. | Methods and devices for treating sinusitis |
| US11806491B2 (en) | 2011-11-10 | 2023-11-07 | Entellus Medical, Inc. | Methods and devices for treating sinusitis |
| US10881843B2 (en) | 2011-11-10 | 2021-01-05 | Entellus Medical, Inc. | Methods and devices for treating sinusitis |
| US9283360B2 (en) | 2011-11-10 | 2016-03-15 | Entellus Medical, Inc. | Methods and devices for treating sinusitis |
| US9375138B2 (en) | 2011-11-25 | 2016-06-28 | Cook Medical Technologies Llc | Steerable guide member and catheter |
| US10342414B2 (en) | 2011-11-25 | 2019-07-09 | Cook Medical Technologies Llc | Steerable guide member and catheter |
| US9936896B2 (en) * | 2012-01-12 | 2018-04-10 | Siemens Medical Solutions Usa, Inc. | Active system and method for imaging with an intra-patient probe |
| US20130184571A1 (en) * | 2012-01-12 | 2013-07-18 | Siemens Medical Solutions Usa, Inc. | Active system and method for imaging with an intra-patient probe |
| US20130237973A1 (en) * | 2012-03-09 | 2013-09-12 | Snu R&Db Foundation | Laser emission system and robot laser emission device comprising the same |
| US11045625B2 (en) | 2012-03-19 | 2021-06-29 | Cook Medical Technologies Llc | Medical devices, methods, and kits for delivering medication to a bodily passage |
| US9586034B2 (en) | 2012-03-19 | 2017-03-07 | Cook Medical Technologies Llc | Medical devices, methods, and kits for delivering medication to a bodily passage |
| US10188828B2 (en) | 2012-03-19 | 2019-01-29 | Cook Medical Technologies Llc | Medical devices, methods, and kits for delivering medication to a bodily passage |
| US9044581B2 (en) | 2012-03-19 | 2015-06-02 | Cook Medical Technologies Llc | Medical devices, methods, and kits for delivering medication to a bodily passage |
| US9592370B2 (en) | 2012-03-19 | 2017-03-14 | Cook Medical Technologies Llc | Medical devices, methods, and kits for delivering medication to a bodily passage |
| US11737816B2 (en) | 2012-03-26 | 2023-08-29 | Biosense Webster (Israel) Ltd. | Catheter with composite construction |
| US11931100B2 (en) | 2012-03-26 | 2024-03-19 | Biosense Webster (Israel) Ltd. | Catheter with composite construction |
| US10512503B2 (en) | 2012-03-26 | 2019-12-24 | Biosense Webster (Israel) Ltd. | Catheter with composite construction |
| US9717554B2 (en) | 2012-03-26 | 2017-08-01 | Biosense Webster (Israel) Ltd. | Catheter with composite construction |
| US12070365B2 (en) | 2012-03-28 | 2024-08-27 | Navigate Surgical Technologies, Inc | System and method for determining the three-dimensional location and orientation of identification markers |
| WO2013144208A1 (fr) * | 2012-03-28 | 2013-10-03 | Navigate Surgical Technologies, Inc. | Enregistrement automatique du tissu corporel mou et système de surveillance de l'emplacement chirurgical et méthode avec référence de centrage appliquée à la peau |
| US20130261433A1 (en) * | 2012-03-28 | 2013-10-03 | Navident Technologies, Inc. | Haptic simulation and surgical location monitoring system and method |
| US9572964B2 (en) | 2012-04-11 | 2017-02-21 | Sinapsys Surgical, Inc. | Implantation tools, tool assemblies, kits and methods |
| US12431683B2 (en) | 2012-04-18 | 2025-09-30 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
| US10581217B2 (en) | 2012-04-18 | 2020-03-03 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
| US11664637B2 (en) | 2012-04-18 | 2023-05-30 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
| US12068571B2 (en) | 2012-04-18 | 2024-08-20 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
| US9780518B2 (en) | 2012-04-18 | 2017-10-03 | Cynosure, Inc. | Picosecond laser apparatus and methods for treating target tissues with same |
| US11095087B2 (en) | 2012-04-18 | 2021-08-17 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
| US10305244B2 (en) | 2012-04-18 | 2019-05-28 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
| US20140234804A1 (en) * | 2012-05-02 | 2014-08-21 | Eped Inc. | Assisted Guidance and Navigation Method in Intraoral Surgery |
| US20200297417A1 (en) * | 2012-05-25 | 2020-09-24 | Biosense Webster (Israel) Ltd. | Catheter having a distal section with spring sections for biased deflection |
| US10639099B2 (en) * | 2012-05-25 | 2020-05-05 | Biosense Webster (Israel), Ltd. | Catheter having a distal section with spring sections for biased deflection |
| CN103417291A (zh) * | 2012-05-25 | 2013-12-04 | 韦伯斯特生物官能(以色列)有限公司 | 具有带有用于偏置偏转的弹簧部分的远侧节段的导管 |
| AU2013311565B2 (en) * | 2012-09-06 | 2016-03-24 | Norwegian University Of Science And Technology (Ntnu) | Intervention device |
| US12208134B2 (en) | 2012-09-06 | 2025-01-28 | Norwegian University Of Science And Technology (Ntnu) | Intervention device |
| WO2014037524A1 (fr) * | 2012-09-06 | 2014-03-13 | Norwegian University Of Science And Technology (Ntnu) | Dispositif d'intervention |
| US11712464B2 (en) | 2012-09-06 | 2023-08-01 | Norwegian University Of Science And Technology (Ntnu) | Intervention device |
| US10716834B2 (en) | 2012-09-06 | 2020-07-21 | Norwegian University Of Science And Technology (Ntnu) | Intervention device |
| US9579368B2 (en) | 2012-09-06 | 2017-02-28 | Norwegian University Of Science And Technology (Ntnu) | Treatment of headache by injection of neuroinhibitory substance to sphenopalatine ganglion or otic ganglion |
| US20140128726A1 (en) * | 2012-11-05 | 2014-05-08 | Medtronic, Inc. | Alignment of Imaging Modalities |
| US9198737B2 (en) | 2012-11-08 | 2015-12-01 | Navigate Surgical Technologies, Inc. | System and method for determining the three-dimensional location and orientation of identification markers |
| US8908918B2 (en) | 2012-11-08 | 2014-12-09 | Navigate Surgical Technologies, Inc. | System and method for determining the three-dimensional location and orientation of identification markers |
| US9918657B2 (en) | 2012-11-08 | 2018-03-20 | Navigate Surgical Technologies, Inc. | Method for determining the location and orientation of a fiducial reference |
| US9802324B2 (en) * | 2012-12-20 | 2017-10-31 | Olympus Corporation | Position detection sensor and manipulator |
| US20160001447A1 (en) * | 2012-12-20 | 2016-01-07 | Olympus Corporation | Position detection sensor and manipulator |
| WO2014100458A1 (fr) * | 2012-12-21 | 2014-06-26 | Volcano Corporation | Structures de montage pour composants de dispositifs intravasculaires |
| US20140187970A1 (en) * | 2012-12-28 | 2014-07-03 | The General Hospital Corporation | Optical probe apparatus, systems, methods for guiding tissue asessment |
| US9561350B2 (en) | 2013-01-25 | 2017-02-07 | Sinopsys Surgical, Inc. | Paranasal sinus access implant devices and related tools, methods and kits |
| US10492741B2 (en) | 2013-03-13 | 2019-12-03 | Auris Health, Inc. | Reducing incremental measurement sensor error |
| US12156755B2 (en) | 2013-03-13 | 2024-12-03 | Auris Health, Inc. | Reducing measurement sensor error |
| US11241203B2 (en) | 2013-03-13 | 2022-02-08 | Auris Health, Inc. | Reducing measurement sensor error |
| US10123755B2 (en) | 2013-03-13 | 2018-11-13 | Auris Health, Inc. | Reducing incremental measurement sensor error |
| US10406332B2 (en) | 2013-03-14 | 2019-09-10 | Intersect Ent, Inc. | Systems, devices, and method for treating a sinus condition |
| US10232152B2 (en) | 2013-03-14 | 2019-03-19 | Intersect Ent, Inc. | Systems, devices, and method for treating a sinus condition |
| US11672960B2 (en) | 2013-03-14 | 2023-06-13 | Intersect Ent, Inc. | Systems, devices, and method for treating a sinus condition |
| US10524869B2 (en) | 2013-03-15 | 2020-01-07 | Acclarent, Inc. | Apparatus and method for treatment of ethmoid sinusitis |
| US9629684B2 (en) | 2013-03-15 | 2017-04-25 | Acclarent, Inc. | Apparatus and method for treatment of ethmoid sinusitis |
| US11426095B2 (en) | 2013-03-15 | 2022-08-30 | Auris Health, Inc. | Flexible instrument localization from both remote and elongation sensors |
| US9433437B2 (en) | 2013-03-15 | 2016-09-06 | Acclarent, Inc. | Apparatus and method for treatment of ethmoid sinusitis |
| US10245107B2 (en) | 2013-03-15 | 2019-04-02 | Cynosure, Inc. | Picosecond optical radiation systems and methods of use |
| US11129602B2 (en) | 2013-03-15 | 2021-09-28 | Auris Health, Inc. | Systems and methods for tracking robotically controlled medical instruments |
| US10285757B2 (en) | 2013-03-15 | 2019-05-14 | Cynosure, Llc | Picosecond optical radiation systems and methods of use |
| US10531864B2 (en) | 2013-03-15 | 2020-01-14 | Auris Health, Inc. | System and methods for tracking robotically controlled medical instruments |
| US11504187B2 (en) | 2013-03-15 | 2022-11-22 | Auris Health, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
| US10765478B2 (en) | 2013-03-15 | 2020-09-08 | Cynosurce, Llc | Picosecond optical radiation systems and methods of use |
| US10130345B2 (en) | 2013-03-15 | 2018-11-20 | Auris Health, Inc. | System and methods for tracking robotically controlled medical instruments |
| US9956383B2 (en) | 2013-03-15 | 2018-05-01 | Cook Medical Technologies Llc | Medical devices and methods for providing access to a bodily passage during dilation |
| US11969157B2 (en) | 2013-03-15 | 2024-04-30 | Auris Health, Inc. | Systems and methods for tracking robotically controlled medical instruments |
| US12193734B2 (en) | 2013-03-15 | 2025-01-14 | Cynosure, Llc | Picosecond optical radiation systems and methods of use |
| US12232711B2 (en) | 2013-03-15 | 2025-02-25 | Auris Health, Inc. | Systems and methods for tracking robotically controlled medical instruments |
| US11446086B2 (en) | 2013-03-15 | 2022-09-20 | Cynosure, Llc | Picosecond optical radiation systems and methods of use |
| US11883063B2 (en) | 2013-04-26 | 2024-01-30 | Medtronic Xomed, Inc. | Medical device and its construction |
| US9489738B2 (en) | 2013-04-26 | 2016-11-08 | Navigate Surgical Technologies, Inc. | System and method for tracking non-visible structure of a body with multi-element fiducial |
| US9844413B2 (en) | 2013-04-26 | 2017-12-19 | Navigate Surgical Technologies, Inc. | System and method for tracking non-visible structure of a body with multi-element fiducial |
| US10278729B2 (en) | 2013-04-26 | 2019-05-07 | Medtronic Xomed, Inc. | Medical device and its construction |
| US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
| US9456122B2 (en) | 2013-08-13 | 2016-09-27 | Navigate Surgical Technologies, Inc. | System and method for focusing imaging devices |
| US9700459B2 (en) | 2013-10-16 | 2017-07-11 | Sinopsys Surgical, Inc. | Apparatuses, tools and kits relating to fluid manipulation treatments of paranasal sinuses |
| US12491042B2 (en) | 2013-10-24 | 2025-12-09 | Auris Health, Inc. | Endoscopic device with helical lumen design |
| US10589072B2 (en) | 2013-12-17 | 2020-03-17 | Biovision Technologies, Llc | Methods for treating sinus diseases |
| US9516995B2 (en) | 2013-12-17 | 2016-12-13 | Biovision Technologies, Llc | Surgical device for performing a sphenopalatine ganglion block procedure |
| US10420459B2 (en) | 2013-12-17 | 2019-09-24 | Biovision Technologies, Llc | Method of performing a sphenopalatine ganglion block procedure |
| US10046143B2 (en) | 2013-12-17 | 2018-08-14 | Biovision Technologies Llc | Surgical device for performing a sphenopalatine ganglion block procedure |
| US9839347B2 (en) | 2013-12-17 | 2017-12-12 | Biovision Technologies Llc | Method of performing a sphenopalatine ganglion block procedure |
| US9694163B2 (en) | 2013-12-17 | 2017-07-04 | Biovision Technologies, Llc | Surgical device for performing a sphenopalatine ganglion block procedure |
| US10016580B2 (en) | 2013-12-17 | 2018-07-10 | Biovision Technologies, Llc | Methods for treating sinus diseases |
| US11058855B2 (en) | 2013-12-17 | 2021-07-13 | Biovision Technologies, Llc | Surgical device for performing a sphenopalatine ganglion block procedure |
| US9510743B2 (en) | 2013-12-17 | 2016-12-06 | Biovision Technologies, Llc | Stabilized surgical device for performing a sphenopalatine ganglion block procedure |
| US9248266B2 (en) | 2013-12-17 | 2016-02-02 | Biovision Technologies, Llc | Method of performing a sphenopalatine ganglion block procedure |
| US9956384B2 (en) | 2014-01-24 | 2018-05-01 | Cook Medical Technologies Llc | Articulating balloon catheter and method for using the same |
| US10814098B2 (en) | 2014-02-28 | 2020-10-27 | Cook Medical Technologies Llc | Deflectable catheters, systems, and methods for the visualization and treatment of bodily passages |
| US12419550B2 (en) | 2014-04-05 | 2025-09-23 | Surgisense Corporation | Apparatus, systems, and methods for mapping of tissue oxygenation |
| US10772489B2 (en) | 2014-07-09 | 2020-09-15 | Acclarent, Inc. | Guidewire navigation for sinuplasty |
| US20160008083A1 (en) * | 2014-07-09 | 2016-01-14 | Acclarent, Inc. | Guidewire navigation for sinuplasty |
| WO2016007595A1 (fr) | 2014-07-09 | 2016-01-14 | Acclarent, Inc. | Navigation par fil-guide pour sinuplastie |
| US10463242B2 (en) * | 2014-07-09 | 2019-11-05 | Acclarent, Inc. | Guidewire navigation for sinuplasty |
| CN106535745A (zh) * | 2014-07-09 | 2017-03-22 | 阿克拉伦特公司 | 用于鼻窦扩张术的导丝导航 |
| US10898375B2 (en) | 2014-07-24 | 2021-01-26 | Sinopsys Surgical, Inc. | Paranasal sinus access implant devices and related products and methods |
| US10973504B2 (en) * | 2014-08-05 | 2021-04-13 | Paulino Edwardo Goco | Retractor suction catheter |
| US20160051134A1 (en) * | 2014-08-19 | 2016-02-25 | United Sciences, Llc | Guidance of three-dimensional scanning device |
| GB2546055B (en) * | 2014-10-14 | 2020-05-20 | Synaptive Medical Barbados Inc | Patient reference tool |
| USD785794S1 (en) | 2014-12-23 | 2017-05-02 | Gyrus Acmi, Inc. | Adapter for a surgical device |
| US12064577B2 (en) | 2015-01-22 | 2024-08-20 | Intersect Ent, Inc. | Drug-coated balloon |
| US10362965B2 (en) | 2015-04-22 | 2019-07-30 | Acclarent, Inc. | System and method to map structures of nasal cavity |
| WO2016171938A1 (fr) | 2015-04-22 | 2016-10-27 | Acclarent, Inc. | Système et procédé pour cartographier des structures de cavité nasale |
| US20160354049A1 (en) * | 2015-06-04 | 2016-12-08 | Biosense Webster (Israel) Ltd. | Registration of coronary sinus catheter image |
| US10159586B2 (en) | 2015-06-29 | 2018-12-25 | 480 Biomedical Inc. | Scaffold loading and delivery systems |
| US10232082B2 (en) | 2015-06-29 | 2019-03-19 | 480 Biomedical, Inc. | Implantable scaffolds for treatment of sinusitis |
| US10857013B2 (en) | 2015-06-29 | 2020-12-08 | Lyra Therapeutics, Inc. | Scaffold loading and delivery systems |
| US10278812B2 (en) | 2015-06-29 | 2019-05-07 | 480 Biomedical, Inc. | Implantable scaffolds and methods for treatment of sinusitis |
| US10169875B2 (en) | 2015-09-18 | 2019-01-01 | Auris Health, Inc. | Navigation of tubular networks |
| US10482599B2 (en) | 2015-09-18 | 2019-11-19 | Auris Health, Inc. | Navigation of tubular networks |
| US10796432B2 (en) | 2015-09-18 | 2020-10-06 | Auris Health, Inc. | Navigation of tubular networks |
| US11403759B2 (en) | 2015-09-18 | 2022-08-02 | Auris Health, Inc. | Navigation of tubular networks |
| US12089804B2 (en) | 2015-09-18 | 2024-09-17 | Auris Health, Inc. | Navigation of tubular networks |
| US10810799B2 (en) * | 2015-09-28 | 2020-10-20 | Montefiore Medical Center | Methods and devices for intraoperative viewing of patient 3D surface images |
| US12333660B2 (en) | 2015-09-28 | 2025-06-17 | Montefiore Medical Center | Methods and devices for intraoperative viewing of patient 3D surface images |
| US11727649B2 (en) * | 2015-09-28 | 2023-08-15 | Montefiore Medical Center | Methods and devices for intraoperative viewing of patient 3D surface images |
| US20180261009A1 (en) * | 2015-09-28 | 2018-09-13 | Montefiore Medical Center | Methods and devices for intraoperative viewing of patient 3d surfact images |
| WO2017055976A1 (fr) * | 2015-10-02 | 2017-04-06 | Koninklijke Philips N.V. | Dispositif de navigation électromagnétique pour le guidage et la poursuite d'un outil d'intervention |
| US11259877B2 (en) | 2015-10-02 | 2022-03-01 | Koninklijke Philips N.V. | Electromagnetic navigation device for guiding and tracking an interventional tool |
| US12029504B2 (en) | 2015-10-02 | 2024-07-09 | Koninklijke Philips N.V. | Electromagnetic navigation device for guiding and tracking an interventional tool |
| US11382650B2 (en) | 2015-10-30 | 2022-07-12 | Auris Health, Inc. | Object capture with a basket |
| US11534249B2 (en) * | 2015-10-30 | 2022-12-27 | Auris Health, Inc. | Process for percutaneous operations |
| WO2017074977A1 (fr) | 2015-10-30 | 2017-05-04 | Acclarent, Inc. | Système et procédé pour la navigation d'instruments chirurgicaux |
| EP3679875A1 (fr) | 2015-10-30 | 2020-07-15 | Acclarent, Inc. | Système et procédé de navigation d'instruments chirurgicaux |
| US11559360B2 (en) | 2015-10-30 | 2023-01-24 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
| US12433696B2 (en) | 2015-10-30 | 2025-10-07 | Auris Health, Inc. | Tool positioning for medical instruments with working channels |
| US10779891B2 (en) | 2015-10-30 | 2020-09-22 | Acclarent, Inc. | System and method for navigation of surgical instruments |
| US11571229B2 (en) | 2015-10-30 | 2023-02-07 | Auris Health, Inc. | Basket apparatus |
| US10722306B2 (en) | 2015-11-17 | 2020-07-28 | Biosense Webster (Israel) Ltd. | System for tracking guidewire with ray tracing capability |
| EP3170455A1 (fr) * | 2015-11-17 | 2017-05-24 | Biosense Webster (Israel) Ltd. | Fil-guide à capacité de lancer de rayon |
| JP2017094082A (ja) * | 2015-11-17 | 2017-06-01 | バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. | 光線追跡能力を備えたガイドワイヤ |
| US20170150993A1 (en) * | 2015-11-30 | 2017-06-01 | Robert A. Ganz | Blockage removal |
| US10806535B2 (en) | 2015-11-30 | 2020-10-20 | Auris Health, Inc. | Robot-assisted driving systems and methods |
| US10813711B2 (en) | 2015-11-30 | 2020-10-27 | Auris Health, Inc. | Robot-assisted driving systems and methods |
| CN108778164A (zh) * | 2015-11-30 | 2018-11-09 | 彼然华医疗有限公司 | 阻塞移除 |
| US10722267B2 (en) * | 2015-11-30 | 2020-07-28 | Piranha Medical, LLC | Blockage removal |
| US11141177B2 (en) | 2015-11-30 | 2021-10-12 | Piranha Medical Llc | Blockage clearing devices, systems, and methods |
| US11464591B2 (en) | 2015-11-30 | 2022-10-11 | Auris Health, Inc. | Robot-assisted driving systems and methods |
| US12336923B2 (en) | 2015-12-30 | 2025-06-24 | Lyra Therapeutics, Inc. | Scaffold loading and delivery systems |
| US10973664B2 (en) | 2015-12-30 | 2021-04-13 | Lyra Therapeutics, Inc. | Scaffold loading and delivery systems |
| US11911113B2 (en) | 2016-01-14 | 2024-02-27 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
| US10932861B2 (en) | 2016-01-14 | 2021-03-02 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
| US10932691B2 (en) * | 2016-01-26 | 2021-03-02 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
| US20170209073A1 (en) * | 2016-01-26 | 2017-07-27 | Auris Surgical Robotics, Inc. | Surgical tools having electromagnetic tracking components |
| US20210145305A1 (en) * | 2016-01-26 | 2021-05-20 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
| US12064229B2 (en) * | 2016-01-26 | 2024-08-20 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
| US11090006B2 (en) * | 2016-02-03 | 2021-08-17 | Cormetrics Llc | Modular sensing guidewire |
| US20170215801A1 (en) * | 2016-02-03 | 2017-08-03 | Eugene J. Jung, Jr. | Modular Sensing Guidewire |
| US11278293B2 (en) | 2016-03-18 | 2022-03-22 | Procept Biorobotics Corporation | Minimally invasive methods for hemostasis in a bleeding closed tissue volume without occlusion |
| US11553924B2 (en) * | 2016-03-18 | 2023-01-17 | Procept Biorobotics Corporation | Minimally invasive systems with expandable supports for hemostasis in a bleeding closed tissue volume |
| US20190231359A1 (en) * | 2016-03-18 | 2019-08-01 | Procept Biorobotics Corporation | Minimally invasive systems with expandable supports for hemostasis in a bleeding closed tissue volume |
| US20190232036A1 (en) * | 2016-03-18 | 2019-08-01 | Procept Biorobotics Corporation | Minimally invasive systems with expandable support and proximal opening for hemostasis in a bleeding closed tissue volume |
| US11871933B2 (en) | 2016-03-18 | 2024-01-16 | Procept Biorobotics Corporation | Tensioning apparatus for hemostasis and maintaining catheter placement |
| US11324554B2 (en) | 2016-04-08 | 2022-05-10 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
| US12310673B2 (en) | 2016-04-08 | 2025-05-27 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
| US11504064B2 (en) * | 2016-07-28 | 2022-11-22 | Evalve, Inc. | Systems and methods for intra-procedural cardiac pressure monitoring |
| JP7175593B2 (ja) | 2016-08-04 | 2022-11-21 | バイオセンス・ウエブスター・(イスラエル)・リミテッド | サイナプラスティ手術におけるバルーン位置決め |
| US11103249B2 (en) * | 2016-08-04 | 2021-08-31 | Biosense Webster (Israel) Ltd. | Balloon positioning in a sinuplasty procedure |
| CN107684660A (zh) * | 2016-08-04 | 2018-02-13 | 韦伯斯特生物官能(以色列)有限公司 | 鼻窦扩张手术中的球囊定位 |
| US10321913B2 (en) * | 2016-08-04 | 2019-06-18 | Biosense Webster (Israel) Ltd. | Balloon positioning in a sinuplasty procedure |
| US20180036009A1 (en) * | 2016-08-04 | 2018-02-08 | Biosense Webster (Israel) Ltd. | Balloon positioning in a sinuplasty procedure |
| JP2018020123A (ja) * | 2016-08-04 | 2018-02-08 | バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. | サイナプラスティ手術におけるバルーン位置決め |
| US11058446B2 (en) | 2016-09-14 | 2021-07-13 | Biosense Webster (Israel) Ltd. | ENT tool antenna |
| EP3300679A1 (fr) * | 2016-09-14 | 2018-04-04 | Biosense Webster (Israel), Ltd. | Antenne d'outil oto-rhinolaryngologique |
| WO2018057334A1 (fr) | 2016-09-23 | 2018-03-29 | Acclarent, Inc. | Dispositif d'aspiration destiné à être utilisé dans une procédure médicale de sinus guidée par image |
| US10485609B2 (en) | 2016-10-18 | 2019-11-26 | Acclarent, Inc. | Dilation balloon with RF energy delivery feature |
| WO2018075273A1 (fr) | 2016-10-18 | 2018-04-26 | Acclarent, Inc. | Ballonnet de dilatation à fonction de distribution d'énergie rf |
| EP3967257A1 (fr) | 2016-10-18 | 2022-03-16 | Acclarent, Inc. | Ballonnet de dilatation ayant un élément de distribution d'énergie rf |
| US11771309B2 (en) | 2016-12-28 | 2023-10-03 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
| WO2018144702A1 (fr) | 2017-02-01 | 2018-08-09 | Acclarent, Inc. | Instrument chirurgical avec caractéristiques d'interface de fil de navigation |
| WO2018144500A1 (fr) | 2017-02-01 | 2018-08-09 | Acclarent, Inc. | Fil-guide de navigation à bobines imbriquées |
| US10610308B2 (en) | 2017-02-01 | 2020-04-07 | Acclarent, Inc. | Navigation guidewire with interlocked coils |
| WO2018175412A1 (fr) | 2017-03-20 | 2018-09-27 | Acclarent, Inc. | Fil-guide de navigation avec bobine de capteur protégée |
| US20180288361A1 (en) * | 2017-03-28 | 2018-10-04 | Olympus Corporation | Endoscope apparatus, endoscope system, and endoscope image recording method |
| US10638084B2 (en) * | 2017-03-28 | 2020-04-28 | Olympus Corporation | Endoscope apparatus, endoscope system, and endoscope image recording method |
| WO2018183394A1 (fr) | 2017-03-30 | 2018-10-04 | Acclarent, Inc. | Fil-guide à tube optique contenant un fil central |
| US12053144B2 (en) | 2017-03-31 | 2024-08-06 | Auris Health, Inc. | Robotic systems for navigation of luminal networks that compensate for physiological noise |
| US11490782B2 (en) | 2017-03-31 | 2022-11-08 | Auris Health, Inc. | Robotic systems for navigation of luminal networks that compensate for physiological noise |
| US10561370B2 (en) | 2017-04-26 | 2020-02-18 | Accalrent, Inc. | Apparatus to secure field generating device to chair |
| EP3395247A1 (fr) | 2017-04-26 | 2018-10-31 | Acclarent, Inc. | Appareil pour fixer un dispositif de création de champ pour chaise |
| US10201639B2 (en) | 2017-05-01 | 2019-02-12 | 480 Biomedical, Inc. | Drug-eluting medical implants |
| US10524820B2 (en) | 2017-05-16 | 2020-01-07 | Biosense Webster (Israel) Ltd. | Deflectable shaver tool |
| JP2019034115A (ja) * | 2017-05-31 | 2019-03-07 | アクラレント インコーポレイテッドAcclarent, Inc. | 同軸環状センサを備えたナビゲート可能な吸引器具 |
| JP2023068135A (ja) * | 2017-05-31 | 2023-05-16 | アクラレント インコーポレイテッド | 同軸環状センサを備えたナビゲート可能な吸引器具 |
| US12102345B2 (en) | 2017-05-31 | 2024-10-01 | Acclarent, Inc. | Navigable suction instrument with coaxial annular sensor |
| JP7574350B2 (ja) | 2017-05-31 | 2024-10-28 | アクラレント インコーポレイテッド | 同軸環状センサを備えたナビゲート可能な吸引器具 |
| EP3409219A1 (fr) | 2017-05-31 | 2018-12-05 | Acclarent, Inc. | Instrument d'aspiration navigable comportant un capteur annulaire coaxial |
| US11253677B2 (en) * | 2017-05-31 | 2022-02-22 | Acclarent, Inc. | Navigable suction instrument with coaxial annular sensor |
| US11278357B2 (en) | 2017-06-23 | 2022-03-22 | Auris Health, Inc. | Robotic systems for determining an angular degree of freedom of a medical device in luminal networks |
| US12295672B2 (en) | 2017-06-23 | 2025-05-13 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
| US10159532B1 (en) | 2017-06-23 | 2018-12-25 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
| US10022192B1 (en) * | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
| US11759266B2 (en) | 2017-06-23 | 2023-09-19 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
| US11395703B2 (en) | 2017-06-28 | 2022-07-26 | Auris Health, Inc. | Electromagnetic distortion detection |
| US11832889B2 (en) | 2017-06-28 | 2023-12-05 | Auris Health, Inc. | Electromagnetic field generator alignment |
| US11027105B2 (en) | 2017-07-13 | 2021-06-08 | Biosense Webster (Israel) Ltd. | Adjustable instrument for dilation of anatomical passageway |
| US10874839B2 (en) | 2017-07-13 | 2020-12-29 | Acclarent, Inc. | Adjustable instrument for dilation of anatomical passageway |
| EP3446741A1 (fr) | 2017-08-25 | 2019-02-27 | Acclarent, Inc. | Ensemble de fil d'âme pour fil de guidage |
| US10835327B2 (en) | 2017-09-05 | 2020-11-17 | Acclarent, Inc. | Sensor guided instrument with penetrating feature |
| WO2019048964A1 (fr) | 2017-09-05 | 2019-03-14 | Acclarent, Inc. | Instrument guidé par capteur à élément de pénétration |
| WO2019049037A1 (fr) | 2017-09-08 | 2019-03-14 | Acclarent, Inc. | Appareil comprenant un cathéter de dilatation, un cathéter de guidage et un indicateur d'éclairage pour faciliter le positionnement rotationnel |
| US10973603B2 (en) | 2017-09-08 | 2021-04-13 | Acclarent, Inc. | Dilation system with illuminating orientation indicator features |
| US11278706B2 (en) | 2017-09-08 | 2022-03-22 | Acclarent, Inc. | Guidewire assembly with intertwined core wire |
| WO2019049039A1 (fr) | 2017-09-08 | 2019-03-14 | Acclarent, Inc. | Ensemble fil-guide avec fil central entrelacé |
| US11129972B2 (en) | 2017-09-20 | 2021-09-28 | Sinopsys Surgical, Inc. | Paranasal sinus fluid access implantation tools, assemblies, kits and methods |
| US12017023B2 (en) | 2017-09-20 | 2024-06-25 | Sinopsys Surgical, Inc. | Paranasal sinus fluid access implantation tools, assemblies, kits and methods |
| US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
| US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
| US11850008B2 (en) | 2017-10-13 | 2023-12-26 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
| US11969217B2 (en) | 2017-10-13 | 2024-04-30 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
| US10736647B2 (en) | 2017-10-30 | 2020-08-11 | Acclarent, Inc. | Dilation catheter with navigation sensor and vent passageway in tip |
| EP3476271A2 (fr) | 2017-10-30 | 2019-05-01 | Acclarent, Inc. | Cathéter de dilatation avec détecteur de navigation et passage de purge en pointe |
| US10426424B2 (en) | 2017-11-21 | 2019-10-01 | General Electric Company | System and method for generating and performing imaging protocol simulations |
| US10857333B2 (en) | 2017-11-27 | 2020-12-08 | Acclarent, Inc. | Guidewire with integral expandable dilator |
| WO2019102339A1 (fr) | 2017-11-27 | 2019-05-31 | Acclarent, Inc. | Fil-guide avec dilatateur extensible intégré |
| WO2019111156A2 (fr) | 2017-12-04 | 2019-06-13 | Acclarent, Inc. | Instrument de dilatation avec capteur de navigation et capteur de force situé de manière distale |
| US10864046B2 (en) | 2017-12-04 | 2020-12-15 | Acclarent, Inc. | Dilation instrument with navigation and distally located force sensor |
| US11678940B2 (en) | 2017-12-04 | 2023-06-20 | Acclarent, Inc. | Dilation instrument with navigation and distally located force sensor |
| WO2019111158A1 (fr) | 2017-12-05 | 2019-06-13 | Acclarent, Inc. | Système de suivi de mouvements de patient pendant un acte médical guidé |
| US10974034B2 (en) * | 2017-12-11 | 2021-04-13 | Acclarent, Inc. | Force measurement instrument for sinuplasty procedure |
| US20190175888A1 (en) * | 2017-12-11 | 2019-06-13 | Acclarent, Inc. | Force measurement instrument for sinuplasty procedure |
| US10959785B2 (en) | 2017-12-12 | 2021-03-30 | Acclarent, Inc. | Tissue shaving instrument with navigation sensor |
| WO2019116222A1 (fr) | 2017-12-12 | 2019-06-20 | Acclarent, Inc. | Instrument de rasage de tissu ayant un capteur de navigation |
| US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
| WO2019116313A1 (fr) | 2017-12-14 | 2019-06-20 | Acclarent, Inc. | Ensemble fil-guide avec fils centraux décalés |
| US10888382B2 (en) | 2017-12-14 | 2021-01-12 | Acclarent, Inc. | Mounted patient tracking component for surgical navigation system |
| WO2019116314A2 (fr) | 2017-12-14 | 2019-06-20 | Acclarent, Inc. | Composant de suivi de patient monté pour système de navigation chirurgicale |
| US11160615B2 (en) | 2017-12-18 | 2021-11-02 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
| US20200363782A1 (en) * | 2018-02-02 | 2020-11-19 | Carl Zeiss lndustrielle Messtechnik GmbH | Method and device for generating a control signal, marker array and controllable system |
| US12236613B2 (en) * | 2018-02-02 | 2025-02-25 | Carl Zeiss Industrielle Messtechnik Gmbh | Method and device for generating a control signal, marker array and controllable system |
| US11791603B2 (en) | 2018-02-26 | 2023-10-17 | Cynosure, LLC. | Q-switched cavity dumped sub-nanosecond laser |
| US11418000B2 (en) | 2018-02-26 | 2022-08-16 | Cynosure, Llc | Q-switched cavity dumped sub-nanosecond laser |
| CN110269681A (zh) * | 2018-03-16 | 2019-09-24 | 阿克拉伦特公司 | 用于医疗器械的导航套筒 |
| US11712173B2 (en) | 2018-03-28 | 2023-08-01 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
| US10898277B2 (en) | 2018-03-28 | 2021-01-26 | Auris Health, Inc. | Systems and methods for registration of location sensors |
| US11950898B2 (en) | 2018-03-28 | 2024-04-09 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
| US12226168B2 (en) | 2018-03-28 | 2025-02-18 | Auris Health, Inc. | Systems and methods for registration of location sensors |
| US10827913B2 (en) | 2018-03-28 | 2020-11-10 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
| US10524866B2 (en) | 2018-03-28 | 2020-01-07 | Auris Health, Inc. | Systems and methods for registration of location sensors |
| US11576730B2 (en) | 2018-03-28 | 2023-02-14 | Auris Health, Inc. | Systems and methods for registration of location sensors |
| US11806026B2 (en) | 2018-05-21 | 2023-11-07 | Acclarent, Inc. | Shaver with blood vessel and nerve monitoring features |
| US11103256B2 (en) | 2018-05-21 | 2021-08-31 | Acclarent, Inc. | Shaver with blood vessel and nerve monitoring features |
| WO2019224631A1 (fr) | 2018-05-21 | 2019-11-28 | Acclarent, Inc. | Rasoir doté de caractéristiques de surveillance de vaisseaux sanguins et de nerfs |
| US12336720B2 (en) | 2018-05-21 | 2025-06-24 | Acclarent, Inc. | Shaver with blood vessel and nerve monitoring features |
| US10905499B2 (en) | 2018-05-30 | 2021-02-02 | Auris Health, Inc. | Systems and methods for location sensor-based branch prediction |
| US11793580B2 (en) | 2018-05-30 | 2023-10-24 | Auris Health, Inc. | Systems and methods for location sensor-based branch prediction |
| US12171504B2 (en) | 2018-05-30 | 2024-12-24 | Auris Health, Inc. | Systems and methods for location sensor-based branch prediction |
| US11864850B2 (en) | 2018-05-31 | 2024-01-09 | Auris Health, Inc. | Path-based navigation of tubular networks |
| US10898275B2 (en) | 2018-05-31 | 2021-01-26 | Auris Health, Inc. | Image-based airway analysis and mapping |
| US10898286B2 (en) | 2018-05-31 | 2021-01-26 | Auris Health, Inc. | Path-based navigation of tubular networks |
| US11503986B2 (en) | 2018-05-31 | 2022-11-22 | Auris Health, Inc. | Robotic systems and methods for navigation of luminal network that detect physiological noise |
| US12364552B2 (en) | 2018-05-31 | 2025-07-22 | Auris Health, Inc. | Path-based navigation of tubular networks |
| US11759090B2 (en) | 2018-05-31 | 2023-09-19 | Auris Health, Inc. | Image-based airway analysis and mapping |
| WO2019234540A1 (fr) | 2018-06-08 | 2019-12-12 | Acclarent, Inc. | Système de navigation chirurgicale avec endoscope à commande automatique |
| US11622805B2 (en) | 2018-06-08 | 2023-04-11 | Acclarent, Inc. | Apparatus and method for performing vidian neurectomy procedure |
| US11147629B2 (en) | 2018-06-08 | 2021-10-19 | Acclarent, Inc. | Surgical navigation system with automatically driven endoscope |
| WO2019234705A2 (fr) | 2018-06-08 | 2019-12-12 | Acclarent, Inc. | Appareil et procédé d'exécution d'une procédure de neurectomie vidienne |
| WO2019243918A1 (fr) | 2018-06-20 | 2019-12-26 | Acclarent, Inc. | Rasoir chirurgical doté d'une caractéristique pour détecter un état de fenêtre |
| US12343488B2 (en) * | 2018-06-22 | 2025-07-01 | Acclarent, Inc. | Guidewire for dilating eustachian tube via middle ear |
| US20210308435A1 (en) * | 2018-06-22 | 2021-10-07 | Acclarent, Inc. | Guidewire for dilating eustachian tube via middle ear |
| US10525240B1 (en) | 2018-06-28 | 2020-01-07 | Sandler Scientific LLC | Sino-nasal rinse delivery device with agitation, flow-control and integrated medication management system |
| US12220178B2 (en) | 2018-09-13 | 2025-02-11 | Norwegian University Of Science And Technology (Ntnu) | Method and apparatus for calibrating an instrument for surgical intervention |
| US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
| US20240207005A1 (en) * | 2018-10-05 | 2024-06-27 | Intuitive Surgical Operations, Inc. | Systems and methods for positioning medical instruments |
| WO2020115613A1 (fr) | 2018-12-04 | 2020-06-11 | Acclarent, Inc. | Rasoir chirurgical articulé bidirectionnel |
| US11481909B2 (en) | 2018-12-06 | 2022-10-25 | Biosense Webster (Israel) Ltd. | Method and apparatus for performing facial registration |
| US12310610B2 (en) * | 2018-12-11 | 2025-05-27 | Acclarent, Inc. | Nasal suction instrument with interchangeable tip insert |
| US20230081002A1 (en) * | 2018-12-11 | 2023-03-16 | Acclarent, Inc. | Nasal suction instrument with interchangeable tip insert |
| US11439420B2 (en) * | 2018-12-11 | 2022-09-13 | Acclarent, Inc. | Nasal suction instrument with interchangeable tip insert |
| US12478444B2 (en) | 2019-03-21 | 2025-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for localization based on machine learning |
| US20230087907A1 (en) * | 2019-05-31 | 2023-03-23 | Biosense Webster (Israel) Ltd. | Ear-nose-throat (ent) navigable shaver with ferromagnetic components |
| US12274464B2 (en) * | 2019-05-31 | 2025-04-15 | Biosense Webster (Israel) Ltd. | Ear-nose-throat (ENT) navigable shaver with ferromagnetic components |
| US11510692B2 (en) * | 2019-05-31 | 2022-11-29 | Biosense Webster (Israel) Ltd. | Ear-nose-throat (ENT) navigable shaver with ferromagnetic components |
| US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
| US11147633B2 (en) | 2019-08-30 | 2021-10-19 | Auris Health, Inc. | Instrument image reliability systems and methods |
| US11207141B2 (en) | 2019-08-30 | 2021-12-28 | Auris Health, Inc. | Systems and methods for weight-based registration of location sensors |
| US12403291B2 (en) | 2019-08-30 | 2025-09-02 | Intersect Ent, Inc. | Submucosal bioresorbable drug eluting platform |
| US11944422B2 (en) | 2019-08-30 | 2024-04-02 | Auris Health, Inc. | Image reliability determination for instrument localization |
| US12257006B2 (en) | 2019-09-03 | 2025-03-25 | Auris Health, Inc. | Electromagnetic distortion detection and compensation |
| US11864848B2 (en) | 2019-09-03 | 2024-01-09 | Auris Health, Inc. | Electromagnetic distortion detection and compensation |
| US11324558B2 (en) | 2019-09-03 | 2022-05-10 | Auris Health, Inc. | Electromagnetic distortion detection and compensation |
| US12420066B2 (en) | 2019-09-13 | 2025-09-23 | Stryker Corporation | Image guided surgery system guide wire and methods of manufacturing and use |
| AU2020346080B2 (en) * | 2019-09-13 | 2024-02-15 | Stryker Corporation | Image guided surgery system guide wire and methods of manufacture and use |
| US11471650B2 (en) | 2019-09-20 | 2022-10-18 | Biosense Webster (Israel) Ltd. | Mechanism for manipulating a puller wire |
| US11964115B2 (en) | 2019-09-20 | 2024-04-23 | Biosense Webster (Israel) Ltd. | Mechanism for manipulating a puller wire |
| WO2021123958A1 (fr) | 2019-12-19 | 2021-06-24 | Biosense Webster (Israel) Ltd. | Sélection d'emplacements de curseur sur une image médicale en utilisant les sens depuis l'extrémité distale de la sonde |
| US11622698B2 (en) | 2019-12-19 | 2023-04-11 | Biosense Webster (Israel) Ltd. | Selecting cursor locations on medical image using directions from distal end of probe |
| US11602372B2 (en) | 2019-12-31 | 2023-03-14 | Auris Health, Inc. | Alignment interfaces for percutaneous access |
| US11439419B2 (en) | 2019-12-31 | 2022-09-13 | Auris Health, Inc. | Advanced basket drive mode |
| US11298195B2 (en) | 2019-12-31 | 2022-04-12 | Auris Health, Inc. | Anatomical feature identification and targeting |
| US12414823B2 (en) | 2019-12-31 | 2025-09-16 | Auris Health, Inc. | Anatomical feature tracking |
| US12465431B2 (en) | 2019-12-31 | 2025-11-11 | Auris Health, Inc. | Alignment techniques for percutaneous access |
| US12318102B2 (en) | 2019-12-31 | 2025-06-03 | Auris Health, Inc. | Advanced basket drive mode |
| US12220150B2 (en) | 2019-12-31 | 2025-02-11 | Auris Health, Inc. | Aligning medical instruments to access anatomy |
| US11660147B2 (en) | 2019-12-31 | 2023-05-30 | Auris Health, Inc. | Alignment techniques for percutaneous access |
| US12414686B2 (en) | 2020-03-30 | 2025-09-16 | Auris Health, Inc. | Endoscopic anatomical feature tracking |
| US20220061922A1 (en) * | 2020-08-25 | 2022-03-03 | Acclarent, Inc. | Apparatus and method for posterior nasal nerve ablation |
| US12183038B2 (en) * | 2020-10-06 | 2024-12-31 | Asensus Surgical Europe Sàrl | Camera calibration using fiducial markers on surgical tools |
| US12220226B2 (en) * | 2020-10-06 | 2025-02-11 | Asensus Surgical Europe S.à.R.L. | Surgical site measurement, and camera calibration using fiducial markers on surgical tools |
| US20220108475A1 (en) * | 2020-10-06 | 2022-04-07 | Asensus Surgical Us, Inc. | Camera calibration using fiducial markers on surgical tools |
| EP4426224A1 (fr) * | 2021-11-05 | 2024-09-11 | Avent, Inc. | Système configurable et procédé pour indiquer un écart par rapport à une voie de placement de dispositif médical |
| WO2023081089A1 (fr) * | 2021-11-05 | 2023-05-11 | Avent, Inc. | Système configurable et procédé pour indiquer un écart par rapport à une voie de placement de dispositif médical |
| WO2023218433A1 (fr) | 2022-05-13 | 2023-11-16 | Stryker European Operations Limited | Procédés et systèmes de navigation chirurgicale utilisant l'enregistrement spatial de la fluorescence tissulaire lors d'une intervention de résection |
| WO2024201224A1 (fr) * | 2023-03-29 | 2024-10-03 | Covidien Lp | Cathéter à guidage automatique ayant un capteur de proximité |
| WO2024211458A1 (fr) * | 2023-04-04 | 2024-10-10 | Entellus Medical, Inc. | Dispositifs de dilatation de ballonnet, procédés d'utilisation et procédés de fabrication |
| WO2025035035A1 (fr) * | 2023-08-09 | 2025-02-13 | Acclarent, Inc. | Manchon adaptateur de guidage pour instrument d'orl |
| US20250090239A1 (en) * | 2023-09-20 | 2025-03-20 | Acclarent, Inc. | Method of registering a patient with medical instrument navigation system |
| WO2025081187A1 (fr) | 2023-10-11 | 2025-04-17 | Stryker Corporation | Détection de tissu avec un outil de résection à ultrasons |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2007136589A2 (fr) | 2007-11-29 |
| WO2007136589A3 (fr) | 2008-09-04 |
| US20140364725A1 (en) | 2014-12-11 |
| US11065061B2 (en) | 2021-07-20 |
| US20160270863A1 (en) | 2016-09-22 |
| US20110060214A1 (en) | 2011-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11065061B2 (en) | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses | |
| US7720521B2 (en) | Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses | |
| US20230256215A1 (en) | Sinus dilation system and method | |
| US11511090B2 (en) | Devices, systems and methods useable for treating sinusitis | |
| US10779891B2 (en) | System and method for navigation of surgical instruments | |
| CN113476719A (zh) | 用于鼻窦扩张术的导丝操纵 | |
| US20190167151A1 (en) | System and method for tracking patient movement during guided medical procedure | |
| CN118804723A (zh) | 用于图像引导外科手术的定制患者跟踪器 | |
| US20190184142A1 (en) | Guidewire assembly with offset core wires | |
| US20240238048A1 (en) | Apparatus and method to determine endoscope roll orientation based on image analysis | |
| JP2025504004A (ja) | 画像誘導手術のためのカスタマイズされた患者追跡装置 | |
| Metson et al. | Image-Guidance in Frontal Sinus Surgery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ACCLARENT, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAKOWER, JOSHUA;REEL/FRAME:017974/0794 Effective date: 20060712 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |