[go: up one dir, main page]

US20040115197A1 - Remedies for infant chronic arthritis-relating diseases - Google Patents

Remedies for infant chronic arthritis-relating diseases Download PDF

Info

Publication number
US20040115197A1
US20040115197A1 US10/473,165 US47316503A US2004115197A1 US 20040115197 A1 US20040115197 A1 US 20040115197A1 US 47316503 A US47316503 A US 47316503A US 2004115197 A1 US2004115197 A1 US 2004115197A1
Authority
US
United States
Prior art keywords
receptor
antibody
childhood
therapeutic agent
antibody against
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/473,165
Other languages
English (en)
Inventor
Kazuyuki Yoshizaki
Norihiro Nishimoto
Masahiro Iwamoto
Seiji Minota
Shumpei Yokota
Takako Miyamae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26612973&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040115197(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Assigned to CHUGAI SEIYAKU KABUSHIKI KAISHA reassignment CHUGAI SEIYAKU KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWAMOTO, MASAHIRO, MINOTA, SEIJI, MIYAMAE, TAKAKO, NISHIMOTO, NORIHIRO, YOKOTA, SHUMPEI, YOSHIZAKI, KAZUYUKI
Publication of US20040115197A1 publication Critical patent/US20040115197A1/en
Priority to US11/704,233 priority Critical patent/US7955598B2/en
Priority to US13/064,953 priority patent/US9255145B2/en
Priority to US14/986,884 priority patent/US20160194401A1/en
Priority to US15/946,866 priority patent/US20180222988A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to a therapeutic agent for “chronic arthritides diseases of childhood-related diseases” comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
  • Chronic arthritides diseases of childhood-related diseases include chronic arthritides diseases of childhood, Still's disease and the like.
  • IL-6 is a cytokine called B-cell stimulating factor 2 (BSF2) or interferon ⁇ 2.
  • BSF2 B-cell stimulating factor 2
  • IL-6 was discovered as a differentiation factor responsible for activation of B-lymphatic cells (Hirano, T. et al., Nature (1986) 324, 73-76). Thereafter, it was found to be a multifunctional cytokine that influences the function of various cells (Akira, S. et al., Adv. in Immunology (1993) 54, 1-78). IL-6 has been reported to induce the maturation of T lymphatic cells (Lotz, M. et al., J. Exp. Med. (1988) 167, 1253-1258).
  • IL-6 propagates its biological activity through two proteins on the cell.
  • One is a ligand-binding protein, IL-6 receptor, with a molecular weight of about 80 kD to which IL-6 binds (Taga T. et al., J. Exp. Med. (1987) 166, 967-981; Yamasaki, K. et al., Science (1987) 241, 825-828).
  • IL-6 receptor exists not only in a membrane-bound form that penetrates and is expressed on the cell membrane but also as a soluble IL-6 receptor consisting mainly of the extracellular region.
  • the other is non-ligand-binding membrane-bound protein gp130 with a molecular weight of about 130 kD that takes part in signal transduction.
  • IL-6 and IL-6 receptor form an IL-6/IL-6 receptor complex, to which gp130 is bound, and thereby the biological activity of IL-6 is propagated into the cell (Taga et al., Cell (1989) 58, 573-581).
  • IL-6 antagonists are substances that inhibit the transduction of IL-6 biological activities.
  • antibodies to IL-6 anti-IL-6 antibodies
  • antibodies to IL-6 receptor anti-IL-6 receptor antibodies
  • antibodies to gp130 anti-gp130 antibodies
  • reshaped IL-6 IL-6 or IL-6 receptor partial peptides, and the like.
  • Chronic arthritides diseases of childhood are diseases comprising mainly chronic arthritis that develops at less than 16 years of age and is the most prevalent disease among the collagen diseases that develop in children.
  • RA rheumatoid arthritis
  • they are not considered to be a homogeneous disease and have a variety of disease types, and therefore they tend to be dealt with as a disease entity different from rheumatoid arthritis in adults.
  • JRA chronic arthritides diseases of childhood
  • JCA juvenile chronic arthritis
  • ICA idiopathic chronic arthritis
  • JIA juvenile idiopathic arthritis
  • ACR American College of Rheumatology
  • arthritic diseases that develop in children less than 16 years old and persist for six weeks or longer, into three disease types: 1) systemic onset JRA, 2) polyarticular, 3) pauciarticular (ARA classification)
  • ARA classification JRA Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association Arthritis Rheum 20 (Suppl): 195, 1977.
  • EULAR European League against Rheumatism
  • This classification provides division into: 1) systemic arthritis, 2) polyarthritis RF positive, 3) polyarthritis RF negative, 4) oligoarthritis, 5) extended oligoarthritis, 6) enthesitis related arthritis, 7) psoriatic arthritis, and 8) others.
  • SPRASH syndrome SPRASH: spiking fever, pericarditis, rash, arthritis, splenomegaly, hepatomegaly
  • Still's disease first described by the British pediatrician Dr. Still in 1897, was reported to have a clinical picture clearly different from that of rheumatoid arthritis in adults and is a disease seen in children to adults (especially in adolescence and the main symptoms include fever, erythema, arthritis, serositis and the like. Among them, adult-onset type is designated as adult onset Still's disease. In Still's disease, rheumatoid factor is usually negative.
  • Still's disease is another name of the systemic type of juvenile rheumatoid arthritis (juvenile rheumatoid arthritis (JRA), JCA (juvenile chronic arthritis), juvenile idiopathic arthritis (JIA)) which is a chronic arthritis developing in children at less than 16 years old.
  • JRA infant rheumatoid arthritis
  • JCA juvenile chronic arthritis
  • JIA juvenile idiopathic arthritis
  • Still's disease in adults and that in children are considered to be almost the same disease, though there are minor differences in clinical feature in addition to the age when the disease develops. Still's disease in children refers to JRA of the systemic type as described above.
  • JRA and rheumatoid arthritis (RA) in adults are clinically different in many ways and are dealt with as different diseases, and therefore Still's disease in adults is often dealt with as an independent disease entity among the rheumatic diseases.
  • nonsteroidal anti-inflammatory drugs corticosteroids, antirheumatic drugs (gold compounds etc.), immunosuppressants, gamma globulin formulations, methotrexate (MTX etc.) have been used.
  • MTX methotrexate
  • the present invention provides a novel therapeutic agent for chronic arthritides diseases of childhood-related diseases, said agent being of a type different from the conventional therapeutic agents for chronic arthritides diseases of childhood-related diseases.
  • chronic arthritides diseases of childhood-related diseases included chronic arthritides diseases of childhood and Still's disease.
  • an interleukin-6 (IL-6) antagonist has an effect of treating chronic arthritides diseases of childhood-related diseases, and have completed the present invention.
  • the present invention provides a therapeutic agent for chronic arthritides diseases of childhood-related diseases comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
  • IL-6 interleukin-6
  • the present invention provides a therapeutic agent for chronic arthritides diseases of childhood comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
  • IL-6 interleukin-6
  • the present invention also provides a therapeutic agent for Still's disease comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
  • IL-6 interleukin-6
  • the above IL-6 antagonist is preferably an antibody against IL-6 receptor, and preferably a monoclonal antibody against human IL-6 receptor or a monoclonal antibody against mouse IL-6 receptor.
  • a monoclonal antibody against human IL-6 receptor there can be illustrated PM-1 antibody
  • MR16-1 antibody As the above monoclonal antibody against mouse IL-6 receptor, there can be illustrated MR16-1 antibody.
  • the above antibody is preferably a chimeric antibody, a humanized antibody or a human antibody and, for example, is a humanized PM-1 antibody.
  • Chronic arthritides diseases of childhood which are the subject of treatment with a therapeutic agent of the present invention include all diseases in the above ARA, EULAR, and ILAR classifications, and the classification by the present inventors.
  • the disease type classification of chronic arthritides diseases of childhood is now undergoing a review on a global scale and it can be said to be in a state of uncertainty.
  • Preferred treatment subjects are: in the ARA classification, systemic onset, polyarticular, and pauciarticular; in the EULAR classification, systemic onset, polyarticular, and oligoarticular; in the ILAR classification, systemic onset, polyarticular (RF positive), polyarticular (RF negative), oligoarthritis, and extended oligoarthritis; and, in the classification by the present inventors, primary chronic arthritides of childhood (SPRASH syndrome, idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type, c.
  • SPRASH syndrome idiopathic chronic arthritides of childhood
  • RF rheumatoid factor
  • ANA anti-nuclear antibody
  • RF/ANA-negative type RF/ANA-negative type
  • RF/ANA-negative type RF/ANA-negative type
  • RF/ANA-negative type idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type)).
  • SPRASH syndrome idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type)).
  • RF rheumatoid factor
  • ANA anti-nuclear antibody
  • More preferred subjects of treatment are: in the ARA classification, systemic onset and polyarticular; in the EULAR classification, systemic onset and polyarticular; in the ILAR classification, systemic onset, polyarticular (RF positive), and extended oligoarthritis; and, in the classification by the present inventors, primary chronic arthritides of childhood (SPRASH syndrome, idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type)).
  • SPRASH syndrome idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type)
  • IL-6 antagonists for use in the present invention may be of any origin, any type, and any form, as long as they exhibit therapeutic effects on chronic arthritides diseases of childhood-related diseases.
  • IL-6 antagonists are substances that block signal transduction by IL-6 and inhibit the biological activity of IL-6.
  • IL-6 antagonists are substances that preferably have an inhibitory action on the binding to any of IL-6, IL-6 receptor or gp130.
  • IL-6 antagonists there can be mentioned, for example, anti-IL-6 antibody, anti-IL-6 receptor antibody, ant-gp130 antibody, reshaped IL-6, soluble reshaped IL-6 receptor, or partial peptides of IL-6 or IL-6 receptor, as well as low molecular weight substances that exhibit activities similar to them.
  • Anti-IL-6 antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method.
  • monoclonal antibodies of, in particular, mammalian origin are preferred.
  • Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to IL-6, block the binding of IL-6 to IL-6 receptor, and thereby block the propagation of biological activity of IL-6 into the cell.
  • Examples of such antibodies include MH166 antibody (Matsuda, et al., Eur. J. Immunology (1988) 18, 951-956), or SK2 antibody (Sato, et al., The 21st General Meeting of the Japanese Society for Immunology, Gakujutu Kiroku (1991) 21, 166) etc.
  • a hybridoma that produces anti-IL-6 antibody can be basically constructed using a known procedure as described bellow.
  • IL-6 is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
  • anti-IL-6 antibodies may be obtained in the following manner.
  • human IL-6 to be used as the sensitizing antigen for obtaining antibody can be obtained using the IL-6 gene/amino acid sequence disclosed in Eur. J. Biochem. (1987) 168, 543-550; J. Immunol. (1988) 140, 1534-1541, or Agr. Biol. Chem. (1990) 54, 2685-2688.
  • the IL-6 protein of interest may be purified from the host cell or a culture supernatant thereof by a known method, and the purified IL-6 protein may be used as the sensitizing antigen.
  • a fusion protein of the IL-6 protein and another protein may be used as the sensitizing antigen.
  • Anti-IL-6 receptor antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method.
  • monoclonal antibodies of, in particular, a mammalian origin are preferred.
  • Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to IL-6, block the binding of IL-6 to IL-6 receptor, and thereby block the propagation of biological activity of IL-6 into the cell.
  • Examples of such antibodies include MR16-1 antibody (Tamura, T. et al., Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928), PM-1 antibody (Hirata, Y. et al., J. Immunology (1989) 143, 2900-2906), AUK12-20 antibody, AUK64-7 antibody or AUK146-15 antibody (International Patent Application WO 92-19759), and the like. Among them, PM-1 antibody is most preferred.
  • the hybridoma cell line which produces PM-1 antibody has been internationally deposited under the provisions of the Budapest Treaty as PM-1 on Jul. 12, 1988 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-2998.
  • the hybridoma cell line which produces MR16-1 antibody has been internationally deposited under the provisions of the Budapest Treaty as Rat-mouse hybridoma MR16-1 on Mar. 13, 1997 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-5875.
  • a hybridoma that produces anti-IL-6 receptor monoclonal antibody can, basically, be constructed using a known procedure as described bellow.
  • IL-6 receptor is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
  • anti-IL-6 receptor antibodies may be obtained in the following manner.
  • human IL-6 receptor used as the sensitizing antigen for obtaining antibody can be obtained using the IL-6 receptor gene/amino acid sequence disclosed in European Patent Application No. EP 325474
  • mouse IL-6 receptor can be obtained using the IL-6 receptor gene/amino acid sequence disclosed in Japanese Unexamined Patent Publication (Kokai) No. 3-155795.
  • IL-6 receptor There are two types of IL-6 receptor: IL-6 receptor expressed on the cell membrane, and IL-6 receptor detached from the cell membrane (Soluble IL-6 Receptor; Yasukawa et al., J. Biochem. (1990) 108, 673-676). Soluble IL-6 receptor antibody is composed of the substantially extracellular region of IL-6 receptor bound to the cell membrane, and is different from the membrane-bound IL-6 receptor in that the former lacks the transmembrane region or both of the transmembrane region and the intracellular region.
  • IL-6 receptor protein may be any IL-6 receptor, as long as it can be used as a sensitizing antigen for preparing anti-IL-6 receptor antibody for use in the present invention.
  • the desired IL-6 receptor protein may be purified from the host cell or a culture supernatant thereof using a known method, and the IL-6 receptor protein thus purified may be used as the sensitizing antigen.
  • cells that express IL-6 receptor protein or a fusion protein of IL-6 receptor protein and another protein may be used as the sensitizing antigen.
  • Escherichia coli E. coli containing a plasmid pIBIBSF2R that comprises cDNA encoding human IL-6 receptor has been internationally deposited under the provisions of the Budapest Treaty as HB101-pIBIBSF2R on Jan. 9, 1989 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-2232.
  • Anti-gp130 antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method.
  • monoclonal antibodies of, in particular, mammalian origin are preferred.
  • Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to gp130, block the binding of gp130 to the IL-6/IL-6 receptor complex, and thereby block the propagation of biological activity of IL-6 into the cell.
  • Examples of such antibodies include AM64 antibody (Japanese Unexamined Patent Publication (Kokai) No. 3-219894), 4B11 antibody and 2H4 antibody (U.S. Pat. No. 5,571,513), B-S12 antibody and B-P8 antibody (Japanese Unexamined Patent Publication (Kokai) No. 8-291199) etc.
  • a hybridoma that produces anti-gp130 antibody can be basically constructed using a known procedure as described below.
  • gp130 is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
  • monoclonal antibodies may be obtained in the following manner.
  • gp130 used as the sensitizing antigen for obtaining antibody can be obtained using the gp130 gene/amino acid sequence disclosed in European Patent Application No. EP 411946.
  • the gene sequence of gp130 may be inserted into a known expression vector, and said vector is used to transform a suitable host cell. From the host cell or a culture supernatant therefrom, the gp130 protein of interest may be purified by a known method, and the purified IL-6 protein may be used as the sensitizing antigen. Alternatively, cells expressing gp130, or a fusion protein of the gp130 protein and another protein may be used as the sensitizing antigen.
  • mammals to be immunized with the sensitizing antigen are selected in consideration of their compatibility with the parent cells for use in cell fusion and they generally include, but are not limited to, rodents such as mice, rats and hamsters.
  • Immunization of animals with a sensitizing antigen is carried out using a known method.
  • a general method involves intraperitoneal or subcutaneous administration of a sensitizing antigen to the mammal.
  • a sensitizing antigen which was diluted and suspended in an appropriate amount of phosphate buffered saline (PBS) or physiological saline etc., is mixed with an appropriate amount of a common adjuvant such as Freund's complete adjuvant. After being emulsified, it is preferably administered to a mammal several times every 4 to 21 days.
  • a suitable carrier may be used at the time of immunization of the sensitizing antigen.
  • immune cells are taken out from the mammal and are subjected to cell fusion.
  • preferred immune cells that are subjected to cell fusion there can be specifically mentioned spleen cells.
  • Mammalian myeloma cells as the other parent cells which are subjected to cell fusion with the above-mentioned immune cells preferably include various known cell lines such as P3x63Ag8.653 (Kearney, J. F. et al., J. Immunol. (1979) 123, 1548-1550), P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7), NS-1 (Kohler, G. and Milstein, C., Eur. J. Immunol. (1976) 6, 511-519), MPC-11 (Margulies, D. H.
  • Cell fusion between the above immune cells and myeloma cells may be essentially conducted in accordance with a known method such as is described in Milstein et al. (Kohler, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46) and the like.
  • the above cell fusion is carried out in the conventional nutrient broth in the presence of, for example, a cell fusion accelerator.
  • a cell fusion accelerator for example, polyethylene glycol (PEG), Sendai virus (HVJ) and the like may be used, and an adjuvant such as dimethyl sulfoxide may be added as desired to enhance the efficiency of fusion.
  • the preferred ratio of the immune cells and the myeloma cells for use is, for example, 1 to 10 times more immune cells than the myeloma cells.
  • culture media to be used for the above cell fusion include, for example, RPMI 1640 medium and MEM culture medium suitable for the growth of the above myeloma cell lines, and the conventional culture medium used for this type of cell culture and, besides, a serum supplement such as fetal calf serum (FCS) may be added.
  • FCS fetal calf serum
  • a PEG solution previously heated to about 37° C. for example a PEG solution with a mean molecular weight of 1000 to 6000, is added at a concentration of 30 to 60% (w/v) and mixed to obtain the desired fusion cells (hybridomas). Then, by repeating a sequential addition of a suitable culture liquid and centrifugation to remove the supernatant, cell fusion agents etc., that are undesirable for the growth of the hybridoma, can be removed.
  • Said hybridoma is selected by culturing in the conventional selection medium, for example, HAT culture medium (a culture liquid containing hypoxanthine, aminopterin, and thymidine). Culturing in said HAT culture medium is continued generally for the period of time sufficient to effect killing of the cells other than the desired hybridoma (non-fusion cells), generally several days to several weeks.
  • HAT culture medium a culture liquid containing hypoxanthine, aminopterin, and thymidine.
  • transgenic animal having a repertoire of human antibody genes is immunized with the antigen or antigen-expressing cells to obtain the desired human antibody according to the above-mentioned method (see International Patent Application WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096 and WO 96/33735).
  • the monoclonal antibody-producing hybridomas thus constructed can be subcultured in the conventional culture liquid, or can be stored for a prolonged period of time in liquid nitrogen.
  • an anti-IL-6 receptor antibody-producing hybridoma can be polypeptide by a method disclosed in Japanese Unexamined Patent Publication (Kokai) No. 3-139293. There may be used a method in which The PM-1 antibody-producing hybridoma that has been internationally deposited under the provisions of the Budapest Treaty on Jul.
  • a recombinant antibody that was produced by cloning an antibody gene from a hybridoma and the gene is then integrated into an appropriate vector, which is introduced into a host to produce the recombinant antibody using gene recombinant technology (see, for example, Borrebaeck, C. A. K. and Larrick, J. W., THERAPEUTIC MONOCLONAL ANTIBODIES, published in the United Kingdom by MACMILLAN PUBLISHERS LTD. 1990).
  • mRNA encoding the variable region (V region) of the antibody is isolated from the cell that produces the antibody of interest, for example a hybridoma.
  • the isolation of mRNA is conducted by preparing total RNA by a known method such as the guanidine ultracentrifuge method (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299), the AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159), and then mRNA is purified from the total RNA using the mRNA Purification kit (manufactured by Pharmacia) and the like.
  • mRNA can be directly prepared using the Quick Prep mRNA Purification Kit (manufactured by Pharmacia).
  • cDNA of the V region of antibody may be synthesized from the mRNA thus obtained using a reverse transcriptase.
  • cDNA may be synthesized using the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit and the like.
  • the 5′-Ampli FINDER RACE Kit manufactured by Clontech
  • the 5′-RACE method Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res.
  • the desired DNA fragment is purified from the PCR product obtained and may be ligated to vector DNA. Moreover, a recombinant vector is constructed therefrom and then is introduced into E. coli etc., from which colonies are selected to prepare the desired recombinant vector.
  • the base sequence of the desired DNA may be confirmed by a known method such as the dideoxy method.
  • DNA encoding the V region of the desired antibody may be ligated to DNA encoding the constant region (C region) of the desired antibody, which is then integrated into an expression vector.
  • DNA encoding the V region of the antibody may be integrated into an expression vector which already contains DNA encoding the C region of the antibody.
  • the antibody gene is integrated into an expression vector so as to be expressed under the control of the expression regulatory region, for example an enhancer and/or a promoter. Subsequently, the expression vector is transformed into a host cell and the antibody can then be expressed therein.
  • the expression regulatory region for example an enhancer and/or a promoter.
  • artificially altered recombinant antibodies such as chimeric antibody, humanized antibody and human antibody can be used for the purpose of lowering heterologous antigenicity against humans.
  • altered antibody can be produced using known methods.
  • Chimeric antibody can be obtained by ligating the thus obtained DNA encoding the V region of antibody to DNA encoding the C region of human antibody, which is then integrated into an expression vector and introduced into a host for production of the antibody therein (see European Patent Application EP 125023, and International Patent Application WO 92-19759). Using this known method, chimeric antibody useful for the present invention can be obtained.
  • Plasmids containing the L chain V region or the H chain V region of chimeric PM-1 antibody have each been designated as pPM-k3 and pPM-h1, respectively, and E. coli having a respective plasmid has been internationally deposited under the provisions of the Budapest Treaty as NCIMB40366 and NCIMB40362 on Feb. 11, 1991 with the National Collections of Industrial and Marine Bacteria Limited.
  • Humanized antibody which is also called reshaped human antibody has been made by implanting the complementarity determining region (CDR) of antibody of a mammal other than the human, for example mouse antibody, into the CDR of human antibody.
  • CDR complementarity determining region
  • the general recombinant DNA technology for preparation of such antibodies is also known (see European Patent Application EP 125023 and International Patent Application WO 92-19759).
  • a DNA sequence which was designed to ligate the CDR of mouse antibody with the framework region (FR) of human antibody is synthesized from several divided oligonucleotides having sections overlapping with one another at the ends thereof.
  • the DNA thus obtained is ligated to DNA encoding the C region of human antibody and then is incorporated into an expression vector, which is introduced into a host for antibody production (see European Patent Application EP 239400 and International Patent Application WO 92-19759).
  • the CDR that has a favorable antigen-binding site is selected.
  • amino acids in the FR of antibody V region may be substituted so that the CDR of humanized antibody may form an appropriate antigen biding site (Sato, K. et al., Cancer Res. (1993) 53, 851-856).
  • C region of human antibody there can be used, for example, C ⁇ 1, C ⁇ 2, C ⁇ 3, or C ⁇ 4.
  • the C region of human antibody may also be modified in order to improve the stability of antibody and of the production thereof.
  • Chimeric antibody consists of the V region of antibody of a human origin other than humans and the C region of human antibody
  • humanized antibody consists of the complementarity determining region of antibody of a human origin other than humans and the framework region and the C region of human antibody, with their antigenicity in the human body being decreased, and thus are useful as antibody for use in the present invention.
  • humanized antibody for use in the present invention, there can be mentioned humanized PM-1 antibody (see International Patent Application wO 92-19759).
  • variable region of human antibody is expressed on the surface of a phage by the phage display method as a single chain antibody (scFv) to select a phage that binds to the antigen.
  • scFv single chain antibody
  • the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be identified.
  • said sequence can be used to prepare a suitable expression vector and human antibody can be obtained.
  • Antibody genes constructed as mentioned above may be expressed and obtained in a known manner. In the case of mammalian cells, expression may be accomplished using a DNA in which a commonly used useful promoter, an antibody gene to be expressed, and the poly A signal have been operably linked at 3′ downstream thereof, or a vector containing it.
  • a promoter/enhancer for example, there can be mentioned human cytomegalovirus immediate early promoter/enhancer.
  • promoter/enhancer which can be used for expression of antibody for use in the present invention
  • viral promoters/enhancers such as retrovirus, polyoma virus, adenovirus, and simian virus 40 (SV40), and promoters/enhancers derived from mammalian cells such as human elongation factor 1 ⁇ (HEF1 ⁇ ).
  • expression may be readily accomplished by the method of Mulligan et al. (Mulligan, R. C. et al., Nature (1979) 277, 108-114) when Sv40 promoter/enhancer is used, and by the method of Mizushima, S. et al. (Mizushima, S. and Nagata, S., Nucleic Acids Res. (1990) 18, 5322) when HEF1 ⁇ promoter/enhancer is used.
  • expression may be conducted by operably linking a commonly used promoter, a signal sequence for antibody secretion, and an antibody gene to be expressed, followed by expression thereof.
  • a commonly used promoter for example, there can be mentioned lacz promoter and araB promoter.
  • the method of Ward et al. Ward, E. S. et al., Nature (1989) 341, 544-546; Ward, E. S. et al., FASEB J. (1992) 6, 2422-2427
  • the method of Better et al. (Better, M. et al., Science (1988) 240, 1041-1043) may be used when araB promoter is used.
  • the pelB signal sequence As a signal sequence for antibody secretion, when produced in the periplasm of E. coli , the pelB signal sequence (Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379-4383) can be used. After separating the antibody produced in the periplasm, the structure of the antibody is appropriately refolded before use (see, for example, WO 96-30394).
  • expression vectors can include, as selectable markers the aminoglycoside transferase (APH) gene, the thymidine kinase (TK) gene, E. coli xanthine guaninephosphoribosyl transferase (Ecogpt) gene, the dihydrofolate reductase (dhfr) gene, and the like.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • Ecogpt E. coli xanthine guaninephosphoribosyl transferase
  • dhfr dihydrofolate reductase
  • any production system can be used, and the production systems of antibody preparation comprise the in vitro or the in vivo production system.
  • the in vitro production systems there can be mentioned a production system which employs eukaryotic cells and the production system which employs prokaryotic cells.
  • animal cells include (1) mammalian cells such as CHO cells, COS cells, myeloma cells, baby hamster kidney (BHK) cells, HeLa cells, and Vero cells, (2) amphibian cells such as Xenopus oocytes, or (3) insect cells such as sf9, sf21, and Tn5.
  • Known plant cells include, for example, those derived from the Nicotiana tabacum which is subjected to callus culture.
  • Known fungal cells include yeasts such as genus Saccharomyces, more specifically Saccharomyces cereviceae , or filamentous fungi such as the Aspergillus family, more specifically Aspergillus niger.
  • prokaryotic cells When prokaryotic cells are used, there are the production systems which employ bacterial cells.
  • Known bacterial cells include Escherichia coli , and Bacillus subtilis.
  • the antibody By introducing, via transformation, the gene of the desired antibody into these cells and culturing the transformed cells in vitro, the antibody can be obtained. Culturing is conducted in the known methods. For example, as the culture liquid for mammalian cells, DMEM, MEM, RPMI1640, IMDM and the like can be used, and serum supplements such as fetal calf serum (FCS) may be used in combination.
  • FCS fetal calf serum
  • antibodies may be produced in vivo by implanting cells into which the antibody gene has been introduced into the abdominal cavity of an animal, and the like.
  • Antibody genes are introduced into these animals and plants, in which the genes are produced and then collected.
  • antibody genes are inserted into the middle of the gene encoding protein which is inherently produced in the milk such as goat ⁇ casein to prepare fusion genes.
  • DNA fragments containing the fusion gene into which the antibody gene has been inserted are injected to a goat embryo, and the embryo is introduced into a female goat.
  • the desired antibody is obtained from the milk produced by a transgenic goat produced by the goat that received the embryo or the offspring thereof.
  • hormones may be given to the transgenic goat as appropriate (Ebert, K. M. et al., Bio/Technology (1994) 12, 699-702).
  • the silkworm When silkworms are used, the silkworm is infected with a baculovirus into which desired antibody gene has been inserted, and the desired antibody can be obtained from the body fluid of the silkworm (Maeda, S. et al., Nature (1985) 315, 592-594).
  • the desired antibody gene is inserted into an expression vector for plants, for example PMON 530, and then the vector is introduced into a bacterium such as Agrobacterium tumefaciens . The bacterium is then used to infect tobacco such as Nicotiana tabacum to obtain the desired antibody from the leaves of the tobacco (Julian, K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138).
  • DNA encoding the heavy chain (H chain) or light chain (L chain) of antibody is separately incorporated into an expression vector and the hosts are transformed simultaneously, or DNA encoding the H chain and the L chain of antibody is integrated into a single expression vector and the host is transformed therewith (see International Patent Application WO 94-11523).
  • Antibodies for use in the present invention may be fragments of antibody or modified versions thereof as long as they are preferably used in the present invention.
  • fragments of antibody there may be mentioned Fab, F(abl) 2 , Fv or single-chain Fv (scFv) in which Fv's of H chain and L chain were ligated via a suitable linker.
  • antibodies are treated with an enzyme, for example, papain or pepsin, to produce antibody fragments, or genes encoding these antibody fragments are constructed, and then introduced into an expression vector, which is expressed in a suitable host cell (see, for example, Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Plucktrun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. et al., TI BTECH (1991) 9, 132-137).
  • an enzyme for example, papain or pepsin
  • scFv can be obtained by ligating the V region of H chain and the V region of L chain of antibody.
  • the V region of H chain and the V region of L chain are preferably ligated via a linker, preferably a peptide linker (Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883).
  • the V region of H chain and the V region of L chain in the scFv may be derived from any of the above-mentioned antibodies.
  • the peptide linker for ligating the V regions any single-chain peptide comprising, for example, 12-19 amino acid residues may be used.
  • DNA encoding scFv can be obtained using DNA encoding the H chain or the H chain V region of the above antibody and DNA encoding the L chain or the L chain V region of the above antibody as the template by amplifying the portion of the DNA encoding the desired amino acid sequence among the above sequences by the PCR technique with the primer pair specifying the both ends thereof, and by further amplifying the combination of DNA encoding the peptide linker portion and the primer pair which defines that both ends of said DNA be ligated to the H chain and the L chain, respectively.
  • DNAs encoding scFv are constructed, an expression vector containing them and a host transformed with said expression vector can be obtained by a conventional method, and scFv can be obtained using the resultant host by a conventional method.
  • antibody fragments can be produced by obtaining the gene thereof in a similar manner to that mentioned above, and by allowing it to be expressed in a host.
  • Antibody as used in the present invention encompasses these antibody fragments.
  • modified antibodies antibodies associated with various molecules such as polyethylene glycol (PEG) can be used.
  • “Antibody” as used in the present invention encompasses these modified antibodies. These modified antibodies can be obtained by chemically modifying the antibodies thus obtained. These methods have already been established in the art.
  • Antibodies expressed and produced as described above can be separated from inside or outside of the cell or from the host and then may be purified to homogeneity. Separation and purification of antibody for use in the present invention may be accomplished by affinity chromatography.
  • affinity chromatography As the column used for affinity chromatography, there can be mentioned Protein A column and Protein G column. Examples of carriers for use in Protein A column include, for example, Hyper D, POROS, Sepharose F.F. (Pharmacia) and the like.
  • commonly used methods of separation and purification for proteins can be used, without any limitation.
  • Chromatography other than the above affinity chromatography, filters, gel filtration, salting out, dialysis and the like may be selected and combined as appropriate, in order to separate and purify the antibodies for use in the present invention.
  • Chromatography includes, for example, ion exchange chromatography, hydrophobic chromatography, gel-filtration and the like. These chromatographies can be applied to high performance liquid chromatography (HPLC). Also, reverse phase HPLC (rpHPLC) may be used.
  • the concentration of antibody obtained as above can be determined by measurement of absorbance or by ELISA and the like.
  • the antibody obtained is appropriately diluted with PBS( ⁇ ) and then the absorbance is measured at 280 nm, followed by calculation using the absorption coefficient of 1.35 OD at 1 mg/ml.
  • ELISA ELISA measurement is conducted as follows.
  • 100 ⁇ l of goat anti-human IgG antibody manufactured by TAGO
  • 0.1 M bicarbonate buffer, pH 9.6 is added to a 96-well plate (manufactured by Nunc), and is incubated overnight at 4° C. to immobilize the antibody.
  • 100 ⁇ l each of appropriately diluted antibody for use in the present invention or samples containing the antibody, or human IgG (manufactured by CAPPEL) as the standard is added, and incubated at room temperature for 1 hour.
  • Reshaped IL-6 for use in the present invention is a substance that has an activity of binding with IL-6 receptor and that does not propagate the biological activity of IL-6.
  • reshaped IL-6 competes with IL-6 for binding to IL-6 receptor, it does not propagate the biological activity of IL-6, and therefore reshaped IL-6 blocks signal transduction by IL-6.
  • Reshaped IL-6 may be prepared by introducing mutations by replacing amino acid residues of the amino acid sequence of IL-6.
  • IL-6 from which reshaped IL-6 is derived may be of any origin, but it is preferably human IL-6 considering antigenicity etc.
  • the secondary structure of the amino acid sequence of IL-6 may be estimated using a known molecular modeling program such as WHATIF (Vriend et al., J. Mol. Graphics (Il990) 8, 52-56), and its effect on the overall amino acid residues to be replaced is evaluated.
  • mutation may be introduced using a vector containing a base sequence encoding human IL-6 gene as a template in a commonly used PCR method so as to replace amino acids, and thereby to obtain a gene encoding reshaped IL-6. This may be integrated, as appropriate, into a suitable expression vector to obtain reshaped IL-6 according to the above-mentioned methods for expression, production, and purification of recombinant antibody.
  • Partial peptides of IL-6 or partial peptides of IL-6 receptor for use in the present invention are substances that have an activity of binding to IL-6 receptor or IL-6, respectively, and that do not propagate the biological activity of IL-6.
  • partial peptides of IL-6 or partial peptides of IL-6 receptor bind to and capture IL-6 receptor or IL-6, respectively, so as to inhibit specifically the binding of IL-6 to IL-6 receptor. As a result, they do not allow propagating of the biological activity of IL-6, and thereby block signal transduction by IL-6.
  • Partial peptides of IL-6 or partial peptides of IL-6 receptor are peptides are peptides comprising part or all of the amino acid sequence involved in the binding of IL-6 and IL-6 receptor in the amino acid sequences of IL-6 or IL-6 receptor.
  • Such peptides comprise usually 10-80 amino acid residues, preferably 20-50 amino acid residues, and more preferably 20-40 amino acid residues.
  • Partial peptides of IL-6 or partial peptides of IL-6 receptor specify the regions involved in the binding of IL-6 and IL-6 receptor in the amino acid sequence of IL-6 or IL-6 receptor, and part or all of the amino acid sequence can be prepared by a commonly known method such as gene engineering technology or peptide synthesis.
  • a DNA sequence encoding the desired peptide can be integrated into an expression vector so that they may be obtained according to the above-mentioned methods for expression, production, and purification of recombinant antibody.
  • a deprotecting reaction or a cleavage reaction of the peptide chain from the support may be performed.
  • the Boc method employs hydrogen fluoride or trifluoromethanesulfonic acid, or the Fmoc method usually employs TFA.
  • the above protected peptide resin is treated in the presence of anisole in hydrogen fluoride.
  • the elimination of the protecting group and the cleavage from the support may be performed to collect the peptide. Lyophilization of this yields crude peptide.
  • the deprotection reaction and the cleavage reaction of the peptide chain from the support may be performed in a manner similar to the one mentioned above.
  • the crude peptide obtained may be subjected to HPLC to separate and purify it.
  • a water-acetonitrile solvent commonly used in protein purification may be used under an optimal condition.
  • Fractions corresponding to the peaks of the chromatographic profile are harvested and then lyophilized.
  • molecular weight analysis by mass spectroscopy, analysis of amino acid composition, or analysis of amino acid sequence is performed for identification.
  • IL-6 partial peptides and IL-6 receptor partial peptides have been disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2-188600, Japanese Unexamined Patent Publication (Kokai) No. 7-324097, Japanese Unexamined Patent Publication (Kokai) No. 8-311098, and U.S. Pat. No. 5,210,075.
  • the inhibitory activity of IL-6 signal transduction by IL-6 antagonist of the present invention can be evaluated using a commonly known method. Specifically, IL-6-dependent human myeloma line (S6B45, KPMM2), human Lennert T lymphoma line KT3, or IL-6-dependent HN60.BSF2 cells are cultured, to which IL-6 is added, and at the same time, in the presence of IL-6 antagonist, the incorporation of 3 H labeled thymidine by the IL-6 dependent cells is determined.
  • 125 I-labeled IL-6 and IL-6 antagonist are added, and then 125 I-labeled IL-6 that bound to the IL-6-ecpressing cells is determined for evaluation.
  • a negative control group in which contains no IL-6 antagonist is set up, and the results obtained in both are compared to evaluate the IL-6-inhibiting activity by IL-6 antagonist.
  • IL-6 antagonists such as anti-IL-6 receptor antibody were shown to have a therapeutic effect for chronic arthritides of childhood-related diseases.
  • Subjects to be treated in the present invention are mammals.
  • the subject mammals to be treated are preferably humans.
  • Therapeutic agents for chronic arthritides of childhood-related diseases of the present invention may be administered orally or parenterally and systemically or locally.
  • intravenous injection such as drip infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppositories, enema, oral enteric coated tablets, and the like may be selected, and the dosage regimen may be selected as appropriate depending on the age and conditions of the patient.
  • the effective dose is chosen from the range of 0.01 mg to 100 mg per kg of body weight per administration. Alternatively, the dosage of 1 to 1000 mg, preferably 5 to 50 mg per patient may be selected.
  • Preferable dose and method for administering is, for example in the case of anti-IL6 receptor antibody, an effective dose that provides free antibody in the blood, and specifically, 0.5 mg to 40 mg, and preferably 1 mg to 20 mg per 1 kg body weight per month (four weeks), which is administered at once, or divided to several parts and administered, for example, twice/week, once/week, once/two weeks, once/four weeks, etc, for example intravenously for example by dripping, or subcutaneously.
  • Administering schedule may be adjusted by elongating intervals from twice/week or once/week to once/two weeks, once/three weeks, once/four weeks, etc, dependent on observation of symptoms, and blood test profile.
  • Therapeutic agents for chronic arthritides of childhood-related diseases of the present invention may contain pharmaceutically acceptable carriers and additives depending on the route of administration.
  • carriers or additives include water, a pharmaceutically acceptable organic solvent, collagen, polyvinyl alcohol, polyvinylpyrrolidone, a carboxyvinyl polymer, carboxymethylcellulose sodium, polyacrylic sodium, sodium alginate, water-soluble dextran, carboxymethyl starch sodium, pectin, methyl cellulose, ethyl cellulose, xanthan gum, gum Arabic, casein, gelatin, agar, diglycerin, propylene glycol, polyethylene glycol, Vaseline, paraffin, stearyl alcohol, stearic acid, human serum albumin (HSA), mannitol, sorbitol, lactose, pharmaceutically acceptable surfactants and the like.
  • Actual additives used are chosen from, but not limited to, the above or combinations thereof depending on the dosage form.
  • MRA humanized anti-IL-6 receptor antibody
  • mPSL methylprednisolone
  • Cs A cyclosporin A
  • prednisolone+froben was given to control relaxation heat, and a decline in fever was clinically noted, but inflammation-related hematology tests remained at high values (CRP>5 mg/dL), and after discharge from hospital, relaxation heat was periodically observed, but treatment and observation were continued mainly on an ambulatory basis.
  • CRP>5 mg/dL Crohn's disease
  • IL-6 antagonist in particular anti-IL-6 receptor antibody, is effective as a therapeutic agent for chronic arthritides diseases of childhood, specifically the systemic onset type of the ARA classification, the systemic onset type of the EULAR classification, the systemic onset type of the ILAR classification, and the SPRASH syndrome of the present inventors' classification.
  • MRA humanized anti-IL-6 receptor antibody
  • IL-6 antagonist in particular anti-IL-6 receptor antibody, is effective as a therapeutic agent for Still's disease, specifically adult Still's disease.
  • soluble IL-6 receptor was prepared by the PCR method.
  • the plasmid pBSF2R.236 was digested with a restriction enzyme Sph I to obtain IL-6 receptor cDNA, which was inserted into mp18 (manufactured by Amersham).
  • a synthetic primer designed to introduce a stop codon into IL-6 receptor cDNA mutation was introduced into IL-6 receptor cDNA by the PCR method in an in vitro mutagenesis system (manufactured by Amersham). By this procedure, the stop codon was introduced at the position of amino acid 345, and cDNA encoding soluble IL-6 receptor was obtained.
  • soluble IL-6 receptor in CHO cells, it was ligated to a plasmid pSV (manufactured by Pharmacia) to obtain a plasmid pSVL344. Soluble IL-6 receptor cDNA digested with HindIII-SalI was inserted into a plasmid pECEdhfr containing the cDNA of dhfr to obtain a CHO cell-expressing plasmid pECEdhfr344.
  • plasmid pECEdhfr344 was transfected to a dhfr-CHO cell line DXB-11 (Urlaub, G. et al., Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) by the calcium phosphate precipitation method (Chen, C. et al., Mol. Cell. Biol. (1987) 7, 2745-2751).
  • the transfected CHO cells were cultured for three weeks in a nucleoside-free AMEM selection medium containing 1 mM glutamine, 10% dialyzed FCS, 100 U/ml penicillin and 100 ⁇ /ml streptomycin.
  • the selected CHO cells were screened by the limiting dilution method to obtain a single CHO cells clone.
  • the CHO cell clone was amplified with 20 nM-200 nM of methotrexate to investigate a human soluble IL-6 receptor-producing CHO cell line 5E27.
  • the CHO cell line 5E27 was cultured in a Iscov modified Dulbecco medium (IMDM, manufactured by Gibco) supplemented with 5% FBS.
  • IMDM Iscov modified Dulbecco medium
  • the culture supernatant was collected and the concentration of soluble IL-6 receptor in the culture supernatant was determined by ELISA. The result confirmed the presence of soluble IL-6 receptor in the culture supernatant.
  • tissue-type IL-6 (Hirano et al., Immunol. Lett. (1988) 17, 41) was used with Freund's complete adjuvant to immunize BALB/c mice, and this was repeated every week until anti-IL-6 antibody can be detected in the serum.
  • Immune cells were removed from the local lymph nodes, and were fused with a myeloma cell line P3U1 using polyethylene glycol 1500.
  • Hybridomas were selected by the method of Oi et al. (Selective Methods in Cellular Immunology, W.H. Freeman and Co., San Francisco, 351, 19080) using the HAT culture medium to establish a hybridoma producing anti-human IL-6 antibody.
  • the hybridoma producing anti-human IL-6 antibody was subjected to an IL-6 binding assay in the following manner.
  • a 96-well microtiter plate manufactured by Dynatech Laboratories, Inc., Alexandria, Va.
  • a 96-well microtiter plate made of flexible polyvinyl was coated overnight with 100 ⁇ l of goat anti-mouse Ig (10 ⁇ l/ml, manufactured by Cooper Biomedical, Inc., Malvern, Pa.) in 0.1 M carbonate hydrogen carbonate buffer (pH 9.6) at 4° C.
  • the plate was treated in 100 ⁇ l of PBS containing 1% bovine serum albumin (BSA) at room temperature for 2 hours.
  • BSA bovine serum albumin
  • MH60.BSF2 IL-6-dependent mouse hybridoma clone MH60.BSF2
  • MH60.BSF2 cells were aliquoted to 1 ⁇ 10 4 /200 ⁇ l/well, to which a sample containing MH166 antibody was added, and cultured for 48 hours. After adding 0.5 ⁇ Ci/well of 3 H-thymidine (New England Nuclear, Boston, Mass.), culturing was continued for further six hours. The cells were placed on a glass filter paper, and were treated by an automated harvester (Labo Mash Science Co., Tokyo, Japan). As the control, rabbit anti-IL-6 antibody was used.
  • MH166 antibody inhibited 3 H-thymidine incorporation by MH60.BSF2 cells induced by IL-6 in a dose dependent manner. This revealed that MH166 antibody neutralizes the activity of IL-6.
  • Anti-IL-6 receptor antibody MT18 prepared by the method of Hirata et al. (Hirata, Y. et al., J. Immunol. (1989) 143, 2900-2906) was conjugated to a CNBr-activated Sepharose 4B (manufactured by Pharmacia Fine Chemicals, Piscataway, N.J.) to purify IL-6 receptor (Yamasaki et al., Science (1988) 241, 825-828).
  • a human myeloma cell line U266 was solubilized with 1 mM p-paraminophenylmethanesulfonyl fluoride hydrochloride (manufactured by Wako Pure Chemicals) (digitonin buffer) containing 1% digitonin (manufactured by Wako Pure Chemicals), 10 mM triethanolamine (pH 7.8), and 0.15 M NaCl, and was mixed with MT18 antibody conjugated to Sepharose 4B beads. Subsequently, the beads were washed six times in the digitonin buffer to prepare a partially purified IL-6 receptor.
  • BALB/c mice were immunized with the above partially purified IL-6 receptor obtained from 3 ⁇ 10 9 U266 cells four times every ten days, and then a hybridoma was prepared according to a standard method.
  • the culture supernatant of the hybridoma from growth-positive wells were examined for the biding activity to IL-6 receptor in the following manner.
  • 5 ⁇ 10 7 U266 cells were labelled with 35 S-methionine (2.5 mCi), and were solubilized with the above digitonin buffer.
  • the solubilized U266 cells were mixed with 0.04 ml of MT18 antibody conjugated to Sepharose 4B beads, and then washed for six times in the digitonin buffer.
  • Using 0.25 ml of the digitonin buffer (pH 3.4) 35 S-methionine-labeled IL-6 receptor was eluted, which was neutralized with 0.025 ml of 1M Tris, pH 7.4.
  • 0.05 ml of the hybridoma culture supernatant was mixed with 0.01 ml Protein G Sepharose (manufactured by Pharmacia). After washing, the Sepharose was incubated with 0.005 ml solution of 35 S-labeled IL-6 receptor solution. The immunoprecipitated substances were analyzed by SDS-PAGE to study the culture supernatant of hybridoma that reacts with IL-6 receptor. As a result, a reaction-positive hybridoma clone PM-1 was established. Antibody produced from the hybridoma PM-1 had the IgG1 ⁇ subtype.
  • the activity of the antibody produced by the hybridoma PM-1 to inhibit the binding of IL-6 to IL-6 receptor was evaluated using a human myeloma cell line U266.
  • Human recombinant IL-6 was prepared from E. coli (Hirano et al., Immunol. Lett. (1988) 17, 41-45), and was labeled with 125 I using the Bolton-Hunter reagent (New England Nclear, Boston, Mass.) (Taga et al., J. Exp. Med. (1987) 166, 967-981).
  • a monoclonal antibody against mouse IL-6 receptor was prepared by the method of Saito, T. et al., J. Immunol. (1991) 147, 168-173.
  • CHO cells that produce soluble mouse IL-6 receptor were cultured in an IMDM culture medium supplemented with 10% FCS. From the culture supernatant, soluble mouse IL-6 receptor was purified using an affinity column in which anti-mouse IL-6 receptor antibody RS12 (see the above Saito, T. et al.) was immobilized to the Affigel 10 gel (manufactured by Biorad).
  • soluble mouse IL-6 receptor thus obtained was mixed with Freund's complete adjuvant, which was intraperitoneally injected to the abdomen of Wistar rats. Two weeks later, the rats received booster immunization with Freund's incomplete adjuvant. On day 45, spleen cells were removed from the rats, and 2 ⁇ 10 8 of the cells were subjected to cell fusion with 1 ⁇ 10 7 mouse myeloma cells P3U1 with 50% PEG1500 (manufactured by Boehringer Mannheim) using a standard method, and the hybridoma were then screened with the HAT medium.
  • MH60.BSF2 cells A neutralizing activity in signal transduction of mouse IL-6 by the antibody produced by this hybridoma was examined using 3 H-thymidine incorporation that employs MH60.BSF2 cells (Matsuda, T. et al., J. Immunol. (1988) 18, 951-956).
  • MH60.BSF2 cells were prepared to 1 ⁇ 10 4 cells/200 ⁇ l/well.
  • To this plate were added 10 pg/ml of mouse IL-6 and MR16-1 antibody or RS12 antibody at 12.3-1000 ng/ml, and cultured at 37° C. in 5% CO 2 for 44 hours, followed by the addition of 1 ⁇ Ci/well of 3 H-thymidine. Four hours later, the incorporation of 3 H-thymidine was measured.
  • MR16-1 antibody inhibited the 3 H-thymidine incorporation by MH60.BSF2 cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Endocrinology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US10/473,165 2001-04-02 2002-04-02 Remedies for infant chronic arthritis-relating diseases Abandoned US20040115197A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/704,233 US7955598B2 (en) 2001-04-02 2007-02-09 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US13/064,953 US9255145B2 (en) 2001-04-02 2011-04-28 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US14/986,884 US20160194401A1 (en) 2001-04-02 2016-01-04 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US15/946,866 US20180222988A1 (en) 2001-04-02 2018-04-06 Therapeutic agent for chronic arthritides diseases of childhood-related diseases

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001103627 2001-04-02
JP2001-103627 2001-04-02
JP2001-109131 2001-04-06
JP2001109131 2001-04-06
PCT/JP2002/003312 WO2002080969A1 (en) 2001-04-02 2002-04-02 Remedies for infant chronic arthritis-relating diseases

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003312 A-371-Of-International WO2002080969A1 (en) 2001-04-02 2002-04-02 Remedies for infant chronic arthritis-relating diseases

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/704,233 Division US7955598B2 (en) 2001-04-02 2007-02-09 Therapeutic agent for chronic arthritides diseases of childhood-related diseases

Publications (1)

Publication Number Publication Date
US20040115197A1 true US20040115197A1 (en) 2004-06-17

Family

ID=26612973

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/473,165 Abandoned US20040115197A1 (en) 2001-04-02 2002-04-02 Remedies for infant chronic arthritis-relating diseases
US11/704,233 Expired - Lifetime US7955598B2 (en) 2001-04-02 2007-02-09 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US13/064,953 Expired - Fee Related US9255145B2 (en) 2001-04-02 2011-04-28 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US14/986,884 Abandoned US20160194401A1 (en) 2001-04-02 2016-01-04 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US15/946,866 Abandoned US20180222988A1 (en) 2001-04-02 2018-04-06 Therapeutic agent for chronic arthritides diseases of childhood-related diseases

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11/704,233 Expired - Lifetime US7955598B2 (en) 2001-04-02 2007-02-09 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US13/064,953 Expired - Fee Related US9255145B2 (en) 2001-04-02 2011-04-28 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US14/986,884 Abandoned US20160194401A1 (en) 2001-04-02 2016-01-04 Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US15/946,866 Abandoned US20180222988A1 (en) 2001-04-02 2018-04-06 Therapeutic agent for chronic arthritides diseases of childhood-related diseases

Country Status (17)

Country Link
US (5) US20040115197A1 (ru)
EP (4) EP1374900A4 (ru)
JP (5) JP3702274B2 (ru)
KR (2) KR100842133B1 (ru)
CN (1) CN100562339C (ru)
AU (1) AU2002243032B2 (ru)
BR (1) BR0208636A (ru)
CA (1) CA2443294C (ru)
HU (1) HU230197B1 (ru)
IL (3) IL158079A0 (ru)
MX (1) MXPA03008955A (ru)
NO (1) NO20034388L (ru)
NZ (1) NZ528479A (ru)
PL (1) PL216534B1 (ru)
RU (2) RU2361613C2 (ru)
UA (1) UA80091C2 (ru)
WO (1) WO2002080969A1 (ru)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010001663A1 (en) * 1994-06-30 2001-05-24 Tadamitsu Kishimoto Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
US20040071706A1 (en) * 1998-03-17 2004-04-15 Chugai Seiyaku Kabushiki Kaisha Preventive or therapeutic agent for inflammatory bowel disease comprising IL-6 antagonist as an active ingredient
US20060292147A1 (en) * 2000-10-27 2006-12-28 Chugai Seiyaku Kabushiki Kaisha Blood MMP-3 level-lowering agent comprising IL-6 antagonist as active ingredient
US20070036785A1 (en) * 1994-10-21 2007-02-15 Tadamitsu Kishimoto Pharmaceutical composition for treatment of diseases caused by IL-6 production
US20070098714A1 (en) * 2003-12-19 2007-05-03 Chugai Seiyaku Kabushiki Kaisha Preventive agent for vasculitis
US20080161262A1 (en) * 2004-02-26 2008-07-03 Baylor Research Institute Compositions and Methods for the Systemic Treatment of Arthritis
US20080274106A1 (en) * 2003-10-17 2008-11-06 Chugai Seiyaku Kabushiki Kaisha Mesothelioma therapeutic agent
US20090022719A1 (en) * 1997-08-15 2009-01-22 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic method for systemic lupus erythematosus comprising anti-IL-6 receptor antibody administration
US20090028784A1 (en) * 2007-05-21 2009-01-29 Alder Biopharmaceuticals, Inc. Antibodies to IL-6 and use thereof
US20090104187A1 (en) * 2007-05-21 2009-04-23 Alder Biopharmaceuticals, Inc. Novel Rabbit Antibody Humanization Methods and Humanized Rabbit Antibodies
US20090131639A1 (en) * 2002-02-14 2009-05-21 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution formulations
US20090181029A1 (en) * 2003-04-28 2009-07-16 Chugai Seiyaku Kabushiki Kaisha Methods for treating interleukin-6 related diseases
US20090238825A1 (en) * 2007-05-21 2009-09-24 Kovacevich Brian R Novel rabbit antibody humanization methods and humanized rabbit antibodies
US20090291089A1 (en) * 2007-05-21 2009-11-26 Smith Jeffrey T L Antagonists of IL-6 to prevent or treat Thrombosis
US20090291082A1 (en) * 2007-05-21 2009-11-26 Smith Jeffrey T L Antagonists of IL-6 to raise Albumin and/or lower CRP
US20090291077A1 (en) * 2007-05-21 2009-11-26 Smith Jeffrey T L Antagonists of IL-6 to prevent or treat Cachexia, weakness, fatigue, and/or fever
US20090291076A1 (en) * 2005-12-28 2009-11-26 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
US20090297436A1 (en) * 2007-05-21 2009-12-03 Leon Garcia-Martinez Antibodies to il-6 and use thereof
US20090297513A1 (en) * 2007-05-21 2009-12-03 Leon Garcia-Martinez Antibodies to il-6 and use thereof
US20100129357A1 (en) * 2008-11-25 2010-05-27 Leon Garcia-Martinez Antibodies to il-6 and use thereof
US20100150829A1 (en) * 2008-11-25 2010-06-17 Leon Garcia-Martinez Antibodies to IL-6 and use thereof
US20100285011A1 (en) * 2007-12-27 2010-11-11 Chugai Seiyaku Kabushiki Kaish High concentration antibody-containing liquid formulation
US20100316636A1 (en) * 2006-06-02 2010-12-16 Regeneron Pharmaceuticals, Inc. Method of Treating Rheumatoid Arthritis with an IL-6R Antibody
WO2012064627A2 (en) 2010-11-08 2012-05-18 Genentech, Inc. Subcutaneously administered anti-il-6 receptor antibody
US8992908B2 (en) 2010-11-23 2015-03-31 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of oral mucositis
US8992920B2 (en) 2008-11-25 2015-03-31 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of arthritis
US9017677B2 (en) 1997-03-21 2015-04-28 Chugai Seiyaku Kabushiki Kaisha Methods of treating a disease mediated by sensitized T cells
US9187560B2 (en) 2008-11-25 2015-11-17 Alderbio Holdings Llc Antagonists of IL-6 to treat cachexia, weakness, fatigue, and/or fever
US9212223B2 (en) 2008-11-25 2015-12-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US9255145B2 (en) 2001-04-02 2016-02-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US9265825B2 (en) 2008-11-25 2016-02-23 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US9468676B2 (en) 2009-11-24 2016-10-18 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US9701747B2 (en) 2007-05-21 2017-07-11 Alderbio Holdings Llc Method of improving patient survivability and quality of life by anti-IL-6 antibody administration
US9775921B2 (en) 2009-11-24 2017-10-03 Alderbio Holdings Llc Subcutaneously administrable composition containing anti-IL-6 antibody
US10168326B2 (en) 2013-07-04 2019-01-01 F. Hoffmann-La Roche Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
US10501769B2 (en) 2009-10-26 2019-12-10 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US10584173B2 (en) 2006-06-02 2020-03-10 Regeneron Pharmaceuticals, Inc. Nucleic acids encoding high affinity antibodies to human IL-6 receptor
WO2020201362A2 (en) 2019-04-02 2020-10-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
US10927435B2 (en) 2011-10-11 2021-02-23 Sanofi Biotechnology Compositions for the treatment of rheumatoid arthritis and methods of using same
US11033496B2 (en) 2017-03-17 2021-06-15 The Regents Of The University Of Michigan Nanoparticles for delivery of chemopreventive agents
US11098127B2 (en) 2010-01-08 2021-08-24 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-6 receptor (IL-6R) antibodies
US11174317B2 (en) 2015-06-04 2021-11-16 National Center Of Neurology And Psychiatry Therapeutic agent for mental illness comprising IL-6 inhibitor as active ingredient
US11484591B2 (en) 2016-02-22 2022-11-01 Ohio State Innovation Foundation Chemoprevention using controlled-release formulations of anti-interleukin 6 agents, synthetic vitamin A analogues or metabolites, and estradiol metabolites
US11498969B2 (en) 2019-01-31 2022-11-15 Sanofi Biotechnology Compositions and methods for treating juvenile idiopathic arthritis
US11673967B2 (en) 2011-07-28 2023-06-13 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-PCSK9 antibodies
US11904017B2 (en) 2015-08-18 2024-02-20 Regeneron Pharmaceuticals, Inc. Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab
US12083176B2 (en) 2011-01-28 2024-09-10 Sanofi Biotechnology Human antibodies to PCSK9 for use in methods of treating particular groups of subjects
US12269897B2 (en) 2008-12-15 2025-04-08 Regeneron Pharmaceuticals, Inc. Anti-PCSK9 antibodies
US12297279B2 (en) 2019-06-04 2025-05-13 Sanofi Biotechnology Compositions and methods for treating pain in subjects with rheumatoid arthritis
US12440561B2 (en) 2019-04-24 2025-10-14 Sanofi Biotechnology Method of diagnosis and treatment of rheumatoid arthritis

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR048335A1 (es) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo
EP3269738A1 (en) 2004-03-24 2018-01-17 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleukin-6 receptor
EP3050963B1 (en) 2005-03-31 2019-09-18 Chugai Seiyaku Kabushiki Kaisha Process for production of polypeptide by regulation of assembly
BRPI0617664B8 (pt) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd uso de um anticorpo que reconhece a il-6 para a produção de uma composição farmacêutica para tratar o enfarte do miocárdio ou suprimir a remodelagem ventricular esquerda depois do enfarte do miocárdio
IN2014DN10515A (ru) 2006-03-31 2015-08-21 Chugai Pharmaceutical Co Ltd
ES2654040T3 (es) 2006-03-31 2018-02-12 Chugai Seiyaku Kabushiki Kaisha Método de modificación de anticuerpos para la purificación de anticuerpos biespecíficos
WO2007116962A1 (ja) 2006-04-07 2007-10-18 Osaka University 筋再生促進剤
BRPI0715115A2 (pt) 2006-08-03 2013-06-04 Vaccinex Inc anticorpo monoclonal isolado, molÉcula de Ácido nucleico isolada, vetor de expressço, cÉlula hospedeira, mÉtodos para tratar uma doenÇa, e para produzir um anticorpo monoclonal isolado, uso do anticorpo monoclonal isolado, e, composiÇço farmacÊutica
JP2010095445A (ja) * 2006-12-27 2010-04-30 Tokyo Medical & Dental Univ Il−6アンタゴニストを有効成分とする炎症性筋疾患治療剤
TWI438208B (zh) 2007-01-23 2014-05-21 Chugai Pharmaceutical Co Ltd 抑制慢性排斥反應之藥劑
MX369784B (es) 2007-09-26 2019-11-21 Chugai Pharmaceutical Co Ltd Metodo de modificacion del punto isoelectrico de anticuerpos mediante la sustitucion de aminoacidos en region de determinacion de complementariedad (cdr).
ES2687808T3 (es) 2007-09-26 2018-10-29 Chugai Seiyaku Kabushiki Kaisha Región constante de anticuerpo modificado
KR20160074019A (ko) 2007-12-05 2016-06-27 추가이 세이야쿠 가부시키가이샤 항nr10 항체 및 그의 이용
PT2708559T (pt) 2008-04-11 2018-05-16 Chugai Pharmaceutical Co Ltd Molécula de ligação ao antigénio capaz de se ligar repetidamente a duas ou mais moléculas de antigénio
ES2564635T3 (es) 2008-05-13 2016-03-28 Novimmune Sa Anticuerpos anti-IL-6/IL-6R y métodos de uso de los mismos
CA2728243C (en) 2008-06-05 2020-03-10 National Cancer Center Il-6 inhibitor for suppressing neuroinvasion in pancreatic cancer
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US20120071634A1 (en) 2009-03-19 2012-03-22 Chugai Seiyaku Kabushiki Kaisha Antibody Constant Region Variant
JP5717624B2 (ja) 2009-03-19 2015-05-13 中外製薬株式会社 抗体定常領域改変体
PE20120562A1 (es) 2009-05-15 2012-06-06 Chugai Pharmaceutical Co Ltd Anticuerpo anti-axl
JP5837821B2 (ja) 2009-09-24 2015-12-24 中外製薬株式会社 抗体定常領域改変体
WO2011108714A1 (ja) 2010-03-04 2011-09-09 中外製薬株式会社 抗体定常領域改変体
JP5904552B2 (ja) 2010-05-28 2016-04-13 国立研究開発法人国立がん研究センター 膵癌治療剤
ES2932398T3 (es) 2010-05-28 2023-01-18 Chugai Pharmaceutical Co Ltd Potenciador de la respuesta de las células T antitumorales
TWI654204B (zh) 2010-11-30 2019-03-21 中外製藥股份有限公司 具有鈣依存性的抗原結合能力之抗體
EP2878305B1 (en) 2012-05-21 2017-07-19 Korea Research Institute of Bioscience and Biotechnology Pharmaceutical composition for use in preventing or treating stat3-mediated disease, comprising salvia plebeia r. br. extract or fraction thereof as active ingredient composition
EP3009518B1 (en) 2013-06-11 2020-08-12 National Center of Neurology and Psychiatry Method for predicting post-therapy prognosis of relapsing-remitting multiple sclerosis (rrms) patient, and method for determining applicability of novel therapy
KR102441231B1 (ko) 2013-09-27 2022-09-06 추가이 세이야쿠 가부시키가이샤 폴리펩티드 이종 다량체의 제조방법
US9017678B1 (en) 2014-07-15 2015-04-28 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
CN103739669B (zh) * 2013-12-31 2015-08-26 浙江元太生物科技有限公司 一种抑制白介素-6多肽及其应用
CA2972393A1 (en) * 2015-02-27 2016-09-01 Chugai Seiyaku Kabushiki Kaisha Composition for treating il-6-related diseases
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US10697883B2 (en) 2015-05-19 2020-06-30 National Center Of Neurology And Psychiatry Method for determining application of therapy to multiple sclerosis (MS) patient
SG11201803989WA (en) 2015-12-28 2018-06-28 Chugai Pharmaceutical Co Ltd Method for promoting efficiency of purification of fc region-containing polypeptide
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
JP7185884B2 (ja) 2017-05-02 2022-12-08 国立研究開発法人国立精神・神経医療研究センター Il-6及び好中球の関連する疾患の治療効果の予測及び判定方法
KR102771895B1 (ko) 2017-10-20 2025-02-21 가꼬우호우징 효고 이카다이가쿠 항il-6 수용체 항체를 함유하는 수술 후의 유착을 억제하기 위한 의약 조성물
TWI827585B (zh) 2018-03-15 2024-01-01 日商中外製藥股份有限公司 對茲卡病毒具有交叉反應性的抗登革病毒抗體及其使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888510A (en) * 1993-07-21 1999-03-30 Chugai Seiyaku Kabushiki Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201994A (ja) 1982-05-21 1983-11-25 Hideaki Hagiwara 抗原特異的ヒト免疫グロブリンの生産方法
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US6428979B1 (en) * 1988-01-22 2002-08-06 Tadamitsu Kishimoto Receptor protein for human B cell stimulatory factor-2
US5670373A (en) * 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US5171840A (en) 1988-01-22 1992-12-15 Tadamitsu Kishimoto Receptor protein for human B cell stimulatory factor-2
JP2914672B2 (ja) 1989-01-17 1999-07-05 中外製薬株式会社 Bsf▲下2▼アンタゴニスト
US5216128A (en) 1989-06-01 1993-06-01 Yeda Research And Development Co., Ltd. IFN-β2/IL-6 receptor its preparation and pharmaceutical compositions containing it
SG42954A1 (en) 1989-07-20 1997-10-17 Tadamitsu Kishimoto Antibody to human interleukin-6 receptor
JP2898064B2 (ja) 1989-08-03 1999-05-31 忠三 岸本 ヒトgp130蛋白質
JPH03155795A (ja) 1989-11-13 1991-07-03 Chuzo Kishimoto マウス・インターロイキン―6レセプター蛋白質
JP2898040B2 (ja) 1990-01-26 1999-05-31 忠三 岸本 gp130蛋白質に対する抗体
US5210075A (en) 1990-02-16 1993-05-11 Tanabe Seiyaku Co., Ltd. Interleukin 6 antagonist peptides
JPH06508511A (ja) 1990-07-10 1994-09-29 ケンブリッジ アンティボディー テクノロジー リミティド 特異的な結合ペアーの構成員の製造方法
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
ATE158021T1 (de) 1990-08-29 1997-09-15 Genpharm Int Produktion und nützung nicht-menschliche transgentiere zur produktion heterologe antikörper
US5795965A (en) * 1991-04-25 1998-08-18 Chugai Seiyaku Kabushiki Kaisha Reshaped human to human interleukin-6 receptor
JP3540315B2 (ja) 1991-09-23 2004-07-07 メディカル リサーチ カウンシル キメラ抗体の製造−組合せアプローチ
DE69233745D1 (de) 1991-12-02 2008-10-23 Cambridge Antibody Tech Herstellung von Autoantikörpern auf Phagenoberflächen ausgehend von Antikörpersegmentbibliotheken
EP0746609A4 (en) 1991-12-17 1997-12-17 Genpharm Int NON-HUMAN TRANSGENIC ANIMALS CAPABLE OF PRODUCING HETEROLOGOUS ANTIBODIES
CA2131151A1 (en) 1992-03-24 1994-09-30 Kevin S. Johnson Methods for producing members of specific binding pairs
AU675661B2 (en) 1992-07-24 1997-02-13 Abgenix, Inc. Generation of xenogeneic antibodies
FR2694767B1 (fr) 1992-08-13 1994-10-21 Innotherapie Lab Sa Anticorps monoclonaux anti-IL6R, et leurs applications.
US5648267A (en) 1992-11-13 1997-07-15 Idec Pharmaceuticals Corporation Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same
CA2161351C (en) 1993-04-26 2010-12-21 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
WO1995009873A1 (en) 1993-10-06 1995-04-13 Board Of Regents, The University Of Texas System A monoclonal anti-human il-6 receptor antibody
AU690171B2 (en) 1993-12-03 1998-04-23 Medical Research Council Recombinant binding proteins and peptides
JPH07324097A (ja) 1994-05-30 1995-12-12 Daicel Chem Ind Ltd インターロイキン6拮抗剤、及びペプチド類または医薬として許容されるその塩類
US8017121B2 (en) 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
CZ296919B6 (cs) * 1994-10-07 2006-07-12 Chugai Seiyaku Kabushiki Kaisha Farmaceutický prípravek pro lécení chronické revmatické artritidy
PL182089B1 (en) 1994-10-21 2001-11-30 Chugai Pharmaceutical Co Ltd Pharmaceutic compositions for treating diseases caused by production of il-6
IT1274350B (it) 1994-12-06 1997-07-17 Angeletti P Ist Richerche Bio Antagonisti di interleuchina-6(il-6) che consistono di forme solubili del ricettore alfa di il-6, mutate nell'interfaccia che si lega a gp 130
IT1274782B (it) 1994-12-14 1997-07-24 Angeletti P Ist Richerche Bio Metodo per selezionare superagonisti, antagonisti e superantagonisti di ormoni del cui complesso recettoriale fa parte gp 130
US6086874A (en) 1994-12-29 2000-07-11 Chugai Seiyaku Kabushiki Kaisha Antitumor agent effect enhancer containing IL-6 antagonist
WO1996025174A1 (en) 1995-02-13 1996-08-22 Chugai Seiyaku Kabushiki Kaisha Muscle protein decomposition inhibitor containing il-6 receptor antibody
EP0817794A1 (en) 1995-03-31 1998-01-14 Jakob Bohr Method for protein folding
FR2733250B1 (fr) 1995-04-21 1997-07-04 Diaclone Anticorps monoclonaux anti-gp130, et leurs utilisations
DE69637481T2 (de) 1995-04-27 2009-04-09 Amgen Fremont Inc. Aus immunisierten Xenomäusen stammende menschliche Antikörper gegen IL-8
AU2466895A (en) 1995-04-28 1996-11-18 Abgenix, Inc. Human antibodies derived from immunized xenomice
JPH08311098A (ja) 1995-05-22 1996-11-26 Daicel Chem Ind Ltd 新規ペプチド類およびそれを含有するインターロイキン6拮抗剤
US5571513A (en) 1995-05-31 1996-11-05 The Board Of Regents Of The University Of Oklahoma Anti-gp130 monoclonal antibodies
DK0923941T3 (da) 1996-06-27 2006-09-18 Chugai Pharmaceutical Co Ltd Midler mod myelom der skal anvendes sammen med nitrogensennepantitumormidler
IT1285790B1 (it) * 1996-09-24 1998-06-24 Angeletti P Ist Richerche Bio Adenovirus difettivi ricombinanti che codificano per mutanti di interleuchina 6 umana (hil-6) con attivita' antagonista o
ATE407696T1 (de) 1997-03-21 2008-09-15 Chugai Pharmaceutical Co Ltd Vorbeugende- oder heilmittel zur behandlung von multipler sklerose, mit antagonistischen anti-il6-rezeptor antikörpern als wirkstoff
US20020187150A1 (en) * 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
RU2195960C2 (ru) 1998-03-17 2003-01-10 Тугаи Сейяку Кабусики Кайся Профилактический или терапевтический агент для лечения воспалительных заболеваний кишечника, содержащий в качестве активного ингредиента антагонист il-6
GB9806530D0 (en) * 1998-03-26 1998-05-27 Glaxo Group Ltd Inflammatory mediator
US6537782B1 (en) 1998-06-01 2003-03-25 Chugai Seiyaku Kabushiki Kaisha Media for culturing animal cells and process for producing protein by using the same
US6406909B1 (en) 1998-07-10 2002-06-18 Chugai Seiyaku Kabushiki Kaisha Serum-free medium for culturing animal cells
US8440196B1 (en) 1998-08-24 2013-05-14 Chugai Seiyaku Kabushiki Kaisha Treatment for pancreatitis using IL-6 receptor antagonist antibodies
AU2001278716A1 (en) 2000-08-10 2002-02-25 Chugai Seiyaku Kabushiki Kaisha Method of inhibiting antibody-containing solution from coagulating or becoming turbid
EP1314437B1 (en) 2000-08-11 2014-06-25 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing preparations
US8703126B2 (en) 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
IL155002A0 (en) 2000-10-12 2003-10-31 Genentech Inc Reduced-viscosity concentrated protein formulations
KR100824824B1 (ko) 2000-10-25 2008-04-23 추가이 세이야쿠 가부시키가이샤 아이엘-6 안타고니스트를 유효 성분으로서 함유하는건선의 예방 또는 치료제
AU2000279624A1 (en) 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blooe vegf level-lowering agent containing il-6 antagonist as the active ingredient
AU2000279625A1 (en) * 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blood mmp-3 level-lowering agent containing il-6 antgonist as the active ingredient
US7332289B2 (en) 2001-03-09 2008-02-19 Chugai Seiyaku Kabushiki Kaisha Method of purifying protein
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
NZ534542A (en) 2002-02-14 2006-08-31 Chugai Pharmaceutical Co Ltd Antibody-containing solutions in which the formation of degradation products and insoluble particles during storage and freeze/thaw cycles is inhibited by adding a sugar and surfactant respectively
MXPA04009243A (es) * 2002-04-12 2005-06-08 Pfizer Uso de ligandos para el receptor ep4 en el tratamiento de enfermedades vinculadas a il-6.
JP3822137B2 (ja) 2002-05-20 2006-09-13 中外製薬株式会社 動物細胞培養用培地の添加剤およびそれを用いたタンパク質の製造方法
EP2261230B1 (en) 2002-09-11 2017-05-10 Chugai Seiyaku Kabushiki Kaisha Protein purification method
DE10255508A1 (de) 2002-11-27 2004-06-17 Forschungszentrum Jülich GmbH Verfahren zur Kultivierung von Zellen zur Produktion von Substanzen
NZ541928A (en) 2003-02-24 2009-06-26 Chugai Pharmaceutical Co Ltd Remedy for spinal injury containing interleukin-6 antagonist
WO2004091658A1 (en) 2003-04-04 2004-10-28 Genentech, Inc. High concentration antibody and protein formulations
US20050158303A1 (en) 2003-04-04 2005-07-21 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
PL1690550T3 (pl) 2003-10-17 2013-01-31 Chugai Pharmaceutical Co Ltd Środek do leczenia międzybłoniaka
US8617550B2 (en) 2003-12-19 2013-12-31 Chugai Seiyaku Kabushiki Kaisha Treatment of vasculitis with IL-6 antagonist
AR048210A1 (es) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd Un agente preventivo para la vasculitis.
EP3269738A1 (en) 2004-03-24 2018-01-17 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleukin-6 receptor
AR048335A1 (es) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo
CA2593521C (en) 2005-01-05 2016-06-21 Chugai Seiyaku Kabushiki Kaisha Cell culture method and utilization of the same
BRPI0617378B8 (pt) 2005-10-14 2022-09-20 Chugai Pharmaceutical Co Ltd Uso de um inibidor de il-6 para produzir uma composição farmacêutica para suprimir dano a um ilhota transplantada depois do transplante de ilhota; e aperfeiçoar a viabilidade de uma ilhota em um transplante de ilhota
BRPI0617664B8 (pt) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd uso de um anticorpo que reconhece a il-6 para a produção de uma composição farmacêutica para tratar o enfarte do miocárdio ou suprimir a remodelagem ventricular esquerda depois do enfarte do miocárdio
AR057582A1 (es) 2005-11-15 2007-12-05 Nat Hospital Organization Agentes para suprimir la induccion de linfocitos t citotoxicos
WO2007061029A1 (ja) 2005-11-25 2007-05-31 Keio University 前立腺癌治療剤
EP1977763A4 (en) 2005-12-28 2010-06-02 Chugai Pharmaceutical Co Ltd STABILIZER PREPARATION CONTAINING ANTIBODIES
JP5033643B2 (ja) 2006-01-27 2012-09-26 学校法人慶應義塾 脈絡膜血管新生を伴う疾患の治療剤
JP4902674B2 (ja) 2006-03-09 2012-03-21 エフ.ホフマン−ラ ロシュ アーゲー 抗薬物抗体アッセイ法
WO2007116962A1 (ja) 2006-04-07 2007-10-18 Osaka University 筋再生促進剤
WO2008016134A1 (fr) 2006-08-04 2008-02-07 Norihiro Nishimoto PROCÉDÉ POUR PRÉDIRE LE PRONOSTIC DES PATIENTS ATTEINTS DE POLYARTHRITE rhumatoïde
JP2010095445A (ja) 2006-12-27 2010-04-30 Tokyo Medical & Dental Univ Il−6アンタゴニストを有効成分とする炎症性筋疾患治療剤
TWI438208B (zh) 2007-01-23 2014-05-21 Chugai Pharmaceutical Co Ltd 抑制慢性排斥反應之藥劑
JP5424330B2 (ja) 2007-07-26 2014-02-26 国立大学法人大阪大学 インターロイキン6受容体阻害剤を有効成分とする眼炎症疾患治療剤
AU2008304756B8 (en) 2007-09-26 2015-02-12 Chugai Seiyaku Kabushiki Kaisha Anti-IL-6 receptor antibody
WO2009044774A1 (ja) 2007-10-02 2009-04-09 Chugai Seiyaku Kabushiki Kaisha インターロイキン6受容体阻害剤を有効成分とする移植片対宿主病治療剤
JP2009092508A (ja) 2007-10-09 2009-04-30 Norihiro Nishimoto リウマチ治療剤の効果の予測方法
DK2573568T3 (en) 2007-12-15 2015-02-09 Hoffmann La Roche Differentieringsassay
PE20091174A1 (es) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd Formulacion liquida con contenido de alta concentracion de anticuerpo
CA2728243C (en) 2008-06-05 2020-03-10 National Cancer Center Il-6 inhibitor for suppressing neuroinvasion in pancreatic cancer
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
MY161541A (en) 2009-07-31 2017-04-28 Shin Maeda Cancer metastasis inhibitor
HUE033758T2 (en) 2009-10-26 2017-12-28 Hoffmann La Roche A method for producing glycosylated immunoglobulin
WO2011128096A1 (en) 2010-04-16 2011-10-20 Roche Diagnostics Gmbh Polymorphism markers for predicting response to interleukin-6 receptor-inhibiting monoclonal antibody drug treatment
ES2932398T3 (es) 2010-05-28 2023-01-18 Chugai Pharmaceutical Co Ltd Potenciador de la respuesta de las células T antitumorales
JP5904552B2 (ja) 2010-05-28 2016-04-13 国立研究開発法人国立がん研究センター 膵癌治療剤
CA2801107A1 (en) 2010-06-07 2011-12-15 F. Hoffman-La Roche Ag Gene expression markers for predicting response to interleukin-6 receptor-inhibiting monoclonal antibody drug treatment
JP2013541594A (ja) 2010-11-08 2013-11-14 ジェネンテック, インコーポレイテッド 皮下投与される抗il−6受容体抗体
EP3235557B1 (en) 2011-09-01 2025-04-30 Chugai Seiyaku Kabushiki Kaisha PROCESS FOR PREPARING A COMPOSITION COMPRISING HIGHLY CONCENTRATED ANTIBODIES BY ULTRAFILTRATION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888510A (en) * 1993-07-21 1999-03-30 Chugai Seiyaku Kabushiki Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017121B2 (en) 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
US20010001663A1 (en) * 1994-06-30 2001-05-24 Tadamitsu Kishimoto Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
US20070036785A1 (en) * 1994-10-21 2007-02-15 Tadamitsu Kishimoto Pharmaceutical composition for treatment of diseases caused by IL-6 production
US9017677B2 (en) 1997-03-21 2015-04-28 Chugai Seiyaku Kabushiki Kaisha Methods of treating a disease mediated by sensitized T cells
US20090022719A1 (en) * 1997-08-15 2009-01-22 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic method for systemic lupus erythematosus comprising anti-IL-6 receptor antibody administration
US7824674B2 (en) 1998-03-17 2010-11-02 Chugai Seiyaku Kabushiki Kaisha Preventive or therapeutic agent for inflammatory bowel disease comprising IL-6 antagonist as an active ingredient
US20040071706A1 (en) * 1998-03-17 2004-04-15 Chugai Seiyaku Kabushiki Kaisha Preventive or therapeutic agent for inflammatory bowel disease comprising IL-6 antagonist as an active ingredient
US20060292147A1 (en) * 2000-10-27 2006-12-28 Chugai Seiyaku Kabushiki Kaisha Blood MMP-3 level-lowering agent comprising IL-6 antagonist as active ingredient
US9255145B2 (en) 2001-04-02 2016-02-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US8840884B2 (en) 2002-02-14 2014-09-23 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution pharmaceuticals
US9051384B2 (en) 2002-02-14 2015-06-09 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution formulations
US20090131639A1 (en) * 2002-02-14 2009-05-21 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution formulations
US20090181029A1 (en) * 2003-04-28 2009-07-16 Chugai Seiyaku Kabushiki Kaisha Methods for treating interleukin-6 related diseases
US10744201B2 (en) 2003-04-28 2020-08-18 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis with a human IL-6 receptor antibody and methotrexate
US8709409B2 (en) 2003-04-28 2014-04-29 Chugai Seiyaku Kabushiki Kaisha Method for treating rheumatoid arthritis by administering an anti-IL-6 antibody and methotrexate
US20080274106A1 (en) * 2003-10-17 2008-11-06 Chugai Seiyaku Kabushiki Kaisha Mesothelioma therapeutic agent
US8802092B2 (en) 2003-10-17 2014-08-12 Chugai Seiyaku Kabushiki Kaisha Mesothelioma therapeutic agent
US8617550B2 (en) 2003-12-19 2013-12-31 Chugai Seiyaku Kabushiki Kaisha Treatment of vasculitis with IL-6 antagonist
US20070098714A1 (en) * 2003-12-19 2007-05-03 Chugai Seiyaku Kabushiki Kaisha Preventive agent for vasculitis
US20080161262A1 (en) * 2004-02-26 2008-07-03 Baylor Research Institute Compositions and Methods for the Systemic Treatment of Arthritis
US20100068201A1 (en) * 2004-02-26 2010-03-18 Baylor Research Institute Compositions and methods for the systemic treatment of arthritis
US20100069466A1 (en) * 2004-02-26 2010-03-18 Baylor Research Institute Compositions and Methods for the Systemic Treatment of Arthritis
US11406688B2 (en) 2004-02-26 2022-08-09 Baylor Research Institute Compositions and methods for the systemic treatment of arthritis
US10716832B2 (en) 2004-02-26 2020-07-21 Baylor Research Institute Compositions and methods for the systemic treatment of arthritis
US20080161424A1 (en) * 2004-02-26 2008-07-03 Baylor Research Institute Compositions and Methods for the Systemic Treatment of Arthritis
US9649361B2 (en) 2004-02-26 2017-05-16 Baylor Research Institute Compositions and methods for the systemic treatment of arthritis
US8221748B2 (en) 2004-02-26 2012-07-17 Baylor Research Institute Compositions and methods for the systemic treatment of arthritis
US8148346B2 (en) 2004-02-26 2012-04-03 Baylor Research Institute Compositions and methods for the systemic treatment of arthritis
US9084777B2 (en) * 2005-12-28 2015-07-21 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
US20150284466A1 (en) * 2005-12-28 2015-10-08 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
US20090291076A1 (en) * 2005-12-28 2009-11-26 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
US10316096B2 (en) * 2005-12-28 2019-06-11 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
US8080248B2 (en) 2006-06-02 2011-12-20 Regeneron Pharmaceuticals, Inc. Method of treating rheumatoid arthritis with an IL-6R antibody
US8568721B2 (en) 2006-06-02 2013-10-29 Regeneron Pharmaceuticals, Inc. Method of treating rheumatoid arthritis with an anti-IL-6R antibody
US11370843B2 (en) 2006-06-02 2022-06-28 Regeneron Pharmaceuticals, Inc. High affinity antibodies to human IL-6 receptor
US10584173B2 (en) 2006-06-02 2020-03-10 Regeneron Pharmaceuticals, Inc. Nucleic acids encoding high affinity antibodies to human IL-6 receptor
US20100316636A1 (en) * 2006-06-02 2010-12-16 Regeneron Pharmaceuticals, Inc. Method of Treating Rheumatoid Arthritis with an IL-6R Antibody
US8192741B2 (en) 2006-06-02 2012-06-05 Regeneron Pharmaceuticals, Inc. Method of treating rheumatoid arthritis with an anti-IL-6R antibody
US8999330B2 (en) 2007-05-21 2015-04-07 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US10233239B2 (en) 2007-05-21 2019-03-19 Alderbio Holdings Llc Isolated host cells expressing anti-IL-6 antibodies
US10787507B2 (en) 2007-05-21 2020-09-29 Vitaeris Inc. Antagonists of IL-6 to prevent or treat thrombosis
US8404235B2 (en) 2007-05-21 2013-03-26 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US8535671B2 (en) 2007-05-21 2013-09-17 Alderbio Holdings Llc Methods of reducing CRP and/or increasing serum albumin in patients in need using IL-6 antibodies of defined epitopic specificity
US10759853B2 (en) 2007-05-21 2020-09-01 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US7935340B2 (en) 2007-05-21 2011-05-03 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US20090104187A1 (en) * 2007-05-21 2009-04-23 Alder Biopharmaceuticals, Inc. Novel Rabbit Antibody Humanization Methods and Humanized Rabbit Antibodies
US7906117B2 (en) 2007-05-21 2011-03-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US10800841B2 (en) 2007-05-21 2020-10-13 Vitaeris, Inc. Methods of treating autoimmunity using specific anti-IL-6 antibodies
US20100290993A1 (en) * 2007-05-21 2010-11-18 Leon Garcia-Martinez Antibodies to IL-6 and use thereof
US20090238825A1 (en) * 2007-05-21 2009-09-24 Kovacevich Brian R Novel rabbit antibody humanization methods and humanized rabbit antibodies
US11827700B2 (en) 2007-05-21 2023-11-28 Vitaeris Inc. Treatment or prevention of diseases and disorders associated with cells that express IL-6 with Anti-IL-6 antibodies
US8178101B2 (en) 2007-05-21 2012-05-15 Alderbio Holdings Inc. Use of anti-IL-6 antibodies having specific binding properties to treat cachexia
US10344086B2 (en) 2007-05-21 2019-07-09 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US9758579B2 (en) 2007-05-21 2017-09-12 Alder Bioholdings, Llc Nucleic acids encoding anti-IL-6 antibodies of defined epitopic specificity
US20090291089A1 (en) * 2007-05-21 2009-11-26 Smith Jeffrey T L Antagonists of IL-6 to prevent or treat Thrombosis
US8252286B2 (en) 2007-05-21 2012-08-28 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US20090297513A1 (en) * 2007-05-21 2009-12-03 Leon Garcia-Martinez Antibodies to il-6 and use thereof
US10913794B2 (en) 2007-05-21 2021-02-09 Vitaeris Inc. Antibodies to IL-6 and use thereof
US20090297436A1 (en) * 2007-05-21 2009-12-03 Leon Garcia-Martinez Antibodies to il-6 and use thereof
US10160804B2 (en) 2007-05-21 2018-12-25 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US10040851B2 (en) 2007-05-21 2018-08-07 Alderbio Holdings Llc Antagonists to IL-6 to raise albumin and/or lower CRP
US9241990B2 (en) 2007-05-21 2016-01-26 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRIP
US20090291077A1 (en) * 2007-05-21 2009-11-26 Smith Jeffrey T L Antagonists of IL-6 to prevent or treat Cachexia, weakness, fatigue, and/or fever
US8062864B2 (en) 2007-05-21 2011-11-22 Alderbio Holdings Llc Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies
US20110217303A1 (en) * 2007-05-21 2011-09-08 Smith Jeffrey T L Antagonists of il-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US9926370B2 (en) 2007-05-21 2018-03-27 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US9884912B2 (en) 2007-05-21 2018-02-06 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US20090028784A1 (en) * 2007-05-21 2009-01-29 Alder Biopharmaceuticals, Inc. Antibodies to IL-6 and use thereof
US9546213B2 (en) 2007-05-21 2017-01-17 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US20090291082A1 (en) * 2007-05-21 2009-11-26 Smith Jeffrey T L Antagonists of IL-6 to raise Albumin and/or lower CRP
US9701747B2 (en) 2007-05-21 2017-07-11 Alderbio Holdings Llc Method of improving patient survivability and quality of life by anti-IL-6 antibody administration
US9834603B2 (en) 2007-05-21 2017-12-05 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US9771421B2 (en) 2007-05-21 2017-09-26 Alderbio Holdings Llc Treating anemia in chronic IL-6 associated diseases using anti-IL-6 antibodies
US9725509B2 (en) 2007-05-21 2017-08-08 Alderbio Holdings Llc Expression vectors containing isolated nucleic acids encoding anti-human IL-6 antibody
US11359026B2 (en) 2007-12-27 2022-06-14 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11767363B2 (en) 2007-12-27 2023-09-26 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US20100285011A1 (en) * 2007-12-27 2010-11-11 Chugai Seiyaku Kabushiki Kaish High concentration antibody-containing liquid formulation
US11008394B2 (en) 2007-12-27 2021-05-18 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US8568720B2 (en) 2007-12-27 2013-10-29 Chugai Seiyaku Kabushiki Kaisha High concentration antibody-containing liquid formulation
US11584798B2 (en) 2007-12-27 2023-02-21 Hoffmann-La Roche Inc. High concentration antibody-containing liquid formulation
US9879074B2 (en) 2008-11-25 2018-01-30 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US10117955B2 (en) 2008-11-25 2018-11-06 Alderbio Holdings Llc Methods of aiding in the diagnosis of diseases using anti-IL-6 antibodies
US10787511B2 (en) 2008-11-25 2020-09-29 Vitaeris Inc. Antagonists of IL-6 to raise albumin and/or lower CRP
US9452227B2 (en) 2008-11-25 2016-09-27 Alderbio Holdings Llc Methods of treating or diagnosing conditions associated with elevated IL-6 using anti-IL-6 antibodies or fragments
US10640560B2 (en) 2008-11-25 2020-05-05 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and /or fever
US9994635B2 (en) 2008-11-25 2018-06-12 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US9265825B2 (en) 2008-11-25 2016-02-23 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US9212223B2 (en) 2008-11-25 2015-12-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US10053506B2 (en) 2008-11-25 2018-08-21 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US8323649B2 (en) 2008-11-25 2012-12-04 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US9187560B2 (en) 2008-11-25 2015-11-17 Alderbio Holdings Llc Antagonists of IL-6 to treat cachexia, weakness, fatigue, and/or fever
US9085615B2 (en) 2008-11-25 2015-07-21 Alderbio Holdings Llc Antibodies to IL-6 to inhibit or treat inflammation
US20100129357A1 (en) * 2008-11-25 2010-05-27 Leon Garcia-Martinez Antibodies to il-6 and use thereof
US10858424B2 (en) 2008-11-25 2020-12-08 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of arthritis
US20100150829A1 (en) * 2008-11-25 2010-06-17 Leon Garcia-Martinez Antibodies to IL-6 and use thereof
US8992920B2 (en) 2008-11-25 2015-03-31 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of arthritis
US9765138B2 (en) 2008-11-25 2017-09-19 Alderbio Holdings Llc Isolated anti-IL-6 antibodies
US12269897B2 (en) 2008-12-15 2025-04-08 Regeneron Pharmaceuticals, Inc. Anti-PCSK9 antibodies
US10391169B2 (en) 2009-07-28 2019-08-27 Alderbio Holdings Llc Method of treating allergic asthma with antibodies to IL-6
US11136610B2 (en) 2009-10-26 2021-10-05 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US10501769B2 (en) 2009-10-26 2019-12-10 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US11377678B2 (en) 2009-10-26 2022-07-05 Hoffman-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US11021728B2 (en) 2009-10-26 2021-06-01 Hoffmann-La Roche Inc. Method for the production of a glycosylated immunoglobulin
US10471143B2 (en) 2009-11-24 2019-11-12 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US9468676B2 (en) 2009-11-24 2016-10-18 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US9717793B2 (en) 2009-11-24 2017-08-01 Alderbio Holdings Llc Method of improving patient survivability and quality of life by administering an anti-IL-6 antibody
US9821057B2 (en) 2009-11-24 2017-11-21 Alderbio Holdings Llc Anti-IL-6 antibody for use in the treatment of cachexia
US9775921B2 (en) 2009-11-24 2017-10-03 Alderbio Holdings Llc Subcutaneously administrable composition containing anti-IL-6 antibody
US9724410B2 (en) 2009-11-24 2017-08-08 Alderbio Holdings Llc Anti-IL-6 antibodies or fragments thereof to treat or inhibit cachexia, associated with chemotherapy toxicity
US12077593B2 (en) 2010-01-08 2024-09-03 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-6 receptor (IL-6R) antibodies
US11098127B2 (en) 2010-01-08 2021-08-24 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-interleukin-6 receptor (IL-6R) antibodies
EP3351559A2 (en) 2010-11-08 2018-07-25 F. Hoffmann-La Roche AG Subcutaneously administered anti-il-6 receptor antibody
EP4029881A1 (en) 2010-11-08 2022-07-20 F. Hoffmann-La Roche AG Subcutaneously administered anti-il-6 receptor antibody
US10874677B2 (en) 2010-11-08 2020-12-29 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
WO2012064627A2 (en) 2010-11-08 2012-05-18 Genentech, Inc. Subcutaneously administered anti-il-6 receptor antibody
US11667720B1 (en) 2010-11-08 2023-06-06 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US11622969B2 (en) 2010-11-08 2023-04-11 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US10231981B2 (en) 2010-11-08 2019-03-19 Chugai Seiyaku Kabushiki Kaisha Subcutaneously administered anti-IL-6 receptor antibody for treatment of juvenile idiopathic arthritis
EP2787007A2 (en) 2010-11-08 2014-10-08 F. Hoffmann-La Roche AG Subcutaneously administered ANTI-IL-6 receptor antibody
US8580264B2 (en) 2010-11-08 2013-11-12 Genentech, Inc. Subcutaneously administered anti-IL-6 receptor antibody
US9539263B2 (en) 2010-11-08 2017-01-10 Genentech, Inc. Subcutaneously administered anti-IL-6 receptor antibody for treatment of systemic sclerosis
US9750752B2 (en) 2010-11-08 2017-09-05 Hoffmann-La Roche Inc. Subcutaneously administered anti-IL-6 receptor antibody
US9957321B2 (en) 2010-11-23 2018-05-01 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of oral mucositis
US8992908B2 (en) 2010-11-23 2015-03-31 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of oral mucositis
US9304134B2 (en) 2010-11-23 2016-04-05 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of anemia
US12083176B2 (en) 2011-01-28 2024-09-10 Sanofi Biotechnology Human antibodies to PCSK9 for use in methods of treating particular groups of subjects
US11673967B2 (en) 2011-07-28 2023-06-13 Regeneron Pharmaceuticals, Inc. Stabilized formulations containing anti-PCSK9 antibodies
US10927435B2 (en) 2011-10-11 2021-02-23 Sanofi Biotechnology Compositions for the treatment of rheumatoid arthritis and methods of using same
US10168326B2 (en) 2013-07-04 2019-01-01 F. Hoffmann-La Roche Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
US10761091B2 (en) 2013-07-04 2020-09-01 Hoffmann-La Roche, Inc. Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples
US11174317B2 (en) 2015-06-04 2021-11-16 National Center Of Neurology And Psychiatry Therapeutic agent for mental illness comprising IL-6 inhibitor as active ingredient
US11904017B2 (en) 2015-08-18 2024-02-20 Regeneron Pharmaceuticals, Inc. Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab
US11484591B2 (en) 2016-02-22 2022-11-01 Ohio State Innovation Foundation Chemoprevention using controlled-release formulations of anti-interleukin 6 agents, synthetic vitamin A analogues or metabolites, and estradiol metabolites
US11033496B2 (en) 2017-03-17 2021-06-15 The Regents Of The University Of Michigan Nanoparticles for delivery of chemopreventive agents
US11498969B2 (en) 2019-01-31 2022-11-15 Sanofi Biotechnology Compositions and methods for treating juvenile idiopathic arthritis
WO2020201362A2 (en) 2019-04-02 2020-10-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
US12440561B2 (en) 2019-04-24 2025-10-14 Sanofi Biotechnology Method of diagnosis and treatment of rheumatoid arthritis
US12297279B2 (en) 2019-06-04 2025-05-13 Sanofi Biotechnology Compositions and methods for treating pain in subjects with rheumatoid arthritis

Also Published As

Publication number Publication date
US7955598B2 (en) 2011-06-07
IL158079A (en) 2012-01-31
EP2298812A2 (en) 2011-03-23
JP3702274B2 (ja) 2005-10-05
EP1374900A4 (en) 2004-07-21
HUP0303952A2 (hu) 2004-03-01
EP2298812A3 (en) 2011-07-13
JP2009073857A (ja) 2009-04-09
RU2008102979A (ru) 2009-08-10
CN1499983A (zh) 2004-05-26
IL158079A0 (en) 2004-03-28
US20070148169A1 (en) 2007-06-28
KR100842133B1 (ko) 2008-06-27
JP2005139205A (ja) 2005-06-02
HU230197B1 (hu) 2015-10-28
HUP0303952A3 (en) 2012-09-28
JPWO2002080969A1 (ja) 2004-07-29
CN100562339C (zh) 2009-11-25
RU2003132066A (ru) 2005-04-10
AU2002243032B2 (en) 2008-01-31
EP3640261A1 (en) 2020-04-22
EP1972638A1 (en) 2008-09-24
JP2005206604A (ja) 2005-08-04
JP3702289B2 (ja) 2005-10-05
US20180222988A1 (en) 2018-08-09
RU2541165C2 (ru) 2015-02-10
BR0208636A (pt) 2004-03-09
PL365339A1 (en) 2004-12-27
KR100842132B1 (ko) 2008-06-27
UA80091C2 (en) 2007-08-27
JP5591279B2 (ja) 2014-09-17
MXPA03008955A (es) 2004-02-18
PL216534B1 (pl) 2014-04-30
US20110206664A1 (en) 2011-08-25
HK1062408A1 (zh) 2004-11-05
NZ528479A (en) 2005-08-26
CA2443294A1 (en) 2002-10-17
NO20034388L (no) 2003-10-21
JP2012140464A (ja) 2012-07-26
IL187604A0 (en) 2009-02-11
NO20034388D0 (no) 2003-10-01
EP1374900A1 (en) 2004-01-02
IL187604A (en) 2011-12-29
KR20030087655A (ko) 2003-11-14
RU2361613C2 (ru) 2009-07-20
KR20080027401A (ko) 2008-03-26
WO2002080969A1 (en) 2002-10-17
US9255145B2 (en) 2016-02-09
CA2443294C (en) 2013-09-24
US20160194401A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US7955598B2 (en) Therapeutic agent for chronic arthritides diseases of childhood-related diseases
US8562990B2 (en) Method of treating psoriatic arthritis with an IL-6 receptor antibody
US8173126B2 (en) Blood VEGF level-lowering agent containing IL-6 antagonist as the active ingredient
US8617550B2 (en) Treatment of vasculitis with IL-6 antagonist
US20140079695A1 (en) Preventive agent for vasculitis
HK1058317A (en) Remedies for infant chronic arthritis-relating diseases
HK1058007A (en) Preventives or remedies for psoriasis containing as the active ingredient il-6 antagonist
HK1057484A (en) Preventives or remedies for psoriasis containing as the active ingredient il-6 antagonist

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHUGAI SEIYAKU KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIZAKI, KAZUYUKI;NISHIMOTO, NORIHIRO;IWAMOTO, MASAHIRO;AND OTHERS;REEL/FRAME:014971/0040

Effective date: 20030911

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION