US20160194401A1 - Therapeutic agent for chronic arthritides diseases of childhood-related diseases - Google Patents
Therapeutic agent for chronic arthritides diseases of childhood-related diseases Download PDFInfo
- Publication number
- US20160194401A1 US20160194401A1 US14/986,884 US201614986884A US2016194401A1 US 20160194401 A1 US20160194401 A1 US 20160194401A1 US 201614986884 A US201614986884 A US 201614986884A US 2016194401 A1 US2016194401 A1 US 2016194401A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- receptor
- cells
- human
- antibody against
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 60
- 201000010099 disease Diseases 0.000 title claims abstract description 35
- 206010003246 arthritis Diseases 0.000 title abstract description 59
- 230000001684 chronic effect Effects 0.000 title abstract description 37
- 239000003814 drug Substances 0.000 title abstract description 14
- 229940124597 therapeutic agent Drugs 0.000 title abstract description 14
- 108090001005 Interleukin-6 Proteins 0.000 claims abstract description 124
- 102000004889 Interleukin-6 Human genes 0.000 claims abstract description 123
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 claims abstract description 39
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 claims abstract description 38
- 102000010781 Interleukin-6 Receptors Human genes 0.000 claims description 93
- 108010038501 Interleukin-6 Receptors Proteins 0.000 claims description 86
- 238000000034 method Methods 0.000 claims description 86
- 102000005962 receptors Human genes 0.000 claims description 27
- 108020003175 receptors Proteins 0.000 claims description 27
- 208000003456 Juvenile Arthritis Diseases 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 18
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 claims description 11
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 11
- 208000019069 chronic childhood arthritis Diseases 0.000 claims description 11
- 102000052611 human IL6 Human genes 0.000 claims description 11
- 229960000485 methotrexate Drugs 0.000 claims description 11
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 claims description 9
- 239000003246 corticosteroid Substances 0.000 claims description 5
- 230000037396 body weight Effects 0.000 claims description 4
- 229960001334 corticosteroids Drugs 0.000 claims description 4
- 238000010253 intravenous injection Methods 0.000 claims description 2
- 238000010254 subcutaneous injection Methods 0.000 claims description 2
- 239000007929 subcutaneous injection Substances 0.000 claims description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 claims 2
- 229940100601 interleukin-6 Drugs 0.000 abstract description 116
- 239000005557 antagonist Substances 0.000 abstract description 21
- 239000004480 active ingredient Substances 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 79
- 210000004408 hybridoma Anatomy 0.000 description 52
- 108090000623 proteins and genes Proteins 0.000 description 47
- 108090000765 processed proteins & peptides Proteins 0.000 description 36
- 102000036639 antigens Human genes 0.000 description 30
- 108091007433 antigens Proteins 0.000 description 30
- 239000000427 antigen Substances 0.000 description 29
- 108020004414 DNA Proteins 0.000 description 22
- 239000013604 expression vector Substances 0.000 description 22
- 102000004196 processed proteins & peptides Human genes 0.000 description 20
- 230000001235 sensitizing effect Effects 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 16
- 230000036961 partial effect Effects 0.000 description 16
- 230000009885 systemic effect Effects 0.000 description 16
- 230000007910 cell fusion Effects 0.000 description 15
- 239000012228 culture supernatant Substances 0.000 description 14
- 101710152369 Interleukin-6 receptor subunit beta Proteins 0.000 description 13
- 206010035226 Plasma cell myeloma Diseases 0.000 description 13
- 125000003275 alpha amino acid group Chemical group 0.000 description 13
- 201000000050 myeloid neoplasm Diseases 0.000 description 13
- 102100037795 Interleukin-6 receptor subunit beta Human genes 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 12
- 101001076414 Mus musculus Interleukin-6 Proteins 0.000 description 11
- 230000004071 biological effect Effects 0.000 description 11
- 239000002299 complementary DNA Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 210000002865 immune cell Anatomy 0.000 description 11
- 241000283707 Capra Species 0.000 description 10
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 10
- 241000124008 Mammalia Species 0.000 description 10
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 9
- 206010037660 Pyrexia Diseases 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 8
- 230000003053 immunization Effects 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 7
- 239000012894 fetal calf serum Substances 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 238000002649 immunization Methods 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 102000004127 Cytokines Human genes 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 6
- QRLVDLBMBULFAL-UHFFFAOYSA-N Digitonin Natural products CC1CCC2(OC1)OC3C(O)C4C5CCC6CC(OC7OC(CO)C(OC8OC(CO)C(O)C(OC9OCC(O)C(O)C9OC%10OC(CO)C(O)C(OC%11OC(CO)C(O)C(O)C%11O)C%10O)C8O)C(O)C7O)C(O)CC6(C)C5CCC4(C)C3C2C QRLVDLBMBULFAL-UHFFFAOYSA-N 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- UVYVLBIGDKGWPX-KUAJCENISA-N digitonin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)C[C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)CO7)O)[C@H](O)[C@@H](CO)O6)O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O7)O)[C@@H](O)[C@@H](CO)O6)O)[C@@H](CO)O5)O)C[C@@H]4CC[C@H]3[C@@H]2[C@@H]1O)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 UVYVLBIGDKGWPX-KUAJCENISA-N 0.000 description 6
- UVYVLBIGDKGWPX-UHFFFAOYSA-N digitonine Natural products CC1C(C2(CCC3C4(C)CC(O)C(OC5C(C(O)C(OC6C(C(OC7C(C(O)C(O)CO7)O)C(O)C(CO)O6)OC6C(C(OC7C(C(O)C(O)C(CO)O7)O)C(O)C(CO)O6)O)C(CO)O5)O)CC4CCC3C2C2O)C)C2OC11CCC(C)CO1 UVYVLBIGDKGWPX-UHFFFAOYSA-N 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 206010039073 rheumatoid arthritis Diseases 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 208000011580 syndromic disease Diseases 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 description 4
- 208000006820 Arthralgia Diseases 0.000 description 4
- 241000255789 Bombyx mori Species 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 4
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 4
- 241000208125 Nicotiana Species 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102100040247 Tumor necrosis factor Human genes 0.000 description 4
- 230000003460 anti-nuclear Effects 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 229960005205 prednisolone Drugs 0.000 description 4
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 150000003431 steroids Chemical class 0.000 description 4
- 230000009261 transgenic effect Effects 0.000 description 4
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 3
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 3
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 3
- 206010003445 Ascites Diseases 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 229930105110 Cyclosporin A Natural products 0.000 description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 3
- 108010036949 Cyclosporine Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010002352 Interleukin-1 Proteins 0.000 description 3
- 102000000589 Interleukin-1 Human genes 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 239000012980 RPMI-1640 medium Substances 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 241000219061 Rheum Species 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 210000000628 antibody-producing cell Anatomy 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229960001265 ciclosporin Drugs 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 3
- -1 for example Proteins 0.000 description 3
- 238000007499 fusion processing Methods 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 229960003444 immunosuppressant agent Drugs 0.000 description 3
- 239000003018 immunosuppressive agent Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229960004584 methylprednisolone Drugs 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- 102000011632 Caseins Human genes 0.000 description 2
- 108010076119 Caseins Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 101150074155 DHFR gene Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- 102000008857 Ferritin Human genes 0.000 description 2
- 108050000784 Ferritin Proteins 0.000 description 2
- 238000008416 Ferritin Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 206010019842 Hepatomegaly Diseases 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 description 2
- 101710144554 Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- 102000003814 Interleukin-10 Human genes 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 241000609499 Palicourea Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 206010036030 Polyarthritis Diseases 0.000 description 2
- 241001505332 Polyomavirus sp. Species 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 206010058556 Serositis Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000003435 antirheumatic agent Substances 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003113 dilution method Methods 0.000 description 2
- 231100000321 erythema Toxicity 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 150000002344 gold compounds Chemical class 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 238000002616 plasmapheresis Methods 0.000 description 2
- 208000030428 polyarticular arthritis Diseases 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 206010037844 rash Diseases 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000012090 serum-supplement Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011285 therapeutic regimen Methods 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- KYRUKRFVOACELK-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(4-hydroxyphenyl)propanoate Chemical compound C1=CC(O)=CC=C1CCC(=O)ON1C(=O)CCC1=O KYRUKRFVOACELK-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 108010054404 Adenylyl-sulfate kinase Proteins 0.000 description 1
- 208000026326 Adult-onset Still disease Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 101100136076 Aspergillus oryzae (strain ATCC 42149 / RIB 40) pel1 gene Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000027932 Collagen disease Diseases 0.000 description 1
- 206010010214 Compression fracture Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 101100286713 Homo sapiens IL6 gene Proteins 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 1
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 102100027662 Sphingosine kinase 2 Human genes 0.000 description 1
- 206010041660 Splenomegaly Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 101100068489 Vicia faba AGPC gene Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000019804 backache Diseases 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- HFNQLYDPNAZRCH-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O.OC(O)=O HFNQLYDPNAZRCH-UHFFFAOYSA-N 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000006253 efflorescence Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 239000002662 enteric coated tablet Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- GPGMRSSBVJNWRA-UHFFFAOYSA-N hydrochloride hydrofluoride Chemical compound F.Cl GPGMRSSBVJNWRA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 206010024378 leukocytosis Diseases 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 229940064748 medrol Drugs 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000013365 molecular weight analysis method Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 101150040383 pel2 gene Proteins 0.000 description 1
- 101150050446 pelB gene Proteins 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 208000008494 pericarditis Diseases 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000008180 pharmaceutical surfactant Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229940093430 polyethylene glycol 1500 Drugs 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229940068296 prednisolone 30 mg Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940126622 therapeutic monoclonal antibody Drugs 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229940099259 vaseline Drugs 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 235000021247 β-casein Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2866—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
- C07K16/248—IL-6
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
- C07K2317/14—Specific host cells or culture conditions, e.g. components, pH or temperature
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- the present invention relates to a therapeutic agent for “chronic arthritides diseases of childhood-related diseases” comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
- Chronic arthritides diseases of childhood-related diseases include chronic arthritides diseases of childhood, Still's disease and the like.
- IL-6 is a cytokine called B-cell stimulating factor 2 (BSF2) or interferon ⁇ 2.
- BSF2 B-cell stimulating factor 2
- IL-6 was discovered as a differentiation factor responsible for activation of B-lymphatic cells (Hirano, T. et al., Nature (1986) 324, 73-76). Thereafter, it was found to be a multifunctional cytokine that influences the function of various cells (Akira, S. et al., Adv. in Immunology (1993) 54, 1-78). IL-6 has been reported to induce the maturation of T lymphatic cells (Lotz, M. et al., J. Exp. Med. (1988) 167, 1253-1258).
- IL-6 propagates its biological activity through two proteins on the cell.
- One is a ligand-binding protein, IL-6 receptor, with a molecular weight of about 80 kD to which IL-6 binds (Taga T. et al., J. Exp. Med. (1987) 166, 967-981; Yamasaki, K. et al., Science (1987) 241, 825-828).
- IL-6 receptor exists not only in a membrane-bound form that penetrates and is expressed on the cell membrane but also as a soluble IL-6 receptor consisting mainly of the extracellular region.
- the other is non-ligand-binding membrane-bound protein gp130 with a molecular weight of about 130 kD that takes part in signal transduction.
- IL-6 and IL-6 receptor form an IL-6/IL-6 receptor complex, to which gp130 is bound, and thereby the biological activity of IL-6 is propagated into the cell (Taga et al., Cell (1989) 58, 573-581).
- IL-6 antagonists are substances that inhibit the transduction of IL-6 biological activities.
- antibodies to IL-6 anti-IL-6 antibodies
- antibodies to IL-6 receptor anti-IL-6 receptor antibodies
- antibodies to gp130 anti-gp130 antibodies
- reshaped IL-6 IL-6 or IL-6 receptor partial peptides, and the like.
- Antibodies to IL-6 receptor have been described in a number of reports (Novick D. et al., Hybridoma (1991) 10, 137-146; Huang, Y. W. et al., Hybridoma (1993) 12, 621-630; International Patent Application WO 95-09873; French Patent Application FR 2694767; United States Patent U.S. Pat. No. 5,216,128).
- a humanized PM-1 antibody was obtained by implanting the complementarity determining region (CDR) of a mouse antibody PM-1 (Hirata et al., J. Immunology (1989), one of anti-IL-6 receptor antibodies, 143, 2900-2906) into a human antibody (International Patent Application WO 92-19759).
- CDR complementarity determining region
- Chronic arthritides diseases of childhood are diseases comprising mainly chronic arthritis that develops at less than 16 years of age and is the most prevalent disease among the collagen diseases that develop in children. Unlike rheumatoid arthritis (RA) in adults, they are not considered to be a homogeneous disease and have a variety of disease types, and therefore they tend to be dealt with as a disease entity different from rheumatoid arthritis in adults.
- RA rheumatoid arthritis
- JRA chronic arthritides diseases of childhood
- JCA juvenile chronic arthritis
- ICA idiopathic chronic arthritis
- JIA juvenile idiopathic arthritis
- ACR American College of Rheumatology
- arthritic diseases that develop in children less than 16 years old and persist for six weeks or longer, into three disease types: 1) systemic onset JRA, 2) polyarticular, 3) pauciarticular (ARA classification)
- ARA classification JRA Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association Arthritis Rheum 20 (Suppl): 195, 1977).
- EULAR European League against Rheumatism
- This classification provides division into: 1) systemic arthritis, 2) polyarthritis RF positive, 3) polyarthritis RF negative, 4) oligoarthritis, 5) extended oligoarthritis, 6) enthesitis related arthritis, 7) psoriatic arthritis, and 8) others.
- the present inventors have proposed a method of classifying chronic arthritides diseases of childhood into:
- SPRASH syndrome SPRASH: spiking fever, pericarditis, rash, arthritis, splenomegaly, hepatomegaly
- cytokines are involved in chronic arthritides diseases of childhood.
- IL-1 IL-6, IL-12 and TNF- ⁇
- anti-inflammatory cytokines IL-1ra IL-1 receptor antagonist
- IL-10 IL-13
- sTNFR soluble TNF receptor
- nonsteroidal anti-inflammatory drugs corticosteroids, antirheumatic drugs (gold compounds etc.), immunosuppressants, methotrexate (MTX etc.) have been used.
- MTX methotrexate
- Still's disease first described by the British pediatrician Dr. Still in 1897, was reported to have a clinical picture clearly different from that of rheumatoid arthritis in adults and is a disease seen in children to adults (especially in adolescence and the main symptoms include fever, erythema, arthritis, serositis and the like. Among them, adult-onset type is designated as adult onset Still's disease. In Still's disease, rheumatoid factor is usually negative.
- Still's disease is another name of the systemic type of juvenile rheumatoid arthritis (juvenile rheumatoid arthritis (JRA), JCA (juvenile chronic arthritis), juvenile idiopathic arthritis (JIA)) which is a chronic arthritis developing in children at less than 16 years old.
- JRA infant rheumatoid arthritis
- JCA juvenile chronic arthritis
- JIA juvenile idiopathic arthritis
- Still's disease in adults and that in children are considered to be almost the same disease, though there are minor differences in clinical feature in addition to the age when the disease develops. Still's disease in children refers to JRA of the systemic type as described above.
- JRA and rheumatoid arthritis (RA) in adults are clinically different in many ways and are dealt with as different diseases, and therefore Still's disease in adults is often dealt with as an independent disease entity among the rheumatic diseases.
- IL-6 With respect to IL-6, de Benedetti et al. reported that serum levels of IL-6 are elevated in Still's disease in children (Arthritis Rheum. 34: 1158, 1991), and that a large amount of IL-6/soluble IL-6 receptor (sIL-6R) complex is present in the serum of patients with Still's disease in children and a correlation can be seen between this complex level and CRP values (J. Clin. Invest. 93: 2114, 1994). Furthermore, Rooney et al. have reported that plasma levels of IL-6 and TNF- ⁇ are elevated in patients with Still's disease in children (Br. J. Rheumatol. 34: 454, 1995).
- sIL-6R soluble IL-6 receptor
- nonsteroidal anti-inflammatory drugs corticosteroids, antirheumatic drugs (gold compounds etc.), immunosuppressants, gamma globulin formulations, methotrexate (MTX etc.) have been used.
- MTX methotrexate
- the present invention provides a novel therapeutic agent for chronic arthritides diseases of childhood-related diseases, said agent being of a type different from the conventional therapeutic agents for chronic arthritides diseases of childhood-related diseases.
- chronic arthritides diseases of childhood-related diseases included chronic arthritides diseases of childhood and Still's disease.
- an interleukin-6 (IL-6) antagonist has an effect of treating chronic arthritides diseases of childhood-related diseases, and have completed the present invention.
- the present invention provides a therapeutic agent for chronic arthritides diseases of childhood-related diseases comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
- IL-6 interleukin-6
- the present invention provides a therapeutic agent for chronic arthritides diseases of childhood comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
- IL-6 interleukin-6
- the present invention also provides a therapeutic agent for Still's disease comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
- IL-6 interleukin-6
- the above IL-6 antagonist is preferably an antibody against IL-6 receptor, and preferably a monoclonal antibody against human IL-6 receptor or a monoclonal antibody against mouse IL-6 receptor.
- a monoclonal antibody against human IL-6 receptor there can be illustrated PM-1 antibody
- MR16-1 antibody As the above monoclonal antibody against mouse IL-6 receptor, there can be illustrated MR16-1 antibody.
- the above antibody is preferably a chimeric antibody, a humanized antibody or a human antibody and, for example, is a humanized PM-1 antibody.
- Chronic arthritides diseases of childhood which are the subject of treatment with a therapeutic agent of the present invention include all diseases in the above ARA, EULAR, and ILAR classifications, and the classification by the present inventors.
- the disease type classification of chronic arthritides diseases of childhood is now undergoing a review on a global scale and it can be said to be in a state of uncertainty.
- Preferred treatment subjects are: in the ARA classification, systemic onset, polyarticular, and pauciarticular; in the EULAR classification, systemic onset, polyarticular, and oligoarticular; in the ILAR classification, systemic onset, polyarticular (RF positive), polyarticular (RF negative), oligoarthritis, and extended oligoarthritis; and, in the classification by the present inventors, primary chronic arthritides of childhood (SPRASH syndrome, idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type, c.
- SPRASH syndrome idiopathic chronic arthritides of childhood
- RF rheumatoid factor
- ANA anti-nuclear antibody
- RF/ANA-negative type RF/ANA-negative type
- RF/ANA-negative type RF/ANA-negative type
- RF/ANA-negative type idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type)).
- SPRASH syndrome idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type)).
- RF rheumatoid factor
- ANA anti-nuclear antibody
- More preferred subjects of treatment are: in the ARA classification, systemic onset and polyarticular; in the EULAR classification, systemic onset and polyarticular; in the ILAR classification, systemic onset, polyarticular (RF positive), and extended oligoarthritis; and, in the classification by the present inventors, primary chronic arthritides of childhood (SPRASH syndrome, idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type)).
- SPRASH syndrome idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type)
- IL-6 antagonists for use in the present invention may be of any origin, any type, and any form, as long as they exhibit therapeutic effects on chronic arthritides diseases of childhood-related diseases.
- IL-6 antagonists are substances that block signal transduction by IL-6 and inhibit the biological activity of IL-6.
- IL-6 antagonists are substances that preferably have an inhibitory action on the binding to any of IL-6, IL-6 receptor or gp130.
- IL-6 antagonists there can be mentioned, for example, anti-IL-6 antibody, anti-IL-6 receptor antibody, anti-gp130 antibody, reshaped IL-6, soluble reshaped IL-6 receptor, or partial peptides of IL-6 or IL-6 receptor, as well as low molecular weight substances that exhibit activities similar to them.
- Anti-IL-6 antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method.
- monoclonal antibodies of, in particular, mammalian origin are preferred.
- Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to IL-6, block the binding of IL-6 to IL-6 receptor, and thereby block the propagation of biological activity of IL-6 into the cell.
- MH166 antibody Matsuda, et al., Eur. J. Immunology (1988) 18, 951-956
- SK2 antibody Sato, et al., The 21st General Meeting of the Japanese Society for Immunology, Gakujutu Kiroku (1991) 21, 166) etc.
- a hybridoma that produces anti-IL-6 antibody can be basically constructed using a known procedure as described bellow.
- IL-6 is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
- anti-IL-6 antibodies may be obtained in the following manner.
- human IL-6 to be used as the sensitizing antigen for obtaining antibody can be obtained using the IL-6 gene/amino acid sequence disclosed in Eur. J. Biochem. (1987) 168, 543-550; J. Immunol. (1988) 140, 1534-1541, or Agr. Biol. Chem. (1990) 54, 2685-2688.
- the IL-6 protein of interest may be purified from the host cell or a culture supernatant thereof by a known method, and the purified IL-6 protein may be used as the sensitizing antigen.
- a fusion protein of the IL-6 protein and another protein may be used as the sensitizing antigen.
- Anti-IL-6 receptor antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method.
- monoclonal antibodies of, in particular, a mammalian origin are preferred.
- Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to IL-6, block the binding of IL-6 to IL-6 receptor, and thereby block the propagation of biological activity of IL-6 into the cell.
- Examples of such antibodies include MR16-1 antibody (Tamura, T. et al., Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928), PM-1 antibody (Hirata, Y. et al., J. Immunology (1989) 143, 2900-2906), AUK12-20 antibody, AUK64-7 antibody or AUK146-15 antibody (International Patent Application WO 92-19759), and the like. Among them, PM-1 antibody is most preferred.
- the hybridoma cell line which produces PM-1 antibody has been internationally deposited under the provisions of the Budapest Treaty as PM-1 on Jul. 12, 1988 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-2998.
- the hybridoma cell line which produces MR16-1 antibody has been internationally deposited under the provisions of the Budapest Treaty as Rat-mouse hybridoma MR16-1 on Mar. 13, 1997 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-5875.
- a hybridoma that produces anti-IL-6 receptor monoclonal antibody can, basically, be constructed using a known procedure as described bellow.
- IL-6 receptor is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
- anti-IL-6 receptor antibodies may be obtained in the following manner.
- human IL-6 receptor used as the sensitizing antigen for obtaining antibody can be obtained using the IL-6 receptor gene/amino acid sequence disclosed in European Patent Application No. EP 325474
- mouse IL-6 receptor can be obtained using the IL-6 receptor gene/amino acid sequence disclosed in Japanese Unexamined Patent Publication (Kokai) No. 3-155795.
- Soluble IL-6 receptor antibody is composed of the substantially extracellular region of IL-6 receptor bound to the cell membrane, and is different from the membrane-bound IL-6 receptor in that the former lacks the transmembrane region or both of the transmembrane region and the intracellular region.
- IL-6 receptor protein may be any IL-6 receptor, as long as it can be used as a sensitizing antigen for preparing anti-IL-6 receptor antibody for use in the present invention.
- the desired IL-6 receptor protein may be purified from the host cell or a culture supernatant thereof using a known method, and the IL-6 receptor protein thus purified may be used as the sensitizing antigen.
- cells that express IL-6 receptor protein or a fusion protein of IL-6 receptor protein and another protein may be used as the sensitizing antigen.
- Escherichia coli E. coli containing a plasmid pIBIBSF2R that comprises cDNA encoding human IL-6 receptor has been internationally deposited under the provisions of the Budapest Treaty as HB101-pIBIBSF2R on Jan. 9, 1989 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-2232.
- Anti-gp130 antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method.
- monoclonal antibodies of, in particular, mammalian origin are preferred.
- Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to gp130, block the binding of gp130 to the IL-6/IL-6 receptor complex, and thereby block the propagation of biological activity of IL-6 into the cell.
- Examples of such antibodies include AM64 antibody (Japanese Unexamined Patent Publication (Kokai) No. 3-219894), 4B11 antibody and 2H4 antibody (U.S. Pat. No. 5,571,513), B-S12 antibody and B-P8 antibody (Japanese Unexamined Patent Publication (Kokai) No. 8-291199) etc.
- a hybridoma that produces anti-gp130 antibody can be basically constructed using a known procedure as described below.
- gp130 is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
- monoclonal antibodies may be obtained in the following manner.
- gp130 used as the sensitizing antigen for obtaining antibody can be obtained using the gp130 gene/amino acid sequence disclosed in European Patent Application No. EP 411946.
- the gene sequence of gp130 may be inserted into a known expression vector, and said vector is used to transform a suitable host cell. From the host cell or a culture supernatant therefrom, the gp130 protein of interest may be purified by a known method, and the purified IL-6 protein may be used as the sensitizing antigen. Alternatively, cells expressing gp130, or a fusion protein of the gp130 protein and another protein may be used as the sensitizing antigen.
- mammals to be immunized with the sensitizing antigen are selected in consideration of their compatibility with the parent cells for use in cell fusion and they generally include, but are not limited to, rodents such as mice, rats and hamsters.
- Immunization of animals with a sensitizing antigen is carried out using a known method.
- a general method involves intraperitoneal or subcutaneous administration of a sensitizing antigen to the mammal.
- a sensitizing antigen which was diluted and suspended in an appropriate amount of phosphate buffered saline (PBS) or physiological saline etc., is mixed with an appropriate amount of a common adjuvant such as Freund's complete adjuvant. After being emulsified, it is preferably administered to a mammal several times every 4 to 21 days.
- a suitable carrier may be used at the time of immunization of the sensitizing antigen.
- immune cells are taken out from the mammal and are subjected to cell fusion.
- preferred immune cells that are subjected to cell fusion there can be specifically mentioned spleen cells.
- Mammalian myeloma cells as the other parent cells which are subjected to cell fusion with the above-mentioned immune cells preferably include various known cell lines such as P3x63Ag8.653 (Kearney, J. F. et al., J. Immunol. (1979) 123, 1548-1550), P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7), NS-1 (Kohler, G. and Milstein, C., Eur. J. Immunol. (1976) 6, 511-519), MPC-11 (Margulies, D. H. et al., Cell (1976) 8, 405-415), SP2/0 (Shulman, M.
- Cell fusion between the above immune cells and myeloma cells may be essentially conducted in accordance with a known method such as is described in Milstein et al. (Kohler, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46) and the like.
- the above cell fusion is carried out in the conventional nutrient broth in the presence of, for example, a cell fusion accelerator.
- a cell fusion accelerator for example, polyethylene glycol (PEG), Sendai virus (HVJ) and the like may be used, and an adjuvant such as dimethyl sulfoxide may be added as desired to enhance the efficiency of fusion.
- the preferred ratio of the immune cells and the myeloma cells for use is, for example, 1 to 10 times more immune cells than the myeloma cells.
- culture media to be used for the above cell fusion include, for example, RPMI 1640 medium and MEM culture medium suitable for the growth of the above myeloma cell lines, and the conventional culture medium used for this type of cell culture and, besides, a serum supplement such as fetal calf serum (FCS) may be added.
- FCS fetal calf serum
- a PEG solution previously heated to about 37° C. for example a PEG solution with a mean molecular weight of 1000 to 6000, is added at a concentration of 30 to 60% (w/v) and mixed to obtain the desired fusion cells (hybridomas).
- a suitable culture liquid and centrifugation to remove the supernatant, cell fusion agents etc., that are undesirable for the growth of the hybridoma, can be removed.
- Said hybridoma is selected by culturing in the conventional selection medium, for example, HAT culture medium (a culture liquid containing hypoxanthine, aminopterin, and thymidine). Culturing in said HAT culture medium is continued generally for the period of time sufficient to effect killing of the cells other than the desired hybridoma (non-fusion cells), generally several days to several weeks.
- the conventional limiting dilution method is conducted in which the hybridomas producing the desired antibody are screened and cloned.
- transgenic animal having a repertoire of human antibody genes is immunized with the antigen or antigen-expressing cells to obtain the desired human antibody according to the above-mentioned method (see International Patent Application WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096 and WO 96/33735).
- the monoclonal antibody-producing hybridomas thus constructed can be subcultured in the conventional culture liquid, or can be stored for a prolonged period of time in liquid nitrogen.
- the hybridoma is cultured in the conventional method and the antibodies are obtained as the supernatant, or a method in which the hybridoma is implanted into and grown in a mammal compatible with said hybridoma and the antibodies are obtained as the ascites.
- the former method is suitable for obtaining high-purity antibodies, whereas the latter is suitable for a large scale production of antibodies.
- an anti-IL-6 receptor antibody-producing hybridoma can be polypeptide by a method disclosed in Japanese Unexamined Patent Publication (Kokai) No. 3-139293. There may be used a method in which The PM-1 antibody-producing hybridoma that has been internationally deposited under the provisions of the Budapest Treaty on Jul.
- a recombinant antibody that was produced by cloning an antibody gene from a hybridoma and the gene is then integrated into an appropriate vector, which is introduced into a host to produce the recombinant antibody using gene recombinant technology (see, for example, Borrebaeck, C. A. K. and Larrick, J. W., THERAPEUTIC MONOCLONAL ANTIBODIES, published in the United Kingdom by MACMILLAN PUBLISHERS LTD. 1990).
- mRNA encoding the variable region (V region) of the antibody is isolated from the cell that produces the antibody of interest, for example a hybridoma.
- the isolation of mRNA is conducted by preparing total RNA by a known method such as the guanidine ultracentrifuge method (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299), the AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159), and then mRNA is purified from the total RNA using the mRNA Purification kit (manufactured by Pharmacia) and the like.
- mRNA can be directly prepared using the Quick Prep mRNA Purification Kit (manufactured by Pharmacia).
- cDNA of the V region of antibody may be synthesized from the mRNA thus obtained using a reverse transcriptase.
- cDNA may be synthesized using the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit and the like.
- the 5′-Ampli FINDER RACE Kit manufactured by Clontech
- the 5′-RACE method Belyavsky, A. et al., Nucleic Acids Res.
- the desired DNA fragment is purified from the PCR product obtained and may be ligated to vector DNA. Moreover, a recombinant vector is constructed therefrom and then is introduced into E. coli etc., from which colonies are selected to prepare the desired recombinant vector.
- the base sequence of the desired DNA may be confirmed by a known method such as the dideoxy method.
- DNA encoding the V region of the desired antibody may be ligated to DNA encoding the constant region (C region) of the desired antibody, which is then integrated into an expression vector.
- DNA encoding the V region of the antibody may be integrated into an expression vector which already contains DNA encoding the C region of the antibody.
- the antibody gene is integrated into an expression vector so as to be expressed under the control of the expression regulatory region, for example an enhancer and/or a promoter. Subsequently, the expression vector is transformed into a host cell and the antibody can then be expressed therein.
- the expression regulatory region for example an enhancer and/or a promoter.
- artificially altered recombinant antibodies such as chimeric antibody, humanized antibody and human antibody can be used for the purpose of lowering heterologous antigenicity against humans.
- altered antibody can be produced using known methods.
- Chimeric antibody can be obtained by ligating the thus obtained DNA encoding the V region of antibody to DNA encoding the C region of human antibody, which is then integrated into an expression vector and introduced into a host for production of the antibody therein (see European Patent Application EP 125023, and International Patent Application WO 92-19759). Using this known method, chimeric antibody useful for the present invention can be obtained.
- Plasmids containing the L chain V region or the H chain V region of chimeric PM-1 antibody have each been designated as pPM-k3 and pPM-h1, respectively, and E. coli having a respective plasmid has been internationally deposited under the provisions of the Budapest Treaty as NCIMB40366 and NCIMB40362 on Feb. 11, 1991 with the National Collections of Industrial and Marine Bacteria Limited.
- Humanized antibody which is also called reshaped human antibody has been made by implanting the complementarity determining region (CDR) of antibody of a mammal other than the human, for example mouse antibody, into the CDR of human antibody.
- CDR complementarity determining region
- the general recombinant DNA technology for preparation of such antibodies is also known (see European Patent Application EP 125023 and International Patent Application WO 92-19759).
- a DNA sequence which was designed to ligate the CDR of mouse antibody with the framework region (FR) of human antibody is synthesized from several divided oligonucleotides having sections overlapping with one another at the ends thereof.
- the DNA thus obtained is ligated to DNA encoding the C region of human antibody and then is incorporated into an expression vector, which is introduced into a host for antibody production (see European Patent Application EP 239400 and International Patent Application WO 92-19759).
- the CDR that has a favorable antigen-binding site is selected.
- amino acids in the FR of antibody V region may be substituted so that the CDR of humanized antibody may form an appropriate antigen biding site (Sato, K. et al., Cancer Res. (1993) 53, 851-856).
- C region of human antibody there can be used, for example, C ⁇ 1, C ⁇ 2, C ⁇ 3, or C ⁇ 4.
- the C region of human antibody may also be modified in order to improve the stability of antibody and of the production thereof.
- Chimeric antibody consists of the V region of antibody of a human origin other than humans and the C region of human antibody
- humanized antibody consists of the complementarity determining region of antibody of a human origin other than humans and the framework region and the C region of human antibody, with their antigenicity in the human body being decreased, and thus are useful as antibody for use in the present invention.
- humanized antibody for use in the present invention, there can be mentioned humanized PM-1 antibody (see International Patent Application WO 92-19759).
- variable region of human antibody is expressed on the surface of a phage by the phage display method as a single chain antibody (scFv) to select a phage that binds to the antigen.
- scFv single chain antibody
- the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be identified.
- said sequence can be used to prepare a suitable expression vector and human antibody can be obtained.
- Antibody genes constructed as mentioned above may be expressed and obtained in a known manner.
- expression may be accomplished using a DNA in which a commonly used useful promoter, an antibody gene to be expressed, and the poly A signal have been operably linked at 3′ downstream thereof, or a vector containing it.
- a promoter/enhancer for example, there can be mentioned human cytomegalovirus immediate early promoter/enhancer.
- promoter/enhancer which can be used for expression of antibody for use in the present invention
- viral promoters/enhancers such as retrovirus, polyoma virus, adenovirus, and simian virus 40 (SV40), and promoters/enhancers derived from mammalian cells such as human elongation factor 1 ⁇ (HEF1 ⁇ ).
- expression may be readily accomplished by the method of Mulligan et al. (Mulligan, R. C. et al., Nature (1979) 277, 108-114) when SV40 promoter/enhancer is used, and by the method of Mizushima, S. et al. (Mizushima, S. and Nagata, S., Nucleic Acids Res. (1990) 18, 5322) when HEF1 ⁇ promoter/enhancer is used.
- expression may be conducted by operably linking a commonly used promoter, a signal sequence for antibody secretion, and an antibody gene to be expressed, followed by expression thereof.
- a commonly used promoter for example, there can be mentioned lacz promoter and araB promoter.
- the method of Ward et al. Ward, E. S. et al., Nature (1989) 341, 544-546; Ward, E. S. et al., FASEB J. (1992) 6, 2422-2427
- the method of Better et al. (Better, M. et al., Science (1988) 240, 1041-1043) may be used when araB promoter is used.
- the pelB signal sequence As a signal sequence for antibody secretion, when produced in the periplasm of E. coli, the pelB signal sequence (Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379-4383) can be used. After separating the antibody produced in the periplasm, the structure of the antibody is appropriately refolded before use (see, for example, WO 96-30394).
- expression vectors can include, as selectable markers the aminoglycoside transferase (APH) gene, the thymidine kinase (TK) gene, E. coli xanthine guaninephosphoribosyl transferase (Ecogpt) gene, the dihydrofolate reductase (dhfr) gene, and the like.
- APH aminoglycoside transferase
- TK thymidine kinase
- Ecogpt E. coli xanthine guaninephosphoribosyl transferase
- dhfr dihydrofolate reductase
- any production system can be used, and the production systems of antibody preparation comprise the in vitro or the in vivo production system.
- the in vitro production systems there can be mentioned a production system which employs eukaryotic cells and the production system which employs prokaryotic cells.
- animal cells include (1) mammalian cells such as CHO cells, COS cells, myeloma cells, baby hamster kidney (BHK) cells, HeLa cells, and Vero cells, (2) amphibian cells such as Xenopus oocytes, or (3) insect cells such as sf9, sf21, and Tn5.
- Known plant cells include, for example, those derived from the Nicotiana tabacum which is subjected to callus culture.
- Known fungal cells include yeasts such as genus Saccharomyces, more specifically Saccharomyces cereviceae, or filamentous fungi such as the Aspergillus family, more specifically Aspergillus niger.
- prokaryotic cells When prokaryotic cells are used, there are the production systems which employ bacterial cells.
- bacterial cells include Escherichia coli, and Bacillus subtilis.
- the antibody By introducing, via transformation, the gene of the desired antibody into these cells and culturing the transformed cells in vitro, the antibody can be obtained. Culturing is conducted in the known methods. For example, as the culture liquid for mammalian cells, DMEM, MEM, RPMI1640, IMDM and the like can be used, and serum supplements such as fetal calf serum (FCS) may be used in combination.
- FCS fetal calf serum
- antibodies may be produced in vivo by implanting cells into which the antibody gene has been introduced into the abdominal cavity of an animal, and the like.
- Antibody genes are introduced into these animals and plants, in which the genes are produced and then collected.
- antibody genes are inserted into the middle of the gene encoding protein which is inherently produced in the milk such as goat ⁇ casein to prepare fusion genes.
- DNA fragments containing the fusion gene into which the antibody gene has been inserted are injected to a goat embryo, and the embryo is introduced into a female goat.
- the desired antibody is obtained from the milk produced by a transgenic goat produced by the goat that received the embryo or the offspring thereof.
- hormones may be given to the transgenic goat as appropriate (Ebert, K. M. et al., Bio/Technology (1994) 12, 699-702).
- the silkworm When silkworms are used, the silkworm is infected with a baculovirus into which desired antibody gene has been inserted, and the desired antibody can be obtained from the body fluid of the silkworm (Maeda, S. et al., Nature (1985) 315, 592-594).
- the desired antibody gene is inserted into an expression vector for plants, for example pMON 530, and then the vector is introduced into a bacterium such as Agrobacterium tumefaciens. The bacterium is then used to infect tobacco such as Nicotiana tabacum to obtain the desired antibody from the leaves of the tobacco (Julian, K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138).
- DNA encoding the heavy chain (H chain) or light chain (L chain) of antibody is separately incorporated into an expression vector and the hosts are transformed simultaneously, or DNA encoding the H chain and the L chain of antibody is integrated into a single expression vector and the host is transformed therewith (see International Patent Application WO 94-11523).
- Antibodies for use in the present invention may be fragments of antibody or modified versions thereof as long as they are preferably used in the present invention.
- fragments of antibody there may be mentioned Fab, F(ab′)2, Fv or single-chain Fv (scFv) in which Fv's of H chain and L chain were ligated via a suitable linker.
- antibodies are treated with an enzyme, for example, papain or pepsin, to produce antibody fragments, or genes encoding these antibody fragments are constructed, and then introduced into an expression vector, which is expressed in a suitable host cell (see, for example, Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Plucktrun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. et al., TI BTECH (1991) 9, 132-137).
- an enzyme for example, papain or pepsin
- scFv can be obtained by ligating the V region of H chain and the V region of L chain of antibody.
- the V region of H chain and the V region of L chain are preferably ligated via a linker, preferably a peptide linker (Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883).
- the V region of H chain and the V region of L chain in the scFv may be derived from any of the above-mentioned antibodies.
- the peptide linker for ligating the V regions any single-chain peptide comprising, for example, 12-19 amino acid residues may be used.
- DNA encoding scFv can be obtained using DNA encoding the H chain or the H chain V region of the above antibody and DNA encoding the L chain or the L chain V region of the above antibody as the template by amplifying the portion of the DNA encoding the desired amino acid sequence among the above sequences by the PCR technique with the primer pair specifying the both ends thereof, and by further amplifying the combination of DNA encoding the peptide linker portion and the primer pair which defines that both ends of said DNA be ligated to the H chain and the L chain, respectively.
- an expression vector containing them and a host transformed with said expression vector can be obtained by a conventional method, and scFv can be obtained using the resultant host by a conventional method.
- antibody fragments can be produced by obtaining the gene thereof in a similar manner to that mentioned above, and by allowing it to be expressed in a host.
- Antibody as used in the present invention encompasses these antibody fragments.
- modified antibodies antibodies associated with various molecules such as polyethylene glycol (PEG) can be used.
- “Antibody” as used in the present invention encompasses these modified antibodies. These modified antibodies can be obtained by chemically modifying the antibodies thus obtained. These methods have already been established in the art.
- Antibodies expressed and produced as described above can be separated from inside or outside of the cell or from the host and then may be purified to homogeneity. Separation and purification of antibody for use in the present invention may be accomplished by affinity chromatography.
- affinity chromatography As the column used for affinity chromatography, there can be mentioned Protein A column and Protein G column. Examples of carriers for use in Protein A column include, for example, Hyper D, POROS, Sepharose F.F. (Pharmacia) and the like.
- commonly used methods of separation and purification for proteins can be used, without any limitation.
- Chromatography other than the above affinity chromatography, filters, gel filtration, salting out, dialysis and the like may be selected and combined as appropriate, in order to separate and purify the antibodies for use in the present invention.
- Chromatography includes, for example, ion exchange chromatography, hydrophobic chromatography, gel-filtration and the like. These chromatographies can be applied to high performance liquid chromatography (HPLC). Also, reverse phase HPLC (rpHPLC) may be used.
- the concentration of antibody obtained as above can be determined by measurement of absorbance or by ELISA and the like.
- the antibody obtained is appropriately diluted with PBS(-) and then the absorbance is measured at 280 nm, followed by calculation using the absorption coefficient of 1.35 OD at 1 mg/ml.
- ELISA ELISA measurement is conducted as follows.
- 100 ⁇ l of goat anti-human IgG antibody manufactured by TAGO
- 0.1 M bicarbonate buffer, pH 9.6 is added to a 96-well plate (manufactured by Nunc), and is incubated overnight at 4° C. to immobilize the antibody.
- 100 ⁇ l each of appropriately diluted antibody for use in the present invention or samples containing the antibody, or human IgG (manufactured by CAPPEL) as the standard is added, and incubated at room temperature for 1 hour.
- Reshaped IL-6 for use in the present invention is a substance that has an activity of binding with IL-6 receptor and that does not propagate the biological activity of IL-6.
- reshaped IL-6 competes with IL-6 for binding to IL-6 receptor, it does not propagate the biological activity of IL-6, and therefore reshaped IL-6 blocks signal transduction by IL-6.
- Reshaped IL-6 may be prepared by introducing mutations by replacing amino acid residues of the amino acid sequence of IL-6.
- IL-6 from which reshaped IL-6 is derived may be of any origin, but it is preferably human IL-6 considering antigenicity etc.
- the secondary structure of the amino acid sequence of IL-6 may be estimated using a known molecular modeling program such as WHATIF (Vriend et al., J. Mol. Graphics (11990) 8, 52-56), and its effect on the overall amino acid residues to be replaced is evaluated.
- mutation may be introduced using a vector containing a base sequence encoding human IL-6 gene as a template in a commonly used PCR method so as to replace amino acids, and thereby to obtain a gene encoding reshaped IL-6. This may be integrated, as appropriate, into a suitable expression vector to obtain reshaped IL-6 according to the above-mentioned methods for expression, production, and purification of recombinant antibody.
- Partial peptides of IL-6 or partial peptides of IL-6 receptor for use in the present invention are substances that have an activity of binding to IL-6 receptor or IL-6, respectively, and that do not propagate the biological activity of IL-6.
- partial peptides of IL-6 or partial peptides of IL-6 receptor bind to and capture IL-6 receptor or IL-6, respectively, so as to inhibit specifically the binding of IL-6 to IL-6 receptor. As a result, they do not allow propagating of the biological activity of IL-6, and thereby block signal transduction by IL-6.
- Partial peptides of IL-6 or partial peptides of IL-6 receptor are peptides are peptides comprising part or all of the amino acid sequence involved in the binding of IL-6 and IL-6 receptor in the amino acid sequences of IL-6 or IL-6 receptor. Such peptides comprise usually 10-80 amino acid residues, preferably 20-50 amino acid residues, and more preferably 20-40 amino acid residues.
- Partial peptides of IL-6 or partial peptides of IL-6 receptor specify the regions involved in the binding of IL-6 and IL-6 receptor in the amino acid sequence of IL-6 or IL-6 receptor, and part or all of the amino acid sequence can be prepared by a commonly known method such as gene engineering technology or peptide synthesis.
- a DNA sequence encoding the desired peptide can be integrated into an expression vector so that they may be obtained according to the above-mentioned methods for expression, production, and purification of recombinant antibody.
- partial peptides of IL-6 or partial peptides of IL-6 receptor by peptide synthesis, a commonly used method in peptide synthesis such as solid-phase synthesis or liquid-phase synthesis can be used.
- Solid-phase synthesis there can be used a method in which an amino acid corresponding to the C-terminal of the peptide to be synthesized is bound to a support insoluble in organic solvents, and then a reaction in which amino acids of which ⁇ -amino group and a side chain functional group has been protected with a suitable protecting group is condensed one by one in the direction of from the C-terminal to the N-terminal and a reaction in which said protecting group of the ⁇ -amino group of the amino acid or the peptide bound to the resin is eliminated therefrom are alternately repeated to extend the peptide chain.
- the solid-phase peptide synthesis is roughly divided in the Boc method and the Fmoc method depending on the type of protecting groups used.
- a deprotecting reaction or a cleavage reaction of the peptide chain from the support may be performed.
- the Boc method employs hydrogen fluoride or trifluoromethanesulfonic acid, or the Fmoc method usually employs TFA.
- the above protected peptide resin is treated in the presence of anisole in hydrogen fluoride.
- the elimination of the protecting group and the cleavage from the support may be performed to collect the peptide. Lyophilization of this yields crude peptide.
- the deprotection reaction and the cleavage reaction of the peptide chain from the support may be performed in a manner similar to the one mentioned above.
- the crude peptide obtained may be subjected to HPLC to separate and purify it.
- HPLC high-density liquid-chromatography
- a water-acetonitrile solvent commonly used in protein purification may be used under an optimal condition.
- Fractions corresponding to the peaks of the chromatographic profile are harvested and then lyophilized.
- molecular weight analysis by mass spectroscopy, analysis of amino acid composition, or analysis of amino acid sequence is performed for identification.
- IL-6 partial peptides and IL-6 receptor partial peptides have been disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2-188600, Japanese Unexamined Patent Publication (Kokai) No. 7-324097, Japanese Unexamined Patent Publication (Kokai) No. 8-311098, and U.S. Pat. Publication U.S. Pat. No. 5,210,075.
- the inhibitory activity of IL-6 signal transduction by IL-6 antagonist of the present invention can be evaluated using a commonly known method. Specifically, IL-6-dependent human myeloma line (S6B45, KPMM2), human Lennert T lymphoma line KT3, or IL-6-dependent HN60.BSF2 cells are cultured, to which IL-6 is added, and at the same time, in the presence of IL-6 antagonist, the incorporation of 3 H labeled thymidine by the IL-6 dependent cells is determined.
- 125 I-labeled IL-6 and IL-6 antagonist are added, and then 125 I-labeled IL-6 that bound to the IL-6-ecpressing cells is determined for evaluation.
- a negative control group in which contains no IL-6 antagonist is set up, and the results obtained in both are compared to evaluate the IL-6-inhibiting activity by IL-6 antagonist.
- IL-6 antagonists such as anti-IL-6 receptor antibody were shown to have a therapeutic effect for chronic arthritides of childhood-related diseases.
- Subjects to be treated in the present invention are mammals.
- the subject mammals to be treated are preferably humans.
- Therapeutic agents for chronic arthritides of childhood-related diseases of the present invention may be administered orally or parenterally and systemically or locally.
- intravenous injection such as drip infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppositories, enema, oral enteric coated tablets, and the like may be selected, and the dosage regimen may be selected as appropriate depending on the age and conditions of the patient.
- the effective dose is chosen from the range of 0.01 mg to 100 mg per kg of body weight per administration. Alternatively, the dosage of 1 to 1000 mg, preferably 5 to 50 mg per patient may be selected.
- Preferable dose and method for administering is, for example in the case of anti-IL6 receptor antibody, an effective dose that provides free antibody in the blood, and specifically, 0.5 mg to 40 mg, and preferably 1 mg to 20 mg per 1 kg body weight per month (four weeks), which is administered at once, or divided to several parts and administered, for example, twice/week, once/week, once/two weeks, once/four weeks, etc, for example intravenously for example by dripping, or subcutaneously.
- Administering schedule may be adjusted by elongating intervals from twice/week or once/week to once/two weeks, once/three weeks, once/four weeks, etc, dependent on observation of symptoms, and blood test profile.
- Therapeutic agents for chronic arthritides of childhood-related diseases of the present invention may contain pharmaceutically acceptable carriers and additives depending on the route of administration.
- carriers or additives include water, a pharmaceutically acceptable organic solvent, collagen, polyvinyl alcohol, polyvinylpyrrolidone, a carboxyvinyl polymer, carboxymethylcellulose sodium, polyacrylic sodium, sodium alginate, water-soluble dextran, carboxymethyl starch sodium, pectin, methyl cellulose, ethyl cellulose, xanthan gum, gum Arabic, casein, gelatin, agar, diglycerin, propylene glycol, polyethylene glycol, Vaseline, paraffin, stearyl alcohol, stearic acid, human serum albumin (HSA), mannitol, sorbitol, lactose, pharmaceutically acceptable surfactants and the like.
- Actual additives used are chosen from, but not limited to, the above or combinations thereof depending on the dosage form.
- MRA humanized anti-IL-6 receptor antibody
- Symptoms developed with relaxation heat one-peak fever at about 40° C. for consecutive days
- arthralgia at both knees and anthema.
- an aspirin administration was started, but no improvement in relaxation heat and arthralgia was observed and the general condition was aggravated.
- mPSL methylprednisolone
- Cs A cyclosporin A
- prednisolone+froben was given to control relaxation heat, and a decline in fever was clinically noted, but inflammation-related hematology tests remained at high values (CRP>5 mg/dL), and after discharge from hospital, relaxation heat was periodically observed, but treatment and observation were continued mainly on an ambulatory basis.
- CRP>5 mg/dL Crohn's disease
- IL-6 antagonist in particular anti-IL-6 receptor antibody, is effective as a therapeutic agent for chronic arthritides diseases of childhood, specifically the systemic onset type of the ARA classification, the systemic onset type of the EULAR classification, the systemic onset type of the ILAR classification, and the SPRASH syndrome of the present inventors' classification.
- MRA humanized anti-IL-6 receptor antibody
- IL-6 antagonist in particular anti-IL-6 receptor antibody, is effective as a therapeutic agent for Still's disease, specifically adult Still's disease.
- soluble IL-6 receptor was prepared by the PCR method.
- the plasmid pBSF2R.236 was digested with a restriction enzyme Sph I to obtain IL-6 receptor cDNA, which was inserted into mp18 (manufactured by Amersham).
- a synthetic primer designed to introduce a stop codon into IL-6 receptor cDNA mutation was introduced into IL-6 receptor cDNA by the PCR method in an in vitro mutagenesis system (manufactured by Amersham). By this procedure, the stop codon was introduced at the position of amino acid 345, and cDNA encoding soluble IL-6 receptor was obtained.
- soluble IL-6 receptor In order to express soluble IL-6 receptor in CHO cells, it was ligated to a plasmid pSV (manufactured by Pharmacia) to obtain a plasmid pSVL344. Soluble IL-6 receptor cDNA digested with HindIII-SalI was inserted into a plasmid pECEdhfr containing the cDNA of dhfr to obtain a CHO cell-expressing plasmid pECEdhfr344.
- plasmid pECEdhfr344 was transfected to a dhfr-CHO cell line DXB-11 (Urlaub, G. et al., Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) by the calcium phosphate precipitation method (Chen, C. et al., Mol. Cell. Biol. (1987) 7, 2745-2751).
- the transfected CHO cells were cultured for three weeks in a nucleoside-free ⁇ MEM selection medium containing 1 mM glutamine, 10% dialyzed FCS, 100 U/ml penicillin and 100 ⁇ /ml streptomycin.
- the selected CHO cells were screened by the limiting dilution method to obtain a single CHO cells clone.
- the CHO cell clone was amplified with 20 nM-200 nM of methotrexate to investigate a human soluble IL-6 receptor-producing CHO cell line 5E27.
- the CHO cell line 5E27 was cultured in a Iscov modified Dulbecco medium (IMDM, manufactured by Gibco) supplemented with 5% FBS.
- IMDM Iscov modified Dulbecco medium
- the culture supernatant was collected and the concentration of soluble IL-6 receptor in the culture supernatant was determined by ELISA. The result confirmed the presence of soluble IL-6 receptor in the culture supernatant.
- tissue-type IL-6 (Hirano et al., Immunol. Lett. (1988) 17, 41) was used with Freund's complete adjuvant to immunize BALB/c mice, and this was repeated every week until anti-IL-6 antibody can be detected in the serum.
- Immune cells were removed from the local lymph nodes, and were fused with a myeloma cell line P3U1 using polyethylene glycol 1500.
- Hybridomas were selected by the method of Oi et al. (Selective Methods in Cellular Immunology, W.H. Freeman and Co., San Francisco, 351, 19080) using the HAT culture medium to establish a hybridoma producing anti-human IL-6 antibody.
- the hybridoma producing anti-human IL-6 antibody was subjected to an IL-6 binding assay in the following manner.
- a 96-well microtiter plate manufactured by Dynatech Laboratories, Inc., Alexandria, Va.
- a 96-well microtiter plate made of flexible polyvinyl was coated overnight with 100 ⁇ l of goat anti-mouse Ig (10 ⁇ l/ml, manufactured by Cooper Biomedical, Inc., Malvern, Pa.) in 0.1 M carbonate hydrogen carbonate buffer (pH 9.6) at 4° C.
- the plate was treated in 100 ⁇ l of PBS containing 1% bovine serum albumin (BSA) at room temperature for 2 hours.
- BSA bovine serum albumin
- MH60.BSF2 IL-6-dependent mouse hybridoma clone MH60.BSF2
- MH60.BSF2 cells were aliquoted to 1 ⁇ 10 4 /200 ⁇ l/well, to which a sample containing MH166 antibody was added, and cultured for 48 hours. After adding 0.5 ⁇ Ci/well of 3 H-thymidine (New England Nuclear, Boston, Mass.), culturing was continued for further six hours. The cells were placed on a glass filter paper, and were treated by an automated harvester (Labo Mash Science Co., Tokyo, Japan). As the control, rabbit anti-IL-6 antibody was used.
- MH166 antibody inhibited 3 H-thymidine incorporation by MH60.BSF2 cells induced by IL-6 in a dose dependent manner. This revealed that MH166 antibody neutralizes the activity of IL-6.
- Anti-IL-6 receptor antibody MT18 prepared by the method of Hirata et al. (Hirata, Y. et al., J. Immunol. (1989) 143, 2900-2906) was conjugated to a CNBr-activated Sepharose 4B (manufactured by Pharmacia Fine Chemicals, Piscataway, N.J.) to purify IL-6 receptor (Yamasaki et al., Science (1988) 241, 825-828).
- a human myeloma cell line U266 was solubilized with 1 mM p-paraaminophenylmethanesulfonyl fluoride hydrochloride (manufactured by Wako Pure Chemicals) (digitonin buffer) containing 1% digitonin (manufactured by Wako Pure Chemicals), 10 mM triethanolamine (pH 7.8), and 0.15 M NaCl, and was mixed with MT18 antibody conjugated to Sepharose 4B beads. Subsequently, the beads were washed six times in the digitonin buffer to prepare a partially purified IL-6 receptor.
- mice were immunized with the above partially purified IL-6 receptor obtained from 3 ⁇ 10 9 U266 cells four times every ten days, and then a hybridoma was prepared according to a standard method.
- the culture supernatant of the hybridoma from growth-positive wells were examined for the biding activity to IL-6 receptor in the following manner.
- 5 ⁇ 10 7 U266 cells were labelled with 35 S-methionine (2.5 mCi), and were solubilized with the above digitonin buffer.
- the solubilized U266 cells were mixed with 0.04 ml of MT18 antibody conjugated to Sepharose 4B beads, and then washed for six times in the digitonin buffer.
- 35 S-methionine-labeled IL-6 receptor was eluted, which was neutralized with 0.025 ml of 1M Tris, pH 7.4.
- 0.05 ml of the hybridoma culture supernatant was mixed with 0.01 ml Protein G Sepharose (manufactured by Pharmacia). After washing, the Sepharose was incubated with 0.005 ml solution of 35 S-labeled IL-6 receptor solution. The immunoprecipitated substances were analyzed by SDS-PAGE to study the culture supernatant of hybridoma that reacts with IL-6 receptor. As a result, a reaction-positive hybridoma clone PM-1 was established. Antibody produced from the hybridoma PM-1 had the IgG1 ⁇ subtype.
- the activity of the antibody produced by the hybridoma PM-1 to inhibit the binding of IL-6 to IL-6 receptor was evaluated using a human myeloma cell line U266.
- Human recombinant IL-6 was prepared from E. coli (Hirano et al., Immunol. Lett. (1988) 17, 41-45), and was labeled with 125 I using the Bolton-Hunter reagent (New England Nclear, Boston, Mass.) (Taga et al., J. Exp. Med. (1987) 166, 967-981).
- a monoclonal antibody against mouse IL-6 receptor was prepared by the method of Saito, T. et al., J. Immunol. (1991) 147, 168-173.
- CHO cells that produce soluble mouse IL-6 receptor were cultured in an IMDM culture medium supplemented with 10% FCS. From the culture supernatant, soluble mouse IL-6 receptor was purified using an affinity column in which anti-mouse IL-6 receptor antibody RS12 (see the above Saito, T. et al.) was immobilized to the Affigel 10 gel (manufactured by Biorad).
- anti-mouse IL-6 receptor antibody RS12 see the above Saito, T. et al.
- soluble mouse IL-6 receptor Fifty ⁇ g of soluble mouse IL-6 receptor thus obtained was mixed with Freund's complete adjuvant, which was intraperitoneally injected to the abdomen of Wistar rats. Two weeks later, the rats received booster immunization with Freund's incomplete adjuvant. On day 45, spleen cells were removed from the rats, and 2 ⁇ 10 8 of the cells were subjected to cell fusion with 1 ⁇ 10 7 mouse myeloma cells P3U1 with 50% PEG1500 (manufactured by Boehringer Mannheim) using a standard method, and the hybridoma were then screened with the HAT medium.
- soluble mouse IL-6 receptor was reacted thereto. Then, using an ELISA method employing rabbit anti-mouse IL-6 receptor antibody and alkaline phosphatase-labelled sheep anti-rabbit IgG, hybridomas that produce antibodies against soluble mouse IL-6 receptor were screened. The hybridoma clones for which antibody production was confirmed were subjected to subscreening twice to obtain a single hybridoma clone. This clone was designated as MR16-1.
- MH60.BSF2 cells A neutralizing activity in signal transduction of mouse IL-6 by the antibody produced by this hybridoma was examined using 3 H-thymidine incorporation that employs MH60.BSF2 cells (Matsuda, T. et al., J. Immunol. (1988) 18, 951-956).
- MH60.BSF2 cells were prepared to 1 ⁇ 10 4 cells/200 ⁇ l/well.
- To this plate were added 10 ⁇ g/ml of mouse IL-6 and MR16-1 antibody or RS12 antibody at 12.3-1000 ng/ml, and cultured at 37° C. in 5% CO 2 for 44 hours, followed by the addition of 1 ⁇ Ci/well of 3 H-thymidine. Four hours later, the incorporation of 3 H-thymidine was measured.
- MR16-1 antibody inhibited the 3 H-thymidine incorporation by MH60.BSF2 cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Rheumatology (AREA)
- Dermatology (AREA)
- Endocrinology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pain & Pain Management (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A therapeutic agent for chronic arthritides diseases of childhood-related diseases, for example chronic arthritides diseases of childhood, Still's disease and the like, comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
Description
- This Application is a Continuation of application Ser. No. 13/064,953, filed Apr. 28, 2011, which is a Divisional of application Ser. No. 11/704,233, filed Feb. 9, 2007, which is a Divisional of application Ser. No. 10/473,165, which entered the U.S. national phase on Sep. 29, 2003, from PCT/JP02/03312 filed Apr. 2, 2002, which claims priority from Japanese patent applications 2001-109131 filed Apr. 6, 2001 and 2001-103627 filed Apr. 2, 2001. The entire contents of the aforementioned applications are incorporated herein by reference
- The present invention relates to a therapeutic agent for “chronic arthritides diseases of childhood-related diseases” comprising an interleukin-6 (IL-6) antagonist as an active ingredient. Chronic arthritides diseases of childhood-related diseases include chronic arthritides diseases of childhood, Still's disease and the like.
- IL-6 is a cytokine called B-cell stimulating factor 2 (BSF2) or interferon β2. IL-6 was discovered as a differentiation factor responsible for activation of B-lymphatic cells (Hirano, T. et al., Nature (1986) 324, 73-76). Thereafter, it was found to be a multifunctional cytokine that influences the function of various cells (Akira, S. et al., Adv. in Immunology (1993) 54, 1-78). IL-6 has been reported to induce the maturation of T lymphatic cells (Lotz, M. et al., J. Exp. Med. (1988) 167, 1253-1258).
- IL-6 propagates its biological activity through two proteins on the cell. One is a ligand-binding protein, IL-6 receptor, with a molecular weight of about 80 kD to which IL-6 binds (Taga T. et al., J. Exp. Med. (1987) 166, 967-981; Yamasaki, K. et al., Science (1987) 241, 825-828). IL-6 receptor exists not only in a membrane-bound form that penetrates and is expressed on the cell membrane but also as a soluble IL-6 receptor consisting mainly of the extracellular region.
- The other is non-ligand-binding membrane-bound protein gp130 with a molecular weight of about 130 kD that takes part in signal transduction. IL-6 and IL-6 receptor form an IL-6/IL-6 receptor complex, to which gp130 is bound, and thereby the biological activity of IL-6 is propagated into the cell (Taga et al., Cell (1989) 58, 573-581).
- IL-6 antagonists are substances that inhibit the transduction of IL-6 biological activities. Up to now, there have been known antibodies to IL-6 (anti-IL-6 antibodies), antibodies to IL-6 receptor (anti-IL-6 receptor antibodies), antibodies to gp130 (anti-gp130 antibodies), reshaped IL-6, IL-6 or IL-6 receptor partial peptides, and the like.
- Antibodies to IL-6 receptor have been described in a number of reports (Novick D. et al., Hybridoma (1991) 10, 137-146; Huang, Y. W. et al., Hybridoma (1993) 12, 621-630; International Patent Application WO 95-09873; French Patent Application FR 2694767; United States Patent U.S. Pat. No. 5,216,128). A humanized PM-1 antibody was obtained by implanting the complementarity determining region (CDR) of a mouse antibody PM-1 (Hirata et al., J. Immunology (1989), one of anti-IL-6 receptor antibodies, 143, 2900-2906) into a human antibody (International Patent Application WO 92-19759).
- Chronic arthritides diseases of childhood are diseases comprising mainly chronic arthritis that develops at less than 16 years of age and is the most prevalent disease among the collagen diseases that develop in children. Unlike rheumatoid arthritis (RA) in adults, they are not considered to be a homogeneous disease and have a variety of disease types, and therefore they tend to be dealt with as a disease entity different from rheumatoid arthritis in adults.
- As the name of chronic arthritides diseases of childhood, “juvenile rheumatoid arthritis (JRA)” has been used in Japan according to the diagnostic criteria in the United States, whereas in Europe the term “juvenile chronic arthritis (JCA)” is mainly used. Recently, terms such as idiopathic chronic arthritis (ICA) and juvenile idiopathic arthritis (JIA) have been used.
- The disease types of chronic arthritides diseases of childhood have been categorized in various ways. According to the American College of Rheumatology (ACR), they are divided, as arthritic diseases that develop in children less than 16 years old and persist for six weeks or longer, into three disease types: 1) systemic onset JRA, 2) polyarticular, 3) pauciarticular (ARA classification) (JRA Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association Arthritis Rheum 20 (Suppl): 195, 1977). In Europe, the European League Against Rheumatism (EULAR) has made a classification that states that, though it differs from the above ARA classification in that the duration of arthritis is three months or more and arthritis due to psoriasis, ankylosing spondylitis etc. has been excluded, the three disease types are similar (Bulletin 4, Nomenclature and classification of Arthritis in Children. Basel, National Zeitung AG, 1977).
- Recently, a revision of the classification has been attempted, and the International League of Associations for Rheumatology (ILAR) proposed in 1995 a classification plan of Idiopathic Arthritides of Childhood (Fink C W, Proposal for the development of classification criteria for idiopathic arthritides of childhood. J. Rheumatol., 22: 1566 (1995)), and in 1997 the revision was proposed as an ILAR plan (Southwood T R, Classifying childhood arthritis, Ann. Rheum. Dis. 56: 79 (1997)). This classification provides division into: 1) systemic arthritis, 2) polyarthritis RF positive, 3) polyarthritis RF negative, 4) oligoarthritis, 5) extended oligoarthritis, 6) enthesitis related arthritis, 7) psoriatic arthritis, and 8) others.
- Furthermore, the present inventors have proposed a method of classifying chronic arthritides diseases of childhood into:
- 1) primary chronic arthritides of childhood
- (1) SPRASH syndrome (SPRASH: spiking fever, pericarditis, rash, arthritis, splenomegaly, hepatomegaly)
- Starts with relaxation heat and efflorescence, and serositis and hepatomegaly are observed with concomitant onset of simultaneous or delayed arthritis, but at times arthritis may not be observed.
- (2) idiopathic chronic arthritides of childhood
- No underlying diseases are present, and arthritis is the key pathology.
-
- a) rheumatoid factor (RF)-positive type
- b) anti-nuclear antibody (ANA)-positive type
- c) RF/ANA-negative type
- 2) secondary chronic arthritides of childhood
- Genetic or nongenetic original diseases are accompanied by arthritis (Shunpei Yokota, “Advances in recent therapeutic methods for chronic arthritides diseases of childhood”, Rheumatism, 39: 860 (1999)).
- It has been reported that various cytokines are involved in chronic arthritides diseases of childhood. In particular, it is thought that imbalance in inflammatory cytokines IL-1, IL-6, IL-12 and TNF-α, and anti-inflammatory cytokines IL-1ra (IL-1 receptor antagonist), IL-10, IL-13, sTNFR (soluble TNF receptor) is associated with the disease.
- For the treatment of chronic arthritides diseases of childhood, nonsteroidal anti-inflammatory drugs, corticosteroids, antirheumatic drugs (gold compounds etc.), immunosuppressants, methotrexate (MTX etc.) have been used. However, as the therapeutic effects differ with the patients, the development of more effective therapeutic regimens is being awaited.
- Still's disease, first described by the British pediatrician Dr. Still in 1897, was reported to have a clinical picture clearly different from that of rheumatoid arthritis in adults and is a disease seen in children to adults (especially in adolescence and the main symptoms include fever, erythema, arthritis, serositis and the like. Among them, adult-onset type is designated as adult onset Still's disease. In Still's disease, rheumatoid factor is usually negative.
- In children, Still's disease is another name of the systemic type of juvenile rheumatoid arthritis (juvenile rheumatoid arthritis (JRA), JCA (juvenile chronic arthritis), juvenile idiopathic arthritis (JIA)) which is a chronic arthritis developing in children at less than 16 years old. For the causes of Still's disease, environmental factors such as a virus, host factors such as HLA, and immunological abnormalities have been reported, but the etiology is still obscure.
- Still's disease in adults and that in children are considered to be almost the same disease, though there are minor differences in clinical feature in addition to the age when the disease develops. Still's disease in children refers to JRA of the systemic type as described above. However, JRA and rheumatoid arthritis (RA) in adults are clinically different in many ways and are dealt with as different diseases, and therefore Still's disease in adults is often dealt with as an independent disease entity among the rheumatic diseases.
- As diagnostic criteria for Still's disease in adults, there have been known those by Yamaguchi (Journal of Rheumatology 19(3): 424-30, 1992), Reginato (Seminars in Arthritis & Rheumatism 17(1): 39-57, 1987), Cush (Rheumatology Grand Rounds, University of Pittsburgh Medical Center; Jan. 30, 1984), Goldman (Southern Medical Journal 73: 555-563, 1980) and the like.
- On the relationship between Still's disease and cytokines, association with cytokines such as IL-1, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, TNF-α, and IFN-γ has been reported, and among them, inflammatory cytokines such as IL-1, IL-6, TNF-α, and IFN-γ have been implicated in the pathology of Still's disease.
- With respect to IL-6, de Benedetti et al. reported that serum levels of IL-6 are elevated in Still's disease in children (Arthritis Rheum. 34: 1158, 1991), and that a large amount of IL-6/soluble IL-6 receptor (sIL-6R) complex is present in the serum of patients with Still's disease in children and a correlation can be seen between this complex level and CRP values (J. Clin. Invest. 93: 2114, 1994). Furthermore, Rooney et al. have reported that plasma levels of IL-6 and TNF-α are elevated in patients with Still's disease in children (Br. J. Rheumatol. 34: 454, 1995).
- As a method of treating Still's disease, nonsteroidal anti-inflammatory drugs, corticosteroids, antirheumatic drugs (gold compounds etc.), immunosuppressants, gamma globulin formulations, methotrexate (MTX etc.) have been used. However, as the therapeutic effects differ with the patients, the development of more effective therapeutic regimens is being sought after.
- Thus, the present invention provides a novel therapeutic agent for chronic arthritides diseases of childhood-related diseases, said agent being of a type different from the conventional therapeutic agents for chronic arthritides diseases of childhood-related diseases. In accordance with the present invention, chronic arthritides diseases of childhood-related diseases included chronic arthritides diseases of childhood and Still's disease.
- After intensive and extensive study to solve the above problems, the present inventors have found that an interleukin-6 (IL-6) antagonist has an effect of treating chronic arthritides diseases of childhood-related diseases, and have completed the present invention.
- Thus, the present invention provides a therapeutic agent for chronic arthritides diseases of childhood-related diseases comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
- More specifically, the present invention provides a therapeutic agent for chronic arthritides diseases of childhood comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
- The present invention also provides a therapeutic agent for Still's disease comprising an interleukin-6 (IL-6) antagonist as an active ingredient.
- The above IL-6 antagonist is preferably an antibody against IL-6 receptor, and preferably a monoclonal antibody against human IL-6 receptor or a monoclonal antibody against mouse IL-6 receptor. As the above monoclonal antibody against human IL-6 receptor, there can be illustrated PM-1 antibody, and as the above monoclonal antibody against mouse IL-6 receptor, there can be illustrated MR16-1 antibody.
- The above antibody is preferably a chimeric antibody, a humanized antibody or a human antibody and, for example, is a humanized PM-1 antibody.
- Chronic arthritides diseases of childhood which are the subject of treatment with a therapeutic agent of the present invention include all diseases in the above ARA, EULAR, and ILAR classifications, and the classification by the present inventors. With the advance in the serological diagnostic methods and the advance in therapeutic methods, the disease type classification of chronic arthritides diseases of childhood is now undergoing a review on a global scale and it can be said to be in a state of uncertainty. Preferred treatment subjects, for the therapeutic agent of the present invention, are: in the ARA classification, systemic onset, polyarticular, and pauciarticular; in the EULAR classification, systemic onset, polyarticular, and oligoarticular; in the ILAR classification, systemic onset, polyarticular (RF positive), polyarticular (RF negative), oligoarthritis, and extended oligoarthritis; and, in the classification by the present inventors, primary chronic arthritides of childhood (SPRASH syndrome, idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type, c. RF/ANA-negative type)), and as most preferred subjects of treatment are: in the ARA classification, systemic onset and polyarticular; in the EULAR classification, systemic onset and polyarticular; in the ILAR classification, systemic onset, polyarticular (RF positive), polyarticular (RF negative), and extended oligoarthritis; and, in the classification by the present inventors, primary chronic arthritides of childhood (SPRASH syndrome, idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type, b. anti-nuclear antibody (ANA)-positive type)). More preferred subjects of treatment are: in the ARA classification, systemic onset and polyarticular; in the EULAR classification, systemic onset and polyarticular; in the ILAR classification, systemic onset, polyarticular (RF positive), and extended oligoarthritis; and, in the classification by the present inventors, primary chronic arthritides of childhood (SPRASH syndrome, idiopathic chronic arthritides of childhood (a. rheumatoid factor (RF)-positive type)).
- IL-6 antagonists for use in the present invention may be of any origin, any type, and any form, as long as they exhibit therapeutic effects on chronic arthritides diseases of childhood-related diseases.
- IL-6 antagonists are substances that block signal transduction by IL-6 and inhibit the biological activity of IL-6. IL-6 antagonists are substances that preferably have an inhibitory action on the binding to any of IL-6, IL-6 receptor or gp130. As IL-6 antagonists, there can be mentioned, for example, anti-IL-6 antibody, anti-IL-6 receptor antibody, anti-gp130 antibody, reshaped IL-6, soluble reshaped IL-6 receptor, or partial peptides of IL-6 or IL-6 receptor, as well as low molecular weight substances that exhibit activities similar to them.
- Anti-IL-6 antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method. As the anti-IL-6 antibodies for use in the present invention, monoclonal antibodies of, in particular, mammalian origin are preferred. Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to IL-6, block the binding of IL-6 to IL-6 receptor, and thereby block the propagation of biological activity of IL-6 into the cell.
- Examples of such antibodies include MH166 antibody (Matsuda, et al., Eur. J. Immunology (1988) 18, 951-956), or SK2 antibody (Sato, et al., The 21st General Meeting of the Japanese Society for Immunology, Gakujutu Kiroku (1991) 21, 166) etc.
- A hybridoma that produces anti-IL-6 antibody can be basically constructed using a known procedure as described bellow. Thus, IL-6 is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
- Specifically, anti-IL-6 antibodies may be obtained in the following manner. For example, human IL-6 to be used as the sensitizing antigen for obtaining antibody can be obtained using the IL-6 gene/amino acid sequence disclosed in Eur. J. Biochem. (1987) 168, 543-550; J. Immunol. (1988) 140, 1534-1541, or Agr. Biol. Chem. (1990) 54, 2685-2688.
- After the gene sequence of IL-6 was inserted into a known expression vector to transform a suitable host cell, the IL-6 protein of interest may be purified from the host cell or a culture supernatant thereof by a known method, and the purified IL-6 protein may be used as the sensitizing antigen. Alternatively, a fusion protein of the IL-6 protein and another protein may be used as the sensitizing antigen.
- Anti-IL-6 receptor antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method. As the anti-IL-6 receptor antibodies for use in the present invention, monoclonal antibodies of, in particular, a mammalian origin are preferred. Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to IL-6, block the binding of IL-6 to IL-6 receptor, and thereby block the propagation of biological activity of IL-6 into the cell.
- Examples of such antibodies include MR16-1 antibody (Tamura, T. et al., Proc. Natl. Acad. Sci. USA (1993) 90, 11924-11928), PM-1 antibody (Hirata, Y. et al., J. Immunology (1989) 143, 2900-2906), AUK12-20 antibody, AUK64-7 antibody or AUK146-15 antibody (International Patent Application WO 92-19759), and the like. Among them, PM-1 antibody is most preferred.
- Incidentally, the hybridoma cell line which produces PM-1 antibody has been internationally deposited under the provisions of the Budapest Treaty as PM-1 on Jul. 12, 1988 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-2998. Also, the hybridoma cell line which produces MR16-1 antibody has been internationally deposited under the provisions of the Budapest Treaty as Rat-mouse hybridoma MR16-1 on Mar. 13, 1997 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-5875.
- A hybridoma that produces anti-IL-6 receptor monoclonal antibody can, basically, be constructed using a known procedure as described bellow. Thus, IL-6 receptor is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
- Specifically, anti-IL-6 receptor antibodies may be obtained in the following manner. For example, human IL-6 receptor used as the sensitizing antigen for obtaining antibody can be obtained using the IL-6 receptor gene/amino acid sequence disclosed in European Patent Application No. EP 325474, and mouse IL-6 receptor can be obtained using the IL-6 receptor gene/amino acid sequence disclosed in Japanese Unexamined Patent Publication (Kokai) No. 3-155795.
- There are two types of IL-6 receptor: IL-6 receptor expressed on the cell membrane, and IL-6 receptor detached from the cell membrane (Soluble IL-6 Receptor; Yasukawa et al., J. Biochem. (1990) 108, 673-676). Soluble IL-6 receptor antibody is composed of the substantially extracellular region of IL-6 receptor bound to the cell membrane, and is different from the membrane-bound IL-6 receptor in that the former lacks the transmembrane region or both of the transmembrane region and the intracellular region. IL-6 receptor protein may be any IL-6 receptor, as long as it can be used as a sensitizing antigen for preparing anti-IL-6 receptor antibody for use in the present invention.
- After a gene encoding IL-6 receptor has been inserted into a known expression vector system to transform an appropriate host cell, the desired IL-6 receptor protein may be purified from the host cell or a culture supernatant thereof using a known method, and the IL-6 receptor protein thus purified may be used as the sensitizing antigen. Alternatively, cells that express IL-6 receptor protein or a fusion protein of IL-6 receptor protein and another protein may be used as the sensitizing antigen.
- Escherichia coli (E. coli) containing a plasmid pIBIBSF2R that comprises cDNA encoding human IL-6 receptor has been internationally deposited under the provisions of the Budapest Treaty as HB101-pIBIBSF2R on Jan. 9, 1989 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-2232.
- Anti-gp130 antibodies for use in the present invention can be obtained as polyclonal or monoclonal antibodies using a known method. As the anti-gp130 antibodies for use in the present invention, monoclonal antibodies of, in particular, mammalian origin are preferred. Monoclonal antibodies of a mammalian origin include those produced by a hybridoma and those produced by a host which has been transformed by gene engineering technology with an expression vector containing the antibody gene. These antibodies, via binding to gp130, block the binding of gp130 to the IL-6/IL-6 receptor complex, and thereby block the propagation of biological activity of IL-6 into the cell.
- Examples of such antibodies include AM64 antibody (Japanese Unexamined Patent Publication (Kokai) No. 3-219894), 4B11 antibody and 2H4 antibody (U.S. Pat. No. 5,571,513), B-S12 antibody and B-P8 antibody (Japanese Unexamined Patent Publication (Kokai) No. 8-291199) etc.
- A hybridoma that produces anti-gp130 antibody can be basically constructed using a known procedure as described below. Thus, gp130 is used as a sensitizing antigen, which is immunized in the conventional method of immunization, and the immune cells thus obtained are fused with known parent cells in a conventional cell fusion process, followed by a conventional screening method to screen monoclonal antibody-producing cells.
- Specifically, monoclonal antibodies may be obtained in the following manner. For example, gp130 used as the sensitizing antigen for obtaining antibody can be obtained using the gp130 gene/amino acid sequence disclosed in European Patent Application No. EP 411946.
- The gene sequence of gp130 may be inserted into a known expression vector, and said vector is used to transform a suitable host cell. From the host cell or a culture supernatant therefrom, the gp130 protein of interest may be purified by a known method, and the purified IL-6 protein may be used as the sensitizing antigen. Alternatively, cells expressing gp130, or a fusion protein of the gp130 protein and another protein may be used as the sensitizing antigen.
- Preferably, mammals to be immunized with the sensitizing antigen are selected in consideration of their compatibility with the parent cells for use in cell fusion and they generally include, but are not limited to, rodents such as mice, rats and hamsters.
- Immunization of animals with a sensitizing antigen is carried out using a known method. A general method, for example, involves intraperitoneal or subcutaneous administration of a sensitizing antigen to the mammal. Specifically, a sensitizing antigen, which was diluted and suspended in an appropriate amount of phosphate buffered saline (PBS) or physiological saline etc., is mixed with an appropriate amount of a common adjuvant such as Freund's complete adjuvant. After being emulsified, it is preferably administered to a mammal several times every 4 to 21 days. Additionally, a suitable carrier may be used at the time of immunization of the sensitizing antigen.
- After the immunization and confirmation of an increase in the desired antibody levels in the serum by a conventional method, immune cells are taken out from the mammal and are subjected to cell fusion. As preferred immune cells that are subjected to cell fusion, there can be specifically mentioned spleen cells.
- Mammalian myeloma cells as the other parent cells which are subjected to cell fusion with the above-mentioned immune cells preferably include various known cell lines such as P3x63Ag8.653 (Kearney, J. F. et al., J. Immunol. (1979) 123, 1548-1550), P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81, 1-7), NS-1 (Kohler, G. and Milstein, C., Eur. J. Immunol. (1976) 6, 511-519), MPC-11 (Margulies, D. H. et al., Cell (1976) 8, 405-415), SP2/0 (Shulman, M. et al., Nature (1978) 276, 269-270), FO (de St. Groth, S. F. et al., J. Immunol. Methods (1980) 35, 1-21), S194 (Trowbridge, I. S., J. Exp. Med. (1978) 148, 313-323), R210 (Galfre, G. et al., Nature (1979) 217, 131-133) and the like, which may be used as appropriate.
- Cell fusion between the above immune cells and myeloma cells may be essentially conducted in accordance with a known method such as is described in Milstein et al. (Kohler, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46) and the like.
- More specifically, the above cell fusion is carried out in the conventional nutrient broth in the presence of, for example, a cell fusion accelerator. As the cell fusion accelerator, for example, polyethylene glycol (PEG), Sendai virus (HVJ) and the like may be used, and an adjuvant such as dimethyl sulfoxide may be added as desired to enhance the efficiency of fusion.
- The preferred ratio of the immune cells and the myeloma cells for use is, for example, 1 to 10 times more immune cells than the myeloma cells. Examples of culture media to be used for the above cell fusion include, for example, RPMI 1640 medium and MEM culture medium suitable for the growth of the above myeloma cell lines, and the conventional culture medium used for this type of cell culture and, besides, a serum supplement such as fetal calf serum (FCS) may be added.
- In cell fusion, predetermined amounts of the above immune cells and the myeloma cells are mixed well in the above culture liquid, to which a PEG solution previously heated to about 37° C., for example a PEG solution with a mean molecular weight of 1000 to 6000, is added at a concentration of 30 to 60% (w/v) and mixed to obtain the desired fusion cells (hybridomas). Then, by repeating a sequential addition of a suitable culture liquid and centrifugation to remove the supernatant, cell fusion agents etc., that are undesirable for the growth of the hybridoma, can be removed.
- Said hybridoma is selected by culturing in the conventional selection medium, for example, HAT culture medium (a culture liquid containing hypoxanthine, aminopterin, and thymidine). Culturing in said HAT culture medium is continued generally for the period of time sufficient to effect killing of the cells other than the desired hybridoma (non-fusion cells), generally several days to several weeks. The conventional limiting dilution method is conducted in which the hybridomas producing the desired antibody are screened and cloned.
- In addition to obtaining the above hybridoma by immunizing an animal other than the human with an antigen, it is also possible to sensitize human lymphocytes in vitro with the desired antigen protein or antigen-expressing cells, and the resulting sensitized B-lymphocytes are fused with a myeloma cell, for example U266, having the ability of dividing permanently to obtain a hybridoma that produces the desired human antibody having the activity of binding to the desired antigen or antigen-expressing cells (Japanese Post-examined Patent Publication (Kokoku) 1-59878). Furthermore, a transgenic animal having a repertoire of human antibody genes is immunized with the antigen or antigen-expressing cells to obtain the desired human antibody according to the above-mentioned method (see International Patent Application WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096 and WO 96/33735).
- The monoclonal antibody-producing hybridomas thus constructed can be subcultured in the conventional culture liquid, or can be stored for a prolonged period of time in liquid nitrogen.
- In order to obtain monoclonal antibodies from said hybridoma, there can be used a method in which said hybridoma is cultured in the conventional method and the antibodies are obtained as the supernatant, or a method in which the hybridoma is implanted into and grown in a mammal compatible with said hybridoma and the antibodies are obtained as the ascites. The former method is suitable for obtaining high-purity antibodies, whereas the latter is suitable for a large scale production of antibodies.
- For example, an anti-IL-6 receptor antibody-producing hybridoma can be polypeptide by a method disclosed in Japanese Unexamined Patent Publication (Kokai) No. 3-139293. There may be used a method in which The PM-1 antibody-producing hybridoma that has been internationally deposited under the provisions of the Budapest Treaty on Jul. 12, 1988 with the International Patent Organism Depository of the National Institute of Industrial Science and Technology (Central 6, 1-1-1 Higashi, Tsukuba City, Ibaraki Pref., 305-5466 Japan) as FERM BP-2998 is intraperitoneally injected to BALB/c mice to obtain ascites, from which ascites PM-1 antibody may be purified, or a method in which the hybridoma is cultured in a RPMI 1640 medium containing 10% bovine fetal serum, 5% BM-Codimed H1 (manufactured by Boehringer Mannheim), the hybridoma SFM medium (manufactured by GIBCO BRL), the PFHM-II medium (manufactured by GIBCO BRL) or the like, from the culture supernatant of which PM-1 antibody may be purified.
- In accordance with the present invention, as monoclonal antibody, there can be used a recombinant antibody that was produced by cloning an antibody gene from a hybridoma and the gene is then integrated into an appropriate vector, which is introduced into a host to produce the recombinant antibody using gene recombinant technology (see, for example, Borrebaeck, C. A. K. and Larrick, J. W., THERAPEUTIC MONOCLONAL ANTIBODIES, published in the United Kingdom by MACMILLAN PUBLISHERS LTD. 1990).
- Specifically, mRNA encoding the variable region (V region) of the antibody is isolated from the cell that produces the antibody of interest, for example a hybridoma. The isolation of mRNA is conducted by preparing total RNA by a known method such as the guanidine ultracentrifuge method (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299), the AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159), and then mRNA is purified from the total RNA using the mRNA Purification kit (manufactured by Pharmacia) and the like. Alternatively, mRNA can be directly prepared using the Quick Prep mRNA Purification Kit (manufactured by Pharmacia).
- cDNA of the V region of antibody may be synthesized from the mRNA thus obtained using a reverse transcriptase. cDNA may be synthesized using the AMV Reverse Transcriptase First-strand cDNA Synthesis Kit and the like. Alternatively, for the synthesis and amplification of cDNA, the 5′-Ampli FINDER RACE Kit (manufactured by Clontech) and the 5′-RACE method (Frohman, M. A. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002; Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) which employs PCR may be used. The desired DNA fragment is purified from the PCR product obtained and may be ligated to vector DNA. Moreover, a recombinant vector is constructed therefrom and then is introduced into E. coli etc., from which colonies are selected to prepare the desired recombinant vector. The base sequence of the desired DNA may be confirmed by a known method such as the dideoxy method.
- Once DNA encoding the V region of the desired antibody has been obtained, it may be ligated to DNA encoding the constant region (C region) of the desired antibody, which is then integrated into an expression vector. Alternatively, DNA encoding the V region of the antibody may be integrated into an expression vector which already contains DNA encoding the C region of the antibody.
- In order to produce antibody for use in the present invention, the antibody gene is integrated into an expression vector so as to be expressed under the control of the expression regulatory region, for example an enhancer and/or a promoter. Subsequently, the expression vector is transformed into a host cell and the antibody can then be expressed therein.
- In accordance with the present invention, artificially altered recombinant antibodies such as chimeric antibody, humanized antibody and human antibody can be used for the purpose of lowering heterologous antigenicity against humans. These altered antibody can be produced using known methods.
- Chimeric antibody can be obtained by ligating the thus obtained DNA encoding the V region of antibody to DNA encoding the C region of human antibody, which is then integrated into an expression vector and introduced into a host for production of the antibody therein (see European Patent Application EP 125023, and International Patent Application WO 92-19759). Using this known method, chimeric antibody useful for the present invention can be obtained.
- Plasmids containing the L chain V region or the H chain V region of chimeric PM-1 antibody have each been designated as pPM-k3 and pPM-h1, respectively, and E. coli having a respective plasmid has been internationally deposited under the provisions of the Budapest Treaty as NCIMB40366 and NCIMB40362 on Feb. 11, 1991 with the National Collections of Industrial and Marine Bacteria Limited.
- Humanized antibody which is also called reshaped human antibody has been made by implanting the complementarity determining region (CDR) of antibody of a mammal other than the human, for example mouse antibody, into the CDR of human antibody. The general recombinant DNA technology for preparation of such antibodies is also known (see European Patent Application EP 125023 and International Patent Application WO 92-19759).
- Specifically, a DNA sequence which was designed to ligate the CDR of mouse antibody with the framework region (FR) of human antibody is synthesized from several divided oligonucleotides having sections overlapping with one another at the ends thereof. The DNA thus obtained is ligated to DNA encoding the C region of human antibody and then is incorporated into an expression vector, which is introduced into a host for antibody production (see European Patent Application EP 239400 and International Patent Application WO 92-19759).
- For the FR of human antibody ligated through CDR, the CDR that has a favorable antigen-binding site is selected. When desired, amino acids in the FR of antibody V region may be substituted so that the CDR of humanized antibody may form an appropriate antigen biding site (Sato, K. et al., Cancer Res. (1993) 53, 851-856).
- As the C region of human antibody, there can be used, for example, Cγ1, Cγ2, Cγ3, or Cγ4. The C region of human antibody may also be modified in order to improve the stability of antibody and of the production thereof.
- Chimeric antibody consists of the V region of antibody of a human origin other than humans and the C region of human antibody, and humanized antibody consists of the complementarity determining region of antibody of a human origin other than humans and the framework region and the C region of human antibody, with their antigenicity in the human body being decreased, and thus are useful as antibody for use in the present invention.
- As a preferred embodiment of humanized antibody for use in the present invention, there can be mentioned humanized PM-1 antibody (see International Patent Application WO 92-19759).
- As a method of obtaining human antibody, in addition to those described above, there is known a method of obtaining human antibody by means of panning. For example, the variable region of human antibody is expressed on the surface of a phage by the phage display method as a single chain antibody (scFv) to select a phage that binds to the antigen. By analyzing the gene of the phage selected, the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be identified. Once the DNA sequence of scFv that binds to the antigen has been clarified, said sequence can be used to prepare a suitable expression vector and human antibody can be obtained. These methods are already known and can be found in WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, and WO 95/15388.
- Antibody genes constructed as mentioned above may be expressed and obtained in a known manner. In the case of mammalian cells, expression may be accomplished using a DNA in which a commonly used useful promoter, an antibody gene to be expressed, and the poly A signal have been operably linked at 3′ downstream thereof, or a vector containing it. As the promoter/enhancer, for example, there can be mentioned human cytomegalovirus immediate early promoter/enhancer.
- Additionally, as the promoter/enhancer which can be used for expression of antibody for use in the present invention, there can be used viral promoters/enhancers such as retrovirus, polyoma virus, adenovirus, and simian virus 40 (SV40), and promoters/enhancers derived from mammalian cells such as human elongation factor 1α (HEF1α).
- For example, expression may be readily accomplished by the method of Mulligan et al. (Mulligan, R. C. et al., Nature (1979) 277, 108-114) when SV40 promoter/enhancer is used, and by the method of Mizushima, S. et al. (Mizushima, S. and Nagata, S., Nucleic Acids Res. (1990) 18, 5322) when HEF1α promoter/enhancer is used.
- In the case of E. coli, expression may be conducted by operably linking a commonly used promoter, a signal sequence for antibody secretion, and an antibody gene to be expressed, followed by expression thereof. As the promoter, for example, there can be mentioned lacz promoter and araB promoter. The method of Ward et al. (Ward, E. S. et al., Nature (1989) 341, 544-546; Ward, E. S. et al., FASEB J. (1992) 6, 2422-2427) may be used when lacz promoter is used, and the method of Better et al. (Better, M. et al., Science (1988) 240, 1041-1043) may be used when araB promoter is used.
- As a signal sequence for antibody secretion, when produced in the periplasm of E. coli, the pelB signal sequence (Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379-4383) can be used. After separating the antibody produced in the periplasm, the structure of the antibody is appropriately refolded before use (see, for example, WO 96-30394).
- As the origin of replication, there can be used those derived from SV40, polyoma virus, adenovirus, bovine papilloma virus (BPV), and the like. Furthermore, for amplification of the gene copy number in the host cell system, expression vectors can include, as selectable markers the aminoglycoside transferase (APH) gene, the thymidine kinase (TK) gene, E. coli xanthine guaninephosphoribosyl transferase (Ecogpt) gene, the dihydrofolate reductase (dhfr) gene, and the like.
- For the production of antibody for use in the present invention, any production system can be used, and the production systems of antibody preparation comprise the in vitro or the in vivo production system. As the in vitro production systems, there can be mentioned a production system which employs eukaryotic cells and the production system which employs prokaryotic cells.
- When eukaryotic cells are used, there are the production systems which employ animal cells, plant cells, and fungal cells. Known animal cells include (1) mammalian cells such as CHO cells, COS cells, myeloma cells, baby hamster kidney (BHK) cells, HeLa cells, and Vero cells, (2) amphibian cells such as Xenopus oocytes, or (3) insect cells such as sf9, sf21, and Tn5. Known plant cells include, for example, those derived from the Nicotiana tabacum which is subjected to callus culture. Known fungal cells include yeasts such as genus Saccharomyces, more specifically Saccharomyces cereviceae, or filamentous fungi such as the Aspergillus family, more specifically Aspergillus niger.
- When prokaryotic cells are used, there are the production systems which employ bacterial cells. Known bacterial cells include Escherichia coli, and Bacillus subtilis.
- By introducing, via transformation, the gene of the desired antibody into these cells and culturing the transformed cells in vitro, the antibody can be obtained. Culturing is conducted in the known methods. For example, as the culture liquid for mammalian cells, DMEM, MEM, RPMI1640, IMDM and the like can be used, and serum supplements such as fetal calf serum (FCS) may be used in combination. In addition, antibodies may be produced in vivo by implanting cells into which the antibody gene has been introduced into the abdominal cavity of an animal, and the like.
- As in vivo production systems, there can be mentioned those which employ animals and those which employ plants. When animals are used, there are the production systems which employ mammals and insects.
- As mammals, goats, pigs, sheep, mice, and cattle can be used (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993). Also, as insects, silkworms can be used and, in the case of plants, tobacco, for example, can be used.
- Antibody genes are introduced into these animals and plants, in which the genes are produced and then collected. For example, antibody genes are inserted into the middle of the gene encoding protein which is inherently produced in the milk such as goat β casein to prepare fusion genes. DNA fragments containing the fusion gene into which the antibody gene has been inserted are injected to a goat embryo, and the embryo is introduced into a female goat. The desired antibody is obtained from the milk produced by a transgenic goat produced by the goat that received the embryo or the offspring thereof. In order to increase the amount of milk containing the desired antibody produced by the transgenic goat, hormones may be given to the transgenic goat as appropriate (Ebert, K. M. et al., Bio/Technology (1994) 12, 699-702).
- When silkworms are used, the silkworm is infected with a baculovirus into which desired antibody gene has been inserted, and the desired antibody can be obtained from the body fluid of the silkworm (Maeda, S. et al., Nature (1985) 315, 592-594). Moreover, when tobacco is used, the desired antibody gene is inserted into an expression vector for plants, for example pMON 530, and then the vector is introduced into a bacterium such as Agrobacterium tumefaciens. The bacterium is then used to infect tobacco such as Nicotiana tabacum to obtain the desired antibody from the leaves of the tobacco (Julian, K.-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138).
- When antibody is produced in an in vitro or in vivo production systems, as mentioned above, DNA encoding the heavy chain (H chain) or light chain (L chain) of antibody is separately incorporated into an expression vector and the hosts are transformed simultaneously, or DNA encoding the H chain and the L chain of antibody is integrated into a single expression vector and the host is transformed therewith (see International Patent Application WO 94-11523).
- Antibodies for use in the present invention may be fragments of antibody or modified versions thereof as long as they are preferably used in the present invention. For example, as fragments of antibody, there may be mentioned Fab, F(ab′)2, Fv or single-chain Fv (scFv) in which Fv's of H chain and L chain were ligated via a suitable linker.
- Specifically antibodies are treated with an enzyme, for example, papain or pepsin, to produce antibody fragments, or genes encoding these antibody fragments are constructed, and then introduced into an expression vector, which is expressed in a suitable host cell (see, for example, Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Plucktrun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. et al., TI BTECH (1991) 9, 132-137).
- scFv can be obtained by ligating the V region of H chain and the V region of L chain of antibody. In the scFv, the V region of H chain and the V region of L chain are preferably ligated via a linker, preferably a peptide linker (Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883). The V region of H chain and the V region of L chain in the scFv may be derived from any of the above-mentioned antibodies. As the peptide linker for ligating the V regions, any single-chain peptide comprising, for example, 12-19 amino acid residues may be used.
- DNA encoding scFv can be obtained using DNA encoding the H chain or the H chain V region of the above antibody and DNA encoding the L chain or the L chain V region of the above antibody as the template by amplifying the portion of the DNA encoding the desired amino acid sequence among the above sequences by the PCR technique with the primer pair specifying the both ends thereof, and by further amplifying the combination of DNA encoding the peptide linker portion and the primer pair which defines that both ends of said DNA be ligated to the H chain and the L chain, respectively.
- Once DNAs encoding scFv are constructed, an expression vector containing them and a host transformed with said expression vector can be obtained by a conventional method, and scFv can be obtained using the resultant host by a conventional method.
- These antibody fragments can be produced by obtaining the gene thereof in a similar manner to that mentioned above, and by allowing it to be expressed in a host. “Antibody” as used in the present invention encompasses these antibody fragments.
- As modified antibodies, antibodies associated with various molecules such as polyethylene glycol (PEG) can be used. “Antibody” as used in the present invention encompasses these modified antibodies. These modified antibodies can be obtained by chemically modifying the antibodies thus obtained. These methods have already been established in the art.
- Antibodies expressed and produced as described above can be separated from inside or outside of the cell or from the host and then may be purified to homogeneity. Separation and purification of antibody for use in the present invention may be accomplished by affinity chromatography. As the column used for affinity chromatography, there can be mentioned Protein A column and Protein G column. Examples of carriers for use in Protein A column include, for example, Hyper D, POROS, Sepharose F.F. (Pharmacia) and the like. In addition, commonly used methods of separation and purification for proteins can be used, without any limitation.
- Chromatography other than the above affinity chromatography, filters, gel filtration, salting out, dialysis and the like may be selected and combined as appropriate, in order to separate and purify the antibodies for use in the present invention. Chromatography includes, for example, ion exchange chromatography, hydrophobic chromatography, gel-filtration and the like. These chromatographies can be applied to high performance liquid chromatography (HPLC). Also, reverse phase HPLC (rpHPLC) may be used.
- The concentration of antibody obtained as above can be determined by measurement of absorbance or by ELISA and the like. Thus, when absorbance measurement is employed, the antibody obtained is appropriately diluted with PBS(-) and then the absorbance is measured at 280 nm, followed by calculation using the absorption coefficient of 1.35 OD at 1 mg/ml. When ELISA is used, measurement is conducted as follows. Thus, 100 μl of goat anti-human IgG antibody (manufactured by TAGO) diluted to 1 μg/ml in 0.1 M bicarbonate buffer, pH 9.6, is added to a 96-well plate (manufactured by Nunc), and is incubated overnight at 4° C. to immobilize the antibody. After blocking, 100 μl each of appropriately diluted antibody for use in the present invention or samples containing the antibody, or human IgG (manufactured by CAPPEL) as the standard is added, and incubated at room temperature for 1 hour.
- After washing, 100 μl of 5000-fold diluted alkaline phosphatase-labeled anti-human IgG antibody (manufactured by BIO SOURCE) is added, and incubated at room temperature for 1 hour. After washing, the substrate solution is added and incubated, followed by measurement of absorbance at 405 nm using the MICROPLATE READER Model 3550 (manufactured by Bio-Rad) to calculate the concentration of the desired antibody.
- Reshaped IL-6 for use in the present invention is a substance that has an activity of binding with IL-6 receptor and that does not propagate the biological activity of IL-6. Thus, though reshaped IL-6 competes with IL-6 for binding to IL-6 receptor, it does not propagate the biological activity of IL-6, and therefore reshaped IL-6 blocks signal transduction by IL-6.
- Reshaped IL-6 may be prepared by introducing mutations by replacing amino acid residues of the amino acid sequence of IL-6. IL-6 from which reshaped IL-6 is derived may be of any origin, but it is preferably human IL-6 considering antigenicity etc.
- Specifically, the secondary structure of the amino acid sequence of IL-6 may be estimated using a known molecular modeling program such as WHATIF (Vriend et al., J. Mol. Graphics (11990) 8, 52-56), and its effect on the overall amino acid residues to be replaced is evaluated. After determining suitable amino acid residues, mutation may be introduced using a vector containing a base sequence encoding human IL-6 gene as a template in a commonly used PCR method so as to replace amino acids, and thereby to obtain a gene encoding reshaped IL-6. This may be integrated, as appropriate, into a suitable expression vector to obtain reshaped IL-6 according to the above-mentioned methods for expression, production, and purification of recombinant antibody.
- Specific examples of reshaped IL-6 has been disclosed in Brakenhoff et al., J. Biol. Chem. (1994) 269, 86-93, Saviono et al., EMBO J. (1994) 13, 1357-1367, WO 96-18648 and WO 96-17869.
- Partial peptides of IL-6 or partial peptides of IL-6 receptor for use in the present invention are substances that have an activity of binding to IL-6 receptor or IL-6, respectively, and that do not propagate the biological activity of IL-6. Thus, partial peptides of IL-6 or partial peptides of IL-6 receptor bind to and capture IL-6 receptor or IL-6, respectively, so as to inhibit specifically the binding of IL-6 to IL-6 receptor. As a result, they do not allow propagating of the biological activity of IL-6, and thereby block signal transduction by IL-6.
- Partial peptides of IL-6 or partial peptides of IL-6 receptor are peptides are peptides comprising part or all of the amino acid sequence involved in the binding of IL-6 and IL-6 receptor in the amino acid sequences of IL-6 or IL-6 receptor. Such peptides comprise usually 10-80 amino acid residues, preferably 20-50 amino acid residues, and more preferably 20-40 amino acid residues.
- Partial peptides of IL-6 or partial peptides of IL-6 receptor specify the regions involved in the binding of IL-6 and IL-6 receptor in the amino acid sequence of IL-6 or IL-6 receptor, and part or all of the amino acid sequence can be prepared by a commonly known method such as gene engineering technology or peptide synthesis.
- In order to prepare partial peptides of IL-6 or partial peptides of IL-6 receptor by gene engineering technology, a DNA sequence encoding the desired peptide can be integrated into an expression vector so that they may be obtained according to the above-mentioned methods for expression, production, and purification of recombinant antibody.
- In order to prepare partial peptides of IL-6 or partial peptides of IL-6 receptor by peptide synthesis, a commonly used method in peptide synthesis such as solid-phase synthesis or liquid-phase synthesis can be used.
- Specifically, methods described in “Zoku Iyakuhinno Kaihatsu, Vol. 14: Peptide Synthesis” edited by Haruaki Yajima, Hirokawa Shoten, 1991, can be used. As the solid-phase synthesis, there can be used a method in which an amino acid corresponding to the C-terminal of the peptide to be synthesized is bound to a support insoluble in organic solvents, and then a reaction in which amino acids of which α-amino group and a side chain functional group has been protected with a suitable protecting group is condensed one by one in the direction of from the C-terminal to the N-terminal and a reaction in which said protecting group of the α-amino group of the amino acid or the peptide bound to the resin is eliminated therefrom are alternately repeated to extend the peptide chain. The solid-phase peptide synthesis is roughly divided in the Boc method and the Fmoc method depending on the type of protecting groups used.
- After thus synthesizing the peptide of interest, a deprotecting reaction or a cleavage reaction of the peptide chain from the support may be performed. For the cleavage reaction of peptide chains, the Boc method employs hydrogen fluoride or trifluoromethanesulfonic acid, or the Fmoc method usually employs TFA. In the Boc method, the above protected peptide resin is treated in the presence of anisole in hydrogen fluoride. Subsequently, the elimination of the protecting group and the cleavage from the support may be performed to collect the peptide. Lyophilization of this yields crude peptide. On the other hand, in the Fmoc method, the deprotection reaction and the cleavage reaction of the peptide chain from the support may be performed in a manner similar to the one mentioned above.
- The crude peptide obtained may be subjected to HPLC to separate and purify it. In its elution, a water-acetonitrile solvent commonly used in protein purification may be used under an optimal condition. Fractions corresponding to the peaks of the chromatographic profile are harvested and then lyophilized. For the peptide fractions thus purified, molecular weight analysis by mass spectroscopy, analysis of amino acid composition, or analysis of amino acid sequence is performed for identification.
- Specific examples of IL-6 partial peptides and IL-6 receptor partial peptides have been disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2-188600, Japanese Unexamined Patent Publication (Kokai) No. 7-324097, Japanese Unexamined Patent Publication (Kokai) No. 8-311098, and U.S. Pat. Publication U.S. Pat. No. 5,210,075.
- The inhibitory activity of IL-6 signal transduction by IL-6 antagonist of the present invention can be evaluated using a commonly known method. Specifically, IL-6-dependent human myeloma line (S6B45, KPMM2), human Lennert T lymphoma line KT3, or IL-6-dependent HN60.BSF2 cells are cultured, to which IL-6 is added, and at the same time, in the presence of IL-6 antagonist, the incorporation of 3H labeled thymidine by the IL-6 dependent cells is determined. Alternatively, 125I-labeled IL-6 and IL-6 antagonist, at the same time, are added, and then 125I-labeled IL-6 that bound to the IL-6-ecpressing cells is determined for evaluation. In the above assay system, in addition to the group in which the IL-6 antagonist is present, a negative control group in which contains no IL-6 antagonist is set up, and the results obtained in both are compared to evaluate the IL-6-inhibiting activity by IL-6 antagonist.
- As shown in Examples below, as therapeutic effects was observed by administration of anti-IL-6 receptor antibody to children suffering from chronic arthritis, IL-6 antagonists such as anti-IL-6 receptor antibody were shown to have a therapeutic effect for chronic arthritides of childhood-related diseases.
- Subjects to be treated in the present invention are mammals. The subject mammals to be treated are preferably humans.
- Therapeutic agents for chronic arthritides of childhood-related diseases of the present invention may be administered orally or parenterally and systemically or locally. For example, intravenous injection such as drip infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppositories, enema, oral enteric coated tablets, and the like may be selected, and the dosage regimen may be selected as appropriate depending on the age and conditions of the patient. The effective dose is chosen from the range of 0.01 mg to 100 mg per kg of body weight per administration. Alternatively, the dosage of 1 to 1000 mg, preferably 5 to 50 mg per patient may be selected.
- Preferable dose and method for administering is, for example in the case of anti-IL6 receptor antibody, an effective dose that provides free antibody in the blood, and specifically, 0.5 mg to 40 mg, and preferably 1 mg to 20 mg per 1 kg body weight per month (four weeks), which is administered at once, or divided to several parts and administered, for example, twice/week, once/week, once/two weeks, once/four weeks, etc, for example intravenously for example by dripping, or subcutaneously. Administering schedule may be adjusted by elongating intervals from twice/week or once/week to once/two weeks, once/three weeks, once/four weeks, etc, dependent on observation of symptoms, and blood test profile.
- Therapeutic agents for chronic arthritides of childhood-related diseases of the present invention may contain pharmaceutically acceptable carriers and additives depending on the route of administration. Examples of such carriers or additives include water, a pharmaceutically acceptable organic solvent, collagen, polyvinyl alcohol, polyvinylpyrrolidone, a carboxyvinyl polymer, carboxymethylcellulose sodium, polyacrylic sodium, sodium alginate, water-soluble dextran, carboxymethyl starch sodium, pectin, methyl cellulose, ethyl cellulose, xanthan gum, gum Arabic, casein, gelatin, agar, diglycerin, propylene glycol, polyethylene glycol, Vaseline, paraffin, stearyl alcohol, stearic acid, human serum albumin (HSA), mannitol, sorbitol, lactose, pharmaceutically acceptable surfactants and the like. Actual additives used are chosen from, but not limited to, the above or combinations thereof depending on the dosage form.
- The present invention will be explained more specifically below with reference to Working Examples and Reference Examples, but it is to be noted that the present invention is not limited by these examples in any way.
- A patient (5 years old, male) with systemic-onset type juvenile rheumatoid arthritis having the following history was subjected to a MRA (humanized anti-IL-6 receptor antibody) treatment.
- Symptoms developed with relaxation heat (one-peak fever at about 40° C. for consecutive days), arthralgia at both knees, and anthema. After diagnosing based on leukocytosis, negative anti-nuclear antibody, negative rheumatoid factor, increased erythrocyte sedimentation rate, high CRP levels, etc., an aspirin administration was started, but no improvement in relaxation heat and arthralgia was observed and the general condition was aggravated. Thus, it was changed to an oral bolus administration of steroid (prednisolone 30 mg/day) to see an improvement in various symptoms. However, with the gradual decrease in prednisolone, symptoms recurred at 10 mg/day, the patient was rehospitalized, subjected to a methylprednisolone (mPSL) pulse therapy and plasmapheresis, and furthermore the combined use of cyclosporin A (Cs A) was carried out with no improvement. Symptoms were severe (leukocyte count 25400/μl, CRP 11.2 mg/dL), and a plasmapheresis+mPSL pulse therapy+Cs A was carried out and the patient entered into remission. As an aftertreatment, prednisolone+froben was given to control relaxation heat, and a decline in fever was clinically noted, but inflammation-related hematology tests remained at high values (CRP>5 mg/dL), and after discharge from hospital, relaxation heat was periodically observed, but treatment and observation were continued mainly on an ambulatory basis. However, the patient started to complain of backache that was aggravated by fever, and after close examination using MBI etc., destructive damages were noted in the fourth and the fifth thoracic vertebras suggesting that they are compression fracture. Due to the necessity of relief to the thoracic vertebras, bed rest was continued for about one year, and accordingly muscles of the lower limbs have markedly weakened which rendered walking completely impossible. The triadic therapy of prednisolone+froben+Cs A was continued but CRP never dropped to 5 mg/dL or lower.
- Administration started at 2 mg/kg. Since no side effects were seen, the dosage was increased to 4 mg/kg in a once per week administration. Fever that had been noted until then disappeared quickly, and about two weeks later CRP became negative. General malaise was cleared, and the patient somewhat improved. It became possible to decrease prednisolone gradually and has decreased to 1 mg/day.
- From the above results, MRA was found to be effective for the treatment of chronic arthritides diseases of childhood of which symptoms could not be controlled even with nonsteroidal anti-inflammatory drugs such as aspirin and froben, long term bolus steroids (for example prednine and medrol), and immunosuppressants such as cyclosporin A and methotrexate. Therefore, it can be said that IL-6 antagonist, in particular anti-IL-6 receptor antibody, is effective as a therapeutic agent for chronic arthritides diseases of childhood, specifically the systemic onset type of the ARA classification, the systemic onset type of the EULAR classification, the systemic onset type of the ILAR classification, and the SPRASH syndrome of the present inventors' classification.
- A 22-year old female. In April 1998, erythema punctatum appeared at the femur, the recordial region, and fingers, and in May, arthralgia at the shoulder, the elbow and the knee, and fever between 38 and 39° C. appeared. Though nonsteroidal anti-inflammatory drugs (NSAIDs) were started, fever persisted, and in July, with leukocyte count at 18100/μl, CRP at 18.3 mg/dl, and serum ferritin at 440 ng/ml, the patient was diagnosed as having adult Still's disease. From early January 2000, fever between 39 and 40° C. and arthralgia appeared, which were believed to be a flare-up of adult Still's disease (CRP 15.8 mg/dl, ferritin, 205.8 ng/ml).
- Since it was difficult to reduce the dosage of steroids, methotrexate (MTX) and cyclosporin A (Cs A) were used in combination, but this could not control the progress of the disease, which aggravated breathing, and thus the patient was placed under the control of artificial respiration. Though the disease was somewhat improved by a steroid therapy, a treatment with humanized anti-IL-6 receptor antibody (MRA) was started because of the complication of severe osteoporosis. MRA (200 mg) was intravenously drip-infused for every two weeks. The inflammatory reaction became negative on day 6 after the administration, and decreases in the amount of corticosteroids progressed smoothly, and no severe side effects were observed.
- From the above results, MRA was found to be effective for the treatment of adult Still's disease of which symptoms could not be controlled even with the combined use of MTX and CsA. Therefore, it can be said that IL-6 antagonist, in particular anti-IL-6 receptor antibody, is effective as a therapeutic agent for Still's disease, specifically adult Still's disease.
- Using a plasmid pBSF2R.236 containing cDNA that encodes IL-6 receptor obtained by the method of Yamasaki et al. (Yamasaki et al., Science (1988) 241, 825-828), soluble IL-6 receptor was prepared by the PCR method. The plasmid pBSF2R.236 was digested with a restriction enzyme Sph I to obtain IL-6 receptor cDNA, which was inserted into mp18 (manufactured by Amersham). Using a synthetic primer designed to introduce a stop codon into IL-6 receptor cDNA, mutation was introduced into IL-6 receptor cDNA by the PCR method in an in vitro mutagenesis system (manufactured by Amersham). By this procedure, the stop codon was introduced at the position of amino acid 345, and cDNA encoding soluble IL-6 receptor was obtained.
- In order to express soluble IL-6 receptor in CHO cells, it was ligated to a plasmid pSV (manufactured by Pharmacia) to obtain a plasmid pSVL344. Soluble IL-6 receptor cDNA digested with HindIII-SalI was inserted into a plasmid pECEdhfr containing the cDNA of dhfr to obtain a CHO cell-expressing plasmid pECEdhfr344.
- Ten μg of plasmid pECEdhfr344 was transfected to a dhfr-CHO cell line DXB-11 (Urlaub, G. et al., Proc. Natl. Acad. Sci. USA (1980) 77, 4216-4220) by the calcium phosphate precipitation method (Chen, C. et al., Mol. Cell. Biol. (1987) 7, 2745-2751). The transfected CHO cells were cultured for three weeks in a nucleoside-free αMEM selection medium containing 1 mM glutamine, 10% dialyzed FCS, 100 U/ml penicillin and 100 μ/ml streptomycin.
- The selected CHO cells were screened by the limiting dilution method to obtain a single CHO cells clone. The CHO cell clone was amplified with 20 nM-200 nM of methotrexate to investigate a human soluble IL-6 receptor-producing CHO cell line 5E27. The CHO cell line 5E27 was cultured in a Iscov modified Dulbecco medium (IMDM, manufactured by Gibco) supplemented with 5% FBS. The culture supernatant was collected and the concentration of soluble IL-6 receptor in the culture supernatant was determined by ELISA. The result confirmed the presence of soluble IL-6 receptor in the culture supernatant.
- Ten μg of tissue-type IL-6 (Hirano et al., Immunol. Lett. (1988) 17, 41) was used with Freund's complete adjuvant to immunize BALB/c mice, and this was repeated every week until anti-IL-6 antibody can be detected in the serum. Immune cells were removed from the local lymph nodes, and were fused with a myeloma cell line P3U1 using polyethylene glycol 1500. Hybridomas were selected by the method of Oi et al. (Selective Methods in Cellular Immunology, W.H. Freeman and Co., San Francisco, 351, 19080) using the HAT culture medium to establish a hybridoma producing anti-human IL-6 antibody.
- The hybridoma producing anti-human IL-6 antibody was subjected to an IL-6 binding assay in the following manner. Thus, a 96-well microtiter plate (manufactured by Dynatech Laboratories, Inc., Alexandria, Va.) made of flexible polyvinyl was coated overnight with 100 μl of goat anti-mouse Ig (10 μl/ml, manufactured by Cooper Biomedical, Inc., Malvern, Pa.) in 0.1 M carbonate hydrogen carbonate buffer (pH 9.6) at 4° C. Then, the plate was treated in 100 μl of PBS containing 1% bovine serum albumin (BSA) at room temperature for 2 hours.
- After the plate was washed in PBS, 100 μl of the hybridoma culture supernatant was added to each well, and incubated overnight at 4° C. After washing the plate, 125I-labelled recombinant type IL-6 was added to each well to 2000 cpm/0.5 ng/well, and after washing, radioactivity of each well was measured by a gamma counter (Beckman Gamma 9000, Beckman Instruments, Fullerton, Calif.). Of 216 hybridoma clones, 32 hybridoma clones were positive in the IL-6 binding assay. From among these clones, finally MH166.BSF2, a stable clone, was selected. Anti-IL-6 antibody MH166 has a subtype of IgG1 κ type.
- Then, using a IL-6-dependent mouse hybridoma clone MH60.BSF2, a neutralizing activity with regard to the growth of the hybridoma by MH166 antibody was investigated. MH60.BSF2 cells were aliquoted to 1×104/200 μl/well, to which a sample containing MH166 antibody was added, and cultured for 48 hours. After adding 0.5 μCi/well of 3H-thymidine (New England Nuclear, Boston, Mass.), culturing was continued for further six hours. The cells were placed on a glass filter paper, and were treated by an automated harvester (Labo Mash Science Co., Tokyo, Japan). As the control, rabbit anti-IL-6 antibody was used.
- As a result, MH166 antibody inhibited 3H-thymidine incorporation by MH60.BSF2 cells induced by IL-6 in a dose dependent manner. This revealed that MH166 antibody neutralizes the activity of IL-6.
- Anti-IL-6 receptor antibody MT18 prepared by the method of Hirata et al. (Hirata, Y. et al., J. Immunol. (1989) 143, 2900-2906) was conjugated to a CNBr-activated Sepharose 4B (manufactured by Pharmacia Fine Chemicals, Piscataway, N.J.) to purify IL-6 receptor (Yamasaki et al., Science (1988) 241, 825-828). A human myeloma cell line U266 was solubilized with 1 mM p-paraaminophenylmethanesulfonyl fluoride hydrochloride (manufactured by Wako Pure Chemicals) (digitonin buffer) containing 1% digitonin (manufactured by Wako Pure Chemicals), 10 mM triethanolamine (pH 7.8), and 0.15 M NaCl, and was mixed with MT18 antibody conjugated to Sepharose 4B beads. Subsequently, the beads were washed six times in the digitonin buffer to prepare a partially purified IL-6 receptor.
- BALB/c mice were immunized with the above partially purified IL-6 receptor obtained from 3×109 U266 cells four times every ten days, and then a hybridoma was prepared according to a standard method. The culture supernatant of the hybridoma from growth-positive wells were examined for the biding activity to IL-6 receptor in the following manner. 5×107 U266 cells were labelled with 35S-methionine (2.5 mCi), and were solubilized with the above digitonin buffer. The solubilized U266 cells were mixed with 0.04 ml of MT18 antibody conjugated to Sepharose 4B beads, and then washed for six times in the digitonin buffer. Using 0.25 ml of the digitonin buffer (pH 3.4), 35S-methionine-labeled IL-6 receptor was eluted, which was neutralized with 0.025 ml of 1M Tris, pH 7.4.
- 0.05 ml of the hybridoma culture supernatant was mixed with 0.01 ml Protein G Sepharose (manufactured by Pharmacia). After washing, the Sepharose was incubated with 0.005 ml solution of 35S-labeled IL-6 receptor solution. The immunoprecipitated substances were analyzed by SDS-PAGE to study the culture supernatant of hybridoma that reacts with IL-6 receptor. As a result, a reaction-positive hybridoma clone PM-1 was established. Antibody produced from the hybridoma PM-1 had the IgG1 κ subtype.
- The activity of the antibody produced by the hybridoma PM-1 to inhibit the binding of IL-6 to IL-6 receptor was evaluated using a human myeloma cell line U266. Human recombinant IL-6 was prepared from E. coli (Hirano et al., Immunol. Lett. (1988) 17, 41-45), and was labeled with 125I using the Bolton-Hunter reagent (New England Nclear, Boston, Mass.) (Taga et al., J. Exp. Med. (1987) 166, 967-981).
- 4×105 U266 cells were cultured with a culture supernatant of 70%(v/v) hybridoma PM-1 and 14000 CPM of 125I-labeled IL-6 for one hour. Seventy microliters of a sample was layered onto 300 μl of FCS in a 400 μl microfuge polyethylene tube, centrifuged, and then the radioactivity of the cells were measured.
- The result revealed that the antibody produced by the hybridoma PM-1 inhibits the binding of IL-6 to IL-6 receptor.
- A monoclonal antibody against mouse IL-6 receptor was prepared by the method of Saito, T. et al., J. Immunol. (1991) 147, 168-173.
- CHO cells that produce soluble mouse IL-6 receptor were cultured in an IMDM culture medium supplemented with 10% FCS. From the culture supernatant, soluble mouse IL-6 receptor was purified using an affinity column in which anti-mouse IL-6 receptor antibody RS12 (see the above Saito, T. et al.) was immobilized to the Affigel 10 gel (manufactured by Biorad).
- Fifty μg of soluble mouse IL-6 receptor thus obtained was mixed with Freund's complete adjuvant, which was intraperitoneally injected to the abdomen of Wistar rats. Two weeks later, the rats received booster immunization with Freund's incomplete adjuvant. On day 45, spleen cells were removed from the rats, and 2×108 of the cells were subjected to cell fusion with 1×107 mouse myeloma cells P3U1 with 50% PEG1500 (manufactured by Boehringer Mannheim) using a standard method, and the hybridoma were then screened with the HAT medium.
- After adding the culture supernatant to a plate coated with rabbit anti-rat IgG antibody (manufactured by Cappel), soluble mouse IL-6 receptor was reacted thereto. Then, using an ELISA method employing rabbit anti-mouse IL-6 receptor antibody and alkaline phosphatase-labelled sheep anti-rabbit IgG, hybridomas that produce antibodies against soluble mouse IL-6 receptor were screened. The hybridoma clones for which antibody production was confirmed were subjected to subscreening twice to obtain a single hybridoma clone. This clone was designated as MR16-1.
- A neutralizing activity in signal transduction of mouse IL-6 by the antibody produced by this hybridoma was examined using 3H-thymidine incorporation that employs MH60.BSF2 cells (Matsuda, T. et al., J. Immunol. (1988) 18, 951-956). To a 96-well plate, MH60.BSF2 cells were prepared to 1×104 cells/200 μl/well. To this plate were added 10 μg/ml of mouse IL-6 and MR16-1 antibody or RS12 antibody at 12.3-1000 ng/ml, and cultured at 37° C. in 5% CO2 for 44 hours, followed by the addition of 1 μCi/well of 3H-thymidine. Four hours later, the incorporation of 3H-thymidine was measured. As a result, MR16-1 antibody inhibited the 3H-thymidine incorporation by MH60.BSF2 cells.
- Thus, it was revealed that antibody produced by the hybridoma MR16-1 (FERM BP-5874) inhibits the binding of IL-6 to IL-6 receptor.
Claims (13)
1-15. (canceled)
16. A method for treatment of adult-onset Sill's disease, comprising administering a subcutaneous injection of an antibody against human IL-6 receptor to a human patient who needs said treatment, wherein the antibody against the IL-6 receptor is an antibody which inhibits binding of IL-6 to the IL-6 receptor by binding to the IL-6 receptor.
17. The method of claim 16 , wherein the antibody against IL-6 receptor is a monoclonal antibody.
18. The method of claim 16 , wherein the antibody against L-6 receptor is recombinant.
19. The method of claim 17 , wherein the monoclonal antibody against IL-6 receptor is the PM-1 antibody (FERM BP-2998) or a humanized or chimeric version thereof.
20. The method of claim 16 , wherein treatment further comprises administration of methotrexate, non-steroidal anti-inflammatory drugs (NSAIDs), or corticosteroids.
21. A method for treatment of systemic-onset type juvenile rheumatoid arthritis, comprising administering an intravenous injection of an antibody against human IL-6 receptor to a human patient who needs said treatment, wherein the antibody against the IL-6 receptor is an antibody which inhibits binding of IL-6 to the IL-6 receptor by binding to the IL-6 receptor, wherein the antibody against human IL-6 receptor is administered in a dose of 1-20 mg/kg body weight.
22. The method of claim 21 , wherein the antibody against human IL-6 receptor is administered in a dose of 8-12 mg/kg body weight.
23. The method of claim 21 , wherein the antibody against human IL-6 receptor is administered once every two weeks.
24. The method of claim 21 , wherein the antibody against IL-6 receptor is a monoclonal antibody.
25. The method of claim 21 , wherein the antibody against IL-6 receptor is recombinant.
26. The method of claim 24 , wherein the monoclonal antibody against IL-6 receptor is the PM-1 antibody (FERM BP-2998) or a humanized or chimeric version thereof.
27. The method of claim 21 , wherein treatment further comprises administration of one or more of methotrexate, a non-steroidal anti-inflammatory drug (NSAID), or a corticosteroid.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/986,884 US20160194401A1 (en) | 2001-04-02 | 2016-01-04 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US15/946,866 US20180222988A1 (en) | 2001-04-02 | 2018-04-06 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001103627 | 2001-04-02 | ||
| JP2001-103627 | 2001-04-02 | ||
| JP2001109131 | 2001-04-06 | ||
| JP2001-109131 | 2001-04-06 | ||
| US10/473,165 US20040115197A1 (en) | 2001-04-02 | 2002-04-02 | Remedies for infant chronic arthritis-relating diseases |
| PCT/JP2002/003312 WO2002080969A1 (en) | 2001-04-02 | 2002-04-02 | Remedies for infant chronic arthritis-relating diseases |
| US11/704,233 US7955598B2 (en) | 2001-04-02 | 2007-02-09 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US13/064,953 US9255145B2 (en) | 2001-04-02 | 2011-04-28 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US14/986,884 US20160194401A1 (en) | 2001-04-02 | 2016-01-04 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/064,953 Continuation US9255145B2 (en) | 2001-04-02 | 2011-04-28 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/946,866 Continuation US20180222988A1 (en) | 2001-04-02 | 2018-04-06 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160194401A1 true US20160194401A1 (en) | 2016-07-07 |
Family
ID=26612973
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/473,165 Abandoned US20040115197A1 (en) | 2001-04-02 | 2002-04-02 | Remedies for infant chronic arthritis-relating diseases |
| US11/704,233 Expired - Lifetime US7955598B2 (en) | 2001-04-02 | 2007-02-09 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US13/064,953 Expired - Fee Related US9255145B2 (en) | 2001-04-02 | 2011-04-28 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US14/986,884 Abandoned US20160194401A1 (en) | 2001-04-02 | 2016-01-04 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US15/946,866 Abandoned US20180222988A1 (en) | 2001-04-02 | 2018-04-06 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/473,165 Abandoned US20040115197A1 (en) | 2001-04-02 | 2002-04-02 | Remedies for infant chronic arthritis-relating diseases |
| US11/704,233 Expired - Lifetime US7955598B2 (en) | 2001-04-02 | 2007-02-09 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US13/064,953 Expired - Fee Related US9255145B2 (en) | 2001-04-02 | 2011-04-28 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/946,866 Abandoned US20180222988A1 (en) | 2001-04-02 | 2018-04-06 | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Country Status (17)
| Country | Link |
|---|---|
| US (5) | US20040115197A1 (en) |
| EP (4) | EP1972638A1 (en) |
| JP (5) | JP3702274B2 (en) |
| KR (2) | KR100842133B1 (en) |
| CN (1) | CN100562339C (en) |
| AU (1) | AU2002243032B2 (en) |
| BR (1) | BR0208636A (en) |
| CA (1) | CA2443294C (en) |
| HU (1) | HU230197B1 (en) |
| IL (3) | IL158079A0 (en) |
| MX (1) | MXPA03008955A (en) |
| NO (1) | NO20034388L (en) |
| NZ (1) | NZ528479A (en) |
| PL (1) | PL216534B1 (en) |
| RU (2) | RU2541165C2 (en) |
| UA (1) | UA80091C2 (en) |
| WO (1) | WO2002080969A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9750752B2 (en) | 2010-11-08 | 2017-09-05 | Hoffmann-La Roche Inc. | Subcutaneously administered anti-IL-6 receptor antibody |
| US10744201B2 (en) | 2003-04-28 | 2020-08-18 | Chugai Seiyaku Kabushiki Kaisha | Method for treating rheumatoid arthritis with a human IL-6 receptor antibody and methotrexate |
| US11021728B2 (en) | 2009-10-26 | 2021-06-01 | Hoffmann-La Roche Inc. | Method for the production of a glycosylated immunoglobulin |
Families Citing this family (85)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8017121B2 (en) * | 1994-06-30 | 2011-09-13 | Chugai Seiyaku Kabushika Kaisha | Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component |
| HU227708B1 (en) * | 1994-10-21 | 2011-12-28 | Chugai Pharmaceutical Co Ltd | Use of anti-interleukin-6-receptor antibodies mr-16 and pm-1 and derivatives thereof for producing pharmaceutical preparation for treating diseases caused by il-6 production |
| WO1998042377A1 (en) | 1997-03-21 | 1998-10-01 | Chugai Seiyaku Kabushiki Kaisha | Preventives or remedies for sensitized t cell-related diseases containing il-6 antagonists as the active ingredient |
| US20020187150A1 (en) * | 1997-08-15 | 2002-12-12 | Chugai Seiyaku Kabushiki Kaisha | Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient |
| ATE383875T1 (en) * | 1998-03-17 | 2008-02-15 | Chugai Pharmaceutical Co Ltd | PROPHYLACTIC OR THERAPEUTIC AGENTS AGAINST INFLAMMATORY DISEASES OF THE DIGESTIVE TRACT CONTAINING ANTAGONISTIC IL-6 RECEPTOR ANTIBODIES |
| JP4889187B2 (en) * | 2000-10-27 | 2012-03-07 | 中外製薬株式会社 | A blood MMP-3 concentration reducing agent comprising an IL-6 antagonist as an active ingredient |
| UA80091C2 (en) | 2001-04-02 | 2007-08-27 | Chugai Pharmaceutical Co Ltd | Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist |
| EP1475100B1 (en) * | 2002-02-14 | 2015-05-06 | Chugai Seiyaku Kabushiki Kaisha | Use of acetic acid for suppressing Fe ion induced problems in formulations of anti-HM1.24 or anti-IL6R antibodies |
| JP4651541B2 (en) * | 2003-10-17 | 2011-03-16 | 中外製薬株式会社 | Mesothelioma treatment |
| US8617550B2 (en) * | 2003-12-19 | 2013-12-31 | Chugai Seiyaku Kabushiki Kaisha | Treatment of vasculitis with IL-6 antagonist |
| EP2784090A1 (en) * | 2004-02-26 | 2014-10-01 | Baylor Research Institute | Compositions for the treatment of systemic onset juvenile idiopathic arthritis |
| EP3736295A1 (en) | 2004-03-24 | 2020-11-11 | Chugai Seiyaku Kabushiki Kaisha | Subtypes of humanized antibody against interleukin-6 receptor |
| AR048335A1 (en) | 2004-03-24 | 2006-04-19 | Chugai Pharmaceutical Co Ltd | THERAPEUTIC AGENTS FOR INTERNAL EAR DISORDERS CONTAINING AN IL-6 ANTAGONIST AS AN ACTIVE INGREDIENT |
| CA2603408C (en) | 2005-03-31 | 2018-08-21 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing polypeptides by regulating polypeptide association |
| RU2450830C2 (en) | 2005-10-21 | 2012-05-20 | Чугаи Сейяку Кабусики Кайся | Agent for cardiopathy |
| WO2007074880A1 (en) * | 2005-12-28 | 2007-07-05 | Chugai Seiyaku Kabushiki Kaisha | Antibody-containing stabilizing preparation |
| CN105177091A (en) | 2006-03-31 | 2015-12-23 | 中外制药株式会社 | Antibody modification method for purifying bispecific antibody |
| EP4001409A1 (en) | 2006-03-31 | 2022-05-25 | Chugai Seiyaku Kabushiki Kaisha | Methods for controlling blood pharmacokinetics of antibodies |
| CN101495146B (en) | 2006-04-07 | 2012-10-17 | 国立大学法人大阪大学 | Muscle regeneration promoter |
| PT2041177E (en) | 2006-06-02 | 2012-03-05 | Regeneron Pharma | ANTIBODIES WITH HIGH AFFINITY FOR THE HUMAN IL-6 RECEPTOR |
| US8080248B2 (en) | 2006-06-02 | 2011-12-20 | Regeneron Pharmaceuticals, Inc. | Method of treating rheumatoid arthritis with an IL-6R antibody |
| EP2064241B1 (en) | 2006-08-03 | 2015-10-07 | Vaccinex, Inc. | Anti-il-6 monoclonal antibodies and uses thereof |
| JP2010095445A (en) * | 2006-12-27 | 2010-04-30 | Tokyo Medical & Dental Univ | Therapeutic agent for inflammatory myopathy containing il-6 antagonist as active ingredient |
| BRPI0806812B8 (en) | 2007-01-23 | 2021-09-14 | Chugai Pharmaceutical Co Ltd | Agent for suppressing chronic rejection reaction and use of an il-6 inhibitor |
| US7906117B2 (en) * | 2007-05-21 | 2011-03-15 | Alderbio Holdings Llc | Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever |
| KR20170036814A (en) * | 2007-05-21 | 2017-04-03 | 앨더바이오 홀딩스 엘엘씨 | Novel rabbit antibody humanization methods and humanized rabbit antibodies |
| US8404235B2 (en) | 2007-05-21 | 2013-03-26 | Alderbio Holdings Llc | Antagonists of IL-6 to raise albumin and/or lower CRP |
| US8252286B2 (en) | 2007-05-21 | 2012-08-28 | Alderbio Holdings Llc | Antagonists of IL-6 to prevent or treat thrombosis |
| ES2721753T3 (en) | 2007-05-21 | 2019-08-05 | Alderbio Holdings Llc | Antibodies against IL-6 and their uses |
| US8178101B2 (en) | 2007-05-21 | 2012-05-15 | Alderbio Holdings Inc. | Use of anti-IL-6 antibodies having specific binding properties to treat cachexia |
| US8062864B2 (en) | 2007-05-21 | 2011-11-22 | Alderbio Holdings Llc | Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies |
| US9701747B2 (en) | 2007-05-21 | 2017-07-11 | Alderbio Holdings Llc | Method of improving patient survivability and quality of life by anti-IL-6 antibody administration |
| US20090238825A1 (en) * | 2007-05-21 | 2009-09-24 | Kovacevich Brian R | Novel rabbit antibody humanization methods and humanized rabbit antibodies |
| CA2978687C (en) | 2007-09-26 | 2020-02-18 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant region |
| US9096651B2 (en) | 2007-09-26 | 2015-08-04 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
| MX337081B (en) | 2007-12-05 | 2016-02-10 | Chugai Pharmaceutical Co Ltd | Anti-nr10 antibody and use thereof. |
| PE20091174A1 (en) | 2007-12-27 | 2009-08-03 | Chugai Pharmaceutical Co Ltd | LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT |
| LT2708559T (en) | 2008-04-11 | 2018-06-11 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly |
| WO2009140348A2 (en) | 2008-05-13 | 2009-11-19 | Novimmune Sa | Anti-il-6/il-6r antibodies and methods of use thereof |
| US10717781B2 (en) | 2008-06-05 | 2020-07-21 | National Cancer Center | Neuroinvasion inhibitor |
| TWI440469B (en) | 2008-09-26 | 2014-06-11 | Chugai Pharmaceutical Co Ltd | Improved antibody molecules |
| US8992920B2 (en) | 2008-11-25 | 2015-03-31 | Alderbio Holdings Llc | Anti-IL-6 antibodies for the treatment of arthritis |
| US9452227B2 (en) * | 2008-11-25 | 2016-09-27 | Alderbio Holdings Llc | Methods of treating or diagnosing conditions associated with elevated IL-6 using anti-IL-6 antibodies or fragments |
| US8420089B2 (en) | 2008-11-25 | 2013-04-16 | Alderbio Holdings Llc | Antagonists of IL-6 to raise albumin and/or lower CRP |
| US9212223B2 (en) | 2008-11-25 | 2015-12-15 | Alderbio Holdings Llc | Antagonists of IL-6 to prevent or treat thrombosis |
| US8337847B2 (en) | 2008-11-25 | 2012-12-25 | Alderbio Holdings Llc | Methods of treating anemia using anti-IL-6 antibodies |
| US8323649B2 (en) * | 2008-11-25 | 2012-12-04 | Alderbio Holdings Llc | Antibodies to IL-6 and use thereof |
| JO3672B1 (en) | 2008-12-15 | 2020-08-27 | Regeneron Pharma | High Affinity Human Antibodies to PCSK9 |
| EP2409991B1 (en) | 2009-03-19 | 2017-05-03 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variant |
| WO2010107109A1 (en) | 2009-03-19 | 2010-09-23 | 中外製薬株式会社 | Antibody constant region variant |
| CA2761891A1 (en) | 2009-05-15 | 2010-11-18 | Chugai Seiyaku Kabushiki Kaisha | Anti-axl antibody |
| US10150808B2 (en) | 2009-09-24 | 2018-12-11 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant regions |
| US9775921B2 (en) | 2009-11-24 | 2017-10-03 | Alderbio Holdings Llc | Subcutaneously administrable composition containing anti-IL-6 antibody |
| EP2504030A4 (en) | 2009-11-24 | 2013-06-26 | Alderbio Holdings Llc | Antagonists of il-6 to raise albumin and/or lower crp |
| JO3417B1 (en) | 2010-01-08 | 2019-10-20 | Regeneron Pharma | Stabilized formulations containing anti-interleukin-6 receptor (il-6r) antibodies |
| WO2011108714A1 (en) | 2010-03-04 | 2011-09-09 | 中外製薬株式会社 | Antibody constant region variant |
| JP6051049B2 (en) | 2010-05-28 | 2016-12-21 | 中外製薬株式会社 | Anti-tumor T cell response enhancer |
| WO2011149046A1 (en) | 2010-05-28 | 2011-12-01 | 独立行政法人国立がん研究センター | Therapeutic agent for pancreatic cancer |
| DK2643018T3 (en) | 2010-11-23 | 2021-01-18 | Vitaeris Inc | ANTI-IL-6 ANTIBODIES FOR THE TREATMENT OF ORAL MUCOSITIS |
| SG190727A1 (en) | 2010-11-30 | 2013-07-31 | Chugai Pharmaceutical Co Ltd | Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly |
| AU2012210481B2 (en) | 2011-01-28 | 2017-05-18 | Sanofi Biotechnology | Pharmaceutical compositions comprising human antibodies to PCSK9 |
| AR087305A1 (en) | 2011-07-28 | 2014-03-12 | Regeneron Pharma | STABILIZED FORMULATIONS CONTAINING ANTI-PCSK9 ANTIBODIES, PREPARATION METHOD AND KIT |
| TWI589299B (en) | 2011-10-11 | 2017-07-01 | 再生元醫藥公司 | Composition for treating rheumatoid arthritis and method of use thereof |
| CN104349787B (en) | 2012-05-21 | 2019-02-15 | 韩国生命工学研究院 | Pharmaceutical composition for preventing or treating STAT-3 mediated diseases containing Litchi grass extract or its fraction as active ingredient |
| JP6442404B2 (en) | 2013-06-11 | 2018-12-19 | 国立研究開発法人国立精神・神経医療研究センター | Method for predicting treatment prognosis in patients with relapsing-remitting multiple sclerosis (RRMS), and method for determining new treatment indication |
| KR102248581B1 (en) | 2013-07-04 | 2021-05-06 | 에프. 호프만-라 로슈 아게 | Interference-suppressed immunoassay to detect anti-drug antibodies in serum samples |
| CA2925256C (en) | 2013-09-27 | 2023-08-15 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
| US9017678B1 (en) | 2014-07-15 | 2015-04-28 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
| CN103739669B (en) * | 2013-12-31 | 2015-08-26 | 浙江元太生物科技有限公司 | A kind of suppression interleukin-6 polypeptide and application thereof |
| TWI759261B (en) * | 2015-02-27 | 2022-04-01 | 日商中外製藥股份有限公司 | Use of IL-6 receptor antibody for preparing pharmaceutical composition |
| WO2016159213A1 (en) | 2015-04-01 | 2016-10-06 | 中外製薬株式会社 | Method for producing polypeptide hetero-oligomer |
| PL3299810T3 (en) | 2015-05-19 | 2021-12-13 | National Center Of Neurology And Psychiatry | Method for determining application of novel therapy to multiple sclerosis (ms) patient |
| EP3305325B1 (en) | 2015-06-04 | 2025-07-30 | National Center of Neurology and Psychiatry | Mental illness therapeutic agent having il-6 inhibitor as active ingredient |
| JP2018523684A (en) | 2015-08-18 | 2018-08-23 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Anti-PCSK9 inhibitory antibody for treating hyperlipidemic patients undergoing lipoprotein apheresis |
| SG11201803989WA (en) | 2015-12-28 | 2018-06-28 | Chugai Pharmaceutical Co Ltd | Method for promoting efficiency of purification of fc region-containing polypeptide |
| WO2017147169A1 (en) | 2016-02-22 | 2017-08-31 | Ohio State Innovation Foundation | Chemoprevention using controlled-release formulations of anti-interleukin 6 agents, synthetic vitamin a analogues or metabolites, and estradiol metabolites |
| SG10201607778XA (en) | 2016-09-16 | 2018-04-27 | Chugai Pharmaceutical Co Ltd | Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use |
| WO2018170405A1 (en) | 2017-03-17 | 2018-09-20 | Ohio State Innovation Foundation | Nanoparticles for delivery of chemopreventive agents |
| JP7185884B2 (en) | 2017-05-02 | 2022-12-08 | 国立研究開発法人国立精神・神経医療研究センター | METHOD FOR PREDICTING AND DETERMINING THERAPEUTIC EFFECT OF IL-6 AND NEUTROPHIL-RELATED DISEASE |
| WO2019078344A1 (en) | 2017-10-20 | 2019-04-25 | 学校法人兵庫医科大学 | Anti-il-6 receptor antibody-containing medicinal composition for preventing post-surgical adhesion |
| SG11202009010RA (en) | 2018-03-15 | 2020-10-29 | Chugai Pharmaceutical Co Ltd | Anti-dengue virus antibodies having cross-reactivity to zika virus and methods of use |
| KR20210122810A (en) | 2019-01-31 | 2021-10-12 | 사노피 바이오테크놀로지 | Anti-IL-6 receptor antibody for the treatment of juvenile idiopathic arthritis |
| US20220177978A1 (en) | 2019-04-02 | 2022-06-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting and preventing cancer in patients having premalignant lesions |
| CN114651010A (en) | 2019-04-24 | 2022-06-21 | 赛诺菲生物技术公司 | Diagnosis and Treatment of Rheumatoid Arthritis |
| EP3980459A1 (en) | 2019-06-04 | 2022-04-13 | Sanofi Biotechnology | Compositions and methods for treating pain in subj ects with rheumatoid arthritis |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5888510A (en) * | 1993-07-21 | 1999-03-30 | Chugai Seiyaku Kabushiki Kaisha | Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component |
| US7955598B2 (en) * | 2001-04-02 | 2011-06-07 | Chugai Seiyaku Kabushiki Kaisha | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Family Cites Families (101)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58201994A (en) | 1982-05-21 | 1983-11-25 | Hideaki Hagiwara | Method for producing antigen-specific human immunoglobulin |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
| US6428979B1 (en) * | 1988-01-22 | 2002-08-06 | Tadamitsu Kishimoto | Receptor protein for human B cell stimulatory factor-2 |
| US5670373A (en) * | 1988-01-22 | 1997-09-23 | Kishimoto; Tadamitsu | Antibody to human interleukin-6 receptor |
| US5171840A (en) * | 1988-01-22 | 1992-12-15 | Tadamitsu Kishimoto | Receptor protein for human B cell stimulatory factor-2 |
| JP2914672B2 (en) | 1989-01-17 | 1999-07-05 | 中外製薬株式会社 | BSF (2) Antagonist |
| US5216128A (en) | 1989-06-01 | 1993-06-01 | Yeda Research And Development Co., Ltd. | IFN-β2/IL-6 receptor its preparation and pharmaceutical compositions containing it |
| DE122009000023I2 (en) | 1989-07-20 | 2010-12-16 | Kishimoto | Antibodies to human interleukin-6 receptor |
| JP2898064B2 (en) | 1989-08-03 | 1999-05-31 | 忠三 岸本 | Human gp130 protein |
| JPH03155795A (en) | 1989-11-13 | 1991-07-03 | Chuzo Kishimoto | Mouse-interleukin-6 receptor protein |
| JP2898040B2 (en) | 1990-01-26 | 1999-05-31 | 忠三 岸本 | Antibodies to gp130 protein |
| US5210075A (en) | 1990-02-16 | 1993-05-11 | Tanabe Seiyaku Co., Ltd. | Interleukin 6 antagonist peptides |
| DK0585287T3 (en) | 1990-07-10 | 2000-04-17 | Cambridge Antibody Tech | Process for producing specific binding pair elements |
| GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
| WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| CA2089661C (en) | 1990-08-29 | 2007-04-03 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
| ATE181575T1 (en) * | 1991-04-25 | 1999-07-15 | Chugai Pharmaceutical Co Ltd | RECOMBINED HUMAN ANTIBODIES AGAINST THE HUMAN INTERLEUKIN 6 RECEPTOR |
| DE69229477T2 (en) | 1991-09-23 | 1999-12-09 | Cambridge Antibody Technology Ltd., Melbourn | Methods for the production of humanized antibodies |
| ATE463573T1 (en) | 1991-12-02 | 2010-04-15 | Medimmune Ltd | PRODUCTION OF AUTOANTIBODIES ON PHAGE SURFACES BASED ON ANTIBODIES SEGMENT LIBRARIES |
| CA2131151A1 (en) | 1992-03-24 | 1994-09-30 | Kevin S. Johnson | Methods for producing members of specific binding pairs |
| SG48760A1 (en) | 1992-07-24 | 2003-03-18 | Abgenix Inc | Generation of xenogenetic antibodies |
| FR2694767B1 (en) | 1992-08-13 | 1994-10-21 | Innotherapie Lab Sa | Anti-IL6R monoclonal antibodies, and their applications. |
| US5648267A (en) | 1992-11-13 | 1997-07-15 | Idec Pharmaceuticals Corporation | Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same |
| CA2161351C (en) | 1993-04-26 | 2010-12-21 | Nils Lonberg | Transgenic non-human animals capable of producing heterologous antibodies |
| GB9313509D0 (en) | 1993-06-30 | 1993-08-11 | Medical Res Council | Chemisynthetic libraries |
| AU7967294A (en) | 1993-10-06 | 1995-05-01 | Board Of Regents, The University Of Texas System | A monoclonal anti-human il-6 receptor antibody |
| AU690171B2 (en) | 1993-12-03 | 1998-04-23 | Medical Research Council | Recombinant binding proteins and peptides |
| JPH07324097A (en) | 1994-05-30 | 1995-12-12 | Daicel Chem Ind Ltd | Interleukin 6 antagonist, peptides or pharmaceutically permissible salts thereof |
| US8017121B2 (en) | 1994-06-30 | 2011-09-13 | Chugai Seiyaku Kabushika Kaisha | Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component |
| ATE552012T1 (en) * | 1994-10-07 | 2012-04-15 | Chugai Pharmaceutical Co Ltd | INHIBITION OF ABNORMAL GROWTH OF SYNOVIAL CELLS USING IL-6 ANTAGONISTS AS AN ACTIVE SUBSTANCE |
| HU227708B1 (en) | 1994-10-21 | 2011-12-28 | Chugai Pharmaceutical Co Ltd | Use of anti-interleukin-6-receptor antibodies mr-16 and pm-1 and derivatives thereof for producing pharmaceutical preparation for treating diseases caused by il-6 production |
| IT1274350B (en) | 1994-12-06 | 1997-07-17 | Angeletti P Ist Richerche Bio | INTERLEUCHINA-6 (IL-6) ANTAGONISTS, WHICH CONSIST OF SOLUBLE FORMS OF THE ALFA RECEPTOR OF IL-6, CHANGED IN THE INTERFACE THAT LINKS TO GP 130 |
| IT1274782B (en) | 1994-12-14 | 1997-07-24 | Angeletti P Ist Richerche Bio | METHOD FOR SELECTING SUPERAGONISTS, ANTAGONISTS AND SUPERANTAGONISTS OF HORMONES OF WHICH RECEPTOR COMPLEX IS PART OF GP 130 |
| KR100252743B1 (en) | 1994-12-29 | 2000-09-01 | 나가야마 오사무 | Antitumor agent potentiator comprising il-6 antagonist |
| AU693318B2 (en) | 1995-02-13 | 1998-06-25 | Chugai Seiyaku Kabushiki Kaisha | Muscle protein decomposition inhibitor containing IL-6 receptor antibody |
| EP0817794A1 (en) | 1995-03-31 | 1998-01-14 | Jakob Bohr | Method for protein folding |
| FR2733250B1 (en) | 1995-04-21 | 1997-07-04 | Diaclone | ANTI-GP130 MONOCLONAL ANTIBODIES, AND USES THEREOF |
| KR100654645B1 (en) | 1995-04-27 | 2007-04-04 | 아브게닉스, 인크. | Human Antibodies from Immunized Genomous |
| WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
| JPH08311098A (en) | 1995-05-22 | 1996-11-26 | Daicel Chem Ind Ltd | New peptides and interleukin 6 antagonistic agent containing the peptide |
| US5571513A (en) | 1995-05-31 | 1996-11-05 | The Board Of Regents Of The University Of Oklahoma | Anti-gp130 monoclonal antibodies |
| EP0923941B1 (en) | 1996-06-27 | 2006-05-17 | Chugai Seiyaku Kabushiki Kaisha | Remedies for myeloma to be used together with nitrogen mustard antitumor agents |
| IT1285790B1 (en) * | 1996-09-24 | 1998-06-24 | Angeletti P Ist Richerche Bio | ADENOVIRUS RECOMBINANT DEFECTIVES CODING FOR MUTANTS OF HUMAN INTERLEUKINE 6 (HIL-6) WITH ANTAGONIST ACTIVITY OR |
| WO1998042377A1 (en) | 1997-03-21 | 1998-10-01 | Chugai Seiyaku Kabushiki Kaisha | Preventives or remedies for sensitized t cell-related diseases containing il-6 antagonists as the active ingredient |
| US20020187150A1 (en) | 1997-08-15 | 2002-12-12 | Chugai Seiyaku Kabushiki Kaisha | Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient |
| ATE383875T1 (en) | 1998-03-17 | 2008-02-15 | Chugai Pharmaceutical Co Ltd | PROPHYLACTIC OR THERAPEUTIC AGENTS AGAINST INFLAMMATORY DISEASES OF THE DIGESTIVE TRACT CONTAINING ANTAGONISTIC IL-6 RECEPTOR ANTIBODIES |
| GB9806530D0 (en) * | 1998-03-26 | 1998-05-27 | Glaxo Group Ltd | Inflammatory mediator |
| US6537782B1 (en) | 1998-06-01 | 2003-03-25 | Chugai Seiyaku Kabushiki Kaisha | Media for culturing animal cells and process for producing protein by using the same |
| US6406909B1 (en) | 1998-07-10 | 2002-06-18 | Chugai Seiyaku Kabushiki Kaisha | Serum-free medium for culturing animal cells |
| ES2276525T3 (en) | 1998-08-24 | 2007-06-16 | Chugai Seiyaku Kabushiki Kaisha | PREVENTIVES OR REMEDIES FOR PANCREATITIS CONTAINING ANTI-RECEPTOR ANTIBODIES IL-6 AS ACTIVE INGREDIENT. |
| AU2001278716A1 (en) | 2000-08-10 | 2002-02-25 | Chugai Seiyaku Kabushiki Kaisha | Method of inhibiting antibody-containing solution from coagulating or becoming turbid |
| WO2002013860A1 (en) | 2000-08-11 | 2002-02-21 | Chugai Seiyaku Kabushiki Kaisha | Stabilized antibody-containing preparations |
| US6875432B2 (en) | 2000-10-12 | 2005-04-05 | Genentech, Inc. | Reduced-viscosity concentrated protein formulations |
| US8703126B2 (en) | 2000-10-12 | 2014-04-22 | Genentech, Inc. | Reduced-viscosity concentrated protein formulations |
| WO2002034292A1 (en) | 2000-10-25 | 2002-05-02 | Chugai Seiyaku Kabushiki Kaisha | Preventives or remedies for psoriasis containing as the active ingredient il-6 antagonist |
| AU2000279624A1 (en) | 2000-10-27 | 2002-05-15 | Chugai Seiyaku Kabushiki Kaisha | Blooe vegf level-lowering agent containing il-6 antagonist as the active ingredient |
| JP4889187B2 (en) * | 2000-10-27 | 2012-03-07 | 中外製薬株式会社 | A blood MMP-3 concentration reducing agent comprising an IL-6 antagonist as an active ingredient |
| EP1380589A4 (en) | 2001-03-09 | 2004-09-01 | Chugai Pharmaceutical Co Ltd | Protein purification method |
| EP1475100B1 (en) | 2002-02-14 | 2015-05-06 | Chugai Seiyaku Kabushiki Kaisha | Use of acetic acid for suppressing Fe ion induced problems in formulations of anti-HM1.24 or anti-IL6R antibodies |
| PL373246A1 (en) * | 2002-04-12 | 2005-08-22 | Pfizer Inc. | Use of ep4 receptor ligands in the treatment of il-6 involved diseases |
| JP3822137B2 (en) | 2002-05-20 | 2006-09-13 | 中外製薬株式会社 | Additive for animal cell culture medium and method for producing protein using the same |
| CN100522989C (en) | 2002-09-11 | 2009-08-05 | 中外制药株式会社 | Method of purifying protein |
| DE10255508A1 (en) | 2002-11-27 | 2004-06-17 | Forschungszentrum Jülich GmbH | Process for cultivating cells for the production of substances |
| EP1607100A4 (en) | 2003-02-24 | 2007-06-13 | Chugai Pharmaceutical Co Ltd | CURATIVE TREATMENT FOR MEDICAL INJURIES CONTAINING AN INTERLEUKIN-6 ANTAGONIST |
| PT2335725T (en) | 2003-04-04 | 2017-01-06 | Novartis Ag | High concentration antibody and protein formulations |
| US20050158303A1 (en) | 2003-04-04 | 2005-07-21 | Genentech, Inc. | Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations |
| GB2401040A (en) | 2003-04-28 | 2004-11-03 | Chugai Pharmaceutical Co Ltd | Method for treating interleukin-6 related diseases |
| JP4651541B2 (en) | 2003-10-17 | 2011-03-16 | 中外製薬株式会社 | Mesothelioma treatment |
| US8617550B2 (en) | 2003-12-19 | 2013-12-31 | Chugai Seiyaku Kabushiki Kaisha | Treatment of vasculitis with IL-6 antagonist |
| AR048210A1 (en) | 2003-12-19 | 2006-04-12 | Chugai Pharmaceutical Co Ltd | A PREVENTIVE AGENT FOR VASCULITIS. |
| AR048335A1 (en) | 2004-03-24 | 2006-04-19 | Chugai Pharmaceutical Co Ltd | THERAPEUTIC AGENTS FOR INTERNAL EAR DISORDERS CONTAINING AN IL-6 ANTAGONIST AS AN ACTIVE INGREDIENT |
| EP3736295A1 (en) | 2004-03-24 | 2020-11-11 | Chugai Seiyaku Kabushiki Kaisha | Subtypes of humanized antibody against interleukin-6 receptor |
| CN104651295A (en) | 2005-01-05 | 2015-05-27 | 中外制药株式会社 | Cell Culture Method and Utilization of the Same |
| JP5014143B2 (en) | 2005-10-14 | 2012-08-29 | 学校法人福岡大学 | Inhibitor of transplanted islet injury in islet transplantation |
| RU2450830C2 (en) | 2005-10-21 | 2012-05-20 | Чугаи Сейяку Кабусики Кайся | Agent for cardiopathy |
| AR057582A1 (en) | 2005-11-15 | 2007-12-05 | Nat Hospital Organization | AGENTS TO DELETE INDUCTION OF CYTOTOXIC T LYMPHOCYTES |
| TW200803894A (en) | 2005-11-25 | 2008-01-16 | Univ Keio | Prostate cancer therapeutic agents |
| WO2007074880A1 (en) | 2005-12-28 | 2007-07-05 | Chugai Seiyaku Kabushiki Kaisha | Antibody-containing stabilizing preparation |
| JP5033643B2 (en) | 2006-01-27 | 2012-09-26 | 学校法人慶應義塾 | Therapeutic agent for diseases associated with choroidal neovascularization |
| US20090061466A1 (en) | 2006-03-09 | 2009-03-05 | Wolfgang Hoesel | Anti-drug antibody assay |
| CN101495146B (en) | 2006-04-07 | 2012-10-17 | 国立大学法人大阪大学 | Muscle regeneration promoter |
| WO2008016134A1 (en) | 2006-08-04 | 2008-02-07 | Norihiro Nishimoto | Method for predicting prognosis of rheumatoid arthritis patients |
| JP2010095445A (en) | 2006-12-27 | 2010-04-30 | Tokyo Medical & Dental Univ | Therapeutic agent for inflammatory myopathy containing il-6 antagonist as active ingredient |
| BRPI0806812B8 (en) | 2007-01-23 | 2021-09-14 | Chugai Pharmaceutical Co Ltd | Agent for suppressing chronic rejection reaction and use of an il-6 inhibitor |
| EP2174667B1 (en) | 2007-07-26 | 2017-01-04 | Osaka University | Agent for treatment of ophthalmia containing interleukin-6 receptor inhibitor as active ingredient |
| EP2206775B1 (en) | 2007-09-26 | 2016-06-29 | Chugai Seiyaku Kabushiki Kaisha | Anti-il-6 receptor antibody |
| CA2701155C (en) | 2007-10-02 | 2016-11-22 | Chugai Seiyaku Kabushiki Kaisha | Therapeutic agents for graft-versus-host disease comprising interleukin 6 receptor inhibitor as active ingredient |
| JP2009092508A (en) | 2007-10-09 | 2009-04-30 | Norihiro Nishimoto | Prediction method for the effect of rheumatic agents |
| SI2573568T1 (en) | 2007-12-15 | 2015-05-29 | F. Hoffmann-La Roche Ag | Distinguishing assay |
| PE20091174A1 (en) | 2007-12-27 | 2009-08-03 | Chugai Pharmaceutical Co Ltd | LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT |
| US10717781B2 (en) | 2008-06-05 | 2020-07-21 | National Cancer Center | Neuroinvasion inhibitor |
| TWI440469B (en) | 2008-09-26 | 2014-06-11 | Chugai Pharmaceutical Co Ltd | Improved antibody molecules |
| WO2011013786A1 (en) | 2009-07-31 | 2011-02-03 | Maeda Shin | Cancer metastasis inhibitor |
| MX2012004682A (en) | 2009-10-26 | 2012-09-07 | Hoffmann La Roche | Method for the production of a glycosylated immunoglobulin. |
| WO2011128096A1 (en) | 2010-04-16 | 2011-10-20 | Roche Diagnostics Gmbh | Polymorphism markers for predicting response to interleukin-6 receptor-inhibiting monoclonal antibody drug treatment |
| WO2011149046A1 (en) | 2010-05-28 | 2011-12-01 | 独立行政法人国立がん研究センター | Therapeutic agent for pancreatic cancer |
| JP6051049B2 (en) | 2010-05-28 | 2016-12-21 | 中外製薬株式会社 | Anti-tumor T cell response enhancer |
| EP2576824A2 (en) | 2010-06-07 | 2013-04-10 | Roche Diagnostics GmbH | Gene expression markers for predicting response to interleukin-6 receptor-inhibiting monoclonal antibody drug treatment |
| KR101933197B1 (en) | 2010-11-08 | 2018-12-27 | 제넨테크, 인크. | Subcutaneously administered anti-il-6 receptor antibody |
| MY182178A (en) | 2011-09-01 | 2021-01-18 | Chugai Pharmaceutical Co Ltd | Method for preparing a composition comprising highly concentrated antibodies by ultrafiltration |
-
2002
- 2002-02-04 UA UA2003109818A patent/UA80091C2/en unknown
- 2002-04-02 IL IL15807902A patent/IL158079A0/en unknown
- 2002-04-02 MX MXPA03008955A patent/MXPA03008955A/en active IP Right Grant
- 2002-04-02 BR BR0208636-0A patent/BR0208636A/en not_active Application Discontinuation
- 2002-04-02 CA CA2443294A patent/CA2443294C/en not_active Expired - Lifetime
- 2002-04-02 RU RU2008102979/15A patent/RU2541165C2/en active
- 2002-04-02 CN CNB028077849A patent/CN100562339C/en not_active Expired - Lifetime
- 2002-04-02 PL PL365339A patent/PL216534B1/en unknown
- 2002-04-02 KR KR1020037012661A patent/KR100842133B1/en not_active Expired - Lifetime
- 2002-04-02 EP EP08010046A patent/EP1972638A1/en not_active Ceased
- 2002-04-02 WO PCT/JP2002/003312 patent/WO2002080969A1/en not_active Ceased
- 2002-04-02 JP JP2002579008A patent/JP3702274B2/en not_active Expired - Lifetime
- 2002-04-02 RU RU2003132066/15A patent/RU2361613C2/en active
- 2002-04-02 KR KR1020087005693A patent/KR100842132B1/en not_active Expired - Lifetime
- 2002-04-02 EP EP10011862A patent/EP2298812A3/en not_active Withdrawn
- 2002-04-02 HU HU0303952A patent/HU230197B1/en unknown
- 2002-04-02 EP EP19196253.9A patent/EP3640261A1/en not_active Withdrawn
- 2002-04-02 AU AU2002243032A patent/AU2002243032B2/en not_active Expired
- 2002-04-02 EP EP02708772A patent/EP1374900A4/en not_active Ceased
- 2002-04-02 US US10/473,165 patent/US20040115197A1/en not_active Abandoned
- 2002-04-02 NZ NZ528479A patent/NZ528479A/en not_active IP Right Cessation
-
2003
- 2003-09-24 IL IL158079A patent/IL158079A/en active IP Right Grant
- 2003-10-01 NO NO20034388A patent/NO20034388L/en not_active Application Discontinuation
-
2005
- 2005-02-18 JP JP2005043099A patent/JP3702289B2/en not_active Expired - Lifetime
- 2005-02-18 JP JP2005042930A patent/JP2005139205A/en not_active Withdrawn
-
2007
- 2007-02-09 US US11/704,233 patent/US7955598B2/en not_active Expired - Lifetime
- 2007-11-25 IL IL187604A patent/IL187604A/en active IP Right Grant
-
2008
- 2008-11-14 JP JP2008292518A patent/JP2009073857A/en not_active Withdrawn
-
2011
- 2011-04-28 US US13/064,953 patent/US9255145B2/en not_active Expired - Fee Related
-
2012
- 2012-04-12 JP JP2012091380A patent/JP5591279B2/en not_active Expired - Lifetime
-
2016
- 2016-01-04 US US14/986,884 patent/US20160194401A1/en not_active Abandoned
-
2018
- 2018-04-06 US US15/946,866 patent/US20180222988A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5888510A (en) * | 1993-07-21 | 1999-03-30 | Chugai Seiyaku Kabushiki Kaisha | Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component |
| US7955598B2 (en) * | 2001-04-02 | 2011-06-07 | Chugai Seiyaku Kabushiki Kaisha | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
| US9255145B2 (en) * | 2001-04-02 | 2016-02-09 | Chugai Seiyaku Kabushiki Kaisha | Therapeutic agent for chronic arthritides diseases of childhood-related diseases |
Non-Patent Citations (3)
| Title |
|---|
| De Benedetti et al. (J. Clin. Invest. 1994.93:2114-2119). * |
| Fujii et al. (Ann Rheum Dis. 1997 Feb;56(2):144-8.) * |
| Wallace et al. (Arthritis and Rheumatism, Vol 40, No 10, October 1997, pp 1852-1855). * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10744201B2 (en) | 2003-04-28 | 2020-08-18 | Chugai Seiyaku Kabushiki Kaisha | Method for treating rheumatoid arthritis with a human IL-6 receptor antibody and methotrexate |
| US11021728B2 (en) | 2009-10-26 | 2021-06-01 | Hoffmann-La Roche Inc. | Method for the production of a glycosylated immunoglobulin |
| US11136610B2 (en) | 2009-10-26 | 2021-10-05 | Hoffmann-La Roche Inc. | Method for the production of a glycosylated immunoglobulin |
| US11377678B2 (en) | 2009-10-26 | 2022-07-05 | Hoffman-La Roche Inc. | Method for the production of a glycosylated immunoglobulin |
| US9750752B2 (en) | 2010-11-08 | 2017-09-05 | Hoffmann-La Roche Inc. | Subcutaneously administered anti-IL-6 receptor antibody |
| US10231981B2 (en) | 2010-11-08 | 2019-03-19 | Chugai Seiyaku Kabushiki Kaisha | Subcutaneously administered anti-IL-6 receptor antibody for treatment of juvenile idiopathic arthritis |
| US10874677B2 (en) | 2010-11-08 | 2020-12-29 | Hoffmann-La Roche Inc. | Subcutaneously administered anti-IL-6 receptor antibody |
| US11622969B2 (en) | 2010-11-08 | 2023-04-11 | Hoffmann-La Roche Inc. | Subcutaneously administered anti-IL-6 receptor antibody |
| US11667720B1 (en) | 2010-11-08 | 2023-06-06 | Hoffmann-La Roche Inc. | Subcutaneously administered anti-IL-6 receptor antibody |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7955598B2 (en) | Therapeutic agent for chronic arthritides diseases of childhood-related diseases | |
| US8562990B2 (en) | Method of treating psoriatic arthritis with an IL-6 receptor antibody | |
| AU2004305379B2 (en) | Remedy for angitis | |
| US8617550B2 (en) | Treatment of vasculitis with IL-6 antagonist | |
| HK1058317A (en) | Remedies for infant chronic arthritis-relating diseases | |
| HK1057484A (en) | Preventives or remedies for psoriasis containing as the active ingredient il-6 antagonist | |
| HK1058007A (en) | Preventives or remedies for psoriasis containing as the active ingredient il-6 antagonist |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |