US20020110898A1 - Gene repair involving in vivo excision of targeting DNA - Google Patents
Gene repair involving in vivo excision of targeting DNA Download PDFInfo
- Publication number
- US20020110898A1 US20020110898A1 US09/922,495 US92249501A US2002110898A1 US 20020110898 A1 US20020110898 A1 US 20020110898A1 US 92249501 A US92249501 A US 92249501A US 2002110898 A1 US2002110898 A1 US 2002110898A1
- Authority
- US
- United States
- Prior art keywords
- dna
- vector
- restriction endonuclease
- targeting
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 110
- 230000008685 targeting Effects 0.000 title claims description 204
- 230000008439 repair process Effects 0.000 title claims description 42
- 238000001727 in vivo Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 131
- 239000013611 chromosomal DNA Substances 0.000 claims abstract description 82
- 208000026350 Inborn Genetic disease Diseases 0.000 claims abstract description 11
- 208000016361 genetic disease Diseases 0.000 claims abstract description 11
- 238000011321 prophylaxis Methods 0.000 claims abstract description 9
- 108091008146 restriction endonucleases Proteins 0.000 claims description 212
- 239000013598 vector Substances 0.000 claims description 141
- 230000006798 recombination Effects 0.000 claims description 62
- 238000005215 recombination Methods 0.000 claims description 62
- 239000013612 plasmid Substances 0.000 claims description 56
- 150000007523 nucleic acids Chemical class 0.000 claims description 46
- 108020004707 nucleic acids Proteins 0.000 claims description 45
- 102000039446 nucleic acids Human genes 0.000 claims description 45
- 230000035772 mutation Effects 0.000 claims description 36
- 239000013603 viral vector Substances 0.000 claims description 17
- 230000004048 modification Effects 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 230000000415 inactivating effect Effects 0.000 abstract description 5
- 108020004414 DNA Proteins 0.000 description 277
- 210000004027 cell Anatomy 0.000 description 150
- 230000014509 gene expression Effects 0.000 description 28
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 20
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 18
- 108010005774 beta-Galactosidase Proteins 0.000 description 18
- 102000005936 beta-Galactosidase Human genes 0.000 description 15
- 230000006801 homologous recombination Effects 0.000 description 14
- 238000002744 homologous recombination Methods 0.000 description 14
- 108091034117 Oligonucleotide Proteins 0.000 description 13
- 239000012634 fragment Substances 0.000 description 13
- 238000001890 transfection Methods 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 12
- 230000001404 mediated effect Effects 0.000 description 12
- 108091081024 Start codon Proteins 0.000 description 10
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 108020004705 Codon Proteins 0.000 description 7
- 108700026244 Open Reading Frames Proteins 0.000 description 7
- 230000008488 polyadenylation Effects 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000010369 molecular cloning Methods 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- 102100031780 Endonuclease Human genes 0.000 description 5
- 108010042407 Endonucleases Proteins 0.000 description 5
- 241000282414 Homo sapiens Species 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000002759 chromosomal effect Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 238000010240 RT-PCR analysis Methods 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 230000009395 genetic defect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 241000271566 Aves Species 0.000 description 2
- 241000193738 Bacillus anthracis Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 101710192266 Tegument protein VP22 Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000001332 colony forming effect Effects 0.000 description 2
- 230000017858 demethylation Effects 0.000 description 2
- 238000010520 demethylation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 230000037433 frameshift Effects 0.000 description 2
- 230000001744 histochemical effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 101150066555 lacZ gene Proteins 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000003104 tissue culture media Substances 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 241000714230 Avian leukemia virus Species 0.000 description 1
- 241001485018 Baboon endogenous virus Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000714266 Bovine leukemia virus Species 0.000 description 1
- 101100348617 Candida albicans (strain SC5314 / ATCC MYA-2876) NIK1 gene Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000289695 Eutheria Species 0.000 description 1
- 241000714165 Feline leukemia virus Species 0.000 description 1
- 241000714174 Feline sarcoma virus Species 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 208000000666 Fowlpox Diseases 0.000 description 1
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 1
- 241000941423 Grom virus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000713821 Mason-Pfizer monkey virus Species 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 241000289419 Metatheria Species 0.000 description 1
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 1
- 241000289390 Monotremata Species 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241000714177 Murine leukemia virus Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000714209 Norwalk virus Species 0.000 description 1
- 241000702244 Orthoreovirus Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 101100007329 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) COS1 gene Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000713311 Simian immunodeficiency virus Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 241000713675 Spumavirus Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000000389 T-cell leukemia Diseases 0.000 description 1
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 241000711975 Vesicular stomatitis virus Species 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 241000714205 Woolly monkey sarcoma virus Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 208000004668 avian leukosis Diseases 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001036 exonucleolytic effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000017448 oviposition Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- -1 systemic Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2799/00—Uses of viruses
- C12N2799/02—Uses of viruses as vector
- C12N2799/021—Uses of viruses as vector for the expression of a heterologous nucleic acid
Definitions
- Homologous recombination and, more specifically D-loop mediated recombination provide a method for genetically modifying chromosomal DNA sequences in a precise way.
- a methodology for genetically modifying chromosomal DNA sequences in addition to the possibility of introducing small precise mutations in order to alter the activity of the chromosomal DNA sequences, such a methodology makes it possible to correct the genetic defects in genes which can cause disease.
- current methods for achieving homologous recombination are inherently inefficient, in that homologous recombination or D-loop recombination-mediated gene repair can usually be achieved in only a small proportion of cells that have taken up the relevant “targeting or correcting” DNA.
- the present invention is related to Applicants' discovery that excision of targeting or correcting DNA from a vector within cells which have taken up the vector significantly increased the frequency of homologous recombination and D-loop recombination-mediated gene repair in these cells.
- Applicants' invention relates to methods which result in excision of targeting or correcting DNA from a vector within cells which have taken up the vector.
- the methods comprise introducing into a cell (a) a first vector which comprises a targeting DNA, wherein the targeting DNA comprises DNA homologous to a chromosomal target site and is flanked by specific restriction endonuclease site(s), and (b) a restriction endonuclease which cleaves the restriction endonuclease site(s) and is present in the first vector or a second (separate) vector which comprises a nucleic acid encoding the restriction endonuclease or is introduced as the restriction endonuclease itself.
- two vectors are introduced into cells: a first vector which comprises a targeting DNA, wherein the targeting DNA comprises DNA homologous to a chromosomal target site and is flanked by specific restriction endonuclease sites and a second vector which comprises a nucleic acid (e.g., DNA) which encodes the restriction endonuclease.
- a single vector which comprises both targeting DNA wherein the targeting DNA comprises DNA homologous to a chromosomal target site and is flanked by specific restriction endonuclease site(s), and a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site(s), is introduced into the cell.
- the targeting DNA is flanked by a restriction endonuclease site if such a site is present at or near either or both ends of the targeting DNA. That is, there can be one restriction endonuclease site present at or near one end of the targeting DNA or there can be two such sites, one at or near each end of the targeting DNA.
- the restriction endonuclease site(s) are recognized (cleaved) by the restriction endonuclease used in the method. As described below, the endonuclease used in the method is one whose activity does not lead to the death of cells in which it cleaves.
- One example of an endonuclease useful in the method is a meganuclease enzyme. Two (or more) different restriction endonucleases can be used in the present method.
- the present invention relates to a method of repairing a specific sequence of interest in chromosomal DNA of a cell comprising introducing into the cell (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site or sites and comprises (1) DNA homologous to chromosomal DNA adjacent to the specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the vector.
- the two can be introduced, as described above, in the same or separate vectors or a vector comprising targeting DNA flanked by specific restriction endonuclease site(s) and the endonuclease itself (not in a vector) can be introduced.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the targeting DNA is designed such that the homologous DNA is at the left and right arms of the targeting DNA construct and DNA which repairs the specific sequence of interest is inserted between the two arms.
- the restriction endonuclease is introduced into the cell by introducing into the cell a second vector which comprises a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the vector.
- both targeting DNA and nucleic acid encoding the restriction endonuclease which cleaves the specific sites present in the vector are introduced into the cell in the same vector.
- chromosomal DNA adjacent to a specific sequence of interest refers to chromosomal DNA present near or next to the specific sequence of interest.
- the specific sequence of interest is a mutation.
- the present invention also relates to a method of modifying a specific sequence (or gene) in chromosomal DNA of a cell comprising introducing into the cell (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to the specific sequence (or gene) to be modified and (2) DNA which results in modification of the specific sequence (or gene) upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site present in the vector.
- the targeting DNA is flanked by two restriction endonuclease sites (one at or near each end of the targeting DNA).
- the targeting DNA is designed such that the homologous DNA is at the left and right arms of the targeting DNA construct and DNA which results in modification of the specific sequence (or gene) is inserted between the two arms.
- the restriction endonuclease is introduced into the cell by introducing into the cell a second vector (either RNA or DNA) which comprises a nucleic acid encoding the restriction endonuclease.
- both targeting DNA and nucleic acid encoding the restriction endonuclease are introduced into the cell in the same vector.
- the invention further relates to a method of attenuating an endogenous gene of interest in a cell comprising introducing into the cell (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to a target site of the endogenous gene of interest and (2) DNA which attenuates the gene of interest upon recombination between the targeting DNA and the gene of interest, and (b) a restriction endonuclease which cleaves the restriction endonuclease site present in the vector.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the targeting DNA is designed such that the homologous DNA is at the left and right arms of the targeting DNA construct and DNA which attenuates the gene of interest is located between the two arms.
- the restriction endonuclease is introduced into the cell by introducing into the cell a second vector (either RNA or DNA) which comprises a nucleic acid encoding the restriction endonuclease.
- both targeting DNA and nucleic acid encoding the restriction endonuclease are introduced into the cell in the same vector.
- the present invention also relates to a method of introducing a mutation into a target site of chromosomal DNA of a cell comprising introducing into the cell (a) a first vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to the target site and (2) the mutation to be introduced into the chromosomal DNA, and (b) a second vector (RNA or DNA) comprising a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site present in the first vector.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the targeting DNA is designed such that the homologous DNA is at the left and right arms of the targeting DNA construct and the mutation is located between the two arms.
- the restriction endonuclease is introduced directly into the cell.
- both targeting DNA and nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site are introduced into the cell in the same vector.
- the present invention also relates to the resulting cells and to their uses, such as for production of proteins or other gene products or for treatment or prophylaxis of a condition or disorder in an individual (e.g., a human or other mammal or vertebrate) arising as a result of a genetic defect (mutation).
- an individual e.g., a human or other mammal or vertebrate
- a genetic defect e.g., a condition or disorder in an individual (e.g., a human or other mammal or vertebrate) arising as a result of a genetic defect (mutation).
- cells can be produced (e.g., ex vivo) by the methods described herein and then introduced into an individual using known methods.
- cells can be modified in the individual (without being removed from the individual).
- the invention further relates to a method of treating or prophylaxis of a genetic disease in an individual in need thereof.
- this method comprises introducing into the individual cells which comprise (a) a first vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site or sites and comprises (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a second vector (RNA or DNA) comprising a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the first vector.
- RNA or DNA RNA or DNA
- this method comprises introducing into the individual cells which comprise (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site(s) and comprises (1) DNA homologous to chromosomal DNA and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site present in the vector.
- this method comprises introducing into the individual cells which comprise a vector comprising (a) targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site(s) and comprises (1) DNA homologous to chromosomal DNA and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site present in the plasmid.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the targeting DNA is designed such that the homologous DNA is at the left and right arms of the targeting DNA construct and DNA which repairs the specific sequence of interest is located between the two arms.
- restriction endonucleases and vectors comprising targeting DNA and/or nucleic acid encoding a restriction endonuclease can be administered directly to the individual.
- FIG. 1 is a schematic diagram of an embodiment of a homologous recombination or D-loop recombination-mediated repair method described herein.
- FIG. 2 is a table which provides the results from I-SceI induced D-loop recombination-mediated repair experiments in NIH3T3 cells.
- FIG. 3 is a table providing examples of meganuclease enzymes.
- the present invention relates to the development of a generally useful method for significantly increasing the frequency of homologous recombination and D-loop recombination-mediated gene repair. At least in vitro, over 1% of a population of transfected cells can be shown to generate the desired recombinational events using the methods described herein. It is likely that these findings represent the ability to achieve homologous recombination and/or gene repair in close to 10% of successfully transfected cells (or higher) when corrected for the efficiency of transfection (the percent cells that take up DNA).
- the invention relates to the use of methods which lead to the excision of homologous targeting DNA sequences from a recombinant vector within transfected cells (cells which have taken up the vector).
- the methods comprise introducing into cells (a) a first vector which comprises a targeting DNA, wherein the targeting DNA flanked by specific restriction endonuclease site(s) and comprises DNA homologous to a chromosomal target site, and (b) a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the first vector or a second vector which comprises a nucleic acid encoding the restriction endonuclease.
- a vector which comprises both targeting DNA and a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site(s) is introduced into the cell.
- Nucleic acid encoding the restriction endonuclease is also referred to herein as an expression cassette encoding the restriction endonuclease.
- Targeting DNA is also referred to herein as a repair matrix and correcting DNA.
- the targeting DNA is flanked by a restriction endonuclease site if such a site is present at or near either or both ends of the targeting DNA. That is, there can be one restriction endonuclease site present at or near one end of the targeting DNA or there can be two such sites, one at or near each end of the targeting DNA.
- a restriction endonuclease used in the present invention recognizes a target DNA sequence (e.g., a restriction endonuclease site) which would not lead to death of the cells upon cleavage of the DNA sequence by the restriction endonuclease.
- a meganuclease enzyme which recognizes a very large DNA sequence, is an example of a restriction endonuclease which can be used in the present invention.
- An example of a meganuclease enzyme is I-SceI which recognizes an 18-bp site (DNA sequence) that does not appear to be represented in murine or human DNA.
- Other examples of meganuclease enzymes are provided in FIG. 3.
- a restriction endonuclease used in the present invention has a specificity of at least 6.7 ⁇ 10 ⁇ 10 of cleaving (cutting) frequency.
- the present invention relates to a method of repairing a specific sequence of interest in chromosomal DNA of a cell comprising introducing into the cell (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site or sites and comprises (1) DNA homologous to chromosomal DNA adjacent to the specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the vector.
- the targeting DNA is flanked by two restriction endonuclease sites (one at or near each end of the targeting DNA).
- the restriction endonuclease is introduced into the cell by introducing into the cell a second vector which comprises a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the vector.
- both targeting DNA and nucleic acid encoding the restriction endonuclease are introduced into the cell in the same vector.
- the targeting DNA is designed such that homologous recombination, and more preferably, D-loop mediated recombination, occurs between the targeting DNA and chromosomal DNA and, upon recombination, repair of the specific sequence of interest occurs.
- the targeting DNA is designed to include (1) DNA homologous to chromosomal DNA adjacent to the specific sequence of interest, wherein the homologous DNA is sufficient for recombination between the targeting DNA and chromosomal DNA, and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and chromosomal DNA.
- the homologous DNA of the targeting DNA construct flanks each end of the DNA which repairs the specific sequence of interest. That is, the homologous DNA is at the left and right arms of the targeting DNA construct and the DNA which repairs the sequence of interest is located between the two arms.
- the specific sequence of interest is a mutation.
- the invention relates to a method of repairing a mutation in chromosomal DNA of a cell comprising introducing into the cell (a) a vector comprising targeting DNA wherein the targeting DNA is flanked by a restriction endonuclease site or sites and comprises (1) DNA homologous to chromosomal DNA adjacent to the mutation and (2) DNA which repairs the mutation upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the vector.
- the targeting DNA is flanked by two restriction endonuclease sites (one at or near each end of the targeting DNA).
- the restriction endonuclease is introduced into the cell by introducing into the cell a second vector which comprises a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site(s) present in the vector.
- both targeting DNA and nucleic acid encoding the restriction endonuclease are introduced into the cell in the same vector.
- the targeting DNA is designed such that homologous recombination, and more preferably, D-loop mediated recombination, occurs between the targeting DNA and chromosomal DNA and, upon recombination, repair of the mutation occurs.
- the targeting DNA is designed to include (1) DNA homologous to chromosomal DNA adjacent to the mutation, wherein the homologous DNA is sufficient for recombination between the targeting DNA and chromosomal DNA, and (2) DNA which repairs the mutation upon recombination between the targeting DNA and chromosomal DNA.
- the homologous DNA of the targeting DNA construct flanks each end of the DNA which repairs the mutation. That is, the homologous DNA is at the left and right arms of the targeting DNA construct and the DNA which repairs the mutation is located between the two arms.
- a mutation refers to a nucleotide change, such as a single or multiple nucleotide substitution, deletion or insertion, in a nucleotide sequence.
- the mutation is a point mutation.
- Chromosomal DNA which bears a mutation has a nucleic acid sequence that is different in sequence from that of the corresponding wildtype chromosomal DNA.
- chromosomal DNA adjacent to a specific sequence of interest refers to chromosomal DNA present near or next to the specific sequence of interest.
- the present invention also relates to a method of modifying a specific sequence (or gene) in chromosomal DNA of a cell comprising introducing into the cell (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to the specific sequence (or gene) to be modified and (2) DNA which modifies the specific sequence (or gene) upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site present in the vector.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the restriction endonuclease is introduced into the cell by introducing into the cell a second vector (either RNA or DNA) which comprises a nucleic acid encoding the restriction endonuclease.
- a second vector either RNA or DNA
- both targeting DNA and nucleic acid encoding the restriction endonuclease are introduced into the cell in the same vector.
- the targeting DNA is designed such that homologous recombination, and more preferably, D-loop mediated recombination, occurs between the targeting DNA and chromosomal DNA and, upon recombination, modification of the sequence (or gene) occurs.
- the targeting DNA is designed to include (1) DNA homologous to the specific sequence (or gene) to be modified, wherein the homologous DNA is sufficient for recombination between the targeting DNA and chromosomal DNA, and (2) DNA which modifies the specific sequence (or gene) upon recombination between the targeting DNA and the chromosomal DNA.
- the homologous DNA of the targeting DNA construct flanks each end of the DNA which modifies the specific sequence (or gene). That is, the homologous DNA is at the left and right arms of the targeting DNA construct and the DNA which modifies the specific sequence (or gene) is located between the two arms.
- the invention further relates to a method of attenuating or inactivating an endogenous gene of interest in a cell comprising introducing into the cell (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to a target site of the endogenous gene of interest and (2) DNA which attenuates or inactivates the gene of interest upon recombination between the targeting DNA and the gene of interest, and (b) a restriction endonuclease which cleaves the restriction endonuclease site present in the vector.
- the targeting DNA is flanked by two restriction endonuclease sites, as described above.
- the restriction endonuclease is introduced into the cell by introducing into the cell a second vector (either RNA or DNA) which comprises a nucleic acid encoding the restriction endonuclease.
- a second vector either RNA or DNA
- both the targeting DNA and the nucleic acid encoding the restriction endonuclease are introduced into the cell in the same vector.
- the targeting DNA is designed such that homologous recombination, and more preferably, D-loop mediated recombination, occurs between the targeting DNA and endogenous gene of interest and, upon recombination, attenuation or inactivation of the gene of interest occurs.
- the targeting DNA is designed to include (1) DNA homologous to a target site of the endogenous gene of interest, wherein the homologous DNA is sufficient for recombination between the targeting DNA and the gene of interest, and (2) DNA which attenuates or inactivates the gene of interest upon recombination between the targeting DNA and the gene of interest.
- the homologous DNA of the targeting DNA construct flanks each end of the DNA which attenuates or inactivates the gene of interest. That is, the homologous DNA is at the left and right arms of the targeting DNA construct and the DNA which attenuates or inactivates the gene of interest is located between the two arms.
- the present invention also relates to a method of introducing a mutation into a target site (or gene) of chromosomal DNA of a cell comprising introducing into the cell (a) a first vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to the target site (or gene) and (2) the mutation to be introduced into the chromosomal DNA, and (b) a second vector (RNA or DNA) comprising a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site present in the first vector.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the restriction endonuclease is introduced directly into the cell.
- both targeting DNA and nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site are introduced into the cell in the same vector.
- the targeting DNA is designed such that homologous recombination, and more preferably, D-loop mediated recombination, occurs between the targeting DNA and the chromosomal DNA and, upon recombination, a mutation is introduced into the target site (or gene).
- the targeting DNA is designed to include (1) DNA homologous to the target site (or gene), wherein the homologous DNA is sufficient for recombination between the targeting DNA and the chromosomal DNA, and (2) the mutation which is introduced into the chromosomal DNA upon recombination between the targeting DNA and the chromosomal DNA.
- the homologous DNA of the targeting DNA construct flanks each end of the mutation. That is, the homologous DNA is at the left and right arms of the targeting DNA construct and the mutation to be introduced into the chromosomal DNA (i.e., into a target site or gene) is located between the two arms.
- the invention further relates to a method of treating or prophylaxis of a genetic disease in an individual in need thereof.
- a genetic disease refers to a disease or disorder that arises as a result of a genetic defect (mutation) in a gene in the individual.
- the genetic disease arises as a result of a point mutation in a gene in the individual.
- the method of treating or prophylaxis of a genetic disease in an individual in need thereof comprises introducing into (administering to) the individual cells which comprise (a) a first vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a second vector (RNA or DNA) comprising a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site present in the first vector.
- a first vector comprising targeting DNA
- the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromoso
- the method comprises introducing into the individual cells which comprise (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site present in the vector.
- the method comprises introducing into the individual cells which comprise a vector comprising (a) targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and comprises (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site present in the plasmid.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the homologous DNA of the targeting DNA construct flanks each end of the DNA which repairs the specific sequence of interest. That is, the homologous DNA is at the left and right arms of the targeting DNA construct and the DNA which repairs the sequence of interest is located between the two arms.
- restriction endonucleases and vectors comprising targeting DNA and/or nucleic acid encoding a restriction endonuclease can be administered directly to the individual.
- the mode of administration is preferably at the location of the target cells.
- the method comprises introducing into (administering to) the individual (a) a first vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a second vector (RNA or DNA) comprising a nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site present in the first vector.
- a first vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA
- RNA or DNA comprising a nucleic acid encoding a restriction end
- the method comprises introducing into the individual (a) a vector comprising targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and (2) DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) a restriction endonuclease which cleaves the restriction endonuclease site present in the vector.
- the method comprises introducing into the individual a vector comprising (a) targeting DNA, wherein the targeting DNA is flanked by a restriction endonuclease site and (1) DNA homologous to chromosomal DNA adjacent to a specific sequence of interest and DNA which repairs the specific sequence of interest upon recombination between the targeting DNA and the chromosomal DNA, and (b) nucleic acid encoding a restriction endonuclease which cleaves the restriction endonuclease site present in the plasmid.
- the targeting DNA is flanked by two restriction endonuclease sites.
- the invention also relates to the generation of animal models of disease in which restriction endonuclease sites (e.g., I-SceI target sites) are introduced at the site of the disease gene for evaluation of optimal delivery techniques.
- restriction endonuclease sites e.g., I-SceI target sites
- the efficiency of gene modification/repair can be enhanced by the addition expression of other gene products.
- the restriction endonuclease and other gene products can be directly introduced into a cell in conjunction with the correcting DNA or via RNA expression. The approach is applicable to all organisms.
- Targeting DNA can be manufactured according to methods generally known in the art.
- targeting DNA can be manufactured by chemical synthesis or recombinant DNA/RNA technology (see, e.g., Sambrook et al., Eds., Molecular Cloning. A Laboratory Manual, 2nd edition, Cold Spring Harbor University Press, New York (1989); and Ausubel et al., Eds., Current Protocols In Molecular Biology , John Wiley & Sons, New York (1997)).
- a “target site”, as used herein, refers to a distinct chromosomal location at which a chromosomal DNA sequence is to be modified in a precise way in accordance with the methods described herein.
- a “vector” includes a nucleic acid vector, e.g., a DNA vector, such as a plasmid, a RNA vector, virus or other suitable replicon (e.g., viral vector).
- a DNA vector such as a plasmid, a RNA vector, virus or other suitable replicon (e.g., viral vector).
- Viral vectors include retrovirus, adenovirus, parvovirus (e.g., adeno-associated viruses), coronavirus, negative strand RNA viruses such as orthomyxovirus (e.g., influenza virus), rhabdovirus (e.g., rabies and vesicular stomatitis virus), paramyxovirus (e.g.
- RNA viruses such as picornavirus and alphavirus
- double stranded DNA viruses including adenovirus, herpesvirus (e.g., Herpes Simplex virus types 1 and 2, Epstein-Barr virus, cytomegalovirus), and poxvirus (e.g., vaccinia, fowlpox and canarypox).
- herpesvirus e.g., Herpes Simplex virus types 1 and 2, Epstein-Barr virus, cytomegalovirus
- poxvirus e.g., vaccinia, fowlpox and canarypox
- Other viruses include Norwalk virus, togavirus, flavivirus, reoviruses, papovavirus, hepadnavirus, and hepatitis virus, for example.
- retroviruses examples include: avian leukosis-sarcoma, mammalian C-type, B-type viruses, D-type viruses, HTLV-BLV group, lentivirus, spumavirus (Coffin, J. M., Retroviridae: The viruses and their replication, In Fundamental Virology , Third Edition, B. N. Fields, et al., Eds., Lippincott-Raven Publishers, Philadelphia, 1996).
- murine leukemia viruses include murine leukemia viruses, murine sarcoma viruses, mouse mammary tumor virus, bovine leukemia virus, feline leukemia virus, feline sarcoma virus, avian leukemia virus, human T-cell leukemia virus, baboon endogenous virus, Gibbon ape leukemia virus, Mason Pfizer monkey virus, simian immunodeficiency virus, simian sarcoma virus, Rous sarcoma virus and lentiviruses.
- vectors are described, for example, in McVey et al., U.S. Pat. No. 5,801,030, the teachings of which are incorporated herein by reference.
- a vector comprising a nucleic acid encoding a restriction endonuclease contains all or part of the coding sequence for the restriction endonuclease operably linked to one or more expression control sequences whereby the coding sequence is under the control of transcription signals to permit production or synthesis of the restriction endonuclease.
- expression control sequences include promoter sequences, enhancers, and transcription binding sites. Selection of the promoter will generally depend upon the desired route for expressing the restriction endonuclease.
- the elements can be isolated from nature, modified from native sequences or manufactured de novo (e.g., by chemical synthesis or recombinant DNA/RNA technology, according to methods known in the art (see, e.g., Sambrook et al., Eds., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor University Press, New York (1989); and Ausubel et al., Eds., Current Protocols In Molecular Biology , John Wiley & Sons, New York (1997)).
- the elements can then be isolated and fused together by methods known in the art, such as exploiting and manufacturing compatible cloning or restriction sites.
- a vector comprising targeting DNA flanked by a restriction endonuclease site can be manufactured according to methods generally known in the art.
- the vector comprising targeting DNA flanked by a restriction endonuclease site can be manufactured by chemical synthesis or recombinant DNA/RNA technology (see, e.g., Sambrook et al., Eds., Molecular Cloning, A Laboratory Manual, 2nd edition, Cold Spring Harbor University Press, New York, 1989; and Ausubel et al., Eds., Current Protocols In Molecular Biology , John Wiley & Sons, New York, 1994-1997).
- Vectors comprising targeting DNA flanked by a restriction endonuclease site and/or nucleic acid encoding a restriction endonuclease can be introduced into a cell by a variety of methods (e.g., transformation, transfection, direct uptake, projectile bombardment, using liposomes).
- suitable methods of transfecting or transforming cells include calcium phosphate precipitation, electroporation, microinjection, infection, lipofection and direct uptake.
- a vector comprising targeting DNA flanked by a restriction endonuclease site and/or nucleic acid encoding a restriction endonuclease can also be introduced into a cell by targeting the vector to cell membrane phospholipids.
- targeting of a vector of the present invention can be accomplished by linking the vector molecule to a VSV-G protein, a viral protein with affinity for all cell membrane phospholipids.
- VSV-G protein a viral protein with affinity for all cell membrane phospholipids.
- Restriction endonucleases can be introduced into a cell according to methods generally known in the art which are appropriate for the particular restriction endonuclease and cell type.
- a restriction endonuclease can be introduced into a cell by direct uptake, microinjection, calcium phosphate precipitation, electroporation, infection, and lipofection.
- Such methods are described in more detail, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual , Second Edition, Cold Spring Harbor University Press, New York (1989); and Ausubel, et al., Current Protocols in Molecular Biology , John Wiley & Sons, New York (1998). Other suitable methods are also described in the art.
- the restriction endonuclease can be coupled to a facilitator of protein entry to facilitate introduction of the enzyme into a cell.
- facilitators of protein entry include tat, HSV VP22 and anthrax toxin. Coupling of a protein to a facilitator of protein entry can be accomplished using methods well known to those practiced in the art. Protein delivery strategies (e.g., HSV VP22, anthrax toxin) can be evaluated in accordance with the methods of the invention described herein.
- the restriction endonuclease and the vector comprising targeting DNA flanked by a restriction endonuclease site and/or nucleic acid encoding a restriction endonuclease are imported or translocated by the cell from the cytoplasm to the site of action in the nucleus.
- a cell refers to a prokaryotic cell, such as a bacterial cell, or eukaryotic cell, such as an animal, plant or yeast cell.
- a cell which is of animal or plant origin can be a stem cell or somatic cell.
- Suitable animal cells can be of, for example, mammalian, avian or invertebrate origin. Examples of mammalian cells include human (such as HeLa cells), bovine, ovine, porcine, murine (such as embryonic stem cells), rabbit and monkey (such as COS1 cells) cells.
- the cell may be an embryonic cell, bone marrow stem cell or other progenitor cell.
- the cell can be, for example, an epithelial cell, fibroblast, smooth muscle cell, blood cell (including a hematopoietic cell, red blood cell, T-cell, B-cell, etc.), tumor cell, cardiac muscle cell, macrophage, dendritic cell, neuronal cell (e.g., a glial cell or astrocyte), or pathogen-infected cell (e.g., those infected by bacteria, viruses, virusoids, parasites, or prions).
- an epithelial cell including a hematopoietic cell, red blood cell, T-cell, B-cell, etc.
- tumor cell e.g., a glial cell or astrocyte
- neuronal cell e.g., a glial cell or astrocyte
- pathogen-infected cell e.g., those infected by bacteria, viruses, virusoids, parasites, or prions.
- the cells can be obtained commercially or from a depository or obtained directly from an individual, such as by biopsy.
- the cells used can be obtained from an individual to whom they will be returned or from another/different individual of the same or different species.
- nonhuman cells such as pig cells
- ex vivo treatment is sometimes referred to as ex vivo treatment.
- Ex vivo therapy has been described, for example, in Kasid et al., Proc. Natl. Acad. Sci. USA, 87:473 (1990); Rosenberg et al., N. Engl. J.
- the cells need not be isolated from the individual where, for example, it is desirable to deliver the vector to the individual in gene therapy.
- the term “individual” includes mammals, as well as other animals (e.g., birds, fish, reptiles, insects).
- mammals e.g., birds, fish, reptiles, insects.
- Examples of mammalian species include humans and other primates (e.g., monkeys, chimpanzees), rodents (e.g., rats, mice, guinea pigs) and ruminents (e.g., cows, pigs, horses).
- Restriction endonucleases and vectors which comprise targeting DNA flanked by a restriction endonuclease site and/or nucleic acid encoding a restriction endonuclease can be introduced into an individual using routes of administration generally known in the art (e.g., parenteral, mucosal, nasal, injection, systemic, implant, intraperitoneal, oral, intradermal, transdermal (e.g., in slow release polymers), intramuscular, intravenous including infusion and/or bolus injection, subcutaneous, topical, epidural, buccal, rectal, vaginal, etc.).
- routes of administration generally known in the art (e.g., parenteral, mucosal, nasal, injection, systemic, implant, intraperitoneal, oral, intradermal, transdermal (e.g., in slow release polymers), intramuscular, intravenous including infusion and/or bolus injection, subcutaneous, topical, epidural, buccal, rectal, vaginal
- restriction endonucleases and vectors can, preferably, be administered in a pharmaceutically acceptable carrier, such as saline, sterile water, Ringer's solution, and isotonic sodium chloride solution.
- a pharmaceutically acceptable carrier such as saline, sterile water, Ringer's solution, and isotonic sodium chloride solution.
- the mode of administration is preferably at the location of the target cells.
- restriction endonuclease or vector of the present invention administered to an individual will vary depending upon a variety of factors, including mode and route of administration; size, age, sex, health, body weight and diet of the recipient; nature and extent of symptoms of the disease or disorder being treated; kind of concurrent treatment, frequency of treatment, and the effect desired.
- the p2Wlac plasmid was constructed as follows: First, the pPytknlslacZ plasmid (Henry et al., C. R. Acad. Sci. III, 322(12):1061-1070 (1999)) was digested with the SpeI and HindIII restriction enzymes, resulting in excision from the plasmid of a 578 bp fragment containing the ATG start codon and 178 bp at the 5′ end of the coding region of the nlslacZ gene.
- the oligonucleotide 5′-CTAGATGCATAGGGATAACAGGGTAAT-3′ (SEQ ID NO:1), paired with 5′-AGCTATTACCCTGTTATCCCTATGCAT-3′ (SEQ ID NO:2), was inserted into the SpeI-Hind III restriction sites of the pPytknlslacZ plasmid (Henry et al., C. R. Acad. Sci. III, 322(12):1061-1070 (1999)) to produce the pWnlslacZ plasmid.
- Insertion of the oligonucleotide at the SpeI-Hind III restriction sites resulted in destruction of the SpeI and HindIII restriction sites and insertion of a NsiI restriction site and an I-SceI restriction site.
- the pWnlslacZ plasmid was then digested with the NheI and BglII restriction enzymes, resulting in excision from the plasmid of a 0.6 kb fragment containing the stop codon and SV40 polyadenylation signal at the 3′ end of the nlslacZ gene.
- nlslacZ gene expression is inactivated.
- the pWlac plasmid was constructed as follows: First, the pPytknlslacZ plasmid was digested with the SpeI and HindIII restriction enzymes, resulting in excision from the plasmid of a 578 bp fragment containing the ATG start codon and 178 bp at the 5′ end of the coding region of the nlslacZ gene.
- the oligonucleotide 5′-CTAGATGCATAGGGATAACAGGGTAAT-3′ (SEQ ID NO:1), paired with 5′-AGCTATTACCCTGTTATCCCTATGCAT-3′ (SEQ ID NO:2), was inserted into the SpeI-HindIII restriction sites of the pPytknlslacZ plasmid to produce the pWnlslacZ plasmid. Insertion at this restriction site resulted in destruction of the SpeI and HindIII restriction sites and the insertion of an NsiI restriction site and an I-SceI restriction site.
- the pWnlslacZ plasmid was digested with the NheI and BglII restriction enzymes, resulting in excision from the plasmid of the 0.6 kb fragment containing the stop codon and SV40 polyadenylation signal at the 3′ end of the nlslacZ gene.
- the 5′ extensions of the NheI-BglII restriction sites of the pWnlslacZ plasmid were converted to blunt ends by a filling-in reaction using T4 DNA polymerase. The blunted ends were then ligated together.
- nlslacZ gene expression is inactivated.
- the p-lac plasmid was constructed as follows: First, the pPytknlslacZ plasmid was digested with the SpeI and HindIII restriction enzymes, resulting in excision from the plasmid of a 578 bp fragment containing the ATG start codon and 178 bp at the 5′ end of the coding region of the nlslacZ gene. The 5′ extensions of the SpeI-HindIII restriction sites of the pPytknlslacZ plasmid were converted to blunt ends by a filling-in reaction using T4 DNA polymerase. The blunted ends were then ligated together to produce the p-lacZ plasmid.
- the p-lacZ plasmid was digested with the NheI and BglII restriction enzymes, resulting in excision from the plasmid of the 0.6 kb fragment containing the stop codon and SV40 polyadenylation signal at the 3′ end of the nlslacZ gene.
- the 5′ extensions of the NheI-BglII restriction sites of the pWnlslacZ plasmid were converted to blunt ends by a filling-in reaction using T4 DNA polymerase. The blunted ends were then ligated together.
- the 2.8 kb linear fragment of the nlslacZ gene used in the experiments described herein was obtained as follows: The pPytknlslacZ plasmid was digested with NheI and HindIII and a 2.8 kb fragment was purified by agarose gel electrophoresis. This 2.8 kb fragment, referred to herein as the lac fragment, contains a fragment of the nlslacZ gene with the ATG start codon, 178 bp at the 5′ end, stop codon and SV40 polyadenylation signal deleted.
- the target plasmid pPytknlslacZDBcl was produced by digesting the pPytknlslacZ plasmid with the BclI restriction enzyme after demethylation of the plasmid.
- the 5′ protruding ends were filled-in by the Klenow fragment of E. coli DNA polymerase I and religated.
- the result is insertion of a 4 base pair direct repeat in the sequence of the nlslacZ gene resulting in a frame shift of the open reading frame, thereby inactivating expression of the gene.
- the plasmid does not express the ⁇ -galactosidase protein.
- the target plasmid pPytknlslacZ ⁇ Bcl was produced by digesting the pPytknlslacZ plasmid with the BclI restriction enzyme after demethylation of the plasmid.
- the 4 base pair 5′ protruding ends were degraded by T4 DNA polymerase and the resulting blunted ends religated.
- the result is deletion of 4 base pairs within the sequence of the nlslacZ gene resulting in a frame shift of the open reading frame, thereby inactivating expression of the gene.
- the plasmid does not the ⁇ -galactosidase protein.
- nlslacZ DNA was extracted from cells in all 48 cultures of Geneticin resistant clones. Fragments of the nlslacZ gene were amplified by polymerase chain reaction (PCR) as described in BioFeedback in BioTechniques , Hanley & J. P. Merlie, Vol. 10, No. 1, p. 56T (1991). Forty-six (46) of 48 clones were positive for the presence of the nlslacZ gene.
- PCR polymerase chain reaction
- RNA encoding the mutated nlslacZ gene was amplified by reverse transcriptase polymerase chain reaction (RT-PCR).
- RT-PCR reverse transcriptase polymerase chain reaction
- the oligonucleotide primer 5′-TACACGCGTCGTGATTAGCGCCG-3′ (SEQ ID NO:5) was used for lacZ reverse transcription.
- PCR was performed as described in BioFeedback in BioTechniques , Hanley & J. P. Merlie, Vol. 10, No. 1, p. 56T (1991). Eleven (11) of 24 clones showed a positive reaction.
- nlslacZ gene DNA was extracted from cells in all 48 cultures of Geneticin resistant clones. Fragments of the nlslacZ gene were amplified by PCR as described in BioFeedback in BioTechniques , Hanley & J. P. Merlie, Vol. 10, No. 1, p. 56T (1991). Forty-eight (48) of 48 clones were positive for the presence of the nlslacZ gene.
- Two (2) of 66 clones showed cells expressing ⁇ -galactosidase (ranging between 30 to 80% of the cells). Southern blot analysis of these 2 clones showed that 100% of the cells had their nlslacZ gene with a Bcl I site recovered. The lack of correspondence between the expression of the intact nlslacZ open reading frame and the total repair of the genome is probably the result of transgene variegation.
- the pPytknlslacZD-Bcl construct is integrated into the genomic DNA of NIH 3T3 cells as described in Example 2. In these cells, the nlslacZDBcl gene is transcribed but ⁇ -galactosidase expression is not detected ( ⁇ -gal 31 cells).
- ⁇ -gal 31 cells are cotransfected with the p2Wlac plasmid containing two I-SceI sites and an expression vector coding for I-SceI endonuclease.
- the p2Wlac plasmid is linearized in vivo by the I-SceI endonuclease and correct the DBcl mutation by D-loop recombination. As a result, these cells contain a pPytknlslacZ plasmid that expresses ⁇ -galctosidase ( ⁇ -gal + cells).
- FIG. 1 A schematic diagram of this experiment is depicted in FIG. 1.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/922,495 US20020110898A1 (en) | 1999-02-03 | 2001-08-03 | Gene repair involving in vivo excision of targeting DNA |
| US10/336,069 US7285538B2 (en) | 1999-02-03 | 2003-01-02 | Gene repair involving in vivo excision of targeting DNA |
| US11/904,034 US7960525B2 (en) | 1999-02-03 | 2007-09-25 | Gene repair involving in vivo excision of targeting DNA |
| US13/101,463 US20120165400A1 (en) | 1999-02-03 | 2011-05-05 | Gene repair involving in vivo excision of targeting dna |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11847299P | 1999-02-03 | 1999-02-03 | |
| PCT/US2000/002949 WO2000046385A1 (fr) | 1999-02-03 | 2000-02-03 | Reparation genetique par excision in vivo d'adn de ciblage |
| US09/922,495 US20020110898A1 (en) | 1999-02-03 | 2001-08-03 | Gene repair involving in vivo excision of targeting DNA |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/002949 Continuation WO2000046385A1 (fr) | 1999-02-03 | 2000-02-03 | Reparation genetique par excision in vivo d'adn de ciblage |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/336,069 Continuation US7285538B2 (en) | 1999-02-03 | 2003-01-02 | Gene repair involving in vivo excision of targeting DNA |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020110898A1 true US20020110898A1 (en) | 2002-08-15 |
Family
ID=22378818
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/922,495 Abandoned US20020110898A1 (en) | 1999-02-03 | 2001-08-03 | Gene repair involving in vivo excision of targeting DNA |
| US10/336,069 Expired - Lifetime US7285538B2 (en) | 1999-02-03 | 2003-01-02 | Gene repair involving in vivo excision of targeting DNA |
| US11/904,034 Expired - Fee Related US7960525B2 (en) | 1999-02-03 | 2007-09-25 | Gene repair involving in vivo excision of targeting DNA |
| US13/101,463 Abandoned US20120165400A1 (en) | 1999-02-03 | 2011-05-05 | Gene repair involving in vivo excision of targeting dna |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/336,069 Expired - Lifetime US7285538B2 (en) | 1999-02-03 | 2003-01-02 | Gene repair involving in vivo excision of targeting DNA |
| US11/904,034 Expired - Fee Related US7960525B2 (en) | 1999-02-03 | 2007-09-25 | Gene repair involving in vivo excision of targeting DNA |
| US13/101,463 Abandoned US20120165400A1 (en) | 1999-02-03 | 2011-05-05 | Gene repair involving in vivo excision of targeting dna |
Country Status (6)
| Country | Link |
|---|---|
| US (4) | US20020110898A1 (fr) |
| EP (1) | EP1151124A1 (fr) |
| JP (1) | JP2002535994A (fr) |
| AU (1) | AU2982300A (fr) |
| CA (1) | CA2360878A1 (fr) |
| WO (1) | WO2000046385A1 (fr) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030232410A1 (en) * | 2002-03-21 | 2003-12-18 | Monika Liljedahl | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination |
| US20040019002A1 (en) * | 1999-02-03 | 2004-01-29 | The Children's Medical Center Corporation | Gene repair involving the induction of double-stranded DNA cleavage at a chromosomal target site |
| US20050026157A1 (en) * | 2002-09-05 | 2005-02-03 | David Baltimore | Use of chimeric nucleases to stimulate gene targeting |
| US20050064474A1 (en) * | 2003-08-08 | 2005-03-24 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US20050208489A1 (en) * | 2002-01-23 | 2005-09-22 | Dana Carroll | Targeted chromosomal mutagenasis using zinc finger nucleases |
| US20060188987A1 (en) * | 2003-08-08 | 2006-08-24 | Dmitry Guschin | Targeted deletion of cellular DNA sequences |
| US20090060896A1 (en) * | 1999-02-03 | 2009-03-05 | The Children's Medical Center Corporation | Gene repair involving in vivo excision of targeting DNA |
| US20100071083A1 (en) * | 2008-03-12 | 2010-03-18 | Smith James J | Temperature-dependent meganuclease activity |
| US20110033935A1 (en) * | 2007-12-07 | 2011-02-10 | Precision Biosciences, Inc. | Rationally-designed meganucleases with recognition sequences found in dnase hypersensitive regions of the human genome |
| US20110113509A1 (en) * | 2008-03-11 | 2011-05-12 | Precision Biosciences, Inc. | Rationally-designed meganucleases for maize genome engineering |
| US20110123509A1 (en) * | 2008-04-28 | 2011-05-26 | Derek Jantz | Fusion molecules of rationally-designed dna-binding proteins and effector domains |
| US7972854B2 (en) | 2004-02-05 | 2011-07-05 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US20110202479A1 (en) * | 2008-07-14 | 2011-08-18 | Derek Jantz | Recognition sequences for i-crei-derived meganucleases and uses thereof |
| US8021867B2 (en) | 2005-10-18 | 2011-09-20 | Duke University | Rationally-designed meganucleases with altered sequence specificity and DNA-binding affinity |
| US9249428B2 (en) | 2003-08-08 | 2016-02-02 | Sangamo Biosciences, Inc. | Methods and compositions for targeted genomic deletion |
| US11311574B2 (en) | 2003-08-08 | 2022-04-26 | Sangamo Therapeutics, Inc. | Methods and compositions for targeted cleavage and recombination |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7102055B1 (en) * | 1997-11-18 | 2006-09-05 | Pioneer Hi-Bred International, Inc. | Compositions and methods for the targeted insertion of a nucleotide sequence of interest into the genome of a plant |
| AU757672B2 (en) * | 1997-11-18 | 2003-02-27 | Pioneer Hi-Bred International, Inc. | A method for directional stable transformation of eukaryotic cells |
| EP2196217A1 (fr) | 2001-09-14 | 2010-06-16 | Cytos Biotechnology AG | Emballage de substances immunostimulantes dans des particules similaires aux virus: procédés de production et utilisations |
| WO2009095742A1 (fr) | 2008-01-31 | 2009-08-06 | Cellectis | Nouvelle méganucléase à chaîne unique dérivée de l'i-crei et ses utilisations |
| US8206965B2 (en) | 2002-03-15 | 2012-06-26 | Cellectis S.A. | Hybrid and single chain meganucleases and use thereof |
| WO2004067753A2 (fr) | 2003-01-28 | 2004-08-12 | Cellectis | Utilisation de meganucleases pour induire une recombinaison homologue ex vivo et in toto dans des tissus somatiques de vertebre et application de cette utilisation |
| PL1907553T3 (pl) * | 2005-07-18 | 2013-02-28 | Pioneer Hi Bred Int | Zmodyfikowane miejsca rekombinacji FRT oraz sposoby ich zastosowania |
| US7852247B2 (en) * | 2006-12-05 | 2010-12-14 | Texas Instruments Incorporated | Mixed-signal filter |
| US8912392B2 (en) * | 2007-06-29 | 2014-12-16 | Pioneer Hi-Bred International, Inc. | Methods for altering the genome of a monocot plant cell |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US285538A (en) * | 1883-09-25 | Ore-crusher | ||
| US5436150A (en) | 1992-04-03 | 1995-07-25 | The Johns Hopkins University | Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease |
| US5792632A (en) * | 1992-05-05 | 1998-08-11 | Institut Pasteur | Nucleotide sequence encoding the enzyme I-SceI and the uses thereof |
| US5474896A (en) | 1992-05-05 | 1995-12-12 | Institut Pasteur | Nucleotide sequence encoding the enzyme I-SceI and the uses thereof |
| ATE178654T1 (de) | 1993-12-20 | 1999-04-15 | Akzo Nobel Nv | Impstoff zum schutze von pferden gegen pferdeherpesvirus-infektionen |
| US5830729A (en) * | 1996-04-18 | 1998-11-03 | Institut Pasteur | I Sce I-induced gene replacement and gene conversion in embryonic stem cells |
| AU2982900A (en) | 1999-02-03 | 2000-08-25 | Children's Medical Center Corporation | Gene repair involving the induction of double-stranded dna cleavage at a chromosomal target site |
| WO2000046385A1 (fr) | 1999-02-03 | 2000-08-10 | The Children's Medical Center Corporation | Reparation genetique par excision in vivo d'adn de ciblage |
| ATE466088T1 (de) * | 2001-09-14 | 2010-05-15 | Cellectis | Zufällige integration von polynukleotide nach in vivo linearisierung |
| JP3915752B2 (ja) * | 2003-07-25 | 2007-05-16 | 船井電機株式会社 | デジタル情報記録装置およびそれを備える映像記録再生装置 |
-
2000
- 2000-02-03 WO PCT/US2000/002949 patent/WO2000046385A1/fr not_active Ceased
- 2000-02-03 AU AU29823/00A patent/AU2982300A/en not_active Abandoned
- 2000-02-03 JP JP2000597444A patent/JP2002535994A/ja active Pending
- 2000-02-03 EP EP00908491A patent/EP1151124A1/fr not_active Ceased
- 2000-02-03 CA CA002360878A patent/CA2360878A1/fr not_active Abandoned
-
2001
- 2001-08-03 US US09/922,495 patent/US20020110898A1/en not_active Abandoned
-
2003
- 2003-01-02 US US10/336,069 patent/US7285538B2/en not_active Expired - Lifetime
-
2007
- 2007-09-25 US US11/904,034 patent/US7960525B2/en not_active Expired - Fee Related
-
2011
- 2011-05-05 US US13/101,463 patent/US20120165400A1/en not_active Abandoned
Cited By (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100111924A1 (en) * | 1999-02-03 | 2010-05-06 | Institut Pasteur | Chromosomal Modification Involving the Induction of Double-Stranded DNA Cleavage and Homologous Recombination at the Cleavage Site |
| US20040019002A1 (en) * | 1999-02-03 | 2004-01-29 | The Children's Medical Center Corporation | Gene repair involving the induction of double-stranded DNA cleavage at a chromosomal target site |
| US7960525B2 (en) | 1999-02-03 | 2011-06-14 | The Institute Pasteur | Gene repair involving in vivo excision of targeting DNA |
| US20090060896A1 (en) * | 1999-02-03 | 2009-03-05 | The Children's Medical Center Corporation | Gene repair involving in vivo excision of targeting DNA |
| US20070141038A1 (en) * | 1999-02-03 | 2007-06-21 | Andre Choulika | Gene repair involving the induction of double-stranded DNA cleavage at a chromosomal target site |
| US7629326B2 (en) | 1999-02-03 | 2009-12-08 | Institut Pasteur | Chromosomal modification involving the induction of double-stranded DNA cleavage and homologous recombination at the cleavage site |
| US20050208489A1 (en) * | 2002-01-23 | 2005-09-22 | Dana Carroll | Targeted chromosomal mutagenasis using zinc finger nucleases |
| US9145565B2 (en) | 2002-01-23 | 2015-09-29 | University Of Utah Research Foundation | Targeted chromosomal mutagenesis using zinc finger nucleases |
| US20110014601A2 (en) * | 2002-01-23 | 2011-01-20 | University Of Utah Research Foundation | Targeted Chromosomal Mutagenesis Using Zinc Finger Nucleases |
| US8106255B2 (en) | 2002-01-23 | 2012-01-31 | Dana Carroll | Targeted chromosomal mutagenasis using zinc finger nucleases |
| US20080209587A1 (en) * | 2002-03-21 | 2008-08-28 | Sangamo Biosciences, Inc. | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination |
| US20090305402A1 (en) * | 2002-03-21 | 2009-12-10 | Sangamo Biosciences, Inc. | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination |
| US20030232410A1 (en) * | 2002-03-21 | 2003-12-18 | Monika Liljedahl | Methods and compositions for using zinc finger endonucleases to enhance homologous recombination |
| US9447434B2 (en) | 2002-09-05 | 2016-09-20 | California Institute Of Technology | Use of chimeric nucleases to stimulate gene targeting |
| US10006053B2 (en) | 2002-09-05 | 2018-06-26 | California Institute Of Technology | Use of chimeric nucleases to stimulate gene targeting |
| US20050026157A1 (en) * | 2002-09-05 | 2005-02-03 | David Baltimore | Use of chimeric nucleases to stimulate gene targeting |
| US8524500B2 (en) | 2003-08-08 | 2013-09-03 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US8409861B2 (en) | 2003-08-08 | 2013-04-02 | Sangamo Biosciences, Inc. | Targeted deletion of cellular DNA sequences |
| US11311574B2 (en) | 2003-08-08 | 2022-04-26 | Sangamo Therapeutics, Inc. | Methods and compositions for targeted cleavage and recombination |
| US7888121B2 (en) | 2003-08-08 | 2011-02-15 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US10675302B2 (en) | 2003-08-08 | 2020-06-09 | Sangamo Therapeutics, Inc. | Methods and compositions for targeted cleavage and recombination |
| US10669557B2 (en) | 2003-08-08 | 2020-06-02 | Sangamo Therapeutics, Inc. | Targeted deletion of cellular DNA sequences |
| US20050064474A1 (en) * | 2003-08-08 | 2005-03-24 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US9782437B2 (en) | 2003-08-08 | 2017-10-10 | Sangamo Therapeutics, Inc. | Methods and compositions for targeted cleavage and recombination |
| US9752140B2 (en) | 2003-08-08 | 2017-09-05 | Sangamo Therapeutics, Inc. | Methods and compostions for targeted genomic deletion |
| US9695442B2 (en) | 2003-08-08 | 2017-07-04 | Sangamo Therapeutics, Inc. | Targeted deletion of cellular DNA sequences |
| US20060188987A1 (en) * | 2003-08-08 | 2006-08-24 | Dmitry Guschin | Targeted deletion of cellular DNA sequences |
| US9289451B2 (en) | 2003-08-08 | 2016-03-22 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US9249428B2 (en) | 2003-08-08 | 2016-02-02 | Sangamo Biosciences, Inc. | Methods and compositions for targeted genomic deletion |
| US20110030076A1 (en) * | 2003-08-08 | 2011-02-03 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US8349810B2 (en) | 2004-02-05 | 2013-01-08 | Sangamo Biosciences, Inc. | Methods for targeted cleavage and recombination of CCR5 |
| US7972854B2 (en) | 2004-02-05 | 2011-07-05 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
| US8129134B2 (en) | 2005-10-18 | 2012-03-06 | Duke University | Methods of cleaving DNA with rationally-designed meganucleases |
| US8148098B2 (en) | 2005-10-18 | 2012-04-03 | Duke University | Methods of cleaving DNA with rationally-designed meganucleases |
| US8021867B2 (en) | 2005-10-18 | 2011-09-20 | Duke University | Rationally-designed meganucleases with altered sequence specificity and DNA-binding affinity |
| US8119361B2 (en) | 2005-10-18 | 2012-02-21 | Duke University | Methods of cleaving DNA with rationally-designed meganucleases |
| US8377674B2 (en) | 2005-10-18 | 2013-02-19 | Duke University | Method for producing genetically-modified cells with rationally-designed meganucleases with altered sequence specificity |
| US8143016B2 (en) | 2005-10-18 | 2012-03-27 | Duke University | Methods of cleaving DNA with rationally-designed meganucleases |
| US8143015B2 (en) | 2005-10-18 | 2012-03-27 | Duke University | Methods of cleaving DNA with rationally-designed meganucleases |
| US8124369B2 (en) | 2005-10-18 | 2012-02-28 | Duke University | Method of cleaving DNA with rationally-designed meganucleases |
| US8133697B2 (en) | 2005-10-18 | 2012-03-13 | Duke University | Methods of cleaving DNA with rationally-designed meganucleases |
| US8163514B2 (en) | 2005-10-18 | 2012-04-24 | Duke University | Methods of cleaving DNA with rationally-designed meganucleases |
| US8304222B1 (en) | 2005-10-18 | 2012-11-06 | Duke University | Rationally-designed meganucleases with altered sequence specificity and heterodimer formation |
| US8119381B2 (en) | 2005-10-18 | 2012-02-21 | Duke University | Rationally-designed meganucleases with altered sequence specificity and DNA-binding affinity |
| US20110033935A1 (en) * | 2007-12-07 | 2011-02-10 | Precision Biosciences, Inc. | Rationally-designed meganucleases with recognition sequences found in dnase hypersensitive regions of the human genome |
| US20110113509A1 (en) * | 2008-03-11 | 2011-05-12 | Precision Biosciences, Inc. | Rationally-designed meganucleases for maize genome engineering |
| US8338157B2 (en) | 2008-03-11 | 2012-12-25 | Precision Biosciences, Inc. | Rationally-designed meganuclease variants of lig-34 and I-crei for maize genome engineering |
| US20100071083A1 (en) * | 2008-03-12 | 2010-03-18 | Smith James J | Temperature-dependent meganuclease activity |
| US20110123509A1 (en) * | 2008-04-28 | 2011-05-26 | Derek Jantz | Fusion molecules of rationally-designed dna-binding proteins and effector domains |
| US9683257B2 (en) | 2008-07-14 | 2017-06-20 | Precision Biosciences, Inc. | Recognition sequences for I-CreI-derived meganucleases and uses thereof |
| US20110202479A1 (en) * | 2008-07-14 | 2011-08-18 | Derek Jantz | Recognition sequences for i-crei-derived meganucleases and uses thereof |
| US10287626B2 (en) | 2008-07-14 | 2019-05-14 | Precision Biosciences, Inc. | Recognition sequences for I-CreI-derived meganucleases and uses thereof |
| US10273524B2 (en) | 2008-07-14 | 2019-04-30 | Precision Biosciences, Inc. | Recognition sequences for I-CreI-derived meganucleases and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| US20120165400A1 (en) | 2012-06-28 |
| CA2360878A1 (fr) | 2000-08-10 |
| US7960525B2 (en) | 2011-06-14 |
| US20090060896A1 (en) | 2009-03-05 |
| WO2000046385A1 (fr) | 2000-08-10 |
| US20030229039A1 (en) | 2003-12-11 |
| US7285538B2 (en) | 2007-10-23 |
| EP1151124A1 (fr) | 2001-11-07 |
| JP2002535994A (ja) | 2002-10-29 |
| AU2982300A (en) | 2000-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7960525B2 (en) | Gene repair involving in vivo excision of targeting DNA | |
| US7629326B2 (en) | Chromosomal modification involving the induction of double-stranded DNA cleavage and homologous recombination at the cleavage site | |
| Danko et al. | Direct gene transfer into muscle | |
| CA2497913C (fr) | Utilisation de nucleases chimeres pour stimuler le ciblage de genes | |
| US20220290113A1 (en) | Programmable dna base editing by nme2cas9-deaminase fusion proteins | |
| TW202028461A (zh) | 核酸構築體及使用方法 | |
| JP2023525007A (ja) | 転位に基づく療法 | |
| KR20020057953A (ko) | 진핵 세포에서의 서열 특이적 dna 재조합 | |
| Li et al. | Versatile and efficient mammalian genome editing with Type IC CRISPR System of Desulfovibrio vulgaris | |
| AU2004202860B2 (en) | Gene repair involving in vivo excision of targeting DNA | |
| US20250002876A1 (en) | Mobile elements and chimeric constructs thereof | |
| US20250040522A1 (en) | Mutant myocilin disease model and uses thereof | |
| CN114144231A (zh) | 用于治疗癌症的crispr方法 | |
| KR20240034143A (ko) | 신규한 유전체 세이프 하버 및 이의 용도 | |
| Grandchamp et al. | Hybrid Lentivirus-phiC31-int-NLS Vector Allows Site-Specific Recombination in | |
| WO2005118835A2 (fr) | Souches cellulaires et procedes d'evaluation integrant des polynucleotides |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CHILDREN'S MEDICAL CENTER CORPORATION, THE, MASSAC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MULLIGAN, RICHARD C.;REEL/FRAME:012532/0111 Effective date: 20011219 Owner name: INSTITUTE PASTEUR, THE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOULIKA, ANDRE;REEL/FRAME:012532/0146 Effective date: 20011211 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |