EP1819461A2 - Procede de fabrication de toles d' acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité. - Google Patents
Procede de fabrication de toles d' acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité.Info
- Publication number
- EP1819461A2 EP1819461A2 EP05814950A EP05814950A EP1819461A2 EP 1819461 A2 EP1819461 A2 EP 1819461A2 EP 05814950 A EP05814950 A EP 05814950A EP 05814950 A EP05814950 A EP 05814950A EP 1819461 A2 EP1819461 A2 EP 1819461A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- mpa
- equal
- sheet
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
Definitions
- the present invention relates to the manufacture of hot-rolled and cold-rolled sheets of austenitic iron-carbon-manganese steels having very high mechanical characteristics, and in particular a combination of very advantageous mechanical strength and elongation at break with excellent homogeneity. mechanical properties.
- the mode of deformation of the austenitic steels depends only on the stacking fault energy or "EDE", a physical quantity which depends only on the composition and the temperature:
- EDE stacking fault energy
- the mechanical twinning makes it possible to obtain a great capacity of hardening: by preventing the propagation of the dislocations, the twins participate in the increase of the limit of flow.
- EDE increases especially with the carbon and manganese content.
- Fe-0.6% C-22% Mn austenitic steels that can deform by twinning are thus known: Depending on the grain size, these steel compositions lead to tensile strength values ranging from about 900 to 1150 MPa. in combination with a breaking strain of 50 to 80%. There is, however, an unresolved need for hot-rolled or cold-rolled steel sheet with a strength significantly greater than 1150 MPa, also having a good deformation capacity, without the addition of expensive alloys. It is sought to have steel sheets having a very homogeneous behavior during subsequent mechanical stresses.
- the object of the invention is therefore to provide a hot-rolled or cold-rolled steel sheet or product of economical manufacture having a strength greater than or equal to 1200 or even 1400 MPa in combination with an elongation such as the product P: resistance (MPa) x elongation at rupture (%) is greater than 60000 or 50000 MPa% respectively at the strength level mentioned above, a great homogeneity of mechanical properties during deformation or subsequent mechanical stresses and a structure free from martensite at any point during or after the deformation cold from this sheet or this product.
- the subject of the invention is a hot-rolled sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, whose product P (resistance (MPa) x elongation at break (%)) is greater than 65000 MPa%, the nominal chemical composition of which, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements selected from: Cr ⁇ 1%, Mo ⁇ 1, 50%, Ni ⁇ 1%, Cu ⁇ 5% , Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation, the recrystallized surface fraction of the steel being equal to 100%, the surface fraction of precipitated carbides of the steel being equal to 0%, the average grain size of the steel being
- the subject of the invention is also a cold-rolled annealed sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, of which the product P (resistance (MPa) x elongation at break (%)) is greater at 65000 MPa%, the nominal chemical composition of which, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and.
- P resistance (MPa) x elongation at break
- the invention also relates to a cold rolled annealed sheet of austenitic steel, whose resistance is greater than 1250 MPa, whose product P (resistance (MPa) x elongation at break (%)) is greater than 65000 MPa% characterized in that the average grain size of the steel is less than 3 microns.
- the local carbon content CL of the steel, and the local manganese content M ⁇ L, expressed by weight, at any point of the austenitic steel sheet are such that:% Mn L + 9.7 % C L ⁇ 21, 66
- the nominal silicon content of the steel is less than or equal to 0.6%
- the nominal nitrogen content of the steel is less than or equal to 0.050%.
- the nominal aluminum content of the steel is less than or equal to 0.030%.
- the nominal phosphorus content of the steel is less than or equal to 0.040%
- the invention also relates to a method for manufacturing a hot-rolled sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, whose product P ((resistance (MPa) x elongation at break ( %)) is greater than 65000 MPa%, according to which a steel is produced whose nominal composition comprises, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements selected from: Cr ⁇ 1%, Mo ⁇ 1, 50%, Ni ⁇ 1%, Cu ⁇ 5%, Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration the semi-finished product of the steel composition is heated to a temperature of between 1100 and 1300 ° C.
- the semi-finished product is rolled up. at a higher end-of-lamination temperature If at least 900 ° C., a waiting time is observed if necessary so that the recrystallized surface fraction of the steel is equal to 100%, the sheet is cooled at a speed greater than or equal to 20 ° C./sec. - the sheet is coiled at a temperature below or equal to 400 0 C.
- the invention also relates to a method of " manufacturing a hot-rolled sheet of austenitic steel whose resistance is greater than 1400 MPa, whose product P ((resistance (MPa) x elongation at break (%)) is greater than 50000 MPa%, characterized in that a cold deformation with an equivalent deformation ratio greater than or equal to 13% and less than or equal to 17 is applied to the hot-rolled sheet, cooled after winding and unrolled;
- the invention also relates to a method for manufacturing a cold-rolled annealed sheet of austenitic iron-carbon-manganese steel, whose resistance is greater than 1250 MPa, the product P (resistance (MPa) x elongation at rupture (%)) is greater than 60000 MPa%, characterized in that a hot-rolled sheet obtained by the above process is supplied with, at least one cycle is carried out, each cycle consisting in cold-rolling the sheet in one or more successive passes and then perform a recrystallization annea
- the invention also relates to a method for manufacturing a cold-rolled annealed sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, the product P (resistance (MPa) x elongation at break (%)) is greater than 50000 MPa%, characterized in that, after the final recrystallization annealing, a cold deformation with an equivalent strain rate greater than or equal to 6%, and less than or equal to 17% is carried out.
- the invention also relates to a method of manufacturing a cold-rolled sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, the product P (resistance (MPa) x elongation at break ( %)) is greater than 50000 MPa%, characterized in that one supplies a cold rolled sheet and annealed according to the invention, and that a cold deformation of this sheet is carried out with a higher equivalent strain rate or equal to 6%, and less than or equal to 17%.
- the invention also relates to a method of manufacturing an austenitic steel sheet, characterized in that the conditions for casting or reheating said semi-finished product, such as the casting temperature of said semi-finished product, the mixing of the metal liquid by electromagnetic forces, the reheating conditions leading to a homogenization of carbon and manganese by diffusion, are chosen so that, at any point of the sheet, the local carbon content CL and the local manganese content Mn ⁇ _, expressed by weight, are such that:% Mn L + 9.7% CL ⁇ 21, 66
- the casting of the semi-finished product is carried out in the form of casting slabs or thin strips between contra-rotating steel rolls.
- the invention also relates to the use of an austenitic steel sheet for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
- the invention also relates to the use of an austenitic steel sheet manufactured by means of a method described above, for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
- FIG. 1 presents the theoretical variation of the stacking fault energy at room temperature (300 K 0) depending on the carbon content and manganese.
- carbon plays a very important role in the formation of the microstructure and the mechanical properties obtained:
- a nominal content in carbon greater than 0.85% makes it possible to obtain a stable austenitic structure.
- a nominal carbon content of greater than 1.05% it becomes difficult to avoid a precipitation of carbides which occurs during certain thermal cycles of industrial manufacture, in particular during winding cooling, and which degrades the ductility and tenacity.
- increasing the carbon content decreases the weldability.
- Manganese is also an indispensable element for increasing the strength, increasing the stacking fault energy and stabilizing the austenitic phase. If its nominal content is less than 16%, there is, as will be seen below, a risk of martensitic phase formation which decreases very noticeably the ability to deform. Moreover, when the nominal manganese content is greater than 19%, the mode of deformation by twinning is less favored compared to the sliding mode of perfect dislocations. In addition, for cost reasons, it is not desirable for the manganese content to be high.
- Aluminum is a particularly effective element for the deoxidation of steel. Like carbon, it increases the stacking fault energy. However, its excessive presence in steels with a high manganese content has a disadvantage. In fact, manganese increases the solubility of nitrogen in liquid iron, and if too much aluminum is present in the steel, nitrogen combining with aluminum precipitates in the form of aluminum nitrides hindering the migration of grain boundaries during hot processing and significantly increases the risk of crack appearances.
- a nominal Al content less than or equal to 0.050% avoids precipitation of AlN.
- the nominal nitrogen content must be less than or equal to 0.1% in order to avoid this precipitation and the formation of volume defects during solidification. This risk is particularly reduced when the nominal aluminum content is less than 0.030% and when the nominal nitrogen content is less than 0.050%.
- Silicon is also an effective element for deoxidizing steel as well as for hardening in the solid phase. However, beyond a nominal content of 2%, it decreases the elongation and tends to form undesirable oxides during certain assembly processes and must therefore be kept below this limit. This phenomenon is greatly reduced when the nominal silicon content is less than 0.6%.
- Sulfur and phosphorus are impurities that weaken the grain boundaries. Their respective nominal content must be less than or equal to 0.030 and 0.050% in order to maintain sufficient hot ductility. When the nominal phosphorus content is less than 0.040%, the risk of brittleness is particularly low.
- Chromium can be used as an option to increase the strength of the steel by hardening in solid solution. However, since chromium decreases the stacking fault energy, its nominal content must be lower or equal to 1%. Nickel increases the stacking fault energy and contributes to a high breaking elongation. However, it is also desirable, for cost reasons, to limit the nominal nickel content to a maximum content of less than or equal to 1%. Molybdenum can also be used for similar reasons, this element further delaying the precipitation of carbides. It is desirable for questions of efficiency and cost, to limit its nominal content to 1, 5%, and preferably to 0.4%.
- addition of copper to a nominal content of less than or equal to 5% is a means of hardening the steel by precipitation of metallic copper.
- copper is responsible for the appearance of surface defects hot sheet.
- Titanium, niobium and vanadium are also optionally operable elements for precipitation hardening of carbonitrides.
- the nominal Nb or V or Ti content is greater than 0.50%, excessive precipitation of carbonitrides may cause a reduction in ductility and drawability, which should be avoided.
- the implementation of the manufacturing method according to the invention is as follows: A steel is produced whose composition has been explained above. This development can be followed by casting in ingots, or continuously in the form of slabs of thickness of the order of 200 mm.
- These cast semi-finished products are first brought to a temperature of between 1100 and 1300 ° C. This is intended to achieve at all points the temperature ranges favorable to the high deformations which the steel will undergo during rolling. However, the temperature must not be higher than 1300 0 C, otherwise it will be too close to the solidus temperature that could be reached in possible areas segregated in manganese and / or carbon, and cause a beginning of local passage through a liquid state that would be harmful for hot shaping.
- the hot rolling step of these semi-finished products starting between 1300 and 1100 0 C can be done directly after casting so that a reheating step intermediate is not necessary in this case.
- the conditions for the preparation of semi-finished products have a direct influence on the possible segregation of carbon and manganese, this point will be detailed later.
- the semi-finished product is hot-rolled, for example to obtain a hot-rolled strip thickness of a few millimeters.
- the low aluminum content of the steel according to the invention makes it possible to avoid excessive precipitation of AlN which would adversely affect the hot deformability during rolling.
- the end-of-rolling temperature must be greater than or equal to 900 ° C. The inventors have demonstrated that the ductility properties of the sheets obtained were reduced when the recrystallized surface fraction steel was less than 100%.
- the inventors have set evidence that particularly high strength and elongation properties are obtained when the average austenitic grain size is less than or equal to 10 microns. Under these conditions, the breaking strength of the hot plates thus obtained is greater than 1200 MPa and the product P (resistance x elongation at break) is greater than 65000 MPa%.
- the sheet manufactured can be qualified as "hot-rolled sheet" insofar as the rate of cold deformation is very small in comparison with the usual rates of achieved during rolling. cold before annealing for the manufacture of thin sheets, and insofar as the thickness of the sheet thus manufactured is located in the usual range of thicknesses of hot-rolled sheet.
- the equivalent cold deformation ratio is greater than 17%, the elongation reduction becomes such that the parameter P (resistance R x elongation at break A) can not reach 50000 MPa%.
- the sheet retains a good elongation capacity since the product P of the sheet thus obtained is greater than or equal to 50000 MPa%.
- the inventors have also demonstrated that the structure must be completely recrystallized after annealing in order to achieve the desired properties. Simultaneously, when the average grain size is less than 5 microns, the resistance exceeds 1200 MPa, and the product P is greater than 65000 MPa%. When the average grain size obtained after annealing is less than 3 microns, the resistance exceeds 1250 MPa, the product P being always greater than 65000 MPa.
- the inventors have also discovered a method for manufacturing cold-rolled steel sheets annealed with resistance greater than 1250 MPa and product P greater than 60000 MPa%, this being achieved by supplying hot-rolled sheets according to the method described above. above, and then performing at least one cycle, each cycle consisting of the following steps:
- the average size of austenitic grain before the last cold rolling cycle undergoing a recrystallization annealing being less than 15 microns.
- the inventors have demonstrated that such properties could be obtained by supplying a cold-rolled sheet having the characteristics according to the invention described above, or by supplying a cold-rolled sheet obtained according to the process according to the invention described herein. -above.
- the inventors have discovered that the application of a cold deformation to such a sheet with an equivalent deformation ratio greater than or equal to 6%, and less than or equal to 17%, makes it possible to achieve a resistance greater than 1400 MPa and a product P greater than 50000 MPa%.
- the equivalent cold deformation rate is greater than 17%, the elongation reduction becomes such that the parameter P can not reach 50000 MPa%.
- FIG. 1 presents, in a carbon-manganese diagram (and iron complement), the computed curves of stacking failure iso-energy whose values range from 5 to 30 mJ / m 2 .
- the deformation mode is theoretically identical for any Fe-C-Mn alloy having the same EDE.
- This diagram also shows the field of appearance of martensite.
- the inventors have demonstrated that, in order to assess the mechanical behavior, it is necessary to consider not only the nominal chemical composition of the alloy, for example its nominal or average content. in carbon and manganese, but also its local content. Indeed, it is known that, during the development of steel, the solidification causes a more or less marked segregation of certain elements. This is because the solubility of an element within the solid phase is different from that in the liquid phase. This will often lead to the formation of solid seeds whose solute content is lower than the nominal composition, the last phase of solidification involving a liquid phase residual enriched solute. This primary solidification structure can assume different morphologies (for example dendritic or equiaxial) and be more or less marked.
- an analysis of the local elemental content indicates a fluctuation around a value corresponding to the average or nominal content of this element.
- local content is meant here the measured content by means of a device such as an electronic probe.
- a linear or surface scan by means of such a device makes it possible to appreciate the variation of the local content.
- the inventors have demonstrated co-segregation of carbon and manganese, the locally enriched (or depleted) carbon zones also correspond to the enriched (respectively impoverished) zones in manganese.
- this mode of preferred deformation may not be present absolutely in all the steel sheet and some particular areas may possibly exhibit a behavior mechanical different from that expected for a steel sheet of nominal composition, in particular a reduced ability to deformation by twinning within certain grains. More generally, it is conceivable that, under very specific conditions depending for example on the deformation or stress temperature, of the grain size, the local carbon and manganese content can be reduced to the point of locally provoking an induced martensitic transformation. by deformation. The inventors have sought the particular conditions to obtain very high mechanical characteristics simultaneously with a great homogeneity of these characteristics within a steel sheet.
- the inventors have demonstrated that it was absolutely necessary to avoid the formation of martensite during deformation operations or use of the sheets under penalty of heterogeneity of mechanical characteristics on the parts.
- the inventors have determined that this condition is satisfied when, at all points of the sheets, the local carbon and manganese contents of the sheet are such that:% M ⁇ L + 9.7% CL ⁇ 21, 66.
- the characteristics of the nominal chemical composition defined by According to the invention and to those defined by the local contents of carbon and manganese austenitic steel sheets having not only very high mechanical properties but also a very low dispersion of these characteristics are produced.
- a half-product of the steel I according to the invention was heated to a temperature of 1180 ° C. and hot rolled to a temperature greater than 900 ° C. to reach a thickness of 3 mm. It was stirred for 2 seconds after lamination for complete recrystallization, followed by cooling at a rate above 20 ° C / sec, followed by winding at room temperature. 5
- the reference steels have been heated to a temperature greater than
- the recrystallized surface fraction is 100% for all the steels, the fraction of precipitated carbides is 0%, the mean grain size is between 9 and 10 microns.
- the steel according to the invention makes it possible to obtain an increased strength of approximately 200 MPa with a very comparable elongation.
- stamped cups were made on which the microstructure was examined by X-ray diffraction.
- appearance of martensite as soon as the deformation rate exceeds 17%, the total stamping operation leading to rupture.
- An analysis indicates that the characteristic:% M ⁇ L + 9.7% CL ⁇ 21, 66 is not fulfilled at all points ( Figure 1).
- hot rolled steel sheets according to the invention and steel R1 were then cold-rolled and then annealed so as to obtain a totally recrystallized structure.
- Mean austenite grain size, strength, elongation at break were shown in the table below.
- the steel sheet produced according to the invention whose average grain size is 4 microns, thus offers a particularly advantageous resistance-elongation combination and a significant increase in the resistance relative to the reference steel.
- these characteristics are obtained with a very great homogeneity on the product, no trace of martensite is present after deformation.
- Equibiaxial expansion tests on a 75 mm diameter hemispherical punch made on a cold-rolled and annealed sheet 1, 6 mm thick according to the invention reveal a maximum drawing limit of 33 mm, which highlights a excellent deformation ability. Folding tests carried out on this same sheet also show that the critical deformation before appearance of cracks is greater than 50%.
- hot-rolled or cold-rolled steels according to the invention will be used with advantage for applications where a capacity is sought. significant deformation and very high strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL05814950T PL1819461T3 (pl) | 2004-11-24 | 2005-11-04 | Sposób wytwarzania blach ze stali austenitycznych żelazo-węgiel-mangan o bardzo wysokich właściwościach wytrzymałościowych i doskonałej jednorodności |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0412477A FR2878257B1 (fr) | 2004-11-24 | 2004-11-24 | Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite |
| PCT/FR2005/002740 WO2006056670A2 (fr) | 2004-11-24 | 2005-11-04 | Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1819461A2 true EP1819461A2 (fr) | 2007-08-22 |
| EP1819461B1 EP1819461B1 (fr) | 2020-04-15 |
Family
ID=34978651
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP05814950.1A Expired - Lifetime EP1819461B1 (fr) | 2004-11-24 | 2005-11-04 | Procede de fabrication de toles d' acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité. |
Country Status (16)
| Country | Link |
|---|---|
| US (1) | US7794552B2 (fr) |
| EP (1) | EP1819461B1 (fr) |
| JP (2) | JP5142101B2 (fr) |
| KR (3) | KR101275895B1 (fr) |
| CN (1) | CN101090982B (fr) |
| BR (1) | BRPI0517890B1 (fr) |
| CA (1) | CA2587858C (fr) |
| ES (1) | ES2791675T3 (fr) |
| FR (1) | FR2878257B1 (fr) |
| HU (1) | HUE050022T2 (fr) |
| MX (1) | MX2007006240A (fr) |
| PL (1) | PL1819461T3 (fr) |
| RU (1) | RU2366727C2 (fr) |
| UA (1) | UA90873C2 (fr) |
| WO (1) | WO2006056670A2 (fr) |
| ZA (1) | ZA200703890B (fr) |
Families Citing this family (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100742823B1 (ko) | 2005-12-26 | 2007-07-25 | 주식회사 포스코 | 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법 |
| EP1878811A1 (fr) * | 2006-07-11 | 2008-01-16 | ARCELOR France | Procede de fabrication d'une tole d'acier austenitique fer-carbone-manganese ayant une excellente resistance a la fissuration differee, et tole ainsi produit |
| US20100253006A1 (en) * | 2007-11-30 | 2010-10-07 | Nippon Piston Ring Co., Ltd | Steel products for piston rings and piston rings |
| DE102008005605A1 (de) * | 2008-01-22 | 2009-07-23 | Thyssenkrupp Steel Ag | Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht |
| JP5338257B2 (ja) * | 2008-10-30 | 2013-11-13 | Jfeスチール株式会社 | 延性に優れた高降伏比超高張力鋼板およびその製造方法 |
| DE102008056844A1 (de) * | 2008-11-12 | 2010-06-02 | Voestalpine Stahl Gmbh | Manganstahlband und Verfahren zur Herstellung desselben |
| KR101090822B1 (ko) * | 2009-04-14 | 2011-12-08 | 기아자동차주식회사 | 고강도 트윕 강판 및 그 제조방법 |
| WO2010126268A2 (fr) * | 2009-04-28 | 2010-11-04 | 연세대학교 산학협력단 | Tôle d'acier contenant de l'azote à haute teneur en manganèse présentant une résistance et une ductilité élevées, et son procédé de fabrication |
| US8182963B2 (en) * | 2009-07-10 | 2012-05-22 | GM Global Technology Operations LLC | Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates |
| DE102009053260B4 (de) * | 2009-11-05 | 2011-09-01 | Salzgitter Flachstahl Gmbh | Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband |
| WO2012052626A1 (fr) | 2010-10-21 | 2012-04-26 | Arcelormittal Investigacion Y Desarrollo, S.L. | Tole d'acier laminee a chaud ou a froid, don procede de fabrication et son utilisation dans l'industrie automobile |
| IT1403129B1 (it) * | 2010-12-07 | 2013-10-04 | Ct Sviluppo Materiali Spa | Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile. |
| DE102011000089A1 (de) * | 2011-01-11 | 2012-07-12 | Thyssenkrupp Steel Europe Ag | Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts |
| US10655196B2 (en) | 2011-12-27 | 2020-05-19 | Posco | Austenitic steel having excellent machinability and ultra-low temperature toughness in weld heat-affected zone, and method of manufacturing the same |
| CN104136647A (zh) * | 2011-12-28 | 2014-11-05 | Posco公司 | 在焊接热影响区具有优异机械加工性及韧性的耐磨奥氏体钢及其生产方法 |
| WO2013100613A1 (fr) * | 2011-12-28 | 2013-07-04 | 주식회사 포스코 | Acier austénitique résistant à l'usure et présentant une usinabilité et une ductilité améliorées, et procédé de production correspondant |
| KR101449111B1 (ko) * | 2012-08-09 | 2014-10-08 | 주식회사 포스코 | 강도와 연성이 우수한 강선재 및 그 제조방법 |
| CA2896534C (fr) * | 2012-12-26 | 2021-11-09 | Posco | Acier a base austenitique a haute resistance ayant une tenacite remarquable d'une zone affectee par la chaleur de soudage et son procede de preparation |
| JP6055343B2 (ja) * | 2013-03-13 | 2016-12-27 | 株式会社神戸製鋼所 | 低温曲げ加工性に優れた非磁性鋼およびその製造方法 |
| US20140261918A1 (en) | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Enhanced wear resistant steel and methods of making the same |
| JP6185865B2 (ja) * | 2013-03-21 | 2017-08-23 | 株式会社神戸製鋼所 | 低温曲げ加工性に優れた非磁性鋼およびその製造方法 |
| JP6154768B2 (ja) * | 2013-03-21 | 2017-06-28 | 株式会社神戸製鋼所 | 低温曲げ加工性に優れた非磁性鋼 |
| CN103484777B (zh) * | 2013-08-29 | 2015-06-03 | 日月重工股份有限公司 | 奥氏体锰钢及其制备方法 |
| KR101543916B1 (ko) * | 2013-12-25 | 2015-08-11 | 주식회사 포스코 | 표면 가공 품질이 우수한 저온용강 및 그 제조 방법 |
| KR101714922B1 (ko) * | 2015-12-18 | 2017-03-10 | 주식회사 포스코 | 인성 및 내부품질이 우수한 내마모 강재 및 그 제조방법 |
| KR101889187B1 (ko) * | 2015-12-23 | 2018-08-16 | 주식회사 포스코 | 열간 가공성이 우수한 비자성 강재 및 그 제조방법 |
| KR101747034B1 (ko) * | 2016-04-28 | 2017-06-14 | 주식회사 포스코 | 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법 |
| WO2017203315A1 (fr) | 2016-05-24 | 2017-11-30 | Arcelormittal | Tôle mince en acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule |
| WO2017203312A1 (fr) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Tôle d'acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule |
| WO2017203313A1 (fr) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Procédé de fabrication d'une tôle d'acier de remploi à matrice austénitique |
| FI3464661T3 (fi) * | 2016-05-24 | 2024-12-10 | Arcelormittal | Menetelmiä austeniittisen matriisin omaavan TWIP-teräslevyn valmistamiseksi |
| WO2017203311A1 (fr) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Tôle d'acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule |
| KR101940874B1 (ko) | 2016-12-22 | 2019-01-21 | 주식회사 포스코 | 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법 |
| KR101917473B1 (ko) * | 2016-12-23 | 2018-11-09 | 주식회사 포스코 | 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법 |
| KR101920973B1 (ko) * | 2016-12-23 | 2018-11-21 | 주식회사 포스코 | 표면 특성이 우수한 오스테나이트계 강재 및 그 제조방법 |
| WO2018220412A1 (fr) * | 2017-06-01 | 2018-12-06 | Arcelormittal | Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede |
| KR102020381B1 (ko) * | 2017-12-22 | 2019-09-10 | 주식회사 포스코 | 내마모성이 우수한 강재 및 그 제조방법 |
| KR102020386B1 (ko) * | 2017-12-24 | 2019-09-10 | 주식회사 포스코 | 고 강도 오스테나이트계 고 망간 강재 및 그 제조방법 |
| CN109487047B (zh) * | 2018-12-21 | 2020-08-11 | 昆明理工大学 | 一种提高合金化高锰钢铸件性能的方法 |
| CN112342352B (zh) * | 2020-10-22 | 2022-07-01 | 西安工程大学 | 一种耐腐蚀的高锰奥氏体钢板及其制备方法 |
| KR20230072727A (ko) * | 2021-11-18 | 2023-05-25 | 주식회사 포스코 | 내마모성이 우수한 열연강판, 강관 및 이들의 제조방법 |
| JP2025520228A (ja) * | 2022-06-02 | 2025-07-02 | アルセロールミタル | 高マンガン熱間圧延鋼及びその製造方法 |
| CN117551937B (zh) * | 2023-11-17 | 2024-07-19 | 齐鲁工业大学(山东省科学院) | 一种高强塑积Fe-Mn-Al-Nb系中锰钢及其制备方法 |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2378994A (en) * | 1942-07-22 | 1945-06-26 | Electro Metallurg Co | Cold rolled manganese steels |
| FR2068283A6 (en) * | 1970-09-30 | 1971-08-20 | Abex Corp | Austenitic manganese steel for welding steel joints |
| GB2075550B (en) * | 1980-05-05 | 1984-04-04 | Armco Inc | Abrasion resistant austenitic stainless steel |
| JPS58126956A (ja) * | 1982-01-22 | 1983-07-28 | Nippon Steel Corp | プレス加工性の優れた高強度薄鋼板 |
| JPS6058781B2 (ja) * | 1982-02-12 | 1985-12-21 | 株式会社クボタ | 連続鋳造電磁撓拌ロ−ル用非磁性合金 |
| JP2533935B2 (ja) * | 1989-06-10 | 1996-09-11 | 株式会社神戸製鋼所 | 耐SR脆化特性が優れ、且つ高強度、高靭性を有する高Mn非磁性鋼の製造方法 |
| JPH0717949B2 (ja) * | 1990-10-05 | 1995-03-01 | 株式会社神戸製鋼所 | 局部変形能に優れた高Mn非磁性鋼の製造方法 |
| JPH04247851A (ja) * | 1991-01-22 | 1992-09-03 | Kobe Steel Ltd | 高Mnオーステナイト鋼 |
| JPH04259325A (ja) * | 1991-02-13 | 1992-09-14 | Sumitomo Metal Ind Ltd | 加工性に優れた高強度熱延鋼板の製造方法 |
| JP2807566B2 (ja) * | 1991-12-30 | 1998-10-08 | ポハン アイアン アンド スチール カンパニー リミテッド | 優れた成形性、強度および溶接性を有するオーステナイト高マンガン鋼、並びにその製造方法 |
| RU2062793C1 (ru) * | 1995-02-13 | 1996-06-27 | Акционерное общество открытого типа "Носта" | Способ производства листового проката |
| DZ2530A1 (fr) * | 1997-12-19 | 2003-02-01 | Exxon Production Research Co | Procédé de préparation d'une tôle d'acier cette tôle d'acier et procédé pour renforcer la resistanceà la propagation des fissures d'une tôle d'acier. |
| JP4247851B2 (ja) | 1999-01-12 | 2009-04-02 | 石川島運搬機械株式会社 | クライミングクレーンの使用方法 |
| JP4143218B2 (ja) | 1999-04-23 | 2008-09-03 | 株式会社日本触媒 | 薄膜式蒸発装置における重合防止方法および薄膜式蒸発装置 |
| FR2796083B1 (fr) * | 1999-07-07 | 2001-08-31 | Usinor | Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites |
| RU2156310C1 (ru) * | 2000-02-29 | 2000-09-20 | Открытое акционерное общество "НОСТА" | Способ производства листового проката |
| RU2159820C1 (ru) * | 2000-05-23 | 2000-11-27 | Цырлин Михаил Борисович | Способ производства низкоуглеродистой холоднокатаной стали для штамповки и последующего эмалирования |
| DE10060948C2 (de) * | 2000-12-06 | 2003-07-31 | Thyssenkrupp Stahl Ag | Verfahren zum Erzeugen eines Warmbandes aus einem einen hohen Mangan-Gehalt aufweisenden Stahl |
| FR2829775B1 (fr) * | 2001-09-20 | 2003-12-26 | Usinor | Procede de fabrication de tubes roules et soudes comportant une etape finale d'etirage ou d'hydroformage et tube soude ainsi obtenu |
| KR100742823B1 (ko) * | 2005-12-26 | 2007-07-25 | 주식회사 포스코 | 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법 |
| KR100851158B1 (ko) * | 2006-12-27 | 2008-08-08 | 주식회사 포스코 | 충돌특성이 우수한 고망간형 고강도 강판 및 그 제조방법 |
-
2004
- 2004-11-24 FR FR0412477A patent/FR2878257B1/fr not_active Expired - Lifetime
-
2005
- 2005-11-04 MX MX2007006240A patent/MX2007006240A/es active IP Right Grant
- 2005-11-04 KR KR1020117031699A patent/KR101275895B1/ko not_active Expired - Lifetime
- 2005-11-04 ES ES05814950T patent/ES2791675T3/es not_active Expired - Lifetime
- 2005-11-04 EP EP05814950.1A patent/EP1819461B1/fr not_active Expired - Lifetime
- 2005-11-04 HU HUE05814950A patent/HUE050022T2/hu unknown
- 2005-11-04 WO PCT/FR2005/002740 patent/WO2006056670A2/fr not_active Ceased
- 2005-11-04 CA CA2587858A patent/CA2587858C/fr not_active Expired - Lifetime
- 2005-11-04 JP JP2007542029A patent/JP5142101B2/ja not_active Expired - Lifetime
- 2005-11-04 KR KR1020077014265A patent/KR20070091300A/ko not_active Ceased
- 2005-11-04 KR KR1020107012508A patent/KR20100084570A/ko not_active Ceased
- 2005-11-04 PL PL05814950T patent/PL1819461T3/pl unknown
- 2005-11-04 BR BRPI0517890-8A patent/BRPI0517890B1/pt active IP Right Grant
- 2005-11-04 US US11/720,018 patent/US7794552B2/en active Active
- 2005-11-04 UA UAA200707030A patent/UA90873C2/ru unknown
- 2005-11-04 RU RU2007123594/02A patent/RU2366727C2/ru active
- 2005-11-04 CN CN2005800426319A patent/CN101090982B/zh not_active Expired - Lifetime
-
2007
- 2007-05-14 ZA ZA200700380A patent/ZA200703890B/xx unknown
-
2011
- 2011-10-28 JP JP2011251070A patent/JP2012072499A/ja not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2006056670A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008520830A (ja) | 2008-06-19 |
| KR20100084570A (ko) | 2010-07-26 |
| EP1819461B1 (fr) | 2020-04-15 |
| KR101275895B1 (ko) | 2013-06-17 |
| FR2878257A1 (fr) | 2006-05-26 |
| WO2006056670A2 (fr) | 2006-06-01 |
| ZA200703890B (en) | 2008-05-28 |
| CA2587858A1 (fr) | 2006-06-01 |
| BRPI0517890B1 (pt) | 2014-12-23 |
| BRPI0517890A (pt) | 2008-10-21 |
| CN101090982A (zh) | 2007-12-19 |
| RU2366727C2 (ru) | 2009-09-10 |
| CN101090982B (zh) | 2010-09-08 |
| UA90873C2 (ru) | 2010-06-10 |
| PL1819461T3 (pl) | 2020-10-05 |
| FR2878257B1 (fr) | 2007-01-12 |
| US7794552B2 (en) | 2010-09-14 |
| RU2007123594A (ru) | 2008-12-27 |
| KR20070091300A (ko) | 2007-09-10 |
| HUE050022T2 (hu) | 2020-11-30 |
| WO2006056670A3 (fr) | 2007-07-05 |
| CA2587858C (fr) | 2011-10-25 |
| JP2012072499A (ja) | 2012-04-12 |
| MX2007006240A (es) | 2007-10-08 |
| US20080035248A1 (en) | 2008-02-14 |
| KR20120014070A (ko) | 2012-02-15 |
| JP5142101B2 (ja) | 2013-02-13 |
| ES2791675T3 (es) | 2020-11-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1819461B1 (fr) | Procede de fabrication de toles d' acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité. | |
| EP1649069B1 (fr) | Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites | |
| EP2630269B1 (fr) | Tole d'acier laminee a chaud ou a froid, son procede de fabrication et son utilisation dans l'industrie automobile | |
| EP1913169B1 (fr) | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites | |
| EP3307921B1 (fr) | Acier à haute résistance et procédé de fabrication | |
| CA2686940C (fr) | Procede de fabrication de toles d'acier laminees a froid et recuites a tres haute resistance, et toles ainsi produites | |
| EP3084014B1 (fr) | Acier à haute résistance et procédé de fabrication | |
| EP2855725B1 (fr) | Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation | |
| EP2245203B1 (fr) | Tôle en acier inoxydable austenitique et procede d'obtention de cette tôle | |
| EP1587963B1 (fr) | Acier laminé à chaud à très haute résistance et procédé de fabrication de bandes | |
| FR2833617A1 (fr) | Procede de fabrication de toles laminees a froid a tres haute resistance d'aciers dual phase micro-allies | |
| EP2257652B1 (fr) | Procede de fabrication de tôles d'acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues | |
| EP2480698A1 (fr) | Acier inoxydable ferritique a hautes caracteristiques d'emboutissabilite |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
| 17P | Request for examination filed |
Effective date: 20080107 |
|
| RAX | Requested extension states of the european patent have changed |
Extension state: YU Payment date: 20080107 Extension state: MK Payment date: 20080107 Extension state: HR Payment date: 20080107 Extension state: BA Payment date: 20080107 Extension state: AL Payment date: 20080107 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| 17Q | First examination report despatched |
Effective date: 20081119 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCELORMITTAL FRANCE |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCELORMITTAL |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602005056768 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B22D0011060000 Ipc: C22C0038040000 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/04 20060101AFI20191021BHEP Ipc: B22D 11/06 20060101ALI20191021BHEP Ipc: C21D 9/46 20060101ALI20191021BHEP Ipc: C21D 8/02 20060101ALI20191021BHEP Ipc: C22C 38/02 20060101ALI20191021BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20191120 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602005056768 Country of ref document: DE Owner name: ARCELORMITTAL, LU Free format text: FORMER OWNER: ARCELOR FRANCE, LA-PLAINE-SAINT-DENIS, FR |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005056768 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1257364 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
| REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
| REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
| REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 34588 Country of ref document: SK |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200716 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200815 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2791675 Country of ref document: ES Kind code of ref document: T3 Effective date: 20201105 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 |
|
| REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E050022 Country of ref document: HU |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005056768 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20210118 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1257364 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201104 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201104 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241022 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20241114 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241022 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241022 Year of fee payment: 20 Ref country code: FI Payment date: 20241022 Year of fee payment: 20 Ref country code: PL Payment date: 20241025 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241023 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241023 Year of fee payment: 20 Ref country code: FR Payment date: 20241022 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241023 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20241104 Year of fee payment: 20 Ref country code: SK Payment date: 20241025 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241022 Year of fee payment: 20 Ref country code: ES Payment date: 20241202 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241022 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20241028 Year of fee payment: 20 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602005056768 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20251103 |
|
| REG | Reference to a national code |
Ref country code: SK Ref legal event code: MK4A Ref document number: E 34588 Country of ref document: SK Expiry date: 20251104 Ref country code: GB Ref legal event code: PE20 Expiry date: 20251103 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20251127 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 1257364 Country of ref document: AT Kind code of ref document: T Effective date: 20251104 |