| Meta reinforcement learning for sim-to-real domain adaptation K Arndt, M Hazara, A Ghadirzadeh, V Kyrki 2020 IEEE international conference on robotics and automation (ICRA), 2725-2731, 2020 | 175 | 2020 |
| Affordance learning for end-to-end visuomotor robot control A Hämäläinen, K Arndt, A Ghadirzadeh, V Kyrki 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019 | 59 | 2019 |
| DROPO: Sim-to-real transfer with offline domain randomization G Tiboni, K Arndt, V Kyrki Robotics and Autonomous Systems 166, 104432, 2023 | 47 | 2023 |
| Safeapt: Safe simulation-to-real robot learning using diverse policies learned in simulation R Kaushik, K Arndt, V Kyrki IEEE Robotics and Automation Letters 7 (3), 6838-6845, 2022 | 15 | 2022 |
| Few-shot model-based adaptation in noisy conditions K Arndt, A Ghadirzadeh, M Hazara, V Kyrki IEEE Robotics and Automation Letters 6 (2), 4193-4200, 2021 | 13 | 2021 |
| Co-imitation: learning design and behaviour by imitation C Rajani, K Arndt, D Blanco-Mulero, KS Luck, V Kyrki Proceedings of the AAAI Conference on Artificial Intelligence 37 (5), 6200-6208, 2023 | 10 | 2023 |
| Online vs. offline adaptive domain randomization benchmark G Tiboni, K Arndt, G Averta, V Kyrki, T Tommasi International Workshop on Human-Friendly Robotics, 158-173, 2022 | 7 | 2022 |
| From alexnet to transformers: Measuring the non-linearity of deep neural networks with affine optimal transport Q Bouniot, I Redko, A Mallasto, C Laclau, O Struckmeier, K Arndt, ... Proceedings of the Computer Vision and Pattern Recognition Conference, 25250 …, 2025 | 6 | 2025 |
| 2020 IEEE International Conference on Robotics and Automation (ICRA) K Arndt, M Hazara, A Ghadirzadeh, V Kyrki | 5 | 2020 |
| Dynamic flex compensation, coordinated hoist control, and anti-sway control for load handling machines J Vihonen, MM Aref, V Petrik, K Arndt, DB Mulero, V Kyrki, J Naskali, ... US Patent 12,227,395, 2025 | 4 | 2025 |
| Training and evaluation of deep policies using reinforcement learning and generative models A Ghadirzadeh, P Poklukar, K Arndt, C Finn, V Kyrki, D Kragic, ... Journal of Machine Learning Research 23 (174), 1-37, 2022 | 3 | 2022 |
| Affine transport for sim-to-real domain adaptation A Mallasto, K Arndt, M Heinonen, S Kaski, V Kyrki arXiv preprint arXiv:2105.11739, 2021 | 3 | 2021 |
| Learning representations that are closed-form Monge mapping optimal with application to domain adaptation O Struckmeier, I Redko, A Mallasto, K Arndt, M Heinonen, V Kyrki arXiv preprint arXiv:2305.07500, 2023 | 2 | 2023 |
| Understanding deep neural networks through the lens of their non-linearity Q Bouniot, I Redko, A Mallasto, C Laclau, O Struckmeier, K Arndt, ... | 2 | 2023 |
| Domain curiosity: Learning efficient data collection strategies for domain adaptation K Arndt, O Struckmeier, V Kyrki 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2021 | 1 | 2021 |
| Dynamic flex compensation, coordinated hoist control, and anti-sway control for load handling machines J Vihonen, M Aref, V Petrík, K Arndt, DB Mulero, V Kyrki, J Naskali, ... US Patent App. 19/007,633, 2025 | | 2025 |
| Online vs. Offline Adaptive Domain G Tibonil, K Arndt, G Averta¹, V Kyrki Human-Friendly Robotics 2022: HFR: 15th International Workshop on Human …, 2023 | | 2023 |
| Beyond invariant representation learning: linearly alignable latent spaces for efficient closed-form domain adaptation. O Struckmeier, I Redko, A Mallasto, K Arndt, M Heinonen, V Kyrki CoRR, 2023 | | 2023 |
| Safe and efficient transfer of robot policies from simulation to the real world K Arndt Aalto University, 2023 | | 2023 |