[go: up one dir, main page]

Follow
Sergey Ovchinnikov
Sergey Ovchinnikov
Verified email at mit.edu - Homepage
Title
Cited by
Cited by
Year
ColabFold: making protein folding accessible to all
M Mirdita, K Schütze, Y Moriwaki, L Heo, S Ovchinnikov, M Steinegger
Nature methods 19 (6), 679-682, 2022
89962022
Accurate prediction of protein structures and interactions using a three-track neural network
M Baek, F DiMaio, I Anishchenko, J Dauparas, S Ovchinnikov, GR Lee, ...
Science 373 (6557), 871-876, 2021
59302021
De novo design of protein structure and function with RFdiffusion
JL Watson, D Juergens, NR Bennett, BL Trippe, J Yim, HE Eisenach, ...
Nature 620 (7976), 1089-1100, 2023
21932023
Improved protein structure prediction using predicted interresidue orientations
J Yang, I Anishchenko, H Park, Z Peng, S Ovchinnikov, D Baker
Proceedings of the National Academy of Sciences 117 (3), 1496-1503, 2020
16122020
Macromolecular modeling and design in Rosetta: recent methods and frameworks
JK Leman, BD Weitzner, SM Lewis, J Adolf-Bryfogle, N Alam, RF Alford, ...
Nature methods 17 (7), 665-680, 2020
9362020
Assessing the utility of coevolution-based residue–residue contact predictions in a sequence-and structure-rich era
H Kamisetty, S Ovchinnikov, D Baker
Proceedings of the National Academy of Sciences 110 (39), 15674-15679, 2013
7972013
Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information
S Ovchinnikov, H Kamisetty, D Baker
elife 3, e02030, 2014
7582014
De novo protein design by deep network hallucination
I Anishchenko, SJ Pellock, TM Chidyausiku, TA Ramelot, S Ovchinnikov, ...
Nature 600 (7889), 547-552, 2021
6962021
A structural biology community assessment of AlphaFold2 applications
M Akdel, DEV Pires, EP Pardo, J Jänes, AO Zalevsky, B Mészáros, ...
Nature Structural & Molecular Biology 29 (11), 1056-1067, 2022
6642022
Protein structure determination using metagenome sequence data
S Ovchinnikov, H Park, N Varghese, PS Huang, GA Pavlopoulos, DE Kim, ...
Science 355 (6322), 294-298, 2017
5872017
Computed structures of core eukaryotic protein complexes
IR Humphreys, J Pei, M Baek, A Krishnakumar, I Anishchenko, ...
Science 374 (6573), eabm4805, 2021
5472021
Scaffolding protein functional sites using deep learning
J Wang, S Lisanza, D Juergens, D Tischer, JL Watson, KM Castro, ...
Science 377 (6604), 387-394, 2022
5422022
Predicting multiple conformations via sequence clustering and AlphaFold2
HK Wayment-Steele, A Ojoawo, R Otten, JM Apitz, W Pitsawong, ...
Nature 625 (7996), 832-839, 2024
528*2024
Transformer protein language models are unsupervised structure learners
R Rao, J Meier, T Sercu, S Ovchinnikov, A Rives
Biorxiv, 2020.12. 15.422761, 2020
4492020
De novo design of a fluorescence-activating β-barrel
J Dou, AA Vorobieva, W Sheffler, LA Doyle, H Park, MJ Bick, B Mao, ...
Nature 561 (7724), 485-491, 2018
4282018
Mega-scale experimental analysis of protein folding stability in biology and design
K Tsuboyama, J Dauparas, J Chen, E Laine, Y Mohseni Behbahani, ...
Nature 620 (7973), 434-444, 2023
3332023
Large-scale determination of previously unsolved protein structures using evolutionary information
S Ovchinnikov, L Kinch, H Park, Y Liao, J Pei, DE Kim, H Kamisetty, ...
elife 4, e09248, 2015
2862015
Protein interaction networks revealed by proteome coevolution
Q Cong, I Anishchenko, S Ovchinnikov, D Baker
Science 365 (6449), 185-189, 2019
2852019
Architectures of lipid transport systems for the bacterial outer membrane
DC Ekiert, G Bhabha, GL Isom, G Greenan, S Ovchinnikov, IR Henderson, ...
Cell 169 (2), 273-285. e17, 2017
2712017
State-of-the-art estimation of protein model accuracy using AlphaFold
JP Roney, S Ovchinnikov
Physical Review Letters 129 (23), 238101, 2022
2682022
The system can't perform the operation now. Try again later.
Articles 1–20