ZA200201088B - Coke drum outlet overhed deflector plate apparatus and method. - Google Patents
Coke drum outlet overhed deflector plate apparatus and method. Download PDFInfo
- Publication number
- ZA200201088B ZA200201088B ZA200201088A ZA200201088A ZA200201088B ZA 200201088 B ZA200201088 B ZA 200201088B ZA 200201088 A ZA200201088 A ZA 200201088A ZA 200201088 A ZA200201088 A ZA 200201088A ZA 200201088 B ZA200201088 B ZA 200201088B
- Authority
- ZA
- South Africa
- Prior art keywords
- coke drum
- aperture
- deflector
- solids
- drum
- Prior art date
Links
- 239000000571 coke Substances 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 19
- 239000007788 liquid Substances 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims description 26
- 229930195733 hydrocarbon Natural products 0.000 claims description 19
- 150000002430 hydrocarbons Chemical class 0.000 claims description 19
- 239000004215 Carbon black (E152) Substances 0.000 claims description 17
- 238000004939 coking Methods 0.000 claims description 17
- 230000003111 delayed effect Effects 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 3
- 238000013022 venting Methods 0.000 claims 2
- 230000008569 process Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/04—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
- B01D45/08—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/04—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B1/00—Retorts
- C10B1/02—Stationary retorts
- C10B1/04—Vertical retorts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B27/00—Arrangements for withdrawal of the distillation gases
- C10B27/06—Conduit details, e.g. valves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B55/00—Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Coke Industry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
go 01/96495 PCT/US01/40875
COKE DRUM OUTLET OVERHEAD DEFLECTOR PLATE APPARATUS AND METHOD
1. Field of the Invention.
The present invention relates to delayed coking. More particularly, the present invention relates to a deflector placed inside the top of a coke drum and below the overhead vapor outlet nozzle to reduce the amount of solids and heavy hydrocarbon liquids from escaping through the outlet nozzle of the coke drum and returning back to the fractionator. 2. Description of the Prior Art.
During operation of delayed coking drums for the coking of various heavy hydrocarbon materials in petroleum refining operations, heavy hydrocarbons are thermally decomposed to produce gases, liquid and solid coke. In general, feedstock is introduced to a fractionator, and the fractionator bottoms are removed and heated in a furnace which causes further thermal decomposition. The resulting solid coke is deposited progressively on the inner walls of a coke drum. In a typical delayed coker unit, a pair of coke drums are alternately filled and emptied with coker feed being pumped into one of the drums while the other drum is being emptied of coke and prepared for the next filling cycle.
The vapors associated with this process are vented at the top of the coke drum by an overhead vapor outlet nozzle. Overhead vapors from the drum being filled return to a fractionator where they are separated into product streams with the unwanted solids and liquids remaining in the bottom of the fractionator. Ideally, only vapors are taken out of the overhead vapor outlet nozzle because the delayed coking process becomes less efficient as more unwanted solids and liquids pass from the coke drums into the fractionator. In the past, either the fractionator was shut down periodically and these unwanted solids and liquid materials removed or a continuous removal process at the fractionator was provided.
While filling coke drums, it has been observed that as feed is maximized through the coke drum and the height of coke in the coke drum is increased, it is common and undesirable to blow solid coke, liquid and foam out the top of the coke drum through the overhead vapor outlet nozzle. It has also been observed that as vapor leaves the coke drum at higher velocities, it becomes more entrained with solids and heavy hydrocarbon liquids which escape out the overhead vapor outlet nozzle and return to the fractionator.
Moreover, depending on the configuration of the delayed coking system and other parameters, the coke drum or drums may be operating under higher than atmospheric pressure, encouraging liquids and solids to be blown out of the vapor nozzle.
¥ 01/96495 PCT/US01/40875
In view of the foregoing disadvantages inherent in known delayed coking units now present in the prior art, the present invention provides new and improved construction wherein the same can be utilized reliably. As such, the general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new and improved delayed coking drum which has all the advantages of the prior art and none of the disadvantages.
To attain this, the present invention provides a deflector in the top coke drum interior. The deflector is placed below and spaced from the overhead vapor nozzle outlet so that solids and liquids traveling toward the nozzle are deflected back into the drum while vapors are allowed to pass out of the coke drum.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in this application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. Itis important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
It is therefore an object of the present invention to provide a new and improved delayed coking unit which provides some of the advantages of the prior art, while simultaneously overcoming some of the disadvantages normally associate therewith.
It is a further object of the present invention to provide a new and improved delayed coking unit which decreases the amount of solids and heavy hydrocarbon liquid drops escaping the coke drum and returning to the fractionator.
An even further object of the present invention is to provide a deflector improvement which is retrofittable to existing delayed coking units.
Still another object of the present invention is to provide a new and improved delayed coking unit which is more efficient and of a durable and reliable construction.
It is also a further object of the present invention to provide a new and improved delayed coking unit which maximizes input into a coke drum without blowing coke, liquid, and foam out the top of the coke drum.
These together with other objects of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of the disclosure. For a better understanding ofthe invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there is illustrated preferred embodiments of the invention.
or WO 01/96495 PCT/US01/40875
Figure 1 is a schematic view of a delayed coking process to which the present invention may be applied.
Figure 2 is a side elevation, partly in cross section, showing details of a coke drum and deflector constructed in accordance with the present invention. 5 Figure 3 is a perspective view, partly in cross section, showing details of a coke drum and a conical deflector in accordance with an alternate embodiment of the present invention.
Figure 1 shows a simplified, typical coker unit where coker feed from line 10 passes to furnace 12 where it is heated. The arrangement in Figure 1 utilizes a pair of coke drums although it will be appreciated that the present invention may be applied to a single drum or multiple drums. Coke drums 14 and 16 are alternately filled and emptied. When a drum has been filled with solid coke, access is provided to at least the bottom (and often the top) to remove the coke.
Overhead vapors from the coke drum being filled are returned via line 18 to coker fractionator 20. A recycle liquid such as coker gas oil or coker feedstock is feed into fractionator 20 via line 22. A wet gas overhead stream is removed from fractionator 20 via line 24, and intermediate liquid fractions are removed via lines 26 and 28. Unwanted solids and heavy hydrocarbon liquids 30 are removed from the bottom of fractionator 20 via line 32 and directed to the furnace. Various other modifications of the coking process may be made within the scope of the present invention.
Referring to the drawings in detail and to Figure 2 in particular, coke drum 14 includes a substantially cylindrical center portion and a top portion 34 with aperture 36 for access to interior of the coke drum 14. Overhead vapor outlet nozzle 38 is preferably removably attached to aperture 36 and leads to fractionator 20 via out line 18 (not seen in
Figure 2). While dimensions may vary, in one preferred embodiment the diameter of the outlet nozzle may range from between approximately 24 to 30 inches (61 to 76 cm).
Figure 2 is partially cut away for clarity. The invention includes the addition of deflector 40 placed generally below and spaced from aperture 36 in the coke drum 14 and suspended from overhead vapor outlet nozzle 38. Deflector 40 is generally removably er WO 01/96495 PCT/US01/40875 attached by an attachment mechanism 42 to overhead vapor outlet nozzle 38. In one embodiment, deflector 40 is preferably suspended 1 (one) to 10 (ten) feet below overhead outlet vapor nozzle 38. Examples of attachment means are brackets, bolts, wires, hooks, screws, or the like. Accordingly, after the vapor outlet nozzle hardware is disassembled, the deflector could be pulled out.
In one embodiment, deflector 40 is preferably a circular plate made from metal or other suitable material with a sufficient diameter to generally cover aperture 36 but also fit through aperture 36 when overhead vapor outlet nozzle 38 is removed from coke drum 14.
Accordingly, the diameter of the plate will be slightly less than the diameter of the aperture.
Another preferred embodiment of deflector 40 is a generally conically shaped deflector 44 as shown in Figure 3 where apex tip 46 of the cone points toward overhead vapor outlet nozzle 36. The center point of the aperture is generally aligned with the apex tip.
In a further embodiment (not shown), the deflector might take the form of a pair of inclined panels joined together.
In each embodiment, escaping vapors are forced to take a circuitous route. During operation, feed heated in the furnace is delivered to the drum and thermally decomposes.
Vapors in the drum will rise toward the aperture. Liquid droplets and solid particles will impinge on the deflector and drop back into the drum. Meanwhile, vapors will pass around the deflector and exit through the outlet.
It will be appreciated that the present invention may be easily retrofitted to existing coke drums. In most cases, the deflector may be suspended from the overhead vapor outlet nozzle by fasteners such as bolts.
CT
Since it has been observed that at higher velocities of the vapor leaving the drum, there is more entrained solids and heavy hydrocarbon liquids that escape, the present invention will produce a higher quality product or permit running at higher velocity.
Whereas, the present invention has been described in relation to the drawings attached hereto, it should be understood that other and further modifications, apart from those shown or suggested herein, may be made within the spirit and scope of this invention.
Thus, it will be appreciated that as a result of the present invention, a new and improved delayed coking unit is provided. Changes may be made in the combinations, operations, and arrangements of the various parts and elements described herein without departing from the spirit and scope of the invention as defined in the following claims.
Accordingly, the present invention provides a coke drum for a delayed coking unit wherein said coke drum comprises: a substantially closed interior; a top portion of said drum having an aperture therethrough; an overhead vapor outlet nozzle connected to said aperture; and a deflector for deflecting solids and heavy hydrocarbon liquid from exiting said interior of said coke drum through said aperture.
Claims (1)
- © Wo 01/96495 PCT/US01/40875 S WHAT IS CLAIMED IS:1 1. A coke drum for a delayed coking unit, wherein said coke drum comprises: 2 a substantially closed interior; 3 a top portion of said drum having an aperture therethrough; 4 an overhead vapor outlet nozzle connected to said aperture; and a deflector for deflecting solids and heavy hydrocarbon liquid from exiting 6 said interior of said coke drum through said aperture.1 2. A coke drum as recited in Claim 1 wherein said deflector is removably 2 connected beneath said aperture.1 3. A coke drum as recited in Claim 2 wherein said deflector is removably 2 connected to said overhead vapor outlet nozzle.1 4. A coke drum as recited in Claim 3 wherein said deflector is sized to fit 2 through said aperture.1 5. A coke drum as recited in Claim 1 wherein said deflector is a planar metal 2 plate.1 6. A coke drum asrecited in Claim 1 wherein said deflector forms a cone having 2 an apex centered with and pointing toward said aperture in said coke drum.1 7. The coke drum as recited in Claim 1 wherein said deflector is located at least 2 one foot (30.5 cm) from said aperture within said coke drum.1 8. The coke drum as recited in Claim 1 wherein said deflector is located no 2 farther away than ten feet (3.05 m) from said aperture within said coke drum.1 9. A method of reducing escape of solids and heavy hydrocarbon liquids from 2 a'coke drum having a top portion with an aperture, an overhead vapor outlet nozzle 3 connected to said aperture, and means for deflecting solids and heavy hydrocarbon liquids 4 from exiting said interior of said coke drum through said aperture, said method comprising the steps of’ 6 introducing hydrocarbon feed into said coke drum; 7 venting said coke drum through said aperture; and 8 reducing said amounts of solids and heavy hydrocarbon liquids from exiting 9 said coke drum by deflecting said solids and heavy hydrocarbon liquids from said aperture. 1 10. A method as recited in Claim 9 wherein said means for deflecting is 2 removably placed beneath said aperture. 1 11. The method as recited in Claim 10 wherein said means for deflecting is 2 removably connected to said overhead vapor outlet nozzle.11 PCT/US01/4087512. The method as set forth in Claim 9 wherein said means for deflecting includes a flat planar plate.13. The method as set forth in Claim 9 wherein said means for deflecting includes a cone with an apex pointing to said aperture.14. A method of reducing escape of solids and heavy hydrocarbon liquids from a coke drum having a top portion with an aperture, and an overhead vapor outlet nozzle connected to said aperture, which method comprises: introducing hydrocarbon feed into said coke drum; venting said coke drum through said aperture; impinging said solids and liquid hydrocarbons on a deflector plate in said drum to discourage escape of said solids and hydrocarbon liquids from said coke drum.15. The method of reducing escape of solids and heavy hydrocarbon liquids as set forth in Claim 14 wherein said reflector plate is a flat planar metal plate.16. A drum as claimed in Claim 1, substantially as herein described and illustrated.17. A method as claimed in Claim 9, or Claim 14, substantially as herein described and illustrated.18. A new coke drum, or a new method of reducing escape of solids and liquids from a coke drum, substantially as herein described. AMENDED SHEET
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US21143800P | 2000-06-13 | 2000-06-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ZA200201088B true ZA200201088B (en) | 2003-07-25 |
Family
ID=22786925
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ZA200201088A ZA200201088B (en) | 2000-06-13 | 2002-02-07 | Coke drum outlet overhed deflector plate apparatus and method. |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US20020117389A1 (en) |
| JP (1) | JP2004503658A (en) |
| CN (1) | CN1383447A (en) |
| AU (1) | AU2001265427A1 (en) |
| BR (1) | BR0106726A (en) |
| CA (1) | CA2382283A1 (en) |
| MX (1) | MXPA02001551A (en) |
| MY (1) | MY133973A (en) |
| WO (1) | WO2001096495A1 (en) |
| ZA (1) | ZA200201088B (en) |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2364492A (en) * | 1941-05-31 | 1944-12-05 | Max B Miller & Co Inc | Method of coking and cracking petroleum residues or the like |
| US3816084A (en) * | 1970-04-16 | 1974-06-11 | Exxon Research Engineering Co | Cokeless coker with recycle of coke from gasifier to heater |
| DD154612A1 (en) * | 1980-11-21 | 1982-04-07 | Manfred Gross | METHOD FOR CERTAINING HYDROCARBONS AFTER BLOWING TECHNOLOGY |
| US4549934A (en) * | 1984-04-25 | 1985-10-29 | Conoco, Inc. | Flash zone draw tray for coker fractionator |
| US4621724A (en) * | 1984-09-13 | 1986-11-11 | Foster Wheeler Energy Corporation | Fractionator having reduced product vapor condensation in the flash zone |
| US4801402A (en) * | 1985-11-12 | 1989-01-31 | Texaco Inc. | Partial oxidation process |
| US4816136A (en) * | 1986-05-27 | 1989-03-28 | Exxon Research And Engineering Company | Low severity fluid coking |
| US5645711A (en) * | 1996-01-05 | 1997-07-08 | Conoco Inc. | Process for upgrading the flash zone gas oil stream from a delayed coker |
| US5827403A (en) * | 1996-07-10 | 1998-10-27 | Citgo Petroleum Corporation | Method of designing and manufacturing a delayed coker drum |
-
2001
- 2001-06-04 US US09/873,561 patent/US20020117389A1/en not_active Abandoned
- 2001-06-07 CA CA002382283A patent/CA2382283A1/en not_active Abandoned
- 2001-06-07 CN CN01801729A patent/CN1383447A/en active Pending
- 2001-06-07 JP JP2002510618A patent/JP2004503658A/en active Pending
- 2001-06-07 WO PCT/US2001/040875 patent/WO2001096495A1/en not_active Ceased
- 2001-06-07 MX MXPA02001551A patent/MXPA02001551A/en unknown
- 2001-06-07 AU AU2001265427A patent/AU2001265427A1/en not_active Abandoned
- 2001-06-07 BR BR0106726-5A patent/BR0106726A/en not_active IP Right Cessation
- 2001-06-12 MY MYPI20012745 patent/MY133973A/en unknown
-
2002
- 2002-02-07 ZA ZA200201088A patent/ZA200201088B/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CA2382283A1 (en) | 2001-12-20 |
| CN1383447A (en) | 2002-12-04 |
| WO2001096495A1 (en) | 2001-12-20 |
| BR0106726A (en) | 2002-04-30 |
| MY133973A (en) | 2007-11-30 |
| US20020117389A1 (en) | 2002-08-29 |
| JP2004503658A (en) | 2004-02-05 |
| WO2001096495A8 (en) | 2002-03-07 |
| AU2001265427A1 (en) | 2001-12-24 |
| MXPA02001551A (en) | 2003-07-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4066533A (en) | Separation of catalyst from effluent of a fluidized catalytic hydrocarbon conversion process | |
| DE3873211T2 (en) | CRACKING DEVICE AND PROCESS WITH SOLID PARTICLES. | |
| US3123547A (en) | Fluidized catalytic cracking process | |
| US4717467A (en) | Process for mixing fluid catalytic cracking hydrocarbon feed and catalyst | |
| US5139748A (en) | FCC riser with transverse feed injection | |
| US7101474B2 (en) | Method and process with refractory shelf for hydrodynamic mixing zone | |
| US5540893A (en) | Upper feed injector for fluidized catalytic cracking unit | |
| US5562818A (en) | FCC feed injection with non-quiescent mixing | |
| KR20070012834A (en) | Steam / liquid separation unit for use in pyrolysis of hydrocarbon feedstock containing resids | |
| EP0369536A1 (en) | Process for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons | |
| JP4247503B2 (en) | Direct rotary separator of gas mixed particles and its use in fluidized bed thermal cracking or catalytic cracking | |
| CA1139701A (en) | Process and apparatus for devolatilizing hydrocarbon-containing devolatilizable fine-grained material by means of hot fine-grained heat-carrying material | |
| US4820493A (en) | Apparatus for mixing fluid catalytic cracking hydrocarbon feed and catalyst | |
| NZ503681A (en) | Process for producing liquid and gaseous products from gaseous reactants | |
| US5358632A (en) | FCC feed injection with non-quiescent mixing | |
| US20020117389A1 (en) | Coke drum outlet overhead deflector plate apparatus and method | |
| US5370789A (en) | Ultrapyrolytic heavy oil upgrading in an internally circulating aerated bed | |
| US4800014A (en) | Catalytic cracking process | |
| US4692235A (en) | Selective placement of fluid injection in a riser reactor equipped with a horizontal tee joint connection to substantially reduce back pressure in the riser reactor | |
| NO130593B (en) | ||
| US4563334A (en) | Catalytic cracking unit | |
| JPS6072985A (en) | Method and apparatus for continuous pyrolysis of hydrocarbon oils | |
| US6346219B1 (en) | FCC feed injector with closure plug | |
| JPH0633073A (en) | Process and apparatus for catalytic cracking in two contiguous reaction zones | |
| HU226991B1 (en) | Process and apparatus for treatment of solid material in a vessel |