WO2025069421A1 - Terminal, wireless communication method, and base station - Google Patents
Terminal, wireless communication method, and base station Download PDFInfo
- Publication number
- WO2025069421A1 WO2025069421A1 PCT/JP2023/035756 JP2023035756W WO2025069421A1 WO 2025069421 A1 WO2025069421 A1 WO 2025069421A1 JP 2023035756 W JP2023035756 W JP 2023035756W WO 2025069421 A1 WO2025069421 A1 WO 2025069421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- information
- model
- disclosure
- resource
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
- LTE 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- AI artificial intelligence
- ML machine learning
- DL beam prediction Spatial domain downlink (DL) beam prediction, temporal DL beam prediction, positioning, etc. are being considered as use cases for utilizing AI models.
- beam prediction methods may be called AI-based beam prediction (beam reporting), AI-based positioning, AI-based beam management (BM), etc.
- Temporal DL beam prediction may be called, for example, time domain Channel State Information (CSI) prediction.
- CSI Channel State Information
- CSI Channel State Information
- the performance monitoring of the AI model may be performed on the terminal side (terminal, user terminal, User Equipment (UE)) or on the network (NW, for example, a base station (Base Station (BS))).
- UE User Equipment
- NW for example, a base station (Base Station (BS))
- one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve optimal overhead reduction/channel estimation/resource utilization.
- a terminal has a control unit that controls the transmission of requests for network-side performance monitoring regarding artificial intelligence (AI)-based channel state information (CSI) reporting, and a receiving unit that receives instructions regarding the CSI reporting transmitted based on the settings.
- AI artificial intelligence
- CSI channel state information
- FIG. 1 is a diagram illustrating an example of a framework for managing AI models.
- FIG. 2 is a diagram showing an example of specifying an AI model.
- FIG. 3 is a diagram showing an example of CSI feedback using an encoder/decoder.
- FIG. 4 illustrates an example life cycle management framework for performance monitoring in a UE according to an embodiment.
- FIG. 5 illustrates an example life cycle management framework for performance monitoring in a BS according to one embodiment.
- 6A and 6B are diagrams showing an example of an AI-based beam report.
- FIG. 7 illustrates an example of performance monitoring of CSI compression at the UE side.
- FIG. 8 is a diagram showing an example of CSI reconstruction using a proxy model.
- FIG. 9A and 9B are diagrams illustrating an example of NW-side monitoring and UE-side monitoring, respectively.
- FIG. 10 is a diagram illustrating an example of a monitoring method relating to a combination of UE side monitoring and NW side monitoring.
- FIG. 11 is a diagram showing an example of generation of CSI elements related to option 4-4.
- FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
- FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
- FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
- FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
- the UE generates (also called determining, calculating, estimating, measuring, etc.) CSI based on a reference signal (RS) (or a resource for the RS) and transmits (also called reporting, feedback, etc.) the generated CSI to a network (e.g., a base station).
- RS reference signal
- the CSI may be transmitted to the base station using, for example, an uplink control channel (e.g., a Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (e.g., a Physical Uplink Shared Channel (PUSCH)).
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a CSI-RS Resource Indicator (CRI), a SS/PBCH Block Resource Indicator (SSBRI), a Layer Indicator (LI), a Rank Indicator (RI), and a Layer 1 Reference Signal Received Power (L1-RSRP).
- CQI Channel Quality Indicator
- PMI Precoding Matrix Indicator
- CRI CSI-RS Resource Indicator
- SSBRI SS/PBCH Block Resource Indicator
- LI Layer Indicator
- RI Rank Indicator
- L1-RSRP Layer 1 Reference Signal Received Power
- L1-Reference Signal Received Power L1-RSRQ
- L1-SINR Signal to Interference plus Noise Ratio
- L1-SNR Signal to Noise Ratio
- information on the channel matrix or channel coefficients
- information on the precoding matrix or precoding coefficients
- information on the beam/Transmission Configuration Indication state TCI state/spatial relation, etc.
- the RS used to generate the CSI may be, for example, at least one of a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Synchronization Signal (SS), and a DeModulation Reference Signal (DMRS).
- CSI-RS Channel State Information Reference Signal
- SS/PBCH Synchronization Signal/Physical Broadcast Channel
- SS Synchronization Signal
- DMRS DeModulation Reference Signal
- RS Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, CSI Interference Measurement (CSI-IM), CSI-SSB, and SSB
- NZP Non Zero Power
- ZP Zero Power
- CSI-IM CSI Interference Measurement
- CSI-SSB CSI Interference Measurement
- SSB SSB
- CSI-RS may include other reference signals.
- the UE may receive configuration information regarding CSI reporting (which may be referred to as CSI report configuration, report setting, etc.) and control CSI reporting based on the configuration information.
- the report configuration information may be, for example, a Radio Resource Control (RRC) Information Element (IE) "CSI-ReportConfig.”
- RRC Radio Resource Control
- IE Radio Resource Control Information Element
- the CSI reporting configuration may include at least one of the following information: Information regarding the CSI resources used for CSI measurements (resource configuration ID, for example, "CSI-ResourceConfigId”); Information regarding one or more quantities (CSI parameters) of CSI to be reported (report quantity information, e.g., "reportQuantity”); Report type information (eg, "reportConfigType”) indicating the time domain behavior of the reporting configuration.
- resource configuration ID for example, "CSI-ResourceConfigId”
- Information regarding one or more quantities (CSI parameters) of CSI to be reported (report quantity information, e.g., "reportQuantity”
- Report type information eg, "reportConfigType" indicating the time domain behavior of the reporting configuration.
- a CSI resource may be interchangeably referred to as a time instance, a CSI-RS opportunity/CSI-IM opportunity/SSB opportunity, a CSI-RS resource (one/multiple) opportunity, a CSI opportunity, an opportunity, a CSI-RS resource/CSI-IM resource/SSB resource, a time resource, a frequency resource, an antenna port (e.g., a CSI-RS port), etc.
- the time unit of a CSI resource may be a slot, a symbol, etc.
- the information on the CSI resources may include information on CSI resources for channel measurement, information on CSI resources for interference measurement (NZP-CSI-RS resources), information on CSI-IM resources for interference measurement, etc.
- the reporting amount information may specify any one of the above CSI parameters (e.g., CRI, RI, PMI, CQI, LI, L1-RSRP, etc.) or a combination of these.
- CSI parameters e.g., CRI, RI, PMI, CQI, LI, L1-RSRP, etc.
- the report type information may indicate a periodic CSI (Periodic CSI (P-CSI)) report, an aperiodic CSI (A-CSI) report, or a semi-persistent CSI (Semi-Persistent CSI (SP-CSI)) report.
- P-CSI Period CSI
- A-CSI aperiodic CSI
- SP-CSI semi-persistent CSI
- the UE performs CSI-RS/SSB/CSI-IM measurements based on the CSI resource configuration corresponding to the CSI reporting configuration (the CSI resource configuration associated with CSI-ResourceConfigId) and derives the CSI to report based on the measurement results.
- the CSI resource configuration (e.g., the CSI-ResourceConfig information element) may include a csi-RS-ResourceSetList field indicating more specific CSI-RS/SSB resources, resource type information (e.g., "resourceType") indicating the time domain behavior of the resource configuration, etc.
- the resource type information may indicate a P-CSI resource, an A-CSI resource, or an SP-CSI resource.
- AI Artificial Intelligence
- ML machine learning
- CSI channel state information
- UE user equipment
- BS base stations
- CSI channel state information
- UE user equipment
- beam management e.g., improving accuracy, prediction in the time/space domain
- position measurement e.g., improving position estimation/prediction
- the AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information.
- the UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
- AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: - Estimation based on observed or collected information; - making choices based on observed or collected information; - Predictions based on observed or collected information.
- estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
- an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
- an AI model may be interpreted as an object having (implementing) at least one of the following characteristics: - Producing estimates by feeding information, - Predicting estimates by providing information - Discover features by providing information, - Select an action by providing information.
- an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
- AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable.
- AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
- autoencoder may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder.
- the encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
- encoder encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
- decoder decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- decompressing decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- a layer (of an AI model) may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model.
- a layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
- methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like.
- Supervised learning may refer to the process of training a model from inputs and corresponding labels.
- Unsupervised learning may refer to the process of training a model without labeled data.
- Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
- terms such as generate, calculate, derive, etc. may be interchangeable.
- terms such as implement, operate, operate, execute, etc. may be interchangeable.
- terms such as train, learn, update, retrain, etc. may be interchangeable.
- terms such as infer, after-training, production use, actual use, etc. may be interchangeable.
- terms such as signal and signal/channel may be interchangeable.
- FIG. 1 shows an example of a framework for managing AI models.
- each stage related to an AI model is shown as a block.
- This example is also referred to as Life Cycle Management (LCM) of an AI model.
- LCM Life Cycle Management
- the data collection stage corresponds to the stage of collecting data for generating/updating an AI model.
- the data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
- data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference.
- process and procedure may be interpreted as interchangeable.
- collection may also refer to obtaining a data set (e.g., usable as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, position estimation, etc.).
- offline field data may be data collected from the field (real world) and used for offline training of an AI model.
- online field data may be data collected from the field (real world) and used for online training of an AI model.
- model training is performed based on the data (training data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
- AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
- AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
- model inference is performed based on the data (inference data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity performing the model training), output (providing model output to the actor), etc.
- AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
- a one-sided model may refer to a UE-side model or a network-side model.
- a two-sided model may refer to a pair of AI models where joint inference is performed.
- joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
- AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
- model registration may refer to making a model executable (registering) by assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase.
- Model deployment may refer to distributing (or activating at) a fully developed and tested run-time image (or image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
- Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
- action triggers e.g., deciding whether to trigger an action on another entity
- feedback e.g., feeding back information needed for training data/inference data/performance feedback
- training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB).
- OAM Operation, Administration and Maintenance
- NW network
- gNodeB gNodeB
- In the former case interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous.
- the latency of model updates and the absence of data exchange for model deployment are advantageous.
- Inference of the above model may be performed in, for example, a gNB.
- the entity performing the training/inference may be different.
- the function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
- the OAM/gNB may perform model training and the gNB may perform model inference.
- a Location Management Function may perform model training and the LMF may perform model inference.
- the OAM/gNB/UE may perform model training and the UE may perform model inference.
- model activation may mean activating an AI model for a particular function.
- Model deactivation may mean disabling an AI model for a particular function.
- Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
- Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model.
- Model download may refer to model transfer from the network to the UE.
- Model upload may refer to model transfer from the UE to the network.
- Figure 2 shows an example of specifying an AI model.
- the UE and NW e.g., a base station (BS)
- NW e.g., a base station (BS)
- the UE may report, for example, the capabilities of model #1 and model #2 to the NW, and the NW may instruct the UE on the AI model to use.
- AI-based CSI feedback As a use case of utilizing an AI model, CSI compression using a two-sided AI model is being considered. Such a CSI compression method may be called AI-based CSI feedback, and may be realized, for example, by using an autoencoder.
- Figure 3 shows an example of CSI feedback using an encoder/decoder.
- the UE transmits information (CSI feedback information) including encoded bits that are output by inputting CSI to an encoder from an antenna.
- the BS inputs the received CSI feedback information bits to a corresponding decoder to obtain the CSI to be output.
- the input CSI may include, for example, information on channel coefficients (elements of a channel matrix) or information on precoding coefficients (elements of a precoding matrix).
- the CSI may correspond to information on the channel state in the space-frequency domain.
- the input may include information other than CSI.
- the CSI output from the decoder may be reconstructed CSI that corresponds to the input to the encoder, or it may be CSI different from the input to the encoder (e.g., if the input information is information on channel coefficients, it may be information on precoding coefficients, etc.).
- the encoder/decoder may also include pre-processing of the input and post-processing of the output.
- the encoded bits are more compressed than the input information before encoding, which is expected to reduce the communication overhead required for CSI feedback.
- FIG. 4 illustrates an example of a lifecycle management framework for performance monitoring in a UE according to one embodiment.
- the UE monitors the performance of the model and fallback scheme (non-AI based CSI feedback).
- the UE evaluates the performance of the monitored/reported models and fallback schemes (non-AI based CSI feedback).
- the UE reports the above monitored performance to the NW.
- the NW evaluates the performance of the reported model and fallback scheme.
- the UE sends a request to the NW regarding which model should be applied or whether a fallback scheme should be applied.
- the UE may be instructed which scheme (model) is to be activated.
- the UE may activate a model or a fallback scheme.
- FIG. 5 illustrates an example of a life cycle management framework for performance monitoring in a BS according to one embodiment.
- the UE reports information for performance monitoring in the NW (BS).
- the network monitors the performance of the model and the fallback scheme (non-AI-based CSI feedback).
- the NW evaluates the performance of the model and the fallback scheme.
- the UE may be instructed which scheme (model) is to be activated.
- the UE may activate a model or a fallback scheme.
- AI-based beam report As a use case of utilizing the AI model, spatial domain downlink (DL) beam prediction or temporal DL beam prediction using a one-sided AI model in the UE or NW is being considered.
- DL spatial domain downlink
- BM Beam Management
- FIGS. 6A and 6B are diagrams showing an example of an AI-based beam report.
- FIG. 6A shows spatial domain DL beam prediction.
- the UE may measure a spatially sparse (or thick) beam, input the measurement results, etc., into an AI model, and output a predicted result of the beam quality of a spatially dense (or thin) beam.
- Figure 6B shows temporal DL beam prediction.
- the UE may measure the beam over time, input the measurement results, etc., to an AI model, and output the predicted beam quality of the future beam.
- spatial domain DL beam prediction may be referred to as BM case 1
- temporal DL beam prediction may be referred to as BM case 2.
- temporal DL beam prediction may be referred to as, for example, time domain CSI prediction.
- the beams/RS related to the output (prediction result) of the AI model may be referred to as set A.
- the beams/RS related to the input of the AI model may be referred to as set B.
- Candidates for input to the AI model for BM Case 1/2 include L1-RSRP (Layer 1 Reference Signal Received Power), assistance information (e.g., beam shape information, UE position/direction information, transmit beam usage information), Channel Impulse Response (CIR) information, and corresponding DL transmit/receive beam IDs.
- L1-RSRP Layer 1 Reference Signal Received Power
- assistance information e.g., beam shape information, UE position/direction information, transmit beam usage information
- CIR Channel Impulse Response
- Possible outputs of the AI model for BM Case 1 include the IDs of the top K (K is an integer) transmit/receive beams, the predicted L1-RSRP of these beams, the probability that each beam is in the top K, and the angles of these beams.
- the candidates for the output of the AI model in BM Case 2 include predicted beam failures.
- (Performance monitoring of CSI compression at the UE side) 7 is a diagram showing an example of performance monitoring of CSI compression at the UE side, in which the UE may monitor expected performance if an encoder is available at the UE.
- the performance (expected performance) monitored in FIG. 7 may be at least one of the following: (1) Expected communication quality calculated based on the output of an AI model. For example, expected CQI that satisfies a certain block error probability under a specific resource allocation assumption. (2) The expected performance of the reconstructed CSI compared to the target CSI (e.g., expected noise variance).
- the CQI in (1) may be, for example, at least one of a wideband CQI, an average of subband CQIs, a weighted average of subband CQIs, a maximum/minimum of subband CQI, etc.
- the specific resource allocation may correspond to a frequency/time resource allocation for receiving a certain channel/signal (e.g., PDSCH, PDCCH, corresponding DMRS), and the type of resource allocation may be specified in the standard (e.g., the expected number of symbols, the number of resource blocks, etc.).
- the certain block error probability may be, for example, at least one of 0.1, 0.00001, etc.
- the CSI output from the decoder is the reconstructed CSI that corresponds to the input to the encoder.
- the decoder in the UE is only provided for performance monitoring, and the CSI feedback sent by the UE is the output of the encoder.
- the UE does not have a decoder that corresponds to the encoder.
- the UE performs channel measurements based on the CSI-RS transmitted from the BS and obtains the channel matrix H.
- the UE estimates its performance based on H.
- the UE may perform a specific process on H (e.g., Singular Value Decomposition (SVD)) to obtain W.
- H e.g., Singular Value Decomposition (SVD)
- the UE estimates performance based on W.
- the UE may perform the above-mentioned preprocessing on the above-mentioned W to obtain p-W.
- the UE may estimate performance based on p-W, or may estimate performance based on W.
- the UE may also transmit a performance report to the BS as necessary.
- the UE may receive information on the expected performance of the AI model corresponding to the encoder's AI model from the vendor's data server or NW.
- the information may be included in the AI model information.
- the data server may be interchangeably referred to as a repository, an uploader, a library, a cloud server, or simply a server.
- the data server in this disclosure may be provided by any platform such as GitHub (registered trademark), and may be operated by any company/organization.
- the UE performs channel measurement based on the CSI-RS transmitted from the BS, and obtains the H/W/p-W corresponding to the target CSI.
- the UE also calculates (estimates) the expected performance based on the target CSI and the above-mentioned expected performance information. If performance monitoring is the only task, the UE does not need to operate the encoder.
- the UE can use a proxy model to calculate the expected reconstructed CSI instead of the reconstruction model actually used by the base station.
- the proxy model is a model that mimics the reconstruction model used by the base station.
- the proxy model can be a simple model. This can reduce the processing and storage problems of the UE.
- the proxy model can be different from the actual reconstruction model in the base station. This can avoid the uniqueness problem.
- Figure 8 shows an example of CSI reconstruction (pseudo reconstruction) using a proxy model.
- the UE receives a proxy model for decoding from the NW (base station).
- the UE uses the proxy model to reconstruct the encoded CSI and outputs it as an estimated CSI.
- the UE maps the estimated result to the actual CSI and calculates a KPI (Key Performance Indicator) (e.g., SGCS (squared generalized cosine similarity)).
- KPI Key Performance Indicator
- SGCS squared generalized cosine similarity
- Performance monitoring of AI/ML CSI feedback includes NW side monitoring and UE side monitoring.
- the network side monitoring may be based on ground-truth feedback and channel estimation using a UL reference signal (e.g., SRS).
- a UL reference signal e.g., SRS
- FIG. 9A is a diagram showing an example of network side monitoring.
- the UE measures the RS resource for input, and then generates AI/ML CSI depending on whether the matrix to be acquired is H or W. Also, the UE measures the RS resource for input/reference, and then transmits ground-truth feedback/SRS depending on whether the matrix to be acquired is H or W.
- AI/ML CSI reconstruction is performed in the network, and based on (comparing) the CSI reconstruction and the ground-truth feedback/SRS, the Normalized Mean Square Error (NMSE)/Squared Generalized Cosine Similarity (SGCS) are calculated as KPIs.
- NMSE Normalized Mean Square Error
- SGCS Generalized Cosine Similarity
- UE side monitoring may be monitoring based on a proxy CSI reconstruction model.
- Figure 9B is a diagram showing an example of UE-side monitoring.
- the UE measures the RS resource for input, then generates AI/ML CSI depending on whether the matrix to be acquired is H or W, and performs proxy AI/ML CSI reconfiguration based on the obtained bit stream.
- the UE also measures the RS resource for input/reference.
- the UE reports CSI based on the CSI generation to the NW, and NMSE/SGCS is calculated based on (comparing) the CSI reconfiguration and the input/reference RS resource measurement.
- the UE reports monitoring based on the calculated NMSE/SGCS.
- the CSI report and the monitoring report are associated.
- the UE evaluates the calculated NMSE/SGCS.
- the NW performs AI/ML CSI reconfiguration based on the CSI report.
- intermediate KPIs such as SGCS, NMSE, and Recall at Rank (RAR) may be reused.
- the network may have sufficient capability (computational power) to accurately monitor multiple models, but may lack target CSI data for monitoring.
- the UE may have target CSI data, but may not have sufficient capability to accurately monitor multiple models.
- This method may, for example, monitor only the active model in the UE (first monitoring, which may be called coarse monitoring), and monitor multiple models in the network when a specific event is triggered (second monitoring, which may be called fine monitoring).
- This method can reduce the overhead for ground-truth feedback by the UE and utilize the computational power of the network for accurate model monitoring.
- the inventors therefore came up with a way to solve these problems.
- A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
- Radio Resource Control RRC
- RRC parameters RRC parameters
- RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
- IEs information elements
- CE Medium Access Control
- update commands activation/deactivation commands, etc.
- the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
- RRC Radio Resource Control
- MAC Medium Access Control
- LPP LTE Positioning Protocol
- the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
- the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining Minimum System Information
- OSI System Information
- the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
- DCI Downlink Control Information
- UCI Uplink Control Information
- index identifier
- indicator indicator
- resource ID etc.
- sequence list, set, group, cluster, subset, etc.
- TRP
- CSI-RS Non-Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) may be interchangeable.
- CSI-RS may include other reference signals.
- the measured/reported RS may refer to the RS measured/reported for CSI reporting.
- timing, time, duration, slot, subslot, symbol, subframe, etc. may be interpreted as interchangeable.
- direction, axis, dimension, domain, polarization, polarization component, etc. may be interpreted as interchangeable.
- estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
- the autoencoder, encoder, decoder, etc. may be interpreted as at least one of a model, an ML model, a neural network model, an AI model, an AI algorithm, etc.
- the autoencoder may be interpreted as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder.
- the encoder/decoder of the present disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
- bits, bit strings, bit series, series, values, information, values obtained from bits, information obtained from bits, etc. may be interpreted as interchangeable.
- a layer for an encoder
- a layer may be interchangeably read as a layer (input layer, intermediate layer, etc.) used in an AI model.
- a layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
- RSRP may be interchangeably read as any parameter related to reception power/reception quality, etc. (e.g., RSRQ, SINR, CSI, etc.).
- the RS may be, for example, a CSI-RS, an SS/PBCH block (SS block (SSB)), etc.
- the RS index may be a CSI-RS resource indicator (CSI-RS Resource Indicator (CRI)), an SS/PBCH block resource indicator (SS/PBCH Block Indicator (SSBRI)), etc.
- CSI-RS Resource Indicator CRI
- SSBRI SS/PBCH Block Indicator
- channel measurement/estimation may be performed using at least one of, for example, a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal (SS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a DeModulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), etc.
- CSI-RS Channel State Information Reference Signal
- SS Synchronization Signal
- SS/PBCH Synchronization Signal/Physical Broadcast Channel
- DMRS DeModulation Reference Signal
- SRS Sounding Reference Signal
- the terms receive beam assumption, number of receive beams, receive beam index, receive beam selection, receive beam setting, and receive beam instruction may be interchangeable.
- the terms receive beam, transmit beam, DL receive beam, DL transmit beam, and transmit and receive beam pairs may be interchangeable.
- the terms transmit/receive beam may be interchangeable with the terms transmit/receive beam for beam prediction and transmit/receive beam for CSI measurement/reporting for beam prediction.
- functionality may refer to the use of a model or the physical meaning of the model's input/output. Multiple models may have the same functionality. Monitoring (checking performance)/activation/deactivation/switching/fallback/update may be instructed (controlled) based on the functionality (e.g., for each function).
- a model ID may also refer to an identifier for a model (or a set of models). Multiple models may be assigned the same model ID in an actual deployment. In this case, these models may actually be different models (e.g., have different number of layers, etc.), but may be treated as the same model.
- the use cases may include AI/ML for at least one of enhanced CSI feedback/beam management/enhanced positioning.
- the use cases may also include other new use cases for AI/ML.
- the model ID may be interchangeably read as a meta information (or a set of meta information) ID.
- the meta information (or meta information ID) may be associated with information regarding the applicability of the model/functionality, the environment, the UE/gNB settings, etc.
- functionality, function, functionality ID, model, and model ID may be interpreted interchangeably.
- update, report, and send may be read interchangeably.
- meta information may be interpreted as interchangeable.
- monitor and evaluation may be interpreted interchangeably.
- entity specific entity, UE, NW, gNB, and LMF may be read as interchangeable.
- NW, LMF, gNB, and BS may be read as interchangeable.
- the UE side model and UE may be interpreted as interchangeable.
- model UE side model
- logical model logical model
- physical model may be interchangeable.
- model/functionality may refer to a data-driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs.
- performance indicators and monitoring indicators may be interpreted as interchangeable.
- association, correspondence, and mapping may be interpreted as interchangeable.
- monitor result monitored result
- post-monitoring result post-monitoring result
- monitoring result may be read interchangeably.
- the monitoring results may include information regarding at least one of the inference results, a performance index, and the content of an event occurrence based on the performance index/whether or not an event has occurred.
- the UE may report the following information as monitoring results: Performance metrics corresponding to the monitored model/functionality.
- Performance metrics corresponding to the monitored model/functionality.
- An event occurs in the calculation of a performance index corresponding to a monitored model/functionality (eg, the value of a positive index is greater/less than a threshold for a certain duration).
- an AI/ML-based CSI report may refer to a CSI report associated with at least one of a model ID and a particular functionality.
- an AI/ML-based CSI report may be, for example, at least one of predicted CSI, compressed CSI, advanced CSI, and CSI of any type (e.g., type [x]).
- AI/ML-based CSI reporting and CSI reporting may be read interchangeably.
- a proxy model may refer to a model that is used only for performance monitoring and has no other uses other than performance monitoring.
- a proxy model may refer to a model that estimates secondary information (CQI/RI, etc.) of the restored CSI.
- AI/ML functionality may refer to functionality that is commanded by the NW or reported by the UE.
- the functionality may be, for example, at least one of predicted CSI, compressed CSI, advanced CSI, and CSI of any type (e.g., type [x]).
- AI/ML functionality may be interpreted interchangeably.
- an AI/ML model an AI/ML CSI model may refer to a model/entity that is identified by a specific ID and performs a specific function (functionality).
- report quantity information regarding report quantity, and report quantity information may be read interchangeably.
- reporting settings may be read interchangeably.
- report CSI report, measurement result report, monitoring report, and monitor result report may be read interchangeably.
- historical CSI historical ground-truth (GT) CSI
- GT ground-truth
- GT CSI historical GT CSI
- GT CSI historical ground-truth
- CSI reporting CSI compression
- CSI-RS and PDSCH/DMRS may be interpreted as interchangeable.
- type X monitoring may refer to monitoring (results) based on precoded RS resources.
- type Y monitoring may refer to monitoring (results) based on PDSCH/DMRS.
- RS Type B may refer to an RS (signal/channel) associated with a measurement report/monitoring result report
- RS Type A may refer to an RS (signal/channel) associated with a CSI report associated with a model ID or specific functionality/feature.
- performance metrics metrics for monitoring reports, and KPIs may be interpreted interchangeably.
- Fig. 10 is a sequence diagram between a terminal (UE) and a base station (NW) showing an overall picture of each embodiment of the present disclosure.
- the procedure shown in Fig. 10 is merely an example, and the order of each step can be changed as appropriate as long as no contradiction occurs.
- the network may first transmit various settings (e.g., reporting settings for CSI reporting) to the UE.
- various settings e.g., reporting settings for CSI reporting
- the UE may then receive the CSI-RS and perform AI/ML CSI reporting.
- the UE may then receive each channel (e.g., PDSCH) that is transmitted based on the CSI report, etc.
- the UE may start a first monitoring (coarse monitoring) from a specific timing.
- the UE may store/acquire historical ground-truth CSI after being triggered to store.
- the UE may determine whether to trigger monitoring of an event report based on at least one of the first monitoring and the storage/acquisition of historical correct CSI.
- the UE may send an event report (e.g., a request for second monitoring) to the NE.
- the NW may at least one of transmit configuration for historical CSI feedback and schedule historical CSI feedback based on the event report.
- the UE may perform CSI compression on multiple historical CSIs and provide historical correct answer feedback based on the configuration/schedule from the NW.
- the NW may perform a second monitoring based on feedback from the UE.
- the NW may perform an operation such as model switching/fallback based on the second monitoring.
- coherent joint transmission (CJT) codebook type 2 codebook for CJT, extended type 2 codebook for CJT, type 2 codebook for Rel. 18 CJT, typeII-CJT-r18, additional extended type 2 PS codebook for CJT, type 2 PS codebook for Rel. 18 CJT, typeII-CJT-PortSelection-r18' may be read as interchangeable.
- each embodiment/option may be applied alone or in combination with multiple options.
- the first embodiment relates to UE operation and configuration related to preparation of historical CSI reporting in the UE.
- the UE may receive configuration for storing/retrieving historical GT CSI from the NW.
- the configuration may be transmitted according to at least one of the methods described in Supplementary Note 2 below.
- the setting may include, for example, at least one of information regarding the time/time slot for the start of historical GT CSI storage (e.g., the time window until the latest AI/ML CSI feedback), information regarding an event that triggers (starts) the storage of historical GT CSI (e.g., when the UE's monitoring result is below a certain threshold), information regarding the window length for storing historical GT CSI, and information regarding the amount of historical GT CSI to be stored.
- information regarding the time/time slot for the start of historical GT CSI storage e.g., the time window until the latest AI/ML CSI feedback
- information regarding an event that triggers (starts) the storage of historical GT CSI e.g., when the UE's monitoring result is below a certain threshold
- information regarding the window length for storing historical GT CSI e.g., when the UE's monitoring result is below a certain threshold
- information regarding the window length for storing historical GT CSI e.g., when the UE's monitoring result is below
- the UE may store GT CSI for a configured time/amount of storage based on the configuration.
- the UE may drop the oldest CSI it stores based on this configuration.
- the UE may assume that CSI measured using input RS resources for AI/ML functions (e.g., reporting predicted/compressed CSI) is reported to the NW using a specific format.
- AI/ML functions e.g., reporting predicted/compressed CSI
- the particular format may be, for example, a format other than the AI/ML-based CSI reporting format.
- CSI-H the CSI relating to this particular format
- CSI-H the CSI-H
- the UE/NW may follow options 1-1/1-2 below.
- the UE may measure/store CSI using an input RS resource if the input RS resource is located within a particular time resource (eg, a time window).
- the start/end timing (e.g., slot/symbol) of the time resource may be set/instructed to the UE.
- the setting/instruction may be performed according to at least one of the methods described in Supplementary Note 2 below.
- start/end timing e.g., slot/symbol
- time resource e.g., time window
- start/end timing e.g., slot/symbol
- end timing of the time window may be the current slot.
- Option 1-1 allows the input RS resource to be appropriately determined based on the time resource.
- the UE may be configured/instructed as to an event for triggering CSI measurement/storage, and the UE may determine to measure/storage CSI based on the configured/instructed event.
- the setting/instruction may be performed according to at least one of the methods described in Supplementary Note 2 below.
- the event may be, for example, when the performance of the AI/ML model monitored by the UE falls below a certain threshold (at a particular time period/timing/instance).
- the specific period/timing/instance/threshold may be predefined in the specifications, or may be set/indicated based on at least one of the methods described in Supplementary Note 2 below.
- the start timing/period of the first monitoring by the UE may be specified in advance in the specifications, may be set/instructed from the network using higher layer signaling (RRC/MAC CE)/DCI, may be determined based on a report of the UE capabilities, may depend on the UE implementation, or may be determined based on a combination of at least two of these.
- RRC/MAC CE higher layer signaling
- the particular number of times may be one or more (e.g., N times (consecutive/non-consecutive)).
- N may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the event may also be, for example, when the UE receives a trigger signal.
- the trigger signal may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the UE may assume/judge that more than a certain number (e.g., M) of CSI-H (or equal to or greater than a certain number) will not be reported to the NW.
- the UE may acquire/store up to M (or M-1) pieces of historical CSI. According to this method, the number of CSIs stored by the UE can be appropriately controlled.
- the M may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below, or may be reported by the UE according to at least one of the methods described in Supplementary Note 3 below.
- the UE may assume that the CSI-H reported to the NW is the CSI measured in the latest slot (time slot).
- the second embodiment relates to configuration and UE operation regarding a request for second monitoring in the NW.
- the UE may receive at least one of the setting and a trigger signal for the request from the NW.
- the configuration/trigger signal may be transmitted according to at least one of the methods described in Supplementary Note 2 below.
- the configuration may include, for example, at least one of information regarding a particular condition (e.g., at least one of thresholds for the monitored KPIs, a set amount of collected GT CSI, and a type of CSI (e.g., periodic/non-periodic/semi-persistent)), a trigger for an event report regarding the second monitoring, and information regarding resources for reporting.
- a particular condition e.g., at least one of thresholds for the monitored KPIs, a set amount of collected GT CSI, and a type of CSI (e.g., periodic/non-periodic/semi-persistent)
- a trigger for an event report regarding the second monitoring e.g., periodic/non-periodic/semi-persistent
- the UE may report an event regarding the second monitoring using a specific method.
- the UE may take the action described in Options 2-1-1/2-1-2 below based on certain conditions.
- the specific conditions may be set, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the UE may report a specific message (which may be referred to as message A, for example) if a set condition is met.
- the particular message may be sent, for example, according to at least one of the methods described in Supplementary Note 3 below.
- the particular message may be, for example, a message to notify the NW that the conditions for the second monitoring have been met.
- Option 2-1-1 allows the trigger operation related to the second monitoring to be performed appropriately.
- the UE may report a status regarding whether the set conditions are met or not.
- the report may be sent, for example, according to at least one of the methods described in Supplementary Note 3 below.
- the UE may transmit information (e.g., one bit of information) indicating a binary state indicating whether second monitoring is required or not.
- information e.g., one bit of information
- Option 2-1-2 allows the trigger operation related to the second monitoring to be performed appropriately.
- At least one of the specific messages in option 2-1-1 and the reports in option 2-1-2 may be reported, for example, using a dedicated field in AI/ML-based CSI feedback.
- At least one of the specific messages in option 2-1-1 and the reports in option 2-1-2 may be transmitted using, for example, an existing (defined by Rel. 18/19/20/21) method/content combination (e.g., a CQI/RI combination, or a special value of PMI (e.g., a PMI in which all or part of the information bits are set to a specific value (e.g., 0))).
- an existing (defined by Rel. 18/19/20/21) method/content combination e.g., a CQI/RI combination, or a special value of PMI (e.g., a PMI in which all or part of the information bits are set to a specific value (e.g., 0)).
- At least one of the specific message in option 2-1-1 and the report in option 2-1-2 may be transmitted using, for example, a dedicated field in the monitoring report or a special value in the monitoring report.
- the specific message in option 2-1-1 and/or the report in option 2-1-2 may be sent using resources configured/instructed according to at least one of the methods described in Supplementary Note 2 below.
- the specific condition in this embodiment may be, for example, at least one of the following options 2-2-1 to 2-2-4.
- a particular condition may be, for example, that a metric monitored by the UE is higher/lower (or greater than or equal to/less than) a particular threshold (at a particular time period/timing/instance).
- the metric may be, for example, a metric related to AI/ML model performance.
- the particular threshold may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the particular condition may, for example, be that the UE fails to process (eg decode) the scheduled PDSCH a particular number of times (in a certain period of time).
- the particular number of times may be one or more (e.g., L times (consecutive/non-consecutive)).
- L may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the particular condition may be, for example, a trigger to report CSI using a particular method (eg, periodic/aperiodic/semi-persistent).
- the trigger may be notified according to at least one of the methods described in Supplementary Note 2 below.
- the particular condition may be, for example, that the UE acquires/stores/possesses a particular number (eg, K) of CSI-H.
- K may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
- Third Embodiment A third embodiment relates to schedules and UE behavior for historical CSI reporting.
- the UE may receive configurations/instructions from the NW regarding encoding/quantization/compression/reporting of historical GT CSI.
- the settings/instructions may be transmitted, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the UE may report CSI-H based on specific triggers/settings/instructions.
- the particular trigger/setting/instruction may be performed, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the particular triggers/settings/instructions may, for example, include information regarding at least one of the following: Number of CSI-Hs reported. -Reporting resources/channels. Number of CSI-H reports for each resource/channel. CSI-H quantization/compression/encoding methods and/or parameters related to said methods. - CSI Report Index/CSI Resource Index.
- CSI-H can be reported using the appropriate number, appropriate channels/resources, appropriate quantization/compression/encoding methods, etc.
- the UE may (e.g., by default) report all CSI-Hs (all N CSI-Hs out of N stored CSI-Hs).
- the UE may report all CSI-H (all N CSI-Hs out of N stored CSI-Hs) when the specific trigger/setting/instruction does not include at least one of information regarding the number of CSI-Hs to be reported and information regarding the number of CSI-Hs to be reported for each resource/channel.
- the UE may report a number of CSI-Hs based on this information when the specific trigger/setting/instruction includes at least one of information regarding the number of CSI-Hs to be reported and information regarding the number of CSI-Hs to be reported for each resource/channel.
- the UE may report the M most recent CSI-Hs.
- the UE may report CSI-H using a specific method (e.g. periodic/aperiodic/semi-persistent) according to the specific trigger/configuration/instruction.
- a specific method e.g. periodic/aperiodic/semi-persistent
- the specific trigger/setting/instruction may cause the CSI-H report to include a CSI report index.
- the UE may then assume/expect that the corresponding CSI reporting configuration includes instructions for one or more PMI reports.
- the UE does not need to assume/expect CSI-H to be reported at multiple times.
- the UE may assume/expect to report CSI-H at multiple times.
- the UE may not assume/expect a CSI-H report to be triggered.
- a fourth embodiment relates to historical CSI report generation and UE operation.
- the UE may encode/quantize/compress multiple GT CSIs separately/jointly using a specific method based on a specific configuration.
- the particular method may be, for example, based on at least one of the following: the Lempel-Ziv algorithm, a particular type of extension (e.g., eType II) using a common spatial domain/frequency domain vector and derivatives.
- a particular type of extension e.g., eType II
- the UE may transmit coded/quantized/compressed historical GT CSI using resources configured/instructed using a specific method.
- the UE may generate CSI (which may mean CSI content/bits/information) for CSI-H reporting configured/instructed using at least one method described in the third embodiment above.
- CSI which may mean CSI content/bits/information
- CSI CSI, CSI contents, CSI elements, CSI sequence, CSI bits, and CSI information bits may be interpreted as interchangeable.
- the UE may generate CSI according to at least one of options 4-1 to 4-4 below.
- the UE may generate each CSI-H (CSI-H content) separately by scalar quantizing each element in the CSI-H with a particular bit-width.
- the particular bit width may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the UE may generate each CSI-H (CSI-H content) separately using vector quantization.
- the UE may generate at least one feedback content of Type II, enhanced Type II, and enhanced Type II with enhanced parameter combinations (PC) for each CSI-H separately.
- PC enhanced parameter combinations
- Option 4-3 The UE may first apply options 4-1/4-2 above.
- the UE may then compress multiple (e.g., all) CSI-H generated contents using the configured compression parameters.
- the compression may be, for example, Lempel-Ziv compression using the configured compression parameters (e.g., compression ratio).
- the compression parameters may be set, for example, according to at least one of the methods described in Supplementary Note 2 below.
- the UE may jointly generate the CSI-H (CSI-H content) using a certain quantization/compression method for multiple (e.g., all) CSI-Hs reported in one resource (a particular resource unit).
- the UE may also divide the CSI-H reported in one resource (specific resource unit) into multiple groups. For each group, the UE may generate the CSI-H (CSI-H content) using a certain quantization/compression method.
- the quantization/compression method may be, for example, an extension of an existing type of CSI (e.g., Type 2/Extended Type 2 CSI).
- the UE may first generate CSI feedback content having the configured parameters (e.g., at least one CSI of type 2, extended type 2, and extended type 2 with extended parameter combination).
- the configured parameters e.g., at least one CSI of type 2, extended type 2, and extended type 2 with extended parameter combination.
- the UE may generate an element of CSI (eg, i n (n is 1 or 2)) according to a codebook defined in existing specifications (eg, up to Rel. 17/18).
- a codebook defined in existing specifications eg, up to Rel. 17/18.
- the CSI element (eg, i n (n is 1 or 2)) may be used to represent one CSI-H or multiple CSI-Hs.
- the UE may generate one or a pair of differential values (e.g., delta-i n (n is 1 or 2)) for the element for each CSI-H.
- the UE may also generate one or a pair of differential values (e.g., delta-i n (n is 1 or 2)) for each CSI-H other than the CSI-H directly represented by the CSI element (e.g., i n (n is 1 or 2)).
- delta-i n n is 1 or 2
- i n n is 1 or 2
- delta-i 1 and delta-i 2 may denote the delta of each CSI-H relative to the common portion generated as i 1 and i 2, respectively.
- delta-i n may not include all fields corresponding to i n , in other words, some elements may be common to all CSI-H, and other elements may be configurable using differential values.
- the UE may generate CSI-H elements (final elements) that include i n (n is 1 or 2) and all delta-i n (n is 1 or 2).
- FIG. 11 is a diagram showing an example of the generation of CSI elements relating to option 4-4.
- the UE generates CSI1 to CSI3 as multiple pieces of CSI.
- the UE In the example shown in Fig. 11, the UE generates PMI1 of CSI1 based on the codebook of extended type 2 (defined in Rel. 18 in the example shown in Fig. 11, for example).
- i1 [ i1,1 i1,2 i1,5 i1,6,1 i1,7,1 i1,8,1 ]
- i2 [ i2,3,1 i2,4,1 i2,5,1 ] are generated as elements of CSI1.
- the UE reuses i1 for CSI1 in generating PMI2 for CSI2 (in other words, the spatial domain/frequency domain base vector and the reported coefficient are reused).
- the UE reuses [ i1,1 i1,2 i1,5 i1,6,1] for CSI1 in generating PMI3 for CSI3 (in other words, the spatial domain/frequency domain base vector is reused, and the reported coefficient is not reused).
- the UE may also report information (e.g., a bitmap) indicating which coefficients are to be reported when generating CSI3. This configuration allows the amplitude/phase of new coefficients to be reported with higher resolution, similar to the extended type 2 codebook.
- information e.g., a bitmap
- the UE may also jointly quantize multiple CSI-Hs using the (Rel. 18) extended type 2 codebook for predicted PMI or further extensions of the (Rel. 18) extended type 2 codebook for predicted PMI.
- the further extension function may support N4 values greater than the length of the Doppler domain (DD)/time domain (TD) basis vectors (DFT basis vectors) (also called the number of DD/TD bases, N4) defined in existing specifications (e.g., Rel. 17/18). By configuring in this way, it is possible to support a number of CSI-Hs greater than eight.
- DD Doppler domain
- TD time domain
- This further extension may also support a non-fixed duration in DD units (e.g. d), in which case the UE may report the actual duration ds between CSI-H as part of the reporting.
- a non-fixed duration in DD units e.g. d
- the UE may report the actual duration ds between CSI-H as part of the reporting.
- the further extension function may support a Q value (which may also be referred to as Q) that is larger than the number of DD basis vectors defined in existing specifications (e.g., Rel. 17/18).
- Q a Q value
- the number of DD basis vectors defined in existing specifications e.g., Rel. 17/18.
- historical CSI reports can be generated appropriately.
- the UE may prepare (e.g., acquire/store/generate/quantize/compress) the CSI-H based on the first embodiment, without assuming/hoping to be configured/instructed to transmit any CSI other than the CSI-H.
- the UE may determine whether the conditions for the event trigger are met based on the conditions in the second embodiment described above.
- the UE may report CSI-H using a specific UL channel (e.g., PUSCH).
- a specific UL channel e.g., PUSCH
- the UE may report a scheduling request to request the UL channel resource, and then report CSI-H using the resource based on an instruction from the NW (e.g., (UL grant) DCI).
- NW e.g., (UL grant) DCI
- AI model information may mean information including at least one of the following: ⁇ Information on input/output of AI model. - Pre-processing/post-processing information for input/output of AI models. ⁇ Information on AI model parameters. - Training information for AI models. -Inference information for AI models. ⁇ Performance information about AI models.
- the input/output information of the AI model may include information regarding at least one of the following: Input/output data content (e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information).
- Input/output data content e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information).
- Supporting information for the data may be called meta-information).
- the type of input/output data e.g. immutable values, floating point numbers).
- Bit width of the input/output data eg, 64 bits for each input value).
- Quantization interval (quantization step size) of input/output data eg, 1 dBm for L1-RSRP). The range that the input/output data can take
- the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Furthermore, the information regarding AoD may include information regarding at least one of the azimuth angle of departure and the zenith angle of departure (ZoD).
- the location information may be location information regarding the UE/NW.
- the location information may include at least one of information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), information on the BS adjacent to (or serving) the UE (e.g., a BS/cell identifier (ID), a BS-UE distance, a direction/angle of the BS (UE) as seen from the UE (BS), coordinates of the BS (UE) as seen from the UE (BS) (e.g., coordinates on the X/Y/Z axes), etc.), a specific address of the UE (e.g., an Internet Protocol (IP) address), etc.
- IP Internet Protocol
- the location information of the UE is not limited to information based on the position of the BS, and may be information based on a specific point.
- the location information may include information about its implementation (e.g., location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
- the location information may include mobility information.
- the mobility information may include information indicating at least one of the following: a mobility type, a moving speed of the UE, an acceleration of the UE, and a moving direction of the UE.
- the mobility type may correspond to at least one of fixed location UE, movable/moving UE, no mobility UE, low mobility UE, middle mobility UE, high mobility UE, cell-edge UE, not-cell-edge UE, etc.
- environmental information may be information regarding the environment in which the data is acquired/used, and may correspond to, for example, frequency information (such as a band ID), environmental type information (information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), information indicating Line Of Site (LOS)/Non-Line Of Site (NLOS), etc.
- frequency information such as a band ID
- environmental type information information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.
- LOS Line Of Site
- NLOS Non-Line Of Site
- LOS may mean that the UE and BS are in an environment where they can see each other (or there is no obstruction)
- NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is an obstruction).
- Information indicating LOS/NLOS may indicate a soft value (e.g., the probability of LOS/NLOS) or a hard value (e.g., either LOS or NLOS).
- meta-information may mean, for example, information regarding input/output information suitable for an AI model, information regarding data that has been acquired/can be acquired, etc.
- meta-information may include information regarding beams of RS (e.g., CSI-RS/SRS/SSB, etc.) (e.g., the pointing angle of each beam, 3 dB beam width, the shape of the pointed beam, the number of beams), layout information of gNB/UE antennas, frequency information, environmental information, meta-information ID, etc.
- RS e.g., CSI-RS/SRS/SSB, etc.
- meta-information may be used as input/output of an AI model.
- the pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following: Whether to apply normalization (e.g., Z-score normalization, min-max normalization). Parameters for normalization (eg, mean/variance for Z-score normalization, min/max for min-max normalization). Whether to apply a specific numeric transformation method (e.g., one hot encoding, label encoding, etc.). - Selection rule for whether or not to use as training data.
- normalization e.g., Z-score normalization, min-max normalization
- Parameters for normalization eg, mean/variance for Z-score normalization, min/max for min-max normalization
- a specific numeric transformation method e.g., one hot encoding, label encoding, etc.
- Selection rule for whether or not to use as training data.
- the information of the parameters of the AI model may include information regarding at least one of the following: - Weight information (e.g., neuron coefficients (connection coefficients)) in an AI model. ⁇ Structure of the AI model. - The type of AI model as a model component (e.g., Residual Network (ResNet), DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)). - Functions of the AI model as model components (e.g., decoder, encoder).
- ResNet Residual Network
- DenseNet DenseNet
- RefineNet Transformer model
- CRBlock Recurrent Neural Network
- RNN Recurrent Neural Network
- LSTM Long Short-Term Memory
- GRU Gated Recurrent Unit
- the weight information in the AI model may include information regarding at least one of the following: - Bit width (size) of the weight information. Quantization interval of weight information. - Granularity of weight information. - The range of possible weight information. ⁇ Weight parameters in AI models. - Information on the difference from the AI model before the update (if updating). - Method of weight initialization (e.g., zero initialization, random initialization (based on normal/uniform/truncated normal distribution), Xavier initialization (for sigmoid function), He initialization (for Rectified Linear Units (ReLU))).
- the structure of the AI model may also include information regarding at least one of the following: ⁇ Number of layers. - The type of layer (e.g., convolutional, activation, dense, normalization, pooling, attention). ⁇ Layer information. Time series specific parameters (e.g. bidirectionality, time step). Parameters for training (e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
- ⁇ Number of layers e.g., convolutional, activation, dense, normalization, pooling, attention.
- ⁇ Layer information Time series specific parameters (e.g. bidirectionality, time step).
- Parameters for training e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
- the layer information may include information regarding at least one of the following: - The number of neurons in each layer. ⁇ Kernel size. - Stride for pooling/convolutional layers. - Pooling method (MaxPooling, AveragePooling, etc.). ⁇ Residual block information. ⁇ Number of heads. - Normalization method (batch normalization, instance normalization, layer normalization, etc.). Activation functions (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
- An AI model may be included as a component of another AI model.
- an AI model may be an AI model in which processing proceeds in the order of model component #1 (ResNet), model component #2 (a transformer model), a dense layer, and a normalization layer.
- ResNet model component #1
- model component #2 a transformer model
- dense layer a dense layer
- normalization layer a normalization layer
- Training information for the AI model may include information regarding at least one of the following: Information for the optimization algorithm (e.g. type of optimization (Stochastic Gradient Descent (SGD)), AdaGrad, Adam, etc.), parameters of the optimization (learning rate, momentum information, etc.). Loss function information (e.g., information on the metrics of the loss function (Mean Absolute Error (MAE)), Mean Square Error (MSE)), Cross Entropy Loss, NLL Loss, Kullback-Leibler (KL) Divergence, etc.)).
- - Parameters to be frozen for training e.g. layers, weights
- - Parameters to be updated e.g. layers, weights
- Parameters e.g. layers, weights
- Parameters that should be (are used as) initial parameters for training. How to train/update the AI model (e.g., (recommended) number of epochs, batch size, number of data used for training).
- the inference information for the AI model may include information regarding decision tree branch pruning, parameter quantization, and the function of the AI model.
- the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, an autoencoder for CSI feedback, and an autoencoder for beam management.
- An autoencoder for CSI feedback may be used as follows: - The UE inputs the CSI/channel matrix/precoding matrix into the AI model of the encoder and transmits the encoded bits output as CSI feedback (CSI report). - The BS reconstructs the CSI/channel matrix/precoding matrix, which is output as input to the AI model of the decoder using the received encoded bits.
- the UE/BS may input measurement results (beam quality, e.g., RSRP) based on sparse (or thick) beams into an AI model to output dense (or thin) beam quality.
- beam quality e.g., RSRP
- the UE/BS may input time series (past, present, etc.) measurement results (beam quality, e.g., RSRP) into an AI model and output future beam quality.
- time series past, present, etc.
- beam quality e.g., RSRP
- the performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
- the AI model information in this disclosure may include information regarding the scope of application (scope of applicability) of the AI model.
- the scope of application may be indicated by a physical cell ID, a serving cell index, etc.
- Information regarding the scope of application may be included in the above-mentioned environmental information.
- AI model information regarding a specific AI model may be predetermined in a standard, or may be notified to the UE from the network (NW).
- An AI model defined in a standard may be referred to as a reference AI model.
- AI model information regarding a reference AI model may be referred to as reference AI model information.
- the AI model information in the present disclosure may include an index for identifying the AI model (e.g., may be called an AI model index, an AI model ID, a model ID, etc.).
- the AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above.
- the association between the AI model index and the AI model information (e.g., input/output information of the AI model) may be predetermined in a standard, or may be notified to the UE from the NW.
- the AI model information in this disclosure may be associated with an AI model and may be referred to as AI model relevant information, simply relevant information, etc.
- the AI model relevant information does not need to explicitly include information for identifying the AI model.
- the AI model relevant information may be information that includes only meta information, for example.
- the model ID may be interchangeably read as an ID (model set ID) corresponding to a set of AI models.
- the model ID may be interchangeably read as a meta information ID.
- the meta information (or meta information ID) may be associated with information regarding the beam (beam setting) as described above.
- the meta information (or meta information ID) may be used by the UE to select an AI model taking into account which beam the BS is using, or may be used to notify the BS of which beam to use to apply the AI model deployed by the UE.
- the meta information ID may be interchangeably read as an ID (meta information set ID) corresponding to a set of meta information.
- any information may be notified to the UE (from the NW) (in other words, any information received from the BS in the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
- physical layer signaling e.g., DCI
- higher layer signaling e.g., RRC signaling, MAC CE
- a specific signal/channel e.g., PDCCH, PDSCH, reference signal
- the MAC CE may be identified by including in the MAC subheader a new Logical Channel ID (LCID) that is not specified in existing standards.
- LCID Logical Channel ID
- the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
- RNTI Radio Network Temporary Identifier
- CRC Cyclic Redundancy Check
- notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
- notification of any information from the UE may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, reference signal), or a combination thereof.
- physical layer signaling e.g., UCI
- higher layer signaling e.g., RRC signaling, MAC CE
- a specific signal/channel e.g., PUCCH, PUSCH, reference signal
- the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
- the notification may be transmitted using PUCCH or PUSCH.
- notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
- At least one of the above-mentioned embodiments may be applied when a specific condition is met, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
- At least one of the above-described embodiments may be applied only to UEs that have reported or support certain UE capabilities, for example, as described below (by way of example only): - Supporting specific processing/operations/control/information for at least one of the above embodiments.
- Support performance monitoring (reporting) based on the CSI framework.
- the particular UE capability may indicate support for particular processing/operations/control/information for at least one of the above embodiments/options/options.
- the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
- FR1 Frequency Range 1
- FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
- SCS subcarrier Spacing
- FS Feature Set
- FSPC Feature Set Per Component-carrier
- the above-mentioned specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
- the specific information may be information indicating the activation of LCM based on a model/functionality ID, any RRC parameters for a specific release (e.g., Rel. 18/19/20), etc.
- the UE may apply, for example, the behavior of Rel. 15/16/17.
- Appendix A-1 A terminal having a receiving unit that receives settings for performance monitoring of artificial intelligence (AI)-based channel state information (CSI) reports, and a control unit that controls at least one of measuring and storing AI-based CSI and generating the CSI reports based on the settings.
- AI artificial intelligence
- CSI channel state information
- the control unit controls measurement and storage of the CSI using reference signal resources arranged within the specific window based on information regarding a specific time window included in the configuration.
- the terminal according to Supplementary Note A-1.
- the control unit controls measurement and storage of the CSI based on information regarding a performance monitoring event included in the configuration.
- the control unit When multiple CSIs are generated in generating the CSI report, the control unit generates the multiple CSIs using an element of CSI indicated by an absolute value and an element of CSI indicated by a differential value.
- AI artificial intelligence
- CSI channel state information
- Appendix B-4 The terminal according to any one of Supplementary Note B-1 to Supplementary Note B-3, wherein the instruction includes at least one of information on the number of CSI to be reported, information on at least one of resources and channels for reporting, information on the number of CSI to be reported in each resource unit, information on at least one method of quantizing, compressing, and encoding the CSI, an index related to the CSI report, and an index related to the CSI resource.
- Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
- communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these methods.
- FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
- LTE Long Term Evolution
- 3GPP Third Generation Partnership Project
- 5G NR 5th generation mobile communication system New Radio
- the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- RATs Radio Access Technologies
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- E-UTRA Evolved Universal Terrestrial Radio Access
- EN-DC E-UTRA-NR Dual Connectivity
- NE-DC NR-E-UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
- the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
- the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- gNBs NR base stations
- N-DC Dual Connectivity
- the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
- a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
- the user terminal 20 may be connected to at least one of the multiple base stations 10.
- the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- Macro cell C1 may be included in FR1
- small cell C2 may be included in FR2.
- FR1 may be a frequency band below 6 GHz (sub-6 GHz)
- FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
- the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
- wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication e.g., NR communication
- base station 11 which corresponds to the upper station
- IAB Integrated Access Backhaul
- base station 12 which corresponds to a relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include, for example, at least one of an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
- NF Network Functions
- UPF User Plane Function
- AMF Access and Mobility management Function
- SMF Session Management Function
- UDM Unified Data Management
- AF Application Function
- DN Data Network
- LMF Location Management Function
- OAM Operation, Administration and Maintenance
- the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the radio access method may also be called a waveform.
- other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
- a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
- PDSCH Physical Downlink Shared Channel
- PBCH Physical Broadcast Channel
- PDCCH Physical Downlink Control Channel
- an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- SIB System Information Block
- PDSCH User data, upper layer control information, System Information Block (SIB), etc.
- SIB System Information Block
- PUSCH User data, upper layer control information, etc.
- MIB Master Information Block
- PBCH Physical Broadcast Channel
- Lower layer control information may be transmitted by the PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
- DCI Downlink Control Information
- the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
- the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
- the PDSCH may be interpreted as DL data
- the PUSCH may be interpreted as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
- the CORESET corresponds to the resources to search for DCI.
- the search space corresponds to the search region and search method of PDCCH candidates.
- One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
- a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
- the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
- UCI uplink control information
- CSI channel state information
- HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
- ACK/NACK ACK/NACK
- SR scheduling request
- the PRACH may transmit a random access preamble for establishing a connection with a cell.
- downlink, uplink, etc. may be expressed without adding "link.”
- various channels may be expressed without adding "Physical” to the beginning.
- a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
- a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
- the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
- the SS, SSB, etc. may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS uplink reference signal
- DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
- the base station 13 is a diagram showing an example of a configuration of a base station according to an embodiment.
- the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140.
- the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
- the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
- the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
- the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
- the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver 120 may be configured as an integrated transceiver, or may be composed of a transmitter and a receiver.
- the transmitter may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiver may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
- the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 120 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the control unit 110 to generate a bit string to be transmitted.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- channel coding which may include error correction coding
- DFT Discrete Fourier Transform
- IFFT Inverse Fast Fourier Transform
- the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
- the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
- the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- FFT Fast Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- the transceiver 120 may perform measurements on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
- the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
- RSRP Reference Signal Received Power
- RSSI Received Signal Strength Indicator
- the measurement results may be output to the control unit 110.
- the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- devices included in the core network 30 e.g., network nodes providing NF
- other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- the transmitting section and receiving section of the base station 10 in this disclosure may be configured with at least one of the transmitting/receiving section 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
- the transceiver unit 120 may transmit a configuration for performance monitoring of artificial intelligence (AI)-based channel state information (CSI) reporting.
- the control unit 110 may use the configuration to instruct at least one of measuring and storing AI-based CSI and generating the CSI report (first/fourth embodiment).
- the control unit 110 may control the reception of requests for network-side performance monitoring regarding artificial intelligence (AI)-based channel state information (CSI) reporting.
- the transceiver unit 120 may transmit instructions regarding the CSI reporting based on the configuration (second/third embodiment).
- the user terminal 14 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
- the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 210 may control signal generation, mapping, etc.
- the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
- the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
- the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
- the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver unit 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
- RLC layer processing e.g., RLC retransmission control
- MAC layer processing e.g., HARQ retransmission control
- the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- Whether or not to apply DFT processing may be based on the settings of transform precoding.
- the transceiver unit 220 transmission processing unit 2211
- the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
- the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
- the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
- the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
- the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
- the measurement results may be output to the control unit 210.
- the measurement unit 223 may derive channel measurements for CSI calculation based on channel measurement resources.
- the channel measurement resources may be, for example, non-zero power (NZP) CSI-RS resources.
- the measurement unit 223 may derive interference measurements for CSI calculation based on interference measurement resources.
- the interference measurement resources may be at least one of NZP CSI-RS resources for interference measurement, CSI-Interference Measurement (IM) resources, etc.
- CSI-IM may be called CSI-Interference Management (IM) or may be interchangeably read as Zero Power (ZP) CSI-RS.
- CSI-RS, NZP CSI-RS, ZP CSI-RS, CSI-IM, CSI-SSB, etc. may be read as interchangeable.
- the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
- the transceiver unit 220 may receive a configuration for monitoring the performance of an artificial intelligence (AI)-based channel state information (CSI) report.
- the control unit 210 may control at least one of measuring and storing the AI-based CSI and generating the CSI report based on the configuration (first/fourth embodiment).
- the control unit 210 may control the measurement and storage of the CSI using reference signal resources that are placed within a specific time window based on information about the specific time window included in the configuration (first embodiment).
- the control unit 210 may control the measurement and storage of the CSI based on information about performance monitoring events included in the settings (first embodiment).
- control unit 210 may generate the multiple CSIs using an element of CSI represented by an absolute value and an element of CSI represented by a differential value (fourth embodiment).
- the control unit 210 may control the transmission of requests for network-side performance monitoring regarding artificial intelligence (AI)-based channel state information (CSI) reporting.
- the transceiver unit 220 may receive instructions regarding the CSI reporting, which are transmitted based on the settings (second/third embodiment).
- the request may be information indicating that a condition related to the network-side monitoring has been met, or information indicating whether the network-side monitoring is necessary (second embodiment).
- the control unit 210 may determine to send the request if certain conditions are met (second embodiment).
- the instructions may include at least one of information regarding the number of CSIs to be reported, information regarding at least one of the resources and channels for reporting, information regarding the number of CSIs to be reported in each resource unit, information regarding at least one method of quantizing, compressing, and encoding the CSI, an index regarding the CSI report, and an index regarding the CSI resource (third embodiment).
- each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
- the functional blocks may be realized by combining the one device or the multiple devices with software.
- the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
- a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
- a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 15 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
- the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
- the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
- the processor 1001 operates an operating system to control the entire computer.
- the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
- CPU central processing unit
- control unit 110 210
- transmission/reception unit 120 220
- etc. may be realized by the processor 1001.
- the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
- the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
- Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrically EPROM
- RAM Random Access Memory
- Memory 1002 may also be called a register, cache, main memory, etc.
- Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
- the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
- the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
- the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
- each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
- the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
- the processor 1001 may be implemented using at least one of these pieces of hardware.
- a channel, a symbol, and a signal may be read as mutually interchangeable.
- a signal may also be a message.
- a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
- a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
- a subframe may be composed of one or more slots in the time domain.
- a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
- the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
- the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
- SCS SubCarrier Spacing
- TTI Transmission Time Interval
- radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
- a specific windowing process performed by the transceiver in the time domain etc.
- a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may also be a time unit based on numerology.
- a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
- a radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal.
- a different name may be used for radio frame, subframe, slot, minislot, and symbol. Note that the time units such as frame, subframe, slot, minislot, and symbol in this disclosure may be read as interchangeable.
- one subframe may be called a TTI
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI.
- at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
- the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
- TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
- a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
- radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
- the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
- the time interval e.g., the number of symbols
- the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum time unit of scheduling.
- the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
- a short TTI e.g., a shortened TTI, etc.
- TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
- the number of subcarriers included in an RB may be determined based on numerology.
- an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
- PRB physical resource block
- SCG sub-carrier group
- REG resource element group
- PRB pair an RB pair, etc.
- a resource block may be composed of one or more resource elements (REs).
- REs resource elements
- one RE may be a radio resource area of one subcarrier and one symbol.
- a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within the BWP.
- the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots, and symbols are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
- a radio resource may be indicated by a predetermined index.
- the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
- the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and the various names assigned to these various channels and information elements are not limiting in any respect.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
- information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
- Information, signals, etc. may be input/output via multiple network nodes.
- Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
- a specific location e.g., memory
- Input/output information, signals, etc. may be overwritten, updated, or added to.
- Output information, signals, etc. may be deleted.
- Input information, signals, etc. may be transmitted to another device.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
- the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
- the MAC signaling may be notified, for example, using a MAC Control Element (CE).
- CE MAC Control Element
- notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
- the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
- Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
- Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
- a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
- wireless technologies such as infrared, microwave, etc.
- Network may refer to the devices included in the network (e.g., base stations).
- the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port).
- the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.).
- the resource may include time/frequency/code/space/power resources.
- the spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
- the above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
- CDM Code Division Multiplexing
- RS Reference Signal
- CORESET Control Resource Set
- beam SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be read as interchangeable.
- SRI SRS Resource Indicator
- CORESET CORESET pool
- PDSCH PUSCH
- codeword CW
- TB transport block
- RS etc.
- TCI state downlink TCI state
- DL TCI state downlink TCI state
- UL TCI state uplink TCI state
- unified TCI state common TCI state
- joint TCI state etc.
- QCL QCL
- QCL assumptions QCL relationship
- QCL type information QCL property/properties
- specific QCL type e.g., Type A, Type D
- specific QCL type e.g., Type A, Type D
- index identifier
- indicator indication, resource ID, etc.
- sequence list, set, group, cluster, subset, etc.
- TCI state ID the spatial relationship information identifier
- TCI state ID the spatial relationship information
- TCI state the spatial relationship information
- TCI state the spatial relationship information
- TCI state the spatial relationship information
- Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
- a base station can accommodate one or more (e.g., three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
- RRH Remote Radio Head
- the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
- a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
- at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
- the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
- the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
- the moving body in question may also be a moving body that moves autonomously based on an operating command.
- the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
- a vehicle e.g., a car, an airplane, etc.
- an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
- a robot manned or unmanned
- at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- FIG. 16 is a diagram showing an example of a vehicle according to an embodiment.
- the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
- various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
- an information service unit 59 including a communication module 60.
- the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
- the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
- the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
- the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
- the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
- the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
- various information/services e.g., multimedia information/multimedia services
- the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
- input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
- output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
- the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
- the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
- the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
- the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
- the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
- the communication module 60 may be located either inside or outside the electronic control unit 49.
- the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
- the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
- the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
- the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
- the PUSCH transmitted by the communication module 60 may include information based on the above input.
- the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
- the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
- the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
- the base station in the present disclosure may be read as a user terminal.
- each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- the user terminal 20 may be configured to have the functions of the base station 10 described above.
- terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
- the uplink channel, downlink channel, etc. may be read as the sidelink channel.
- the user terminal in this disclosure may be interpreted as a base station.
- the base station 10 may be configured to have the functions of the user terminal 20 described above.
- operations that are described as being performed by a base station may in some cases be performed by its upper node.
- a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
- the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
- the methods described in this disclosure present elements of various steps in an exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4th generation mobile communication system 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG x is, for example, an integer or decimal
- Future Radio Access FX
- GSM Global System for Mobile communications
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 Ultra-Wide Band (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created
- the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
- Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
- judgment (decision) may be considered to mean “judging (deciding)” resolving, selecting, choosing, establishing, comparing, etc.
- judgment (decision) may be considered to mean “judging (deciding)” some kind of action.
- judgment (decision) may be read as interchangeably with the actions described above.
- expect may be read as “be expected”.
- "expect(s) " ("" may be expressed, for example, as a that clause, a to infinitive, etc.) may be read as “be expected !.
- "does not expect " may be read as "be not expected ".
- "An apparatus A is not expected " may be read as "An apparatus B other than apparatus A does not expect " (for example, if apparatus A is a UE, apparatus B may be a base station).
- the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
- connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connected” may be read as "access.”
- a and B are different may mean “A and B are different from each other.”
- the term may also mean “A and B are each different from C.”
- Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
- timing, time, duration, time instance, any time unit e.g., slot, subslot, symbol, subframe
- period occasion, resource, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) was specified for Universal Mobile Telecommunications System (UMTS) networks with the aim of achieving higher data rates and lower latency (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (e.g., 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later, etc.) are also under consideration.
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。 In terms of future wireless communication technologies, the use of artificial intelligence (AI) technologies such as machine learning (ML) for network/device control and management is being considered.
AIモデルの活用のユースケースとして、空間ドメイン(spatial domain)下りリンク(Downlink(DL))ビーム予測、時間的(temporal)DLビーム予測、ポジショニングなどが検討されている。このようなビーム予測方法は、AIベースドビーム予測(ビーム報告)、AIベースドポジショニング、AIベースドビーム管理(Beam Management(BM))などと呼ばれてもよい。時間的DLビーム予測は、例えば時間ドメインチャネル状態情報(Channel State Information(CSI))予測(prediction)などと呼ばれてもよい。 Spatial domain downlink (DL) beam prediction, temporal DL beam prediction, positioning, etc. are being considered as use cases for utilizing AI models. Such beam prediction methods may be called AI-based beam prediction (beam reporting), AI-based positioning, AI-based beam management (BM), etc. Temporal DL beam prediction may be called, for example, time domain Channel State Information (CSI) prediction.
また、AIモデルの活用のその他のユースケースとして、両側AIモデルを用いるチャネル状態情報(Channel State Information(CSI))圧縮が検討されている。このようなCSI圧縮方法は、AIベースドCSIフィードバックと呼ばれてもよく、例えば自己符号化器(オートエンコーダ(autoencoder))を用いて実現されてもよい。 In addition, another use case for utilizing AI models is Channel State Information (CSI) compression using a two-sided AI model. Such a CSI compression method may be called AI-based CSI feedback, and may be realized, for example, using an autoencoder.
このようなAIの活用において、AIモデルの性能(performance)モニタリングが検討されている。AIモデルの性能モニタリングは、端末側(terminal、ユーザ端末(user terminal)、User Equipment(UE))において行われてもよいし、ネットワーク(NW、例えば、基地局(Base Station(BS)))において行われてもよい。 In utilizing such AI, monitoring the performance of the AI model is being considered. The performance monitoring of the AI model may be performed on the terminal side (terminal, user terminal, User Equipment (UE)) or on the network (NW, for example, a base station (Base Station (BS))).
将来の無線通信システムでは、UE側とNW側との性能モニタリングを組み合わせて行うことが検討されている。しかしながら、そのような組み合わせによる性能モニタリングについて検討が十分でない。 In future wireless communication systems, it is being considered to combine performance monitoring on the UE side and the NW side. However, there has been insufficient consideration given to such combined performance monitoring.
この検討が十分でない場合、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 If this consideration is not sufficient, appropriate overhead reduction, highly accurate channel estimation, and efficient resource utilization may not be achieved, which may hinder improvements in communication throughput and communication quality.
そこで、本開示は、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve optimal overhead reduction/channel estimation/resource utilization.
本開示の一態様に係る端末は、人工知能(AI)ベースのチャネル状態情報(CSI)報告に関するネットワーク側性能モニタリングのための要求の送信を制御する制御部と、前記設定に基づいて送信される、前記CSI報告に関する指示を受信する受信部と、を有する。 A terminal according to one embodiment of the present disclosure has a control unit that controls the transmission of requests for network-side performance monitoring regarding artificial intelligence (AI)-based channel state information (CSI) reporting, and a receiving unit that receives instructions regarding the CSI reporting transmitted based on the settings.
本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。 According to one aspect of the present disclosure, it is possible to achieve optimal overhead reduction, channel estimation, and resource utilization.
(チャネル状態情報(Channel State Information(CSI))測定/報告)
既存のNR規格(例えば、Rel.15-17 NR)におけるCSI測定/報告について説明する。UEは、参照信号(Reference Signal(RS))(又は、当該RS用のリソース)に基づいてCSIを生成(決定、計算、推定、測定等ともいう)し、生成したCSIをネットワーク(例えば、基地局)に送信(報告、フィードバック等ともいう)する。当該CSIは、例えば、上りリンク制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))又は上りリンク共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))を用いて基地局に送信されてもよい。
Channel State Information (CSI) Measurement/Reporting
CSI measurement/reporting in existing NR standards (e.g., Rel. 15-17 NR) will be described. The UE generates (also called determining, calculating, estimating, measuring, etc.) CSI based on a reference signal (RS) (or a resource for the RS) and transmits (also called reporting, feedback, etc.) the generated CSI to a network (e.g., a base station). The CSI may be transmitted to the base station using, for example, an uplink control channel (e.g., a Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (e.g., a Physical Uplink Shared Channel (PUSCH)).
本開示において、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)、チャネル行列(又はチャネル係数)に関する情報、プリコーディング行列(又はプリコーディング係数)に関する情報、ビーム/Transmission Configuration Indication state(TCI状態)/空間関係(spatial relation)に関する情報などの少なくとも1つを含んでもよい。
In this disclosure, CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a CSI-RS Resource Indicator (CRI), a SS/PBCH Block Resource Indicator (SSBRI), a Layer Indicator (LI), a Rank Indicator (RI), and a
CSIの生成に用いられるRSは、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、同期信号(Synchronization Signal(SS))、復調用参照信号(DeModulation Reference Signal(DMRS))などの少なくとも1つであってもよい。 The RS used to generate the CSI may be, for example, at least one of a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Synchronization Signal (SS), and a DeModulation Reference Signal (DMRS).
本開示において、RS、CSI-RS、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS、CSI干渉測定(CSI Interference Measurement(CSI-IM))、CSI-SSB及びSSBは、互いに読み替えられてもよい。また、CSI-RSは、その他の参照信号を含んでもよい。 In this disclosure, RS, CSI-RS, Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, CSI Interference Measurement (CSI-IM), CSI-SSB, and SSB may be interchangeable. In addition, CSI-RS may include other reference signals.
UEは、CSI報告に関する設定情報(CSI報告設定(CSI report configuration)、報告セッティング(report setting)などと呼ばれてもよい)を受信し、当該設定情報に基づいてCSI報告を制御してもよい。当該報告設定情報は、例えば、無線リソース制御(Radio Resource Control(RRC))情報要素(Information Element(IE))の「CSI-ReportConfig」であってもよい。 The UE may receive configuration information regarding CSI reporting (which may be referred to as CSI report configuration, report setting, etc.) and control CSI reporting based on the configuration information. The report configuration information may be, for example, a Radio Resource Control (RRC) Information Element (IE) "CSI-ReportConfig."
CSI報告設定は、以下の情報の少なくとも1つを含んでもよい:
・CSI測定に用いられるCSIリソースに関する情報(リソース設定ID、例えば、「CSI-ResourceConfigId」)、
・報告すべきCSIの1つ以上の量(quantity)(CSIパラメータ)に関する情報(報告量情報、例えば、「reportQuantity」)、
・報告設定の時間ドメインのふるまいを示す報告タイプ情報(例えば、「reportConfigType」)。
The CSI reporting configuration may include at least one of the following information:
Information regarding the CSI resources used for CSI measurements (resource configuration ID, for example, "CSI-ResourceConfigId");
Information regarding one or more quantities (CSI parameters) of CSI to be reported (report quantity information, e.g., "reportQuantity");
Report type information (eg, "reportConfigType") indicating the time domain behavior of the reporting configuration.
本開示において、CSIリソースは、時間インスタンス、CSI-RS機会/CSI-IM機会/SSB機会、CSI-RSリソースの(1つ/複数の)機会、CSI機会、機会、CSI-RSリソース/CSI-IMリソース/SSBリソース、時間リソース、周波数リソース、アンテナポート(例えば、CSI-RSポート)などと互いに読み替えられてもよい。CSIリソースの時間単位は、スロット、シンボルなどであってもよい。 In the present disclosure, a CSI resource may be interchangeably referred to as a time instance, a CSI-RS opportunity/CSI-IM opportunity/SSB opportunity, a CSI-RS resource (one/multiple) opportunity, a CSI opportunity, an opportunity, a CSI-RS resource/CSI-IM resource/SSB resource, a time resource, a frequency resource, an antenna port (e.g., a CSI-RS port), etc. The time unit of a CSI resource may be a slot, a symbol, etc.
上記CSIリソースに関する情報は、チャネル測定のためのCSIリソースに関する情報、干渉測定のためのCSIリソース(NZP-CSI-RSリソース)に関する情報、干渉測定のためのCSI-IMリソースに関する情報などを含んでもよい。 The information on the CSI resources may include information on CSI resources for channel measurement, information on CSI resources for interference measurement (NZP-CSI-RS resources), information on CSI-IM resources for interference measurement, etc.
報告量情報は、上記CSIパラメータ(例えば、CRI、RI、PMI、CQI、LI、L1-RSRPなど)のいずれか又はこれらの組み合わせを指定してもよい。 The reporting amount information may specify any one of the above CSI parameters (e.g., CRI, RI, PMI, CQI, LI, L1-RSRP, etc.) or a combination of these.
報告タイプ情報は、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI))報告、又は、半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI(Semi-Persistent CSI(SP-CSI))報告を示してもよい。 The report type information may indicate a periodic CSI (Periodic CSI (P-CSI)) report, an aperiodic CSI (A-CSI) report, or a semi-persistent CSI (Semi-Persistent CSI (SP-CSI)) report.
UEは、CSI報告設定に対応するCSIリソース設定(CSI-ResourceConfigIdに関連付けられるCSIリソース設定)に基づいて、CSI-RS/SSB/CSI-IMの測定を実施し、測定結果に基づいて報告するCSIを導出する。 The UE performs CSI-RS/SSB/CSI-IM measurements based on the CSI resource configuration corresponding to the CSI reporting configuration (the CSI resource configuration associated with CSI-ResourceConfigId) and derives the CSI to report based on the measurement results.
CSIリソース設定(例えば、CSI-ResourceConfig情報要素)は、より具体的なCSI-RS/SSBのリソースを示すcsi-RS-ResourceSetListフィールド、リソース設定の時間ドメインのふるまいを示すリソースタイプ情報(例えば、「resourceType」)などを含んでもよい。 The CSI resource configuration (e.g., the CSI-ResourceConfig information element) may include a csi-RS-ResourceSetList field indicating more specific CSI-RS/SSB resources, resource type information (e.g., "resourceType") indicating the time domain behavior of the resource configuration, etc.
リソースタイプ情報は、P-CSIリソース、A-CSIリソース又はSP-CSIリソースを示してもよい。 The resource type information may indicate a P-CSI resource, an A-CSI resource, or an SP-CSI resource.
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
(Application of Artificial Intelligence (AI)) Technology to Wireless Communications)
Regarding future wireless communication technologies, the use of AI technologies such as machine learning (ML) for network/device control and management is being considered.
例えば、チャネル状態情報(Channel State Information(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのために、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))/基地局(Base Station(BS))がAI技術を活用することが検討されている。 For example, it is being considered that terminals (user equipment (UE))/base stations (BS)) will utilize AI technology to improve channel state information (CSI) feedback (e.g., reducing overhead, improving accuracy, prediction), improve beam management (e.g., improving accuracy, prediction in the time/space domain), and improve position measurement (e.g., improving position estimation/prediction).
AIモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力してもよい。UE/BSは、AIモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。 The AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information. The UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
In this disclosure, AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics:
- Estimation based on observed or collected information;
- making choices based on observed or collected information;
- Predictions based on observed or collected information.
本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。 In this disclosure, estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
本開示において、オブジェクトは、例えば、UE、BSなどの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。 In the present disclosure, an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
また、本開示において、AIモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
In addition, in the present disclosure, an AI model may be interpreted as an object having (implementing) at least one of the following characteristics:
- Producing estimates by feeding information,
- Predicting estimates by providing information
- Discover features by providing information,
- Select an action by providing information.
また、本開示において、AIモデルは、AI技術を適用し、入力のセットに基づいて出力のセットを生成するデータドリブンアルゴリズムを意味してもよい。 In addition, in this disclosure, an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
また、本開示において、AIモデル、モデル、MLモデル、予測分析(predictive analytics)、予測分析モデル、ツール、自己符号化器(オートエンコーダ(autoencoder))、エンコーダ、デコーダ、ニューラルネットワークモデル、AIアルゴリズム、スキームなどは、互いに読み替えられてもよい。また、AIモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。 Furthermore, in this disclosure, AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable. Furthermore, the AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
本開示において、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。 In this disclosure, the term "autoencoder" may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder. The encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
また、本開示において、エンコーダ、エンコーディング(encoding)、エンコードする/される(encode/encoded)、エンコーダによる修正/変更/制御、圧縮(compressing)、圧縮する/される(compress/compressed)、生成(generating)、生成する/される(generate/generated)などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, encoder, encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
また、本開示において、デコーダ、デコーディング(decoding)、デコードする/される(decode/decoded)、デコーダによる修正/変更/制御、展開(decompressing)、展開する/される(decompress/decompressed)、再構成(reconstructing)、再構成する/される(reconstruct/reconstructed)などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, the terms decoder, decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc. may be interpreted as interchangeable.
本開示において、(AIモデルについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。 In the present disclosure, a layer (of an AI model) may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model. A layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
本開示において、AIモデルの訓練方法には、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)、連合学習(federated learning)などが含まれてもよい。教師あり学習は、入力及び対応するラベルからモデルを訓練する処理を意味してもよい。教師なし学習は、ラベル付きデータなしでモデルを訓練する処理を意味してもよい。強化学習は、モデルが相互作用している環境において、入力(言い換えると、状態)と、モデルの出力(言い換えると、アクション)から生じるフィードバック信号(言い換えると、報酬)と、からモデルを訓練する処理を意味してもよい。 In this disclosure, methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like. Supervised learning may refer to the process of training a model from inputs and corresponding labels. Unsupervised learning may refer to the process of training a model without labeled data. Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
本開示において、生成、算出、導出などは、互いに読み替えられてもよい。本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。本開示において、訓練、学習、更新、再訓練などは、互いに読み替えられてもよい。本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。本開示において、信号は、信号/チャネルと互いに読み替えられてもよい。 In this disclosure, terms such as generate, calculate, derive, etc. may be interchangeable. In this disclosure, terms such as implement, operate, operate, execute, etc. may be interchangeable. In this disclosure, terms such as train, learn, update, retrain, etc. may be interchangeable. In this disclosure, terms such as infer, after-training, production use, actual use, etc. may be interchangeable. In this disclosure, terms such as signal and signal/channel may be interchangeable.
図1は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理(Life Cycle Management(LCM))とも表現される。 Figure 1 shows an example of a framework for managing AI models. In this example, each stage related to an AI model is shown as a block. This example is also referred to as Life Cycle Management (LCM) of an AI model.
データ収集ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。 The data collection stage corresponds to the stage of collecting data for generating/updating an AI model. The data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
なお、データ収集は、AIモデル訓練/データ分析/推論を目的として、ネットワークノード、管理エンティティ又はUEによってデータが収集される処理を意味してもよい。本開示において、処理、手順は互いに読み替えられてもよい。また、本開示において、収集は、測定(チャネル測定、ビーム測定、無線リンク品質測定、位置推定など)に基づいてAIモデルの訓練/推論のための(例えば、入力/出力として利用できる)データセットを取得することを意味してもよい。 In addition, data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference. In this disclosure, process and procedure may be interpreted as interchangeable. In this disclosure, collection may also refer to obtaining a data set (e.g., usable as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, position estimation, etc.).
本開示において、オフラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオフライン訓練のために用いられるデータであってもよい。また、本開示において、オンラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオンライン訓練のために用いられるデータであってもよい。 In the present disclosure, offline field data may be data collected from the field (real world) and used for offline training of an AI model. Also, in the present disclosure, online field data may be data collected from the field (real world) and used for online training of an AI model.
モデル訓練ステージでは、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション(検証)、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。 In the model training stage, model training is performed based on the data (training data) transferred from the collection stage. This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
なお、AIモデル訓練(AI model training)は、データドリブンな方法でAIモデルを訓練し、推論のための訓練されたAIモデルを取得するための処理を意味してもよい。 In addition, AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
また、AIモデルバリデーション(AI model validation)は、モデル訓練に使用したデータセットとは異なるデータセットを用いてAIモデルの品質を評価するための訓練のサブ処理を意味してもよい。当該サブ処理は、モデル訓練に使用したデータセットを超えて汎化するモデルパラメータの選択に役立つ。 Also, AI model validation may refer to a sub-process of training to evaluate the quality of an AI model using a dataset different from the dataset used to train the model. This sub-process helps select model parameters that generalize beyond the dataset used to train the model.
また、AIモデルテスティング(AI model testing)は、モデル訓練/バリデーションに使用したデータセットとは異なるデータセットを使用して、最終的なAIモデルの性能を評価するための訓練のサブ処理を意味してもよい。なお、テスティングは、バリデーションとは異なり、その後のモデルチューニングを前提としなくてもよい。 Also, AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
モデル推論ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。 In the model inference stage, model inference is performed based on the data (inference data) transferred from the collection stage. This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity performing the model training), output (providing model output to the actor), etc.
なお、AIモデル推論(AI model inference)は、訓練されたAIモデルを用いて入力のセットから出力のセットを産み出すための処理を意味してもよい。 In addition, AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
また、UE側(UE side)モデルは、その推論が完全にUEにおいて実施されるAIモデルを意味してもよい。ネットワーク側(Network side)モデルは、その推論が完全にネットワーク(例えば、gNB)において実施されるAIモデルを意味してもよい。 Also, a UE side model may refer to an AI model whose inference is performed entirely in the UE. A network side model may refer to an AI model whose inference is performed entirely in the network (e.g., gNB).
また、片側(one-sided)モデルは、UE側モデル又はネットワーク側モデルを意味してもよい。両側(two-sided)モデルは、共同推論(joint inference)が行われるペアのAIモデルを意味してもよい。ここで、共同推論は、その推論がUEとネットワークにわたって共同で行われるAI推論を含んでもよく、例えば、推論の第1の部分がUEによって最初に行われ、残りの部分がgNBによって行われてもよい(又はその逆が行われてもよい)。 Also, a one-sided model may refer to a UE-side model or a network-side model. A two-sided model may refer to a pair of AI models where joint inference is performed. Here, joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
また、AIモデルモニタリング(AI model monitoring)は、AIモデルの推論性能をモニタするための処理を意味してもよく、モデル性能モニタリング、性能モニタリングなどと互いに読み替えられてもよい。 Also, AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
なお、モデル登録(モデルレジストレーション(model registration))は、モデルにバージョン識別子を付与し、推論段階において利用される特定のハードウェアにコンパイルすることを介して当該モデルを実行可能にする(登録(レジスター)する)ことを意味してもよい。また、モデル配置(モデルデプロイメント(model deployment))は、完全に開発されテストされたモデルのランタイムイメージ(又は実行環境のイメージ)を、推論が実施されるターゲット(例えば、UE/gNB)に配信する(又は当該ターゲットにおいて有効化する)ことを意味してもよい。 Note that model registration may refer to making a model executable (registering) by assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase. Model deployment may refer to distributing (or activating at) a fully developed and tested run-time image (or image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
アクターステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。 Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。 Note that, for example, training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB). In the former case, interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous. In the latter case, the latency of model updates and the absence of data exchange for model deployment are advantageous. Inference of the above model may be performed in, for example, a gNB.
ユースケース(言い換えると、AIモデルの機能)に応じて、訓練/推論を行うエンティティは異なってもよい。AIモデルの機能(function)は、ビーム管理、ビーム予測、オートエンコーダ(又は情報圧縮)、CSIフィードバック、位置測位などを含んでもよい。 Depending on the use case (i.e., the function of the AI model), the entity performing the training/inference may be different. The function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。 For example, for AI-assisted beam management based on measurement reports, the OAM/gNB may perform model training and the gNB may perform model inference.
AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。 For AI-assisted UE-assisted positioning, a Location Management Function (LMF) may perform model training and the LMF may perform model inference.
オートエンコーダを用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(ジョイントで)モデル推論を行ってもよい。 For CSI feedback/channel estimation using autoencoders, the OAM/gNB/UE may perform model training and the gNB/UE may perform model inference (jointly).
ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。 For AI-assisted beam management or AI-assisted UE-based positioning based on beam measurements, the OAM/gNB/UE may perform model training and the UE may perform model inference.
なお、モデルアクティベーションは、特定の機能のためのAIモデルを有効化することを意味してもよい。モデルディアクティベーションは、特定の機能のためのAIモデルを無効化することを意味してもよい。モデルスイッチングは、特定の機能のための現在アクティブなAIモデルをディアクティベートし、異なるAIモデルをアクティベートすることを意味してもよい。 Note that model activation may mean activating an AI model for a particular function. Model deactivation may mean disabling an AI model for a particular function. Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
また、モデル転送(model transfer)は、エアインターフェース上でAIモデルを配信することを意味してもよい。この配信は、受信側において既知のモデル構造のパラメータ、又はパラメータを有する新しいモデルの一方又は両方を配信することを含んでもよい。また、この配信は、完全なモデル又は部分的なモデルを含んでもよい。モデルダウンロードは、ネットワークからUEへのモデル転送を意味してもよい。モデルアップロードは、UEからネットワークへのモデル転送を意味してもよい。 Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model. Model download may refer to model transfer from the network to the UE. Model upload may refer to model transfer from the UE to the network.
図2は、AIモデルの指定の一例を示す図である。本例において、UE及びNW(例えば、基地局(Base Station(BS)))は、モデル#1及び#2を認識できる(モデルの詳細については完全には理解しなくてもよい)。UEは、例えばモデル#1の性能及びモデル#2の性能をNWに報告し、NWは、利用するAIモデルについてUEに指示してもよい。
Figure 2 shows an example of specifying an AI model. In this example, the UE and NW (e.g., a base station (BS)) can recognize
(AIベースドCSIフィードバック)
AIモデルの活用のユースケースとして、両側AIモデルを用いるCSI圧縮が検討されている。このようなCSI圧縮方法は、AIベースドCSIフィードバックと呼ばれてもよく、例えばオートエンコーダを用いて実現されてもよい。
(AI-based CSI feedback)
As a use case of utilizing an AI model, CSI compression using a two-sided AI model is being considered. Such a CSI compression method may be called AI-based CSI feedback, and may be realized, for example, by using an autoencoder.
図3は、エンコーダ/デコーダを用いたCSIフィードバックの一例を示す図である。UEは、エンコーダにCSIを入力して出力されるエンコードされたビットを含む情報(CSIフィードバック情報)を、アンテナから送信する。BSは、対応するデコーダに、受信したCSIフィードバック情報のビットを入力して、出力されるCSIを得る。 Figure 3 shows an example of CSI feedback using an encoder/decoder. The UE transmits information (CSI feedback information) including encoded bits that are output by inputting CSI to an encoder from an antenna. The BS inputs the received CSI feedback information bits to a corresponding decoder to obtain the CSI to be output.
入力のCSIは、例えば、チャネル係数(チャネル行列の要素)の情報を含んでもよいし、プリコーディング係数(プリコーディング行列の要素)の情報を含んでもよい。言い換えると、当該CSIは、空間-周波数ドメインのチャネル状態に関する情報に該当してもよい。なお、入力にはCSI以外の情報が含まれてもよい。 The input CSI may include, for example, information on channel coefficients (elements of a channel matrix) or information on precoding coefficients (elements of a precoding matrix). In other words, the CSI may correspond to information on the channel state in the space-frequency domain. Note that the input may include information other than CSI.
なお、デコーダから出力されるCSIは、エンコーダへの入力に相当する再構成された(reconstructed)CSIであってもよいし、エンコーダへの入力とは異なるCSI(例えば、入力情報がチャネル係数の情報であれば、プリコーディング係数の情報など)であってもよい。 The CSI output from the decoder may be reconstructed CSI that corresponds to the input to the encoder, or it may be CSI different from the input to the encoder (e.g., if the input information is information on channel coefficients, it may be information on precoding coefficients, etc.).
なお、エンコーダ/デコーダは、入力に対する前処理(pre-processing)、出力に対する後処理(post-processing)などを含んでもよい。 In addition, the encoder/decoder may also include pre-processing of the input and post-processing of the output.
エンコードされたビットは、エンコードされる前の入力情報よりも圧縮されており、CSIフィードバックにかかる通信オーバーヘッドの低減が期待できる。 The encoded bits are more compressed than the input information before encoding, which is expected to reduce the communication overhead required for CSI feedback.
(性能モニタリングのライフサイクル管理フレームワーク)
以下では、AIベースドCSIフィードバックに関して、UE/BSにおける性能モニタリングのライフサイクル管理フレームワークにおける各ステップについて説明する。
(Performance Monitoring Lifecycle Management Framework)
In the following, each step in the life cycle management framework of performance monitoring at the UE/BS is described for AI-based CSI feedback.
図4は、一実施形態に係るUEにおける性能モニタリングのライフサイクル管理フレームワークの一例を示す図である。 FIG. 4 illustrates an example of a lifecycle management framework for performance monitoring in a UE according to one embodiment.
性能モニタリングのステップでは、UEは、モデル及びフォールバックスキーム(非AIベースドCSIフィードバック)の性能をモニタする。 In the performance monitoring step, the UE monitors the performance of the model and fallback scheme (non-AI based CSI feedback).
UEにおけるモデル評価のステップでは、UEは、モニタされる/報告されるモデル及びフォールバックスキーム(非AIベースドCSIフィードバック)の性能を評価する。 In the model evaluation step at the UE, the UE evaluates the performance of the monitored/reported models and fallback schemes (non-AI based CSI feedback).
性能報告のステップでは、UEは、モニタされた上記性能をNWに報告する。 In the performance reporting step, the UE reports the above monitored performance to the NW.
NWにおけるモデル評価のステップでは、NWは、報告されるモデル及びフォールバックスキームの性能を評価する。 In the model evaluation step in the NW, the NW evaluates the performance of the reported model and fallback scheme.
モデル要求のステップでは、UEは、どのモデルを適用すべきであるか、又はフォールバックスキームが適用されるべきか否かに関する要求を、NWに送信する。 In the model request step, the UE sends a request to the NW regarding which model should be applied or whether a fallback scheme should be applied.
モデルアクティベーション/ディアクティベーションのステップでは、UEは、どのスキーム(モデル)がアクティベートされるかを指示されてもよい。UEは、あるモデル又はフォールバックスキームをアクティベートしてもよい。 In the model activation/deactivation step, the UE may be instructed which scheme (model) is to be activated. The UE may activate a model or a fallback scheme.
なお、図示される一部のステップ(例えば破線で示されるステップ)は、必要に応じて実施されればよい。 Note that some of the steps shown in the figure (e.g., steps shown with dashed lines) may be performed as necessary.
図5は、一実施形態に係るBSにおける性能モニタリングのライフサイクル管理フレームワークの一例を示す図である。 FIG. 5 illustrates an example of a life cycle management framework for performance monitoring in a BS according to one embodiment.
性能モニタリング向けの報告のステップでは、UEは、NW(BS)における性能モニタリングのための情報を報告する。 In the reporting step for performance monitoring, the UE reports information for performance monitoring in the NW (BS).
NWにおける性能モニタリングのステップでは、NWは、モデル及びフォールバックスキーム(非AIベースドCSIフィードバック)の性能をモニタする。 In the performance monitoring step in the network, the network monitors the performance of the model and the fallback scheme (non-AI-based CSI feedback).
NWにおけるモデル評価のステップでは、NWは、モデル及びフォールバックスキームの性能を評価する。 In the model evaluation step in the NW, the NW evaluates the performance of the model and the fallback scheme.
モデルアクティベーション/ディアクティベーションのステップでは、UEは、どのスキーム(モデル)がアクティベートされるかを指示されてもよい。UEは、あるモデル又はフォールバックスキームをアクティベートしてもよい。 In the model activation/deactivation step, the UE may be instructed which scheme (model) is to be activated. The UE may activate a model or a fallback scheme.
なお、図示される一部のステップ(例えば破線で示されるステップ)は、必要に応じて実施されればよい。 Note that some of the steps shown in the figure (e.g., steps shown with dashed lines) may be performed as necessary.
(AIベースドビーム報告)
AIモデルの活用のユースケースとして、UE又はNWにおける片側AIモデルを用いる空間ドメイン(spatial domain)下りリンク(Downlink(DL))ビーム予測又は時間的(temporal)DLビーム予測が検討されている。このようなビーム予測方法は、AIベースドビーム予測(ビーム報告)、AIベースドビーム管理(Beam Management(BM))などと呼ばれてもよい。
(AI-based beam report)
As a use case of utilizing the AI model, spatial domain downlink (DL) beam prediction or temporal DL beam prediction using a one-sided AI model in the UE or NW is being considered. Such a beam prediction method may be called AI-based beam prediction (beam reporting), AI-based beam management (Beam Management (BM)), etc.
図6A及び図6Bは、AIベースドビーム報告の一例を示す図である。図6Aは、空間ドメインDLビーム予測を示す。UEは、空間的に疎な(又は太い)ビームを測定して、測定結果などをAIモデルに入力し、空間的に密な(又は細い)ビームのビーム品質の予測結果を出力してもよい。 FIGS. 6A and 6B are diagrams showing an example of an AI-based beam report. FIG. 6A shows spatial domain DL beam prediction. The UE may measure a spatially sparse (or thick) beam, input the measurement results, etc., into an AI model, and output a predicted result of the beam quality of a spatially dense (or thin) beam.
図6Bは、時間的DLビーム予測を示す。UEは、時系列のビームを測定して、測定結果などをAIモデルに入力し、将来のビームのビーム品質の予測結果を出力してもよい。 Figure 6B shows temporal DL beam prediction. The UE may measure the beam over time, input the measurement results, etc., to an AI model, and output the predicted beam quality of the future beam.
なお、空間ドメインDLビーム予測は、BMケース1と呼ばれてもよいし、時間的DLビーム予測は、BMケース2と呼ばれてもよい。また、時間的DLビーム予測は、例えば時間ドメインCSI予測(CSI prediction)などと呼ばれてもよい。
Note that spatial domain DL beam prediction may be referred to as
また、AIモデルの出力(予測結果)に関連するビーム/RSは、セットAと呼ばれてもよい。AIモデルの入力に関連するビーム/RSは、セットBと呼ばれてもよい。 Furthermore, the beams/RS related to the output (prediction result) of the AI model may be referred to as set A. The beams/RS related to the input of the AI model may be referred to as set B.
BMケース1/2のAIモデルの入力の候補は、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、アシスタンス情報(例えば、ビーム形状情報、UE位置/方向情報、送信ビーム用途情報)、チャネルインパルス応答(Channel Impulse Response(CIR))の情報、対応するDL送信/受信ビームIDなどが挙げられる。
Candidates for input to the AI model for
BMケース1のAIモデルの出力の候補は、上位K個(Kは整数)の送信/受信ビームのID、これらのビームの予測L1-RSRP(predicted L1-RSRP)、各ビームが上位K個に入る確率、これらのビームの角度などが挙げられる。
Possible outputs of the AI model for
BMケース2のAIモデルの出力の候補は、BMケース1のAIモデルの出力の候補以外に、予測されるビーム障害が挙げられる。
In addition to the candidates for the output of the AI model in
(UE側におけるCSI圧縮の性能モニタリング)
図7は、UE側におけるCSI圧縮の性能モニタリングの一例を示す図である。図7では、UEにおいてエンコーダが利用可能である場合、UEは期待性能をモニタしてもよい。
(Performance monitoring of CSI compression at the UE side)
7 is a diagram showing an example of performance monitoring of CSI compression at the UE side, in which the UE may monitor expected performance if an encoder is available at the UE.
図7においてモニタされる性能(期待性能)は、以下の少なくとも1つであってもよい:
(1)AIモデルの出力に基づいて算出される期待される通信品質。例えば、特定のリソース割り当ての想定において、あるブロック誤り確率を満たす期待されるCQI、
(2)ターゲットCSIと比較した、再構成されるCSIの期待される性能(例えば、期待されるノイズ分散)。
The performance (expected performance) monitored in FIG. 7 may be at least one of the following:
(1) Expected communication quality calculated based on the output of an AI model. For example, expected CQI that satisfies a certain block error probability under a specific resource allocation assumption.
(2) The expected performance of the reconstructed CSI compared to the target CSI (e.g., expected noise variance).
(1)におけるCQIは、例えば、広帯域CQI、サブバンドCQIの平均、サブバンドCQIの加重平均、サブバンドCQIの最大/最小などの少なくとも1つであってもよい。また、特定のリソース割り当ては、あるチャネル/信号(例えば、PDSCH、PDCCH、対応するDMRS)の受信についての周波数/時間リソース割り当てに該当してもよく、規格においてどのようなリソース割り当てであるか(例えば、想定するシンボル数、リソースブロック数など)が規定されてもよい。また、あるブロック誤り確率は、例えば、0.1、0.00001などの少なくとも1つであってもよい。 The CQI in (1) may be, for example, at least one of a wideband CQI, an average of subband CQIs, a weighted average of subband CQIs, a maximum/minimum of subband CQI, etc. Furthermore, the specific resource allocation may correspond to a frequency/time resource allocation for receiving a certain channel/signal (e.g., PDSCH, PDCCH, corresponding DMRS), and the type of resource allocation may be specified in the standard (e.g., the expected number of symbols, the number of resource blocks, etc.). Furthermore, the certain block error probability may be, for example, at least one of 0.1, 0.00001, etc.
図7に示すように、デコーダから出力されるCSIは、エンコーダへの入力に相当する再構成されたCSIであると想定する。なお、UEが有するデコーダは性能モニタリングのために設けられるに過ぎず、UEが送信するCSIフィードバックは、エンコーダの出力である。UEは、エンコーダに対応するデコーダを有しない。 As shown in Figure 7, we assume that the CSI output from the decoder is the reconstructed CSI that corresponds to the input to the encoder. Note that the decoder in the UE is only provided for performance monitoring, and the CSI feedback sent by the UE is the output of the encoder. The UE does not have a decoder that corresponds to the encoder.
BSから送信されるCSI-RSに基づいてUEがチャネル測定を行い、チャネル行列Hを得る。UEは、Hに基づいて、性能を推定する。 The UE performs channel measurements based on the CSI-RS transmitted from the BS and obtains the channel matrix H. The UE estimates its performance based on H.
なお、UEが有するエンコーダの入力がプリコーディング行列Wである場合、UEは、Hに特定の処理(例えば、特異値分解(Singular Value Decomposition(SVD)))を行ってWを得てもよい。UEは、Wに基づいて、性能を推定する。 If the input of the UE's encoder is a precoding matrix W, the UE may perform a specific process on H (e.g., Singular Value Decomposition (SVD)) to obtain W. The UE estimates performance based on W.
また、UEが有するエンコーダの入力が前処理(例えば、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))及びサンプリング)が適用されたプリコーディング行列p-Wである場合、UEは、上述のWに上述の前処理を行ってp-Wを得てもよい。UEは、p-Wに基づいて性能を推定してもよいし、Wに基づいて性能を推定してもよい。 Also, if the input of the encoder of the UE is a precoding matrix p-W to which preprocessing (e.g., Inverse Discrete Fourier Transform (IDFT) and sampling) has been applied, the UE may perform the above-mentioned preprocessing on the above-mentioned W to obtain p-W. The UE may estimate performance based on p-W, or may estimate performance based on W.
なお、UEは、必要に応じて性能報告をBSに送信してもよい。 The UE may also transmit a performance report to the BS as necessary.
UEは、エンコーダのAIモデルに対応するAIモデルの期待性能の情報を、ベンダーのデータサーバ又はNWから受信してもよい。当該情報は、AIモデル情報に含まれてもよい。 The UE may receive information on the expected performance of the AI model corresponding to the encoder's AI model from the vendor's data server or NW. The information may be included in the AI model information.
なお、本開示において、データサーバは、レポジトリ、アップローダ、ライブラリ、クラウドサーバ、単にサーバなどと互いに読み替えられてもよい。また、本開示におけるデータサーバは、GitHub(登録商標)など任意のプラットフォームによって提供されてもよく、任意の企業/団体によって運営されてもよい。 In addition, in this disclosure, the data server may be interchangeably referred to as a repository, an uploader, a library, a cloud server, or simply a server. Furthermore, the data server in this disclosure may be provided by any platform such as GitHub (registered trademark), and may be operated by any company/organization.
本例では、BSから送信されるCSI-RSに基づいてUEがチャネル測定を行い、ターゲットCSIに該当するH/W/p-Wを得る。また、UEは、当該ターゲットCSI及び上述の期待性能の情報に基づいて、期待性能を算出(推定)する。性能モニタリングするだけであれば、UEは、エンコーダを動作させなくてもよい。 In this example, the UE performs channel measurement based on the CSI-RS transmitted from the BS, and obtains the H/W/p-W corresponding to the target CSI. The UE also calculates (estimates) the expected performance based on the target CSI and the above-mentioned expected performance information. If performance monitoring is the only task, the UE does not need to operate the encoder.
(UE側におけるCSI再構成)
UEは、基地局が実際に使用する再構成モデルの代わりに、プロキシモデルを使用して、予想される再構成CSIを計算することができる。プロキシモデルは、基地局が使用する再構成モデルを模倣したモデルである。プロキシモデルは、単純なモデルでも構わない。これにより、UEの処理及び保存の問題を軽減することができる。プロキシモデルは、基地局における実際の再構成モデルと異なっていてもよい。これにより、独自性の問題を回避することができる。
(CSI Reconstruction at UE Side)
The UE can use a proxy model to calculate the expected reconstructed CSI instead of the reconstruction model actually used by the base station. The proxy model is a model that mimics the reconstruction model used by the base station. The proxy model can be a simple model. This can reduce the processing and storage problems of the UE. The proxy model can be different from the actual reconstruction model in the base station. This can avoid the uniqueness problem.
図8は、プロキシモデルを使用したCSI再構成(擬似再構成)の例を示す図である。UEは、デコード用のプロキシモデルをNW(基地局)から受信する。UEは、そのプロキシモデルを用いて、エンコードしたCSIを再構成し、CSIの推定結果として出力する。UEは、推定結果を実際のCSIとマッピングし、KPI(Key Performance Indicator)(例えば、SGCS(squared generalized cosine similarity))を算出する。このように、実際のデコーダを使用した場合のKPI(SGCS)と、プロキシモデルを用いたKPI(SGCS)とは、大きな相関がある。 Figure 8 shows an example of CSI reconstruction (pseudo reconstruction) using a proxy model. The UE receives a proxy model for decoding from the NW (base station). The UE uses the proxy model to reconstruct the encoded CSI and outputs it as an estimated CSI. The UE maps the estimated result to the actual CSI and calculates a KPI (Key Performance Indicator) (e.g., SGCS (squared generalized cosine similarity)). In this way, there is a high correlation between the KPI (SGCS) when an actual decoder is used and the KPI (SGCS) using the proxy model.
(AI/ML CSIフィードバックの性能モニタリング)
AI/ML CSIフィードバックの性能モニタリングは、NW側(NW side)モニタリングとUE側(UE side)モニタリングとを含むことが検討されている。
(Performance monitoring of AI/ML CSI feedback)
It is considered that performance monitoring of AI/ML CSI feedback includes NW side monitoring and UE side monitoring.
NW側モニタリングは、正解(ground-truth)フィードバック、及び、UL参照信号(例えば、SRS)によるチャネル推定、に基づくモニタリングであってもよい。 The network side monitoring may be based on ground-truth feedback and channel estimation using a UL reference signal (e.g., SRS).
図9Aは、NW側モニタリングの一例を示す図である。図9Aに示す例において、まず、UEにおいて、入力用RSリソース(RS resource for input)の測定が行われ、次いで、取得する行列がH又はWかに応じてAI/ML CSI生成が行われる。また、UEにおいて、入力/参照用RSリソース(RS resource for input/reference)の測定が行われ、次いで、取得する行列がH又はWかに応じて正解(ground-truth)フィードバック/SRS送信が行われる。 FIG. 9A is a diagram showing an example of network side monitoring. In the example shown in FIG. 9A, first, the UE measures the RS resource for input, and then generates AI/ML CSI depending on whether the matrix to be acquired is H or W. Also, the UE measures the RS resource for input/reference, and then transmits ground-truth feedback/SRS depending on whether the matrix to be acquired is H or W.
その後、生成されたCSIに基づくCSI報告に基づいて、NWにおいてAI/ML CSI再構成が行われ、当該CSI再構成と、正解(ground-truth)フィードバック/SRSと、に基づいて(これらを比較して)、KPIとして、Normalized Mean Square Error(NMSE)/Squared Generalized Cosine Similarity(SGCS)が算出される。 Then, based on the CSI report based on the generated CSI, AI/ML CSI reconstruction is performed in the network, and based on (comparing) the CSI reconstruction and the ground-truth feedback/SRS, the Normalized Mean Square Error (NMSE)/Squared Generalized Cosine Similarity (SGCS) are calculated as KPIs.
UE側モニタリングは、プロキシCSI再構成モデルに基づくモニタリングであってもよい。 UE side monitoring may be monitoring based on a proxy CSI reconstruction model.
図9Bは、UE側モニタリングの一例を示す図である。図9Bに示す例において、まず、UEにおいて、入力用RSリソース(RS resource for input)の測定が行われ、次いで、取得する行列がH又はWかに応じてAI/ML CSI生成が行われ、得られたビットストリームに基づいてプロキシAI/ML CSI再構成が行われる。また、UEにおいて、入力/参照用RSリソース(RS resource for input/reference)の測定が行われる。UEは、NWに対し、CSI生成に基づくCSI報告を行い、CSI再構成と、入力/参照用RSリソース測定と、に基づいて(これらを比較して)、NMSE/SGCSが算出される。さらに、UEは、算出されたNMSE/SGCSに基づくモニタリング報告を行う。CSI報告とモニタリング報告とは関連付けられる。UEは、算出されたNMSE/SGCSを評価する。NWは、CSI報告に基づき、AI/ML CSI再構成を行う。 Figure 9B is a diagram showing an example of UE-side monitoring. In the example shown in Figure 9B, first, the UE measures the RS resource for input, then generates AI/ML CSI depending on whether the matrix to be acquired is H or W, and performs proxy AI/ML CSI reconfiguration based on the obtained bit stream. The UE also measures the RS resource for input/reference. The UE reports CSI based on the CSI generation to the NW, and NMSE/SGCS is calculated based on (comparing) the CSI reconfiguration and the input/reference RS resource measurement. Furthermore, the UE reports monitoring based on the calculated NMSE/SGCS. The CSI report and the monitoring report are associated. The UE evaluates the calculated NMSE/SGCS. The NW performs AI/ML CSI reconfiguration based on the CSI report.
なお、KPIは、SGCS、NMSE、Recall at Rank(RAR)等の中間(intermediate)KPIが再利用されてもよい。 In addition, intermediate KPIs such as SGCS, NMSE, and Recall at Rank (RAR) may be reused.
(分析)
上述のようなNW側モニタリングとUE側モニタリングとを行う場合、NWとUEにおけるデータ及び計算能力の非対称性(特に、UE側における複雑性の増大)が問題となる。
(analysis)
When performing the above-mentioned NW side monitoring and UE side monitoring, the asymmetry of data and computational capabilities between the NW and the UE (particularly, increased complexity on the UE side) becomes a problem.
例えば、NWは、複数のモデルを正確にモニタする十分な能力(計算能力)を有するが、モニタ用のターゲットCSIデータについては不足する場合がある。一方、UEは、ターゲットCSIデータを保有できるが、複数モデルを正確にモニタする十分な能力を有しない場合がある。 For example, the network may have sufficient capability (computational power) to accurately monitor multiple models, but may lack target CSI data for monitoring. On the other hand, the UE may have target CSI data, but may not have sufficient capability to accurately monitor multiple models.
このため、CSI圧縮において、NW側モニタリングとUE側モニタリングとを組み合わせたモニタリング方法の導入が検討されている。この方法は、例えば、UEにおいてアクティブなモデルのみをモニタリング(第1のモニタリング、coarseモニタリングと呼ばれてもよい)し、特定のイベントがトリガされる場合にNWにおいて複数モデルをモニタリング(第2のモニタリング、fineモニタリングと呼ばれてもよい)を行うことであってもよい。 For this reason, the introduction of a monitoring method that combines network side monitoring and UE side monitoring in CSI compression is being considered. This method may, for example, monitor only the active model in the UE (first monitoring, which may be called coarse monitoring), and monitor multiple models in the network when a specific event is triggered (second monitoring, which may be called fine monitoring).
この方法によれば、例えば、UEによる正解(ground-truth)フィードバックのためのオーバヘッドを削減できるとともに、NWの計算能力を正確なモデルモニタリングに利用することができる。 This method, for example, can reduce the overhead for ground-truth feedback by the UE and utilize the computational power of the network for accurate model monitoring.
しかしながら、このようなNW側モニタリングとUE側モニタリングとを組み合わせたモニタリングについては検討が十分でない。具体的には、UE側モニタリングに係る設定/イベントについての規定、NW側モニタリング動作の要求に係る動作、UE側モニタリング後のCSI報告の方法、及び、当該CSI報告の生成方法、について検討が十分でない。 However, there has been insufficient consideration given to this type of combined network-side monitoring and UE-side monitoring. Specifically, there has been insufficient consideration given to the provisions for settings/events related to UE-side monitoring, the operations related to requests for network-side monitoring operations, the method of CSI reporting after UE-side monitoring, and the method of generating said CSI reports.
これらの検討が十分でない場合、適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 If these considerations are not sufficient, appropriate overhead reduction, highly accurate channel estimation, and efficient resource utilization may not be achieved, which may hinder improvements in communication throughput and communication quality.
そこで、本発明者らは、これらの問題を解決する方法を着想した。 The inventors therefore came up with a way to solve these problems.
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Embodiments of the present disclosure will now be described in detail with reference to the drawings. The wireless communication methods according to the embodiments may be applied independently or in combination.
本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In this disclosure, terms such as notify, activate, deactivate, indicate, select, configure, update, and determine may be read as interchangeable terms. In this disclosure, terms such as support, control, capable of control, operate, and capable of operating may be read as interchangeable terms.
本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, fields, information elements (IEs), settings, etc. may be interchangeable. In this disclosure, Medium Access Control (MAC Control Element (CE)), update commands, activation/deactivation commands, etc. may be interchangeable.
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報、その他のメッセージ(例えば、測位用プロトコル(例えば、NR Positioning Protocol A(NRPPa)/LTE Positioning Protocol(LPP))メッセージなどの、コアネットワークからのメッセージ)などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc. The broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, the terms index, identifier (ID), indicator, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In this disclosure, the terms panel, UE panel, panel group, beam, beam group, precoder, Uplink (UL) transmitting entity, Transmission/Reception Point (TRP), base station, Spatial Relation Information (SRI), spatial relation, SRS Resource Indicator (SRI), Control Resource Set (CONTROLLER RESOLUTION SET (CORESET)), Physical Downlink Shared Channel (PDSCH), Codeword (CW), Transport Block (TB), Reference Signal (RS), Antenna Port (e.g., DeModulation Reference Signal (DMRS)) port), Antenna Port group (e.g., DMRS port group), group (e.g., spatial relationship group, Code Division Multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource), resource set (e.g., reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read as interchangeable.
本開示において、CSI-RS、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS及びCSI干渉測定(CSI Interference Measurement(CSI-IM))は、互いに読み替えられてもよい。また、CSI-RSは、その他の参照信号を含んでもよい。 In this disclosure, CSI-RS, Non-Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) may be interchangeable. In addition, CSI-RS may include other reference signals.
本開示において、測定/報告されるRSは、CSIレポートのために測定/報告されるRSを意味してもよい。 In this disclosure, the measured/reported RS may refer to the RS measured/reported for CSI reporting.
本開示において、タイミング、時刻、時間、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。 In this disclosure, timing, time, duration, slot, subslot, symbol, subframe, etc. may be interpreted as interchangeable.
本開示において、方向、軸、次元、ドメイン、偏波、偏波成分などは、互いに読み替えられてもよい。 In this disclosure, the terms direction, axis, dimension, domain, polarization, polarization component, etc. may be interpreted as interchangeable.
本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。 In this disclosure, estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
本開示において、オートエンコーダ、エンコーダ、デコーダなどは、モデル、MLモデル、ニューラルネットワークモデル、AIモデル、AIアルゴリズムなどの少なくとも1つで読み替えられてもよい。また、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。 In the present disclosure, the autoencoder, encoder, decoder, etc. may be interpreted as at least one of a model, an ML model, a neural network model, an AI model, an AI algorithm, etc. Furthermore, the autoencoder may be interpreted as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder. The encoder/decoder of the present disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
本開示において、ビット、ビット列、ビット系列、系列、値、情報、ビットから得られる値、ビットから得られる情報などは、互いに読み替えられてもよい。 In this disclosure, bits, bit strings, bit series, series, values, information, values obtained from bits, information obtained from bits, etc. may be interpreted as interchangeable.
本開示において、(エンコーダについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。 In the present disclosure, a layer (for an encoder) may be interchangeably read as a layer (input layer, intermediate layer, etc.) used in an AI model. A layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
本開示において、RSRPは、受信電力/受信品質などに関する任意のパラメータ(例えば、RSRQ、SINR、CSI)などと互いに読み替えられてもよい。 In this disclosure, RSRP may be interchangeably read as any parameter related to reception power/reception quality, etc. (e.g., RSRQ, SINR, CSI, etc.).
本開示において、RSは、例えば、CSI-RS、SS/PBCHブロック(SSブロック(SSB))などであってもよい。また、RSインデックスは、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Indicator(SSBRI))などであってもよい。 In the present disclosure, the RS may be, for example, a CSI-RS, an SS/PBCH block (SS block (SSB)), etc. Also, the RS index may be a CSI-RS resource indicator (CSI-RS Resource Indicator (CRI)), an SS/PBCH block resource indicator (SS/PBCH Block Indicator (SSBRI)), etc.
本開示において、チャネル測定/推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。 In the present disclosure, channel measurement/estimation may be performed using at least one of, for example, a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal (SS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a DeModulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), etc.
本開示において、受信ビーム想定、受信ビーム数、受信ビームのインデックス、受信ビーム選択、受信ビームの設定、受信ビーム指示、は互いに読み替えられてもよい。本開示において、受信ビーム、送信ビーム、DL受信ビーム、DL送信ビーム、送信ビーム及び受信ビームのペア、は互いに読み替えられてもよい。本開示において、送信/受信ビームは、ビーム予測用の送信/受信ビーム、ビーム予測用のCSI測定/報告のための送信/受信ビーム、と互いに読み替えられてもよい。 In the present disclosure, the terms receive beam assumption, number of receive beams, receive beam index, receive beam selection, receive beam setting, and receive beam instruction may be interchangeable. In the present disclosure, the terms receive beam, transmit beam, DL receive beam, DL transmit beam, and transmit and receive beam pairs may be interchangeable. In the present disclosure, the terms transmit/receive beam may be interchangeable with the terms transmit/receive beam for beam prediction and transmit/receive beam for CSI measurement/reporting for beam prediction.
本開示において、機能(functionality)は、モデルの用途を意味してもよいし、モデルの入力/出力の物理的な意味を意味してもよい。複数のモデルが同じ機能を有してもよい。機能に基づいて(例えば、機能ごとに)、モニタリング(性能の確認)/アクティベーション/ディアクティベーション/スイッチング/フォールバック/更新が指示(制御)されてもよい。 In this disclosure, functionality may refer to the use of a model or the physical meaning of the model's input/output. Multiple models may have the same functionality. Monitoring (checking performance)/activation/deactivation/switching/fallback/update may be instructed (controlled) based on the functionality (e.g., for each function).
また、モデルIDは、モデル(又はモデルのセット)の識別子を意味してもよい。複数のモデルが実際のデプロイメントにおいて同じモデルIDを割り当てられてもよい。この場合、これらのモデルは実際には異なるモデルである(例えば、レイヤ数などが異なる)が、同じモデルとして扱われてもよい。 A model ID may also refer to an identifier for a model (or a set of models). Multiple models may be assigned the same model ID in an actual deployment. In this case, these models may actually be different models (e.g., have different number of layers, etc.), but may be treated as the same model.
本開示において、ユースケースは、CSIフィードバックの強化/ビーム管理/ポジショニングの強化の少なくとも1つのためのAI/MLを含んでよい。また、当該ユースケースは、AI/MLに対する他の新しいユースケースを含んでもよい。 In this disclosure, the use cases may include AI/ML for at least one of enhanced CSI feedback/beam management/enhanced positioning. The use cases may also include other new use cases for AI/ML.
なお、本開示において、モデルIDは、メタ情報(又はメタ情報のセットを示す)IDと互いに読み替えられてもよい。メタ情報(又はメタ情報ID)は、モデル/機能性の適用可能性、環境、UE/gNBの設定等に関する情報等と関連付けられてもよい。 In addition, in this disclosure, the model ID may be interchangeably read as a meta information (or a set of meta information) ID. The meta information (or meta information ID) may be associated with information regarding the applicability of the model/functionality, the environment, the UE/gNB settings, etc.
本開示において、機能性は、単に「機能」と読み替えられてもよい。 In this disclosure, functionality may simply be read as "function."
本開示において、機能性、機能、機能性ID、モデル、及びモデルIDは、互いに読み替えられてよい。 In this disclosure, functionality, function, functionality ID, model, and model ID may be interpreted interchangeably.
本開示において、更新、報告、及び送信は、互いに読み替えられてよい。 In this disclosure, update, report, and send may be read interchangeably.
本開示において、メタ情報、支援情報、センシング情報、KPI、パフォーマンスKPI、UEステータス、及びステータスは、互いに読み替えられてよい。 In this disclosure, meta information, assistance information, sensing information, KPI, performance KPI, UE status, and status may be interpreted as interchangeable.
本開示において、モニタ(モニタリング)、及び評価は、互いに読み替えられてよい。 In this disclosure, monitor and evaluation may be interpreted interchangeably.
本開示において、決定、判断、特定動作の適用、互いに読み替えられてよい。 In this disclosure, determination, judgement, and application of a specific action may be interpreted interchangeably.
本開示において、エンティティ、特定のエンティティ、UE、NW、gNB、及びLMFは、互いに読み替えられてよい。 In this disclosure, entity, specific entity, UE, NW, gNB, and LMF may be read as interchangeable.
本開示において、NW、LMF、gNB、及びBSは、互いに読み替えられてよい。 In this disclosure, NW, LMF, gNB, and BS may be read as interchangeable.
本開示において、UE側のモデル、UEは、互いに読み替えられてよい。 In this disclosure, the UE side model and UE may be interpreted as interchangeable.
本開示において、モデル、UE側のモデル、論理モデル、物理モデルは、互いに読み替えられてよい。 In this disclosure, the model, UE side model, logical model, and physical model may be interchangeable.
本開示において、モデル/機能性は、AI/ML技術を適用し、一連の入力に基づいて一連の出力を生成するデータドリブンなアルゴリズムを意味してよい。 In this disclosure, model/functionality may refer to a data-driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs.
本開示において、性能指標、及びモニタリング指標は、互いに読み替えられてよい。 In this disclosure, performance indicators and monitoring indicators may be interpreted as interchangeable.
本開示において、関連付け、対応付け、マッピングは、互いに読み替えられてよい。 In this disclosure, association, correspondence, and mapping may be interpreted as interchangeable.
本開示において、モニタ結果、モニタされた結果、モニタ後の結果、及びモニタリング結果は、互いに読み替えられてよい。 In this disclosure, monitor result, monitored result, post-monitoring result, and monitoring result may be read interchangeably.
本開示において、モニタ結果は、推論結果、及び性能指標、性能指標に基づくイベント発生の内容/イベント発生の有無の少なくとも1つに関する情報を含んでよい。 In the present disclosure, the monitoring results may include information regarding at least one of the inference results, a performance index, and the content of an event occurrence based on the performance index/whether or not an event has occurred.
本開示において、UE側のモデル/機能性の性能モニタリングでは、UEは以下の情報をモニタ結果として報告してよい。
・モニタされたモデル/機能性に対応する性能指標。
・モニタされたモデル/機能性に対応する性能指標の計算にイベント発生(例えば、正の指標の値が、ある期間(certain duration)において閾値より大きい/小さい等)。
In the present disclosure, for performance monitoring of the UE side model/functionality, the UE may report the following information as monitoring results:
Performance metrics corresponding to the monitored model/functionality.
- An event occurs in the calculation of a performance index corresponding to a monitored model/functionality (eg, the value of a positive index is greater/less than a threshold for a certain duration).
本開示において、AI/MLベースのCSI報告(AI/ML CSI報告)は、モデルID及び特定の機能性の少なくとも1つに関連付けられるCSI報告を意味してよい。例えば、AI/MLベースのCSI報告(AI/ML CSI報告)は、例えば、予測される(predicted)CSI、圧縮されるCSI、先端(advanced)CSI、任意のタイプ(例えば、タイプ[x])のCSIの少なくとも1つであってよい。 In the present disclosure, an AI/ML-based CSI report (AI/ML CSI report) may refer to a CSI report associated with at least one of a model ID and a particular functionality. For example, an AI/ML-based CSI report (AI/ML CSI report) may be, for example, at least one of predicted CSI, compressed CSI, advanced CSI, and CSI of any type (e.g., type [x]).
本開示において、AI/MLベースのCSI報告、CSI報告は、互いに読み替えられてよい。 In this disclosure, AI/ML-based CSI reporting and CSI reporting may be read interchangeably.
本開示において、プロキシモデルは、性能モニタリングにのみ利用されるモデルであり、性能モニタリング以外の他の用途を有しないモデルを意味してよい。あるいは、プロキシモデルは、復元されるCSIの副次的な情報(CQI /RI等)を推定するモデルを意味してもよい。 In this disclosure, a proxy model may refer to a model that is used only for performance monitoring and has no other uses other than performance monitoring. Alternatively, a proxy model may refer to a model that estimates secondary information (CQI/RI, etc.) of the restored CSI.
本開示において、AI/ML機能性、AI/ML CSI機能性は、NWによって指示される機能性、又はUEによって報告される機能性を意味してよい。当該機能性は、例えば予測されるCSI、圧縮されるCSI、先端(advanced)CSI、任意のタイプ(例えば、タイプ[x])のCSIの少なくとも1つであってよい。 In this disclosure, AI/ML functionality, AI/ML CSI functionality may refer to functionality that is commanded by the NW or reported by the UE. The functionality may be, for example, at least one of predicted CSI, compressed CSI, advanced CSI, and CSI of any type (e.g., type [x]).
本開示において、AI/ML機能性、AI/ML CSI機能性、機能性は、互いに読み替えられてよい。 In this disclosure, AI/ML functionality, AI/ML CSI functionality, and functionality may be interpreted interchangeably.
本開示において、AI/MLモデル、AI/ML CSIモデルは、特定のIDによって識別され、特定の機能(機能性)を実行するモデル/エンティティを意味してよい。 In this disclosure, an AI/ML model, an AI/ML CSI model may refer to a model/entity that is identified by a specific ID and performs a specific function (functionality).
本開示において、報告量(report quantity)、報告量に関する情報、報告量情報は、互いに読み替えられてよい。 In this disclosure, report quantity, information regarding report quantity, and report quantity information may be read interchangeably.
本開示において、報告設定、CSI報告設定、CSI報告の性能モニタリングに関する設定、モニタ報告設定、モニタリングのための報告設定は、互いに読み替えられてよい。 In this disclosure, reporting settings, CSI reporting settings, settings related to performance monitoring of CSI reports, monitor reporting settings, and reporting settings for monitoring may be read interchangeably.
本開示において、報告、CSI報告、測定結果の報告、モニタリング報告、モニタ結果報告は、互いに読み替えられてよい。 In this disclosure, report, CSI report, measurement result report, monitoring report, and monitor result report may be read interchangeably.
本開示において、ヒストリカル(historical)CSI、ヒストリカルな正解(ground-truth(GT))CSI、ヒストリカルGT CSI、GT CSI、CSI、CSI報告、CSI圧縮、等は互いに読み替えられてもよい。 In this disclosure, historical CSI, historical ground-truth (GT) CSI, historical GT CSI, GT CSI, CSI, CSI reporting, CSI compression, etc. may be interchangeable.
本開示において、CSI-RS、PDSCH/DMRSは、互いに読み替えられてよい。 In this disclosure, CSI-RS and PDSCH/DMRS may be interpreted as interchangeable.
本開示において、タイプXのモニタ(結果)は、プリコーディングされたRSリソースに基づくモニタ(結果)を意味してよい。また、タイプYのモニタ(結果)は、PDSCH/DMRSに基づくモニタ(結果)を意味してよい。 In the present disclosure, type X monitoring (results) may refer to monitoring (results) based on precoded RS resources. Also, type Y monitoring (results) may refer to monitoring (results) based on PDSCH/DMRS.
本開示において、RSタイプBは、測定報告/モニタ結果報告に関連付けられるRS(信号/チャネル)を意味してよい。また、RSタイプAは、モデルIDあるいは特定の機能性/特徴に関連付けられたCSI報告に関連するRS(信号/チャネル)を意味してよい。 In this disclosure, RS Type B may refer to an RS (signal/channel) associated with a measurement report/monitoring result report, and RS Type A may refer to an RS (signal/channel) associated with a CSI report associated with a model ID or specific functionality/feature.
本開示において、性能指標(performance metric)、モニタリング報告のための指標(metric)、KPIは、互いに読み替えられてよい。 In this disclosure, performance metrics, metrics for monitoring reports, and KPIs may be interpreted interchangeably.
(無線通信方法)
図10は、本開示の各実施形態の全体像を示す端末(UE)及び基地局(NW)間のシーケンス図である。図10に示すプロシージャはあくまで一例であり、各ステップの順序は矛盾が生じない限り、適宜変更が可能である。
(Wireless communication method)
Fig. 10 is a sequence diagram between a terminal (UE) and a base station (NW) showing an overall picture of each embodiment of the present disclosure. The procedure shown in Fig. 10 is merely an example, and the order of each step can be changed as appropriate as long as no contradiction occurs.
図9に示すように、先ずNWは、各種設定(例えば、CSI報告のための報告設定)をUEに送信してもよい。 As shown in FIG. 9, the network may first transmit various settings (e.g., reporting settings for CSI reporting) to the UE.
次いで、UEは、CSI-RSを受信し、AI/ML CSI報告を行ってもよい。その後、UEは、CSI報告等に基づいて送信される各チャネル(例えば、PDSCH)を受信してもよい。 The UE may then receive the CSI-RS and perform AI/ML CSI reporting. The UE may then receive each channel (e.g., PDSCH) that is transmitted based on the CSI report, etc.
図10に示す例において、UEは、特定のタイミングから第1のモニタリング(coarseモニタ)を開始してもよい。UEは、保存についてトリガされた後、ヒストリカルな正解の(ground-truth)CSIを保存/取得してもよい。 In the example shown in FIG. 10, the UE may start a first monitoring (coarse monitoring) from a specific timing. The UE may store/acquire historical ground-truth CSI after being triggered to store.
UEは、第1のモニタリング及びヒストリカルな正解CSIの保存/取得の少なくとも一方に基づいて、イベント報告のモニタのトリガを判断してもよい。UEは、NEに対して、イベント報告(例えば、第2のモニタリングの要求)を送信してもよい。 The UE may determine whether to trigger monitoring of an event report based on at least one of the first monitoring and the storage/acquisition of historical correct CSI. The UE may send an event report (e.g., a request for second monitoring) to the NE.
NWは、イベント報告に基づいて、ヒストリカルなCSIフィードバックに関する設定の送信、及び、ヒストリカルなCSIフィードバックに関するスケジュールの少なくとも一方を行ってもよい。 The NW may at least one of transmit configuration for historical CSI feedback and schedule historical CSI feedback based on the event report.
UEは、複数のヒストリカルなCSIについてCSI圧縮を行い、NWからの設定/スケジュールに基づいて、ヒストリカルな正解フィードバックを行ってもよい。 The UE may perform CSI compression on multiple historical CSIs and provide historical correct answer feedback based on the configuration/schedule from the NW.
NWは、UEからのフィードバックに基づいて第2のモニタリングを行ってもよい。NWは、第2のモニタリングに基づいて、モデルの切り替え/フォールバック等の動作を行ってもよい。 The NW may perform a second monitoring based on feedback from the UE. The NW may perform an operation such as model switching/fallback based on the second monitoring.
本開示において、コヒーレントジョイント送信(CJT)用コードブック、CJT用タイプ2コードブック、CJT用拡張タイプ2コードブック、Rel.18CJT用タイプ2コードブック、typeII-CJT-r18、CJT用追加拡張タイプ2PSコードブック、Rel.18CJT用タイプ2PSコードブック、typeII-CJT-PortSelection-r18'、は互いに読み替えられてもよい。 In this disclosure, the terms coherent joint transmission (CJT) codebook, type 2 codebook for CJT, extended type 2 codebook for CJT, type 2 codebook for Rel. 18 CJT, typeII-CJT-r18, additional extended type 2 PS codebook for CJT, type 2 PS codebook for Rel. 18 CJT, typeII-CJT-PortSelection-r18' may be read as interchangeable.
なお、本開示において、各実施形態/各オプションは、単独で適用されてもよく、複数を組み合わせて適用されてもよい。 In this disclosure, each embodiment/option may be applied alone or in combination with multiple options.
本開示の各実施形態では、ヒストリカルCSI(ヒストリカルGT CSI)に係る動作について説明するが、「ヒストリカル」とはUEにおいて保存されることを意味する。そのため、各実施形態におけるヒストリカルCSI(ヒストリカルGT CSI)は、単に「CSI」と呼ばれても差し支えない。 In each embodiment of the present disclosure, the operation related to historical CSI (historical GT CSI) is described, where "historical" means stored in the UE. Therefore, the historical CSI (historical GT CSI) in each embodiment may be simply referred to as "CSI."
<第1の実施形態>
第1の実施形態は、UEにおけるヒストリカルCSI報告の準備に係るUE動作及び設定に関する。
First Embodiment
The first embodiment relates to UE operation and configuration related to preparation of historical CSI reporting in the UE.
UEは、NWから、ヒストリカルGT CSIの保存/取得のための設定を受信してもよい。当該設定は、下記補足2に記載される少なくとも1つの方法に従って送信されてもよい。 The UE may receive configuration for storing/retrieving historical GT CSI from the NW. The configuration may be transmitted according to at least one of the methods described in Supplementary Note 2 below.
当該設定は、例えば、ヒストリカルGT CSIの保存の開始点に関する時刻/タイムスロット(例えば、最新のAI/ML CSIフィードバックまでの時間ウィンドウ)に関する情報、ヒストリカルGT CSIの保存の契機(開始点)となるイベント(例えば、UEのモニタ結果が特定の閾値以下である場合)に関する情報、ヒストリカルGT CSIの保存に関するウィンドウ長に関する情報、及び、ヒストリカルGT CSIの保存量に関する情報、の少なくとも1つを含んでもよい。 The setting may include, for example, at least one of information regarding the time/time slot for the start of historical GT CSI storage (e.g., the time window until the latest AI/ML CSI feedback), information regarding an event that triggers (starts) the storage of historical GT CSI (e.g., when the UE's monitoring result is below a certain threshold), information regarding the window length for storing historical GT CSI, and information regarding the amount of historical GT CSI to be stored.
UEは、当該設定に基づいて、設定された時間/保存量のGT CSIを保存してもよい。 The UE may store GT CSI for a configured time/amount of storage based on the configuration.
UEは、当該設定に基づいて、自己が保存する最も古いCSIをドロップしてもよい。 The UE may drop the oldest CSI it stores based on this configuration.
UEは、AI/ML機能(例えば、予測/圧縮されるCSIの報告)に対する入力用RSリソースを用いて測定されたCSIが、特定のフォーマットを用いてNWに報告されると想定してもよい。 The UE may assume that CSI measured using input RS resources for AI/ML functions (e.g., reporting predicted/compressed CSI) is reported to the NW using a specific format.
当該特定のフォーマットは、例えば、AI/MLベースのCSI報告のフォーマット以外のフォーマットであってもよい。 The particular format may be, for example, a format other than the AI/ML-based CSI reporting format.
本開示において、当該特定のフォーマットに係るCSIは、便宜的にCSI-Hと呼ばれてもよい。 In this disclosure, the CSI relating to this particular format may be referred to as CSI-H for convenience.
本開示において、入力用RSリソースは、AI/MLベースドCSI報告に関連するCSI測定/報告に用いられるRSリソースであってもよい。 In the present disclosure, the input RS resource may be an RS resource used for CSI measurement/reporting related to AI/ML-based CSI reporting.
UE/NWは、下記選択肢1-1/1-2に従ってもよい。 The UE/NW may follow options 1-1/1-2 below.
《選択肢1-1》
UEは、特定の時間リソース(例えば、時間ウィンドウ)内に入力用RSリソースが配置される場合、当該入力用RSリソースを用いてCSIの測定/保存を行ってもよい。
《Option 1-1》
The UE may measure/store CSI using an input RS resource if the input RS resource is located within a particular time resource (eg, a time window).
当該時間リソース(例えば、時間ウィンドウ)の開始/終了タイミング(例えば、スロット/シンボル)が、UEに対して設定/指示されてもよい。当該設定/指示は、下記補足2に記載される少なくとも1つの方法に従って行われてもよい。 The start/end timing (e.g., slot/symbol) of the time resource (e.g., time window) may be set/instructed to the UE. The setting/instruction may be performed according to at least one of the methods described in Supplementary Note 2 below.
また、当該時間リソース(例えば、時間ウィンドウ)の開始/終了タイミング(例えば、スロット/シンボル)が予め仕様で規定されてもよい(UEに対して、設定/指示されなくてもよい)。例えば、時間ウィンドウの終了タイミングは、現在のスロットであってもよい。 Furthermore, the start/end timing (e.g., slot/symbol) of the time resource (e.g., time window) may be specified in advance (it does not have to be set/instructed to the UE). For example, the end timing of the time window may be the current slot.
選択肢1-1によれば、時間リソースに基づいて適切に入力用RSリソースを決定することができる。 Option 1-1 allows the input RS resource to be appropriately determined based on the time resource.
《選択肢1-2》
UEは、CSI測定/保存の契機のためのイベントについて設定/指示されてもよい。UEは、当該設定/指示されるイベントに基づいて、CSIの測定/保存を行うことを判断してもよい。
《Option 1-2》
The UE may be configured/instructed as to an event for triggering CSI measurement/storage, and the UE may determine to measure/storage CSI based on the configured/instructed event.
当該設定/指示は、下記補足2に記載される少なくとも1つの方法に従って行われてもよい。 The setting/instruction may be performed according to at least one of the methods described in Supplementary Note 2 below.
当該イベントは、例えば、UEがモニタするAI/MLモデルの性能が、(特定の期間/タイミング/インスタンスにおいて)特定の閾値より低くなる場合であってもよい。 The event may be, for example, when the performance of the AI/ML model monitored by the UE falls below a certain threshold (at a particular time period/timing/instance).
当該特定の期間/タイミング/インスタンス/閾値は、予め仕様で規定されてもよいし、下記補足2に記載される少なくとも1つの方法に基づいて設定/指示されてもよい。 The specific period/timing/instance/threshold may be predefined in the specifications, or may be set/indicated based on at least one of the methods described in Supplementary Note 2 below.
なお、本開示において、UEによる第1のモニタリングの開始タイミング/期間は、予め仕様で規定されてもよいし、NWから上位レイヤシグナリング(RRC/MAC CE)/DCIを用いて設定/指示されてもよいし、UE能力の報告に基づいて決定されてもよいし、UEの実装に依存してもよいし、これらの少なくとも2つの組み合わせに基づいて決定されてもよい。 In the present disclosure, the start timing/period of the first monitoring by the UE may be specified in advance in the specifications, may be set/instructed from the network using higher layer signaling (RRC/MAC CE)/DCI, may be determined based on a report of the UE capabilities, may depend on the UE implementation, or may be determined based on a combination of at least two of these.
また、当該イベントは、例えば、UEが、スケジュールドPDSCHの受信処理(例えば、復号)を、(ある期間において)特定の回数失敗する場合であってもよい。 The event may also be, for example, when the UE fails to receive (e.g. decode) a scheduled PDSCH a certain number of times (over a certain period of time).
当該特定の回数は、1回又は複数(例えば、(連続する/非連続の)N回)であってもよい。当該Nは、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されてもよい。 The particular number of times may be one or more (e.g., N times (consecutive/non-consecutive)). N may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
また、当該イベントは、例えば、UEが、トリガ信号を受信する場合であってもよい。当該トリガ信号は、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されてもよい。 The event may also be, for example, when the UE receives a trigger signal. The trigger signal may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
上記選択肢1-1/1-2において、UEは、下記補足2に記載される少なくとも1つの方法に従って、機能性(及び特定の条件)、モデルID、及び、CSI報告インデックスの少なくとも1つを設定/指示されてもよい。UEは、設定/指示される1つ又は複数の機能性/モデルID/CSI報告インデックスに対応する入力用RSリソース(のみ)を、CSI-Hとして利用してもよい。 In the above options 1-1/1-2, the UE may be configured/instructed on at least one of the functionality (and specific conditions), model ID, and CSI reporting index according to at least one method described in Supplementary Note 2 below. The UE may use (only) the input RS resource corresponding to one or more configured/instructed functionality/model ID/CSI reporting index as CSI-H.
また、上記選択肢1-1/1-2において、UEは、特定の個数(例えば、M個)を超える(又は、特定の個数以上の)CSI-Hが、NWに対して報告されないと想定/判断してもよい。言い換えれば、UEは、最大M個(又は、M-1個)のヒストリカルCSIを取得/保存してもよい。この方法によれば、UEが保存するCSIの個数を適切に制御することができる。 Furthermore, in the above options 1-1/1-2, the UE may assume/judge that more than a certain number (e.g., M) of CSI-H (or equal to or greater than a certain number) will not be reported to the NW. In other words, the UE may acquire/store up to M (or M-1) pieces of historical CSI. According to this method, the number of CSIs stored by the UE can be appropriately controlled.
当該Mは、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されてもよいし、下記補足3に記載される少なくとも1つの方法に従ってUEによって報告されてもよい。 The M may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below, or may be reported by the UE according to at least one of the methods described in Supplementary Note 3 below.
例えば、UEは、NWに報告されるCSI-Hが、最新のスロット(時間スロット)において測定されたCSIであると想定してもよい。 For example, the UE may assume that the CSI-H reported to the NW is the CSI measured in the latest slot (time slot).
以上説明した第1の実施形態によれば、ヒストリカルCSI報告の準備(例えば、測定/保存)に係る設定/UE動作を適切に規定することができる。 According to the first embodiment described above, it is possible to appropriately specify settings/UE operations related to preparation (e.g., measurement/storage) of historical CSI reporting.
<第2の実施形態>
第2の実施形態は、NWにおける第2のモニタリングの要求に関する設定とUE動作とに関する。
Second Embodiment
The second embodiment relates to configuration and UE operation regarding a request for second monitoring in the NW.
UEは、NWから、当該設定、及び、当該要求のトリガ信号の少なくとも1つを受信してもよい。 The UE may receive at least one of the setting and a trigger signal for the request from the NW.
当該設定/トリガ信号は、下記補足2に記載される少なくとも1つの方法に従って送信されてもよい。 The configuration/trigger signal may be transmitted according to at least one of the methods described in Supplementary Note 2 below.
当該設定は、例えば、特定の条件(例えば、モニタKPIの閾値、収集されたGT CSIの設定量、CSIのタイプ(例えば、周期的/非周期的/セミパーシステント)の少なくとも1つ)に関する情報、第2のモニタリングに関するイベント報告のトリガ、及び、報告用のリソースに関する情報、の少なくとも1つを含んでもよい。 The configuration may include, for example, at least one of information regarding a particular condition (e.g., at least one of thresholds for the monitored KPIs, a set amount of collected GT CSI, and a type of CSI (e.g., periodic/non-periodic/semi-persistent)), a trigger for an event report regarding the second monitoring, and information regarding resources for reporting.
UEは、特定の方法を用いて第2のモニタリングに関するイベント報告を行ってもよい。 The UE may report an event regarding the second monitoring using a specific method.
UEは、特定の条件に基づいて、下記選択肢2-1-1/2-1-2に係る動作を行ってもよい。 The UE may take the action described in Options 2-1-1/2-1-2 below based on certain conditions.
当該特定の条件は、例えば、下記補足2に記載される少なくとも1つの方法に従って設定されてもよい。 The specific conditions may be set, for example, according to at least one of the methods described in Supplementary Note 2 below.
《選択肢2-1-1》
UEは、設定される条件が満たされる場合、特定のメッセージ(例えば、メッセージAと呼ばれてもよい)の報告を行ってもよい。
《Option 2-1-1》
The UE may report a specific message (which may be referred to as message A, for example) if a set condition is met.
当該特定のメッセージは、例えば、下記補足3に記載される少なくとも1つの方法に従って送信されてもよい。 The particular message may be sent, for example, according to at least one of the methods described in Supplementary Note 3 below.
当該特定のメッセージは、例えば、第2のモニタリングのための条件が満たされたことをNWに通知するためのメッセージであってもよい。 The particular message may be, for example, a message to notify the NW that the conditions for the second monitoring have been met.
選択肢2-1-1によれば、第2のモニタリングに関するトリガ動作を適切に行うことができる。 Option 2-1-1 allows the trigger operation related to the second monitoring to be performed appropriately.
《選択肢2-1-2》
UEは、設定される条件が満たされたか否かに関する状態を報告してもよい。
《Option 2-1-2》
The UE may report a status regarding whether the set conditions are met or not.
当該報告は、例えば、下記補足3に記載される少なくとも1つの方法に従って送信されてもよい。 The report may be sent, for example, according to at least one of the methods described in Supplementary Note 3 below.
例えば、UEは、第2のモニタリングが必要か否かを示すバイナリ状態を示す情報(例えば、1ビットの情報)を送信してもよい。 For example, the UE may transmit information (e.g., one bit of information) indicating a binary state indicating whether second monitoring is required or not.
選択肢2-1-2によれば、第2のモニタリングに関するトリガ動作を適切に行うことができる。 Option 2-1-2 allows the trigger operation related to the second monitoring to be performed appropriately.
選択肢2-1-1における特定のメッセージ、及び、選択肢2-1-2における報告の少なくとも一方は、例えば、AI/MLベースドCSIフィードバックにおける専用のフィールドを用いて報告されてもよい。 At least one of the specific messages in option 2-1-1 and the reports in option 2-1-2 may be reported, for example, using a dedicated field in AI/ML-based CSI feedback.
また、選択肢2-1-1における特定のメッセージ、及び、選択肢2-1-2における報告の少なくとも一方は、例えば、既存(Rel.18/19/20/21までに規定される)方法/内容の組み合わせ(例えば、CQI/RIの組み合わせ、又は、PMIの特別値(例えば、情報ビットの全て又は一部が特定の値(例えば、0)にセットされるPMI))、を用いて送信されてもよい。 Furthermore, at least one of the specific messages in option 2-1-1 and the reports in option 2-1-2 may be transmitted using, for example, an existing (defined by Rel. 18/19/20/21) method/content combination (e.g., a CQI/RI combination, or a special value of PMI (e.g., a PMI in which all or part of the information bits are set to a specific value (e.g., 0))).
また、選択肢2-1-1における特定のメッセージ、及び、選択肢2-1-2における報告の少なくとも一方は、例えば、モニタリング報告における専用フィールド、又は、モニタリング報告における特別値を用いて送信されてもよい。 Furthermore, at least one of the specific message in option 2-1-1 and the report in option 2-1-2 may be transmitted using, for example, a dedicated field in the monitoring report or a special value in the monitoring report.
また、選択肢2-1-1における特定のメッセージ、及び、選択肢2-1-2における報告の少なくとも一方は、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されるリソースを用いて送信されてもよい。 Furthermore, the specific message in option 2-1-1 and/or the report in option 2-1-2 may be sent using resources configured/instructed according to at least one of the methods described in Supplementary Note 2 below.
また、本実施形態における特定の条件は、例えば、下記選択肢2-2-1から2-2-4の少なくとも1つであってもよい。 Furthermore, the specific condition in this embodiment may be, for example, at least one of the following options 2-2-1 to 2-2-4.
《選択肢2-2-1》
特定の条件は、例えば、UEがモニタするメトリックが、(特定の期間/タイミング/インスタンスにおいて)特定の閾値より高い/低い(又は、以上/以下である)ことであってもよい。
《Option 2-2-1》
A particular condition may be, for example, that a metric monitored by the UE is higher/lower (or greater than or equal to/less than) a particular threshold (at a particular time period/timing/instance).
当該メトリックは、例えば、AI/MLモデル性能に関連するメトリックであってもよい。 The metric may be, for example, a metric related to AI/ML model performance.
当該特定の閾値は、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されてもよい。 The particular threshold may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
《選択肢2-2-2》
特定の条件は、例えば、UEが、スケジュールドPDSCHの受信処理(例えば、復号)を、(ある期間において)特定の回数失敗することであってもよい。
《Option 2-2-2》
The particular condition may, for example, be that the UE fails to process (eg decode) the scheduled PDSCH a particular number of times (in a certain period of time).
当該特定の回数は、1回又は複数(例えば、(連続する/非連続の)L回)であってもよい。当該Lは、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されてもよい。 The particular number of times may be one or more (e.g., L times (consecutive/non-consecutive)). L may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
《選択肢2-2-3》
特定の条件は、例えば、特定の方法(例えば、周期的/非周期的/セミパーシステント)を用いてCSI報告をするようトリガされることであってもよい。
《Option 2-2-3》
The particular condition may be, for example, a trigger to report CSI using a particular method (eg, periodic/aperiodic/semi-persistent).
当該トリガは、下記補足2に記載される少なくとも1つの方法に従って通知されてもよい。 The trigger may be notified according to at least one of the methods described in Supplementary Note 2 below.
《選択肢2-2-4》
特定の条件は、例えば、UEが特定の個数(例えば、K)のCSI-Hを取得/保存/所有することであってもよい。
《Option 2-2-4》
The particular condition may be, for example, that the UE acquires/stores/possesses a particular number (eg, K) of CSI-H.
当該Kは、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されてもよい。 K may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
以上説明した第2の実施形態によれば、NWにおける第2のモニタリングに係るUE設定及びUE動作を適切に規定することができる。 According to the second embodiment described above, it is possible to appropriately define UE settings and UE operations related to the second monitoring in the network.
<第3の実施形態>
第3の実施形態は、ヒストリカルCSI報告用のスケジュール及びUE動作に関する。
Third Embodiment
A third embodiment relates to schedules and UE behavior for historical CSI reporting.
UEは、NWから、ヒストリカルGT CSIの符号化/量子化/圧縮/報告に関する設定/指示を受信してもよい。 The UE may receive configurations/instructions from the NW regarding encoding/quantization/compression/reporting of historical GT CSI.
当該設定/指示は、例えば、下記補足2に記載される少なくとも1つの方法に従って送信されてもよい。 The settings/instructions may be transmitted, for example, according to at least one of the methods described in Supplementary Note 2 below.
当該設定/指示は、例えば、圧縮されるヒストリカルGT CSIフィードバックの生成に関するパラメータ、及び、報告用リソースの少なくとも1つを含んでもよい。 The settings/instructions may include, for example, at least one of parameters for generating compressed historical GT CSI feedback and reporting resources.
UEは、特定のトリガ/設定/指示に基づいて、CSI-Hを報告してもよい。 The UE may report CSI-H based on specific triggers/settings/instructions.
当該特定のトリガ/設定/指示は、例えば、下記補足2に記載される少なくとも1つの方法に従って行われてもよい。 The particular trigger/setting/instruction may be performed, for example, according to at least one of the methods described in Supplementary Note 2 below.
当該特定のトリガ/設定/指示は、例えば、以下の少なくとも1つに関する情報を含んでもよい:
・報告されるCSI-Hの数。
・報告用のリソース/チャネル。
・各リソース/チャネル単位でのCSI-Hの報告数。
・CSI-Hの量子化/圧縮/符号化方法、及び、当該方法に関するパラメータの少なくとも一方。
・CSI報告インデックス/CSIリソースインデックス。
The particular triggers/settings/instructions may, for example, include information regarding at least one of the following:
Number of CSI-Hs reported.
-Reporting resources/channels.
Number of CSI-H reports for each resource/channel.
CSI-H quantization/compression/encoding methods and/or parameters related to said methods.
- CSI Report Index/CSI Resource Index.
上記の情報をUEに通知することで、適切な数、適切なチャネル/リソース、適切な量子化/圧縮/符号化方法等を用いてCSI-Hの報告を行うことができる。 By notifying the UE of the above information, CSI-H can be reported using the appropriate number, appropriate channels/resources, appropriate quantization/compression/encoding methods, etc.
UEは、(例えば、デフォルトで)全てのCSI-H(N個の保存するCSI-Hのうち、N個のCSI-Hの全て)を報告してもよい。 The UE may (e.g., by default) report all CSI-Hs (all N CSI-Hs out of N stored CSI-Hs).
UEは、当該特定のトリガ/設定/指示に、報告されるCSI-Hの数に関する情報、及び、各リソース/チャネル単位でのCSI-Hの報告数に関する情報の少なくとも一方が含まれない場合に、全てのCSI-H(N個の保存するCSI-Hのうち、N個のCSI-Hの全て)を報告してもよい。UEは、当該特定のトリガ/設定/指示に、報告されるCSI-Hの数に関する情報、及び、各リソース/チャネル単位でのCSI-Hの報告数に関する情報の少なくとも一方が含まれる場合に、これらの情報に基づく数のCSI-Hを報告してもよい。 The UE may report all CSI-H (all N CSI-Hs out of N stored CSI-Hs) when the specific trigger/setting/instruction does not include at least one of information regarding the number of CSI-Hs to be reported and information regarding the number of CSI-Hs to be reported for each resource/channel. The UE may report a number of CSI-Hs based on this information when the specific trigger/setting/instruction includes at least one of information regarding the number of CSI-Hs to be reported and information regarding the number of CSI-Hs to be reported for each resource/channel.
UEが保存するN個のCSI-Hのうち、M個のCSI-Hを報告する場合、UEは、時間的に新しいM個のCSI-Hを報告してもよい。 When reporting M CSI-Hs out of the N CSI-Hs stored by the UE, the UE may report the M most recent CSI-Hs.
UEは、当該特定のトリガ/設定/指示に従って、特定の方法(例えば、周期的/非周期的/セミパーシステント)を用いてCSI-Hを報告してもよい。 The UE may report CSI-H using a specific method (e.g. periodic/aperiodic/semi-persistent) according to the specific trigger/configuration/instruction.
当該特定のトリガ/設定/指示によってCSI-H報告にCSI報告インデックスが含まれてもよい。このとき、UEは、対応するCSI報告設定に、1つ又は複数のPMI報告に関する指示が含まれると想定/期待してもよい。 The specific trigger/setting/instruction may cause the CSI-H report to include a CSI report index. The UE may then assume/expect that the corresponding CSI reporting configuration includes instructions for one or more PMI reports.
UEは、複数のタイミングにおいてCSI-Hの報告を行うことを想定/期待しなくてもよい。 The UE does not need to assume/expect CSI-H to be reported at multiple times.
UEは、複数のタイミングにおいてCSI-Hの報告を行うことを想定/期待してもよい。 The UE may assume/expect to report CSI-H at multiple times.
UEにおいて利用可能なCSI-Hが存在しない場合、UEは、CSI-Hの報告をトリガされることを想定/期待しなくてもよい。 If there is no CSI-H available in the UE, the UE may not assume/expect a CSI-H report to be triggered.
以上説明した第3の実施形態によれば、CSI報告についてのスケジュール(トリガ/設定/指示)及び対応するUE動作を適切に規定することができる。 According to the third embodiment described above, it is possible to appropriately define the schedule (trigger/setting/instruction) for CSI reporting and the corresponding UE operation.
<第4の実施形態>
第4の実施形態は、ヒストリカルCSI報告の生成及びUE動作に関する。
Fourth Embodiment
A fourth embodiment relates to historical CSI report generation and UE operation.
UEは、特定の設定に基づいて、特定の方法を用いて、複数のGT CSIを個別に(separately)/共同で(jointly)符号化/量子化/圧縮してもよい。 The UE may encode/quantize/compress multiple GT CSIs separately/jointly using a specific method based on a specific configuration.
当該特定の方法は、例えば、Lempel-Zivアルゴリズム、共通の空間ドメイン/周波数ドメインベクトルと微分係数とを用いた特定のタイプ(例えば、拡張タイプ2(eType II))の拡張、の少なくとも一方に基づく方法であってもよい。 The particular method may be, for example, based on at least one of the following: the Lempel-Ziv algorithm, a particular type of extension (e.g., eType II) using a common spatial domain/frequency domain vector and derivatives.
UEは、特定の方法を用いて設定/指示されたリソースを用いて、符号化/量子化/圧縮されたヒストリカルGT CSIを送信してもよい。 The UE may transmit coded/quantized/compressed historical GT CSI using resources configured/instructed using a specific method.
UEは、上記第3の実施形態に記載される少なくとも1つの方法を用いて設定/指示されたCSI-H報告のための、CSI(CSIの内容/ビット/情報を意味してもよい)を生成してもよい。 The UE may generate CSI (which may mean CSI content/bits/information) for CSI-H reporting configured/instructed using at least one method described in the third embodiment above.
本開示において、CSI、CSIの内容(contents)、CSIの要素、CSIの系列、CSIのビット、CSIの情報ビット、は互いに読み替えられてもよい。 In this disclosure, CSI, CSI contents, CSI elements, CSI sequence, CSI bits, and CSI information bits may be interpreted as interchangeable.
UEは、下記選択肢4-1から4-4の少なくとも1つに従って、CSIの生成を行ってもよい。 The UE may generate CSI according to at least one of options 4-1 to 4-4 below.
《選択肢4-1》
UEは、CSI-H内の各要素を特定のビット幅でスカラー量子化することによって、各CSI-H(CSI-Hのコンテンツ)を個別に生成してもよい。
Option 4-1
The UE may generate each CSI-H (CSI-H content) separately by scalar quantizing each element in the CSI-H with a particular bit-width.
当該特定のビット幅は、例えば、下記補足2に記載される少なくとも1つの方法に従って設定/指示されてもよい。 The particular bit width may be set/indicated, for example, according to at least one of the methods described in Supplementary Note 2 below.
《選択肢4-2》
UEは、ベクトル量子化を用いて、各CSI-H(CSI-Hのコンテンツ)を個別に生成してもよい。
Option 4-2
The UE may generate each CSI-H (CSI-H content) separately using vector quantization.
例えば、UEは、各CSI-Hについて、タイプ2(Type II)、拡張タイプ2(eType II)、及び、拡張パラメータコンビネーション(enhanced parameter combinations(PC))を伴う拡張タイプ2(eType II)の少なくとも1つのフィードバックコンテンツを個別に生成してもよい。 For example, the UE may generate at least one feedback content of Type II, enhanced Type II, and enhanced Type II with enhanced parameter combinations (PC) for each CSI-H separately.
《選択肢4-3》
UEは、まず上記選択肢4-1/4-2を適用してもよい。
Option 4-3
The UE may first apply options 4-1/4-2 above.
次いで、UEは、設定される圧縮パラメータを用いて、複数(例えば、全て)のCSI-Hの生成コンテンツを圧縮してもよい。当該圧縮は、例えば、設定される圧縮パラメータ(例えば、圧縮率)を用いるLempel-Ziv圧縮であってもよい。 The UE may then compress multiple (e.g., all) CSI-H generated contents using the configured compression parameters. The compression may be, for example, Lempel-Ziv compression using the configured compression parameters (e.g., compression ratio).
当該圧縮パラメータは、例えば、下記補足2に記載される少なくとも1つの方法に従って設定されてもよい。 The compression parameters may be set, for example, according to at least one of the methods described in Supplementary Note 2 below.
《選択肢4-4》
UEは、1つのリソース(特定のリソース単位)において報告される複数(例えば、全て)のCSI-Hについて、ある量子化/圧縮方法を用いてCSI-H(CSI-Hの内容)を共同で生成してもよい。
《Option 4-4》
The UE may jointly generate the CSI-H (CSI-H content) using a certain quantization/compression method for multiple (e.g., all) CSI-Hs reported in one resource (a particular resource unit).
また、UEは、1つのリソース(特定のリソース単位)において報告されるCSI-Hを複数のグループに分割してもよい。UEは、各グループについて、ある量子化/圧縮方法を用いてCSI-H(CSI-Hの内容)を生成してもよい。 The UE may also divide the CSI-H reported in one resource (specific resource unit) into multiple groups. For each group, the UE may generate the CSI-H (CSI-H content) using a certain quantization/compression method.
当該ある量子化/圧縮方法は、例えば、既存のタイプのCSI(例えば、タイプ2/拡張タイプ2CSI)から拡張された方法であってもよい。 The quantization/compression method may be, for example, an extension of an existing type of CSI (e.g., Type 2/Extended Type 2 CSI).
例えば、まず、UEは、設定されるパラメータを有するCSIフィードバックコンテンツ(例えば、タイプ2、拡張タイプ2、及び、拡張パラメータコンビネーションを伴う拡張タイプ2の少なくとも1つのCSI)を生成してもよい。 For example, the UE may first generate CSI feedback content having the configured parameters (e.g., at least one CSI of type 2, extended type 2, and extended type 2 with extended parameter combination).
例えば、UEは、既存の仕様(例えば、Rel.17/18まで)に規定されるコードブックに従って、CSIの要素(例えば、in(nは1又は2))を生成してもよい。 For example, the UE may generate an element of CSI (eg, i n (n is 1 or 2)) according to a codebook defined in existing specifications (eg, up to Rel. 17/18).
当該CSIの要素(例えば、in(nは1又は2))は、1つのCSI-Hを表すために用いられてもよいし、複数のCSI-Hを表すために用いられてもよい。 The CSI element (eg, i n (n is 1 or 2)) may be used to represent one CSI-H or multiple CSI-Hs.
当該CSIの要素(例えば、in(nは1又は2))が1つのCSI-Hを表すために用いられない場合(言い換えれば、当該CSIの要素が複数のCSI-Hを表すために用いられる場合)、UEは、各CSI-Hのための要素に関する1つ又は一対の差分値(例えば、delta-in(nは1又は2))を生成してもよい。 If the CSI element (e.g., i n (n is 1 or 2)) is not used to represent one CSI-H (in other words, if the CSI element is used to represent multiple CSI-Hs), the UE may generate one or a pair of differential values (e.g., delta-i n (n is 1 or 2)) for the element for each CSI-H.
また、UEは、当該CSIの要素(例えば、in(nは1又は2))によって直接表されるCSI-H以外の各CSI-H用に、各CSI-Hのための要素に関する1つ又は一対の差分値(例えば、delta-in(nは1又は2))を生成してもよい。 The UE may also generate one or a pair of differential values (e.g., delta-i n (n is 1 or 2)) for each CSI-H other than the CSI-H directly represented by the CSI element (e.g., i n (n is 1 or 2)).
例えば、delta-i1及びdelta-i2は、それぞれi1及びi2として生成される共通部分に対する各CSI-Hの差分を示してもよい。 For example, delta-i 1 and delta-i 2 may denote the delta of each CSI-H relative to the common portion generated as i 1 and i 2, respectively.
このような差分値を利用することで、CSI-Hの空間ドメインベースベクトルの一部を変更したり、周波数ドメインベースベクトルの一部を変更したり、組み合わせ係数の一部を変更したりすることができる。 By using such difference values, it is possible to change part of the CSI-H spatial domain base vectors, change part of the frequency domain base vectors, or change part of the combination coefficients.
例えば、delta-inは、inに対応する全てのフィールドを含まなくてもよい。言い換えれば、全てのCSI-Hについて、ある要素については共通であり、他の要素については差分値を利用して変更可能な構成としてもよい。 For example, delta-i n may not include all fields corresponding to i n , in other words, some elements may be common to all CSI-H, and other elements may be configurable using differential values.
UEは、in(nは1又は2)及び全てのdelta-in(nは1又は2)を含むCSI-Hの要素(最終的な要素)を生成してもよい。 The UE may generate CSI-H elements (final elements) that include i n (n is 1 or 2) and all delta-i n (n is 1 or 2).
図11は、選択肢4-4に係るCSIの要素の生成の一例を示す図である。図11に示す例において、UEは、複数のCSIとして、CSI1からCSI3を生成する。 FIG. 11 is a diagram showing an example of the generation of CSI elements relating to option 4-4. In the example shown in FIG. 11, the UE generates CSI1 to CSI3 as multiple pieces of CSI.
図11に示す例において、UEは、CSI1のPMI1を、(例えば、図11に示す例では、Rel.18で規定される)拡張タイプ2のコードブックに基づいて生成する。図11に示す例では、CSI1の要素として、i1=[i1,1 i1,2 i1,5 i1,6,1 i1,7,1 i1,8,1]と、i2=[i2,3,1 i2,4,1 i2,5,1]とが生成される。 In the example shown in Fig. 11, the UE generates PMI1 of CSI1 based on the codebook of extended type 2 (defined in Rel. 18 in the example shown in Fig. 11, for example). In the example shown in Fig. 11, i1 = [ i1,1 i1,2 i1,5 i1,6,1 i1,7,1 i1,8,1 ] and i2 = [ i2,3,1 i2,4,1 i2,5,1 ] are generated as elements of CSI1.
図11に示す例において、UEは、CSI2のPMI2の生成において、CSI1についてのi1を再利用する(言い換えれば、空間ドメイン/周波数ドメインベースベクトルと、報告される係数とが再利用される)。このとき、UEは、CSI2のPMI2の生成において、PMI1のi2との差分値delta-i2=[delta-i2,3,1 delta-i2,4,1 delta-i2,5,1]を生成する。なお、再利用される部分は報告されなくてもよい。 In the example shown in Fig. 11, the UE reuses i1 for CSI1 in generating PMI2 for CSI2 (in other words, the spatial domain/frequency domain base vector and the reported coefficient are reused). At this time, the UE generates a difference value delta- i2 = [delta- i2,3,1 delta- i2,4,1 delta- i2,5,1 ] from i2 for PMI1 in generating PMI2 for CSI2. Note that the reused part does not need to be reported.
このようにPMI1のi2との振幅/位相の差分値を利用することで、量子化のためのビット数を削減することができる。 In this way, by using the difference value of the amplitude/phase between PMI1 and i2 , it is possible to reduce the number of bits for quantization.
さらに、図11に示す例において、UEは、CSI3のPMI3の生成において、CSI1についての[i1,1 i1,2 i1,5 i1,6,1]を再利用する(言い換えれば、空間ドメイン/周波数ドメインベースベクトルが再利用され、報告される係数が再利用されない)。このとき、UEは、CSI2のPMI2の生成において、PMI1のi1に係る[i1,7,1 i1,8,1]の差分値delta-i1=[delta-i1,7,1 delta-i1,8,1]と、i2=[i2,3,1 i2,4,1 i2,5,1]とを生成する。なお、再利用される部分は報告されなくてもよい。 Furthermore, in the example shown in Fig. 11, the UE reuses [ i1,1 i1,2 i1,5 i1,6,1] for CSI1 in generating PMI3 for CSI3 (in other words, the spatial domain/frequency domain base vector is reused, and the reported coefficient is not reused). At this time, the UE generates differential values delta-i1 = [delta - i1,7,1 delta - i1,8,1 ] and i2 = [ i2,3,1 i2,4,1 i2,5,1 ] of [ i1,7,1 i1,8,1 ] for i1 of PMI1 in generating PMI2 for CSI2. Note that the reused part does not need to be reported.
なお、UEは、CSI3の生成において、どの係数を報告をするかを示すための情報(例えば、ビットマップ)を報告してもよい。このように構成することで、拡張タイプ2のコードブックと同様に、新たな係数の振幅/位相をより高い分解能で報告することができる。 The UE may also report information (e.g., a bitmap) indicating which coefficients are to be reported when generating CSI3. This configuration allows the amplitude/phase of new coefficients to be reported with higher resolution, similar to the extended type 2 codebook.
また、UEは、予測されるPMI用の(Rel.18)拡張タイプ2コードブック、又は、予測されるPMI用の(Rel.18)拡張タイプ2コードブックの更なる拡張機能を利用して、複数のCSI-Hを共同で量子化してもよい。 The UE may also jointly quantize multiple CSI-Hs using the (Rel. 18) extended type 2 codebook for predicted PMI or further extensions of the (Rel. 18) extended type 2 codebook for predicted PMI.
当該更なる拡張機能は、既存の仕様(例えば、Rel.17/18)までに規定される、ドップラードメイン(DD)/時間ドメイン(TD)の基底ベクトル(DFT基底ベクトル)の長さ(DD/TDの基底の数、N4と呼ばれてもよい)より大きなN4値をサポートしてもよい。このように構成することで、8つより大きい数のCSI-Hをサポートすることができる。 The further extension function may support N4 values greater than the length of the Doppler domain (DD)/time domain (TD) basis vectors (DFT basis vectors) (also called the number of DD/TD bases, N4) defined in existing specifications (e.g., Rel. 17/18). By configuring in this way, it is possible to support a number of CSI-Hs greater than eight.
また、当該更なる拡張機能は、非固定値のDD単位の継続時間(例えば、d)がサポートされてもよい。このとき、UEは、報告の一部として、CSI-H間の実際の継続時間dsを報告してもよい。 This further extension may also support a non-fixed duration in DD units (e.g. d), in which case the UE may report the actual duration ds between CSI-H as part of the reporting.
また、当該更なる拡張機能は、既存の仕様(例えば、Rel.17/18)までに規定される、DD基底ベクトルの数(Qと呼ばれてもよい)より大きなQ値をサポートしてもよい。このように構成することで、より多くのドップラードメインベースベクトルをサポートすることができ、CSI精度の向上させることができる。 Furthermore, the further extension function may support a Q value (which may also be referred to as Q) that is larger than the number of DD basis vectors defined in existing specifications (e.g., Rel. 17/18). By configuring in this way, it is possible to support more Doppler domain base vectors, thereby improving the CSI accuracy.
以上説明した第4の実施形態によれば、ヒストリカルCSI報告の生成を適切に実施することができる。 According to the fourth embodiment described above, historical CSI reports can be generated appropriately.
<バリエーション>
UEは、上記第1の実施形態に基づいて、CSI-Hを準備(例えば、取得/保存/生成/量子化/圧縮)してもよい。このとき、UEは、CSI-H以外のCSIの送信を設定/指示されることを想定/期待しなくてもよい。
<Variations>
The UE may prepare (e.g., acquire/store/generate/quantize/compress) the CSI-H based on the first embodiment, without assuming/hoping to be configured/instructed to transmit any CSI other than the CSI-H.
UEは、上記第2の実施形態における条件に基づいて、イベントトリガに関する条件が満たされるか否かを判断してもよい。 The UE may determine whether the conditions for the event trigger are met based on the conditions in the second embodiment described above.
例えば、トリガに関する条件が満たされた場合、UEは、特定のULチャネル(例えば、PUSCH)を用いてCSI-Hの報告を行ってもよい。この場合、UEは、当該ULチャネルリソースを要求するためのスケジューリング要求を報告し、次いで、NWからの指示(例えば、(ULグラント)DCI)に基づいて、当該リソースを用いてCSI-Hの報告を行ってもよい。 For example, if a trigger condition is met, the UE may report CSI-H using a specific UL channel (e.g., PUSCH). In this case, the UE may report a scheduling request to request the UL channel resource, and then report CSI-H using the resource based on an instruction from the NW (e.g., (UL grant) DCI).
<補足>
[補足1:AIモデル情報]
本開示において、AIモデル情報は、以下の少なくとも1つを含む情報を意味してもよい:
・AIモデルの入力/出力の情報。
・AIモデルの入力/出力のための前処理/後処理の情報。
・AIモデルのパラメータの情報。
・AIモデルのための訓練情報(トレーニング情報)。
・AIモデルのための推論情報。
・AIモデルに関する性能情報。
<Additional Information>
[Supplement 1: AI model information]
In this disclosure, AI model information may mean information including at least one of the following:
・Information on input/output of AI model.
- Pre-processing/post-processing information for input/output of AI models.
・Information on AI model parameters.
- Training information for AI models.
-Inference information for AI models.
・Performance information about AI models.
ここで、上記AIモデルの入力/出力の情報は、以下の少なくとも1つに関する情報を含んでもよい:
・入力/出力データの内容(例えば、RSRP、SINR、チャネル行列(又はプリコーディング行列)における振幅/位相情報、到来角度(Angle of Arrival(AoA))に関する情報、放射角度(Angle of Departure(AoD))に関する情報、位置情報)。
・データの補助情報(メタ情報と呼ばれてもよい)。
・入力/出力データのタイプ(例えば、不変値(immutable value)、浮動小数点数)。
・入力/出力データのビット幅(例えば、各入力値について64ビット)。
・入力/出力データの量子化間隔(量子化ステップサイズ)(例えば、L1-RSRPについて、1dBm)。
・入力/出力データが取り得る範囲(例えば、[0、1])。
Here, the input/output information of the AI model may include information regarding at least one of the following:
Input/output data content (e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information).
- Supporting information for the data (may be called meta-information).
- The type of input/output data (e.g. immutable values, floating point numbers).
- Bit width of the input/output data (eg, 64 bits for each input value).
Quantization interval (quantization step size) of input/output data (eg, 1 dBm for L1-RSRP).
The range that the input/output data can take (e.g., [0, 1]).
なお、本開示において、AoAに関する情報は、到来方位角度(azimuth angle of arrival)及び到来天頂角度(zenith angle of arrival(ZoA))の少なくとも1つに関する情報を含んでもよい。また、AoDに関する情報は、例えば、放射方位角度(azimuth angle of departure)及び放射天頂角度(zenith angle of depature(ZoD))の少なくとも1つに関する情報を含んでもよい。 In the present disclosure, the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Furthermore, the information regarding AoD may include information regarding at least one of the azimuth angle of departure and the zenith angle of departure (ZoD).
本開示において、位置情報は、UE/NWに関する位置情報であってもよい。位置情報は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))を用いて得られる情報(例えば、緯度、経度、高度)、当該UEに隣接する(又はサービング中の)BSの情報(例えば、BS/セルの識別子(Identifier(ID))、BS-UE間の距離、UE(BS)から見たBS(UE)の方向/角度、UE(BS)から見たBS(UE)の座標(例えば、X/Y/Z軸の座標)など)、UEの特定のアドレス(例えば、Internet Protocol(IP)アドレス)などの少なくとも1つを含んでもよい。UEの位置情報は、BSの位置を基準とする情報に限られず、特定のポイントを基準とする情報であってもよい。 In the present disclosure, the location information may be location information regarding the UE/NW. The location information may include at least one of information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), information on the BS adjacent to (or serving) the UE (e.g., a BS/cell identifier (ID), a BS-UE distance, a direction/angle of the BS (UE) as seen from the UE (BS), coordinates of the BS (UE) as seen from the UE (BS) (e.g., coordinates on the X/Y/Z axes), etc.), a specific address of the UE (e.g., an Internet Protocol (IP) address), etc. The location information of the UE is not limited to information based on the position of the BS, and may be information based on a specific point.
位置情報は、自身の実装に関する情報(例えば、アンテナの位置(location/position)/向き、アンテナパネルの位置/向き、アンテナの数、アンテナパネルの数など)を含んでもよい。 The location information may include information about its implementation (e.g., location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
位置情報は、モビリティ情報を含んでもよい。モビリティ情報は、モビリティタイプを示す情報、UEの移動速度、UEの加速度、UEの移動方向などの少なくとも1つを示す情報を含んでもよい。 The location information may include mobility information. The mobility information may include information indicating at least one of the following: a mobility type, a moving speed of the UE, an acceleration of the UE, and a moving direction of the UE.
ここで、モビリティタイプは、固定位置UE(fixed location UE)、移動可能/移動中UE(movable/moving UE)、モビリティ無しUE(no mobility UE)、低モビリティUE(low mobility UE)、中モビリティUE(middle mobility UE)、高モビリティUE(high mobility UE)、セル端UE(cell-edge UE)、非セル端UE(not-cell-edge UE)などの少なくとも1つに該当してもよい。 Here, the mobility type may correspond to at least one of fixed location UE, movable/moving UE, no mobility UE, low mobility UE, middle mobility UE, high mobility UE, cell-edge UE, not-cell-edge UE, etc.
本開示において、(データのための)環境情報は、データが取得される/利用される環境に関する情報であってもよく、例えば、周波数情報(バンドIDなど)、環境タイプ情報(屋内(indoor)、屋外(outdoor)、Urban Macro(UMa)、Urban Micro(Umi)などの少なくとも1つを示す情報)、Line Of Site(LOS)/Non-Line Of Site(NLOS)を示す情報などに該当してもよい。 In the present disclosure, environmental information (for data) may be information regarding the environment in which the data is acquired/used, and may correspond to, for example, frequency information (such as a band ID), environmental type information (information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), information indicating Line Of Site (LOS)/Non-Line Of Site (NLOS), etc.
ここで、LOSは、UE及びBSが互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及びBSが互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。LOS/NLOSを示す情報は、ソフト値(例えば、LOS/NLOSの確率)を示してもよいし、ハード値(例えば、LOS/NLOSのいずれか)を示してもよい。 Here, LOS may mean that the UE and BS are in an environment where they can see each other (or there is no obstruction), and NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is an obstruction). Information indicating LOS/NLOS may indicate a soft value (e.g., the probability of LOS/NLOS) or a hard value (e.g., either LOS or NLOS).
本開示において、メタ情報は、例えば、AIモデルに適した入力/出力情報に関する情報、取得した/取得できるデータに関する情報などを意味してもよい。メタ情報は、具体的には、RS(例えば、CSI-RS/SRS/SSBなど)のビームに関する情報(例えば、各ビームの指向している角度、3dBビーム幅、指向しているビームの形状、ビームの数)、gNB/UEのアンテナのレイアウト情報、周波数情報、環境情報、メタ情報IDなどを含んでもよい。なお、メタ情報は、AIモデルの入力/出力として用いられてもよい。 In the present disclosure, meta-information may mean, for example, information regarding input/output information suitable for an AI model, information regarding data that has been acquired/can be acquired, etc. Specifically, meta-information may include information regarding beams of RS (e.g., CSI-RS/SRS/SSB, etc.) (e.g., the pointing angle of each beam, 3 dB beam width, the shape of the pointed beam, the number of beams), layout information of gNB/UE antennas, frequency information, environmental information, meta-information ID, etc. In addition, meta-information may be used as input/output of an AI model.
上記AIモデルの入力/出力のための前処理/後処理の情報は、以下の少なくとも1つに関する情報を含んでもよい:
・正規化(例えば、Zスコア正規化(標準化)、最小-最大(min-max)正規化)を適用するか否か。
・正規化のためのパラメータ(例えば、Zスコア正規化については平均/分散、最小-最大正規化については最小値/最大値)。
・特定の数値変換方法(例えば、ワンホットエンコーディング(one hot encoding)、ラベルエンコーディング(label encoding)など)を適用するか否か。
・訓練データとして用いられるか否かの選択ルール。
The pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following:
Whether to apply normalization (e.g., Z-score normalization, min-max normalization).
Parameters for normalization (eg, mean/variance for Z-score normalization, min/max for min-max normalization).
Whether to apply a specific numeric transformation method (e.g., one hot encoding, label encoding, etc.).
- Selection rule for whether or not to use as training data.
例えば、入力情報xに対して前処理としてZスコア正規化(xnew=(x-μ)/σ。ここで、μはxの平均、σは標準偏差)を行った正規化済み入力情報xnewをAIモデルに入力してもよく、AIモデルからの出力youtに後処理を掛けて最終的な出力yが得られてもよい。 For example, the input information x may be subjected to Z-score normalization (x new = (x - μ) / σ, where μ is the average of x and σ is the standard deviation) as pre-processing, and normalized input information x new may be input to the AI model, and the output y out from the AI model may be subjected to post-processing to obtain the final output y.
上記AIモデルのパラメータの情報は、以下の少なくとも1つに関する情報を含んでもよい:
・AIモデルにおける重み(例えば、ニューロンの係数(結合係数))情報。
・AIモデルの構造(structure)。
・モデルコンポーネントとしてのAIモデルのタイプ(例えば、Residual Network(ResNet)、DenseNet、RefineNet、トランスフォーマー(Transformer)モデル、CRBlock、回帰型ニューラルネットワーク(Recurrent Neural Network(RNN))、長・短期記憶(Long Short-Term Memory(LSTM))、ゲート付き回帰型ユニット(Gated Recurrent Unit(GRU)))。
・モデルコンポーネントとしてのAIモデルの機能(例えば、デコーダ、エンコーダ)。
The information of the parameters of the AI model may include information regarding at least one of the following:
- Weight information (e.g., neuron coefficients (connection coefficients)) in an AI model.
・Structure of the AI model.
- The type of AI model as a model component (e.g., Residual Network (ResNet), DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)).
- Functions of the AI model as model components (e.g., decoder, encoder).
なお、上記AIモデルにおける重み情報は、以下の少なくとも1つに関する情報を含んでもよい:
・重み情報のビット幅(サイズ)。
・重み情報の量子化間隔。
・重み情報の粒度。
・重み情報が取り得る範囲。
・AIモデルにおける重みのパラメータ。
・更新前のAIモデルからの差分の情報(更新する場合)。
・重み初期化(weight initialization)の方法(例えば、ゼロ初期化、ランダム初期化(正規分布/一様分布/切断正規分布に基づく)、Xavier初期化(シグモイド関数向け)、He初期化(整流化線形ユニット(Rectified Linear Units(ReLU))向け))。
In addition, the weight information in the AI model may include information regarding at least one of the following:
- Bit width (size) of the weight information.
Quantization interval of weight information.
- Granularity of weight information.
- The range of possible weight information.
・Weight parameters in AI models.
- Information on the difference from the AI model before the update (if updating).
- Method of weight initialization (e.g., zero initialization, random initialization (based on normal/uniform/truncated normal distribution), Xavier initialization (for sigmoid function), He initialization (for Rectified Linear Units (ReLU))).
また、上記AIモデルの構造は、以下の少なくとも1つに関する情報を含んでもよい:
・レイヤ数。
・レイヤのタイプ(例えば、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層)。
・レイヤ情報。
・時系列特有のパラメータ(例えば、双方向性、時間ステップ)。
・訓練のためのパラメータ(例えば、機能のタイプ(L2正則化、ドロップアウト機能など)、どこに(例えば、どのレイヤの後に)この機能を置くか)。
The structure of the AI model may also include information regarding at least one of the following:
・Number of layers.
- The type of layer (e.g., convolutional, activation, dense, normalization, pooling, attention).
・Layer information.
Time series specific parameters (e.g. bidirectionality, time step).
Parameters for training (e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
上記レイヤ情報は、以下の少なくとも1つに関する情報を含んでもよい:
・各レイヤにおけるニューロン数。
・カーネルサイズ。
・プーリング層/畳み込み層のためのストライド。
・プーリング方法(MaxPooling、AveragePoolingなど)。
・残差ブロックの情報。
・ヘッド(head)数。
・正規化方法(バッチ正規化、インスタンス正規化、レイヤ正規化など)。
・活性化関数(シグモイド、tanh関数、ReLU、リーキーReLUの情報、Maxout、Softmax)。
The layer information may include information regarding at least one of the following:
- The number of neurons in each layer.
・Kernel size.
- Stride for pooling/convolutional layers.
- Pooling method (MaxPooling, AveragePooling, etc.).
・Residual block information.
・Number of heads.
- Normalization method (batch normalization, instance normalization, layer normalization, etc.).
Activation functions (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
あるAIモデルは、別のAIモデルのコンポーネントとして含まれてもよい。例えば、あるAIモデルは、モデルコンポーネント#1であるResNet、モデルコンポーネント#2であるトランスフォーマーモデル、デンス層及び正規化層の順に処理が進むAIモデルであってもよい。 An AI model may be included as a component of another AI model. For example, an AI model may be an AI model in which processing proceeds in the order of model component #1 (ResNet), model component #2 (a transformer model), a dense layer, and a normalization layer.
上記AIモデルのための訓練情報は、以下の少なくとも1つに関する情報を含んでもよい:
・最適化アルゴリズムのための情報(例えば、最適化の種類(確率的勾配降下法(Stochastic Gradient Descent(SGD)))、AdaGrad、Adamなど)、最適化のパラメータ(学習率(learning rate)、モメンタム情報など)。
・損失関数の情報(例えば、損失関数の指標(metrics)に関する情報(平均絶対誤差(Mean Absolute Error(MAE))、平均二乗誤差(Mean Square Error(MSE))、クロスエントロピーロス、NLLLoss、Kullback-Leibler(KL)ダイバージェンスなど))。
・訓練用に凍結されるべきパラメータ(例えば、レイヤ、重み)。
・更新されるべきパラメータ(例えば、レイヤ、重み)。
・訓練用の初期パラメータであるべき(初期パラメータとして用いられるべき)パラメータ(例えば、レイヤ、重み)。
・AIモデルの訓練/更新方法(例えば、(推奨)エポック数、バッチサイズ、訓練に使用するデータ数)。
Training information for the AI model may include information regarding at least one of the following:
Information for the optimization algorithm (e.g. type of optimization (Stochastic Gradient Descent (SGD)), AdaGrad, Adam, etc.), parameters of the optimization (learning rate, momentum information, etc.).
Loss function information (e.g., information on the metrics of the loss function (Mean Absolute Error (MAE)), Mean Square Error (MSE)), Cross Entropy Loss, NLL Loss, Kullback-Leibler (KL) Divergence, etc.)).
- Parameters to be frozen for training (e.g. layers, weights).
- Parameters to be updated (e.g. layers, weights).
Parameters (e.g. layers, weights) that should be (are used as) initial parameters for training.
How to train/update the AI model (e.g., (recommended) number of epochs, batch size, number of data used for training).
上記AIモデルのための推論情報は、決定木の枝剪定(branch pruning)、パラメータ量子化、AIモデルの機能などに関する情報を含んでもよい。ここで、AIモデルの機能は、例えば、時間ドメインビーム予測、空間ドメインビーム予測、CSIフィードバック向けのオートエンコーダ、ビーム管理向けのオートエンコーダなどの少なくとも1つに該当してもよい。 The inference information for the AI model may include information regarding decision tree branch pruning, parameter quantization, and the function of the AI model. Here, the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, an autoencoder for CSI feedback, and an autoencoder for beam management.
CSIフィードバック向けのオートエンコーダは、以下のように用いられてもよい:
・UEは、エンコーダのAIモデルに、CSI/チャネル行列/プリコーディング行列を入力して出力される、エンコードされるビットを、CSIフィードバック(CSIレポート)として送信する。
・BSは、デコーダのAIモデルに、受信したエンコードされるビットを入力して出力される、CSI/チャネル行列/プリコーディング行列を再構成する。
An autoencoder for CSI feedback may be used as follows:
- The UE inputs the CSI/channel matrix/precoding matrix into the AI model of the encoder and transmits the encoded bits output as CSI feedback (CSI report).
- The BS reconstructs the CSI/channel matrix/precoding matrix, which is output as input to the AI model of the decoder using the received encoded bits.
空間ドメインビーム予測では、UE/BSは、AIモデルに、疎な(又は太い)ビームに基づく測定結果(ビーム品質。例えば、RSRP)を入力して、密な(又は細い)ビーム品質を出力してもよい。 In spatial domain beam prediction, the UE/BS may input measurement results (beam quality, e.g., RSRP) based on sparse (or thick) beams into an AI model to output dense (or thin) beam quality.
時間ドメインビーム予測では、UE/BSは、AIモデルに、時系列(過去、現在などの)測定結果(ビーム品質。例えば、RSRP)を入力して、将来のビーム品質を出力してもよい。 In time domain beam prediction, the UE/BS may input time series (past, present, etc.) measurement results (beam quality, e.g., RSRP) into an AI model and output future beam quality.
上記AIモデルに関する性能情報は、AIモデルのために定義される損失関数の期待値に関する情報を含んでもよい。 The performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
本開示におけるAIモデル情報は、AIモデルの適用範囲(適用可能範囲)に関する情報を含んでもよい。当該適用範囲は、物理セルID、サービングセルインデックスなどによって示されてもよい。適用範囲に関する情報は、上述の環境情報に含まれてもよい。 The AI model information in this disclosure may include information regarding the scope of application (scope of applicability) of the AI model. The scope of application may be indicated by a physical cell ID, a serving cell index, etc. Information regarding the scope of application may be included in the above-mentioned environmental information.
特定のAIモデルに関するAIモデル情報は、規格において予め定められてもよいし、ネットワーク(Network(NW))からUEに通知されてもよい。規格において規定されるAIモデルは、参照(reference)AIモデルと呼ばれてもよい。参照AIモデルに関するAIモデル情報は、参照AIモデル情報と呼ばれてもよい。 AI model information regarding a specific AI model may be predetermined in a standard, or may be notified to the UE from the network (NW). An AI model defined in a standard may be referred to as a reference AI model. AI model information regarding a reference AI model may be referred to as reference AI model information.
なお、本開示におけるAIモデル情報は、AIモデルを特定するためのインデックス(例えば、AIモデルインデックス、AIモデルID、モデルIDなどと呼ばれてもよい)を含んでもよい。本開示におけるAIモデル情報は、上述のAIモデルの入力/出力の情報などに加えて/の代わりに、AIモデルインデックスを含んでもよい。AIモデルインデックスとAIモデル情報(例えば、AIモデルの入力/出力の情報)との関連付けは、規格において予め定められてもよいし、NWからUEに通知されてもよい。 The AI model information in the present disclosure may include an index for identifying the AI model (e.g., may be called an AI model index, an AI model ID, a model ID, etc.). The AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above. The association between the AI model index and the AI model information (e.g., input/output information of the AI model) may be predetermined in a standard, or may be notified to the UE from the NW.
本開示におけるAIモデル情報は、AIモデルに関連付けられてもよく、AIモデル関連情報(relevant information)、単に関連情報などと呼ばれてもよい。AIモデル関連情報には、AIモデルを特定するための情報は明示的に含まれなくてもよい。AIモデル関連情報は、例えばメタ情報のみを含んだ情報であってもよい。 The AI model information in this disclosure may be associated with an AI model and may be referred to as AI model relevant information, simply relevant information, etc. The AI model relevant information does not need to explicitly include information for identifying the AI model. The AI model relevant information may be information that includes only meta information, for example.
本開示において、モデルIDは、AIモデルのセットに対応するID(モデルセットID)と互いに読み替えられてもよい。また、本開示において、モデルIDは、メタ情報IDと互いに読み替えられてもよい。メタ情報(又はメタ情報ID)は、上述したようにビームに関する情報(ビーム設定)と関連付けられてもよい。例えば、メタ情報(又はメタ情報ID)は、どのビームをBSが使用しているかを考慮してUEがAIモデルを選択するために用いられてもよいし、UEがデプロイしたAIモデルを適用するためにBSがどのビームを使用すべきかを通知するために用いられてもよい。なお、本開示において、メタ情報IDは、メタ情報のセットに対応するID(メタ情報セットID)と互いに読み替えられてもよい。 In the present disclosure, the model ID may be interchangeably read as an ID (model set ID) corresponding to a set of AI models. Also, in the present disclosure, the model ID may be interchangeably read as a meta information ID. The meta information (or meta information ID) may be associated with information regarding the beam (beam setting) as described above. For example, the meta information (or meta information ID) may be used by the UE to select an AI model taking into account which beam the BS is using, or may be used to notify the BS of which beam to use to apply the AI model deployed by the UE. Also, in the present disclosure, the meta information ID may be interchangeably read as an ID (meta information set ID) corresponding to a set of meta information.
[補足2:UEへの情報の通知]
上述の実施形態における(NWから)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Supplementary Note 2: Notification of information to UE]
In the above-described embodiment, any information may be notified to the UE (from the NW) (in other words, any information received from the BS in the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including in the MAC subheader a new Logical Channel ID (LCID) that is not specified in existing standards.
上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
[補足3:UEからの情報の通知]
上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Supplementary Note 3: Notification of information from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 If the notification is made by a MAC CE, the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 If the notification is made by UCI, the notification may be transmitted using PUCCH or PUSCH.
また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, in the above-mentioned embodiments, notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is met, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
上述の実施形態の少なくとも1つは、例えば、以下に記載するような特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい(以下はあくまで一例である):
・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること。
・AI/MLベースのCSI報告をサポートすること。
・CSIフレームワークに基づく性能モニタリング(の報告)をサポートすること。
・少なくともUE側性能モニタリングをサポートすること。
・UE側性能モニタリング及びNW側性能モニタリングを組み合わせた性能モニタリングをサポートすること。
At least one of the above-described embodiments may be applied only to UEs that have reported or support certain UE capabilities, for example, as described below (by way of example only):
- Supporting specific processing/operations/control/information for at least one of the above embodiments.
Support AI/ML based CSI reporting.
Support performance monitoring (reporting) based on the CSI framework.
Support at least UE side performance monitoring.
Support combined UE side performance monitoring and NW side performance monitoring.
当該特定のUE能力は、上記実施形態/オプション/選択肢の少なくとも1つについての特定の処理/動作/制御/情報をサポートすることを示してもよい。 The particular UE capability may indicate support for particular processing/operations/control/information for at least one of the above embodiments/options/options.
また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 The above-mentioned specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、モデル/機能性IDに基づくLCMを有効化することを示す情報、特定のリリース(例えば、Rel.18/19/20)向けの任意のRRCパラメータなどであってもよい。 Furthermore, at least one of the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling. For example, the specific information may be information indicating the activation of LCM based on a model/functionality ID, any RRC parameters for a specific release (e.g., Rel. 18/19/20), etc.
UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16/17の動作を適用してもよい。 If the UE does not support at least one of the above specific UE capabilities or the above specific information is not configured, the UE may apply, for example, the behavior of Rel. 15/16/17.
(付記)
本開示の一実施形態に関して、以下の発明を付記する。
[付記A-1]
人工知能(AI)ベースのチャネル状態情報(CSI)報告の性能モニタリングのための設定を受信する受信部と、前記設定に基づいて、AIベースのCSIの測定及び保存の少なくとも一方と、前記CSI報告の生成と、を制御する制御部と、を有する端末。
[付記A-2]
前記制御部は、前記設定に含まれる特定の時間ウィンドウに関する情報に基づいて、前記特定のウィンドウ内に配置される参照信号リソースを用いて、前記CSIの測定及び保存を制御する、付記A-1に記載の端末。
[付記A-3]
前記制御部は、前記設定に含まれる性能モニタリングのイベントに関する情報に基づいて、前記CSIの測定及び保存を制御する、付記A-1又は付記A-2に記載の端末。
[付記A-4]
前記CSIの報告の生成において複数のCSIが生成される場合、前記制御部は、絶対値で示されるCSIの要素と、差分値で示されるCSIの要素とを用いて前記複数のCSIを生成する、付記A-1から付記A-3のいずれかに記載の端末。
[付記B-1]
人工知能(AI)ベースのチャネル状態情報(CSI)報告に関するネットワーク側性能モニタリングのための要求の送信を制御する制御部と、前記設定に基づいて送信される、前記CSI報告に関する指示を受信する受信部と、を有する端末。
[付記B-2]
前記要求は、前記ネットワーク側モニタリングに関する条件が満たされたことを示す情報、又は、前記ネットワーク側モニタリングが必要か否かを示す情報である、付記B-1に記載の端末。
[付記B-3]
前記制御部は、特定の条件が満たされた場合、前記要求を送信することを判断する、付記B-1又は付記B-2に記載の端末。
[付記B-4]
前記指示は、報告されるCSIの数に関する情報、報告用のリソース及びチャネルの少なくとも一方に関する情報、各リソース単位における報告されるCSIの数に関する情報、CSIの量子化、圧縮、及び、符号化の少なくとも1つの方法に関する情報、CSI報告に関するインデックス、及び、CSIリソースに関するインデックス、の少なくとも1つを含む、付記B-1から付記B-3のいずれかに記載の端末。
(Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix A-1]
A terminal having a receiving unit that receives settings for performance monitoring of artificial intelligence (AI)-based channel state information (CSI) reports, and a control unit that controls at least one of measuring and storing AI-based CSI and generating the CSI reports based on the settings.
[Appendix A-2]
The control unit controls measurement and storage of the CSI using reference signal resources arranged within the specific window based on information regarding a specific time window included in the configuration. The terminal according to Supplementary Note A-1.
[Appendix A-3]
The terminal according to Supplementary Note A-1 or Supplementary Note A-2, wherein the control unit controls measurement and storage of the CSI based on information regarding a performance monitoring event included in the configuration.
[Appendix A-4]
When multiple CSIs are generated in generating the CSI report, the control unit generates the multiple CSIs using an element of CSI indicated by an absolute value and an element of CSI indicated by a differential value. A terminal according to any one of Appendix A-1 to Appendix A-3.
[Appendix B-1]
A terminal having a control unit that controls transmission of a request for network-side performance monitoring regarding artificial intelligence (AI)-based channel state information (CSI) reporting, and a receiving unit that receives an instruction regarding the CSI reporting transmitted based on the setting.
[Appendix B-2]
The terminal according to supplementary note B-1, wherein the request is information indicating that a condition regarding the network side monitoring is satisfied, or information indicating whether the network side monitoring is necessary.
[Appendix B-3]
The terminal according to
[Appendix B-4]
The terminal according to any one of Supplementary Note B-1 to Supplementary Note B-3, wherein the instruction includes at least one of information on the number of CSI to be reported, information on at least one of resources and channels for reporting, information on the number of CSI to be reported in each resource unit, information on at least one method of quantizing, compressing, and encoding the CSI, an index related to the CSI report, and an index related to the CSI resource.
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these methods.
図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
The
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
The
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
The
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
The
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
In addition, the
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
The
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
The
コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
The
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
The
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
In the
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
The radio access method may also be called a waveform. Note that in the
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
In the
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
In addition, in the
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted via PDSCH. User data, upper layer control information, etc. may also be transmitted via PUSCH. Furthermore, Master Information Block (MIB) may also be transmitted via PBCH.
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI, and the DCI for scheduling the PUSCH may be called a UL grant or UL DCI. Note that the PDSCH may be interpreted as DL data, and the PUSCH may be interpreted as UL data.
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. The CORESET corresponds to the resources to search for DCI. The search space corresponds to the search region and search method of PDCCH candidates. One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 A search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the terms "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. in this disclosure may be read as interchangeable.
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR). The PRACH may transmit a random access preamble for establishing a connection with a cell.
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlink, uplink, etc. may be expressed without adding "link." Also, various channels may be expressed without adding "Physical" to the beginning.
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
In the
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc. In addition, the SS, SSB, etc. may also be called a reference signal.
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
In addition, in the
(基地局)
図13は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(Base station)
13 is a diagram showing an example of a configuration of a base station according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
The
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
The
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
The
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
The
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 120 (transmission processing unit 1211) may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 120 (transmission processor 1211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
The transceiver unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 120 (reception processing unit 1212) may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
The transceiver 120 (measurement unit 123) may perform measurements on the received signal. For example, the
伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
The transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF),
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
Note that the transmitting section and receiving section of the
送受信部120は、人工知能(AI)ベースのチャネル状態情報(CSI)報告の性能モニタリングのための設定を送信してもよい。制御部110は、前記設定を用いて、AIベースのCSIの測定及び保存の少なくとも一方と、前記CSI報告の生成と、を指示してもよい(第1/第4の実施形態)。
The
制御部110は、人工知能(AI)ベースのチャネル状態情報(CSI)報告に関するネットワーク側性能モニタリングのための要求の受信を制御してもよい。送受信部120は、前記設定に基づいて、前記CSI報告に関する指示を送信してもよい(第2/第3の実施形態)。
The
(ユーザ端末)
図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
14 is a diagram showing an example of the configuration of a user terminal according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
The
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
The
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
The
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
The
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 220 (transmission processor 2211) may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 220 (transmission processor 2211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (e.g., PUSCH), the transceiver unit 220 (transmission processing unit 2211) may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
The transceiver unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 220 (reception processor 2212) may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
The transceiver 220 (measurement unit 223) may perform measurements on the received signal. For example, the
なお、測定部223は、チャネル測定用リソースに基づいて、CSI算出のためのチャネル測定を導出してもよい。チャネル測定用リソースは、例えば、ノンゼロパワー(Non Zero Power(NZP))CSI-RSリソースであってもよい。また、測定部223は、干渉測定用リソースに基づいて、CSI算出のための干渉測定を導出してもよい。干渉測定用リソースは、干渉測定用のNZP CSI-RSリソース、CSI-干渉測定(Interference Measurement(IM))リソースなどの少なくとも1つであってもよい。なお、CSI-IMは、CSI-干渉管理(Interference Management(IM))と呼ばれてもよいし、ゼロパワー(Zero Power(ZP))CSI-RSと互いに読み替えられてもよい。なお、本開示において、CSI-RS、NZP CSI-RS、ZP CSI-RS、CSI-IM、CSI-SSBなどは、互いに読み替えられてもよい。
The
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
In addition, the transmitting unit and receiving unit of the
送受信部220は、人工知能(AI)ベースのチャネル状態情報(CSI)報告の性能モニタリングのための設定を受信してもよい。制御部210は、前記設定に基づいて、AIベースのCSIの測定及び保存の少なくとも一方と、前記CSI報告の生成と、を制御してもよい(第1/第4の実施形態)。
The
制御部210は、前記設定に含まれる特定の時間ウィンドウに関する情報に基づいて、前記特定のウィンドウ内に配置される参照信号リソースを用いて、前記CSIの測定及び保存を制御してもよい(第1の実施形態)。
The
制御部210は、前記設定に含まれる性能モニタリングのイベントに関する情報に基づいて、前記CSIの測定及び保存を制御してもよい(第1の実施形態)。
The
前記CSIの報告の生成において複数のCSIが生成される場合、制御部210は、絶対値で示されるCSIの要素と、差分値で示されるCSIの要素とを用いて前記複数のCSIを生成してもよい(第4の実施形態)。
If multiple CSIs are generated in generating the CSI report, the
制御部210は、人工知能(AI)ベースのチャネル状態情報(CSI)報告に関するネットワーク側性能モニタリングのための要求の送信を制御してもよい。送受信部220は、前記設定に基づいて送信される、前記CSI報告に関する指示を受信してもよい(第2/第3の実施形態)。
The
前記要求は、前記ネットワーク側モニタリングに関する条件が満たされたことを示す情報、又は、前記ネットワーク側モニタリングが必要か否かを示す情報であってもよい(第2の実施形態)。 The request may be information indicating that a condition related to the network-side monitoring has been met, or information indicating whether the network-side monitoring is necessary (second embodiment).
制御部210は、特定の条件が満たされた場合、前記要求を送信することを判断してもよい(第2の実施形態)。
The
前記指示は、報告されるCSIの数に関する情報、報告用のリソース及びチャネルの少なくとも一方に関する情報、各リソース単位における報告されるCSIの数に関する情報、CSIの量子化、圧縮、及び、符号化の少なくとも1つの方法に関する情報、CSI報告に関するインデックス、及び、CSIリソースに関するインデックス、の少なくとも1つを含んでもよい(第3の実施形態)。 The instructions may include at least one of information regarding the number of CSIs to be reported, information regarding at least one of the resources and channels for reporting, information regarding the number of CSIs to be reported in each resource unit, information regarding at least one method of quantizing, compressing, and encoding the CSI, an index regarding the CSI report, and an index regarding the CSI resource (third embodiment).
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 15 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment. The above-mentioned
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In addition, in this disclosure, terms such as apparatus, circuit, device, section, and unit may be interpreted as interchangeable. The hardware configurations of the
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
The functions of the
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
The
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
The
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
The
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Furthermore, each device such as the
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Furthermore, the
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel. The numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may also be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 A radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal. A different name may be used for radio frame, subframe, slot, minislot, and symbol. Note that the time units such as frame, subframe, slot, minislot, and symbol in this disclosure may be read as interchangeable.
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Furthermore, an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL). One or more BWPs may be configured for a UE within one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and the various names assigned to these various channels and information elements are not limiting in any respect.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input/output via multiple network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
The physical layer signaling may be called
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Furthermore, notification of specified information (e.g., notification that "X is the case") is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 As used in this disclosure, the terms "system" and "network" may be used interchangeably. "Network" may refer to the devices included in the network (e.g., base stations).
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」、「UEパネル」、「送信エンティティ」、「受信エンティティ」、などの用語は、互換的に使用され得る。 In this disclosure, terms such as "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial relation", "spatial domain filter", "transmit power", "phase rotation", "antenna port", "layer", "number of layers", "rank", "resource", "resource set", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel", "UE panel", "transmitting entity", "receiving entity", etc. may be used interchangeably.
なお、本開示において、アンテナポートは、任意の信号/チャネルのためのアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)と互いに読み替えられてもよい。本開示において、リソースは、任意の信号/チャネルのためのリソース(例えば、参照信号リソース、SRSリソースなど)と互いに読み替えられてもよい。なお、リソースは、時間/周波数/符号/空間/電力リソースを含んでもよい。また、空間ドメイン送信フィルタは、空間ドメイン送信フィルタ(spatial domain transmission filter)及び空間ドメイン受信フィルタ(spatial domain reception filter)の少なくとも一方を含んでもよい。 In the present disclosure, the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port). In the present disclosure, the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.). The resource may include time/frequency/code/space/power resources. The spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
上記グループは、例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号(Reference Signal(RS))グループ、制御リソースセット(COntrol REsource SET(CORESET))グループ、PUCCHグループ、アンテナポートグループ(例えば、DMRSポートグループ)、レイヤグループ、リソースグループ、ビームグループ、アンテナグループ、パネルグループなどの少なくとも1つを含んでもよい。 The above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
また、本開示において、ビーム、SRSリソースインディケーター(SRS Resource Indicator(SRI))、CORESET、CORESETプール、PDSCH、PUSCH、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、RSなどは、互いに読み替えられてもよい。 Furthermore, in this disclosure, beam, SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be read as interchangeable.
また、本開示において、TCI状態、下りリンクTCI状態(DL TCI状態)、上りリンクTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、ジョイントTCI状態などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, the terms TCI state, downlink TCI state (DL TCI state), uplink TCI state (UL TCI state), unified TCI state, common TCI state, joint TCI state, etc. may be interpreted as interchangeable.
また、本開示において、「QCL」、「QCL想定」、「QCL関係」、「QCLタイプ情報」、「QCL特性(QCL property/properties)」、「特定のQCLタイプ(例えば、タイプA、タイプD)特性」、「特定のQCLタイプ(例えば、タイプA、タイプD)」などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, "QCL", "QCL assumptions", "QCL relationship", "QCL type information", "QCL property/properties", "specific QCL type (e.g., Type A, Type D) characteristics", "specific QCL type (e.g., Type A, Type D)", etc. may be read as interchangeable.
本開示において、インデックス、識別子(Identifier(ID))、インディケーター(indicator)、インディケーション(indication)、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, the terms index, identifier (ID), indicator, indication, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報(TCI状態)」は、「空間関係情報(TCI状態)のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。空間関係情報及び空間関係は、互いに読み替えられてもよい。 Furthermore, the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be interchangeable. "Spatial relationship information (TCI state)" may be interchangeable as "set of spatial relationship information (TCI state)", "one or more pieces of spatial relationship information", etc. TCI state and TCI may be interchangeable. Spatial relationship information and spatial relationship may be interchangeable.
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "Base Station (BS)", "Radio base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel", "Cell", "Sector", "Cell group", "Carrier", "Component carrier", etc. may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, the terms "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal", etc. may be used interchangeably.
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary. The moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these. The moving body in question may also be a moving body that moves autonomously based on an operating command.
当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
図16は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
FIG. 16 is a diagram showing an example of a vehicle according to an embodiment. The
駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
The
電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
The
各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
Signals from the various sensors 50-58 include a current signal from a
情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
The
情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
The
運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
The driving
通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
The
通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
The
通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
The
通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
The
また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
The
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps in an exemplary order, and are not limited to the particular order presented.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio The present invention may be applied to systems that use Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-Wide Band (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created, or defined based on these. In addition, multiple systems may be combined (for example, a combination of LTE or LTE-A and 5G, etc.).
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determining" may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 "Determining" may also be considered to mean "determining" receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。本開示において、「判断(決定)」は、上述した動作と互いに読み替えられてもよい。 Furthermore, "judgment (decision)" may be considered to mean "judging (deciding)" resolving, selecting, choosing, establishing, comparing, etc. In other words, "judgment (decision)" may be considered to mean "judging (deciding)" some kind of action. In this disclosure, "judgment (decision)" may be read as interchangeably with the actions described above.
また、本開示において、「判断(決定)(determine/determining)」は、「想定する(assume/assuming)」、「期待する(expect/expecting)」、「みなす(consider/considering)」などと互いに読み替えられてもよい。なお、本開示において、「...することを想定しない」は、「...しないことを想定する」と互いに読み替えられてもよい。 Furthermore, in this disclosure, "determine/determining" may be interpreted interchangeably as "assume/assuming," "expect/expecting," "consider/considering," etc. Furthermore, in this disclosure, "does not expect to do..." may be interpreted interchangeably as "assumes not to do...."
本開示において、「期待する(expect)」は、「期待される(be expected)」と互いに読み替えられてもよい。例えば、「...を期待する(expect(s) ...)」(”...”は、例えばthat節、to不定詞などで表現されてもよい)は、「...を期待される(be expected ...)」と互いに読み替えられてもよい。「...を期待しない(does not expect ...)」は、「...を期待されない(be not expected ...)」と互いに読み替えられてもよい。また、「装置Aは...を期待されない(An apparatus A is not expected ...)」は、「装置A以外の装置Bが、当該装置Aについて...を期待しない」と互いに読み替えられてもよい(例えば、装置AがUEである場合、装置Bは基地局であってもよい)。 In the present disclosure, "expect" may be read as "be expected". For example, "expect(s) ..." ("..." may be expressed, for example, as a that clause, a to infinitive, etc.) may be read as "be expected ...". "does not expect ..." may be read as "be not expected ...". Also, "An apparatus A is not expected ..." may be read as "An apparatus B other than apparatus A does not expect ..." (for example, if apparatus A is a UE, apparatus B may be a base station).
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected" and "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access."
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be considered to be "connected" or "coupled" to one another using one or more wires, cables, printed electrical connections, and the like, as well as using electromagnetic energy having wavelengths in the radio frequency range, microwave range, light (both visible and invisible) range, and the like, as some non-limiting and non-exhaustive examples.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
本開示において、「Aのとき(場合)、B(when A, B)」、「(もし)Aならば、B(if A, (then) B)」、「Aの際にB(B upon A)」、「Aに応じてB(B in response to A)」、「Aに基づいてB(B based on A)」、「Aの間B(B during/while A)」、「Aの前にB(B before A)」、「Aにおいて(Aと同時に)B(B at( the same time as)/on A)」、「Aの後にB(B after A)」、「A以来B(B since A)」、「AまでB(B until A)」などは、互いに読み替えられてもよい。なお、ここでのA、Bなどは、文脈に応じて、名詞、動名詞、通常の文章など適宜適当な表現に置き換えられてもよい。なお、AとBの時間差は、ほぼ0(直後又は直前)であってもよい。また、Aが生じる時間には、時間オフセットが適用されてもよい。例えば、「A」は「Aが生じる時間オフセット前/後」と互いに読み替えられてもよい。当該時間オフセット(例えば、1つ以上のシンボル/スロット)は、予め規定されてもよいし、通知される情報に基づいてUEによって特定されてもよい。 In the present disclosure, "when A, B", "if A, (then) B", "B upon A", "B in response to A", "B based on A", "B during/while A", "B before A", "B at (the same time as)/on A", "B after A", "B since A", "B until A" and the like may be read as interchangeable. Note that A, B, etc. here may be replaced with appropriate expressions such as nouns, gerunds, and normal sentences depending on the context. Note that the time difference between A and B may be almost 0 (immediately after or immediately before). Also, a time offset may be applied to the time when A occurs. For example, "A" may be read interchangeably as "before/after the time offset at which A occurs." The time offset (e.g., one or more symbols/slots) may be predefined or may be identified by the UE based on signaled information.
本開示において、タイミング、時刻、時間、時間インスタンス、任意の時間単位(例えば、スロット、サブスロット、シンボル、サブフレーム)、期間(period)、機会(occasion)、リソースなどは、互いに読み替えられてもよい。 In this disclosure, timing, time, duration, time instance, any time unit (e.g., slot, subslot, symbol, subframe), period, occasion, resource, etc. may be interpreted as interchangeable.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The description of the present disclosure is intended for illustrative purposes only and does not imply any limitations on the invention disclosed herein.
Claims (6)
前記設定に基づいて送信される、前記CSI報告に関する指示を受信する受信部と、を有する端末。 A control unit for controlling transmission of a request for network side performance monitoring regarding artificial intelligence (AI) based channel state information (CSI) reporting;
A terminal having a receiving unit that receives an instruction regarding the CSI report, the instruction being transmitted based on the setting.
前記設定に基づいて送信される、前記CSI報告に関する指示を受信するステップと、を有する端末の無線通信方法。 controlling transmission of requests for network side performance monitoring for artificial intelligence (AI) based channel state information (CSI) reporting;
A wireless communication method for a terminal, comprising: a step of receiving an instruction regarding the CSI report, the instruction being transmitted based on the setting.
前記設定に基づいて、前記CSI報告に関する指示を送信する送信部と、を有する基地局。 A control unit for controlling reception of a request for network side performance monitoring regarding artificial intelligence (AI) based channel state information (CSI) reporting;
A base station comprising: a transmitter that transmits an instruction regarding the CSI report based on the setting.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/035756 WO2025069421A1 (en) | 2023-09-29 | 2023-09-29 | Terminal, wireless communication method, and base station |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/035756 WO2025069421A1 (en) | 2023-09-29 | 2023-09-29 | Terminal, wireless communication method, and base station |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025069421A1 true WO2025069421A1 (en) | 2025-04-03 |
Family
ID=95202439
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/035756 Pending WO2025069421A1 (en) | 2023-09-29 | 2023-09-29 | Terminal, wireless communication method, and base station |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025069421A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020194639A1 (en) * | 2019-03-27 | 2020-10-01 | 株式会社Nttドコモ | Terminal |
| WO2023012999A1 (en) * | 2021-08-05 | 2023-02-09 | 株式会社Nttドコモ | Terminal, wireless communication method, and base station |
| WO2023079946A1 (en) * | 2021-11-08 | 2023-05-11 | 日本電気株式会社 | Wireless terminal, radio access network node, and methods therefor |
| WO2023152991A1 (en) * | 2022-02-14 | 2023-08-17 | 株式会社Nttドコモ | Terminal, wireless communication method, and base station |
-
2023
- 2023-09-29 WO PCT/JP2023/035756 patent/WO2025069421A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020194639A1 (en) * | 2019-03-27 | 2020-10-01 | 株式会社Nttドコモ | Terminal |
| WO2023012999A1 (en) * | 2021-08-05 | 2023-02-09 | 株式会社Nttドコモ | Terminal, wireless communication method, and base station |
| WO2023079946A1 (en) * | 2021-11-08 | 2023-05-11 | 日本電気株式会社 | Wireless terminal, radio access network node, and methods therefor |
| WO2023152991A1 (en) * | 2022-02-14 | 2023-08-17 | 株式会社Nttドコモ | Terminal, wireless communication method, and base station |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2024004218A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024013852A1 (en) | Terminal, radio communication method, and base station | |
| WO2024013851A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024004219A1 (en) | Terminal, radio communication method, and base station | |
| WO2025013216A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025009172A1 (en) | Terminal, radio communication method, and base station | |
| WO2024150436A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024150434A1 (en) | User equipment, wireless communication method, and base station | |
| WO2025069421A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025069420A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025041228A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025041227A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024171465A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024150439A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024150438A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024100725A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024201928A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025220560A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024106379A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024106380A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024201942A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024214186A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025234111A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024161471A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025234110A1 (en) | Terminal, wireless communication method, and base station |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23954387 Country of ref document: EP Kind code of ref document: A1 |