WO2024171465A1 - Terminal, wireless communication method, and base station - Google Patents
Terminal, wireless communication method, and base station Download PDFInfo
- Publication number
- WO2024171465A1 WO2024171465A1 PCT/JP2023/005846 JP2023005846W WO2024171465A1 WO 2024171465 A1 WO2024171465 A1 WO 2024171465A1 JP 2023005846 W JP2023005846 W JP 2023005846W WO 2024171465 A1 WO2024171465 A1 WO 2024171465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- model
- csi
- receive
- reporting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
- LTE 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- E-UTRA Evolved Universal Terrestrial Radio Access
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- AI artificial intelligence
- ML machine learning
- Beam reporting Beam reporting
- BM AI-based beam management
- Temporal DL beam prediction may be called, for example, time domain Channel State Information (CSI) prediction.
- CSI Channel State Information
- the expected receiving beams consistent between the network (e.g., base station) and the terminal (user terminal, User Equipment (UE)), but this has not been sufficiently considered.
- the network e.g., base station
- UE User Equipment
- one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve optimal overhead reduction/channel estimation/resource utilization.
- a terminal has a receiving unit that receives settings regarding the selection of a downlink receiving beam for reporting channel state information, and a control unit that performs measurements of multiple downlink transmitting beams based on the settings and controls reporting of the results of the measurements.
- FIG. 1 is a diagram illustrating an example of a framework for managing AI models.
- 2A and 2B are diagrams showing an example of AI-based beam prediction.
- 3A and 3B are diagrams illustrating an example of general (prediction-free) beam management and DL transmit beam prediction.
- 4A-4C are diagrams illustrating an example of determining a DL receive beam for DL transmit beam prediction.
- 5A-5C are diagrams illustrating an example of beam reporting for transmit/receive beam sweeping.
- 6A and 6B are diagrams showing an example of a beam report.
- 7A and 7B are diagrams showing other examples of beam reports.
- 8A and 8B are diagrams showing other examples of beam reports.
- 9A and 9B are diagrams showing other examples of beam reports.
- FIG. 1 is a diagram illustrating an example of a framework for managing AI models.
- 2A and 2B are diagrams showing an example of AI-based beam prediction.
- 3A and 3B are diagrams illustrating an example of general
- FIG. 10 is a diagram showing an example of differences in L1-RSRP values corresponding to each assumption.
- 11A-11C show an example of input beam pairs for training/testing data set assumptions 1-3.
- 12A and 12B are diagrams showing examples of reporting of CSI measurement results for options 1-1-1 and 1-1-2, respectively.
- 13A to 13C are diagrams showing examples of reporting of CSI measurement results for options 1-2-1 to 1-2-3, respectively.
- 14A and 14B are diagrams showing examples of reporting of CSI measurement results for options 1-3-1 and 1-3-2, respectively.
- 15A to 15C are diagrams showing an example of settings regarding receiving beam assumptions for CSI reporting.
- FIG. 16 is a diagram showing an example of a measurement/reporting timeline according to the second embodiment.
- FIG. 16 is a diagram showing an example of a measurement/reporting timeline according to the second embodiment.
- FIG. 17 is a diagram showing an example of a measurement/reporting operation according to the second embodiment.
- FIG. 18 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 19 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
- FIG. 20 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
- FIG. 21 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
- FIG. 22 is a diagram illustrating an example of a vehicle according to an embodiment.
- AI Artificial Intelligence
- ML machine learning
- CSI channel state information
- UE user equipment
- BS base stations
- CSI channel state information
- UE user equipment
- beam management e.g., improving accuracy, prediction in the time/space domain
- position measurement e.g., improving position estimation/prediction
- the AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information.
- the UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
- AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: - Estimation based on observed or collected information; - making choices based on observed or collected information; - Predictions based on observed or collected information.
- estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
- an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
- an AI model may be interpreted as an object having (implementing) at least one of the following characteristics: - Producing estimates by feeding information, - Predicting estimates by providing information - Discover features by providing information, - Select an action by providing information.
- an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
- AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable.
- AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
- autoencoder may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder.
- the encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
- encoder encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
- decoder decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- decompressing decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- a layer for an AI model
- a layer may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model.
- a layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
- methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like.
- Supervised learning may refer to the process of training a model from inputs and corresponding labels.
- Unsupervised learning may refer to the process of training a model without labeled data.
- Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
- terms such as generate, calculate, derive, etc. may be interchangeable.
- terms such as implement, operate, operate, execute, etc. may be interchangeable.
- terms such as train, learn, update, retrain, etc. may be interchangeable.
- terms such as infer, after-training, live use, actual use, etc. may be interchangeable.
- terms such as signal and signal/channel may be interchangeable.
- Figure 1 shows an example of a framework for managing an AI model.
- each stage related to the AI model is shown as a block.
- This example is also expressed as life cycle management of an AI model.
- the data collection stage corresponds to the stage of collecting data for generating/updating an AI model.
- the data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
- data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference.
- process and procedure may be interpreted as interchangeable.
- collection may also refer to obtaining a data set (e.g., usable as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, position estimation, etc.).
- offline field data may be data collected from the field (real world) and used for offline training of an AI model.
- online field data may be data collected from the field (real world) and used for online training of an AI model.
- model training is performed based on the data (training data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
- AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
- AI model validation may refer to a sub-process of training to evaluate the quality of an AI model using a dataset different from the dataset used to train the model. This sub-process helps select model parameters that generalize beyond the dataset used to train the model.
- AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
- model inference is performed based on the data (inference data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity performing the model training), and output (providing model output to the actor).
- AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
- a UE side model may refer to an AI model whose inference is performed entirely in the UE.
- a network side model may refer to an AI model whose inference is performed entirely in the network (e.g., gNB).
- a one-sided model may refer to a UE-side model or a network-side model.
- a two-sided model may refer to a pair of AI models where joint inference is performed.
- joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
- AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
- model registration may refer to making a model executable (registering) through assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase.
- Model deployment may refer to distributing (or activating at) a fully developed and tested run-time image (or an image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
- Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
- action triggers e.g., deciding whether to trigger an action on another entity
- feedback e.g., feeding back information needed for training data/inference data/performance feedback
- training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB).
- OAM Operation, Administration and Maintenance
- NW network
- gNodeB gNodeB
- In the former case interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous.
- the latency of model updates and the absence of data exchange for model deployment are advantageous.
- Inference of the above model may be performed in, for example, a gNB.
- the entity performing the training/inference may be different.
- the function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
- the OAM/gNB may perform model training and the gNB may perform model inference.
- a Location Management Function may perform model training and the LMF may perform model inference.
- the OAM/gNB/UE may perform model training and the gNB/UE may perform model inference (jointly).
- the OAM/gNB/UE may perform model training and the UE may perform model inference.
- model activation may mean activating an AI model for a particular function.
- Model deactivation may mean disabling an AI model for a particular function.
- Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
- Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model.
- Model download may refer to model transfer from the network to the UE.
- Model upload may refer to model transfer from the UE to the network.
- AI-based beam prediction As a use case of utilizing the AI model, spatial domain downlink (DL) beam prediction or temporal DL beam prediction using a one-sided AI model in the UE or NW is being considered.
- DL spatial domain downlink
- BM Beam Management
- FIG. 2A and 2B are diagrams showing an example of AI-based beam prediction.
- FIG. 2A shows spatial domain DL beam prediction.
- the UE may measure a spatially sparse (or thick) beam, input the measurement results, etc., to an AI model, and output a predicted result of the beam quality of a spatially dense (or thin) beam.
- Figure 2B shows temporal DL beam prediction.
- the UE may measure the time series of beams, input the measurement results, etc. into an AI model, and output the predicted beam quality of the future beam.
- spatial domain DL beam prediction may be referred to as BM case 1
- temporal DL beam prediction may be referred to as BM case 2.
- temporal DL beam prediction may be referred to as, for example, time domain CSI prediction.
- the beams associated with the output (prediction result) of the AI model may be referred to as set of beams A.
- the beams associated with the input of the AI model may be referred to as set of beams B.
- set A may correspond to beams selected from the predicted beams.
- the resources for set A may be referred to as resources for beam prediction, resources for beam reporting, resources included in the CSI report, set A, resources of set A, second (or first) set, second (or first) resources, etc.
- set B may correspond to a beam whose measurement results are used as input (for the AI model/function for prediction).
- Resources for set B may be referred to as resources for beam measurements, resources for beam prediction input, set B, resources of set B, first (or second) set, resources of first (or second) set, etc.
- Candidates for input to the AI model for BM Case 1/2 include L1-RSRP (Layer 1 Reference Signal Received Power), assistance information (e.g., beam shape information, UE position/direction information, transmit beam usage information), Channel Impulse Response (CIR) information, and corresponding DL transmit/receive beam IDs.
- L1-RSRP Layer 1 Reference Signal Received Power
- assistance information e.g., beam shape information, UE position/direction information, transmit beam usage information
- CIR Channel Impulse Response
- Possible outputs of the AI model for BM Case 1 include the IDs of the top K (K is an integer) transmit/receive beams, the predicted L1-RSRP of these beams, the probability that each beam is in the top K, and the angles of these beams.
- the candidates for the output of the AI model in BM Case 2 include predicted beam failures.
- DL beam predictions considered include DL transmit (Tx) beam prediction, DL receive (Rx) beam prediction, and beam pair prediction.
- the DL transmit beam may be referred to as a Transmission/Reception Point (TRP) transmit beam, a base station transmit beam, etc.
- the DL receive beam may be referred to as a UE receive beam.
- the beam pair includes a DL transmit beam and a corresponding DL receive beam.
- ⁇ DL transmit beam prediction> 3A and 3B are diagrams showing an example of general (non-predictive) beam management and DL transmission beam prediction.
- a series of periods P1, P2, and P3 are for illustrative purposes only and are assumed to occur in this order in time, but are not limited to this order. Note that these periods may be spaced apart from one another. The same applies to the following examples.
- the UE measures different DL transmission beams for DL transmission beam/DL reception beam selection.
- the UE measures different DL transmission beams to possibly change/improve the DL transmission beam within/between the TRP.
- the UE measures the same DL transmission beam to possibly change/improve the DL reception beam.
- P1 typically the TRP sweeps different transmit beams and the UE sweeps different receive beams.
- P2 typically fewer transmit beams are used for beam refinement than in P1.
- non-periodic beam reporting supports operations related to P1 to P3.
- the UE measures different DL transmission beams for DL transmission beam prediction for period P2.
- the DL transmission beam in P1 corresponds to set B, and there may be one or more candidates for the DL reception beam in P1.
- the DL reception beam for period P2 may be determined in P1.
- Measurements in period P3 may be performed if it is determined from P1 that refinement of the DL reception beam is necessary.
- the DL transmission beam for P3 may be determined in P2. Measurements for P3 may be performed based on set B or set A.
- the UE may input the measurement results at P1 (the results of beam measurement at set B) into the AI model and output a prediction of the measurement results at P2 (the results of beam prediction at set A).
- top-K beams K is a natural number
- additional beam measurements [for set A/B] may be performed in P2 for the top-K beams.
- the period during which these additional beam measurements are performed may be included in P2, or may be a period that does not overlap at least partially with P2 (e.g., may be referred to as additional P2).
- the example shown in FIG. 3B may also assume NW-side AI/ML for transmit beam prediction.
- the quality [of the beam] may be, for example, L1-RSRP (Layer 1 Reference Signal Received Power) or a value based thereon.
- L1-RSRP Layer 1 Reference Signal Received Power
- LX Layer-X
- the top X probability of a resource among one or more resources may refer to the probability/confidence/confidence interval that the RSRP or SINR corresponding to the resource is equal to or greater than the Xth largest RSRP or SINR among the RSRPs or SINRs corresponding to the one or more resources.
- This confidence interval may be an arbitrary percentage (e.g., 95%).
- the top X'/1 probability for one or more resources may mean the probability/confidence/confidence interval that at least one of the RSRPs corresponding to X' resources is the maximum among the RSRPs or SINRs corresponding to the one or more resources.
- This confidence interval may be a confidence interval of any percentage (e.g., 95%). Note that, for the same value of X', if different top X'/1 probabilities are obtained depending on how the resources are selected, one of these values (e.g., the maximum value) may be determined as the top X'/1 probability.
- Figures 4A-4C are diagrams showing an example of determining DL receiving beams for DL transmitting beam prediction. In this example, it is assumed that the number of DL receiving beams available to the UE is 8.
- the DL receive beam for DL transmit beam prediction (the DL receive beam used for measurement in P1) may be predetermined or determined by the UE.
- FIG. 4A shows an example in which the UE performs exhaustive receive beam sweeping in set B.
- FIG. 4B shows an example in which the UE performs beam sweeping using a [fixed] subset of the exhaustive receive beam sweeping in set B.
- the UE may use a specific receiving beam from among the receiving beams used for the measurement in P1 to provide input for predicting P2.
- the specific receiving beam may be, for example, the receiving beam with the best quality, or that satisfies a certain condition, or that is randomly determined.
- the specific receiving beam may be different or the same for each sample of input for predicting P2.
- Information regarding the above subset may be notified to the UE from the network, may be specified in a standard, or may be derived from a model (associated model) used for beam prediction.
- Figure 4C shows an example in which the UE determines the receive beam sweeping to be used in set B.
- the UE may perform DL transmit beam prediction in P2 based on the measurement results of the determined N DL beams, and identify the best DL transmit beam.
- the UE may also perform beam refinement via measurements in P3, for example, for the DL receive beam corresponding to the best DL transmit beam, and determine N receive beams for the next P1.
- N 1.
- a different DL receive beam may be used for prediction for each period of P1 (or P2).
- beam refinement is performed in P3 using the beam used for prediction and adjacent beams, but the beam refinement method is not limited to this.
- CSI-RS Channel State Information Reference Signal
- the UE may also report one value to the network as UE capability information (maxNumberRxBeam or maxNumberRxBeam-v1720) for the preferred number of repetitions of CSI-RS resources per CSI-RS resource set. Note that only one of maxNumberRxBeam and maxNumberRxBeam-v1720 is reported. As the parameter name indicates, this value may indicate the number of reception beams of the UE.
- the network may determine the number of CSI-RS resources in the CSI-RS resource set to be configured for the UE based on this value (e.g., with this value as the upper limit).
- this value e.g., with this value as the upper limit.
- the UE may also report the number of best L1-RSRPs corresponding to nrofReportedRS for each CSI reporting setting.
- the network may not be able to instruct the UE to report other receiving beam patterns.
- the reported L1-RSRP may be specified/quantized with 7 bits in the range of [-140, -44] dBm with a 1 dB step size. Also, if the upper layer parameter nrofReportedRS is set to greater than 1, or if the upper layer parameter groupBasedBeamReporting for group-based beam reporting configuration is set to enabled, the UE may perform differential L1-RSRP-based reporting.
- the maximum measured L1-RSRP may be specified/quantized with 7 bits in the range of [-140, -44] dBm with a 1 dB step size, and the differential L1-RSRP (value) may be calculated with a 2 dB step size and quantized with a 4-bit value.
- Figures 5A to 5C show examples of beam reporting related to transmit/receive beam sweeping.
- FIG. 5A shows an example in which transmission beam and reception beam sweeping (Tx-Rx sweeping) is performed.
- the base station repeatedly transmits one CSI-RS (resource) and transmits each CSI-RS (resource) while changing the transmission beam (sweeping).
- the UE measures each CSI-RS (resource) that is repeatedly transmitted while changing the reception beam.
- the UE reports the L1-RSRP corresponding to the best reception beam for the CSI-RS (resource) that corresponds to each transmission beam.
- FIG. 5B an example of sweeping of the transmit beam (Tx sweeping) is shown.
- nrofReportedRS is set to 4 for reporting setting #1
- 'repetition' is set to off in resource setting #1 within reporting setting #1.
- the base station transmits each CSI-RS (resource) while changing the transmission beam (sweeping), and the UE measures each CSI-RS (resource).
- the UE reports the L1-RSRP corresponding to the best four transmission beams among each transmission beam.
- FIG. 5C shows an example of sweeping of the receive beam (Rx sweeping).
- nrofReportedRS is set to 1 for reporting setting #2
- 'repetition' is set to on in resource setting #1 or #2 within reporting setting #2.
- the UE measures the repeatedly transmitted CSI-RS (resources) while changing the receiving beam.
- the UE reports one L1-RSRP corresponding to the best receiving beam among the measured receiving beams.
- the UE may report the received beam information along with the CSI (L1-RSRP/SINR) report.
- an RS resource indicator for the receiving beam information.
- an RS resource indicator for the receiving beam information.
- the RS resource indicator may be, for example, at least one of an RS resource ID, an RS resource set ID, and an SRS resource indicator (e.g., srs-ResourceIndicator).
- the RS resource indicator may be information of an SRS resource/resource set that uses the same spatial domain transmit filter/transmit beam as the spatial domain receive filter/receive beam used for the corresponding measurement.
- the UE may be configured with an SRS resource set for reporting received beam information.
- the usage of the SRS resource set may be set to at least one of receiving beam determination and L1-RSRP with received beam information.
- the bit width of the reported RS resource indicator field may be determined based on specific rules/parameters.
- bit width may be determined as, for example, ceil(log 2 (N)), where N may be the number of SRS resources in the associated SRS resource set.
- ceil(X) may mean multiplying X by a ceiling function.
- RS resource indicator/RS resource set indicator may be reported along with the panel index (CapabilityIndex).
- FIGS. 6A and 6B are diagrams showing an example of a beam report.
- the example shown in FIG. 6A and 6B describes a case where an RS resource indicator is reported together with a panel index (CapabilityIndex) in a beam report (CSI report).
- CapabilityIndex a panel index in a beam report (CSI report).
- the example shown in FIG. 6A shows the bit width of the information included in the beam report.
- the number of bits (X) of the RS resource indicator may be determined based on the above method.
- the beam report includes CRI or SSBRI (#1-#4), RSRP (RSRP#1) corresponding to CRI or SSBRI#1, differential RSRP (differential RSRP#2-#4) corresponding to CRI or SSBRI#2-#4, panel index (CapabilityIndex) #1-#4 corresponding to each of CRI or SSBRI#1-#4, and RS resource indicator #1-#4 corresponding to each of CRI or SSBRI#1-#4.
- RS resource indicators i.e., RS resource indicators corresponding to each CRI or SSBRI
- the beam report may contain only one RS resource indicator.
- the one RS resource indicator may correspond to each CRI or SSBRI. Whether the beam report contains an RS resource indicator corresponding to each CRI or SSBRI or contains only one RS resource indicator may be determined based on higher layer signaling.
- the RS resource indicator/RS resource set indicator may also be reported separately from the panel index (CapabilityIndex).
- FIGS. 7A and 7B are diagrams showing other examples of beam reports.
- the examples shown in FIG. 7A and 7B show a case in which the RS resource indicator is reported separately from the panel index (CapabilityIndex) in the beam report (CSI report).
- FIGS. 7A and 7B differ from FIG. 6A and FIG. 6B only in that they do not include information about the panel index (CapabilityIndex).
- a beam index for the above-mentioned received beam information.
- a beam index is used for the received beam information.
- the beam index may be, for example, the index of the UE's receive beam/spatial domain receive filter used for the corresponding measurement.
- the same beam index may be reported.
- the UE may decide to include the beam index in the beam report and transmit it.
- the bit width of the reported beam index field may be determined based on specific rules/parameters.
- the bit width may be determined as ceil(log 2 (M)), where M may be a number indicated by a receive beam sweeping factor of the UE.
- bit width may be determined separately for each frequency range (e.g., FR1/FR2 (FR2-1/FR2-2)/FR3/FR4/FR5).
- Beam index may be reported along with panel index (CapabilityIndex).
- FIGS. 8A and 8B are diagrams showing other examples of beam reports.
- the examples shown in FIG. 8A and 8B show a case in which the receive beam index (RxbeamIndex) is reported together with the panel index (CapabilityIndex) in the beam report (CSI report).
- RxbeamIndex receive beam index
- CapabilityIndex panel index
- FIG. 8A shows the bit width of the information contained in the beam report.
- the number of bits (X) of the receive beam index may be determined based on the above method.
- the beam report includes CRI or SSBRI (#1-#4), RSRP (RSRP#1) corresponding to CRI or SSBRI#1, differential RSRP (differential RSRP#2-#4) corresponding to CRI or SSBRI#2-#4, panel index (CapabilityIndex) #1-#4 corresponding to each of CRI or SSBRI#1-#4, and receive beam index #1-#4 corresponding to each of CRI or SSBRI#1-#4.
- multiple receive beam indexes i.e., receive beam indexes corresponding to each CRI or SSBRI
- the beam report may contain only one receive beam index.
- the one receive beam index may correspond to each CRI or SSBRI. Whether the beam report contains a receive beam index corresponding to each CRI or SSBRI or contains only one receive beam index may be determined based on higher layer signaling.
- the receive beam index may also be reported separately from the panel index (CapabilityIndex).
- FIGS. 9A and 9B are diagrams showing other examples of beam reports.
- the examples shown in FIG. 9A and 9B show a case in which the receive beam index is reported separately from the panel index (CapabilityIndex) in the beam report (CSI report).
- FIGS. 9A and 9B differ from FIG. 8A and FIG. 8B only in that they do not include information about the panel index (CapabilityIndex).
- the UE/NW may assume/judge that a different beam/spatial domain filter corresponds to the report result even if the beam index corresponding to the report result is the same.
- beam reporting can be performed using a mechanism similar to the signal measurement in beam (L1-RSRP/SINR) measurement, which is believed to simplify UE implementation.
- the AI/ML model inference for spatial domain beam prediction may not require exact receive beam index.
- the NW may only require that the reported L1-RSRP/SINR follows a particular assumed receive beam pattern.
- the NW AI/ML model for receive beam prediction may be trained using a specific receive beam assumption (e.g., the number of receive beams and/or the selection of receive beams).
- a specific receive beam assumption e.g., the number of receive beams and/or the selection of receive beams.
- the UE needs to match the receive beam assumption between the UE and the NW in measuring a set of beams (e.g., set B).
- Figure 10 is a diagram showing an example of the difference in L1-RSRP values corresponding to each assumption.
- Figure 10 shows values related to the difference in L1-RSRP values corresponding to each of the assumptions for the training dataset (assumptions 1-3) and each of the assumptions for the testing dataset (test dataset assumptions 1-3).
- FIG. 11A shows an example of an input beam pair (combination of a transmit beam and a receive beam) according to assumption 1 of the training data set/test data set.
- FIG. 11B shows an example of an input beam pair according to assumption 2 of the training data set/test data set.
- FIG. 11C shows an example of an input beam pair according to assumption 3 of the training data set/test data set.
- Assumption 1 is an assumption that the input is a pair of transmit beams and receive beams in which the receive beam corresponding to each transmit beam is the best.
- Assumption 2 is an assumption that the input is a plurality of pairs (e.g., all) of pairs that correspond to the best receive beams.
- Assumption 3 is an assumption that the input is a pair of specific receive beam candidates (a portion of the plurality (e.g., all) of receive beams) in which the receive beam corresponding to each transmit beam is the best.
- a prediction model for all beam pairs is created using the measurement results of each input beam pair (shown using hatching) related to assumptions 1-3 in the training dataset.
- the predicted top 1 (best) L1-RSRP value is calculated as the output when the measurement results of each input beam pair (shown using hatching) related to assumptions 1-3 in the test dataset are input into the prediction model.
- Figure 10 shows the difference between the top 1 (best) L1-RSRP value and the correct/ideal (genie-aided) top 1 (best) L1-RSRP value.
- the inventors therefore came up with a method to solve the above problem.
- each embodiment of the present disclosure may be applied when AI is not used (for example, when prediction is performed using a function).
- A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
- Radio Resource Control RRC
- RRC parameters RRC parameters
- RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
- IEs information elements
- CE Medium Access Control
- update commands activation/deactivation commands, etc.
- the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
- RRC Radio Resource Control
- MAC Medium Access Control
- LPP LTE Positioning Protocol
- the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
- the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining Minimum System Information
- OSI System Information
- the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
- DCI Downlink Control Information
- UCI Uplink Control Information
- channel measurement/estimation may be performed using at least one of, for example, a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal (SS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a DeModulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), etc.
- CSI-RS Channel State Information Reference Signal
- SS Synchronization Signal
- SS/PBCH Synchronization Signal/Physical Broadcast Channel
- DMRS DeModulation Reference Signal
- SRS Sounding Reference Signal
- the terms receive beam assumption, number of receive beams, receive beam index, receive beam selection, receive beam setting, and receive beam instruction may be interchangeable.
- the terms receive beam, transmit beam, DL receive beam, DL transmit beam, transmit and receive beam pair, and DL reference signal may be interchangeable.
- the terms transmit/receive beam may be interchangeable with the terms transmit/receive beam for beam prediction and the terms transmit/receive beam for measuring/reporting CSI for beam prediction.
- the first embodiment relates to the definition/configuration/indication of receive beam assumptions/selection for CSI reporting.
- the UE may receive configuration regarding receive beam assumption/selection for CSI reporting.
- the UE may expect/assume to receive configuration regarding receive beam assumption/selection for CSI reporting.
- the setting/reception may be predefined by the specifications, or may be received according to at least one of the methods described in Supplementary Note 2 below.
- settings regarding the assumed/selected/number of receiving beams for CSI reporting may be read as interchangeable.
- the first embodiment is broadly divided into the following options 1-1 to 1-4.
- the UE/NW may follow any of options 1-1 to 1-4, or may apply a combination of at least one of the methods described in options 1-1 to 1-3 as described in option 1-4.
- Option 1-1 describes an example in which settings related to receive beam selection for CSI reporting are dedicated for each transmit beam.
- the UE may report a specific CSI measurement result from among multiple receive beams for each transmit beam setting being measured.
- the UE may also report a specific CSI measurement result from among multiple receive beams used for measurements.
- the UE may independently select a corresponding receive beam for each transmit beam.
- the UE may perform CSI measurements/reports for the selected transmit and receive beam pair.
- multiple (e.g., all) receive beams may be referred to as transmit-receive (Tx-Rx) pairs, beam pairs, etc.
- Tx-Rx transmit-receive
- multiple (e.g., all) receive beams used for beam measurement may be interpreted interchangeably.
- Option 1-1 allows for flexible beam pair selection, as the receive beam can be selected individually for each transmit beam.
- the UE may report CSI measurements corresponding to a particular receive beam among multiple (eg, all) measurements.
- the UE may be configured to report the CSI measurement result that achieves the highest received power (e.g., L1-RSRP) among multiple (e.g., all) measurement results.
- the highest received power e.g., L1-RSRP
- FIG. 12A is a diagram showing an example of reporting CSI measurement results related to option 1-1-1.
- the UE reports the CSI measurement results corresponding to the best receiving beam for each measured transmitting beam (setting) for set B.
- the best receiving beam corresponding to transmit beam 3 is receive beam 0 (Rx0)
- the best receiving beam corresponding to transmit beam 13 is receive beam 1 (Rx1)
- the best receiving beam corresponding to transmit beam 19 is receive beam 0 (Rx0)
- the best receiving beam corresponding to transmit beam 29 is receive beam 2 (Rx2)
- the best receiving beam corresponding to transmit beam 35 is receive beam 1 (Rx1)
- the best receiving beam corresponding to transmit beam 45 (Tx45) is receive beam 0 (Rx2)
- the best receiving beam corresponding to transmit beam 51 (Tx51) is receive beam 3 (Rx3)
- the best receiving beam corresponding to transmit beam 61 is receive beam 3 (Rx3).
- the UE reports CSI measurement results corresponding to these beam pairs.
- Option 1-1-1 allows the best beam pair to be selected for each transmit beam, enabling highly accurate beam prediction.
- the UE may report an average CSI measurement result for multiple (eg, all) receive beams.
- the UE may be configured to report average CSI measurements for multiple (e.g., all) receive beams.
- the UE may also report the average CSI measurement for a particular receive beam.
- the particular beam may be the receive beam that achieves the K highest powers.
- K may be predefined in the specification or may be set/indicated using higher layer signaling/DCI.
- FIG. 12B is a diagram showing an example of reporting CSI measurement results for option 1-1-2.
- the UE reports the average CSI measurement results for all receive beams for set B for each transmit beam (configuration) being measured (for transmit beams 3/13/19/29/35/45/51/61).
- Option 1-1-2 allows for highly accurate beam prediction by averaging the CSI measurement results of multiple beam pairs for each transmit beam.
- Option 1-2 describes an example in which settings related to receive beam selection for CSI reporting are common for multiple (e.g., all) transmit beams.
- the UE may report a specific CSI measurement result based on a specific receive beam for multiple measured transmit beams.
- the UE may select a common receive beam for each transmit beam measurement result.
- the UE may perform CSI measurement/reporting for the selected transmit beam and receive beam pair.
- Option 1-2 allows for the selection of a common receiving beam for each transmitting beam, reducing signaling overhead and also making UE implementation easier.
- the UE may report CSI measurement results for each transmit beam/specific transmit beam corresponding to a receive beam pair that yields a specific (e.g., best) value among multiple transmit-receive pairs (pairs of transmit beams and receive beams) from multiple (e.g., all) measurement results.
- the UE may be configured to report CSI measurement results for each transmit beam/specific transmit beam corresponding to the receive beam of a pair that yields a specific (e.g., best) value among multiple transmit-receive pairs from multiple (e.g., all) measurement results.
- FIG. 13A is a diagram showing an example of reporting CSI measurement results relating to option 1-2-1.
- the UE reports the CSI measurement results for set B corresponding to the receive beam (Rx2) of the pair (Tx29-Rx2 in the example of FIG. 13A) that provides the best value among all transmit-receive pairs.
- the UE reports the CSI measurement results for multiple (all) beam pairs including receive beam 2 (Rx2).
- Option 1-2-1 allows for highly accurate beam prediction by selecting a receiving beam based on the best beam pair.
- the UE may report CSI measurements obtained from a specific receive beam from multiple (e.g., all) measurements, or may select/determine a receive beam to use for measurements for CSI reporting from receive beams used to receive a specific DL channel.
- the UE may be configured to report CSI measurement results obtained from a specific receive beam from multiple (e.g., all) measurement results.
- the UE may also be configured to select/determine a receive beam to use for measurements for CSI reporting from the receive beams used to receive a specific DL channel.
- the particular receive beam may be, for example, the best receive beam in the last receive beam sweeping (e.g., the full receive beam sweeping).
- the UE may also perform measurements for CSI reporting using the specific receiving beam.
- the UE may perform measurements for CSI reporting using multiple best receiving beams, or may perform measurements for CSI reporting using a receiving beam adjacent to the best receiving beam.
- the particular receive beam may be, for example, the best receive beam in the most recent previous beam measurement.
- the particular receiving beam may be, for example, the best receiving beam in the most recent previous beam measurement for the CSI report.
- FIG. 13B is a diagram showing an example of reporting CSI measurement results related to option 1-2-2.
- the UE reports CSI measurement results for set B corresponding to the best receiving beam (receiving beam 3 (Rx3) in the example of FIG. 13B) in the most recent receiving beam sweeping (e.g., the most recent P3 period).
- the UE reports CSI measurement results for multiple (all) beam pairs including receiving beam 3 (Rx3).
- Option 1-2-2 allows for highly accurate beam prediction that reflects the UE's environment.
- the UE may report a measurement result obtained from a specific receiving beam from among multiple (e.g., all) measurement results as a CSI measurement result.
- the UE may also report CSI measurements from the receive beams used to receive a particular DL channel for multiple (e.g., all) measured transmit beam configurations.
- the UE may also select/determine the receiving beam to be used for measurements for CSI reporting from the receiving beams used to receive a particular DL channel.
- the UE may be configured to report CSI measurements from the receive beams used to receive a particular DL channel for multiple (e.g., all) measured transmit beam configurations.
- the particular DL channel may be, for example, the (last) PDSCH/PDCCH.
- FIG. 13C is a diagram showing an example of reporting CSI measurement results relating to option 1-2-3.
- the UE reports the CSI measurement results for set B corresponding to the receive beam used for the most recent PDSCH reception (receive beam 2 (Rx2) in the example of FIG. 13C).
- the UE reports the CSI measurement results for multiple (all) beam pairs including receive beam 2 (Rx2).
- Option 1-2-3 allows for highly accurate beam prediction that reflects the UE's environment.
- Option 1-3 describes a case where the UE explicitly receives a setting related to the reception beam selection for CSI reporting. As with the above options 1-1/1-2, this option also includes a case where the reception beam is selected commonly/individually for each transmission beam.
- the specific receiving beam information/beam information may be at least one of the receiving beam information described above.
- Options 1-3 allow flexible configuration from the network to the UE, enabling highly accurate beam prediction.
- the receiving beam used to measure the report results for CSI reporting may be common to multiple (e.g., all) transmitting beams/reference signals (each transmitting beam/reference signal).
- the UE may report CSI measurement results obtained from a receiving beam corresponding to the specific receiving beam information configured/instructed.
- the UE may be configured/instructed to report CSI measurements obtained from receive beams corresponding to information related to a particular configured/instructed receive beam.
- the settings/instructions may be made based on the method described in Supplementary Note 2 below.
- the setting/instruction may be performed by instructing a specific receiving beam (e.g., beam index, RS index).
- a specific receiving beam e.g., beam index, RS index.
- FIG. 14A is a diagram showing an example of reporting CSI measurement results related to option 1-3-1.
- the UE is instructed to report CSI measurement results corresponding to receive beam 0 (Rx0).
- the UE reports CSI measurement results for each beam pair including receive beam 0 (Rx0).
- Option 1-3-1 allows flexible configuration from the network to the UE while reducing signaling overhead, and enables highly accurate beam prediction.
- the receiving beam used to measure the reporting result for CSI reporting may be dedicated for each transmitting beam/reference signal being reported.
- the UE may report CSI measurement results obtained from the receive beam corresponding to the specific receive beam information configured for each transmit beam reported/measured.
- the UE may be configured/instructed to report CSI measurement results obtained from the receive beam corresponding to the specific receive beam information configured for each transmit beam configuration reported/measured.
- the settings/instructions may be made based on the method described in Supplementary Note 2 below.
- the setting/instruction may be performed by setting/instructing a specific receiving beam (e.g., beam index, RS index), or by setting/instructing a specific beam pair (e.g., beam index pair, RS index pair).
- a specific receiving beam e.g., beam index, RS index
- a specific beam pair e.g., beam index pair, RS index pair
- Figure 14B is a diagram showing an example of reporting CSI measurement results for option 1-3-2.
- the UE is instructed on the receive beam (or beam pair) for which the CSI measurement results will be reported for each transmit beam.
- the UE is instructed to report the CSI measurement results (L1-RSRP) for each of the beam pairs Tx3-Rx0, Tx13-Rx1, Tx19-Rx0, Tx29-Rx2, Tx35-Rx1, Tx45-Rx2, Tx51-Rx3, and Tx61-Rx3.
- Option 1-3-2 allows more flexible configuration from the network to the UE, enabling more accurate beam prediction.
- the UE may configure the settings related to the assumed receiving beam for CSI reporting using higher layer signaling (specific RRC parameters).
- the RRC parameters may be, for example, RRC parameters related to CSI reporting.
- the UE may receive configuration regarding the receiving beam assumptions for CSI reporting using a CSI reporting configuration (e.g., CSI-ReportConfig).
- a CSI reporting configuration e.g., CSI-ReportConfig
- the configuration regarding the receiving beam assumption for CSI reporting may be included in the CSI reporting configuration (e.g., CSI-ReportConfig).
- FIG. 15A is a diagram showing an example of a configuration related to a receive beam assumption for a CSI report.
- FIG. 15A is written using Abstract Syntax Notation One (ASN.1) notation.
- ASN.1 Abstract Syntax Notation One
- a configuration related to a receive beam assumption for a CSI report (RxbeamAssumption) is included in a CSI report configuration (CSI-ReportConfig).
- the UE may receive a configuration regarding the assumed receiving beam for CSI reporting using a parameter (e.g., CSI-SemiPersistentOnPUSCH-TriggerState) for setting the trigger state of CSI semi-persistent reporting.
- a parameter e.g., CSI-SemiPersistentOnPUSCH-TriggerState
- the settings regarding the assumed receiving beam for CSI reporting may be included in a parameter for setting the trigger state of semi-persistent CSI reporting (e.g., CSI-SemiPersistentOnPUSCH-TriggerState).
- a parameter for setting the trigger state of semi-persistent CSI reporting e.g., CSI-SemiPersistentOnPUSCH-TriggerState.
- FIG. 15B is a diagram showing another example of the settings related to the receive beam assumption for CSI reporting. Like FIG. 15A, FIG. 15B is written using ASN.1 notation. In the example shown in FIG. 15B, the settings related to the receive beam assumption for CSI reporting (RxbeamAssumption) are included in the parameters for setting the trigger state of the semi-persistent CSI report (e.g., CSI-SemiPersistentOnPUSCH-TriggerState).
- the UE may receive a configuration regarding the receiving beam assumption for CSI reporting using a parameter (e.g., CSI-AperiodicTriggerState) for setting the trigger state of aperiodic CSI reporting.
- a parameter e.g., CSI-AperiodicTriggerState
- settings regarding receive beam assumptions for CSI reporting may be included in parameters for setting the trigger state for aperiodic CSI reporting (e.g., CSI-AperiodicTriggerState).
- FIG. 15C is a diagram showing another example of the settings related to the receive beam assumption for CSI reporting. Like FIG. 15A, FIG. 15C is written using ASN.1 notation. In the example shown in FIG. 15C, the settings related to the receive beam assumption for CSI reporting (RxbeamAssumption) are included in the parameters (e.g., CSI-AperiodicTriggerState) for setting the trigger state of aperiodic CSI reporting.
- the parameters e.g., CSI-AperiodicTriggerState
- Second Embodiment A second embodiment relates to reporting of measurements based on receive beam assumption/selection.
- the UE may report measurement results based on the configured receive beam assumption/selection.
- the UE may, for example, measure the (DL) transmit beam at a specific time period (e.g., P1 or always).
- the UE may, for example, report the measurement results after a specific time period (e.g., after P1 has elapsed).
- the UE may also, for example, be allowed to report the measurement results always.
- the UE may measure the (DL) transmission beam based on the receiving beam assumption/selection configuration and obtain measurement results for multiple (e.g., all) configured resources/receiving beams (step S1701).
- the UE may generate the measurement results based on a specific method (e.g., a specification/configuration) (step S1702).
- the specific method may, for example, follow at least one of the methods described in the first embodiment above.
- the UE may report the generated measurement results to the NW (S1703).
- FIG. 16 is a diagram showing an example of a measurement/reporting timeline according to the second embodiment.
- measurements of set B are performed during a specific period (e.g., P1).
- the UE may report CSI measurements (results) after P1 has elapsed.
- the CSI measurement is reported immediately after P1 has elapsed, but the CSI measurement may be reported a specific period of time (e.g., T symbols/slots/ms (T is an arbitrary number)) after P1 has elapsed.
- the T may be specified in advance in the specifications, or may be set/instructed/notified to the UE using higher layer signaling/physical layer signaling.
- FIG. 17 is a diagram showing an example of the measurement/reporting operation according to the second embodiment.
- 'repetition' is set to on for resource setting #X (X is an arbitrary value).
- step S1701 first, sweeping of the transmit beam and receive beam is performed (step S1701).
- the UE obtains the best beam pair (combination of transmit beam and receive beam) based on the configured receive beam assumption/selection, and generates measurement results based on the best beam pair (step S1702). After that, the UE reports the generated measurement results to the NW (step S1703).
- AI model information may mean information including at least one of the following: - AI model input/output information, - Pre-processing/post-processing information for input/output of AI models; ⁇ Information on the parameters of the AI model, - Training information for the AI model; - Inference information for AI models, ⁇ Performance information about the AI model.
- the input/output information of the AI model may include information regarding at least one of the following: Content of input/output data (e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information); - auxiliary information of the data (which may be called meta-information); - Input/output data types (e.g. immutable values, floating point numbers), - Bit width of input/output data (e.g. 64 bits for each input value), Quantization interval (quantization step size) of input/output data (e.g., 1 dBm for L1-RSRP); The range that the input/output data can take (e.g., [0, 1]).
- Content of input/output data e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the
- the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Furthermore, the information regarding AoD may include information regarding at least one of the azimuth angle of departure and the zenith angle of departure (ZoD).
- the location information may be location information regarding the UE/NW.
- the location information may include at least one of information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), information on the BS adjacent to (or serving) the UE (e.g., a BS/cell identifier (ID), a BS-UE distance, a direction/angle of the BS (UE) as seen from the UE (BS), coordinates of the BS (UE) as seen from the UE (BS) (e.g., coordinates on the X/Y/Z axes), etc.), a specific address of the UE (e.g., an Internet Protocol (IP) address), etc.
- IP Internet Protocol
- the location information of the UE is not limited to information based on the position of the BS, and may be information based on a specific point.
- the location information may include information about its implementation (e.g., location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
- the location information may include mobility information.
- the mobility information may include information indicating at least one of the following: information indicating a mobility type, a moving speed of the UE, an acceleration of the UE, a moving direction of the UE, etc.
- the mobility type may correspond to at least one of fixed location UE, movable/moving UE, no mobility UE, low mobility UE, middle mobility UE, high mobility UE, cell-edge UE, not-cell-edge UE, etc.
- environmental information may be information regarding the environment in which the data is acquired/used, and may correspond to, for example, frequency information (such as a band ID), environmental type information (information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), information indicating Line Of Site (LOS)/Non-Line Of Site (NLOS), etc.
- frequency information such as a band ID
- environmental type information information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.
- LOS Line Of Site
- NLOS Non-Line Of Site
- LOS may mean that the UE and BS are in an environment where they can see each other (or there is no obstruction)
- NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is an obstruction).
- Information indicating LOS/NLOS may indicate a soft value (e.g., the probability of LOS/NLOS) or a hard value (e.g., either LOS or NLOS).
- meta-information may mean, for example, information regarding input/output information suitable for an AI model, information regarding data that has been acquired/can be acquired, etc.
- meta-information may include information regarding beams of RS (e.g., CSI-RS/SRS/SSB, etc.) (e.g., the pointing angle of each beam, 3 dB beam width, the shape of the pointed beam, the number of beams), layout information of gNB/UE antennas, frequency information, environmental information, meta-information ID, etc.
- RS e.g., CSI-RS/SRS/SSB, etc.
- meta-information may be used as input/output of an AI model.
- the pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following: Whether to apply normalization (e.g., Z-score normalization, min-max normalization), Parameters for normalization (e.g. mean/variance for Z-score normalization, min/max for min-max normalization); Whether to apply a specific numeric transformation method (e.g., one hot encoding, label encoding, etc.); Selection rule for whether or not to use as training data.
- normalization e.g., Z-score normalization, min-max normalization
- Parameters for normalization e.g. mean/variance for Z-score normalization, min/max for min-max normalization
- a specific numeric transformation method e.g., one hot encoding, label encoding, etc.
- the information of the parameters of the AI model may include information regarding at least one of the following: - Weight information in an AI model (e.g., neuron coefficients (connection coefficients)), ⁇ Structure of the AI model, - Type of AI model as model component (e.g. Residual Network (ResNet), DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)); - Functions of the AI model as model components (e.g., decoder, encoder).
- - Weight information in an AI model e.g., neuron coefficients (connection coefficients)
- ⁇ Structure of the AI model e.g., ⁇ Structure of the AI model
- Type of AI model as model component e.g. Residual Network (ResNet), DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short-Term Memory
- the weight information in the AI model may include information regarding at least one of the following: - Bit width (size) of weight information Quantization interval of weight information, - Granularity of weight information, - The range of possible weight information - Weight parameters in the AI model, - Information on the difference from the AI model before the update (if updating), - Method of weight initialization (e.g., zero initialization, random initialization (based on normal/uniform/truncated normal distribution), Xavier initialization (for sigmoid function), He initialization (for Rectified Linear Units (ReLU))).
- the structure of the AI model may also include information regarding at least one of the following: Number of layers, - Type of layer (e.g., convolutional layer, activation layer, dense layer, normalization layer, pooling layer, attention layer), - Layer information, Time series specific parameters (e.g. bidirectionality, time step), Parameters for training (e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
- - Type of layer e.g., convolutional layer, activation layer, dense layer, normalization layer, pooling layer, attention layer
- - Layer information e.g., Time series specific parameters (e.g. bidirectionality, time step)
- Parameters for training e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
- the layer information may include information regarding at least one of the following: - The number of neurons in each layer, - kernel size, strides for pooling/convolutional layers, Pooling method (MaxPooling, AveragePooling, etc.), - Information on the residual block, Number of heads, - Normalization method (batch normalization, instance normalization, layer normalization, etc.), Activation functions (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
- An AI model may be included as a component of another AI model.
- an AI model may be an AI model in which processing proceeds in the order of model component #1 (ResNet), model component #2 (a transformer model), a dense layer, and a normalization layer.
- ResNet model component #1
- model component #2 a transformer model
- dense layer a dense layer
- normalization layer a normalization layer
- Training information for the AI model may include information regarding at least one of the following: Information for the optimization algorithm (e.g., type of optimization (Stochastic Gradient Descent (SGD)), AdaGrad, Adam, etc.), parameters of the optimization (learning rate, momentum information, etc.), Loss function information (e.g., information on metrics of the loss function (Mean Absolute Error (MAE)), Mean Square Error (MSE), Cross Entropy Loss, NLL Loss, Kullback-Leibler (KL) Divergence, etc.)); - parameters to be frozen for training (e.g. layers, weights), - parameters to be updated (e.g. layers, weights), - parameters (e.g. layers, weights) that should be (used as) initial parameters for training, How to train/update the AI model (e.g., (recommended) number of epochs, batch size, number of data used for training).
- Information for the optimization algorithm e.g., type of optimization (S
- the inference information for the AI model may include information regarding decision tree branch pruning, parameter quantization, and the function of the AI model.
- the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, autoencoder for CSI feedback, and autoencoder for beam management.
- An autoencoder for CSI feedback may be used as follows: The UE inputs the CSI/channel matrix/precoding matrix into the AI model of the encoder and transmits the encoded bits as CSI feedback (CSI report); - The BS reconstructs the CSI/channel matrix/precoding matrix, which is output as input to the AI model of the decoder using the received encoded bits.
- the UE/BS may input measurement results (beam quality, e.g., RSRP) based on sparse (or thick) beams into an AI model to output dense (or thin) beam quality.
- beam quality e.g., RSRP
- the UE/BS may input time series (past, present, etc.) measurement results (beam quality, e.g., RSRP) into an AI model and output future beam quality.
- time series past, present, etc.
- beam quality e.g., RSRP
- the performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
- the AI model information in this disclosure may include information regarding the scope of application (scope of applicability) of the AI model.
- the scope of application may be indicated by a physical cell ID, a serving cell index, etc.
- Information regarding the scope of application may be included in the above-mentioned environmental information.
- AI model information regarding a specific AI model may be predetermined in a standard, or may be notified to the UE from the network (NW).
- An AI model defined in a standard may be referred to as a reference AI model.
- AI model information regarding a reference AI model may be referred to as reference AI model information.
- the AI model information in the present disclosure may include an index for identifying the AI model (e.g., may be called an AI model index, an AI model ID, a model ID, etc.).
- the AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above.
- the association between the AI model index and the AI model information (e.g., input/output information of the AI model) may be predetermined in a standard, or may be notified to the UE from the NW.
- the AI model information in this disclosure may be associated with an AI model and may be referred to as AI model relevant information, simply relevant information, etc.
- the AI model relevant information does not need to explicitly include information for identifying the AI model.
- the AI model relevant information may be information that includes only meta information, for example.
- the model ID may be interchangeably read as an ID (model set ID) corresponding to a set of AI models.
- the model ID may be interchangeably read as a meta information ID.
- the meta information (or meta information ID) may be associated with information regarding the beam (beam setting) as described above.
- the meta information (or meta information ID) may be used by the UE to select an AI model taking into account which beam the BS is using, or may be used to notify the BS of which beam to use to apply the AI model deployed by the UE.
- the meta information ID may be interchangeably read as an ID (meta information set ID) corresponding to a set of meta information.
- any information may be notified to the UE (from the NW) (in other words, any information received from the BS in the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
- physical layer signaling e.g., DCI
- higher layer signaling e.g., RRC signaling, MAC CE
- a specific signal/channel e.g., PDCCH, PDSCH, reference signal
- the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
- LCID Logical Channel ID
- the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
- RNTI Radio Network Temporary Identifier
- CRC Cyclic Redundancy Check
- notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
- notification of any information from the UE may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, reference signal), or a combination thereof.
- physical layer signaling e.g., UCI
- higher layer signaling e.g., RRC signaling, MAC CE
- a specific signal/channel e.g., PUCCH, PUSCH, reference signal
- the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
- the notification may be transmitted using PUCCH or PUSCH.
- notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
- At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
- At least one of the above-described embodiments may be applied only to UEs that have reported or support certain UE capabilities, for example, as described below (by way of example only): Support AI/ML based beam prediction (temporal/spatial domain beam prediction). Support receive beam selection/estimation.
- the particular UE capability may indicate support for particular processing/operations/control/information for at least one of the above embodiments/options/options.
- the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
- FR1 Frequency Range 1
- FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
- SCS subcarrier Spacing
- FS Feature Set
- FSPC Feature Set Per Component-carrier
- the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
- the specific information may be information indicating the enablement of the use of an AI/ML model, information indicating the enablement of CSI prediction, information indicating the enablement of AI-based beam prediction (temporal/spatial domain beam prediction), information indicating the enablement of receive beam selection/assumption, any RRC parameters for a particular release (e.g., Rel. 18/19), etc.
- the UE may apply, for example, the behavior of Rel. 15/16/17.
- Appendix 1 A receiving unit for receiving a setting regarding a selection of a downlink receiving beam for reporting channel state information; A terminal having a control unit that performs measurements of multiple downlink transmission beams based on the setting and controls reporting of the results of the measurements.
- Appendix 2 A terminal as described in Supplementary Note 1, wherein the control unit independently selects a corresponding downlink receiving beam for each of the multiple downlink transmitting beams and controls the terminal to report the results of the measurement.
- [Appendix 3] A terminal as described in Supplementary Note 1 or Supplementary Note 2, wherein the control unit selects a common downlink receiving beam corresponding to the multiple downlink transmitting beams and controls the terminal to report the results of the measurement.
- [Appendix 4] The terminal according to any one of Supplementary Note 1 to Supplementary Note 3, wherein the configuration is a Radio Resource Control (RRC) parameter for channel state information reporting.
- RRC Radio Resource Control
- Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
- communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
- FIG. 18 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
- LTE Long Term Evolution
- 3GPP Third Generation Partnership Project
- 5G NR 5th generation mobile communication system New Radio
- the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- RATs Radio Access Technologies
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- E-UTRA Evolved Universal Terrestrial Radio Access
- EN-DC E-UTRA-NR Dual Connectivity
- NE-DC NR-E-UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
- the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
- the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- gNBs NR base stations
- N-DC Dual Connectivity
- the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
- a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
- the user terminal 20 may be connected to at least one of the multiple base stations 10.
- the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- Macro cell C1 may be included in FR1
- small cell C2 may be included in FR2.
- FR1 may be a frequency band below 6 GHz (sub-6 GHz)
- FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
- the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
- wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication e.g., NR communication
- base station 11 which corresponds to the upper station
- IAB Integrated Access Backhaul
- base station 12 which corresponds to a relay station
- the base station 10 may be connected to the core network 30 directly or via another base station 10.
- the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the radio access method may also be called a waveform.
- other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
- a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
- PDSCH Physical Downlink Shared Channel
- PBCH Physical Broadcast Channel
- PDCCH Physical Downlink Control Channel
- an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- SIB System Information Block
- PDSCH User data, upper layer control information, System Information Block (SIB), etc.
- SIB System Information Block
- PUSCH User data, upper layer control information, etc.
- MIB Master Information Block
- PBCH Physical Broadcast Channel
- Lower layer control information may be transmitted by the PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
- DCI Downlink Control Information
- the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
- the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
- the PDSCH may be interpreted as DL data
- the PUSCH may be interpreted as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
- the CORESET corresponds to the resources to search for DCI.
- the search space corresponds to the search region and search method of PDCCH candidates.
- One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
- a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
- the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
- UCI uplink control information
- CSI channel state information
- HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
- ACK/NACK ACK/NACK
- SR scheduling request
- the PRACH may transmit a random access preamble for establishing a connection with a cell.
- downlink, uplink, etc. may be expressed without adding "link.”
- various channels may be expressed without adding "Physical” to the beginning.
- a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
- a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
- the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
- the SS, SSB, etc. may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS uplink reference signal
- DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
- the base station 19 is a diagram showing an example of the configuration of a base station according to an embodiment.
- the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
- the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
- the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
- the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
- the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
- the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- channel coding which may include error correction coding
- DFT Discrete Fourier Transform
- IFFT Inverse Fast Fourier Transform
- the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
- the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
- the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- FFT Fast Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- filtering demapping
- demodulation which may include error correction decoding
- MAC layer processing which may include error correction decoding
- the transceiver 120 may perform measurements on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
- the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
- RSRP Reference Signal Received Power
- RSSI Received Signal Strength Indicator
- the measurement results may be output to the control unit 110.
- the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- devices included in the core network 30 e.g., network nodes providing NF
- other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
- the transceiver unit 120 may transmit a setting regarding the selection of a downlink receiving beam for reporting channel state information.
- the control unit 110 may control the reception of measurement result reports of multiple downlink transmitting beams measured based on the setting (first and second embodiments).
- the user terminal 20 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
- the user terminal 20 includes a control unit 210, a transmitting/receiving unit 220, and a transmitting/receiving antenna 230.
- the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may each be provided in one or more units.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 210 may control signal generation, mapping, etc.
- the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
- the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
- the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
- the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
- RLC layer processing e.g., RLC retransmission control
- MAC layer processing e.g., HARQ retransmission control
- the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- Whether or not to apply DFT processing may be based on the settings of transform precoding.
- the transceiver unit 220 transmission processing unit 2211
- the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
- the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
- the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
- the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
- the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
- the measurement results may be output to the control unit 210.
- the measurement unit 223 may derive channel measurements for CSI calculation based on channel measurement resources.
- the channel measurement resources may be, for example, non-zero power (NZP) CSI-RS resources.
- the measurement unit 223 may derive interference measurements for CSI calculation based on interference measurement resources.
- the interference measurement resources may be at least one of NZP CSI-RS resources for interference measurement, CSI-Interference Measurement (IM) resources, etc.
- CSI-IM may be called CSI-Interference Management (IM) or may be interchangeably read as Zero Power (ZP) CSI-RS.
- CSI-RS, NZP CSI-RS, ZP CSI-RS, CSI-IM, CSI-SSB, etc. may be read as interchangeable.
- the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
- the transceiver unit 220 may receive a setting regarding the selection of a downlink receiving beam for reporting channel state information.
- the control unit 210 may measure multiple downlink transmitting beams based on the setting and control the reporting of the results of the measurement (first/second embodiment).
- the control unit 210 may control the system to independently select a corresponding downlink receiving beam for each of the multiple downlink transmitting beams and report the results of the measurement (first embodiment).
- the control unit 210 may select a common downlink receiving beam corresponding to the multiple downlink transmitting beams and control the reporting of the measurement results (first embodiment).
- the settings may be Radio Resource Control (RRC) parameters for reporting channel state information (first embodiment).
- RRC Radio Resource Control
- each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
- the functional blocks may be realized by combining the one device or the multiple devices with software.
- the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
- a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
- a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 21 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
- the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
- the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
- the processor 1001 for example, runs an operating system to control the entire computer.
- the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
- CPU central processing unit
- control unit 110 210
- transmission/reception unit 120 220
- etc. may be realized by the processor 1001.
- the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
- the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
- Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrically EPROM
- RAM Random Access Memory
- Memory 1002 may also be called a register, cache, main memory, etc.
- Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
- the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
- the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
- the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
- each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
- the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
- the processor 1001 may be implemented using at least one of these pieces of hardware.
- a channel, a symbol, and a signal may be read as mutually interchangeable.
- a signal may also be a message.
- a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
- a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
- a subframe may be composed of one or more slots in the time domain.
- a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
- the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
- the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
- SCS SubCarrier Spacing
- TTI Transmission Time Interval
- radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
- a specific windowing process performed by the transceiver in the time domain etc.
- a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may also be a time unit based on numerology.
- a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
- a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
- a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
- the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
- one subframe may be called a TTI
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI.
- at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
- the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
- TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
- a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
- radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
- the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
- the time interval e.g., the number of symbols
- the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum time unit of scheduling.
- the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
- a short TTI e.g., a shortened TTI, etc.
- TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
- the number of subcarriers included in an RB may be determined based on numerology.
- an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
- PRB Physical RB
- SCG sub-carrier Group
- REG resource element group
- PRB pair an RB pair, etc.
- a resource block may be composed of one or more resource elements (REs).
- REs resource elements
- one RE may be a radio resource area of one subcarrier and one symbol.
- a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within the BWP.
- the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots, and symbols are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
- a radio resource may be indicated by a predetermined index.
- the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
- the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
- information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
- Information, signals, etc. may be input/output via multiple network nodes.
- Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
- a specific location e.g., memory
- Input/output information, signals, etc. may be overwritten, updated, or added to.
- Output information, signals, etc. may be deleted.
- Input information, signals, etc. may be transmitted to another device.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
- the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
- the MAC signaling may be notified, for example, using a MAC Control Element (CE).
- CE MAC Control Element
- notification of specified information is not limited to explicit notification, but may be done implicitly (e.g., by not notifying the specified information or by notifying other information).
- the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
- Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
- Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
- a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
- wireless technologies such as infrared, microwave, etc.
- Network may refer to the devices included in the network (e.g., base stations).
- the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port).
- the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.).
- the resource may include time/frequency/code/space/power resources.
- the spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
- the above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
- CDM Code Division Multiplexing
- RS Reference Signal
- CORESET Control Resource Set
- beam SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be read as interchangeable.
- SRI SRS Resource Indicator
- CORESET CORESET pool
- PDSCH PUSCH
- codeword CW
- TB transport block
- RS etc.
- TCI state downlink TCI state
- DL TCI state downlink TCI state
- UL TCI state uplink TCI state
- unified TCI state common TCI state
- joint TCI state etc.
- QCL QCL
- QCL assumptions QCL relationship
- QCL type information QCL property/properties
- specific QCL type e.g., Type A, Type D
- specific QCL type e.g., Type A, Type D
- index identifier
- indicator indication, resource ID, etc.
- sequence list, set, group, cluster, subset, etc.
- TCI state ID may be interchangeable.
- TCI state ID may be interchangeable as “set of spatial relationship information (TCI state)", “one or more pieces of spatial relationship information”, etc.
- TCI state and TCI may be interchangeable.
- Spatial relationship information and spatial relationship may be interchangeable.
- Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
- a base station can accommodate one or more (e.g., three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
- RRH Remote Radio Head
- the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
- a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
- at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
- the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
- the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
- the moving body in question may also be a moving body that moves autonomously based on an operating command.
- the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
- a vehicle e.g., a car, an airplane, etc.
- an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
- a robot manned or unmanned
- at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- FIG. 22 is a diagram showing an example of a vehicle according to an embodiment.
- the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
- various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
- an information service unit 59 including a communication module 60.
- the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
- the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
- the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
- the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
- the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
- the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
- various information/services e.g., multimedia information/multimedia services
- the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
- input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
- output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
- the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
- the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
- the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
- the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
- the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
- the communication module 60 may be located either inside or outside the electronic control unit 49.
- the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
- the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
- the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
- the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
- the PUSCH transmitted by the communication module 60 may include information based on the above input.
- the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
- the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
- the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
- the base station in the present disclosure may be read as a user terminal.
- each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- the user terminal 20 may be configured to have the functions of the base station 10 described above.
- terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
- the uplink channel, downlink channel, etc. may be read as the sidelink channel.
- the user terminal in this disclosure may be interpreted as a base station.
- the base station 10 may be configured to have the functions of the user terminal 20 described above.
- operations that are described as being performed by a base station may in some cases also be performed by its upper node.
- a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
- the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
- the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4th generation mobile communication system 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG x is, for example, an integer or decimal
- Future Radio Access FX
- GSM Global System for Mobile communications
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
- the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
- Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
- judgment (decision) may be considered to mean “judging (deciding)” resolving, selecting, choosing, establishing, comparing, etc.
- judgment (decision) may be considered to mean “judging (deciding)” some kind of action.
- judgment (decision) may be interpreted interchangeably with the actions described above.
- expect may be read as “be expected”.
- "expect(s)" ("" may be expressed, for example, as a that clause, a to infinitive, etc.) may be read as “be expected".
- "does not expect" may be read as "be not expected".
- "An apparatus A is not expected" may be read as "An apparatus B other than apparatus A does not expect" (for example, if apparatus A is a UE, apparatus B may be a base station).
- the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
- connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
- a and B are different may mean “A and B are different from each other.”
- the term may also mean “A and B are each different from C.”
- Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
- timing, time, duration, time instance, any time unit e.g., slot, subslot, symbol, subframe
- period occasion, resource, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) was specified for Universal Mobile Telecommunications System (UMTS) networks with the aim of achieving higher data rates and lower latency (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (e.g., 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later, etc.) are also under consideration.
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。 In terms of future wireless communication technologies, the use of artificial intelligence (AI) technologies such as machine learning (ML) for network/device control and management is being considered.
AIモデルの活用のユースケースとして、空間ドメイン(spatial domain)下りリンク(Downlink(DL))ビーム予測、時間的(temporal)DLビーム予測などが検討されている。このようなビーム予測方法は、AIベースドビーム予測(ビーム報告)、AIベースドビーム管理(Beam Management(BM))などと呼ばれてもよい。時間的DLビーム予測は、例えば時間ドメインチャネル状態情報(Channel State Information(CSI))予測(prediction)などと呼ばれてもよい。 Spatial domain downlink (DL) beam prediction and temporal DL beam prediction are being considered as use cases for utilizing AI models. Such beam prediction methods may be called AI-based beam prediction (beam reporting) or AI-based beam management (BM). Temporal DL beam prediction may be called, for example, time domain Channel State Information (CSI) prediction.
このようなAIベースドビーム予測のための測定において、ネットワーク(Network、例えば、基地局)及び端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))間で、受信ビームの想定について一致させることが好ましいが、これについて検討が十分でない。この場合、ビーム予測に基づく適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 In measurements for such AI-based beam prediction, it is preferable to have the expected receiving beams consistent between the network (e.g., base station) and the terminal (user terminal, User Equipment (UE)), but this has not been sufficiently considered. In this case, appropriate overhead reduction based on beam prediction, highly accurate channel estimation, and highly efficient resource utilization cannot be achieved, which may inhibit improvements in communication throughput and communication quality.
そこで、本開示は、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve optimal overhead reduction/channel estimation/resource utilization.
本開示の一態様に係る端末は、チャネル状態情報報告用の下りリンク受信ビームの選択に関する設定を受信する受信部と、前記設定に基づいて、複数の下りリンク送信ビームの測定を行い、前記測定の結果を報告を制御する制御部と、を有する。 A terminal according to one embodiment of the present disclosure has a receiving unit that receives settings regarding the selection of a downlink receiving beam for reporting channel state information, and a control unit that performs measurements of multiple downlink transmitting beams based on the settings and controls reporting of the results of the measurements.
本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。 According to one aspect of the present disclosure, it is possible to achieve optimal overhead reduction, channel estimation, and resource utilization.
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
(Application of Artificial Intelligence (AI)) Technology to Wireless Communications)
Regarding future wireless communication technologies, the use of AI technologies such as machine learning (ML) for network/device control and management is being considered.
例えば、チャネル状態情報(Channel State Information(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのために、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))/基地局(Base Station(BS))がAI技術を活用することが検討されている。 For example, it is being considered that terminals (user equipment (UE))/base stations (BS)) will utilize AI technology to improve channel state information (CSI) feedback (e.g., reducing overhead, improving accuracy, prediction), improve beam management (e.g., improving accuracy, prediction in the time/space domain), and improve position measurement (e.g., improving position estimation/prediction).
AIモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力してもよい。UE/BSは、AIモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。 The AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information. The UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
In this disclosure, AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics:
- Estimation based on observed or collected information;
- making choices based on observed or collected information;
- Predictions based on observed or collected information.
本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。 In this disclosure, estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
本開示において、オブジェクトは、例えば、UE、BSなどの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。 In the present disclosure, an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
また、本開示において、AIモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
In addition, in the present disclosure, an AI model may be interpreted as an object having (implementing) at least one of the following characteristics:
- Producing estimates by feeding information,
- Predicting estimates by providing information
- Discover features by providing information,
- Select an action by providing information.
また、本開示において、AIモデルは、AI技術を適用し、入力のセットに基づいて出力のセットを生成するデータドリブンアルゴリズムを意味してもよい。 In addition, in this disclosure, an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
また、本開示において、AIモデル、モデル、MLモデル、予測分析(predictive analytics)、予測分析モデル、ツール、自己符号化器(オートエンコーダ(autoencoder))、エンコーダ、デコーダ、ニューラルネットワークモデル、AIアルゴリズム、スキームなどは、互いに読み替えられてもよい。また、AIモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。 Furthermore, in this disclosure, AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable. Furthermore, the AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
本開示において、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。 In this disclosure, the term "autoencoder" may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder. The encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
また、本開示において、エンコーダ、エンコーディング(encoding)、エンコードする/される(encode/encoded)、エンコーダによる修正/変更/制御、圧縮(compressing)、圧縮する/される(compress/compressed)、生成(generating)、生成する/される(generate/generated)などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, encoder, encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
また、本開示において、デコーダ、デコーディング(decoding)、デコードする/される(decode/decoded)、デコーダによる修正/変更/制御、展開(decompressing)、展開する/される(decompress/decompressed)、再構成(reconstructing)、再構成する/される(reconstruct/reconstructed)などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, the terms decoder, decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc. may be interpreted as interchangeable.
本開示において、(AIモデルについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。 In the present disclosure, a layer (for an AI model) may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model. A layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
本開示において、AIモデルの訓練方法には、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)、連合学習(federated learning)などが含まれてもよい。教師あり学習は、入力及び対応するラベルからモデルを訓練する処理を意味してもよい。教師なし学習は、ラベル付きデータなしでモデルを訓練する処理を意味してもよい。強化学習は、モデルが相互作用している環境において、入力(言い換えると、状態)と、モデルの出力(言い換えると、アクション)から生じるフィードバック信号(言い換えると、報酬)と、からモデルを訓練する処理を意味してもよい。 In this disclosure, methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like. Supervised learning may refer to the process of training a model from inputs and corresponding labels. Unsupervised learning may refer to the process of training a model without labeled data. Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
本開示において、生成、算出、導出などは、互いに読み替えられてもよい。本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。本開示において、訓練、学習、更新、再訓練などは、互いに読み替えられてもよい。本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。本開示において、信号は、信号/チャネルと互いに読み替えられてもよい。 In this disclosure, terms such as generate, calculate, derive, etc. may be interchangeable. In this disclosure, terms such as implement, operate, operate, execute, etc. may be interchangeable. In this disclosure, terms such as train, learn, update, retrain, etc. may be interchangeable. In this disclosure, terms such as infer, after-training, live use, actual use, etc. may be interchangeable. In this disclosure, terms such as signal and signal/channel may be interchangeable.
図1は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理とも表現される。 Figure 1 shows an example of a framework for managing an AI model. In this example, each stage related to the AI model is shown as a block. This example is also expressed as life cycle management of an AI model.
データ収集ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。 The data collection stage corresponds to the stage of collecting data for generating/updating an AI model. The data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
なお、データ収集は、AIモデル訓練/データ分析/推論を目的として、ネットワークノード、管理エンティティ又はUEによってデータが収集される処理を意味してもよい。本開示において、処理、手順は互いに読み替えられてもよい。また、本開示において、収集は、測定(チャネル測定、ビーム測定、無線リンク品質測定、位置推定など)に基づいてAIモデルの訓練/推論のための(例えば、入力/出力として利用できる)データセットを取得することを意味してもよい。 In addition, data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference. In this disclosure, process and procedure may be interpreted as interchangeable. In this disclosure, collection may also refer to obtaining a data set (e.g., usable as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, position estimation, etc.).
本開示において、オフラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオフライン訓練のために用いられるデータであってもよい。また、本開示において、オンラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオンライン訓練のために用いられるデータであってもよい。 In the present disclosure, offline field data may be data collected from the field (real world) and used for offline training of an AI model. Also, in the present disclosure, online field data may be data collected from the field (real world) and used for online training of an AI model.
モデル訓練ステージでは、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション(検証)、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。 In the model training stage, model training is performed based on the data (training data) transferred from the collection stage. This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
なお、AIモデル訓練(AI model training)は、データドリブンな方法でAIモデルを訓練し、推論のための訓練されたAIモデルを取得するための処理を意味してもよい。 In addition, AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
また、AIモデルバリデーション(AI model validation)は、モデル訓練に使用したデータセットとは異なるデータセットを用いてAIモデルの品質を評価するための訓練のサブ処理を意味してもよい。当該サブ処理は、モデル訓練に使用したデータセットを超えて汎化するモデルパラメータの選択に役立つ。 Also, AI model validation may refer to a sub-process of training to evaluate the quality of an AI model using a dataset different from the dataset used to train the model. This sub-process helps select model parameters that generalize beyond the dataset used to train the model.
また、AIモデルテスティング(AI model testing)は、モデル訓練/バリデーションに使用したデータセットとは異なるデータセットを使用して、最終的なAIモデルの性能を評価するための訓練のサブ処理を意味してもよい。なお、テスティングは、バリデーションとは異なり、その後のモデルチューニングを前提としなくてもよい。 Also, AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
モデル推論ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。 In the model inference stage, model inference is performed based on the data (inference data) transferred from the collection stage. This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity performing the model training), and output (providing model output to the actor).
なお、AIモデル推論(AI model inference)は、訓練されたAIモデルを用いて入力のセットから出力のセットを産み出すための処理を意味してもよい。 In addition, AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
また、UE側(UE side)モデルは、その推論が完全にUEにおいて実施されるAIモデルを意味してもよい。ネットワーク側(Network side)モデルは、その推論が完全にネットワーク(例えば、gNB)において実施されるAIモデルを意味してもよい。 Also, a UE side model may refer to an AI model whose inference is performed entirely in the UE. A network side model may refer to an AI model whose inference is performed entirely in the network (e.g., gNB).
また、片側(one-sided)モデルは、UE側モデル又はネットワーク側モデルを意味してもよい。両側(two-sided)モデルは、共同推論(joint inference)が行われるペアのAIモデルを意味してもよい。ここで、共同推論は、その推論がUEとネットワークにわたって共同で行われるAI推論を含んでもよく、例えば、推論の第1の部分がUEによって最初に行われ、残りの部分がgNBによって行われてもよい(又はその逆が行われてもよい)。 Also, a one-sided model may refer to a UE-side model or a network-side model. A two-sided model may refer to a pair of AI models where joint inference is performed. Here, joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
また、AIモデルモニタリング(AI model monitoring)は、AIモデルの推論性能をモニタするための処理を意味してもよく、モデル性能モニタリング、性能モニタリングなどと互いに読み替えられてもよい。 Also, AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
なお、モデル登録(モデルレジストレーション(model registration))は、モデルにバージョン識別子を付与し、推論段階において利用される特定のハードウェアにコンパイルすることを介して当該モデルを実行可能にする(登録(レジスター)する)ことを意味してもよい。また、モデル配置(モデルデプロイメント(model deployment))は、完全に開発されテストされたモデルのランタイムイメージ(又は実行環境のイメージ)を、推論が実施されるターゲット(例えば、UE/gNB)に配信する(又は当該ターゲットにおいて有効化する)ことを意味してもよい。 Note that model registration may refer to making a model executable (registering) through assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase. Model deployment may refer to distributing (or activating at) a fully developed and tested run-time image (or an image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
アクターステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。 Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。 Note that, for example, training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB). In the former case, interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous. In the latter case, the latency of model updates and the absence of data exchange for model deployment are advantageous. Inference of the above model may be performed in, for example, a gNB.
ユースケース(言い換えると、AIモデルの機能)に応じて、訓練/推論を行うエンティティは異なってもよい。AIモデルの機能(function)は、ビーム管理、ビーム予測、オートエンコーダ(又は情報圧縮)、CSIフィードバック、位置測位などを含んでもよい。 Depending on the use case (i.e., the function of the AI model), the entity performing the training/inference may be different. The function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。 For example, for AI-assisted beam management based on measurement reports, the OAM/gNB may perform model training and the gNB may perform model inference.
AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。 For AI-assisted UE-assisted positioning, a Location Management Function (LMF) may perform model training and the LMF may perform model inference.
オートエンコーダを用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(ジョイントで)モデル推論を行ってもよい。 For CSI feedback/channel estimation using autoencoders, the OAM/gNB/UE may perform model training and the gNB/UE may perform model inference (jointly).
ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。 For AI-assisted beam management or AI-assisted UE-based positioning based on beam measurements, the OAM/gNB/UE may perform model training and the UE may perform model inference.
なお、モデルアクティベーションは、特定の機能のためのAIモデルを有効化することを意味してもよい。モデルディアクティベーションは、特定の機能のためのAIモデルを無効化することを意味してもよい。モデルスイッチングは、特定の機能のための現在アクティブなAIモデルをディアクティベートし、異なるAIモデルをアクティベートすることを意味してもよい。 Note that model activation may mean activating an AI model for a particular function. Model deactivation may mean disabling an AI model for a particular function. Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
また、モデル転送(model transfer)は、エアインターフェース上でAIモデルを配信することを意味してもよい。この配信は、受信側において既知のモデル構造のパラメータ、又はパラメータを有する新しいモデルの一方又は両方を配信することを含んでもよい。また、この配信は、完全なモデル又は部分的なモデルを含んでもよい。モデルダウンロードは、ネットワークからUEへのモデル転送を意味してもよい。モデルアップロードは、UEからネットワークへのモデル転送を意味してもよい。 Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model. Model download may refer to model transfer from the network to the UE. Model upload may refer to model transfer from the UE to the network.
(AIベースドビーム予測)
AIモデルの活用のユースケースとして、UE又はNWにおける片側AIモデルを用いる空間ドメイン(spatial domain)下りリンク(Downlink(DL))ビーム予測又は時間的(temporal)DLビーム予測が検討されている。このようなビーム予測方法は、AIベースドビーム予測(ビーム報告)、AIベースドビーム管理(Beam Management(BM))などと呼ばれてもよい。
(AI-based beam prediction)
As a use case of utilizing the AI model, spatial domain downlink (DL) beam prediction or temporal DL beam prediction using a one-sided AI model in the UE or NW is being considered. Such a beam prediction method may be called AI-based beam prediction (beam reporting), AI-based beam management (Beam Management (BM)), etc.
図2A及び図2Bは、AIベースドビーム予測の一例を示す図である。図2Aは、空間ドメインDLビーム予測を示す。UEは、空間的に疎な(又は太い)ビームを測定して、測定結果などをAIモデルに入力し、空間的に密な(又は細い)ビームのビーム品質の予測結果を出力してもよい。 2A and 2B are diagrams showing an example of AI-based beam prediction. FIG. 2A shows spatial domain DL beam prediction. The UE may measure a spatially sparse (or thick) beam, input the measurement results, etc., to an AI model, and output a predicted result of the beam quality of a spatially dense (or thin) beam.
図2Bは、時間的DLビーム予測を示す。UEは、時系列のビームを測定して、測定結果などをAIモデルに入力し、将来のビームのビーム品質の予測結果を出力してもよい。 Figure 2B shows temporal DL beam prediction. The UE may measure the time series of beams, input the measurement results, etc. into an AI model, and output the predicted beam quality of the future beam.
なお、空間ドメインDLビーム予測は、BMケース1と呼ばれてもよいし、時間的DLビーム予測は、BMケース2と呼ばれてもよい。また、時間的DLビーム予測は、例えば時間ドメインCSI予測(CSI prediction)などと呼ばれてもよい。
Note that spatial domain DL beam prediction may be referred to as
また、AIモデルの出力(予測結果)に関連するビームは、ビームのセットAと呼ばれてもよい。AIモデルの入力に関連するビームは、ビームのセットBと呼ばれてもよい。 Furthermore, the beams associated with the output (prediction result) of the AI model may be referred to as set of beams A. The beams associated with the input of the AI model may be referred to as set of beams B.
本開示において、セットAは、予測されるビームから選択されるビームに該当してもよい。セットAのためのリソースは、ビーム予測のためのリソース、ビーム報告のためのリソース、CSIレポートに含まれるリソース、セットA、セットAのリソース、第2(又は、第1)のセット、第2(又は、第1)のリソース、などと呼ばれてもよい。 In this disclosure, set A may correspond to beams selected from the predicted beams. The resources for set A may be referred to as resources for beam prediction, resources for beam reporting, resources included in the CSI report, set A, resources of set A, second (or first) set, second (or first) resources, etc.
本開示において、セットBは、その測定結果が(予測のためのAIモデル/関数の)入力に用いられるビームに該当してもよい。セットBのためのリソースは、ビーム測定のためのリソース、ビーム予測のインプットのためのリソース、セットB、セットBのリソース、第1(又は、第2)のセット、第1(又は、第2)のセットのリソース、などと呼ばれてもよい。 In this disclosure, set B may correspond to a beam whose measurement results are used as input (for the AI model/function for prediction). Resources for set B may be referred to as resources for beam measurements, resources for beam prediction input, set B, resources of set B, first (or second) set, resources of first (or second) set, etc.
BMケース1/2のAIモデルの入力の候補は、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、アシスタンス情報(例えば、ビーム形状情報、UE位置/方向情報、送信ビーム用途情報)、チャネルインパルス応答(Channel Impulse Response(CIR))の情報、対応するDL送信/受信ビームIDなどが挙げられる。
Candidates for input to the AI model for
BMケース1のAIモデルの出力の候補は、上位K個(Kは整数)の送信/受信ビームのID、これらのビームの予測L1-RSRP(predicted L1-RSRP)、各ビームが上位K個に入る確率、これらのビームの角度などが挙げられる。
Possible outputs of the AI model for
BMケース2のAIモデルの出力の候補は、BMケース1のAIモデルの出力の候補以外に、予測されるビーム障害が挙げられる。
In addition to the candidates for the output of the AI model in
上述したBMケース1及び2について、DLビーム予測としては、DL送信(Tx)ビーム予測、DL受信(Rx)ビーム予測、ビームペア予測などが検討されている。DL送信ビームは、送受信ポイント(Transmission/Reception Point(TRP))送信ビーム、基地局送信ビームなどと呼ばれてもよい。DL受信ビームは、UE受信ビームと呼ばれてもよい。ここで、ビームペアは、DL送信ビーム及び対応するDL受信ビームを含む。
For the above-mentioned
<DL送信ビーム予測>
図3A及び図3Bは、一般的な(予測のない)ビーム管理及びDL送信ビーム予測の一例を示す図である。一連の期間P1、P2及びP3は、説明のための期間であって、時間的にこの順で生じると想定するが、この順に限られない。なお、これらの期間同士は、間隔が空いていてもよい。以降の例についても同様である。
<DL transmit beam prediction>
3A and 3B are diagrams showing an example of general (non-predictive) beam management and DL transmission beam prediction. A series of periods P1, P2, and P3 are for illustrative purposes only and are assumed to occur in this order in time, but are not limited to this order. Note that these periods may be spaced apart from one another. The same applies to the following examples.
図3Aの一般的なビーム管理において、期間P1では、DL送信ビーム/DL受信ビーム選択のために、UEは異なるDL送信ビームを測定する。期間P2では、TRP内/間のDL送信ビームを変更/改善し得るために、UEは異なるDL送信ビームを測定する。期間P3では、DL受信ビームを変更/改善し得るために、UEは同じDL送信ビームを測定する。 In the general beam management of FIG. 3A, in period P1, the UE measures different DL transmission beams for DL transmission beam/DL reception beam selection. In period P2, the UE measures different DL transmission beams to possibly change/improve the DL transmission beam within/between the TRP. In period P3, the UE measures the same DL transmission beam to possibly change/improve the DL reception beam.
P1では、典型的には、TRPは異なる送信ビームをスウィープし、UEは異なる受信ビームをスウィープする。P2では、基本的には、ビームリファインメントのために、P1よりも少ない数の送信ビームが用いられる。例えば、非周期的ビーム報告によって、P1からP3に関連する動作がサポートされる。 In P1, typically the TRP sweeps different transmit beams and the UE sweeps different receive beams. In P2, typically fewer transmit beams are used for beam refinement than in P1. For example, non-periodic beam reporting supports operations related to P1 to P3.
図3BのDL送信ビーム予測において、期間P1では、期間P2のDL送信ビーム予測のために、UEは、異なるDL送信ビームを測定する。P1におけるDL送信ビームは、セットBに該当し、P1におけるDL受信ビームは1つ以上の候補があってもよい。期間P2のためのDL受信ビームは、P1において決定されてもよい。期間P3における測定は、P1から、DL受信ビームのリファインメントが必要と判断される場合に行われてもよい。P3のためのDL送信ビームは、P2において決定されてもよい。P3の測定は、セットBに基づいて行われてもよいし、セットAに基づいて行われてもよい。 In the DL transmission beam prediction of FIG. 3B, in period P1, the UE measures different DL transmission beams for DL transmission beam prediction for period P2. The DL transmission beam in P1 corresponds to set B, and there may be one or more candidates for the DL reception beam in P1. The DL reception beam for period P2 may be determined in P1. Measurements in period P3 may be performed if it is determined from P1 that refinement of the DL reception beam is necessary. The DL transmission beam for P3 may be determined in P2. Measurements for P3 may be performed based on set B or set A.
UEは、P1における測定結果(セットBにおいてビーム測定を行った結果)をAIモデルに入力し、P2における測定結果の予測(セットAにおいてビーム予測を行った結果)を出力してもよい。 The UE may input the measurement results at P1 (the results of beam measurement at set B) into the AI model and output a prediction of the measurement results at P2 (the results of beam prediction at set A).
なお、図3Bにおいて、P2では実際の測定は行われる必要はないが、行われてもよい。例えば、DL送信ビーム予測結果に基づいて、品質の良い上位K個(Kは自然数)のビーム(top-K beams)が提供される場合、当該上位K個のビームについて、P2において[セットA/Bについての]追加のビーム測定が行われてもよい。この追加のビーム測定が行われる期間は、P2に含まれてもよいし、P2とは少なくとも一部が重複しない期間(例えば、追加P2(additional P2)と呼ばれてもよい)であってもよい。 Note that in FIG. 3B, actual measurements do not need to be performed in P2, but may be performed. For example, if top-K beams (K is a natural number) of good quality are provided based on the DL transmit beam prediction result, additional beam measurements [for set A/B] may be performed in P2 for the top-K beams. The period during which these additional beam measurements are performed may be included in P2, or may be a period that does not overlap at least partially with P2 (e.g., may be referred to as additional P2).
また、図3Bに示す例は、送信ビーム予測のためのNWサイドAI/MLが想定されてもよい。 The example shown in FIG. 3B may also assume NW-side AI/ML for transmit beam prediction.
ここで、本開示において、[ビームの]品質は、例えば、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))であってもよいし、これに基づく値であってもよい。
Here, in this disclosure, the quality [of the beam] may be, for example, L1-RSRP (
本開示において、L1-RSRPは、L1-RSRP/L1-SINR(Signal to Interference plus Noise Ratio)、Layer-X(LX(例えば、X=1、2、3、…))-RSRP/SINR、RSRP/SINR、予測される/測定されるL1-RSRP/SINR、予測される/測定される値(予測値/測定値)、予測される/測定される受信電力又は受信品質に関する非確率値(確率でない測定/予測結果)、トップX確率(top-X probability)、トップX’/1確率(top-X’/1 probability)などと互いに読み替えられてもよい。 In the present disclosure, L1-RSRP may be interchangeably read as L1-RSRP/L1-SINR (Signal to Interference plus Noise Ratio), Layer-X (LX (e.g., X=1, 2, 3, ...))-RSRP/SINR, RSRP/SINR, predicted/measured L1-RSRP/SINR, predicted/measured value (predicted value/measured value), non-probability value regarding predicted/measured received power or received quality (non-probability measurement/prediction result), top-X probability, top-X'/1 probability, etc.
なお、1つ以上のリソースのうちのあるリソースのトップX確率は、当該あるリソースに対応するRSRP又はSINRが、上記1つ以上のリソースに対応するRSRP又はSINRのうち、X番目に大きいRSRP又はSINR以上の値である確率/信頼度/信頼区間を意味してもよい。この信頼区間は、任意のパーセント(例えば、95%)の信頼区間であってもよい。 Note that the top X probability of a resource among one or more resources may refer to the probability/confidence/confidence interval that the RSRP or SINR corresponding to the resource is equal to or greater than the Xth largest RSRP or SINR among the RSRPs or SINRs corresponding to the one or more resources. This confidence interval may be an arbitrary percentage (e.g., 95%).
また、1つ以上のリソースに関するトップX’/1確率は、X’個のリソースに対応するRSRPの少なくとも1つが、上記1つ以上のリソースに対応するRSRP又はSINRのなかで最大となる確率/信頼度/信頼区間を意味してもよい。この信頼区間は、任意のパーセント(例えば、95%)の信頼区間であってもよい。なお、同じX’の値について、リソースの選び方によって異なるトップX’/1確率が得られる場合、これらのうちのいずれかの値(例えば、最大値)がトップX’/1確率として決定されてもよい。 The top X'/1 probability for one or more resources may mean the probability/confidence/confidence interval that at least one of the RSRPs corresponding to X' resources is the maximum among the RSRPs or SINRs corresponding to the one or more resources. This confidence interval may be a confidence interval of any percentage (e.g., 95%). Note that, for the same value of X', if different top X'/1 probabilities are obtained depending on how the resources are selected, one of these values (e.g., the maximum value) may be determined as the top X'/1 probability.
図4A-図4Cは、DL送信ビーム予測のためのDL受信ビームの決定の一例を示す図である。本例では、UEが利用できるDL受信ビーム数は8であると想定する。 Figures 4A-4C are diagrams showing an example of determining DL receiving beams for DL transmitting beam prediction. In this example, it is assumed that the number of DL receiving beams available to the UE is 8.
DL送信ビーム予測のためのDL受信ビーム(P1において測定に用いられるDL受信ビーム)は、予め定められてもよいし、UEによって決定されてもよい。図4Aは、UEが、セットBにおいて網羅的な受信ビームスウィーピングを行う例を示す。図4Bは、UEが、セットBにおいて網羅的な受信ビームスウィーピングのうちの[固定的な]サブセットを用いてビームスウィーピングを行う例を示す。 The DL receive beam for DL transmit beam prediction (the DL receive beam used for measurement in P1) may be predetermined or determined by the UE. FIG. 4A shows an example in which the UE performs exhaustive receive beam sweeping in set B. FIG. 4B shows an example in which the UE performs beam sweeping using a [fixed] subset of the exhaustive receive beam sweeping in set B.
UEは、P1において測定に用いた受信ビームのうち、特定の受信ビームを、P2の予測のための入力の提供に用いてもよい。当該特定の受信ビームは、例えば、品質が最高の、又は、特定の条件を満たす、又は、ランダムに決定した受信ビームであってもよい。P2の予測のための入力のサンプルごとに、上記特定の受信ビームは異なってもよいし、同じであってもよい。 The UE may use a specific receiving beam from among the receiving beams used for the measurement in P1 to provide input for predicting P2. The specific receiving beam may be, for example, the receiving beam with the best quality, or that satisfies a certain condition, or that is randomly determined. The specific receiving beam may be different or the same for each sample of input for predicting P2.
なお、上記サブセットに関する情報は、ネットワークからUEに通知されてもよいし、規格において規定されてもよいし、ビーム予測に用いるモデル(関連付けられるモデル)から導出されてもよい。 Information regarding the above subset may be notified to the UE from the network, may be specified in a standard, or may be derived from a model (associated model) used for beam prediction.
図4Cは、UEが、セットBにおいて用いる受信ビームスウィーピングを決定する例を示す。本例では、UEは、前回の(最近の)P3における測定結果に基づいて、次の(現在の)P1のための受信ビームをN個(N≧1)決定する。UEは、決定したN個のDLビームの測定結果に基づいてP2におけるDL送信ビーム予測を実施し、最高のDL送信ビームを特定してもよい。また、UEは、例えば、最高のDL送信ビームに対応するDL受信ビームについて、P3における測定を介してビームリファインメントを実施し、次のP1のための受信ビームをN個決定してもよい。 Figure 4C shows an example in which the UE determines the receive beam sweeping to be used in set B. In this example, the UE determines N receive beams (N >= 1) for the next (current) P1 based on the measurement results in the previous (most recent) P3. The UE may perform DL transmit beam prediction in P2 based on the measurement results of the determined N DL beams, and identify the best DL transmit beam. The UE may also perform beam refinement via measurements in P3, for example, for the DL receive beam corresponding to the best DL transmit beam, and determine N receive beams for the next P1.
図4Cの例は、N=1である。P1(又はP2)の周期ごとに、異なるDL受信ビームが予測のために用いられてもよい。本例では、P3において、予測に用いられたビーム及びこれに隣接するビームを用いてビームリファインメントが実施されているが、ビームリファインメントの手法はこれに限られない。 In the example of FIG. 4C, N=1. A different DL receive beam may be used for prediction for each period of P1 (or P2). In this example, beam refinement is performed in P3 using the beam used for prediction and adjacent beams, but the beam refinement method is not limited to this.
なお、異なるNの数及び特定のN個の受信ビームが、AI/MLモデルの推論性能に影響を与えてもよい。 Note that different numbers of N and specific N receive beams may affect the inference performance of the AI/ML model.
<DL受信ビームスウィーピング>
Rel.17までのNRでは、繰り返しについての上位レイヤパラメータ(”repetition”)がオンにセットされるチャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))リソースセットにおけるCSI-RSリソースが、異なるOFDMシンボルにおいて送信される場合、UEは、これらのCSI-RSリソースが同じ下りリンク空間ドメイン送信フィルタを用いて送信されると想定してもよい。
<DL reception beam sweeping>
In NR up to Rel. 17, if Channel State Information Reference Signal (CSI-RS) resources in a CSI-RS resource set with the upper layer parameter for repetition ("repetition") set to on are transmitted in different OFDM symbols, the UE may assume that these CSI-RS resources are transmitted using the same downlink spatial domain transmit filter.
また、UEは、CSI-RSリソースセットあたりのCSI-RSリソースの好ましい(preferred)繰り返し数について、1つの値をUE能力情報(maxNumberRxBeam又はmaxNumberRxBeam-v1720)としてネットワークに報告してもよい。なお、maxNumberRxBeam及びmaxNumberRxBeam-v1720は、いずれか一方のみが報告される。パラメータ名が示すように、この値はUEの受信ビーム数を示してもよい。ネットワークは、この値に基づいて(例えば、この値を上限として)、当該UEに設定するCSI-RSリソースセット内のCSI-RSリソース数を決定してもよい。以下、本開示において、繰り返し数及び受信ビーム数は、互いに読み替えられてもよい。 The UE may also report one value to the network as UE capability information (maxNumberRxBeam or maxNumberRxBeam-v1720) for the preferred number of repetitions of CSI-RS resources per CSI-RS resource set. Note that only one of maxNumberRxBeam and maxNumberRxBeam-v1720 is reported. As the parameter name indicates, this value may indicate the number of reception beams of the UE. The network may determine the number of CSI-RS resources in the CSI-RS resource set to be configured for the UE based on this value (e.g., with this value as the upper limit). Hereinafter, in this disclosure, the number of repetitions and the number of reception beams may be interpreted as interchangeable.
また、UEは、CSI報告セッティングごとにnrofReportedRSに対応する数の最良のL1-RSRPの報告を行ってもよい。 The UE may also report the number of best L1-RSRPs corresponding to nrofReportedRS for each CSI reporting setting.
L1-RSRP報告において、各送信ビームに対する最良の受信ビームのみが報告されてもよい。ネットワーク(NW、例えば、基地局)は、UEに対し、他の受信ビームパターンを報告するよう指示することはできなくてもよい。 In the L1-RSRP report, only the best receiving beam for each transmitting beam may be reported. The network (NW, e.g., base station) may not be able to instruct the UE to report other receiving beam patterns.
L1-RSRP報告の場合、もしCSI報告設定(CSI-ReportConfig)内の上位レイヤパラメータnrofReportedRSが1に設定される場合には、報告されるL1-RSRPは、1dBステップサイズを用いて[-140,-44]dBmのレンジにおいて7ビットで規定/量子化されてもよい。また、もし上位レイヤパラメータnrofReportedRSが1より大きく設定される場合、又は、もしグループベースドビーム報告の設定に関する上位レイヤパラメータgroupBasedBeamReportingが有効(enabled)に設定される場合、UEは、差分(differential)L1-RSRPベースの報告を行ってもよい。ここで、最大の測定されるL1-RSRPは、1dBステップサイズを用いて[-140,-44]dBmのレンジにおいて7ビットで規定/量子化されてもよく、差分L1-RSRP(値)は、2dBステップサイズを用いて算出され、4ビット値で量子化されてもよい。 For L1-RSRP reporting, if the upper layer parameter nrofReportedRS in the CSI reporting configuration is set to 1, the reported L1-RSRP may be specified/quantized with 7 bits in the range of [-140, -44] dBm with a 1 dB step size. Also, if the upper layer parameter nrofReportedRS is set to greater than 1, or if the upper layer parameter groupBasedBeamReporting for group-based beam reporting configuration is set to enabled, the UE may perform differential L1-RSRP-based reporting. Here, the maximum measured L1-RSRP may be specified/quantized with 7 bits in the range of [-140, -44] dBm with a 1 dB step size, and the differential L1-RSRP (value) may be calculated with a 2 dB step size and quantized with a 4-bit value.
図5A-図5Cは、送信/受信ビームスウィーピングに係るビームの報告の一例を示す図である。 Figures 5A to 5C show examples of beam reporting related to transmit/receive beam sweeping.
図5Aでは、送信ビーム及び受信ビームのスウィーピング(Tx-Rx sweeping)が行われる例が示される。図5Aに示す例では、報告セッティング#X(Xは任意の数)について、nrofReportedRSが1が設定され、リソースセッティング#Y(Yは任意の数、Y=Xであってもよい)について‘repetition’がオンに設定される。 FIG. 5A shows an example in which transmission beam and reception beam sweeping (Tx-Rx sweeping) is performed. In the example shown in FIG. 5A, nrofReportedRS is set to 1 for report setting #X (X is any number), and 'repetition' is set to on for resource setting #Y (Y is any number, Y=X may be used).
このとき、基地局は1つのCSI-RS(リソース)について繰り返し送信を行うとともに、送信ビームを変えながら(スウィーピングをしながら)各CSI-RS(リソース)の送信を行う。UEは、受信ビームを変えながら繰り返し送信される各CSI-RS(リソース)の測定を行う。UEは、各送信ビームに対応するCSI-RS(リソース)について、最良の受信ビームに対応するL1-RSRPの報告を行う。 At this time, the base station repeatedly transmits one CSI-RS (resource) and transmits each CSI-RS (resource) while changing the transmission beam (sweeping). The UE measures each CSI-RS (resource) that is repeatedly transmitted while changing the reception beam. The UE reports the L1-RSRP corresponding to the best reception beam for the CSI-RS (resource) that corresponds to each transmission beam.
図5Bでは、送信ビームのスウィーピング(Tx sweeping)が行われる例が示される。図5Bに示す例では、報告セッティング#1についてnrofReportedRSが4が設定され、報告セッティング#1内のリソースセッティング#1において‘repetition’がオフに設定される。
In FIG. 5B, an example of sweeping of the transmit beam (Tx sweeping) is shown. In the example shown in FIG. 5B, nrofReportedRS is set to 4 for
このとき、基地局は送信ビームを変えながら(スウィーピングをしながら)各CSI-RS(リソース)の送信を行い、UEは各CSI-RS(リソース)の測定を行う。UEは、各送信ビームのうち最良の4つの送信ビームに対応するL1-RSRPの報告を行う。 At this time, the base station transmits each CSI-RS (resource) while changing the transmission beam (sweeping), and the UE measures each CSI-RS (resource). The UE reports the L1-RSRP corresponding to the best four transmission beams among each transmission beam.
図5Cでは、受信ビームのスウィーピング((Rx sweeping))が行われる例が示される。図5Cに示す例では、報告セッティング#2についてnrofReportedRSが1が設定され、報告セッティング#2内のリソースセッティング#1又は#2において‘repetition’がオンに設定される。
FIG. 5C shows an example of sweeping of the receive beam (Rx sweeping). In the example shown in FIG. 5C, nrofReportedRS is set to 1 for
このとき、UEは繰り返し送信されるCSI-RS(リソース)の測定を、受信ビームを変えながら行う。UEは、測定した受信ビームのうち最良の受信ビームに対応する1つのL1-RSRPの報告を行う。 At this time, the UE measures the repeatedly transmitted CSI-RS (resources) while changing the receiving beam. The UE reports one L1-RSRP corresponding to the best receiving beam among the measured receiving beams.
(受信ビーム情報)
Rel.18以降では、UEによる受信ビームに関する情報(受信ビーム情報)の報告を行うことが検討されている。
(received beam information)
In Rel. 18 and later, a report of information on a receiving beam by a UE (receiving beam information) is being considered.
UEは、受信ビーム情報を、CSI(L1-RSRP/SINR)レポートとともに報告してもよい。 The UE may report the received beam information along with the CSI (L1-RSRP/SINR) report.
当該受信ビーム情報に、例えば、RSリソースインディケータが利用されることが検討されている。以下では、受信ビーム情報にRSリソースインディケータが利用されるケースについて説明する。 It is being considered to use, for example, an RS resource indicator for the receiving beam information. Below, we will explain the case where an RS resource indicator is used for the receiving beam information.
当該RSリソースインディケータは、例えば、RSリソースID、RSリソースセットID、及び、SRSリソースインディケータ(例えば、srs-ResourceIndicator)、の少なくとも1つであってもよい。 The RS resource indicator may be, for example, at least one of an RS resource ID, an RS resource set ID, and an SRS resource indicator (e.g., srs-ResourceIndicator).
RSのリソースのインディケータは、対応するメジャメントに使用される空間ドメイン受信フィルタ/受信ビームと同じ空間ドメイン送信フィルタ/送信ビームを使用するSRSリソース/リソースセットの情報であってもよい。 The RS resource indicator may be information of an SRS resource/resource set that uses the same spatial domain transmit filter/transmit beam as the spatial domain receive filter/receive beam used for the corresponding measurement.
UEは、受信ビーム情報の報告用のSRSリソースセットを設定されてもよい。この場合、例えば、SRSリソースセットの用途(usage)が、受信ビーム決定、及び、受信ビーム情報を伴うL1-RSRP、の少なくとも一方にセットされてもよい。 The UE may be configured with an SRS resource set for reporting received beam information. In this case, for example, the usage of the SRS resource set may be set to at least one of receiving beam determination and L1-RSRP with received beam information.
報告されるRSリソースインディケータのフィールドのビット幅は、特定のルール/パラメータに基づいて決定されてもよい。 The bit width of the reported RS resource indicator field may be determined based on specific rules/parameters.
例えば、当該ビット幅は、例えば、ceil(log2(N))で決定されてもよい。当該Nは、関連するSRSリソースセット内のSRSリソースの数であってもよい。本開示において、ceil(X)は、Xに天井関数をかけることを意味してもよい。 For example, the bit width may be determined as, for example, ceil(log 2 (N)), where N may be the number of SRS resources in the associated SRS resource set. In this disclosure, ceil(X) may mean multiplying X by a ceiling function.
RSリソースインディケータ/RSリソースセットインディケータは、パネルインデックス(CapabilityIndex)とともに報告されてもよい。 RS resource indicator/RS resource set indicator may be reported along with the panel index (CapabilityIndex).
図6A及び図6Bは、ビームレポートの一例を示す図である。図6A及び図6Bに示す例では、ビームレポート(CSIレポート)において、RSリソースインディケータが、パネルインデックス(CapabilityIndex)とともに報告されるケースを記載している。 FIGS. 6A and 6B are diagrams showing an example of a beam report. The example shown in FIG. 6A and 6B describes a case where an RS resource indicator is reported together with a panel index (CapabilityIndex) in a beam report (CSI report).
図6Aに示す例では、ビームレポートに含まれる情報のビット幅を示している。RSリソースインディケータのビット数(X)は、上記方法に基づいて決定されてもよい。 The example shown in FIG. 6A shows the bit width of the information included in the beam report. The number of bits (X) of the RS resource indicator may be determined based on the above method.
図6Bに示す例では、ビームレポートに含まれる情報が記載される。当該ビームレポートには、CRI又はSSBRI(#1-#4)、CRI又はSSBRI#1に対応するRSRP(RSRP#1)、CRI又はSSBRI#2-#4に対応する差分RSRP(差分RSRP#2-#4)、CRI又はSSBRI#1-#4のそれぞれに対応する、パネルのインデックス(CapabilityIndex)#1-#4、及び、CRI又はSSBRI#1-#4のそれぞれに対応するRSリソースインディケータ#1-#4が含まれる。
In the example shown in FIG. 6B, information contained in the beam report is described. The beam report includes CRI or SSBRI (#1-#4), RSRP (RSRP#1) corresponding to CRI or
なお、図6Bに示す例では、複数のRSリソースインディケータ、すなわち、各CRI又はSSBRIに対応するRSリソースインディケータがビームレポートに含まれる例を示したが、ビームレポートに含まれるRSリソースインディケータは1つであってもよい。この場合、当該1つのRSリソースインディケータは、各CRI又はSSBRIに対応してもよい。各CRI又はSSBRIに対応するRSリソースインディケータがビームレポートに含まれるか、又は、ビームレポートに含まれるRSリソースインディケータが1つであるかが、上位レイヤシグナリングに基づいて決定されてもよい。 Note that in the example shown in FIG. 6B, multiple RS resource indicators, i.e., RS resource indicators corresponding to each CRI or SSBRI, are included in the beam report, but the beam report may contain only one RS resource indicator. In this case, the one RS resource indicator may correspond to each CRI or SSBRI. Whether the beam report contains an RS resource indicator corresponding to each CRI or SSBRI or contains only one RS resource indicator may be determined based on higher layer signaling.
また、RSリソースインディケータ/RSリソースセットインディケータは、パネルインデックス(CapabilityIndex)とは別に報告されてもよい。 The RS resource indicator/RS resource set indicator may also be reported separately from the panel index (CapabilityIndex).
図7A及び図7Bは、ビームレポートの他の例を示す図である。図7A及び図7Bに示す例では、ビームレポート(CSIレポート)において、RSリソースインディケータが、パネルインデックス(CapabilityIndex)とは別に報告されるケースを記載している。 FIGS. 7A and 7B are diagrams showing other examples of beam reports. The examples shown in FIG. 7A and 7B show a case in which the RS resource indicator is reported separately from the panel index (CapabilityIndex) in the beam report (CSI report).
図7A及び図7Bは、図6A及び図6Bと比較して、パネルのインデックス(CapabilityIndex)についての情報が含まれない点のみが異なる。 FIGS. 7A and 7B differ from FIG. 6A and FIG. 6B only in that they do not include information about the panel index (CapabilityIndex).
このように、RSリソースに関する情報をCSI(L1-RSRP/SINR)レポートとともに報告することで、SRSリソースに関連するビーム情報が利用可能である場合、メジャメントに使用した受信ビームに関する情報をNWに報告できると考えられる。 In this way, by reporting information about RS resources together with the CSI (L1-RSRP/SINR) report, if beam information related to the SRS resource is available, it is believed that information about the receiving beam used for measurement can be reported to the NW.
また、上記受信ビーム情報に、例えば、ビームインデックスが利用されることが検討されている。以下では、受信ビーム情報にビームインデックスが利用されるケースについて説明する。 It is also being considered to use, for example, a beam index for the above-mentioned received beam information. Below, we will explain the case where a beam index is used for the received beam information.
ビームインデックスは、例えば、対応するメジャメントに使用されるUEの受信ビーム/空間ドメイン受信フィルタのインデックスであってもよい。 The beam index may be, for example, the index of the UE's receive beam/spatial domain receive filter used for the corresponding measurement.
例えば、UEがメジャメントにおいて信号の受信に同一のビームを用いた場合、同一のビームインデックスが報告されてもよい。 For example, if the UE uses the same beam to receive a signal in a measurement, the same beam index may be reported.
UEは、メジャメントにおいて同じ(又は、異なる)ビームを用いた場合、ビームインデックスをビームレポートに含めて送信すると判断してもよい。 If the UE uses the same (or different) beam in the measurement, it may decide to include the beam index in the beam report and transmit it.
報告されるビームインデックスのフィールドのビット幅は、特定のルール/パラメータに基づいて決定されてもよい。 The bit width of the reported beam index field may be determined based on specific rules/parameters.
例えば、当該ビット幅は、例えば、ceil(log2(M))で決定されてもよい。当該Mは、UEの受信ビームスイーピングファクタで示される数であってもよい。 For example, the bit width may be determined as ceil(log 2 (M)), where M may be a number indicated by a receive beam sweeping factor of the UE.
例えば、当該ビット幅は、周波数レンジ(例えば、FR1/FR2(FR2-1/FR2-2)/FR3/FR4/FR5)ごと別々に決定されてもよい。 For example, the bit width may be determined separately for each frequency range (e.g., FR1/FR2 (FR2-1/FR2-2)/FR3/FR4/FR5).
ビームインデックスは、パネルインデックス(CapabilityIndex)とともに報告されてもよい。 Beam index may be reported along with panel index (CapabilityIndex).
図8A及び図8Bは、ビームレポートの他の例を示す図である。図8A及び図8Bに示す例では、ビームレポート(CSIレポート)において、受信ビームインデックス(RxbeamIndex)が、パネルインデックス(CapabilityIndex)とともに報告されるケースを記載している。 FIGS. 8A and 8B are diagrams showing other examples of beam reports. The examples shown in FIG. 8A and 8B show a case in which the receive beam index (RxbeamIndex) is reported together with the panel index (CapabilityIndex) in the beam report (CSI report).
図8Aに示す例では、ビームレポートに含まれる情報のビット幅を示している。受信ビームインデックスのビット数(X)は、上記方法に基づいて決定されてもよい。 The example shown in FIG. 8A shows the bit width of the information contained in the beam report. The number of bits (X) of the receive beam index may be determined based on the above method.
図8Bに示す例では、ビームレポートに含まれる情報が記載される。当該ビームレポートには、CRI又はSSBRI(#1-#4)、CRI又はSSBRI#1に対応するRSRP(RSRP#1)、CRI又はSSBRI#2-#4に対応する差分RSRP(差分RSRP#2-#4)、CRI又はSSBRI#1-#4のそれぞれに対応する、パネルのインデックス(CapabilityIndex)#1-#4、及び、CRI又はSSBRI#1-#4のそれぞれに対応する受信ビームインデックス#1-#4が含まれる。
In the example shown in FIG. 8B, information contained in the beam report is described. The beam report includes CRI or SSBRI (#1-#4), RSRP (RSRP#1) corresponding to CRI or
なお、図8Bに示す例では、複数の受信ビームインデックス、すなわち、各CRI又はSSBRIに対応する受信ビームインデックスがビームレポートに含まれる例を示したが、ビームレポートに含まれる受信ビームインデックスは1つであってもよい。この場合、当該1つの受信ビームインデックスは、各CRI又はSSBRIに対応してもよい。各CRI又はSSBRIに対応する受信ビームインデックスがビームレポートに含まれるか、又は、ビームレポートに含まれる受信ビームインデックスが1つであるかが、上位レイヤシグナリングに基づいて決定されてもよい。 Note that in the example shown in FIG. 8B, multiple receive beam indexes, i.e., receive beam indexes corresponding to each CRI or SSBRI, are included in the beam report, but the beam report may contain only one receive beam index. In this case, the one receive beam index may correspond to each CRI or SSBRI. Whether the beam report contains a receive beam index corresponding to each CRI or SSBRI or contains only one receive beam index may be determined based on higher layer signaling.
また、受信ビームインデックスは、パネルインデックス(CapabilityIndex)とは別に報告されてもよい。 The receive beam index may also be reported separately from the panel index (CapabilityIndex).
図9A及び図9Bは、ビームレポートの他の例を示す図である。図9A及び図9Bに示す例では、ビームレポート(CSIレポート)において、受信ビームインデックスが、パネルインデックス(CapabilityIndex)とは別に報告されるケースを記載している。 FIGS. 9A and 9B are diagrams showing other examples of beam reports. The examples shown in FIG. 9A and 9B show a case in which the receive beam index is reported separately from the panel index (CapabilityIndex) in the beam report (CSI report).
図9A及び図9Bは、図8A及び図8Bと比較して、パネルのインデックス(CapabilityIndex)についての情報が含まれない点のみが異なる。 FIGS. 9A and 9B differ from FIG. 8A and FIG. 8B only in that they do not include information about the panel index (CapabilityIndex).
UE/NWは、報告結果に対応するパネルインデックス(CapabilityIndex)が異なる場合、当該報告結果に対応するビームインデックスが同じであっても、異なるビーム/空間ドメインフィルタが対応すると想定/判断してもよい。 If the panel index (CapabilityIndex) corresponding to the report result is different, the UE/NW may assume/judge that a different beam/spatial domain filter corresponds to the report result even if the beam index corresponding to the report result is the same.
このように、ビームインデックスをCSI(L1-RSRP/SINR)レポートとともに報告することで、ビーム(L1-RSRP/SINR)メジャメントにおける信号のメジャメントと同様のメカニズムでビームの報告を行うことができるため、UEの実装を簡単にすることができると考えられる。 In this way, by reporting the beam index together with the CSI (L1-RSRP/SINR) report, beam reporting can be performed using a mechanism similar to the signal measurement in beam (L1-RSRP/SINR) measurement, which is believed to simplify UE implementation.
なお、空間ドメインビーム予測のためのAI/MLモデル推論には、正確な受信ビームインデックスは必要でなくてもよい。NWは、報告されたL1-RSRP/SINRが、特定の想定された受信ビームパターンに従うことを要求するだけでもよい。 Note that the AI/ML model inference for spatial domain beam prediction may not require exact receive beam index. The NW may only require that the reported L1-RSRP/SINR follows a particular assumed receive beam pattern.
(分析)
ところで、受信ビーム予測のためのNW AI/MLモデルは、特定の受信ビームの想定(例えば、受信ビームの数、及び、受信ビームの選択の少なくとも1つ)を用いて学習されることが考えられる。この場合、モデル性能を保証するために、UEは、ビームのセット(例えば、セットB)の測定において、受信ビームの想定をNWとの間で一致させる必要がある。
(analysis)
Incidentally, the NW AI/ML model for receive beam prediction may be trained using a specific receive beam assumption (e.g., the number of receive beams and/or the selection of receive beams). In this case, to ensure model performance, the UE needs to match the receive beam assumption between the UE and the NW in measuring a set of beams (e.g., set B).
図10は、各想定に対応するL1-RSRP値の差分の一例を示す図である。図10は、訓練データセットの想定(想定1-3)のそれぞれと、テスト用(testing)データセットの想定(テスト用データセット想定1-3)のそれぞれと、に対応する、L1-RSRP値の差分に係る値を示している。 Figure 10 is a diagram showing an example of the difference in L1-RSRP values corresponding to each assumption. Figure 10 shows values related to the difference in L1-RSRP values corresponding to each of the assumptions for the training dataset (assumptions 1-3) and each of the assumptions for the testing dataset (test dataset assumptions 1-3).
図11Aは、訓練データセット/テスト用データセットの想定1に係る入力されるビームペア(送信ビーム及び受信ビームの組み合わせ)の一例を示す。図11Bは、訓練データセット/テスト用データセットの想定2に係る入力されるビームペアの一例を示す。図11Cは、訓練データセット/テスト用データセットの想定3に係る入力されるビームペアの一例を示す。
FIG. 11A shows an example of an input beam pair (combination of a transmit beam and a receive beam) according to
想定1については、各送信ビームに対応する受信ビームが最良となる、送信ビームと受信ビームとのペアを入力とする想定である。想定2については、複数(例えば、全て)のペアのうち、最良のペアの受信ビームに対応する複数のペアを入力とする想定である。想定3については、特定の受信ビーム候補(複数(例えば、全て)の受信ビームのうちの一部)のうち、各送信ビームに対応する受信ビームが最良となるペアを入力とする想定である。
まず、訓練データセットの想定1-3に係る入力のビームペア(ハッチングを用いて記載)の各測定結果を用いて、全ビームペアについての予測モデルが作成される。次いで、テスト用データセットの想定1-3に係る入力のビームペア(ハッチングを用いて記載)の各測定結果を、当該予測モデルに入力した場合の出力として、予測されるトップ1(最良)のL1-RSRP値が算出される。図10は、当該トップ1(最良)のL1-RSRP値と、正解/理想(genie-aided)のトップ1(最良)のL1-RSRP値と、の差分が示される。 First, a prediction model for all beam pairs is created using the measurement results of each input beam pair (shown using hatching) related to assumptions 1-3 in the training dataset. Next, the predicted top 1 (best) L1-RSRP value is calculated as the output when the measurement results of each input beam pair (shown using hatching) related to assumptions 1-3 in the test dataset are input into the prediction model. Figure 10 shows the difference between the top 1 (best) L1-RSRP value and the correct/ideal (genie-aided) top 1 (best) L1-RSRP value.
このように、予測される値と理想の値と誤差がある(誤差が大きい)場合、適切なビーム予測を行うことができないため、ビーム予測に基づく適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 In this way, when there is an error (large error) between the predicted value and the ideal value, appropriate beam prediction cannot be performed, and appropriate overhead reduction/high-precision channel estimation/high-efficiency resource utilization based on beam prediction cannot be achieved, which may inhibit improvements in communication throughput/communication quality.
そこで、本発明者らは、上記問題を解決する方法を着想した。 The inventors therefore came up with a method to solve the above problem.
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to the embodiments may be applied independently or in combination.
なお、以下の実施形態は、任意のDLビーム予測に適用されてもよく、例えば、DL送信ビーム予測、ビームペア予測が利用される場合に適用されてもよい。また、本開示の各実施形態は、AIが利用されない場合に適用されてもよい(例えば、関数を用いて予測が行われる場合に適用されてもよい)。 Note that the following embodiments may be applied to any DL beam prediction, for example, when DL transmit beam prediction or beam pair prediction is used. In addition, each embodiment of the present disclosure may be applied when AI is not used (for example, when prediction is performed using a function).
本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In this disclosure, terms such as notify, activate, deactivate, indicate (or indicate), select, configure, update, and determine may be read as interchangeable. In this disclosure, terms such as support, control, capable of control, operate, and capable of operating may be read as interchangeable.
本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, fields, information elements (IEs), settings, etc. may be interchangeable. In this disclosure, Medium Access Control (MAC Control Element (CE)), update commands, activation/deactivation commands, etc. may be interchangeable.
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報、その他のメッセージ(例えば、測位用プロトコル(例えば、NR Positioning Protocol A(NRPPa)/LTE Positioning Protocol(LPP))メッセージなどの、コアネットワークからのメッセージ)などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc. The broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
本開示において、チャネル測定/推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。 In the present disclosure, channel measurement/estimation may be performed using at least one of, for example, a Channel State Information Reference Signal (CSI-RS), a Synchronization Signal (SS), a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a DeModulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), etc.
本開示において、受信ビーム想定、受信ビーム数、受信ビームのインデックス、受信ビーム選択、受信ビームの設定、受信ビーム指示、は互いに読み替えられてもよい。本開示において、受信ビーム、送信ビーム、DL受信ビーム、DL送信ビーム、送信ビーム及び受信ビームのペア、DL参照信号、は互いに読み替えられてもよい。本開示において、送信/受信ビームは、ビーム予測用の送信/受信ビーム、ビーム予測用のCSI測定/報告のための送信/受信ビーム、と互いに読み替えられてもよい。 In the present disclosure, the terms receive beam assumption, number of receive beams, receive beam index, receive beam selection, receive beam setting, and receive beam instruction may be interchangeable. In the present disclosure, the terms receive beam, transmit beam, DL receive beam, DL transmit beam, transmit and receive beam pair, and DL reference signal may be interchangeable. In the present disclosure, the terms transmit/receive beam may be interchangeable with the terms transmit/receive beam for beam prediction and the terms transmit/receive beam for measuring/reporting CSI for beam prediction.
(無線通信方法)
<第1の実施形態>
第1の実施形態は、CSI報告用の受信ビーム想定/選択の規定/設定/指示に関する。
(Wireless communication method)
First Embodiment
The first embodiment relates to the definition/configuration/indication of receive beam assumptions/selection for CSI reporting.
UEは、CSI報告用の受信ビーム想定/選択に関する設定を受信してもよい。UEは、CSI報告用の受信ビーム想定/選択に関する設定を受信することを期待/想定してもよい。 The UE may receive configuration regarding receive beam assumption/selection for CSI reporting. The UE may expect/assume to receive configuration regarding receive beam assumption/selection for CSI reporting.
当該設定/受信は、仕様によって予め規定されてもよいし、下記補足2に記載される少なくとも1つの方法に従って受信されてもよい。
The setting/reception may be predefined by the specifications, or may be received according to at least one of the methods described in
本開示において、CSI報告用の受信ビーム想定/選択/数に関する設定、CSI報告用の受信ビーム想定/選択/数に関連する設定、CSI報告用の受信ビーム想定/選択/数を暗示する設定、CSI報告用の受信ビーム想定/選択/数を指示する設定、は互いに読み替えられてもよい。 In the present disclosure, settings regarding the assumed/selected/number of receiving beams for CSI reporting, settings related to the assumed/selected/number of receiving beams for CSI reporting, settings that imply the assumed/selected/number of receiving beams for CSI reporting, and settings that indicate the assumed/selected/number of receiving beams for CSI reporting may be read as interchangeable.
第1の実施形態は、下記オプション1-1から1-4に大別される。UE/NWは、オプション1-1から1-4のいずれかに従ってもよいし、オプション1-4に記載されるように、オプション1-1から1-3に記載される少なくとも1つの方法を組み合わせて適用してもよい。 The first embodiment is broadly divided into the following options 1-1 to 1-4. The UE/NW may follow any of options 1-1 to 1-4, or may apply a combination of at least one of the methods described in options 1-1 to 1-3 as described in option 1-4.
《オプション1-1》
オプション1-1は、CSI報告用の受信ビーム選択に関連する設定が、各送信ビームについて個別(dedicated)である例を説明する。
<<Option 1-1>>
Option 1-1 describes an example in which settings related to receive beam selection for CSI reporting are dedicated for each transmit beam.
UEは、測定される送信ビームの設定ごとに、複数の受信ビームの中から、特定のCSI測定結果の報告を行ってもよい。また、UEは、複数の測定/計測に用いた受信ビームの中から特定のCSI測定結果の報告を行ってもよい。 The UE may report a specific CSI measurement result from among multiple receive beams for each transmit beam setting being measured. The UE may also report a specific CSI measurement result from among multiple receive beams used for measurements.
例えば、UEは、各送信ビームについて、対応する受信ビームを独立して選択してもよい。UEは、当該選択した送信ビームと受信ビームとのペアについてのCSI測定/報告を行ってもよい。 For example, the UE may independently select a corresponding receive beam for each transmit beam. The UE may perform CSI measurements/reports for the selected transmit and receive beam pair.
本開示において、複数(例えば、全て)の受信ビーム、複数(例えば、全て)の受信ビーム及び送信ビームのペア(以下、送信-受信(Tx-Rx)ペア、ビームペア、などと呼ばれてもよい)、ビーム測定用に用いられる複数(例えば、全て)の受信ビーム、は互いに読み替えられてもよい。 In the present disclosure, multiple (e.g., all) receive beams, multiple (e.g., all) receive beam and transmit beam pairs (hereinafter, may be referred to as transmit-receive (Tx-Rx) pairs, beam pairs, etc.), and multiple (e.g., all) receive beams used for beam measurement may be interpreted interchangeably.
オプション1-1によれば、各送信ビームについて個別に受信ビームの選択を行うことができるため、柔軟なビームペアの選択を行うことができる。 Option 1-1 allows for flexible beam pair selection, as the receive beam can be selected individually for each transmit beam.
[オプション1-1-1]
UEは、複数(例えば、全て)の測定結果のうちの特定の受信ビームに対応するCSI測定結果を報告してもよい。
[Option 1-1-1]
The UE may report CSI measurements corresponding to a particular receive beam among multiple (eg, all) measurements.
例えば、UEは、複数(例えば、全て)の測定結果のうちの最大の受信電力(例えば、L1-RSRP)を達成するCSI測定結果を報告するように設定されてもよい。 For example, the UE may be configured to report the CSI measurement result that achieves the highest received power (e.g., L1-RSRP) among multiple (e.g., all) measurement results.
図12Aは、オプション1-1-1に係るCSI測定結果の報告の一例を示す図である。図12Aに示す例において、UEは、セットBについて、測定される送信ビーム(の設定)ごとに、最良の受信ビームに対応するCSI測定結果の報告を行う。 FIG. 12A is a diagram showing an example of reporting CSI measurement results related to option 1-1-1. In the example shown in FIG. 12A, the UE reports the CSI measurement results corresponding to the best receiving beam for each measured transmitting beam (setting) for set B.
図12Aに示す例では、送信ビーム3(Tx3)に対応する最良の受信ビームが受信ビーム0(Rx0)であり、送信ビーム13(Tx13)に対応する最良の受信ビームが受信ビーム1(Rx1)であり、送信ビーム19(Tx19)に対応する最良の受信ビームが受信ビーム0(Rx0)であり、送信ビーム29(Tx29)に対応する最良の受信ビームが受信ビーム2(Rx2)であり、送信ビーム35(Tx35)に対応する最良の受信ビームが受信ビーム1(Rx1)であり、送信ビーム45(Tx45)に対応する最良の受信ビームが受信ビーム0(Rx2)であり、送信ビーム51(Tx51)に対応する最良の受信ビームが受信ビーム3(Rx3)であり、送信ビーム61(Tx61)に対応する最良の受信ビームが受信ビーム3(Rx3)である。UEは、これらのビームのペアに対応するCSI測定結果の報告を行う。 In the example shown in FIG. 12A, the best receiving beam corresponding to transmit beam 3 (Tx3) is receive beam 0 (Rx0), the best receiving beam corresponding to transmit beam 13 (Tx13) is receive beam 1 (Rx1), the best receiving beam corresponding to transmit beam 19 (Tx19) is receive beam 0 (Rx0), the best receiving beam corresponding to transmit beam 29 (Tx29) is receive beam 2 (Rx2), the best receiving beam corresponding to transmit beam 35 (Tx35) is receive beam 1 (Rx1), the best receiving beam corresponding to transmit beam 45 (Tx45) is receive beam 0 (Rx2), the best receiving beam corresponding to transmit beam 51 (Tx51) is receive beam 3 (Rx3), and the best receiving beam corresponding to transmit beam 61 (Tx61) is receive beam 3 (Rx3). The UE reports CSI measurement results corresponding to these beam pairs.
なお、本開示におけるビームのペアに係る図に示す例はあくまで一例であり、送信/受信ビームの数、送信/受信ビームのインデックス、はこれらに限られない。 Note that the examples shown in the figures relating to beam pairs in this disclosure are merely examples, and the number of transmit/receive beams and the indexes of the transmit/receive beams are not limited to these.
オプション1-1-1によれば、各送信ビームについて最良のビームペアを選択することができるため、精度の高いビーム予測を行うことができる。 Option 1-1-1 allows the best beam pair to be selected for each transmit beam, enabling highly accurate beam prediction.
[オプション1-1-2]
UEは、複数(例えば、全て)の受信ビームについての平均のCSI測定結果の報告を行ってもよい。
[Option 1-1-2]
The UE may report an average CSI measurement result for multiple (eg, all) receive beams.
UEは、複数(例えば、全て)の受信ビームについての平均のCSI測定結果の報告を行うように設定されてもよい。 The UE may be configured to report average CSI measurements for multiple (e.g., all) receive beams.
また、UEは、特定の受信ビームについての平均のCSI測定結果の報告を行ってもよい。例えば、当該特定のビームは、K個の最大電力を達成する受信ビームであってもよい。当該Kは、予め仕様で規定されてもよいし、上位レイヤシグナリング/DCIを用いて設定/指示されてもよい。 The UE may also report the average CSI measurement for a particular receive beam. For example, the particular beam may be the receive beam that achieves the K highest powers. K may be predefined in the specification or may be set/indicated using higher layer signaling/DCI.
図12Bは、オプション1-1-2に係るCSI測定結果の報告の一例を示す図である。図12Bに示す例において、UEは、セットBについて、測定される送信ビーム(の設定)ごとに(送信ビーム3/13/19/29/35/45/51/61ごとに)、全ての受信ビームについての平均のCSI測定結果の報告を行う。
FIG. 12B is a diagram showing an example of reporting CSI measurement results for option 1-1-2. In the example shown in FIG. 12B, the UE reports the average CSI measurement results for all receive beams for set B for each transmit beam (configuration) being measured (for transmit
オプション1-1-2によれば、各送信ビームについての複数のビームペアのCSI測定結果を平均して算出するため、精度の高いビーム予測を行うことができる。 Option 1-1-2 allows for highly accurate beam prediction by averaging the CSI measurement results of multiple beam pairs for each transmit beam.
《オプション1-2》
オプション1-2は、CSI報告用の受信ビーム選択に関連する設定が、複数(例えば、全て)の送信ビームについて共通である例を説明する。
<<Option 1-2>>
Option 1-2 describes an example in which settings related to receive beam selection for CSI reporting are common for multiple (e.g., all) transmit beams.
UEは、複数の測定される送信ビームについて、特定の受信ビームに基づいて特定のCSI測定結果の報告を行ってもよい。 The UE may report a specific CSI measurement result based on a specific receive beam for multiple measured transmit beams.
例えば、UEは、各送信ビームの測定結果について共通の受信ビームを選択してもよい。UEは、当該選択した送信ビームと受信ビームとのペアについてのCSI測定/報告を行ってもよい。 For example, the UE may select a common receive beam for each transmit beam measurement result. The UE may perform CSI measurement/reporting for the selected transmit beam and receive beam pair.
オプション1-2によれば、各送信ビームについて共通の受信ビームの選択を行うため、シグナリングオーバヘッドを削減することができ、また、UEの実装についても容易にすることができる。 Option 1-2 allows for the selection of a common receiving beam for each transmitting beam, reducing signaling overhead and also making UE implementation easier.
[オプション1-2-1]
UEは、複数(例えば、全て)の測定結果から、複数の送信-受信ペア(送信ビーム及び受信ビームのペア)の中の特定の(例えば、最良の)値を得られるペアの受信ビームに対応する、各送信ビーム/特定送信ビームのCSI測定結果を報告してもよい。
[Option 1-2-1]
The UE may report CSI measurement results for each transmit beam/specific transmit beam corresponding to a receive beam pair that yields a specific (e.g., best) value among multiple transmit-receive pairs (pairs of transmit beams and receive beams) from multiple (e.g., all) measurement results.
UEは、複数(例えば、全て)の測定結果から、複数の送信-受信ペアの中の特定の(例えば、最良の)値を得られるペアの受信ビームに対応する、各送信ビーム/特定送信ビームのCSI測定結果を報告するように設定されてもよい。 The UE may be configured to report CSI measurement results for each transmit beam/specific transmit beam corresponding to the receive beam of a pair that yields a specific (e.g., best) value among multiple transmit-receive pairs from multiple (e.g., all) measurement results.
図13Aは、オプション1-2-1に係るCSI測定結果の報告の一例を示す図である。図13Aに示す例において、UEは、セットBについて、全ての送信-受信ペアの中の最良の値を得られるペア(図13Aの例では、Tx29-Rx2)の受信ビーム(Rx2)に対応するCSI測定結果を報告する。つまり、この場合、UEは、受信ビーム2(Rx2)を含む複数(全て)のビームペアについて、CSI測定結果の報告を行う。 FIG. 13A is a diagram showing an example of reporting CSI measurement results relating to option 1-2-1. In the example shown in FIG. 13A, the UE reports the CSI measurement results for set B corresponding to the receive beam (Rx2) of the pair (Tx29-Rx2 in the example of FIG. 13A) that provides the best value among all transmit-receive pairs. In other words, in this case, the UE reports the CSI measurement results for multiple (all) beam pairs including receive beam 2 (Rx2).
オプション1-2-1によれば、最良のビームペアに基づく受信ビームの選択を行うため、精度の高いビーム予測を行うことができる。 Option 1-2-1 allows for highly accurate beam prediction by selecting a receiving beam based on the best beam pair.
[オプション1-2-2]
UEは、複数(例えば、全て)の測定結果から、特定の受信ビームから得られるCSI測定結果を報告してもよい。また、UEは、特定のDLチャネルの受信に用いられた受信ビームから、CSI報告用の測定に用いる受信ビームを選択/決定してもよい。
[Option 1-2-2]
The UE may report CSI measurements obtained from a specific receive beam from multiple (e.g., all) measurements, or may select/determine a receive beam to use for measurements for CSI reporting from receive beams used to receive a specific DL channel.
UEは、複数(例えば、全て)の測定結果から、特定の受信ビームから得られるCSI測定結果を報告するように設定されてもよい。また、UEは、特定のDLチャネルの受信に用いられた受信ビームから、CSI報告用の測定に用いる受信ビームを選択/決定するよう設定されてもよい。 The UE may be configured to report CSI measurement results obtained from a specific receive beam from multiple (e.g., all) measurement results. The UE may also be configured to select/determine a receive beam to use for measurements for CSI reporting from the receive beams used to receive a specific DL channel.
当該特定の受信ビームは、例えば、直近の(last)受信ビームスウィーピング(例えば、全(full)受信ビームスウィーピング)における最良の受信ビームであってもよい。 The particular receive beam may be, for example, the best receive beam in the last receive beam sweeping (e.g., the full receive beam sweeping).
また、UEは、当該特定の受信ビームを用いてCSI報告用の測定を行ってもよい。このとき、複数の最良の受信ビームを用いてCSI報告用の測定を行ってもよいし、最良の受信ビームと隣接した受信ビームを用いてCSI報告用の測定を行ってもよい。 The UE may also perform measurements for CSI reporting using the specific receiving beam. In this case, the UE may perform measurements for CSI reporting using multiple best receiving beams, or may perform measurements for CSI reporting using a receiving beam adjacent to the best receiving beam.
当該特定の受信ビームは、例えば、直近の過去の(the most recent previous)ビーム測定における最良の受信ビームであってもよい。 The particular receive beam may be, for example, the best receive beam in the most recent previous beam measurement.
当該特定の受信ビームは、例えば、直近の過去の(the most recent previous)CSI報告用のビーム測定における最良の受信ビームであってもよい。 The particular receiving beam may be, for example, the best receiving beam in the most recent previous beam measurement for the CSI report.
図13Bは、オプション1-2-2に係るCSI測定結果の報告の一例を示す図である。図13Bに示す例において、UEは、セットBについて、直近の受信ビームスウィーピング(例えば、直近のP3の期間)における最良の受信ビーム(図13Bの例では、受信ビーム3(Rx3))に対応するCSI測定結果を報告する。つまり、この場合、UEは、受信ビーム3(Rx3)を含む複数(全て)のビームペアについて、CSI測定結果の報告を行う。 FIG. 13B is a diagram showing an example of reporting CSI measurement results related to option 1-2-2. In the example shown in FIG. 13B, the UE reports CSI measurement results for set B corresponding to the best receiving beam (receiving beam 3 (Rx3) in the example of FIG. 13B) in the most recent receiving beam sweeping (e.g., the most recent P3 period). In other words, in this case, the UE reports CSI measurement results for multiple (all) beam pairs including receiving beam 3 (Rx3).
オプション1-2-2によれば、UEに係る環境を反映した精度の高いビーム予測を行うことができる。 Option 1-2-2 allows for highly accurate beam prediction that reflects the UE's environment.
[オプション1-2-3]
UEは、複数(例えば、全て)の測定結果の中から、特定の受信ビームから得られた測定結果を、CSI測定結果として報告してもよい。
[Option 1-2-3]
The UE may report a measurement result obtained from a specific receiving beam from among multiple (e.g., all) measurement results as a CSI measurement result.
また、UEは、複数(例えば、全て)の測定される送信ビームの設定について、特定のDLチャネルの受信に用いられた受信ビームから得られるCSI測定結果を報告してもよい。 The UE may also report CSI measurements from the receive beams used to receive a particular DL channel for multiple (e.g., all) measured transmit beam configurations.
また、UEは、特定のDLチャネルの受信に用いられた受信ビームからCSI報告用の測定に用いる受信ビームを選択/決定してもよい。 The UE may also select/determine the receiving beam to be used for measurements for CSI reporting from the receiving beams used to receive a particular DL channel.
UEは、複数(例えば、全て)の測定される送信ビームの設定について、特定のDLチャネルの受信に用いられた受信ビームから得られるCSI測定結果を報告するよう設定されてもよい。 The UE may be configured to report CSI measurements from the receive beams used to receive a particular DL channel for multiple (e.g., all) measured transmit beam configurations.
当該特定のDLチャネルは、例えば、(直近の(last))PDSCH/PDCCHであってもよい。 The particular DL channel may be, for example, the (last) PDSCH/PDCCH.
図13Cは、オプション1-2-3に係るCSI測定結果の報告の一例を示す図である。図13Cに示す例において、UEは、セットBについて、直近のPDSCH受信に用いられた受信ビーム(図13Cの例では、受信ビーム2(Rx2))に対応するCSI測定結果を報告する。つまり、この場合、UEは、受信ビーム2(Rx2)を含む複数(全て)のビームペアについて、CSI測定結果の報告を行う。 FIG. 13C is a diagram showing an example of reporting CSI measurement results relating to option 1-2-3. In the example shown in FIG. 13C, the UE reports the CSI measurement results for set B corresponding to the receive beam used for the most recent PDSCH reception (receive beam 2 (Rx2) in the example of FIG. 13C). In other words, in this case, the UE reports the CSI measurement results for multiple (all) beam pairs including receive beam 2 (Rx2).
オプション1-2-3によれば、UEに係る環境を反映した精度の高いビーム予測を行うことができる。 Option 1-2-3 allows for highly accurate beam prediction that reflects the UE's environment.
《オプション1-3》
オプション1-3は、UEがCSI報告用の受信ビーム選択に関連する設定を明示的に受信するケースについて説明する。本オプションについても、上記オプション1-1/1-2同様に、各送信ビームについて受信ビームが共通/個別に選択されるケースが含まれる。
<<Option 1-3>>
Option 1-3 describes a case where the UE explicitly receives a setting related to the reception beam selection for CSI reporting. As with the above options 1-1/1-2, this option also includes a case where the reception beam is selected commonly/individually for each transmission beam.
以下本実施形態における、特定の受信ビーム情報/ビーム情報は、前述の受信ビーム情報の少なくとも1つであってもよい。 In the following embodiment, the specific receiving beam information/beam information may be at least one of the receiving beam information described above.
オプション1-3によれば、NWからUEに対して柔軟な設定を行うことができ、精度の高いビーム予測を行うことができる。 Options 1-3 allow flexible configuration from the network to the UE, enabling highly accurate beam prediction.
[オプション1-3-1]
本オプションにおいて、CSI報告を行う報告結果を測定した受信ビームが、複数(例えば、全て)の送信ビーム/参照信号(各送信ビーム/参照信号)について共通であってもよい。
[Option 1-3-1]
In this option, the receiving beam used to measure the report results for CSI reporting may be common to multiple (e.g., all) transmitting beams/reference signals (each transmitting beam/reference signal).
UEは、設定/指示された特定の受信ビーム情報に対応する受信ビームから得られるCSI測定結果を報告してもよい。 The UE may report CSI measurement results obtained from a receiving beam corresponding to the specific receiving beam information configured/instructed.
UEは、設定/指示された特定の受信ビームに関連する情報に対応する受信ビームから得られるCSI測定結果を報告するよう設定/指示されてもよい。 The UE may be configured/instructed to report CSI measurements obtained from receive beams corresponding to information related to a particular configured/instructed receive beam.
当該設定/指示は、下記補足2に記載される方法に基づいて行われてもよい。
The settings/instructions may be made based on the method described in
当該設定/指示は、特定の受信ビーム(例えば、ビームインデックス、RSインデックス)を指示することで行われてもよい。 The setting/instruction may be performed by instructing a specific receiving beam (e.g., beam index, RS index).
図14Aは、オプション1-3-1に係るCSI測定結果の報告の一例を示す図である。図14Aに示す例において、UEは、受信ビーム0(Rx0)に対応するCSI測定結果を報告するよう指示される。このとき、UEは、受信ビーム0(Rx0)を含む各ビームペアについてのCSI測定結果の報告を行う。 FIG. 14A is a diagram showing an example of reporting CSI measurement results related to option 1-3-1. In the example shown in FIG. 14A, the UE is instructed to report CSI measurement results corresponding to receive beam 0 (Rx0). At this time, the UE reports CSI measurement results for each beam pair including receive beam 0 (Rx0).
オプション1-3-1によれば、シグナリングオーバヘッドを削減しつつ、NWからUEに対して柔軟な設定を行うことができ、精度の高いビーム予測を行うことができる。 Option 1-3-1 allows flexible configuration from the network to the UE while reducing signaling overhead, and enables highly accurate beam prediction.
[オプション1-3-2]
本オプションにおいて、CSI報告を行う報告結果を測定した受信ビームが、報告する各送信ビーム/参照信号について固有(dedicated)であってもよい。
[Option 1-3-2]
In this option, the receiving beam used to measure the reporting result for CSI reporting may be dedicated for each transmitting beam/reference signal being reported.
UEは、報告/測定される送信ビームごとに、設定された特定の受信ビーム情報に対応する受信ビームから得られるCSI測定結果を報告してもよい。 The UE may report CSI measurement results obtained from the receive beam corresponding to the specific receive beam information configured for each transmit beam reported/measured.
UEは、報告/測定される送信ビームの設定ごとに、設定された特定の受信ビーム情報に対応する受信ビームから得られるCSI測定結果を報告するよう設定/指示されてもよい。 The UE may be configured/instructed to report CSI measurement results obtained from the receive beam corresponding to the specific receive beam information configured for each transmit beam configuration reported/measured.
当該設定/指示は、下記補足2に記載される方法に基づいて行われてもよい。
The settings/instructions may be made based on the method described in
当該設定/指示は、特定の受信ビーム(例えば、ビームインデックス、RSインデックス)を設定/指示することで行われてもよいし、特定のビームペア(例えば、ビームインデックスのペア、RSインデックスのペア)を設定/指示することによって行われてもよい。 The setting/instruction may be performed by setting/instructing a specific receiving beam (e.g., beam index, RS index), or by setting/instructing a specific beam pair (e.g., beam index pair, RS index pair).
図14Bは、オプション1-3-2に係るCSI測定結果の報告の一例を示す図である。図14Bに示す例において、UEは、送信ビームごとにCSI測定結果の報告を行う受信ビーム(又は、ビームペア)を指示される。図14Bに示す例では、UEは、ビームペアTx3-Rx0、Tx13-Rx1、Tx19-Rx0、Tx29-Rx2、Tx35-Rx1、Tx45-Rx2、Tx51-Rx3、Tx61-Rx3のそれぞれについてのCSI測定結果(L1-RSRP)の報告を指示される。 Figure 14B is a diagram showing an example of reporting CSI measurement results for option 1-3-2. In the example shown in Figure 14B, the UE is instructed on the receive beam (or beam pair) for which the CSI measurement results will be reported for each transmit beam. In the example shown in Figure 14B, the UE is instructed to report the CSI measurement results (L1-RSRP) for each of the beam pairs Tx3-Rx0, Tx13-Rx1, Tx19-Rx0, Tx29-Rx2, Tx35-Rx1, Tx45-Rx2, Tx51-Rx3, and Tx61-Rx3.
オプション1-3-2によれば、NWからUEに対してより柔軟な設定を行うことができ、精度の高いビーム予測を行うことができる。 Option 1-3-2 allows more flexible configuration from the network to the UE, enabling more accurate beam prediction.
《オプション1-4》
上記オプション1-1から1-3に記載される少なくとも2つの方法/オプションが組み合わされて適用されてもよい。
<Option 1-4>
At least two of the methods/options described above under options 1-1 to 1-3 may be applied in combination.
《CSI報告用の受信ビーム想定に関する設定》
以下では、CSI報告用の受信ビーム想定に関する設定について説明する。
<<Settings for assuming receiving beams for CSI reporting>>
The following describes the settings regarding the receiving beam assumptions for CSI reporting.
UEは、CSI報告用の受信ビーム想定に関する設定を、上位レイヤシグナリング(特定のRRCパラメータ)を用いて設定されてもよい。当該RRCパラメータは、例えばCSI報告に関するRRCパラメータであってもよい。 The UE may configure the settings related to the assumed receiving beam for CSI reporting using higher layer signaling (specific RRC parameters). The RRC parameters may be, for example, RRC parameters related to CSI reporting.
例えば、UEは、CSI報告設定(例えば、CSI-ReportConfig)を利用して、CSI報告用の受信ビーム想定に関する設定を受信してもよい。 For example, the UE may receive configuration regarding the receiving beam assumptions for CSI reporting using a CSI reporting configuration (e.g., CSI-ReportConfig).
例えば、CSI報告用の受信ビーム想定に関する設定は、CSI報告設定(例えば、CSI-ReportConfig)に含まれてもよい。 For example, the configuration regarding the receiving beam assumption for CSI reporting may be included in the CSI reporting configuration (e.g., CSI-ReportConfig).
図15Aは、CSI報告用の受信ビーム想定に関する設定の一例を示す図である。図15Aは、Abstract Syntax Notation One(ASN.1)記法を用いて記載されている。図15Aに示す例において、CSI報告用の受信ビーム想定に関する設定(RxbeamAssumption)が、CSI報告設定(CSI-ReportConfig)に含まれる。 FIG. 15A is a diagram showing an example of a configuration related to a receive beam assumption for a CSI report. FIG. 15A is written using Abstract Syntax Notation One (ASN.1) notation. In the example shown in FIG. 15A, a configuration related to a receive beam assumption for a CSI report (RxbeamAssumption) is included in a CSI report configuration (CSI-ReportConfig).
また、例えば、UEは、CSIのセミパーシステント報告のトリガ状態(trigger state)を設定するためのパラメータ(例えば、CSI-SemiPersistentOnPUSCH-TriggerState)を利用して、CSI報告用の受信ビーム想定に関する設定を受信してもよい。 Also, for example, the UE may receive a configuration regarding the assumed receiving beam for CSI reporting using a parameter (e.g., CSI-SemiPersistentOnPUSCH-TriggerState) for setting the trigger state of CSI semi-persistent reporting.
例えば、CSI報告用の受信ビーム想定に関する設定は、CSIのセミパーシステント報告のトリガ状態を設定するためのパラメータ(例えば、CSI-SemiPersistentOnPUSCH-TriggerState)に含まれてもよい。 For example, the settings regarding the assumed receiving beam for CSI reporting may be included in a parameter for setting the trigger state of semi-persistent CSI reporting (e.g., CSI-SemiPersistentOnPUSCH-TriggerState).
図15Bは、CSI報告用の受信ビーム想定に関する設定の他の例を示す図である。図15Bは、図15A同様にASN.1記法を用いて記載されている。図15Bに示す例において、CSI報告用の受信ビーム想定に関する設定(RxbeamAssumption)が、CSIのセミパーシステント報告のトリガ状態を設定するためのパラメータ(例えば、CSI-SemiPersistentOnPUSCH-TriggerState)に含まれる。 FIG. 15B is a diagram showing another example of the settings related to the receive beam assumption for CSI reporting. Like FIG. 15A, FIG. 15B is written using ASN.1 notation. In the example shown in FIG. 15B, the settings related to the receive beam assumption for CSI reporting (RxbeamAssumption) are included in the parameters for setting the trigger state of the semi-persistent CSI report (e.g., CSI-SemiPersistentOnPUSCH-TriggerState).
また、例えば、UEは、CSIの非周期的報告のトリガ状態を設定するためのパラメータ(例えば、CSI-AperiodicTriggerState)を利用して、CSI報告用の受信ビーム想定に関する設定を受信してもよい。 Also, for example, the UE may receive a configuration regarding the receiving beam assumption for CSI reporting using a parameter (e.g., CSI-AperiodicTriggerState) for setting the trigger state of aperiodic CSI reporting.
例えば、CSI報告用の受信ビーム想定に関する設定は、CSIの非周期的報告のトリガ状態を設定するためのパラメータ(例えば、CSI-AperiodicTriggerState)に含まれてもよい。 For example, settings regarding receive beam assumptions for CSI reporting may be included in parameters for setting the trigger state for aperiodic CSI reporting (e.g., CSI-AperiodicTriggerState).
図15Cは、CSI報告用の受信ビーム想定に関する設定の他の例を示す図である。図15Cは、図15A同様にASN.1記法を用いて記載されている。図15Cに示す例において、CSI報告用の受信ビーム想定に関する設定(RxbeamAssumption)が、CSIの非周期的報告のトリガ状態を設定するためのパラメータ(例えば、CSI-AperiodicTriggerState)に含まれる。 FIG. 15C is a diagram showing another example of the settings related to the receive beam assumption for CSI reporting. Like FIG. 15A, FIG. 15C is written using ASN.1 notation. In the example shown in FIG. 15C, the settings related to the receive beam assumption for CSI reporting (RxbeamAssumption) are included in the parameters (e.g., CSI-AperiodicTriggerState) for setting the trigger state of aperiodic CSI reporting.
以上第1の実施形態によれば、CSI報告用の受信ビーム想定を適切に規定/設定/指示することができる。 According to the first embodiment described above, it is possible to appropriately specify/set/instruct the expected receiving beam for CSI reporting.
<第2の実施形態>
第2の実施形態は、受信ビーム想定/選択に基づく測定結果の報告に関する。
Second Embodiment
A second embodiment relates to reporting of measurements based on receive beam assumption/selection.
UEは、設定される受信ビーム想定/選択に基づいて、測定結果の報告を行ってもよい。 The UE may report measurement results based on the configured receive beam assumption/selection.
UEは、例えば、特定の期間(例えば、P1、又は、常に)において、(DL)送信ビームの測定を行ってもよい。UEは、例えば、特定の期間後(例えば、P1の経過後)に、測定結果の報告を行ってもよい。また、UEは、例えば、常に測定結果の報告を行うことが許容されてもよい。 The UE may, for example, measure the (DL) transmit beam at a specific time period (e.g., P1 or always). The UE may, for example, report the measurement results after a specific time period (e.g., after P1 has elapsed). The UE may also, for example, be allowed to report the measurement results always.
UEは、受信ビーム想定/選択の設定に基づいて(DL)送信ビームの測定を行い、設定された複数(例えば、全て)のリソース/受信ビームの測定結果を得てもよい(ステップS1701)。 The UE may measure the (DL) transmission beam based on the receiving beam assumption/selection configuration and obtain measurement results for multiple (e.g., all) configured resources/receiving beams (step S1701).
UEは、特定の方法(例えば、仕様/設定)に基づいて測定結果の生成を行ってもよい(ステップS1702)。当該特定の方法は、例えば、上記第1の実施形態に記載される少なくとも1つの方法に従ってもよい。 The UE may generate the measurement results based on a specific method (e.g., a specification/configuration) (step S1702). The specific method may, for example, follow at least one of the methods described in the first embodiment above.
UEは、NWに対し、生成した測定結果を報告してもよい(S1703)。 The UE may report the generated measurement results to the NW (S1703).
図16は、第2の実施形態に係る測定/報告のタイムラインの一例を示す図である。図16に示す例において、特定の期間(例えば、P1)において、セットBの測定が行われる。UEは、P1の経過後、CSI測定(結果)の報告を行ってもよい。 FIG. 16 is a diagram showing an example of a measurement/reporting timeline according to the second embodiment. In the example shown in FIG. 16, measurements of set B are performed during a specific period (e.g., P1). The UE may report CSI measurements (results) after P1 has elapsed.
なお、図16は、P1の経過直後にCSI測定の報告を行っているが、P1の経過後から特定の期間(例えば、Tシンボル/スロット/ms(Tは任意の数))経過後にCSI測定の報告が行われてもよい。当該Tは、予め仕様で規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUEに設定/指示/通知されてもよい。 In FIG. 16, the CSI measurement is reported immediately after P1 has elapsed, but the CSI measurement may be reported a specific period of time (e.g., T symbols/slots/ms (T is an arbitrary number)) after P1 has elapsed. The T may be specified in advance in the specifications, or may be set/instructed/notified to the UE using higher layer signaling/physical layer signaling.
図17は、第2の実施形態に係る測定/報告の動作の一例を示す図である。図17に示す例において、UEに対し、リソースセッティング#X(Xは任意の値)について‘repetition’がオンに設定される。 FIG. 17 is a diagram showing an example of the measurement/reporting operation according to the second embodiment. In the example shown in FIG. 17, for the UE, 'repetition' is set to on for resource setting #X (X is an arbitrary value).
図17に示す例において、まず送信ビーム及び受信ビームのスウィーピングが行われる(ステップS1701)。次いで、UEは、設定される受信ビーム想定/選択に基づいて、最良のビームペア(送信ビーム及び受信ビームの組み合わせ)を得、当該最良のビームペアに基づいて測定結果を生成する(ステップS1702)。その後、UEは、生成した測定結果をNWに対して報告する(ステップS1703)。 In the example shown in FIG. 17, first, sweeping of the transmit beam and receive beam is performed (step S1701). Next, the UE obtains the best beam pair (combination of transmit beam and receive beam) based on the configured receive beam assumption/selection, and generates measurement results based on the best beam pair (step S1702). After that, the UE reports the generated measurement results to the NW (step S1703).
以上第2の実施形態によれば、受信ビーム想定/選択に基づく測定結果の報告を適切に行うことができる。 According to the second embodiment described above, it is possible to appropriately report measurement results based on the reception beam assumption/selection.
<補足>
[補足1:AIモデル情報]
本開示において、AIモデル情報は、以下の少なくとも1つを含む情報を意味してもよい:
・AIモデルの入力/出力の情報、
・AIモデルの入力/出力のための前処理/後処理の情報、
・AIモデルのパラメータの情報、
・AIモデルのための訓練情報(トレーニング情報)、
・AIモデルのための推論情報、
・AIモデルに関する性能情報。
<Additional Information>
[Supplement 1: AI model information]
In this disclosure, AI model information may mean information including at least one of the following:
- AI model input/output information,
- Pre-processing/post-processing information for input/output of AI models;
・Information on the parameters of the AI model,
- Training information for the AI model;
- Inference information for AI models,
・Performance information about the AI model.
ここで、上記AIモデルの入力/出力の情報は、以下の少なくとも1つに関する情報を含んでもよい:
・入力/出力データの内容(例えば、RSRP、SINR、チャネル行列(又はプリコーディング行列)における振幅/位相情報、到来角度(Angle of Arrival(AoA))に関する情報、放射角度(Angle of Departure(AoD))に関する情報、位置情報)、
・データの補助情報(メタ情報と呼ばれてもよい)、
・入力/出力データのタイプ(例えば、不変値(immutable value)、浮動小数点数)、
・入力/出力データのビット幅(例えば、各入力値について64ビット)、
・入力/出力データの量子化間隔(量子化ステップサイズ)(例えば、L1-RSRPについて、1dBm)、
・入力/出力データが取り得る範囲(例えば、[0、1])。
Here, the input/output information of the AI model may include information regarding at least one of the following:
Content of input/output data (e.g. RSRP, SINR, amplitude/phase information in the channel matrix (or precoding matrix), information on the Angle of Arrival (AoA), information on the Angle of Departure (AoD), location information);
- auxiliary information of the data (which may be called meta-information);
- Input/output data types (e.g. immutable values, floating point numbers),
- Bit width of input/output data (e.g. 64 bits for each input value),
Quantization interval (quantization step size) of input/output data (e.g., 1 dBm for L1-RSRP);
The range that the input/output data can take (e.g., [0, 1]).
なお、本開示において、AoAに関する情報は、到来方位角度(azimuth angle of arrival)及び到来天頂角度(zenith angle of arrival(ZoA))の少なくとも1つに関する情報を含んでもよい。また、AoDに関する情報は、例えば、放射方位角度(azimuth angle of departure)及び放射天頂角度(zenith angle of depature(ZoD))の少なくとも1つに関する情報を含んでもよい。 In the present disclosure, the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Furthermore, the information regarding AoD may include information regarding at least one of the azimuth angle of departure and the zenith angle of departure (ZoD).
本開示において、位置情報は、UE/NWに関する位置情報であってもよい。位置情報は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))を用いて得られる情報(例えば、緯度、経度、高度)、当該UEに隣接する(又はサービング中の)BSの情報(例えば、BS/セルの識別子(Identifier(ID))、BS-UE間の距離、UE(BS)から見たBS(UE)の方向/角度、UE(BS)から見たBS(UE)の座標(例えば、X/Y/Z軸の座標)など)、UEの特定のアドレス(例えば、Internet Protocol(IP)アドレス)などの少なくとも1つを含んでもよい。UEの位置情報は、BSの位置を基準とする情報に限られず、特定のポイントを基準とする情報であってもよい。 In the present disclosure, the location information may be location information regarding the UE/NW. The location information may include at least one of information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., a satellite positioning system (Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.)), information on the BS adjacent to (or serving) the UE (e.g., a BS/cell identifier (ID), a BS-UE distance, a direction/angle of the BS (UE) as seen from the UE (BS), coordinates of the BS (UE) as seen from the UE (BS) (e.g., coordinates on the X/Y/Z axes), etc.), a specific address of the UE (e.g., an Internet Protocol (IP) address), etc. The location information of the UE is not limited to information based on the position of the BS, and may be information based on a specific point.
位置情報は、自身の実装に関する情報(例えば、アンテナの位置(location/position)/向き、アンテナパネルの位置/向き、アンテナの数、アンテナパネルの数など)を含んでもよい。 The location information may include information about its implementation (e.g., location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
位置情報は、モビリティ情報を含んでもよい。モビリティ情報は、モビリティタイプを示す情報、UEの移動速度、UEの加速度、UEの移動方向などの少なくとも1つを示す情報を含んでもよい。 The location information may include mobility information. The mobility information may include information indicating at least one of the following: information indicating a mobility type, a moving speed of the UE, an acceleration of the UE, a moving direction of the UE, etc.
ここで、モビリティタイプは、固定位置UE(fixed location UE)、移動可能/移動中UE(movable/moving UE)、モビリティ無しUE(no mobility UE)、低モビリティUE(low mobility UE)、中モビリティUE(middle mobility UE)、高モビリティUE(high mobility UE)、セル端UE(cell-edge UE)、非セル端UE(not-cell-edge UE)などの少なくとも1つに該当してもよい。 Here, the mobility type may correspond to at least one of fixed location UE, movable/moving UE, no mobility UE, low mobility UE, middle mobility UE, high mobility UE, cell-edge UE, not-cell-edge UE, etc.
本開示において、(データのための)環境情報は、データが取得される/利用される環境に関する情報であってもよく、例えば、周波数情報(バンドIDなど)、環境タイプ情報(屋内(indoor)、屋外(outdoor)、Urban Macro(UMa)、Urban Micro(Umi)などの少なくとも1つを示す情報)、Line Of Site(LOS)/Non-Line Of Site(NLOS)を示す情報などに該当してもよい。 In the present disclosure, environmental information (for data) may be information regarding the environment in which the data is acquired/used, and may correspond to, for example, frequency information (such as a band ID), environmental type information (information indicating at least one of indoor, outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), information indicating Line Of Site (LOS)/Non-Line Of Site (NLOS), etc.
ここで、LOSは、UE及びBSが互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及びBSが互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。LOS/NLOSを示す情報は、ソフト値(例えば、LOS/NLOSの確率)を示してもよいし、ハード値(例えば、LOS/NLOSのいずれか)を示してもよい。 Here, LOS may mean that the UE and BS are in an environment where they can see each other (or there is no obstruction), and NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is an obstruction). Information indicating LOS/NLOS may indicate a soft value (e.g., the probability of LOS/NLOS) or a hard value (e.g., either LOS or NLOS).
本開示において、メタ情報は、例えば、AIモデルに適した入力/出力情報に関する情報、取得した/取得できるデータに関する情報などを意味してもよい。メタ情報は、具体的には、RS(例えば、CSI-RS/SRS/SSBなど)のビームに関する情報(例えば、各ビームの指向している角度、3dBビーム幅、指向しているビームの形状、ビームの数)、gNB/UEのアンテナのレイアウト情報、周波数情報、環境情報、メタ情報IDなどを含んでもよい。なお、メタ情報は、AIモデルの入力/出力として用いられてもよい。 In the present disclosure, meta-information may mean, for example, information regarding input/output information suitable for an AI model, information regarding data that has been acquired/can be acquired, etc. Specifically, meta-information may include information regarding beams of RS (e.g., CSI-RS/SRS/SSB, etc.) (e.g., the pointing angle of each beam, 3 dB beam width, the shape of the pointed beam, the number of beams), layout information of gNB/UE antennas, frequency information, environmental information, meta-information ID, etc. In addition, meta-information may be used as input/output of an AI model.
上記AIモデルの入力/出力のための前処理/後処理の情報は、以下の少なくとも1つに関する情報を含んでもよい:
・正規化(例えば、Zスコア正規化(標準化)、最小-最大(min-max)正規化)を適用するか否か、
・正規化のためのパラメータ(例えば、Zスコア正規化については平均/分散、最小-最大正規化については最小値/最大値)、
・特定の数値変換方法(例えば、ワンホットエンコーディング(one hot encoding)、ラベルエンコーディング(label encoding)など)を適用するか否か、
・訓練データとして用いられるか否かの選択ルール。
The pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following:
Whether to apply normalization (e.g., Z-score normalization, min-max normalization),
Parameters for normalization (e.g. mean/variance for Z-score normalization, min/max for min-max normalization);
Whether to apply a specific numeric transformation method (e.g., one hot encoding, label encoding, etc.);
Selection rule for whether or not to use as training data.
例えば、入力情報xに対して前処理としてZスコア正規化(xnew=(x-μ)/σ。ここで、μはxの平均、σは標準偏差)を行った正規化済み入力情報xnewをAIモデルに入力してもよく、AIモデルからの出力youtに後処理を掛けて最終的な出力yが得られてもよい。 For example, the input information x may be subjected to Z-score normalization (x new = (x - μ) / σ, where μ is the average of x and σ is the standard deviation) as pre-processing, and normalized input information x new may be input to the AI model, and the output y out from the AI model may be subjected to post-processing to obtain the final output y.
上記AIモデルのパラメータの情報は、以下の少なくとも1つに関する情報を含んでもよい:
・AIモデルにおける重み(例えば、ニューロンの係数(結合係数))情報、
・AIモデルの構造(structure)、
・モデルコンポーネントとしてのAIモデルのタイプ(例えば、Residual Network(ResNet)、DenseNet、RefineNet、トランスフォーマー(Transformer)モデル、CRBlock、回帰型ニューラルネットワーク(Recurrent Neural Network(RNN))、長・短期記憶(Long Short-Term Memory(LSTM))、ゲート付き回帰型ユニット(Gated Recurrent Unit(GRU)))、
・モデルコンポーネントとしてのAIモデルの機能(例えば、デコーダ、エンコーダ)。
The information of the parameters of the AI model may include information regarding at least one of the following:
- Weight information in an AI model (e.g., neuron coefficients (connection coefficients)),
・Structure of the AI model,
- Type of AI model as model component (e.g. Residual Network (ResNet), DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU));
- Functions of the AI model as model components (e.g., decoder, encoder).
なお、上記AIモデルにおける重み情報は、以下の少なくとも1つに関する情報を含んでもよい:
・重み情報のビット幅(サイズ)、
・重み情報の量子化間隔、
・重み情報の粒度、
・重み情報が取り得る範囲、
・AIモデルにおける重みのパラメータ、
・更新前のAIモデルからの差分の情報(更新する場合)、
・重み初期化(weight initialization)の方法(例えば、ゼロ初期化、ランダム初期化(正規分布/一様分布/切断正規分布に基づく)、Xavier初期化(シグモイド関数向け)、He初期化(整流化線形ユニット(Rectified Linear Units(ReLU))向け))。
In addition, the weight information in the AI model may include information regarding at least one of the following:
- Bit width (size) of weight information
Quantization interval of weight information,
- Granularity of weight information,
- The range of possible weight information
- Weight parameters in the AI model,
- Information on the difference from the AI model before the update (if updating),
- Method of weight initialization (e.g., zero initialization, random initialization (based on normal/uniform/truncated normal distribution), Xavier initialization (for sigmoid function), He initialization (for Rectified Linear Units (ReLU))).
また、上記AIモデルの構造は、以下の少なくとも1つに関する情報を含んでもよい:
・レイヤ数、
・レイヤのタイプ(例えば、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層)、
・レイヤ情報、
・時系列特有のパラメータ(例えば、双方向性、時間ステップ)、
・訓練のためのパラメータ(例えば、機能のタイプ(L2正則化、ドロップアウト機能など)、どこに(例えば、どのレイヤの後に)この機能を置くか)。
The structure of the AI model may also include information regarding at least one of the following:
Number of layers,
- Type of layer (e.g., convolutional layer, activation layer, dense layer, normalization layer, pooling layer, attention layer),
- Layer information,
Time series specific parameters (e.g. bidirectionality, time step),
Parameters for training (e.g., type of feature (L2 regularization, dropout feature, etc.), where to put this feature (e.g., after which layer)).
上記レイヤ情報は、以下の少なくとも1つに関する情報を含んでもよい:
・各レイヤにおけるニューロン数、
・カーネルサイズ、
・プーリング層/畳み込み層のためのストライド、
・プーリング方法(MaxPooling、AveragePoolingなど)、
・残差ブロックの情報、
・ヘッド(head)数、
・正規化方法(バッチ正規化、インスタンス正規化、レイヤ正規化など)、
・活性化関数(シグモイド、tanh関数、ReLU、リーキーReLUの情報、Maxout、Softmax)。
The layer information may include information regarding at least one of the following:
- The number of neurons in each layer,
- kernel size,
strides for pooling/convolutional layers,
Pooling method (MaxPooling, AveragePooling, etc.),
- Information on the residual block,
Number of heads,
- Normalization method (batch normalization, instance normalization, layer normalization, etc.),
Activation functions (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
あるAIモデルは、別のAIモデルのコンポーネントとして含まれてもよい。例えば、あるAIモデルは、モデルコンポーネント#1であるResNet、モデルコンポーネント#2であるトランスフォーマーモデル、デンス層及び正規化層の順に処理が進むAIモデルであってもよい。 An AI model may be included as a component of another AI model. For example, an AI model may be an AI model in which processing proceeds in the order of model component #1 (ResNet), model component #2 (a transformer model), a dense layer, and a normalization layer.
上記AIモデルのための訓練情報は、以下の少なくとも1つに関する情報を含んでもよい:
・最適化アルゴリズムのための情報(例えば、最適化の種類(確率的勾配降下法(Stochastic Gradient Descent(SGD)))、AdaGrad、Adamなど)、最適化のパラメータ(学習率(learning rate)、モメンタム情報など)、
・損失関数の情報(例えば、損失関数の指標(metrics)に関する情報(平均絶対誤差(Mean Absolute Error(MAE))、平均二乗誤差(Mean Square Error(MSE))、クロスエントロピーロス、NLLLoss、Kullback-Leibler(KL)ダイバージェンスなど))、
・訓練用に凍結されるべきパラメータ(例えば、レイヤ、重み)、
・更新されるべきパラメータ(例えば、レイヤ、重み)、
・訓練用の初期パラメータであるべき(初期パラメータとして用いられるべき)パラメータ(例えば、レイヤ、重み)、
・AIモデルの訓練/更新方法(例えば、(推奨)エポック数、バッチサイズ、訓練に使用するデータ数)。
Training information for the AI model may include information regarding at least one of the following:
Information for the optimization algorithm (e.g., type of optimization (Stochastic Gradient Descent (SGD)), AdaGrad, Adam, etc.), parameters of the optimization (learning rate, momentum information, etc.),
Loss function information (e.g., information on metrics of the loss function (Mean Absolute Error (MAE)), Mean Square Error (MSE), Cross Entropy Loss, NLL Loss, Kullback-Leibler (KL) Divergence, etc.));
- parameters to be frozen for training (e.g. layers, weights),
- parameters to be updated (e.g. layers, weights),
- parameters (e.g. layers, weights) that should be (used as) initial parameters for training,
How to train/update the AI model (e.g., (recommended) number of epochs, batch size, number of data used for training).
上記AIモデルのための推論情報は、決定木の枝剪定(branch pruning)、パラメータ量子化、AIモデルの機能などに関する情報を含んでもよい。ここで、AIモデルの機能は、例えば、時間ドメインビーム予測、空間ドメインビーム予測、CSIフィードバック向けのオートエンコーダ、ビーム管理向けのオートエンコーダなどの少なくとも1つに該当してもよい。 The inference information for the AI model may include information regarding decision tree branch pruning, parameter quantization, and the function of the AI model. Here, the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, autoencoder for CSI feedback, and autoencoder for beam management.
CSIフィードバック向けのオートエンコーダは、以下のように用いられてもよい:
・UEは、エンコーダのAIモデルに、CSI/チャネル行列/プリコーディング行列を入力して出力される、エンコードされるビットを、CSIフィードバック(CSIレポート)として送信する、
・BSは、デコーダのAIモデルに、受信したエンコードされるビットを入力して出力される、CSI/チャネル行列/プリコーディング行列を再構成する。
An autoencoder for CSI feedback may be used as follows:
The UE inputs the CSI/channel matrix/precoding matrix into the AI model of the encoder and transmits the encoded bits as CSI feedback (CSI report);
- The BS reconstructs the CSI/channel matrix/precoding matrix, which is output as input to the AI model of the decoder using the received encoded bits.
空間ドメインビーム予測では、UE/BSは、AIモデルに、疎な(又は太い)ビームに基づく測定結果(ビーム品質。例えば、RSRP)を入力して、密な(又は細い)ビーム品質を出力してもよい。 In spatial domain beam prediction, the UE/BS may input measurement results (beam quality, e.g., RSRP) based on sparse (or thick) beams into an AI model to output dense (or thin) beam quality.
時間ドメインビーム予測では、UE/BSは、AIモデルに、時系列(過去、現在などの)測定結果(ビーム品質。例えば、RSRP)を入力して、将来のビーム品質を出力してもよい。 In time domain beam prediction, the UE/BS may input time series (past, present, etc.) measurement results (beam quality, e.g., RSRP) into an AI model and output future beam quality.
上記AIモデルに関する性能情報は、AIモデルのために定義される損失関数の期待値に関する情報を含んでもよい。 The performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
本開示におけるAIモデル情報は、AIモデルの適用範囲(適用可能範囲)に関する情報を含んでもよい。当該適用範囲は、物理セルID、サービングセルインデックスなどによって示されてもよい。適用範囲に関する情報は、上述の環境情報に含まれてもよい。 The AI model information in this disclosure may include information regarding the scope of application (scope of applicability) of the AI model. The scope of application may be indicated by a physical cell ID, a serving cell index, etc. Information regarding the scope of application may be included in the above-mentioned environmental information.
特定のAIモデルに関するAIモデル情報は、規格において予め定められてもよいし、ネットワーク(Network(NW))からUEに通知されてもよい。規格において規定されるAIモデルは、参照(reference)AIモデルと呼ばれてもよい。参照AIモデルに関するAIモデル情報は、参照AIモデル情報と呼ばれてもよい。 AI model information regarding a specific AI model may be predetermined in a standard, or may be notified to the UE from the network (NW). An AI model defined in a standard may be referred to as a reference AI model. AI model information regarding a reference AI model may be referred to as reference AI model information.
なお、本開示におけるAIモデル情報は、AIモデルを特定するためのインデックス(例えば、AIモデルインデックス、AIモデルID、モデルIDなどと呼ばれてもよい)を含んでもよい。本開示におけるAIモデル情報は、上述のAIモデルの入力/出力の情報などに加えて/の代わりに、AIモデルインデックスを含んでもよい。AIモデルインデックスとAIモデル情報(例えば、AIモデルの入力/出力の情報)との関連付けは、規格において予め定められてもよいし、NWからUEに通知されてもよい。 The AI model information in the present disclosure may include an index for identifying the AI model (e.g., may be called an AI model index, an AI model ID, a model ID, etc.). The AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above. The association between the AI model index and the AI model information (e.g., input/output information of the AI model) may be predetermined in a standard, or may be notified to the UE from the NW.
本開示におけるAIモデル情報は、AIモデルに関連付けられてもよく、AIモデル関連情報(relevant information)、単に関連情報などと呼ばれてもよい。AIモデル関連情報には、AIモデルを特定するための情報は明示的に含まれなくてもよい。AIモデル関連情報は、例えばメタ情報のみを含んだ情報であってもよい。 The AI model information in this disclosure may be associated with an AI model and may be referred to as AI model relevant information, simply relevant information, etc. The AI model relevant information does not need to explicitly include information for identifying the AI model. The AI model relevant information may be information that includes only meta information, for example.
本開示において、モデルIDは、AIモデルのセットに対応するID(モデルセットID)と互いに読み替えられてもよい。また、本開示において、モデルIDは、メタ情報IDと互いに読み替えられてもよい。メタ情報(又はメタ情報ID)は、上述したようにビームに関する情報(ビーム設定)と関連付けられてもよい。例えば、メタ情報(又はメタ情報ID)は、どのビームをBSが使用しているかを考慮してUEがAIモデルを選択するために用いられてもよいし、UEがデプロイしたAIモデルを適用するためにBSがどのビームを使用すべきかを通知するために用いられてもよい。なお、本開示において、メタ情報IDは、メタ情報のセットに対応するID(メタ情報セットID)と互いに読み替えられてもよい。 In the present disclosure, the model ID may be interchangeably read as an ID (model set ID) corresponding to a set of AI models. Also, in the present disclosure, the model ID may be interchangeably read as a meta information ID. The meta information (or meta information ID) may be associated with information regarding the beam (beam setting) as described above. For example, the meta information (or meta information ID) may be used by the UE to select an AI model taking into account which beam the BS is using, or may be used to notify the BS of which beam to use to apply the AI model deployed by the UE. Also, in the present disclosure, the meta information ID may be interchangeably read as an ID (meta information set ID) corresponding to a set of meta information.
[補足2:UEへの情報の通知]
上述の実施形態における(NWから)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Supplementary Note 2: Notification of information to UE]
In the above-described embodiment, any information may be notified to the UE (from the NW) (in other words, any information received from the BS in the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
[補足3:UEからの情報の通知]
上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Supplementary Note 3: Notification of information from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 If the notification is made by a MAC CE, the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 If the notification is made by UCI, the notification may be transmitted using PUCCH or PUSCH.
また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, in the above-mentioned embodiments, notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
上述の実施形態の少なくとも1つは、例えば、以下に記載するような特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい(以下はあくまで一例である):
・AI/MLベースドビーム予測(時間的/空間ドメインビーム予測)をサポートすること。
・受信ビーム選択/想定をサポートすること。
At least one of the above-described embodiments may be applied only to UEs that have reported or support certain UE capabilities, for example, as described below (by way of example only):
Support AI/ML based beam prediction (temporal/spatial domain beam prediction).
Support receive beam selection/estimation.
当該特定のUE能力は、上記実施形態/オプション/選択肢の少なくとも1つについての特定の処理/動作/制御/情報をサポートすることを示してもよい。 The particular UE capability may indicate support for particular processing/operations/control/information for at least one of the above embodiments/options/options.
また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 The specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、AI/MLモデルの利用を有効化することを示す情報、CSI予測を有効化することを示す情報、AIベースドビーム予測(時間的/空間ドメインビーム予測)を有効化することを示す情報、受信ビーム選択/想定を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。 Furthermore, at least one of the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling. For example, the specific information may be information indicating the enablement of the use of an AI/ML model, information indicating the enablement of CSI prediction, information indicating the enablement of AI-based beam prediction (temporal/spatial domain beam prediction), information indicating the enablement of receive beam selection/assumption, any RRC parameters for a particular release (e.g., Rel. 18/19), etc.
UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16/17の動作を適用してもよい。 If the UE does not support at least one of the above specific UE capabilities or the above specific information is not configured, the UE may apply, for example, the behavior of Rel. 15/16/17.
(付記)
本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
チャネル状態情報報告用の下りリンク受信ビームの選択に関する設定を受信する受信部と、
前記設定に基づいて、複数の下りリンク送信ビームの測定を行い、前記測定の結果を報告を制御する制御部と、を有する端末。
[付記2]
前記制御部は、前記複数の下りリンク送信ビームのそれぞれについて、対応する下りリンク受信ビームを独立して選択し、前記測定の結果を報告するよう制御する、付記1に記載の端末。
[付記3]
前記制御部は、前記複数の下りリンク送信ビームに対応する共通の下りリンク受信ビームを選択して、前記測定の結果を報告するよう制御する、付記1又は付記2に記載の端末。
[付記4]
前記設定は、チャネル状態情報報告のためのRadio Resource Control(RRC)パラメータである、付記1から付記3のいずれかに記載の端末。
(Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
A receiving unit for receiving a setting regarding a selection of a downlink receiving beam for reporting channel state information;
A terminal having a control unit that performs measurements of multiple downlink transmission beams based on the setting and controls reporting of the results of the measurements.
[Appendix 2]
A terminal as described in
[Appendix 3]
A terminal as described in
[Appendix 4]
The terminal according to any one of
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
図18は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 18 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
The
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
The
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
The
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
The
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
In addition, the
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
The
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
The
コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
The
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
The
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
In the
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
The radio access method may also be called a waveform. In the
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
In the
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
In addition, in the
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted via PDSCH. User data, upper layer control information, etc. may also be transmitted via PUSCH. Furthermore, Master Information Block (MIB) may also be transmitted via PBCH.
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI, and the DCI for scheduling the PUSCH may be called a UL grant or UL DCI. Note that the PDSCH may be interpreted as DL data, and the PUSCH may be interpreted as UL data.
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. The CORESET corresponds to the resources to search for DCI. The search space corresponds to the search region and search method of PDCCH candidates. One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 A search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the terms "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. in this disclosure may be read as interchangeable.
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR). The PRACH may transmit a random access preamble for establishing a connection with a cell.
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlink, uplink, etc. may be expressed without adding "link." Also, various channels may be expressed without adding "Physical" to the beginning.
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
In the
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc. In addition, the SS, SSB, etc. may also be called a reference signal.
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
In addition, in the
(基地局)
図19は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(Base station)
19 is a diagram showing an example of the configuration of a base station according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
The
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
The
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
The
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
The
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 120 (transmission processing unit 1211) may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 120 (transmission processor 1211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
The transceiver unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 120 (reception processing unit 1212) may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
The transceiver 120 (measurement unit 123) may perform measurements on the received signal. For example, the
伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
The transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF),
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
Note that the transmitter and receiver of the
送受信部120は、チャネル状態情報報告用の下りリンク受信ビームの選択に関する設定を送信してもよい。制御部110は、前記設定に基づいて測定される複数の下りリンク送信ビームの測定結果報告の受信を制御してもよい(第1/第2の実施形態)。
The
(ユーザ端末)
図20は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
20 is a diagram showing an example of the configuration of a user terminal according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
The
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
The
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
The
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
The
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 220 (transmission processor 2211) may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 220 (transmission processor 2211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (e.g., PUSCH), the transceiver unit 220 (transmission processing unit 2211) may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
The transceiver unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 220 (reception processor 2212) may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
The transceiver 220 (measurement unit 223) may perform measurements on the received signal. For example, the
なお、測定部223は、チャネル測定用リソースに基づいて、CSI算出のためのチャネル測定を導出してもよい。チャネル測定用リソースは、例えば、ノンゼロパワー(Non Zero Power(NZP))CSI-RSリソースであってもよい。また、測定部223は、干渉測定用リソースに基づいて、CSI算出のための干渉測定を導出してもよい。干渉測定用リソースは、干渉測定用のNZP CSI-RSリソース、CSI-干渉測定(Interference Measurement(IM))リソースなどの少なくとも1つであってもよい。なお、CSI-IMは、CSI-干渉管理(Interference Management(IM))と呼ばれてもよいし、ゼロパワー(Zero Power(ZP))CSI-RSと互いに読み替えられてもよい。なお、本開示において、CSI-RS、NZP CSI-RS、ZP CSI-RS、CSI-IM、CSI-SSBなどは、互いに読み替えられてもよい。
The
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
In addition, the transmitting unit and receiving unit of the
送受信部220は、チャネル状態情報報告用の下りリンク受信ビームの選択に関する設定を受信してもよい。制御部210は、前記設定に基づいて、複数の下りリンク送信ビームの測定を行い、前記測定の結果を報告を制御してもよい(第1/第2の実施形態)。
The
制御部210は、前記複数の下りリンク送信ビームのそれぞれについて、対応する下りリンク受信ビームを独立して選択し、前記測定の結果を報告するよう制御してもよい(第1の実施形態)。
The
制御部210は、前記複数の下りリンク送信ビームに対応する共通の下りリンク受信ビームを選択して、前記測定の結果を報告するよう制御してもよい(第1の実施形態)。
The
前記設定は、チャネル状態情報報告のためのRadio Resource Control(RRC)パラメータであってもよい(第1の実施形態)。 The settings may be Radio Resource Control (RRC) parameters for reporting channel state information (first embodiment).
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図21は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 21 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment. The above-mentioned
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In addition, in this disclosure, the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable. The hardware configuration of the
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
The functions of the
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
The
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
The
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
The
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Furthermore, each device such as the
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Furthermore, the
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel. The numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may also be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 A radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal. A different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively. Note that the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Furthermore, an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL). One or more BWPs may be configured for a UE within one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input/output via multiple network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
The physical layer signaling may be called
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Furthermore, notification of specified information (e.g., notification that "it is X") is not limited to explicit notification, but may be done implicitly (e.g., by not notifying the specified information or by notifying other information).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 As used in this disclosure, the terms "system" and "network" may be used interchangeably. "Network" may refer to the devices included in the network (e.g., base stations).
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」、「UEパネル」、「送信エンティティ」、「受信エンティティ」、などの用語は、互換的に使用され得る。 In this disclosure, terms such as "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial relation", "spatial domain filter", "transmit power", "phase rotation", "antenna port", "layer", "number of layers", "rank", "resource", "resource set", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel", "UE panel", "transmitting entity", "receiving entity", etc. may be used interchangeably.
なお、本開示において、アンテナポートは、任意の信号/チャネルのためのアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)と互いに読み替えられてもよい。本開示において、リソースは、任意の信号/チャネルのためのリソース(例えば、参照信号リソース、SRSリソースなど)と互いに読み替えられてもよい。なお、リソースは、時間/周波数/符号/空間/電力リソースを含んでもよい。また、空間ドメイン送信フィルタは、空間ドメイン送信フィルタ(spatial domain transmission filter)及び空間ドメイン受信フィルタ(spatial domain reception filter)の少なくとも一方を含んでもよい。 In the present disclosure, the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port). In the present disclosure, the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.). The resource may include time/frequency/code/space/power resources. The spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
上記グループは、例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号(Reference Signal(RS))グループ、制御リソースセット(COntrol REsource SET(CORESET))グループ、PUCCHグループ、アンテナポートグループ(例えば、DMRSポートグループ)、レイヤグループ、リソースグループ、ビームグループ、アンテナグループ、パネルグループなどの少なくとも1つを含んでもよい。 The above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
また、本開示において、ビーム、SRSリソースインディケーター(SRS Resource Indicator(SRI))、CORESET、CORESETプール、PDSCH、PUSCH、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、RSなどは、互いに読み替えられてもよい。 Furthermore, in this disclosure, beam, SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be read as interchangeable.
また、本開示において、TCI状態、下りリンクTCI状態(DL TCI状態)、上りリンクTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、ジョイントTCI状態などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, the terms TCI state, downlink TCI state (DL TCI state), uplink TCI state (UL TCI state), unified TCI state, common TCI state, joint TCI state, etc. may be interpreted as interchangeable.
また、本開示において、「QCL」、「QCL想定」、「QCL関係」、「QCLタイプ情報」、「QCL特性(QCL property/properties)」、「特定のQCLタイプ(例えば、タイプA、タイプD)特性」、「特定のQCLタイプ(例えば、タイプA、タイプD)」などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, "QCL", "QCL assumptions", "QCL relationship", "QCL type information", "QCL property/properties", "specific QCL type (e.g., Type A, Type D) characteristics", "specific QCL type (e.g., Type A, Type D)", etc. may be read as interchangeable.
本開示において、インデックス、識別子(Identifier(ID))、インディケーター(indicator)、インディケーション(indication)、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, the terms index, identifier (ID), indicator, indication, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報(TCI状態)」は、「空間関係情報(TCI状態)のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。空間関係情報及び空間関係は、互いに読み替えられてもよい。 Furthermore, the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be interchangeable. "Spatial relationship information (TCI state)" may be interchangeable as "set of spatial relationship information (TCI state)", "one or more pieces of spatial relationship information", etc. TCI state and TCI may be interchangeable. Spatial relationship information and spatial relationship may be interchangeable.
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "Base Station (BS)", "Radio base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel", "Cell", "Sector", "Cell group", "Carrier", "Component carrier", etc. may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" may be used interchangeably.
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary. The moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these. The moving body in question may also be a moving body that moves autonomously based on an operating command.
当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
図22は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
FIG. 22 is a diagram showing an example of a vehicle according to an embodiment. The
駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
The
電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
The
各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
Signals from the various sensors 50-58 include a current signal from a
情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
The
情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
The
運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
The driving
通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
The
通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
The
通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
The
通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
The
また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
The
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, operations that are described as being performed by a base station may in some cases also be performed by its upper node. In a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio The present invention may be applied to systems that use Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created, or defined based on these. In addition, multiple systems may be combined (for example, a combination of LTE or LTE-A and 5G, etc.).
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determining" may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 "Determining" may also be considered to mean "determining" receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。本開示において、「判断(決定)」は、上述した動作と互いに読み替えられてもよい。 Furthermore, "judgment (decision)" may be considered to mean "judging (deciding)" resolving, selecting, choosing, establishing, comparing, etc. In other words, "judgment (decision)" may be considered to mean "judging (deciding)" some kind of action. In this disclosure, "judgment (decision)" may be interpreted interchangeably with the actions described above.
また、本開示において、「判断(決定)(determine/determining)」は、「想定する(assume/assuming)」、「期待する(expect/expecting)」、「みなす(consider/considering)」などと互いに読み替えられてもよい。なお、本開示において、「...することを想定しない」は、「...しないことを想定する」と互いに読み替えられてもよい。 Furthermore, in this disclosure, "determine/determining" may be interpreted interchangeably as "assume/assuming," "expect/expecting," "consider/considering," etc. Furthermore, in this disclosure, "does not expect to do..." may be interpreted interchangeably as "assumes not to do...."
本開示において、「期待する(expect)」は、「期待される(be expected)」と互いに読み替えられてもよい。例えば、「...を期待する(expect(s) ...)」(”...”は、例えばthat節、to不定詞などで表現されてもよい)は、「...を期待される(be expected ...)」と互いに読み替えられてもよい。「...を期待しない(does not expect ...)」は、「...を期待されない(be not expected ...)」と互いに読み替えられてもよい。また、「装置Aは...を期待されない(An apparatus A is not expected ...)」は、「装置A以外の装置Bが、当該装置Aについて...を期待しない」と互いに読み替えられてもよい(例えば、装置AがUEである場合、装置Bは基地局であってもよい)。 In the present disclosure, "expect" may be read as "be expected". For example, "expect(s)..." ("..." may be expressed, for example, as a that clause, a to infinitive, etc.) may be read as "be expected...". "does not expect..." may be read as "be not expected...". Also, "An apparatus A is not expected..." may be read as "An apparatus B other than apparatus A does not expect..." (for example, if apparatus A is a UE, apparatus B may be a base station).
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected" and "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "accessed."
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be considered to be "connected" or "coupled" to one another using one or more wires, cables, printed electrical connections, and the like, as well as using electromagnetic energy having wavelengths in the radio frequency range, microwave range, light (both visible and invisible) range, and the like, as some non-limiting and non-exhaustive examples.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
本開示において、「Aのとき(場合)、B(when A, B)」、「(もし)Aならば、B(if A, (then) B)」、「Aの際にB(B upon A)」、「Aに応じてB(B in response to A)」、「Aに基づいてB(B based on A)」、「Aの間B(B during/while A)」、「Aの前にB(B before A)」、「Aにおいて(Aと同時に)B(B at( the same time as)/on A)」、「Aの後にB(B after A)」、「A以来B(B since A)」、「AまでB(B until A)」などは、互いに読み替えられてもよい。なお、ここでのA、Bなどは、文脈に応じて、名詞、動名詞、通常の文章など適宜適当な表現に置き換えられてもよい。なお、AとBの時間差は、ほぼ0(直後又は直前)であってもよい。また、Aが生じる時間には、時間オフセットが適用されてもよい。例えば、「A」は「Aが生じる時間オフセット前/後」と互いに読み替えられてもよい。当該時間オフセット(例えば、1つ以上のシンボル/スロット)は、予め規定されてもよいし、通知される情報に基づいてUEによって特定されてもよい。 In the present disclosure, "when A, B", "if A, (then) B", "B upon A", "B in response to A", "B based on A", "B during/while A", "B before A", "B at (the same time as)/on A", "B after A", "B since A", "B until A" and the like may be read as interchangeable. Note that A, B, etc. here may be replaced with appropriate expressions such as nouns, gerunds, and normal sentences depending on the context. Note that the time difference between A and B may be almost 0 (immediately after or immediately before). Also, a time offset may be applied to the time when A occurs. For example, "A" may be read interchangeably as "before/after the time offset at which A occurs." The time offset (e.g., one or more symbols/slots) may be predefined or may be identified by the UE based on signaled information.
本開示において、タイミング、時刻、時間、時間インスタンス、任意の時間単位(例えば、スロット、サブスロット、シンボル、サブフレーム)、期間(period)、機会(occasion)、リソースなどは、互いに読み替えられてもよい。 In this disclosure, timing, time, duration, time instance, any time unit (e.g., slot, subslot, symbol, subframe), period, occasion, resource, etc. may be interpreted as interchangeable.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The description of the present disclosure is intended for illustrative purposes only and does not imply any limitation on the invention disclosed herein.
Claims (6)
前記設定に基づいて、複数の下りリンク送信ビームの測定を行い、前記測定の結果を報告を制御する制御部と、を有する端末。 A receiving unit for receiving a setting regarding a selection of a downlink receiving beam for reporting channel state information;
A terminal having a control unit that performs measurements of multiple downlink transmission beams based on the setting and controls reporting of the results of the measurements.
前記設定に基づいて、複数の下りリンク送信ビームの測定を行い、前記測定の結果を報告を制御するステップと、を有する端末の無線通信方法。 receiving a configuration regarding a selection of a downlink receive beam for reporting channel state information;
A wireless communication method for a terminal comprising a step of performing measurements of multiple downlink transmission beams based on the setting and controlling reporting of results of the measurements.
前記設定に基づいて測定される複数の下りリンク送信ビームの測定結果報告の受信を制御する制御部と、を有する基地局。 A transmitter for transmitting a setting regarding a selection of a downlink receiving beam for reporting channel state information;
A base station having a control unit that controls reception of measurement result reports of multiple downlink transmission beams measured based on the setting.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/005846 WO2024171465A1 (en) | 2023-02-17 | 2023-02-17 | Terminal, wireless communication method, and base station |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/005846 WO2024171465A1 (en) | 2023-02-17 | 2023-02-17 | Terminal, wireless communication method, and base station |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024171465A1 true WO2024171465A1 (en) | 2024-08-22 |
Family
ID=92421099
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/005846 Ceased WO2024171465A1 (en) | 2023-02-17 | 2023-02-17 | Terminal, wireless communication method, and base station |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024171465A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018143391A1 (en) * | 2017-02-03 | 2018-08-09 | 株式会社Nttドコモ | User terminal and wireless communication method |
| JP2020504581A (en) * | 2016-12-28 | 2020-02-06 | エルジー エレクトロニクス インコーポレイティド | Method and apparatus for receiving reference signal resources in wireless communication system |
-
2023
- 2023-02-17 WO PCT/JP2023/005846 patent/WO2024171465A1/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2020504581A (en) * | 2016-12-28 | 2020-02-06 | エルジー エレクトロニクス インコーポレイティド | Method and apparatus for receiving reference signal resources in wireless communication system |
| WO2018143391A1 (en) * | 2017-02-03 | 2018-08-09 | 株式会社Nttドコモ | User terminal and wireless communication method |
Non-Patent Citations (1)
| Title |
|---|
| YAN CHENG, HUAWEI, HISILICON: "Discussion on AI/ML for beam management", 3GPP DRAFT; R1-2210888; TYPE DISCUSSION; FS_NR_AIML_AIR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), FR, XP052221451 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2024013851A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024013852A1 (en) | Terminal, radio communication method, and base station | |
| WO2024004219A1 (en) | Terminal, radio communication method, and base station | |
| WO2024004187A1 (en) | Terminal, radio communication method, and base station | |
| WO2024004186A1 (en) | Terminal, radio communication method, and base station | |
| WO2025009172A1 (en) | Terminal, radio communication method, and base station | |
| WO2025013216A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024150434A1 (en) | User equipment, wireless communication method, and base station | |
| WO2024150436A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024004220A1 (en) | Terminal, radio communication method, and base station | |
| WO2024171465A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024201928A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024100725A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025009173A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025041227A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025041228A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025037410A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025037409A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025220560A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025079501A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024201960A1 (en) | Terminal, wireless communication method, and base station | |
| WO2025022581A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024150433A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024075262A1 (en) | Terminal, wireless communication method, and base station | |
| WO2024075263A1 (en) | Terminal, wireless communication method, and base station |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23922799 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |