[go: up one dir, main page]

WO2024261936A1 - Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium - Google Patents

Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium Download PDF

Info

Publication number
WO2024261936A1
WO2024261936A1 PCT/JP2023/023044 JP2023023044W WO2024261936A1 WO 2024261936 A1 WO2024261936 A1 WO 2024261936A1 JP 2023023044 W JP2023023044 W JP 2023023044W WO 2024261936 A1 WO2024261936 A1 WO 2024261936A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease risk
disease
risk
estimation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2023/023044
Other languages
French (fr)
Japanese (ja)
Inventor
史行 二瓶
謙太郎 中原
浩司 梶谷
晨暉 黄
洵 安川
謙一郎 福司
善喬 野崎
康介 西原
ジョン 健志 デイヴィッド クラーク
和也 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to PCT/JP2023/023044 priority Critical patent/WO2024261936A1/en
Publication of WO2024261936A1 publication Critical patent/WO2024261936A1/en
Anticipated expiration legal-status Critical
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present disclosure relates to a disease risk estimation device, a disease risk estimation system, a disease risk estimation method, and a recording medium.
  • Time-series sensor data contains characteristics associated with walking events related to physical conditions. If a subject's disease risk can be estimated based on the characteristics associated with walking events, information based on disease risk can be provided to specialized institutions that handle health insurance and life insurance.
  • Patent Document 1 discloses an insurance proposal system that proposes a wide variety of insurance plans based on details arising from lifestyle habits in daily life.
  • the system of Patent Document 1 includes a pedestrian database in which pedestrian information is accumulated, including gait information for multiple pedestrians and injury/illness history information indicating past injuries and illnesses that is stored in association with the gait information.
  • the system of Patent Document 1 acquires the user's gait information from a footwear module that has a sensor unit that detects movement.
  • the system of Patent Document 1 refers to the pedestrian information and calculates an index value that serves as an indicator for insurance premiums according to the user's gait information.
  • the method of Patent Document 1 refers to pedestrian information stored in a database to calculate an index value corresponding to the user's gait information. According to the method of Patent Document 1, if past injuries and illnesses associated with gait information are stored in the database, an index value corresponding to gait information can be calculated.
  • the method of Patent Document 1 also discloses an example of weighting the walking risk value according to the severity of injuries and illnesses such as sprains and fractures. However, the method of Patent Document 1 was not able to estimate disease risk that reflected the risk for each disease.
  • the objective of the present disclosure is to provide a disease risk estimation device, a disease risk estimation system, a disease risk estimation method, and a recording medium that can estimate disease risk that reflects the risk of each disease using sensor data measured according to foot movement.
  • a disease risk estimation device includes an acquisition unit that acquires sensor data measured according to foot movements of a subject for whom disease risk is to be estimated, a risk estimation unit that uses the acquired sensor data to estimate a disease risk that reflects the risk for each disease, and an output unit that outputs disease risk information according to the estimated disease risk.
  • sensor data measured according to the foot movements of a subject for whom disease risk is to be estimated is acquired, the acquired sensor data is used to estimate disease risk reflecting the risk for each disease, and disease risk information corresponding to the estimated disease risk is output.
  • a program causes a computer to execute the following processes: acquiring sensor data measured according to the foot movements of a subject for whom a disease risk is to be estimated; estimating a disease risk that reflects the risk for each disease using the acquired sensor data; and outputting disease risk information according to the estimated disease risk.
  • a disease risk estimation device a disease risk estimation system, a disease risk estimation method, and a recording medium that can estimate disease risk that reflects the risk of each disease using sensor data measured according to foot movements.
  • FIG. 1 is a block diagram showing an example of the configuration of a disease risk estimation system according to the present disclosure.
  • 1 is a block diagram showing an example of the configuration of a measurement device provided in a disease risk estimation system in the present disclosure.
  • FIG. 1 is a conceptual diagram showing an example of the arrangement of measurement devices in a disease risk estimation system according to the present disclosure.
  • 1 is a conceptual diagram showing an example of a coordinate system set in a measurement device of a disease risk estimation system in the present disclosure.
  • FIG. FIG. 2 is a conceptual diagram showing an example of a human body surface used in the description of the present disclosure.
  • 1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure.
  • FIG. 1 is a conceptual diagram showing an example of a walking cycle used in the description of the present disclosure.
  • 1 is a conceptual diagram showing an example of an estimation of a physical ability score in a disease risk estimation system in the present disclosure.
  • FIG. 1 is a conceptual diagram showing an example of a disease risk score estimation in the disease risk estimation system of the present disclosure.
  • 1 is a conceptual diagram showing an example of a disease risk score estimation in the disease risk estimation system of the present disclosure.
  • 1 is a conceptual diagram showing an example of a disease risk score estimation in the disease risk estimation system of the present disclosure.
  • 1 is a flowchart showing an example of the operation of the disease risk estimation system in the present disclosure.
  • 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a block diagram showing an example of the configuration of a disease risk estimation system according to the present disclosure.
  • 1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure.
  • FIG. 1 is a graph showing an example of time series data of disease risk scores estimated by the disease risk estimation system in the present disclosure.
  • 1 is a graph showing an example of time series data of disease risk scores estimated by the disease risk estimation system in the present disclosure.
  • 1 is a graph showing an example of time series data of disease risk scores estimated by the disease risk estimation system in the present disclosure.
  • 1 is a flowchart showing an example of the operation of the disease risk estimation system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a block diagram showing an example of the configuration of a disease risk estimation system according to the present disclosure.
  • 1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure.
  • FIG. 1 is a flowchart showing an example of the operation of the disease risk estimation system in the present disclosure.
  • 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure.
  • 1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure.
  • FIG. 11 is a flowchart for explaining an example of the operation of a disease risk estimation device provided in a disease risk estimation system in the present disclosure.
  • FIG. 2 is a block diagram showing an example of a hardware configuration for executing control and processing in the present disclosure.
  • the disease risk estimation system of this embodiment estimates the disease risk of a specific disease using sensor data related to foot movements according to the walking of a subject (user) whose disease risk is to be estimated.
  • an example of estimating a disease risk reflecting the risk for each disease will be given.
  • the disease risk estimation system 1 includes a measurement device 10 and a disease risk estimation device 13.
  • the measurement device 10 is installed in the footwear of a subject (user) whose disease risk is to be estimated.
  • the function of the disease risk estimation device 13 is installed in a mobile terminal carried by the subject (user). Below, the configurations of the measurement device 10 and the disease risk estimation device 13 will be described individually.
  • [Measuring equipment] 2 is a block diagram showing an example of the configuration of the measurement device 10.
  • the measurement device 10 has a sensor 110, a control unit 113, a communication unit 115, and a power source 117.
  • the sensor 110 has an acceleration sensor 111 and an angular velocity sensor 112.
  • the sensor 110 may include sensors other than the acceleration sensor 111 and the angular velocity sensor 112. Descriptions of sensors other than the acceleration sensor 111 and the angular velocity sensor 112 that may be included in the sensor 110 will be omitted.
  • the acceleration sensor 111 is a sensor that measures acceleration in three axial directions (also called spatial acceleration).
  • the acceleration sensor 111 measures acceleration (also called spatial acceleration) as a physical quantity related to foot movement.
  • the acceleration sensor 111 outputs the measured acceleration to the control unit 113.
  • the acceleration sensor 111 can be a piezoelectric type, a piezo-resistive type, a capacitance type, or other type of sensor. There are no limitations on the sensor used as the acceleration sensor 111 as long as it can measure acceleration.
  • Angular velocity sensor 112 is a sensor that measures angular velocity (also called spatial angular velocity) around three axes. Angular velocity sensor 112 measures angular velocity (also called spatial angular velocity) as a physical quantity related to foot movement. Angular velocity sensor 112 outputs the measured angular velocity to control unit 113.
  • angular velocity sensor 112 For example, a vibration type, capacitance type, or other type of sensor can be used as angular velocity sensor 112. There are no limitations on the sensor used as angular velocity sensor 112 as long as it can measure angular velocity.
  • the sensor 110 is realized, for example, by an inertial measurement unit that measures acceleration and angular velocity.
  • An example of an inertial measurement unit is an IMU (Inertial Measurement Unit).
  • the IMU includes an acceleration sensor 111 that measures acceleration in three axial directions and an angular velocity sensor 112 that measures angular velocity around three axes.
  • the sensor 110 may be realized by an inertial measurement unit such as a VG (Vertical Gyro) or an AHRS (Attitude Heading Reference System).
  • the sensor 110 may also be realized by a GPS/INS (Global Positioning System/Inertial Navigation System).
  • the sensor 110 may be realized by a device other than an inertial measurement unit as long as it can measure physical quantities related to foot movement.
  • the measurement device 10 is placed at a position that corresponds to the back side of the arch of the foot.
  • the measurement device 10 is placed in an insole inserted into the shoe 100.
  • the measurement device 10 may be placed on the bottom surface of the shoe 100.
  • the measurement device 10 may be embedded in the body of the shoe 100.
  • the measurement device 10 may be detachable from the shoe 100, or may not be detachable from the shoe 100.
  • the measurement device 10 may be placed at a position other than the back side of the arch of the foot, as long as it can measure sensor data related to foot movement.
  • the measurement device 10 may also be placed in socks worn by the user or in an accessory such as an anklet worn by the user.
  • the measurement device 10 may also be attached directly to the foot or embedded in the foot.
  • the measurement device 10 may also be placed in one of the shoes 100, as long as it can measure data that can be used to estimate disease risk.
  • a local coordinate system is set with the measuring device 10 (sensor 110) as the reference, including an x-axis in the left-right direction, a y-axis in the front-back direction, and a z-axis in the up-down direction.
  • FIG. 3 shows an example in which the same coordinate system is set for the left foot and the right foot.
  • the up-down orientation (Z-axis orientation) of the sensors 110 placed in the left and right shoes 100 is the same.
  • the three axes of the local coordinate system set for the sensor data derived from the left foot and the three axes of the local coordinate system set for the sensor data derived from the right foot are the same for the left and right.
  • the x-axis is positive to the left
  • the y-axis is positive backward
  • the z-axis is positive upward.
  • FIG. 4 is a conceptual diagram for explaining the local coordinate system (x-axis, y-axis, z-axis) set in the measuring device 10 (sensor 110) installed on the back side of the arch, and the world coordinate system (x-axis, y-axis, z-axis) set with respect to the ground.
  • FIG. 4 shows an example in which different coordinate systems are set for the left foot and the right foot.
  • the world coordinate system x-axis, y-axis, z-axis
  • the user's lateral direction is set to the x-axis direction
  • the direction of the user's back is set to the y-axis direction
  • the direction of gravity is set to the z-axis direction when the user is standing upright facing the direction of travel.
  • FIG. 4 conceptually shows the relationship between the local coordinate system (x-axis, y-axis, z-axis) and the world coordinate system (x-axis, y-axis, z-axis), and does not accurately show the relationship between the local coordinate system and the world coordinate system, which changes according to the user's walking.
  • FIG. 5 is a conceptual diagram for explaining the planes (also called human body planes) set for the human body.
  • a sagittal plane that divides the body into left and right a coronal plane that divides the body into front and back, and a horizontal plane that divides the body horizontally are defined.
  • FIG. 5 shows an example in which different coordinate systems are set for the left and right feet.
  • the rotation in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll
  • the rotation in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch
  • the rotation in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw.
  • the rotation angle in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll angle
  • the rotation angle in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch angle
  • the rotation angle in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw angle.
  • the control unit 113 causes the acceleration sensor 111 and the angular velocity sensor 112 to measure sensor data.
  • the control unit 113 causes the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to a measurement start signal transmitted from the disease risk estimation device 13.
  • the control unit 113 may cause the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to detection of the user walking.
  • the control unit 113 starts measuring the step width starting from the point in time when it is detected that either the left or right foot has started to move in the forward direction after the vertical heights of both feet have remained the same for a predetermined period of time.
  • the control unit 113 may also be configured to start measuring the step width at a predetermined timing.
  • the control unit 113 acquires the acceleration in three axial directions from the acceleration sensor 111.
  • the control unit 113 also acquires the angular velocity around three axes from the angular velocity sensor 112.
  • the control unit 113 performs analog-to-digital conversion (ADC) of the acquired physical quantities (analog data) such as angular velocity and acceleration.
  • ADC analog-to-digital conversion
  • the physical quantities (analog data) measured by the acceleration sensor 111 and the angular velocity sensor 112 may be converted to digital data in each of the acceleration sensor 111 and the angular velocity sensor 112.
  • an ADC circuit that performs ADC of the physical quantities (analog data) such as angular velocity and acceleration may be provided.
  • the control unit 113 outputs the converted digital data (also called sensor data) to the communication unit 115.
  • the control unit 113 may temporarily store the sensor data in a storage unit (not shown).
  • the sensor data includes at least acceleration data converted into digital data and angular velocity data converted into digital data.
  • the acceleration data includes acceleration vectors in three axial directions.
  • the angular velocity data includes angular velocity vectors about three axes.
  • the acceleration data and angular velocity data are linked to the time at which they were acquired.
  • the control unit 113 may also apply corrections such as corrections for mounting errors, temperature corrections, and linearity corrections to the acceleration data and angular velocity data.
  • control unit 113 may calculate at least one of the gait indices described below. In that case, the measurement device 10 outputs the calculated gait indices to the disease risk estimation device 13. For example, the control unit 113 may calculate a feature amount used to estimate physical ability described below. In that case, the measurement device 10 outputs the calculated feature amount to the disease risk estimation device 13.
  • control unit 113 is realized by a microcomputer or microcontroller that performs overall control of the measuring device 10 and performs data processing.
  • control unit 113 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory etc.
  • the communication unit 115 acquires sensor data from the control unit 113.
  • the communication unit 115 transmits the acquired sensor data to the disease risk estimation device 13.
  • the sensor data transmitted from the communication unit 115 is received by the disease risk estimation device 13.
  • the timing of transmitting the sensor data There are no particular limitations on the timing of transmitting the sensor data.
  • the communication unit 115 transmits the sensor data at a preset transmission timing.
  • the communication unit 115 transmits the sensor data in real time according to the measurement of the sensor data.
  • the communication unit 115 may store sensor data measured over a predetermined period and transmit the stored sensor data all at once at a preset timing.
  • the communication unit 115 (communication means) may be configured to receive a measurement start signal from the disease risk estimation device 13. In this case, the communication unit 115 outputs the received measurement start signal to the control unit 113.
  • the communication unit 115 transmits the sensor data to the disease risk estimation device 13 via wireless communication.
  • the communication unit 115 transmits the sensor data to the disease risk estimation device 13 via a wireless communication function (not shown) that complies with standards such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the communication unit 115 may be in accordance with standards other than Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication unit 115 may transmit the sensor data to the disease risk estimation device 13 via a wired connection such as a cable.
  • the power source 117 is a battery that supplies power for the measurement device 10 to operate.
  • the power source 117 is realized by a thin battery such as a coin type or button type.
  • the power source 117 is realized by a primary battery such as a lithium primary battery, a silver oxide battery, an alkaline button battery, or an air zinc battery.
  • the power source 117 is preferably realized by a long-life battery.
  • the power source 117 may also be realized by a rechargeable secondary battery.
  • the power source 117 may be a battery that can be charged via a wired connection or a battery that can be wirelessly powered.
  • a wireless power supply device may be placed in a place where footwear is placed, such as an entrance or a shoe cupboard. If footwear equipped with the measurement device 10 is placed on the wireless power supply device, the measurement device 10 can be appropriately charged when not in use.
  • [Disease risk estimation device] 6 is a block diagram showing an example of the configuration of the disease risk estimation device 13.
  • the disease risk estimation device 13 has an acquisition unit 131, a waveform processing unit 132, a gait index calculation unit 133, a storage unit 134, a physical ability estimation unit 135, a disease risk estimation unit 136, and an output unit 137.
  • the waveform processing unit 132, the gait index calculation unit 133, the physical ability estimation unit 135, and the disease risk estimation unit 136 constitute the risk estimation unit 15.
  • the waveform processing unit 132 and the gait index calculation unit 133 constitute the calculation unit 130.
  • the physical ability estimation unit 135 and the disease risk estimation unit 136 constitute the estimation unit 140.
  • the acquisition unit 131 acquires sensor data from the measurement device 10.
  • the acquisition unit 131 receives the sensor data from the measurement device 10 via wireless communication.
  • the acquisition unit 131 receives the sensor data from the measurement device 10 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the acquisition unit 131 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 10.
  • the acquisition unit 131 may receive the sensor data from the measurement device 10 via a wired connection such as a cable.
  • the acquisition unit 131 may acquire gait indices and feature amounts calculated by the measurement device 10.
  • the acquisition unit 131 also acquires physical information (attributes) of the user.
  • the physical information includes gender, date of birth, height, and weight.
  • the date of birth is converted to age.
  • the physical information is input via an input device (not shown).
  • the physical information is input via a mobile terminal used by the user.
  • the physical information may be stored in advance in the storage unit 134.
  • the physical information may be updated at any time in response to input by the user.
  • the waveform processing unit 132 acquires sensor data from the acquisition unit 131.
  • the waveform processing unit 132 extracts time series data for one walking cycle from the time series data of acceleration in three axial directions and angular velocity around three axes contained in the sensor data.
  • the time series data for one walking cycle is also called walking waveform data.
  • the waveform processing unit 132 extracts walking waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the waveform processing unit 132 extracts walking waveform data that starts at the timing of a heel strike and ends at the timing of the next heel strike.
  • Figure 7 is a conceptual diagram for explaining a step cycle based on the right foot.
  • the step cycle based on the left foot is the same as that of the right foot.
  • the horizontal axis of Figure 7 shows one walking cycle of the right foot, starting from the point when the heel of the right foot lands on the ground and ending at the point when the heel of the right foot lands on the ground.
  • the horizontal axis of Figure 7 is normalized with the step cycle as 100%. Normalizing one walking cycle to 100% is called the first normalization.
  • One walking cycle of one foot is broadly divided into a stance phase in which at least a part of the sole of the foot is in contact with the ground and a swing phase in which the sole of the foot is off the ground.
  • the stance phase is a period in which at least a part of the sole of the foot is in contact with the ground.
  • the stance phase is further divided into an early stance phase T1, a mid stance phase T2, a final stance phase T3, and an early swing phase T4.
  • the swing phase is a period in which the sole of the foot is off the ground.
  • the swing phase is further divided into early swing T5, mid swing T6, and final swing T7.
  • the horizontal axis in FIG. 7 is normalized so that the stance phase is 60% and the swing phase is 40%. Normalizing the gait waveform data so that the stance phase is 60% and the swing phase is 40% is called second normalization. Note that the periods shown in FIG. 7 are merely examples, and do not limit the periods that make up a step cycle or the names of these periods.
  • P1 represents the event of the heel of the right foot touching the ground (heel strike) (HS: Heel Strike).
  • P2 represents the event of the toe of the left foot lifting off the ground (opposite toe off) while the sole of the right foot is on the ground (OTO: Opposite Toe Off).
  • P3 represents the event of the right heel lifting off the ground (heel rise) while the sole of the right foot is on the ground (HR: Heel Rise).
  • P4 represents the event of the left heel touching the ground (opposite heel strike) (OHS: Opposite Heel Strike).
  • P5 represents the event of the right toe lifting off the ground (toe off) while the sole of the left foot is on the ground (TO: Toe Off).
  • P6 represents an event in which the left and right feet cross (foot crossing) with the sole of the left foot touching the ground (FA: Foot Adjacent).
  • P7 represents an event in which the tibia of the right foot is nearly perpendicular to the ground with the sole of the left foot touching the ground (TV: Tibia Vertical).
  • P8 represents an event in which the heel of the right foot touches the ground (heel strike) (HS: Heel Strike).
  • P8 corresponds to the end of the walking cycle that begins with P1, and corresponds to the starting point of the next walking cycle. Note that the walking events shown in Figure 7 are merely examples, and do not limit the events that occur during walking or the names of those events.
  • the timing of heel strike is the timing of the minimum peak immediately after the maximum peak that appears in the time series data of forward acceleration (Y-direction acceleration).
  • the maximum peak that marks the timing of heel strike corresponds to the maximum peak of the gait waveform data for one step cycle.
  • the section between successive heel strikes corresponds to one step cycle.
  • the timing of toe off is the timing of the rise of the maximum peak that appears after the stance phase period in which no fluctuations appear in the time series data of forward acceleration (Y-direction acceleration).
  • the midpoint between the timing of the minimum roll angle and the timing of the maximum roll angle corresponds to the mid-stance phase.
  • the waveform processing unit 132 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent). The timing of 1%, 10%, etc. included in the 0 to 100% walking cycle is also called a walking phase.
  • the waveform processing unit 132 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%. By second normalizing the walking waveform data, it is possible to reduce the deviation in the walking phase from which feature values are extracted.
  • the waveform processing unit 132 outputs the normalized walking waveform data to the gait index calculation unit 133.
  • the waveform processing unit 132 extracts and normalizes walking waveform data for one step cycle using the forward acceleration (Y-direction acceleration). For accelerations/angular velocities other than the forward acceleration (Y-direction acceleration), the waveform processing unit 132 extracts and normalizes walking waveform data for one step cycle in accordance with the walking cycle of the forward acceleration (Y-direction acceleration).
  • the waveform processing unit 132 may also generate time series data of angles around three axes by integrating time series data of angular velocities around three axes. In that case, the waveform processing unit 132 extracts and normalizes walking waveform data for one step cycle in accordance with the walking cycle of the forward acceleration (Y-direction acceleration) for angles around three axes as well.
  • the waveform processing unit 132 may extract/normalize the walking waveform data for one step cycle using acceleration/angular velocity other than the forward acceleration (Y-direction acceleration). For example, the waveform processing unit 132 may detect heel strike and toe lift from the time series data of vertical acceleration (Z-direction acceleration) (not shown in the drawing).
  • the timing of heel strike is the timing of a steep minimum peak that appears in the time series data of vertical acceleration (Z-direction acceleration). At the timing of the steep minimum peak, the value of the vertical acceleration (Z-direction acceleration) becomes almost 0.
  • the minimum peak that marks the timing of heel strike corresponds to the minimum peak of the walking waveform data for one step cycle.
  • the section between successive heel strikes is the one step cycle.
  • the timing of toe lift is the timing of an inflection point in the middle of the time series data of vertical acceleration (Z-direction acceleration) gradually increasing after a section of small fluctuation following the maximum peak immediately after heel strike.
  • the waveform processing unit 132 may also extract/normalize the walking waveform data for one step cycle using both the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration).
  • the waveform processing unit 132 may also extract/normalize the walking waveform data for one step cycle using acceleration, angular velocity, angle, etc. other than the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration).
  • the waveform processing unit 132 extracts features (physical ability features) used to estimate physical abilities from the walking waveform data.
  • the waveform processing unit 132 extracts physical ability features used to estimate at least one physical ability.
  • the waveform processing unit 132 extracts physical ability features used to estimate at least one of physical abilities such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the waveform processing unit 132 extracts physical ability features for each walking phase cluster according to preset conditions.
  • a walking phase cluster is a cluster that integrates walking phases that are consecutive in time.
  • a walking phase cluster includes at least one walking phase.
  • a walking phase cluster also includes a single walking phase.
  • the waveform processing unit 132 outputs the extracted physical ability features to the physical ability estimation unit 135.
  • the gait index calculation unit 133 acquires normalized gait waveform data from the waveform processing unit 132.
  • the gait index calculation unit 133 uses the normalized gait waveform data to calculate gait indices used to estimate physical ability. There are no particular limitations on the gait indices to be calculated, so long as they can be calculated using normalized gait waveform data.
  • the gait index calculation unit 133 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc. Representative gait indices are listed below. Specific calculation methods for the following gait indices will be omitted.
  • the gait index calculation unit 133 calculates indices related to distance and height as gait indices. For example, the gait index calculation unit 133 calculates stride length, turning distance, foot lift height, FTC (Foot Clearance), and MTC (Minimum Toe Clearance). Stride length indicates the distance between the front foot and the rear foot while walking. Turning distance indicates the maximum distance that the foot is moved outward in the direction of travel during the swing phase. Foot lift height indicates the maximum distance between the measuring device 10 (sensor 110) and the ground during the swing phase. FTC indicates the maximum distance between the heel and the ground during the swing phase. MTC indicates the minimum distance between the toe and the ground during the swing phase.
  • stride length indicates the distance between the front foot and the rear foot while walking.
  • Turning distance indicates the maximum distance that the foot is moved outward in the direction of travel during the swing phase.
  • Foot lift height indicates the maximum distance between the measuring device 10 (sensor 110) and the ground during the swing phase.
  • FTC indicates the maximum distance between the heel and
  • the gait index calculation unit 133 calculates indexes related to angles as gait indices. For example, the gait index calculation unit 133 calculates the contact angle, the take-off angle, the toe direction, the heel contact roll angle, the toe off roll angle, the swing leg peak angular velocity, and the big toe angle.
  • the contact angle indicates the maximum angle between the sole of the foot and the ground at heel contact.
  • the take-off angle indicates the angle between the sole of the foot and the ground during the swing phase.
  • the toe direction indicates the average value of the direction of the toe relative to the direction of travel during the swing phase.
  • the heel contact roll angle is the angle between the ankle and the ground at heel contact as viewed from a rear perspective.
  • the toe off roll angle is the angle between the ankle and the ground at push-off as viewed from a rear perspective.
  • the swing leg peak angular velocity is the angular velocity in the ankle dorsiflexion direction in the section from immediately after push-off until the toe comes closest to the ground.
  • the hallux angle indicates the angle at which the big toe is tilted toward the index toe. Specifically, the hallux angle is the angle between the center line of the first metatarsal bone and the center line of the first proximal phalanx.
  • the gait index calculation unit 133 calculates an index related to speed as a gait index. For example, the gait index calculation unit 133 calculates walking speed, cadence, and maximum swing speed. Walking speed indicates the walking speed. Cadence indicates the number of steps per minute. Maximum swing speed indicates the speed at which the leg is swung out during the swing phase.
  • the gait index calculation unit 133 calculates time-related indices as gait indices. For example, the gait index calculation unit 133 calculates stance time, load time, sole contact time, push-off time, swing time, and DST (Double Support Time). Stance time indicates the time that the foot is on the ground while walking. Stance time is the sum of load time, sole contact time, and push-off time. Load time is the time from when the heel touches the ground until the toe touches the ground during the stance phase. Sole contact time is the time during the stance phase when the entire sole of the foot is on the ground and the sole of the foot is horizontal to the ground.
  • Stance time indicates the time that the foot is on the ground while walking. Stance time is the sum of load time, sole contact time, and push-off time.
  • Load time is the time from when the heel touches the ground until the toe touches the ground during the stance phase. Sole contact time is the time during the stance phase when the entire sole of the foot is on the ground and
  • Push-off time is the time from when the sole of the foot is on the ground until the toe pushes off the ground during the stance phase.
  • Swing time indicates the time that the foot is off the ground while walking.
  • DST is divided into DST1 and DST2.
  • DST1 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is in front of the other foot during a period when both feet are on the ground at the same time.
  • DST2 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is behind the other foot during a period when both feet are on the ground at the same time.
  • the gait index calculation unit 133 calculates a frailty level and a center of pressure exclusion index (CPEI) as the gait index.
  • the frailty level is an estimated value of a frailty state according to a walking state.
  • the gait index calculation unit 133 estimates an index such as a judgment result R1 indicating health, a judgment result R2 indicating a possibility of frailty, and a judgment result R3 indicating a high possibility of frailty as the frailty level.
  • the CPEI indicates an estimated value of a swelling rate of the movement of the center of foot pressure applied to the ground during the stance phase.
  • the memory unit 134 stores a physical ability estimation model (described later) that estimates physical ability using physical ability features extracted from the walking waveform data.
  • the physical ability is at least one of grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the physical ability may include other than grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the memory unit 134 stores physical ability estimation models trained for multiple subjects. For example, the physical ability estimation model outputs an index of physical ability (physical ability score) in response to input of physical ability features extracted from the walking waveform data.
  • the memory unit 134 also stores a disease risk estimation model (described later) that estimates disease risk using physical information, gait index, and physical ability score.
  • the disease risk indicates the risk of contracting a specific disease.
  • specific diseases include gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • specific diseases include lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome. Specific diseases may include diseases other than those mentioned above.
  • the memory unit 134 stores a disease risk estimation model trained on multiple subjects. For example, the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of physical information, gait index, and physical ability score.
  • the physical ability estimation model and disease risk estimation model may be stored in the memory unit 134 when the product is shipped from the factory.
  • the physical ability estimation model and disease risk estimation model may also be stored in the memory unit 134 at a timing such as at the time of calibration before the disease risk estimation device 13 is used by a user.
  • a physical ability estimation model and disease risk estimation model stored in a storage device such as an external server may be used. In that case, it is sufficient if the physical ability estimation model and disease risk estimation model can be accessed via an interface (not shown) connected to the storage device.
  • the storage unit 134 also stores the user's physical information (attributes).
  • the physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. The physical information may be updated at any time.
  • the physical ability estimation unit 135 acquires the physical ability feature extracted from the walking waveform data from the waveform processing unit 132.
  • the physical ability estimation unit 135 also acquires physical information (attributes) stored in the memory unit 134.
  • the physical ability estimation unit 135 estimates a physical ability score using the physical ability feature and the physical information (attributes).
  • the physical ability estimation unit 135 inputs the physical ability feature and the user's physical information (attributes) to a physical ability estimation model stored in the memory unit 134.
  • the physical ability estimation unit 135 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. The estimation of the physical ability score by the physical ability estimation unit 135 will be described later.
  • the physical ability estimation unit 135 outputs the physical ability score output from the physical ability estimation model to the disease risk estimation unit 136.
  • the physical ability estimation unit 135 may estimate the physical information (attributes) using the gait index calculated by the gait index calculation unit 133.
  • the physical ability estimation unit 135 estimates the physical information (attributes) using a gait index that has a correlation with the physical information (attributes). For example, when muscle strength decreases due to aging, a decrease is observed in walking speed and cadence. Therefore, if walking speed and cadence are used, it is possible to estimate the age, even if the exact age cannot be estimated. For example, there is a correlation between height and stride length. Therefore, if stride length is used, it is possible to estimate the age, even if the exact age cannot be estimated.
  • the physical ability estimation unit 135 may compare the input value of the physical information (attributes) with the estimated value.
  • a notification or warning may be sent to the user's terminal device, etc., to prompt the user to check the input value of the physical information (attributes).
  • the estimated values of the physical information are stored in the memory unit 134.
  • the physical information (attributes) may be estimated by any one of the waveform processing unit 132, the gait index calculation unit 133, the physical ability estimation unit 135, and the disease risk estimation unit 136 constituting the risk estimation unit 15.
  • a component that estimates the physical information (attributes) may be added to the disease risk estimation device 13.
  • the acquisition unit 131 may acquire the estimated values of the physical information (attributes) estimated by an external estimation device (not shown).
  • the physical ability estimation unit 135 Next, an example of the estimation of the physical ability score by the physical ability estimation unit 135 will be described.
  • an example of the feature values used to estimate grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance will be described. Note that the examples given below do not limit the physical abilities estimated by the physical ability estimation unit 135.
  • the physical abilities estimated by the physical ability estimation unit 135 may be appropriately selected depending on the disease for which the disease risk is to be estimated.
  • ⁇ Grip strength (total muscle strength of the whole body)> There is a correlation between grip strength, which is one of the physical abilities, and the total muscle strength of the whole body. Grip strength is also correlated with knee extension strength. For example, an estimated value of grip strength is an index of total muscle strength. For example, a score according to an estimated value of grip strength (also called a total muscle strength score) is an index of total muscle strength. The total muscle strength score is a value obtained by scoring grip strength, which is an index of total muscle strength, according to a preset criterion. Grip strength is affected by attributes such as gender, age, and height. Therefore, the total muscle strength score may be scored according to a criterion for each attribute. In particular, grip strength is affected by gender. Therefore, the total muscle strength score may be scored according to different criteria depending on gender. Note that the index of total muscle strength is not limited to grip strength as long as the total muscle strength can be scored.
  • the walking phase from which the features used to estimate grip strength are extracted differs depending on gender. For men, there is a correlation between quadriceps activity and grip strength. Therefore, to estimate men's grip strength, features extracted from walking phases in which the characteristics of quadriceps activity are apparent are used. For women, there is a correlation between grip strength and activity of the vastus lateralis, vastus intermedius, and vastus medialis muscles of the quadriceps. Therefore, to estimate women's grip strength, features extracted from walking phases in which the characteristics of vastus lateralis, vastus intermedius, and vastus medialis muscles are apparent are used.
  • Feature AM1 is extracted from the 3% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction).
  • the 3% walking phase is included in the initial stance phase T1.
  • Feature AM1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis, which are among the quadriceps muscles.
  • Feature AM2 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction).
  • the 59-62% walking phase is included in the early swing phase T4.
  • Feature AM2 mainly includes features related to the movement of the rectus femoris, which is among the quadriceps muscles.
  • Feature AM3 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). 59-62% of the walking phase is included in the early swing phase T4.
  • Feature AM3 mainly includes features related to the movement of the rectus femoris, which is one of the quadriceps muscles.
  • Feature AM4 is the proportion of the period from heel-contact to toe-off of the opposite foot during the period when both feet are simultaneously on the ground (DST1).
  • DST1 is the proportion of the period from heel-contact to toe-off of the opposite foot during one stride cycle.
  • Feature AM4 mainly includes features attributable to the quadriceps muscles.
  • Feature AF1, feature AF2, and feature AF3 are used to estimate the grip strength of women.
  • Feature AF1 is extracted from a 13% section of the walking phase of the walking waveform data related to the time series data of lateral acceleration (X-direction acceleration). The 13% walking phase is included in the mid-stance phase T2.
  • Feature AF1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis of the quadriceps.
  • Feature AF2 is extracted from a 7-10% section of the walking phase of the walking waveform data related to the time series data of the angular velocity (pitch angular velocity) in the coronal plane (around the Y-axis). The 7-10% walking phase is included in the early stance phase T1.
  • Feature AF2 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis.
  • Feature AF3 is the proportion of the period from heel contact to toe-off of the opposite foot to the period during which both feet are simultaneously on the ground (DST2).
  • DST2 is the ratio of the period from heel contact to toe-off of the opposite foot in a gait cycle.
  • the sum of DST1 and DST2 corresponds to the period during which both feet are simultaneously in contact with the ground in a gait cycle.
  • Feature AF3 mainly includes features related to the movements of the vastus lateralis, vastus intermedius, and vastus medialis.
  • Dynamic balance which is one of the physical abilities, can be evaluated by the results of a Functional Reach Test (FRT).
  • FRT Functional Reach Test
  • the results of the FRT are evaluated by the distance between the fingertips (also called the functional reach distance) when the upper limbs are moved forward as far as possible from a standing position with both hands raised at 90 degrees relative to the horizontal plane.
  • the functional reach distance (hereinafter, called the FR distance) is the FRT performance value. The larger the FR distance, the higher the FRT performance.
  • the dynamic balance may be evaluated by something other than the FRT performed with both hands. For example, the dynamic balance may be evaluated by the performance of the FRT performed with one hand or other variations of the FRT.
  • the index of dynamic balance is the FR distance.
  • an estimated value of the FR distance is the index of dynamic balance.
  • a score according to the estimated value of the FR distance (also called the dynamic balance score) is the index of dynamic balance.
  • the dynamic balance score is a value obtained by scoring the FR distance, which is an index of dynamic balance, using a preset criterion. Dynamic balance is affected by attributes such as height. Therefore, the dynamic balance score may be scored using a criterion for each attribute. Note that the index of dynamic balance is not limited to the FR distance as long as dynamic balance can be scored.
  • the FR distance is correlated with the activity of the gluteus maxims, iliac muscle, hamstrings (long head of biceps femoris), tibialis anterior muscle, etc., and the magnitude of the compensatory movement of turning the toes outward. Therefore, the feature quantity extracted from the walking phase in which these features appear is used to estimate the FR distance.
  • Feature B1 is extracted from the 75-79% walking phase of the gait waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 75-79% walking phase is included in the mid-swing phase T6.
  • Feature B1 mainly includes features related to the movement of the tibialis anterior and the short head of the biceps femoris.
  • Feature B2 is extracted from the 62% walking phase of the gait waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). The 62% walking phase is included in the early swing phase T5.
  • Feature B2 mainly includes features related to the movement of the iliacus.
  • Feature B3 is extracted from the 7-8% walking phase of the gait waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis). The 7-8% walking phase is included in the early stance phase T1.
  • the feature B3 mainly includes features related to the movement of the gluteus maxims.
  • the feature B4 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis). The walking phase 57-58% is included in the early swing phase T4.
  • the feature B4 mainly includes features related to the compensatory movement.
  • the compensatory movement is a movement to change the foot angle to obtain stability in order to compensate for the deterioration of balance ability and muscle function that occurs with aging.
  • the feature B5 is the average value of the foot angle in the horizontal plane during the swing phase.
  • the feature B5 is the average value in the swing phase of the walking waveform data.
  • the feature B5 is the integral value of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the feature B5 mainly includes features related to the compensatory movement.
  • Lower limb muscle strength which is one of the physical abilities, can be evaluated by the results of a chair stand test.
  • the results of the 5-times chair stand test in which the person stands up and sits down on a chair five times, are evaluated.
  • the 5-times chair stand test is also called the SS-5 (Sit to Stand-5) test.
  • the results of the 5-times chair stand test are evaluated based on the time it takes to stand up and sit down on a chair five times (also called the sit-to-stand time).
  • the sit-to-stand time is the score value of the SS-5 test. The shorter the sit-to-stand time, the higher the score of the SS-5 test.
  • the results may also be evaluated based on the results of a 30-second chair stand (CS-30) test, which measures the number of times the person stands up and sits down on a chair in 30 seconds.
  • CS-30 30-second chair stand
  • the index of lower limb muscle strength is the sit-stand time.
  • an estimate of the sit-stand time five times is an index of lower limb muscle strength.
  • a score according to the estimate of the sit-stand time (also called the lower limb muscle strength score) is an index of lower limb muscle strength.
  • the lower limb muscle strength score is a value obtained by scoring the sit-stand time, which is an index of lower limb muscle strength, using a preset criterion.
  • Lower limb muscle strength is affected by attributes such as age. Therefore, the lower limb muscle strength score may be scored using a criterion for each attribute.
  • the index of lower limb muscle strength is not limited to the sit-stand time, as long as the lower limb muscle strength can be scored.
  • the sit-stand time is correlated with the quadriceps, hamstrings, tibialis anterior, and gastrocnemius. Therefore, feature values extracted from the walking phase in which these features appear are used to estimate the sit-stand time.
  • the estimation of lower limb muscle strength includes feature C1, feature C2, feature C3, and feature C4.
  • Feature C1 is extracted from the section of walking phase 42-54% of the walking waveform data related to the time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 42-54% is the section from the end of stance phase T3 to the early swing phase T4.
  • Feature C1 mainly includes features related to the movement of the gastrocnemius.
  • Feature C2 is extracted from the section of walking phase 99-100% of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). Walking phase 99-100% is the end of the end of swing phase T7.
  • Feature C2 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior.
  • Feature C3 is extracted from the 10% to 12% walking phase section of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). The 10% to 12% walking phase is the beginning of mid-stance phase T2.
  • Feature C3 mainly includes features related to the movement of the quadriceps, hamstrings, and gastrocnemius.
  • Feature C4 is extracted from the 99% walking phase section of the walking waveform data related to the time series data of angles (posture angles) in the horizontal plane (around the Z-axis). The 99% walking phase is the end of end-swing phase T7.
  • Feature C4 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior.
  • Mobility which is one of the physical abilities, can be evaluated by the results of a TUG (Time Up and Go) test.
  • TUG Time Up and Go
  • the results of the TUG test are evaluated based on the time it takes to stand up from a chair, walk to a landmark 3 meters away, change direction, and sit back down on the chair (also called the TUG time).
  • the TUG time is the score value of the TUG test. The shorter the TUG time, the higher the score of the TUG test.
  • Mobility may be evaluated by the score of a test related to mobility other than the TUG test.
  • the index of mobility is the time required for TUG.
  • an estimate of the time required for TUG is an index of mobility.
  • a score according to the estimate of the time required for TUG (also called a mobility score) is an index of mobility.
  • the mobility score is a value obtained by scoring the time required for TUG, which is an index of mobility, using a preset criterion. Mobility is affected by attributes such as age. Therefore, the mobility score may be scored using a criterion for each attribute. Note that the index of mobility is not limited to the time required for TUG, as long as mobility can be scored.
  • the time required for TUG is correlated with the quadriceps, gluteus minims, and tibialis anterior. Therefore, feature quantities extracted from the walking phase in which these features appear are used to estimate the time required for TUG.
  • Feature amount D1, feature amount D2, feature amount D3, feature amount D4, feature amount D5, and feature amount D6 are used to estimate mobility.
  • Feature amount D1 is extracted from the section of walking phase 64-65% of walking waveform data related to time series data of lateral acceleration (X-direction acceleration). Walking phase 64-65% is included in early swing phase T5.
  • Feature amount D1 mainly includes features related to the movement of the quadriceps in the standing and sitting movements.
  • Feature amount D2 is extracted from the section of walking phase 57-58% of walking waveform data related to time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 57-58% is included in early swing phase T4.
  • Feature amount D2 mainly includes features related to the movement of the quadriceps related to the kicking speed of the foot.
  • the feature amount D3 is extracted from a section of the walking phase 19-20% of the walking waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis).
  • the walking phase 19-20% is included in the mid-stance phase T2.
  • the feature amount D3 mainly includes features related to the movement of the gluteus maxims muscle in the change of direction.
  • the feature amount D4 is extracted from a section of the walking phase 12-13% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 12-13% is the beginning of the mid-stance phase T2.
  • the feature amount D4 mainly includes features related to the movement of the gluteus maxims muscle in the change of direction.
  • the feature amount D5 is extracted from a section of the walking phase 74-75% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 74-75% is the beginning of the mid-swing phase T6.
  • Feature D5 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction.
  • Feature D6 is extracted from the section of the walking phase 76-80% of the walking waveform data related to the time series data of the angle (posture angle) in the coronal plane (around the Y axis).
  • the walking phase 76-80% is included in the mid-swing phase T6.
  • Feature D6 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction.
  • Static balance which is one of the physical abilities, can be evaluated by the performance of a one-leg standing test.
  • the performance of the one-leg standing test is evaluated based on the time (also called one-leg standing time) during which the eyes are closed and one leg is raised 5 cm (centimeters) from the ground.
  • the one-leg standing time is a performance value of static balance. The longer the one-leg standing time, the higher the performance of static balance.
  • Static balance may be evaluated by a performance other than the one-leg standing test with eyes closed. For example, static balance may be evaluated by a one-leg standing test with eyes open (one-leg standing test with eyes open) or other variations of the one-leg standing test.
  • the static balance index is the single leg standing time.
  • an estimate of the single leg standing time is an index of static balance.
  • a score according to the estimate of the single leg standing time (also called the static balance score) is an index of static balance.
  • the static balance score is a value obtained by scoring the single leg standing time, which is an index of static balance, using a preset criterion. Static balance is affected by attributes such as age and height. Therefore, the static balance score may be scored using a criterion for each attribute.
  • the static balance index is not limited to the single leg standing time as long as the static balance can be scored.
  • the single leg standing time is correlated with the gluteus maxims, adductor longus, sartorius, and abductor and adductor muscles. Therefore, the feature values extracted from the walking phase in which these features appear are used to estimate the single leg standing time.
  • Feature E1 is extracted from the 13-19% gait phase section of the gait waveform data related to the time series data of lateral acceleration (X-direction acceleration).
  • the 13-19% gait phase is included in the mid-stance phase T2.
  • Feature E1 mainly includes features related to the movement of the gluteus medius.
  • Feature E2 is extracted from the 95% gait phase section of the gait waveform data related to the time series data of vertical acceleration (Z-direction acceleration).
  • the 95% gait phase is the end of the end-swing phase T7.
  • Feature E2 mainly includes features related to the movement of the gluteus minims.
  • Feature E3 is extracted from the 64-65% gait phase section of the gait waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis).
  • the walking phase 64-65% is included in the early swing phase T5.
  • the feature amount E3 mainly includes features related to the movement of the adductor longus and sartorius.
  • the feature amount E4 is extracted from the section of the walking phase 11-16% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 11-16% is included in the mid-stance phase T2.
  • the feature amount E4 mainly includes features related to the movement of the gluteus minims.
  • the feature amount E5 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 57-58% is included in the early swing phase T4.
  • the feature amount E5 mainly includes features related to the movement of the adductor longus and sartorius.
  • the feature amount E6 is extracted from the section of the walking phase 100% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis).
  • the 100% walking phase corresponds to the timing of heel contact when switching from the final swing phase T7 to the initial stance phase T1.
  • the feature value of the gait waveform data in the 100% walking phase corresponds to the foot angle when the sole of the foot is in contact with the ground.
  • Feature value E6 mainly includes features related to the movement of the gluteus medius.
  • Feature value E7 is the distance between the axis of motion and the foot (circumflex over).
  • Feature value E7 is the amount of circumflex over normalized by the subject's height.
  • Feature value E7 mainly includes features related to the movement of the abductor and adductor muscles.
  • FIG. 8 is a conceptual diagram showing an example of a physical ability estimation model 150 that estimates physical ability.
  • the feature values extracted from the walking waveform data are input to the physical ability estimation model 150 that estimates physical ability.
  • the user's physical information (attributes) is input.
  • the physical information (attributes) input to the physical ability estimation model 150 is omitted.
  • the physical ability estimation model 150 outputs a physical ability score related to the physical ability. In the example of FIG.
  • the physical ability estimation model 150 includes a grip strength estimation model 151, a dynamic balance estimation model 152, a lower limb muscle strength estimation model 153, a mobility estimation model 154, and a static balance estimation model 155.
  • Each of the grip strength estimation model 151, the dynamic balance estimation model 152, the lower limb muscle strength estimation model 153, the mobility estimation model 154, and the static balance estimation model 155 outputs a score for each estimation target of the model.
  • the physical ability estimation model 150 may be configured by a single model, not by a model for each physical ability.
  • the physical ability estimation model 150 may be a physical ability value such as grip strength, FR distance, standing and sitting time, TUG time, and one-legged standing time, instead of a physical ability score.
  • the grip strength estimation model 151 outputs a grip strength score S1 related to grip strength (total muscle strength of the whole body) in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the grip strength estimation model 151 may be a different model for men and women. There are no limitations on the estimation result of the grip strength estimation model 151 as long as an estimation result related to a grip strength index is output in response to the input of a physical ability feature amount for estimating total muscle strength.
  • the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the grip strength estimation model 151 may be a model that estimates grip strength using attribute data such as age and height in addition to the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the dynamic balance estimation model 152 outputs a dynamic balance score S2 related to dynamic balance in response to the input of the features B1 to B5.
  • a dynamic balance score S2 related to dynamic balance in response to the input of the features B1 to B5.
  • the dynamic balance estimation model 152 may be a model that outputs the FR distance in response to the input of the features B1 to B5.
  • the dynamic balance estimation model 152 may be a model that estimates dynamic balance using attribute data such as height in addition to the features B1 to B5.
  • the lower limb muscle strength estimation model 153 outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4.
  • the lower limb muscle strength estimation model 153 may be a model that outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4.
  • the lower limb muscle strength estimation model 153 may be a model that estimates dynamic balance using attribute data such as age in addition to the features C1 to C4.
  • the mobility estimation model 154 outputs a mobility score S4 related to mobility in response to the input of the features D1 to D6.
  • a mobility score S4 related to mobility in response to the input of the features D1 to D6.
  • the mobility estimation model 154 may be a model that outputs the TUG required time in response to the input of the features D1 to D6.
  • the mobility estimation model 154 may be a model that estimates mobility using attribute data such as age in addition to the features D1 to D6.
  • the static balance estimation model 155 outputs a static balance score S5 related to static balance in response to the input of the features E1 to E7.
  • a static balance score S5 related to static balance in response to the input of the features E1 to E7.
  • the static balance estimation model 155 may be a model that outputs one-leg standing time in response to the input of the features E1 to E7.
  • the static balance estimation model 155 may be a model that estimates static balance using attribute data such as age and height in addition to the features E1 to E7.
  • the physical ability estimation model 150 may be stored in an external storage device constructed in a cloud or a server. In this case, the physical ability estimation unit 135 uses the physical ability estimation model 150 via an interface (not shown) connected to the storage device.
  • the physical ability estimation model 150 is a machine learning model.
  • the physical ability estimation model 150 is a model trained on a data set using as teacher data a data set in which physical information (attributes) and gait indices related to multiple subjects are explanatory variables and a score related to physical ability is an objective variable.
  • the physical ability estimation model 150 may be a model trained on a data set using as teacher data a data set in which physical information (attributes) and gait waveform data related to multiple subjects are explanatory variables and a score related to physical ability is an objective variable.
  • the physical ability estimation model 150 may be a model trained on teacher data in which gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angle (posture angle) around three axes are included in explanatory variables.
  • the physical ability estimation model 150 may be generated by learning using a linear regression algorithm.
  • the physical ability estimation model 150 may be generated by learning using a support vector machine (SVM) algorithm.
  • the physical ability estimation model 150 may be generated by learning using a Gaussian process regression (GPR) algorithm.
  • the physical ability estimation model 150 may be generated by learning using a random forest (RF) algorithm.
  • the physical ability estimation model 150 may be generated by unsupervised learning that classifies the subject from which the physical ability feature was generated according to the input of the physical ability feature. There are no particular limitations on the algorithm used to train the physical ability estimation model 150.
  • the disease risk estimation unit 136 acquires the estimation result of the physical ability (physical ability score) estimated by the physical ability estimation unit 135. In addition, the disease risk estimation unit 136 acquires the gait index from the gait index calculation unit 133. In addition, the disease risk estimation unit 136 acquires the user's physical information (attributes) from the storage unit 134. The disease risk estimation unit 136 estimates a disease risk reflecting the risk for each disease using the physical ability score, the gait index, and the physical information (attributes). For example, the disease risk estimation unit 136 may be configured to estimate a disease risk reflecting the risk for each disease using at least the gait index. For example, the disease risk estimation unit 136 generates disease risk information including advice corresponding to the disease risk generated by applying it to a preset document format. For example, the disease risk information may be generated using a large-scale language model.
  • the disease risk estimation unit 136 inputs physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease to the disease risk estimation model 160.
  • the disease risk estimation model 160 receives the physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease.
  • the disease risk estimation model 160 outputs a disease risk score for a specific disease.
  • a disease risk score is estimated for each of a plurality of diseases.
  • the disease risk estimation model 160 may be configured with a model for each disease, or may be configured with a single model. As the amount of data used for estimation increases, the accuracy of the disease risk score estimation by the disease risk estimation model 160 improves.
  • the disease risk estimation model 160 outputs a disease risk score for a specific disease such as a lifestyle-related disease.
  • the disease risk estimation model 160 outputs a disease risk score for a specific disease such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • the disease risk estimation model 160 includes lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.
  • the disease risk estimation model 160 may be configured to output a disease risk score for a disease other than those mentioned above.
  • the disease risk estimation model 160 may be configured to estimate a disease risk score including test item data from a health checkup.
  • the disease risk estimation model 160 may be stored in an external storage device constructed in a cloud or a server. In this case, the disease risk estimation unit 136 uses the disease risk estimation model 160 via an interface (not shown) connected to the storage device.
  • the disease risk estimation model 160 is a machine learning model.
  • the disease risk estimation model 160 is a model trained using a data set that uses physical information (attributes), gait indices, and physical abilities of multiple subjects as explanatory variables and a disease risk score for a specific disease as a target variable as training data.
  • the disease risk estimation model 160 may be a model trained using training data in which gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angles around three axes (posture angles) are included as explanatory variables.
  • the disease risk estimation model 160 is generated by learning using a linear regression algorithm.
  • the disease risk estimation model 160 is generated by learning using a support vector machine (SVM) algorithm.
  • the disease risk estimation model 160 is generated by learning using a Gaussian process regression (GPR) algorithm.
  • the disease risk estimation model 160 is generated by learning using a random forest (RF) algorithm.
  • the disease risk estimation model 160 may be generated by unsupervised learning that classifies the subject from which the feature data was generated according to the feature data. There are no particular limitations on the algorithm used to train the disease risk estimation model 160.
  • the disease risk estimation model 160 may be a machine learning model such as an incomplete heterogeneous variational autoencoder or a random forest. If an incomplete heterogeneous variational autoencoder is used, the disease risk of the subject (user) can be estimated even if there is some loss in features such as physical information (attributes), gait indicators, and physical information.
  • the disease risk estimation unit 136 calculates a disease risk score reflecting the risk of each disease by multiplying the disease risk score output from the disease risk estimation model 160 by the weight for each disease.
  • the weight for each disease is a value reflecting the risk of the disease.
  • the weight for each disease is set to a value according to the rank indicating the risk of the disease.
  • the weight for a disease with a high rank is set to a large value compared to the weight for a disease with a low rank.
  • weights a, b, ..., and z are set for each of disease A, disease B, ..., and disease Z.
  • weight a is set to a larger value than weight b.
  • the disease risk score for disease A is a x R A
  • the disease risk score for disease B is b x R B
  • the disease risk score for disease Z is z x R Z.
  • the disease risk estimation model 160 may be configured to output a disease risk score reflecting the risk of each disease according to input of physical information, gait index, and physical ability score.
  • the weight for each disease is set according to the indicators for when one contracts the disease.
  • the weight for each disease is set according to indicators such as the mortality rate, life expectancy, and medical costs when one contracts the disease.
  • the higher the mortality rate the higher the weight is set.
  • the shorter the life expectancy the higher the weight is set.
  • the higher the medical costs the higher the weight is set.
  • the indicators for when one contracts the disease are not limited to those given here, and can be any value that corresponds to the risk of the disease.
  • FIG. 10 is a conceptual diagram showing an example of disease risk estimation by the disease risk estimation unit 136.
  • the disease risk estimation unit 136 calculates a disease risk score according to the danger of the combination of diseases. For example, the combination of diabetes and heart disease is high risk. Therefore, the disease risk score for such combinations will be a large value.
  • the disease risk estimation unit 136 inputs the physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease to the disease risk estimation model 160. For example, the disease risk estimation unit 136 multiplies the disease risk score output from the disease risk estimation model 160 by a weight for each disease combination to calculate a disease risk score reflecting the risk for each disease combination.
  • the weight for each disease combination is a value reflecting the risk according to the disease combination.
  • the weight for each disease combination is set to a value according to the rank indicating the risk of the disease combination to be estimated.
  • the weight for a disease combination with a high rank is set to a large value compared to the weight for a disease combination with a low rank.
  • the disease risk estimation unit 136 calculates the product of the disease risk scores reflecting the risk of each combined disease as the disease risk score for each disease combination.
  • the disease risk estimation unit 136 may calculate a disease risk score for a combination of three or more diseases. 10, the disease risk score for the combination of disease A and disease B is RAB , and the disease risk score for the combination of disease B and disease C is RBC . Moreover, the disease risk score for the combination of disease Y and disease Z is RYZ .
  • the disease risk estimation model 160 may be configured to output a disease risk score reflecting the risk for each combination of diseases in response to input of physical information, gait index, and physical ability score.
  • the weighting for each combination of diseases is set according to the indicators when one contracts those diseases.
  • the weighting for each combination of diseases is set according to indicators such as mortality rate, life expectancy, and medical costs when one contracts those diseases.
  • the higher the mortality rate the higher the weighting for each combination of diseases is set.
  • the shorter the life expectancy the higher the weighting for each combination of diseases is set.
  • the higher the medical costs the higher the weighting for each combination of diseases is set.
  • the indicators when one contracts two or more diseases at the same time are not limited to those given here, and may be values according to the risk of the diseases.
  • the disease risk estimation model may be a model that outputs the average number of receipts issued per year in response to inputs of physical information, gait index, and physical ability score.
  • the average number of receipts issued per year corresponds to the number of times an individual visits the hospital per year for treatment of a specific disease.
  • the disease risk estimation unit 136 calculates the disease risk score using the average number of receipts issued per year.
  • the disease risk estimation model is generated by learning using a data set in which physical information (attributes), gait index, and physical ability of multiple subjects are explanatory variables, and the average number of receipts issued per year for a specific disease is the objective variable, as training data.
  • FIG. 11 is a conceptual diagram showing an example of a disease risk estimation model 165 that estimates the average annual number of receipts issued.
  • the disease risk estimation unit 136 inputs physical information, gait index, and physical ability score to the disease risk estimation model 165.
  • the disease risk estimation model 165 receives the physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease.
  • the disease risk estimation model 165 outputs the average annual number of receipts issued for a specific disease.
  • the average annual number of receipts issued is estimated for each of a plurality of diseases.
  • the disease risk estimation unit 136 calculates the disease risk score using the average annual number of receipts issued output from the disease risk estimation model 165.
  • the disease risk estimation unit 136 calculates a disease risk score using the average annual number of medical receipts issued.
  • Three calculation examples will be given below. It is assumed that the average annual number of medical receipts issued for a standard person ⁇ 0 has been obtained in advance.
  • the disease risk estimation model 165 outputs the average annual number of medical receipts issued ⁇ for a specific disease in response to input of physical information, gait index, and physical ability score for a person whose disease risk is to be estimated.
  • the disease risk estimation unit 136 calculates, as the disease risk score, the ratio of the average annual number of medical receipts issued for a standard person ⁇ 0 to the average annual number of medical receipts issued ⁇ estimated for the user.
  • the disease risk estimation unit 136 calculates the disease risk score RS 1 using the following formula 1.
  • the disease risk estimation unit 136 calculates the odds ratio of the annual average number of receipts issued for a specific disease.
  • the disease risk estimation unit 136 calculates a disease risk score RS3 using the following formula 3.
  • the above three calculation examples are merely examples, and do not limit the method of calculating the disease risk score using the annual average number of medical receipts issued.
  • the disease risk estimation unit 136 may be configured to calculate the disease risk score using an index other than the annual average number of medical receipts issued.
  • the disease risk estimation unit 136 multiplies the disease risk score RS for each disease calculated using the annual average number of receipts issued by the weight for each disease to calculate a disease risk score reflecting the risk for each disease.
  • a weight set to a value corresponding to the rank indicating the risk of the disease to be estimated is used.
  • the disease risk score for disease A is a ⁇ RS A
  • the disease risk score for disease B is b ⁇ RS B
  • the disease risk score for disease Z is z ⁇ RS Z.
  • the disease risk estimation model 160 may be configured to output a score reflecting the risk for each disease in response to input of physical information, gait index, and physical ability score.
  • the disease risk estimation unit 136 may also be configured to output a score reflecting the risk for each combination of diseases.
  • the output unit 137 outputs disease risk information according to the disease risk score estimated by the disease risk estimation unit 136.
  • the output unit 137 displays the disease risk information on the screen of the subject (user)'s mobile terminal.
  • the output unit 137 outputs the disease risk information to an external system or the like that uses the disease risk information.
  • the disease risk information is used for statistical analysis, research into disease prevention, and the like.
  • the disease risk estimation device 13 is connected to an external system built on a cloud or a server via a mobile terminal (not shown) carried by the subject (user).
  • the mobile terminal (not shown) is a portable communication device.
  • the mobile terminal is a mobile communication device having a communication function such as a smartphone, a smart watch, or a mobile phone.
  • the disease risk estimation device 13 is connected to the mobile terminal via wireless communication.
  • the disease risk estimation device 13 is connected to the mobile terminal via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the disease risk estimation device 13 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark).
  • the disease risk estimation device 13 may be connected to the mobile terminal via a wire such as a cable.
  • the disease risk information may be used by an application installed on the mobile terminal. In that case, the mobile terminal executes processing using the disease risk information by application software or the like installed on the mobile terminal.
  • FIG. 12 is a flowchart for explaining an example of the operation of the disease risk estimation device 13.
  • the components of the disease risk estimation device 13 will be described as the subject of the operations.
  • the subject of the processing according to the flowchart of FIG. 12 may be the disease risk estimation device 13.
  • the acquisition unit 131 acquires time series data of sensor data measured by the measurement device 10 mounted on the footwear (step S11).
  • the sensor data includes acceleration in three axial directions and angular velocity around three axes.
  • the waveform processing unit 132 extracts walking waveform data from the time series data of the sensor data (step S12).
  • the walking waveform data corresponds to the time series data of the sensor data for one walking cycle.
  • the waveform processing unit 132 normalizes the extracted walking waveform data (step S13).
  • the waveform processing unit 132 performs first normalization on the walking waveform data so that the step period is 100%.
  • the waveform processing unit 132 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.
  • the gait index calculation unit 133 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S14). For example, the gait index calculation unit 133 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.
  • the physical ability estimation unit 135 estimates physical ability using the physical information and gait indices (step S15). For example, the physical ability estimation unit 135 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the disease risk estimation unit 136 estimates a disease risk that reflects the risk for each disease using the physical information, gait index, and physical ability (step S16).
  • the disease risk estimation unit 136 estimates a disease risk score that reflects the risk for each disease.
  • the disease risk estimation unit 136 estimates a disease risk score that reflects the risk for each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • the disease risk estimation unit 136 estimates a disease risk score that reflects the risk for each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.
  • the output unit 137 outputs disease risk information related to the estimated disease risk (step S17). For example, the output unit 137 displays the disease risk information on the screen of the subject (user)'s mobile terminal. For example, the output unit 137 outputs the disease risk information to an external system or the like that uses the disease risk information.
  • FIGS. 13 and 14 are conceptual diagrams showing an example of displaying disease risk information estimated by the disease risk estimation device 13 on the screen of a mobile terminal 170 carried by a user walking while wearing shoes 100 in which a measuring device 10 is placed.
  • disease risk information estimated using sensor data measured while the user is walking is displayed on the screen of the mobile terminal 170.
  • Disease risk information estimated for each user is optimized for each user and displayed on the screen of the mobile terminal 170.
  • the disease risk information includes advice corresponding to the disease risk generated by fitting it to a preset document format.
  • advice corresponding to the disease risk may be generated using a large-scale language model.
  • FIG. 13 is an example in which disease risk information including a disease risk score according to a rank indicating the risk of the disease is displayed on the screen of the mobile terminal 170.
  • disease risk scores reflecting the risk of each disease, such as "Disease (Rank 1): Y1, Disease (Rank 2): Y2, Disease (Rank 3): Y3, ..., Disease (Rank Q): YQ", are displayed on the screen of the mobile terminal 170.
  • disease risk information including advice optimized for each user according to the disease risk such as "Your risk of disease (Rank 1) is high. We recommend that you receive a medical examination at YY Hospital," is displayed on the screen of the mobile terminal 170 according to the disease risk score.
  • FIG. 14 shows an example of disease risk information including a disease risk score according to the risk of disease combinations displayed on the screen of the mobile terminal 170.
  • disease risk scores reflecting the risk of each disease combination, such as "Disease A + Disease B: X1, Disease B + Disease C: X2, Disease B + Disease C: X3, ..., Disease X + Disease Y: XZ," are displayed on the screen of the mobile terminal 170.
  • disease risk information including advice according to the disease risk, such as "The combination of disease A and disease B is high risk. We recommend that you receive a checkup at XX Hospital,” is displayed on the screen of the mobile terminal 170 according to the disease risk score.
  • a user who checks the information on disease risk reflecting the risk for each disease displayed on the display unit of the mobile terminal 170 can recognize his/her own disease risk.
  • the disease risk information may be provided to a party other than the user.
  • the disease risk information may be output to a terminal device (not shown) used by a doctor or trainer who manages the user's physical condition, or by the user's family, etc.
  • the disease risk information may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the output destination or use of the disease risk information.
  • the disease risk estimation system of this embodiment includes a measurement device and a disease risk estimation device.
  • the measurement device is installed on the footwear of a subject for whom disease risk information is to be estimated.
  • the measurement device measures spatial acceleration and spatial angular velocity.
  • the measurement device generates sensor data using the measured spatial acceleration and spatial angular velocity.
  • the measurement device transmits the generated sensor data to the disease risk estimation device.
  • the disease risk estimation device includes an acquisition unit, a risk estimation unit, and an output unit.
  • the acquisition unit acquires sensor data measured according to the movement of the feet of a subject for whom disease risk is to be estimated.
  • the risk estimation unit has a calculation unit and an estimation unit.
  • the calculation unit calculates a gait index using the sensor data.
  • the estimation unit inputs data including the gait index calculated using the sensor data to the disease risk estimation model.
  • the disease risk estimation model outputs a disease risk score indicating the degree of disease risk related to a disease in response to the input of data including the gait index.
  • the estimation unit estimates a disease risk reflecting the risk for each disease in response to the disease risk score output from the disease risk estimation model.
  • the output unit outputs disease risk information according to the estimated disease risk.
  • the disease risk estimation device of this embodiment estimates disease risk reflecting the risk for each disease using sensor data measured according to sensor data related to the subject's foot movements. In other words, according to this embodiment, it is possible to estimate disease risk reflecting the risk for each disease using sensor data measured according to foot movements.
  • the estimation unit calculates a disease risk score that reflects the risk of each disease by multiplying the disease risk score by a weight for each disease that corresponds to the rank indicating the risk of the disease. According to this aspect, it is possible to estimate a disease risk that reflects the risk of each disease according to the rank indicating the risk of the disease.
  • the estimation unit calculates a disease risk score that reflects the risk of each disease combination by multiplying the disease risk score by a weight for each disease combination. According to this aspect, it is possible to estimate a disease risk score that reflects the risk of each disease combination.
  • the disease risk estimation device displays information optimized for the subject on the screen of a terminal device that can be viewed by the user. According to this aspect, information can be provided that is optimized for the subject.
  • the disease risk estimation model is a model trained using a machine learning technique.
  • the disease risk estimation model includes an incomplete heterogeneous variational autoencoder. According to this aspect, even if there is some loss of data such as gait indicators, the subject's disease risk can be estimated.
  • the disease risk estimation device outputs disease risk information including suggested information according to a change trend of the disease risk.
  • FIG. 15 is a block diagram showing an example of the configuration of a disease risk estimation system 2 in the present disclosure.
  • the disease risk estimation system 2 includes a measurement device 20 and a disease risk estimation device 23.
  • the measurement device 20 is installed in the footwear of a subject (user) whose disease risk is to be estimated.
  • the function of the disease risk estimation device 23 is installed in a mobile terminal carried by the subject (user).
  • the measurement device 20 has the same configuration as the measurement device 10 of the first embodiment. In the following, a description of the measurement device 20 will be omitted, and only the disease risk estimation device 23 will be described. Note that the main configuration of the disease risk estimation device 23 is similar to the configuration of the disease risk estimation device 13 of the first embodiment, and therefore, the description may be omitted.
  • [Disease risk estimation device] 16 is a block diagram showing an example of the configuration of the disease risk estimation device 23.
  • the disease risk estimation device 23 has an acquisition unit 231, a calculation unit 230, an estimation unit 240, a storage unit 234, a change tendency determination unit 245, and an output unit 237.
  • the calculation unit 230 and the estimation unit 240 constitute the risk estimation unit 25.
  • the acquisition unit 231 (acquisition means) has the same configuration as the acquisition unit 131 of the first embodiment.
  • the acquisition unit 231 acquires sensor data from the measurement device 20.
  • the acquisition unit 231 receives the sensor data from the measurement device 20 via wireless communication.
  • the acquisition unit 231 receives the sensor data from the measurement device 20 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the acquisition unit 231 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 20.
  • the acquisition unit 231 may receive the sensor data from the measurement device 20 via a wired connection such as a cable.
  • the acquisition unit 231 may acquire a gait index or a feature amount calculated by the measurement device 20.
  • the acquisition unit 231 also acquires the user's physical information (attributes).
  • the physical information includes gender, date of birth, height, and weight. The date of birth is converted to age.
  • the physical information is input via an input device (not shown).
  • the physical information is input via a mobile terminal used by the user.
  • the physical information may be stored in advance in the storage unit 234. The physical information may be updated at any time in response to input by the user.
  • the calculation unit 230 (calculation means) has the same configuration as the calculation unit 130 of the first embodiment.
  • the calculation unit 230 has the functions of the waveform processing unit 132 and gait index calculation unit 133 of the first embodiment.
  • the calculation unit 230 acquires sensor data from the acquisition unit 231.
  • the calculation unit 230 extracts time series data for one walking cycle (gait waveform data) from the time series data of acceleration in three axial directions and angular velocity about three axes included in the sensor data.
  • the calculation unit 230 extracts gait waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the calculation unit 230 extracts gait waveform data that starts from the timing of a heel strike and ends with the timing of the next heel strike.
  • the calculation unit 230 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent).
  • the calculation unit 230 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%.
  • the calculation unit 230 extracts features (physical ability features) used to estimate physical abilities from the walking waveform data.
  • the calculation unit 230 extracts physical ability features used to estimate at least one physical ability.
  • the calculation unit 230 extracts physical ability features used to estimate at least one of physical abilities such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the calculation unit 230 extracts physical ability features for each walking phase cluster according to preset conditions.
  • the calculation unit 230 outputs the extracted physical ability features to the estimation unit 240.
  • the calculation unit 230 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability. For example, the calculation unit 230 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc.
  • the memory unit 234 (storage means) has the same configuration as the memory unit 134 of the first embodiment.
  • the memory unit 234 stores a physical ability estimation model that estimates physical ability using physical ability features extracted from gait waveform data. For example, the physical ability estimation model outputs an index related to physical ability (physical ability score) in response to input of physical ability features extracted from gait waveform data.
  • the memory unit 234 also stores a disease risk estimation model that estimates disease risk using physical information, gait index, and physical ability score. For example, the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of physical information, gait index, and physical ability score.
  • the memory unit 234 stores the physical ability estimation model and disease risk estimation model learned for multiple subjects.
  • the physical ability estimation model and disease risk estimation model may be stored in the memory unit 234 when the product is shipped from the factory.
  • the physical ability estimation model and disease risk estimation model may also be stored in the memory unit 234 at a timing such as at the time of calibration before the disease risk estimation device 23 is used by a user.
  • a physical ability estimation model and disease risk estimation model saved in a storage device (not shown) such as an external server may be used. In that case, it is sufficient if the physical ability estimation model and disease risk estimation model can be accessed via an interface (not shown) connected to the storage device.
  • the storage unit 234 also stores the user's physical information (attributes).
  • the physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. The physical information may be updated at any time.
  • the estimation unit 240 (estimation means) has the same configuration as the estimation unit 140 of the first embodiment.
  • the estimation unit 240 includes the functions of the physical ability estimation unit 135 and the disease risk estimation unit 136 of the first embodiment.
  • the estimation unit 240 acquires the physical ability feature extracted from the walking waveform data from the calculation unit 230.
  • the estimation unit 240 also acquires the physical information (attributes) stored in the memory unit 234.
  • the estimation unit 240 estimates a physical ability score using the physical ability feature and the physical information (attributes).
  • the estimation unit 240 inputs the physical ability feature and the user's physical information (attributes) to the physical ability estimation model stored in the memory unit 234.
  • the estimation unit 240 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the estimation unit 240 uses the physical ability score, the gait index, and the physical information (attributes) to estimate a disease risk score that reflects the risk of each disease.
  • the estimation unit 240 outputs the estimated disease risk score.
  • the change trend determination unit 245 acquires time series data of disease risk scores that reflect the risk for each disease.
  • the change trend determination unit 245 determines the change trend for each disease risk according to changes in the time series data of the disease risk score.
  • the change trend determination unit 245 determines whether there is a change trend, such as an increasing trend, a decreasing trend, or a stagnant trend, in the time series data of the disease risk score.
  • the change trend determination unit 245 determines the disease risk for each disease according to the change trend for each disease risk.
  • FIG. 17 is a graph showing an example of time series data of disease risk scores for one user.
  • the graph in FIG. 17 relates to three diseases with different change trends in disease risk scores.
  • the change trend determination unit 245 determines the change trend according to the slope of the disease risk score in a specific period.
  • the change trend determination unit 245 may determine the change trend according to the slope of a tangent line fitted to the curve of the time series data of the disease risk score.
  • a stagnation trend is observed for the time series data of the disease risk score for disease A (dashed line).
  • An increase trend is observed for the time series data of the disease risk score for disease B (dash-dotted line).
  • a decrease trend is observed for the time series data of the disease risk score for disease C (dash-dotted line).
  • the change trend determination unit 245 determines that there is no change in the risk of disease A in response to the stagnation trend of the disease risk score for disease A.
  • the change trend determination unit 245 determines that there is a change in the risk of disease B in response to the increase trend of the disease risk score for disease B.
  • the change trend determination unit 245 determines that the risk of disease C has decreased in response to the decrease trend of the disease risk score for disease C.
  • the change trend determination unit 245 determines that there is no change in the disease risk in response to the stagnation trend of the disease risk score for user 1.
  • the change trend determination unit 245 determines that there is a change in the disease risk in response to the increase trend of the disease risk score for user 2.
  • the change trend determination unit 245 determines that the disease risk has decreased in response to the decrease trend of the disease risk score for user 3.
  • FIG. 19 is a graph showing an example of time series data of disease risk scores for multiple users.
  • the graph in FIG. 19 is for three users with different change trends of the same disease risk score.
  • FIG. 19 is an example of determining the change trend of a disease risk score according to a threshold set for the disease risk score.
  • a threshold set for the disease risk score In the example of FIG. 19, a lower threshold T L and an upper threshold T U are set.
  • the time series data of the disease risk score of user 1 (dashed line) is below the lower threshold T L.
  • the time series data of the disease risk score of user 2 (dotted line) exceeds the lower threshold T L and also exceeds the upper threshold T U.
  • the time series data of the disease risk score of user 3 exceeded the lower threshold T L , but fell below the lower threshold T L over time.
  • the change trend determination unit 245 determines that the risk of disease is low for user 1 because the disease risk score is below the lower threshold T L. For example, the change trend determination unit 245 determines that the risk of disease is high for user 2 because the disease risk score has exceeded the upper threshold value T U. For example, the change trend determination unit 245 determines that the risk of disease is low for user 3 because the disease risk score has fallen below the lower threshold value T L.
  • FIG. 19 shows an example in which two threshold values are set for the disease risk score. Only one threshold value or three or more threshold values may be set for the disease risk score.
  • the change trend determination unit 245 generates information according to the determination result regarding the disease risk for each disease. For example, the change trend determination unit 245 generates suggested information according to the determination result regarding the disease risk for each disease. For example, the change trend determination unit 245 generates suggested information including advice according to the disease risk generated by applying it to a preset document format. For example, advice according to the disease risk may be generated using a large-scale language model.
  • the output unit 237 (output means) has the same configuration as the output unit 137 of the first embodiment.
  • the output unit 237 outputs disease risk information according to the disease risk score estimated by the estimation unit 240.
  • the output unit 237 also outputs suggested information according to the determination result by the change trend determination unit 245.
  • the output unit 237 displays the disease risk information and suggested information on the screen of the mobile terminal of the subject (user).
  • the output unit 237 outputs the disease risk information and suggested information to an external system or the like that uses the disease risk information and suggested information.
  • the disease risk information and suggested information are used for statistical analysis, research on disease prevention, and the like.
  • FIG. 20 is a flowchart for explaining an example of the operation of the disease risk estimation device 23.
  • the components of the disease risk estimation device 23 will be described as the subjects of operation.
  • the subject of operation of the processing according to the flowchart of FIG. 20 may be the disease risk estimation device 23.
  • the acquisition unit 231 acquires time series data of sensor data measured by the measurement device 20 mounted on the footwear (step S21).
  • the sensor data includes acceleration in three axial directions and angular velocity around three axes.
  • the calculation unit 230 extracts walking waveform data from the time series data of the sensor data (step S22).
  • the walking waveform data corresponds to the time series data of the sensor data for one walking cycle.
  • the calculation unit 230 normalizes the extracted walking waveform data (step S23).
  • the calculation unit 230 performs first normalization on the walking waveform data so that the stride cycle is 100%.
  • the calculation unit 230 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.
  • the calculation unit 230 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S24). For example, the calculation unit 230 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.
  • the estimation unit 240 estimates physical ability using the physical information and gait indices (step S25). For example, the estimation unit 240 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the estimation unit 240 estimates a disease risk that reflects the risk of each disease using the physical information, gait index, and physical ability (step S26).
  • the estimation unit 240 estimates a disease risk score that reflects the risk of each disease.
  • the estimation unit 240 estimates a disease risk score that reflects the risk of each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • the estimation unit 240 estimates a disease risk score that reflects the risk of each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.
  • the change trend determination unit 245 determines the change trend of the estimated disease risk (step S27).
  • the change trend determination unit 245 generates proposal information according to the change trend of the time series data of the disease risk score.
  • the output unit 237 outputs disease risk information related to the estimated disease risk and suggested information according to the determination result (step S28). For example, the output unit 237 displays the disease risk information and suggested information on the screen of the subject (user)'s mobile terminal. For example, the output unit 237 outputs the disease risk information and suggested information to an external system or the like that uses the disease risk information and suggested information.
  • 21 and 22 are conceptual diagrams showing an example of displaying disease risk information estimated by the disease risk estimation device 23 on the screen of a mobile device 270 carried by a user walking while wearing shoes 200 in which a measuring device 20 is placed.
  • disease risk information estimated using sensor data measured while the user is walking is displayed on the screen of the mobile device 270.
  • Disease risk information estimated for each user is displayed on the screen of the mobile device 270 in an optimized manner for each user.
  • the disease risk information includes advice corresponding to the disease risk generated by fitting it to a preset document format.
  • advice corresponding to the disease risk may be generated using a large-scale language model.
  • disease risk information including a change trend of disease risk and advice displayed on the screen of the mobile terminal 270.
  • information according to the change trend of disease risk such as "Disease (rank 1): examination required, Disease (rank 2): caution required, ..., Disease (rank Q): " is displayed on the screen of the mobile terminal 270.
  • disease risk information including advice according to the change trend of disease risk such as "The score for disease (rank 1) has exceeded the upper threshold. Please see a doctor at a hospital,” is displayed on the screen of the mobile terminal 270 in accordance with the change trend of disease risk that requires examination.
  • disease risk information including advice according to disease risk such as "The score for disease (rank 2) has exceeded the lower threshold. Please review your diet,” is displayed on the screen of the mobile terminal 270 in accordance with the change trend of disease risk that requires caution.
  • FIG. 22 is an example of disease risk information including the changing trend of disease risk and advice displayed on the screen of the mobile device 270.
  • information according to the changing trend of disease risk such as "Disease (rank 1): rising trend, Disease (rank 2): rising trend, ..., Disease (rank Q): "
  • disease risk information including advice according to the disease risk such as "Disease risk for disease (rank 1) and disease (rank 2) is on the rise. We recommend that you receive a checkup at YY Hospital," is displayed on the screen of the mobile device 270 according to the changing trend of disease risk.
  • a user who checks the disease risk information according to the changing trend of disease risk displayed on the display unit of the mobile terminal 270 can recognize his/her own disease risk.
  • the disease risk information may be provided to a person other than the user.
  • the disease risk information may be output to a terminal device (not shown) used by a doctor or trainer who manages the user's physical condition, or by the user's family, etc.
  • the disease risk information may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the output destination or use of the disease risk information.
  • the disease risk estimation system of this embodiment includes a measurement device and a disease risk estimation device.
  • the measurement device is installed on the footwear of a subject for whom disease risk information is to be estimated.
  • the measurement device measures spatial acceleration and spatial angular velocity.
  • the measurement device generates sensor data using the measured spatial acceleration and spatial angular velocity.
  • the measurement device transmits the generated sensor data to the disease risk estimation device.
  • the disease risk estimation device includes an acquisition unit, a risk estimation unit, a change trend determination unit, and an output unit.
  • the acquisition unit acquires sensor data measured according to the movement of the feet of a subject for whom disease risk is to be estimated.
  • the risk estimation unit has a calculation unit and an estimation unit.
  • the calculation unit calculates a gait index using the sensor data.
  • the estimation unit inputs data including the gait index calculated using the sensor data to the disease risk estimation model.
  • the disease risk estimation model outputs a disease risk score indicating the degree of disease risk related to the disease in response to the input of data including the gait index.
  • the estimation unit estimates a disease risk reflecting the risk for each disease in response to the disease risk score output from the disease risk estimation model.
  • the change trend determination unit determines the disease risk for each disease according to the change trend of the disease risk score.
  • the output unit outputs disease risk information according to the estimated disease risk.
  • the disease risk estimation device of this embodiment estimates disease risk reflecting the risk for each disease using sensor data measured according to sensor data related to the subject's foot movements.
  • the disease risk estimation device of this embodiment determines the disease risk for each disease according to the change trend of the disease risk score. In other words, according to this embodiment, it is possible to estimate disease risk reflecting the risk for each disease according to the change trend of the disease risk score.
  • the change trend determination unit determines that the disease risk is high for a disease whose disease risk score is on an increasing trend.
  • the change trend determination unit determines that the disease risk is low for a disease whose disease risk score is on either a decreasing trend or a stagnant trend.
  • the disease risk can be determined according to the increasing, decreasing, and stagnant trend of the disease risk score.
  • the change trend determination unit determines that the disease risk is high for a disease whose disease risk score exceeds the threshold.
  • the change trend determination unit determines that the disease risk is low for a disease whose disease risk score falls below the threshold.
  • the disease risk can be determined based on the relationship between the disease risk score and the threshold.
  • the disease risk estimation device outputs disease risk information including suggested information according to disease risk.
  • the disease risk estimation device outputs suggested information for insurance-related institutions such as health insurance associations and life insurance companies.
  • FIG. 23 is a block diagram showing an example of the configuration of a disease risk estimation system 3 in the present disclosure.
  • the disease risk estimation system 3 includes a measurement device 30 and a disease risk estimation device 33.
  • the measurement device 30 is installed in the footwear of a subject whose disease risk is to be estimated.
  • the function of the disease risk estimation device 33 is installed in a mobile terminal carried by the subject.
  • the measurement device 30 has the same configuration as the measurement device 10 of the first embodiment. In the following, a description of the measurement device 30 will be omitted, and only the disease risk estimation device 33 will be described. Note that the main configuration of the disease risk estimation device 33 is similar to the configuration of the disease risk estimation device 13 of the first embodiment, and therefore may be omitted from the description.
  • Fig. 24 is a block diagram showing an example of the configuration of a disease risk estimation device 33.
  • the disease risk estimation device 33 has an acquisition unit 331, a calculation unit 330, an estimation unit 340, a storage unit 334, a proposed information generation unit 345, and an output unit 337.
  • the calculation unit 330 and the estimation unit 340 constitute a risk estimation unit 35.
  • Fig. 24 shows a configuration in which a proposed information generation unit 345 is added to the configuration of the first embodiment.
  • the proposed information generation unit 345 may be added to the configuration of the second embodiment.
  • the acquisition unit 331 (acquisition means) has the same configuration as the acquisition unit 131 of the first embodiment.
  • the acquisition unit 331 acquires sensor data from the measurement device 30.
  • the acquisition unit 331 receives the sensor data from the measurement device 30 via wireless communication.
  • the acquisition unit 331 receives the sensor data from the measurement device 30 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the acquisition unit 331 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 30.
  • the acquisition unit 331 may receive the sensor data from the measurement device 30 via a wired connection such as a cable.
  • the acquisition unit 331 may acquire gait indices and feature amounts calculated by the measurement device 30.
  • the acquisition unit 331 also acquires the user's physical information (attributes).
  • the physical information includes gender, date of birth, height, and weight. The date of birth is converted to age.
  • the physical information is input via an input device (not shown).
  • the physical information is input via a mobile terminal used by the user.
  • the physical information may be stored in advance in the storage unit 334. The physical information may be updated at any time in response to input by the user.
  • the calculation unit 330 (calculation means) has the same configuration as the calculation unit 130 of the first embodiment.
  • the calculation unit 330 has the functions of the waveform processing unit 132 and gait index calculation unit 133 of the first embodiment.
  • the calculation unit 330 acquires sensor data from the acquisition unit 331.
  • the calculation unit 330 extracts time series data for one walking cycle (gait waveform data) from the time series data of acceleration in three axial directions and angular velocity about three axes included in the sensor data.
  • the calculation unit 330 extracts gait waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the calculation unit 330 extracts gait waveform data that starts at the timing of a heel strike and ends at the timing of the next heel strike.
  • the calculation unit 330 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent).
  • the calculation unit 330 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%.
  • the calculation unit 330 extracts features (physical ability features) used to estimate physical abilities from the walking waveform data.
  • the calculation unit 330 extracts physical ability features used to estimate at least one physical ability.
  • the calculation unit 330 extracts physical ability features used to estimate at least one of physical abilities such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the calculation unit 330 extracts physical ability features for each walking phase cluster according to preset conditions.
  • the calculation unit 330 outputs the extracted physical ability features to the estimation unit 340.
  • the calculation unit 330 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability. For example, the calculation unit 330 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc.
  • the memory unit 334 (storage means) has the same configuration as the memory unit 134 of the first embodiment.
  • the memory unit 334 stores a physical ability estimation model that estimates physical ability using physical ability features extracted from gait waveform data. For example, the physical ability estimation model outputs an index related to physical ability (physical ability score) in response to input of physical ability features extracted from gait waveform data.
  • the memory unit 334 also stores a disease risk estimation model that estimates disease risk using physical information, gait index, and physical ability score. For example, the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of physical information, gait index, and physical ability score.
  • the memory unit 334 stores the physical ability estimation model and disease risk estimation model learned for multiple subjects.
  • the physical ability estimation model and disease risk estimation model may be stored in the memory unit 334 when the product is shipped from the factory.
  • the physical ability estimation model and disease risk estimation model may also be stored in the memory unit 334 at a timing such as at the time of calibration before the disease risk estimation device 33 is used by the subject.
  • a physical ability estimation model and disease risk estimation model saved in a storage device (not shown) such as an external server may be used. In that case, it is sufficient if the physical ability estimation model and disease risk estimation model can be accessed via an interface (not shown) connected to the storage device.
  • the storage unit 334 also stores the subject's physical information (attributes).
  • the physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. The physical information may be updated at any time.
  • the estimation unit 340 (estimation means) has the same configuration as the estimation unit 140 of the first embodiment.
  • the estimation unit 340 includes the functions of the physical ability estimation unit 135 and the disease risk estimation unit 136 of the first embodiment.
  • the estimation unit 340 acquires the physical ability feature extracted from the walking waveform data from the calculation unit 330.
  • the estimation unit 340 also acquires the physical information (attributes) stored in the memory unit 334.
  • the estimation unit 340 estimates a physical ability score using the physical ability feature and the physical information (attributes).
  • the estimation unit 340 inputs the physical ability feature and the subject's physical information (attributes) to the physical ability estimation model stored in the memory unit 334.
  • the estimation unit 340 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the whole body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the estimation unit 340 uses the physical ability score, the gait index, and the physical information (attributes) to estimate a disease risk score that reflects the risk of each disease.
  • the estimation unit 340 outputs the estimated disease risk score.
  • the proposed information generation unit 345 acquires a disease risk score that reflects the risk for each disease.
  • the proposed information generation unit 345 generates proposed information for insurance-related institutions such as health insurance associations and life insurance companies based on the disease risk score.
  • the proposed information generation unit 345 generates disease risk information including proposed information regarding the insured person for insurance-related institutions such as health insurance associations and life insurance companies.
  • the health insurance associations and life insurance companies can take action for the insured person based on the proposed information in response to acquiring the disease risk information.
  • the proposed information generating unit 345 generates proposed information according to the disease risk score for each disease.
  • the proposed information generating unit 345 may generate proposed information according to the change trend of the disease risk score for each disease.
  • the proposed information generating unit 345 generates proposed information including advice according to the disease risk score generated by applying it to a preset document format.
  • advice according to the disease risk score may be generated using a large-scale language model.
  • the output unit 337 (output means) has the same configuration as the output unit 137 of the first embodiment.
  • the output unit 337 outputs disease risk information according to the disease risk score estimated by the estimation unit 340.
  • the output unit 337 also outputs proposed information according to the disease risk score by the proposed information generation unit 345.
  • the output unit 337 outputs the disease risk information and the proposed information to an external system or the like that uses the disease risk information and the proposed information.
  • the output unit 337 outputs the disease risk information and the proposed information to a terminal device (not shown) used by an insurance-related institution such as a health insurance association or a life insurance company.
  • the insurance-related institution such as a health insurance association or a life insurance company corresponds to a user who views the disease risk information and the proposed information.
  • the disease risk information and the proposed information are used by the health insurance association to determine the timing of providing specific health guidance to the subject.
  • the disease risk information and the proposed information are used by the life insurance company to determine the timing of providing incentives such as insurance premium discounts and benefits to the subject.
  • disease risk information and recommendation information may be used for statistical analysis and research into disease prevention.
  • FIG. 25 is a flowchart for explaining an example of the operation of the disease risk estimation device 33.
  • the components of the disease risk estimation device 33 will be described as the subjects of operation.
  • the subject of operation of the processing according to the flowchart of FIG. 25 may be the disease risk estimation device 33.
  • the acquisition unit 331 acquires time series data of sensor data measured by the measurement device 30 mounted on the footwear (step S31).
  • the sensor data includes acceleration in three axial directions and angular velocity around three axes.
  • the calculation unit 330 extracts walking waveform data from the time series data of the sensor data (step S32).
  • the walking waveform data corresponds to the time series data of the sensor data for one walking cycle.
  • the calculation unit 330 normalizes the extracted walking waveform data (step S33).
  • the calculation unit 330 performs first normalization on the walking waveform data so that the stride cycle is 100%.
  • the calculation unit 330 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.
  • the calculation unit 330 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S34). For example, the calculation unit 330 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.
  • the estimation unit 340 estimates physical ability using the physical information and gait indices (step S35). For example, the estimation unit 340 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the estimation unit 340 estimates a disease risk that reflects the risk of each disease using the physical information, gait index, and physical ability (step S36).
  • the estimation unit 340 estimates a disease risk score that reflects the risk of each disease.
  • the estimation unit 340 estimates a disease risk score that reflects the risk of each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • the estimation unit 340 estimates a disease risk score that reflects the risk of each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.
  • the proposed information generation unit 345 generates proposed information for insurance-related institutions such as health insurance associations and life insurance companies based on the estimated disease risk (step S37).
  • the output unit 337 outputs disease risk information related to disease risk and proposal information for insurance-related institutions (step S38).
  • the disease risk information and proposal information are used by a health insurance association to determine the timing for providing specific health guidance to the subject.
  • the disease risk information and proposal information are used by a life insurance company to determine the timing for providing incentives such as insurance premium discounts and special benefits to the subject.
  • the disease risk information and proposal information may be used for statistical analysis and research into disease prevention.
  • FIG. 26 shows an example in which the insurance-related institution is a health insurance association.
  • the business provides the health insurance association with a service using a disease risk estimation system 3. Based on a contract concluded with the health insurance association, the business provides the health insurance association with disease risk information and proposal information regarding the insured person.
  • the health insurance association pays the business a usage fee for the service using the disease risk estimation system 3.
  • the contract between the business and the health insurance association clarifies rules regarding the handling of personal information and appropriate data management.
  • the business clearly explains that the disease risk score is reference information and does not guarantee medical accuracy or completeness.
  • the health insurance society will fully explain the details of the personal information protection policy and data management to the insured person and obtain their consent. If there are any changes to the personal information protection policy or data management, the health insurance society will explain the changes to the insured person and obtain their consent. For example, consent from the insured person will be obtained electronically.
  • the health insurance society will provide specific health guidance to the insured person depending on the disease risk information provided by the business operator.
  • the insured person is the entity that pays health insurance premiums to the health insurance association.
  • the insured person is loaned or provided with a dedicated insole equipped with a measuring device 30 by a business that has a contract with the health insurance association.
  • the business provides support regarding the installation and operation of a dedicated app having the function of the disease risk estimation device 33, and the wearing of the dedicated insole.
  • the business cooperates with the health insurance association to add new functions and perform updates to provide appropriate support to the insured person.
  • the insured person installs a dedicated app having the function of the disease risk estimation device 33 on his/her mobile device.
  • the function of the disease risk estimation device 33 may be installed on a cloud server managed by the business.
  • the insured person wears shoes equipped with the dedicated insole and walks while carrying a mobile device on which the dedicated app is installed.
  • the dedicated app estimates a disease risk score using sensor data measured by the measuring device 30 according to the insured person's walking.
  • the dedicated app uploads data including disease risk information according to the disease risk score to the business's cloud server.
  • the dedicated app may upload the sensor data measured by the measuring device 30 to a cloud server managed by the business operator.
  • the dedicated app displays disease risk information corresponding to the disease risk score estimated by the disease risk estimation device 33 on the screen of a mobile device carried by the insured person.
  • the insured person improves their lifestyle habits in accordance with the improvement advice included in the disease risk information.
  • the terminal device used by the health insurance association downloads the disease risk information of the insured from the carrier's cloud server.
  • the health insurance association refers to the disease risk information.
  • the health insurance association provides specific health guidance to the insured according to the disease risk score included in the disease risk information.
  • the specific health guidance is provided by experts with specialized knowledge.
  • the health insurance association periodically refers to the disease risk score of the insured, and provides health support and counseling by experts according to changes in the score. For example, the health insurance association holds regular consultation sessions and events, and provides information on maintaining health using the measuring device 30.
  • the health insurance association also takes into account the opinions and requests of the insured.
  • the health insurance association periodically verifies and evaluates whether the application of the disease risk estimation system 3 has resulted in improvements in the insured's health and reductions in medical expenses.
  • FIG. 27 is an example of disease risk information for an insured person displayed on the screen of a terminal device 380A used by a health insurance association.
  • the screen of the terminal device 380A displays information according to the disease risk score, such as "The disease risk of disease (rank 1) for insured person K has exceeded the standard for specific health guidance.”
  • the screen of the terminal device 380A also displays suggested information, such as "We recommend that you send a notice of specific health guidance to insured person K.” This suggested information is displayed at an appropriate time for the health insurance association to notify the insured person of the specific health guidance.
  • the screen of the terminal device 380A displays suggested information, such as "Do you want to send a notice of specific health guidance to insured person K?"
  • a staff member who has checked the disease risk information displayed on the screen of the terminal device 380A can notify the insured person of the specific health guidance. For example, when the "YES" button displayed on the screen of the terminal device 380A is pressed, a notice of specific health guidance is sent to the mobile device carried by the insured person.
  • FIG. 28 shows an example in which information in response to a notification of specific health guidance sent from a terminal device 380A of a health insurance association is displayed on the screen of a mobile terminal 370 carried by an insured person walking while wearing shoes 300 in which a measuring device 30 is placed.
  • a notice stating "Your disease risk for disease (rank 1) is high. Please receive specific health guidance” is displayed on the screen of the mobile terminal 370.
  • disease risk information including advice regarding specific health guidance, such as "You are a candidate for specific health guidance. Please make an appointment with a health management center immediately," is displayed on the screen of the mobile terminal 370 according to the disease risk score.
  • the disease risk information may include statistical information of the entire insured person.
  • the percentage of insured persons whose disease risk scores have improved as a result of receiving specific health guidance among other insured persons with disease risk scores similar to the insured person who was the target of the notification of specific health guidance may be presented.
  • advice regarding specific health guidance will include information such as, "70% of people who have a similar disease risk to you have improved their disease risk by receiving specific health guidance.” This will allow insured persons to manage their own health while referring to the trends of people in a similar situation to themselves.
  • the insured person who checks the information corresponding to the specific health guidance notification displayed on the display unit of the mobile terminal 370 can recognize the need to receive specific health guidance.
  • the specific health guidance notification may be provided to a person other than the insured person.
  • the specific health guidance notification may be sent to a terminal device (not shown) used by a doctor or trainer who manages the insured person's physical condition, a family member of the insured person, or a superior at the insured person's company.
  • the specific health guidance notification may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the destination or use of the specific health guidance notification.
  • FIG. 29 shows an example in which the insurance-related institution is a life insurance company.
  • the business provides the life insurance company with a service using the disease risk estimation system 3. Based on a contract concluded with the life insurance company, the business provides the life insurance company with disease risk information and proposal information regarding the policyholder. The life insurance company pays the business a fee for the service using the disease risk estimation system 3.
  • the contract between the business and the life insurance company clarifies rules regarding the handling of personal information and appropriate data management. The business clearly explains that the disease risk score is reference information and does not guarantee medical accuracy or completeness.
  • Life insurance companies will fully explain the details of their personal information protection policies and data management to policyholders and obtain their consent. If there are any changes to the details of their personal information protection policies or data management, the life insurance companies will explain the changes to their policyholders and obtain their consent. For example, consent from policyholders will be obtained electronically. Life insurance companies will provide incentives to policyholders depending on the content of disease risk information provided by carriers.
  • the policyholder is the entity that pays the insurance premium to the life insurance company.
  • the policyholder is loaned or provided with a dedicated insole equipped with the measuring device 30 by a business that has a contract with the life insurance company.
  • the business provides support regarding the installation and operation of a dedicated app having the function of the disease risk estimation device 33, and the wearing of the dedicated insole.
  • the business cooperates with the health insurance association to add new functions and perform updates to provide appropriate support to the policyholder.
  • the policyholder installs a dedicated app having the function of the disease risk estimation device 33 on his/her mobile device.
  • the function of the disease risk estimation device 33 may be installed on a cloud server managed by the business.
  • the policyholder wears shoes equipped with the dedicated insole and walks while carrying a mobile device equipped with the dedicated app.
  • the dedicated app estimates a disease risk score using sensor data measured by the measuring device 30 according to the policyholder's walking.
  • the dedicated app uploads data including disease risk information according to the disease risk score to the cloud server of the business.
  • the dedicated app may upload the sensor data measured by the measuring device 30 to a cloud server managed by the business operator.
  • the dedicated app displays disease risk information corresponding to the disease risk score estimated by the disease risk estimation device 33 on the screen of a mobile device carried by the policyholder.
  • the policyholder improves their lifestyle habits in accordance with the improvement advice included in the disease risk information.
  • the terminal device used by the life insurance company downloads the policyholder's disease risk information from the operator's cloud server.
  • the health insurance association refers to the disease risk information.
  • the life insurance company provides incentives to the policyholder according to the disease risk score included in the disease risk information.
  • the life insurance company provides incentives such as discounts on insurance premiums and special benefits.
  • the life insurance company sets rewards for achievement and gradual goals to motivate the policyholder to take action.
  • the life insurance company provides insurance product plans based on the policyholder's health improvement status.
  • the health insurance association periodically refers to the policyholder's disease risk score and provides health support and counseling by experts according to changes in the score.
  • the life insurance company holds regular consultations and events and provides information on maintaining health using the measuring device 30.
  • the life insurance company also takes into account the opinions and requests of the policyholder.
  • the health insurance association periodically verifies and evaluates whether the application of the disease risk estimation system 3 has resulted in the policyholder's health improvement and reduction in medical expenses.
  • FIG. 30 shows an example of disease risk information for a policyholder displayed on the screen of a terminal device 380B used by a health insurance association.
  • the screen of the terminal device 380B displays information according to the disease risk score, such as "The disease risk score for disease (rank 2) for policyholder L has fallen below the standard for granting incentives.”
  • the screen of the terminal device 380B also displays suggested information, such as "We recommend that you send a notice of incentive grant to policyholder L.” This suggested information is displayed at an appropriate time for the life insurance company to grant an incentive to the policyholder.
  • the screen of the terminal device 380B also displays suggested information, such as "Would you like to send a notice of incentive grant to policyholder L?"
  • suggested information such as "Would you like to send a notice of incentive grant to policyholder L?"
  • a staff member who has checked the disease risk information displayed on the screen of the terminal device 380B can notify the policyholder of the grant of an incentive. For example, when the "YES" button displayed on the screen of the terminal device 380B is pressed, a notice of incentive grant is sent to the mobile terminal carried by the policyholder.
  • Figure 31 shows an example in which information in response to a notification of incentive provision sent from the life insurance company's terminal device 380B is displayed on the screen of a mobile terminal 370 carried by a policyholder walking in shoes 300 with a measuring device 30 placed on them.
  • An incentive has been provided by the life insurance company" is displayed on the screen of the mobile terminal 370.
  • information regarding incentive provision stating "Your insurance premiums will be discounted by 10% for six months starting in June," is displayed on the screen of the mobile terminal 370 according to the disease risk score.
  • the policyholder who checks the information regarding the grant of the incentive displayed on the display unit of the mobile terminal 370 can recognize that he or she will receive an incentive.
  • the notification of the grant of the incentive may be provided to a person other than the policyholder.
  • the notification of the grant of the incentive may be sent to a terminal device (not shown) used by a doctor or trainer who manages the policyholder's physical condition, a family member of the policyholder, or the policyholder's superiors at work.
  • the notification of the grant of the incentive may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the destination or use of the notification of the grant of the incentive.
  • the disease risk estimation system of this embodiment includes a measurement device and a disease risk estimation device.
  • the measurement device is installed on the footwear of a subject for whom disease risk information is to be estimated.
  • the measurement device measures spatial acceleration and spatial angular velocity.
  • the measurement device generates sensor data using the measured spatial acceleration and spatial angular velocity.
  • the measurement device transmits the generated sensor data to the disease risk estimation device.
  • the disease risk estimation device includes an acquisition unit, a risk estimation unit, a proposed information generation unit, and an output unit.
  • the acquisition unit acquires sensor data measured according to the movement of the feet of a subject for whom disease risk is to be estimated.
  • the risk estimation unit has a calculation unit and an estimation unit.
  • the calculation unit calculates a gait index using the sensor data.
  • the estimation unit inputs data including the gait index calculated using the sensor data to the disease risk estimation model.
  • the disease risk estimation model outputs a disease risk score indicating the degree of disease risk related to the disease in response to the input of data including the gait index.
  • the estimation unit estimates a disease risk reflecting the risk for each disease in response to the disease risk score output from the disease risk estimation model.
  • the change trend determination unit determines the disease risk for each disease according to the change trend of the disease risk score.
  • the proposal information generation unit generates proposal information for insurance-related institutions according to the disease risk reflecting the risk for each disease.
  • the output unit outputs disease risk information according to the estimated disease risk.
  • the disease risk estimation device of this embodiment estimates a disease risk that reflects the risk for each disease, using sensor data measured according to sensor data related to the subject's foot movements.
  • the disease risk estimation device of this embodiment generates proposal information for insurance-related institutions according to the disease risk that reflects the risk for each disease.
  • proposal information for insurance-related institutions can be generated using sensor data measured related to the subject.
  • the insurance-related institution is a health insurance association.
  • the acquisition unit acquires sensor data measured according to the walking of an insured person of the health insurance association.
  • the risk estimation unit estimates a disease risk reflecting the risk for each disease using the acquired sensor data.
  • the proposed information generation unit generates proposed information including the timing for notifying the insured person of specific health guidance according to the disease risk reflecting the estimated risk for each disease.
  • the output unit transmits the proposed information including the timing for notifying the insured person of specific health guidance to a terminal device used by the health insurance association.
  • proposed information including the timing for notifying the insured person of specific health guidance can be generated using sensor data measured on the insured person.
  • the insurance-related institution is a life insurance company.
  • the acquisition unit acquires sensor data measured according to the walking of a policyholder of the life insurance company.
  • the risk estimation unit estimates a disease risk reflecting the risk for each disease using the acquired sensor data.
  • the proposal information generation unit generates proposal information including the timing for granting an incentive to the policyholder according to the disease risk reflecting the estimated risk for each disease.
  • the output unit transmits the proposal information including the timing for granting the incentive to a terminal device used by the life insurance company. According to this aspect, proposal information including the timing for granting an incentive to the policyholder can be generated using sensor data measured on the policyholder.
  • the disease risk estimation device of this embodiment has a simplified configuration of the disease risk estimation device included in the disease risk estimation systems of the first to third embodiments.
  • composition 32 is a block diagram showing an example of the configuration of a disease risk estimation device 40 in the present disclosure.
  • the disease risk estimation device 40 includes an acquisition unit 41, a risk estimation unit 45, and an output unit 47.
  • the acquisition unit 41 acquires sensor data measured according to the foot movements of a subject for whom disease risk is to be estimated.
  • the risk estimation unit 45 uses the acquired sensor data to estimate a disease risk that reflects the risk for each disease.
  • the output unit 47 outputs disease risk information according to the estimated disease risk.
  • Fig. 33 is a flowchart for explaining an example of the operation of the disease risk estimation device 40.
  • the components of the disease risk estimation device 40 will be described as the subject of the operations.
  • the subject of the processing according to the flowchart of Fig. 33 may be the disease risk estimation device 40.
  • the acquisition unit 41 acquires sensor data measured according to the foot movements of a subject whose disease risk is to be estimated (step S41).
  • the risk estimation unit 45 uses the acquired sensor data to estimate disease risk that reflects the risk for each disease (step S42).
  • the output unit 47 outputs disease risk information according to the estimated disease risk (step S43).
  • the disease risk estimation device of this embodiment estimates disease risk reflecting the risk for each disease using sensor data measured according to sensor data related to the subject's foot movements. In other words, according to this embodiment, it is possible to estimate disease risk reflecting the risk for each disease using sensor data measured according to foot movements.
  • an information processing device 90 (computer) in Fig. 34 is given as an example of such a hardware configuration.
  • the information processing device 90 in Fig. 34 is an example of a configuration for executing the control and processing in the present disclosure, and does not limit the scope of the present disclosure.
  • the information processing device 90 includes a processor 91, a main memory device 92, an auxiliary memory device 93, an input/output interface 95, and a communication interface 96.
  • the interface is abbreviated as I/F (Interface).
  • the processor 91, the main memory device 92, the auxiliary memory device 93, the input/output interface 95, and the communication interface 96 are connected to each other via a bus 98 so as to be able to communicate data with each other.
  • the processor 91, the main memory device 92, the auxiliary memory device 93, and the input/output interface 95 are connected to a network such as the Internet or an intranet via the communication interface 96.
  • the processor 91 expands a program (instructions) stored in the auxiliary storage device 93 or the like into the main storage device 92.
  • the program is a software program for executing the control and processing in this disclosure.
  • the processor 91 executes the program expanded into the main storage device 92.
  • the processor 91 executes the program to execute the control and processing in this disclosure.
  • the main memory 92 has an area in which programs are expanded. Programs stored in the auxiliary memory 93 or the like are expanded in the main memory 92 by the processor 91.
  • the main memory 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory).
  • a non-volatile memory such as an MRAM (Magneto-resistive Random Access Memory) may be configured/added to the main memory 92.
  • the auxiliary storage device 93 stores various data such as programs.
  • the auxiliary storage device 93 is realized by a local disk such as a hard disk or flash memory. Note that it is also possible to omit the auxiliary storage device 93 by configuring the various data to be stored in the main storage device 92.
  • the input/output interface 95 is an interface for connecting the information processing device 90 to peripheral devices based on standards and specifications.
  • the communication interface 96 is an interface for connecting to external systems and devices via a network such as the Internet or an intranet based on standards and specifications.
  • the input/output interface 95 and the communication interface 96 may be a common interface for connecting to external devices.
  • input devices such as a keyboard, mouse, or touch panel may be connected to the information processing device 90. These input devices are used to input information and settings.
  • a touch panel is used as the input device, a screen having the function of a touch panel becomes the interface.
  • the processor 91 and the input devices are connected via an input/output interface 95.
  • the information processing device 90 may be equipped with a display device for displaying information. If a display device is equipped, the information processing device 90 is equipped with a display control device (not shown) for controlling the display of the display device. The information processing device 90 and the display device are connected via an input/output interface 95.
  • the information processing device 90 may be equipped with a drive device.
  • the drive device acts as an intermediary between the processor 91 and a recording medium (program recording medium) to read data and programs stored on the recording medium and to write the processing results of the information processing device 90 to the recording medium.
  • the information processing device 90 and the drive device are connected via an input/output interface 95.
  • the above is an example of a hardware configuration for enabling the control and processing in this disclosure.
  • the hardware configuration in FIG. 34 is an example of a hardware configuration for executing the control and processing in this disclosure, and does not limit the scope of this disclosure. Programs that cause a computer to execute the control and processing in this disclosure are also included in the scope of this disclosure.
  • Program recording media on which the programs of the present disclosure are recorded are also included within the scope of the present disclosure.
  • the recording media can be realized, for example, as optical recording media such as CDs (Compact Discs) and DVDs (Digital Versatile Discs).
  • the recording media may also be realized as semiconductor recording media such as USB (Universal Serial Bus) memory and SD (Secure Digital) cards.
  • the recording media may also be realized as magnetic recording media such as flexible disks, or other recording media.
  • the components in this disclosure may be combined in any manner.
  • the components in this disclosure may be implemented by software.
  • the components in this disclosure may be implemented by circuits.
  • An acquisition unit that acquires sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated; a risk estimation unit that estimates a disease risk reflecting the risk for each disease by using the acquired sensor data; An output unit that outputs disease risk information corresponding to the estimated disease risk.
  • the risk estimation unit is a calculation unit that calculates a gait index using the sensor data; a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk related to the disease in response to input of data including the gait index, the disease risk estimation model inputting data including the gait index calculated using the sensor data, and estimating disease risk information according to the disease risk score output from the disease risk estimation model.
  • the estimation unit is A disease risk estimation device as described in Appendix 2, which calculates the disease risk score reflecting the risk of each disease by multiplying the disease risk score by a weight for each disease corresponding to a rank indicating the risk of the disease.
  • the estimation unit is A disease risk estimation device as described in Appendix 2, which calculates the disease risk score reflecting the risk of each combination of diseases by multiplying the disease risk score by a weight for each combination of diseases.
  • a disease risk estimation device as described in Appendix 2 comprising a change trend determination unit that determines the disease risk for each disease based on the change trend of the disease risk score.
  • the change tendency determination unit Determining that the disease risk is high for a disease whose disease risk score is on the rise; A disease risk estimation device as described in Appendix 5, which determines that the disease risk is low for any disease for which the disease risk score is on a downward trend or a stagnant trend.
  • a disease risk is determined to be high for a disease whose disease risk score exceeds a threshold value;
  • a disease risk estimation device as described in Appendix 2 comprising a proposal information generation unit that generates proposal information for insurance-related institutions in accordance with the disease risk reflecting the risk for each disease.
  • the insurance-related institution is a health insurance association
  • the acquisition unit is Acquire the sensor data measured according to the walking of the insured person of the health insurance association
  • the risk estimation unit is Using the acquired sensor data, a disease risk reflecting a risk for each disease is estimated
  • the proposal information generation unit generating the proposal information including a timing for notifying the insured person of specific health guidance in accordance with the disease risk reflecting the estimated risk for each disease
  • the output unit is A disease risk estimation device as described in Appendix 8, which transmits the proposal information, including the timing for notifying the specific health guidance, to a terminal device used by the health insurance association.
  • the insurance-related institution is a life insurance company;
  • the acquisition unit is acquiring the sensor data measured according to the walking of a policyholder of the life insurance company;
  • the risk estimation unit is Using the acquired sensor data, a disease risk reflecting a risk for each disease is estimated;
  • the proposal information generation unit generating the proposal information including a timing for granting an incentive to the policyholder according to the disease risk reflecting the estimated risk for each disease;
  • the output unit is A disease risk estimation device as described in Appendix 8, which transmits the proposal information, including the timing of granting the incentive, to a terminal device used by the life insurance company.
  • the disease risk estimation model is This is a model trained using machine learning techniques. 3.
  • Appendix 12 A disease risk estimation device according to any one of appendix 1 to 11, A disease risk estimation system comprising: a measuring device that is installed in the footwear of the subject whose disease risk information is to be estimated, measures spatial acceleration and spatial angular velocity, generates the sensor data using the measured spatial acceleration and spatial angular velocity, and transmits the generated sensor data to the disease risk estimation device.
  • the disease risk estimation device comprises: A disease risk estimation system as described in Appendix 12, which displays the disease risk information optimized for the subject on a screen of a terminal device that can be viewed by a user.
  • (Appendix 14) The computer Acquire sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated; Using the acquired sensor data, a disease risk reflecting the risk for each disease is estimated; A disease risk estimation method that outputs disease risk information corresponding to the estimated disease risk.
  • (Appendix 15) The computer Calculating a gait index using the sensor data; inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of the disease risk related to the disease in response to input of data including the gait index; A disease risk estimation method as described in Appendix 14, which estimates disease risk information according to the disease risk score output from the disease risk estimation model.
  • Appendix 16 The computer A disease risk estimation method as described in Appendix 15, in which the disease risk score is multiplied by a weight for each disease corresponding to a rank indicating the risk of the disease, thereby calculating the disease risk score reflecting the risk of each disease.
  • Appendix 17 The computer A disease risk estimation method as described in Appendix 15, in which the disease risk score reflecting the risk of each combination of diseases is calculated by multiplying the disease risk score by a weight for each combination of diseases.
  • Appendix 18 The computer A disease risk estimation method described in Appendix 15, in which the disease risk for each disease is determined based on the trend of change in the disease risk score.
  • Appendix 19 The computer A disease risk estimation method as described in Appendix 15, which generates proposal information for insurance-related institutions based on the disease risk reflecting the risk for each disease.
  • Appendix 20 A process of acquiring sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated; A process of estimating a disease risk reflecting the risk for each disease using the acquired sensor data; A non-transitory computer-readable recording medium having recorded thereon a program for causing a computer to execute the process of: outputting disease risk information corresponding to the estimated disease risk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Provided is a disease risk estimation device which, in order to use sensor data measured in response to a foot movement to estimate a disease risk reflecting a risk of each disease, comprises: an acquisition unit that acquires sensor data measured in response to a foot movement of a target person who is an estimation target of the disease risk; a risk estimation unit that uses the acquired sensor data to estimate the disease risk reflecting the risk of each disease; and an output unit that outputs disease risk information according to the estimated disease risk.

Description

疾病リスク推定装置、疾病リスク推定システム、疾病リスク推定方法、および記録媒体DISEASE RISK ESTIMATION DEVICE, DISEASE RISK ESTIMATION SYSTEM, DISEASE RISK ESTIMATION METHOD, AND RECORDING MEDIUM

 本開示は、疾病リスク推定装置、疾病リスク推定システム、疾病リスク推定方法、および記録媒体に関する。 The present disclosure relates to a disease risk estimation device, a disease risk estimation system, a disease risk estimation method, and a recording medium.

 ヘルスケアへの関心の高まりに伴って、歩容に応じた情報を提供するサービスに注目が集まっている。例えば、靴等の履物に実装されたセンサによって計測されたセンサデータを用いて、歩容を解析する技術が開発されている。センサデータの時系列データには、身体状態と関連する歩行イベントに伴った特徴が表れる。歩行イベントに伴った特徴によって対象者の疾病リスクを推定できれば、健康保険や生命保険を扱う専門機関に対して、疾病リスクに応じた情報を提供できる。 As interest in healthcare grows, attention is being focused on services that provide information based on gait. For example, technology is being developed that analyzes gait using sensor data measured by sensors mounted in footwear such as shoes. Time-series sensor data contains characteristics associated with walking events related to physical conditions. If a subject's disease risk can be estimated based on the characteristics associated with walking events, information based on disease risk can be provided to specialized institutions that handle health insurance and life insurance.

 特許文献1には、日常生活における生活習慣に起因した内容に基づいて、多種多様な保険プランを提案する保険提案システムについて開示されている。特許文献1のシステムは、複数の歩行者における歩容情報と、歩容情報と対応付けられて記憶された過去の傷病を示す傷病履歴情報とが歩行者情報として蓄積された歩行者データベースを備える。特許文献1のシステムは、動きを検出するセンサ部を有する履物用モジュールから、ユーザの歩容情報を取得する。特許文献1のシステムは、歩行者情報を参照して、ユーザの歩容情報に応じて、保険料の指標となる指標値を算出する。 Patent Document 1 discloses an insurance proposal system that proposes a wide variety of insurance plans based on details arising from lifestyle habits in daily life. The system of Patent Document 1 includes a pedestrian database in which pedestrian information is accumulated, including gait information for multiple pedestrians and injury/illness history information indicating past injuries and illnesses that is stored in association with the gait information. The system of Patent Document 1 acquires the user's gait information from a footwear module that has a sensor unit that detects movement. The system of Patent Document 1 refers to the pedestrian information and calculates an index value that serves as an indicator for insurance premiums according to the user's gait information.

特開2020-197948号公報JP 2020-197948 A

 特許文献1の手法では、データベースに蓄積された歩行者情報を参照して、ユーザの歩容情報に応じた指標値を算出する。特許文献1の手法によれば、歩容情報と対応付けられた過去の傷病がデータベースに記憶されていれば、歩容情報に応じた指標値を算出できる。また、特許文献1の手法には、捻挫や骨折などの傷病の程度に応じて、歩行リスク値に重み付けをする例が開示されている。しかし、特許文献1の手法では、疾病ごとのリスクが反映された疾病リスクを推定できなかった。 The method of Patent Document 1 refers to pedestrian information stored in a database to calculate an index value corresponding to the user's gait information. According to the method of Patent Document 1, if past injuries and illnesses associated with gait information are stored in the database, an index value corresponding to gait information can be calculated. The method of Patent Document 1 also discloses an example of weighting the walking risk value according to the severity of injuries and illnesses such as sprains and fractures. However, the method of Patent Document 1 was not able to estimate disease risk that reflected the risk for each disease.

 本開示の目的は、足の動きに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定できる疾病リスク推定装置、疾病リスク推定システム、疾病リスク推定方法、および記録媒体を提供することにある。 The objective of the present disclosure is to provide a disease risk estimation device, a disease risk estimation system, a disease risk estimation method, and a recording medium that can estimate disease risk that reflects the risk of each disease using sensor data measured according to foot movement.

 本開示の一態様の疾病リスク推定装置は、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する取得部と、取得されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定するリスク推定部と、推定された疾病リスクに応じた疾病リスク情報を出力する出力部と、を備える。 A disease risk estimation device according to one embodiment of the present disclosure includes an acquisition unit that acquires sensor data measured according to foot movements of a subject for whom disease risk is to be estimated, a risk estimation unit that uses the acquired sensor data to estimate a disease risk that reflects the risk for each disease, and an output unit that outputs disease risk information according to the estimated disease risk.

 本開示の一態様の疾病リスク推定方法においては、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得し、取得されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定し、推定された疾病リスクに応じた疾病リスク情報を出力する。 In one embodiment of the disease risk estimation method disclosed herein, sensor data measured according to the foot movements of a subject for whom disease risk is to be estimated is acquired, the acquired sensor data is used to estimate disease risk reflecting the risk for each disease, and disease risk information corresponding to the estimated disease risk is output.

 本開示の一態様のプログラムは、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する処理と、取得されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する処理と、推定された疾病リスクに応じた疾病リスク情報を出力する処理と、をコンピュータに実行させる。 A program according to one embodiment of the present disclosure causes a computer to execute the following processes: acquiring sensor data measured according to the foot movements of a subject for whom a disease risk is to be estimated; estimating a disease risk that reflects the risk for each disease using the acquired sensor data; and outputting disease risk information according to the estimated disease risk.

 本開示によれば、足の動きに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定できる疾病リスク推定装置、疾病リスク推定システム、疾病リスク推定方法、および記録媒体を提供することが可能になる。 According to the present disclosure, it is possible to provide a disease risk estimation device, a disease risk estimation system, a disease risk estimation method, and a recording medium that can estimate disease risk that reflects the risk of each disease using sensor data measured according to foot movements.

本開示における疾病リスク推定システムの構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a disease risk estimation system according to the present disclosure. 本開示における疾病リスク推定システムが備える計測装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a measurement device provided in a disease risk estimation system in the present disclosure. FIG. 本開示における疾病リスク推定システムの計測装置の配置例を示す概念図である。1 is a conceptual diagram showing an example of the arrangement of measurement devices in a disease risk estimation system according to the present disclosure. 本開示における疾病リスク推定システムの計測装置に設定される座標系の一例を示す概念図である。1 is a conceptual diagram showing an example of a coordinate system set in a measurement device of a disease risk estimation system in the present disclosure. FIG. 本開示の説明で用いられる人体面の一例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of a human body surface used in the description of the present disclosure. 本開示における疾病リスク推定システムが備える疾病リスク推定装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure. FIG. 本開示の説明で用いられる歩行周期の一例を示す概念図である。FIG. 1 is a conceptual diagram showing an example of a walking cycle used in the description of the present disclosure. 本開示における疾病リスク推定システムにおける身体能力スコアの推定例を示す概念図である。1 is a conceptual diagram showing an example of an estimation of a physical ability score in a disease risk estimation system in the present disclosure. FIG. 本開示における疾病リスク推定システムにおける疾病リスクスコアの推定例を示す概念図である。1 is a conceptual diagram showing an example of a disease risk score estimation in the disease risk estimation system of the present disclosure. 本開示における疾病リスク推定システムにおける疾病リスクスコアの推定例を示す概念図である。1 is a conceptual diagram showing an example of a disease risk score estimation in the disease risk estimation system of the present disclosure. 本開示における疾病リスク推定システムにおける疾病リスクスコアの推定例を示す概念図である。1 is a conceptual diagram showing an example of a disease risk score estimation in the disease risk estimation system of the present disclosure. 本開示における疾病リスク推定システムの動作の一例を示すフローチャートである。1 is a flowchart showing an example of the operation of the disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a disease risk estimation system according to the present disclosure. 本開示における疾病リスク推定システムが備える疾病リスク推定装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure. FIG. 本開示における疾病リスク推定システムによって推定された疾病リスクスコアの時系列データの一例を示すグラフである。1 is a graph showing an example of time series data of disease risk scores estimated by the disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムによって推定された疾病リスクスコアの時系列データの一例を示すグラフである。1 is a graph showing an example of time series data of disease risk scores estimated by the disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムによって推定された疾病リスクスコアの時系列データの一例を示すグラフである。1 is a graph showing an example of time series data of disease risk scores estimated by the disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの動作の一例を示すフローチャートである。1 is a flowchart showing an example of the operation of the disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a disease risk estimation system according to the present disclosure. 本開示における疾病リスク推定システムが備える疾病リスク推定装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure. FIG. 本開示における疾病リスク推定システムの動作の一例を示すフローチャートである。1 is a flowchart showing an example of the operation of the disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムの適用例について説明するための概念図である。1 is a conceptual diagram for explaining an application example of a disease risk estimation system in the present disclosure. 本開示における疾病リスク推定システムが備える疾病リスク推定装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a disease risk estimation device provided in a disease risk estimation system in the present disclosure. FIG. 本開示における疾病リスク推定システムが備える疾病リスク推定装置の動作の一例について説明するためのフローチャートである。11 is a flowchart for explaining an example of the operation of a disease risk estimation device provided in a disease risk estimation system in the present disclosure. 本開示における制御や処理を実行するハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a hardware configuration for executing control and processing in the present disclosure.

 以下に、本開示を実施するための形態について図面を用いて説明する。本開示において、各実施形態の説明において使用される図面は、1以上の実施形態に関連付けられる。また、各図面に含まれる要素は、1以上の実施形態に当てはまりうる。以下に述べる実施形態には、本開示を実施するために技術的に好ましい限定がされているが、開示の範囲を以下に限定するものではない。以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。図面中の矢印の向きは、一例を示すものであり、データや信号等の向きを限定するものではない。 Below, the embodiments for implementing the present disclosure are described with reference to the drawings. In this disclosure, the drawings used in the description of each embodiment relate to one or more embodiments. Furthermore, the elements included in each drawing may apply to one or more embodiments. The embodiments described below are limited in a way that is technically preferable for implementing the present disclosure, but the scope of the disclosure is not limited to the following. In all drawings used in the description of the embodiments below, similar parts are given the same reference numerals unless there is a special reason. In the embodiments below, repeated description of similar configurations and operations may be omitted. The direction of the arrows in the drawings is an example and does not limit the direction of data, signals, etc.

 (第1実施形態)
 まず、本開示における疾病リスク推定システムの一例について図面を参照しながら説明する。本実施形態の疾病リスク推定システムは、疾病リスクの推定対象である対象者(ユーザ)の歩行に応じた足の動きに関するセンサデータを用いて、特定疾病に関する疾病リスクを推定する。本実施形態では、疾病ごとのリスクが反映された疾病リスクを推定する例をあげる。
First Embodiment
First, an example of a disease risk estimation system according to the present disclosure will be described with reference to the drawings. The disease risk estimation system of this embodiment estimates the disease risk of a specific disease using sensor data related to foot movements according to the walking of a subject (user) whose disease risk is to be estimated. In this embodiment, an example of estimating a disease risk reflecting the risk for each disease will be given.

 (構成)
 図1は、本開示における疾病リスク推定システム1の構成の一例を示すブロック図である。疾病リスク推定システム1は、計測装置10と疾病リスク推定装置13を備える。例えば、計測装置10は、疾病リスクの推定対象である対象者(ユーザ)の履物に設置される。例えば、疾病リスク推定装置13の機能は、対象者(ユーザ)の携帯する携帯端末にインストールされる。以下においては、計測装置10および疾病リスク推定装置13の構成について、個別に説明する。
(composition)
1 is a block diagram showing an example of the configuration of a disease risk estimation system 1 in the present disclosure. The disease risk estimation system 1 includes a measurement device 10 and a disease risk estimation device 13. For example, the measurement device 10 is installed in the footwear of a subject (user) whose disease risk is to be estimated. For example, the function of the disease risk estimation device 13 is installed in a mobile terminal carried by the subject (user). Below, the configurations of the measurement device 10 and the disease risk estimation device 13 will be described individually.

 〔計測装置〕
 図2は、計測装置10の構成の一例を示すブロック図である。計測装置10は、センサ110、制御部113、通信部115、電源117を有する。センサ110は、加速度センサ111と角速度センサ112を有する。センサ110には、加速度センサ111および角速度センサ112以外のセンサが含まれてもよい。センサ110に含まれうる加速度センサ111および角速度センサ112以外のセンサについては、説明を省略する。
[Measuring equipment]
2 is a block diagram showing an example of the configuration of the measurement device 10. The measurement device 10 has a sensor 110, a control unit 113, a communication unit 115, and a power source 117. The sensor 110 has an acceleration sensor 111 and an angular velocity sensor 112. The sensor 110 may include sensors other than the acceleration sensor 111 and the angular velocity sensor 112. Descriptions of sensors other than the acceleration sensor 111 and the angular velocity sensor 112 that may be included in the sensor 110 will be omitted.

 加速度センサ111は、3軸方向の加速度(空間加速度とも呼ぶ)を計測するセンサである。加速度センサ111は、足の動きに関する物理量として、加速度(空間加速度とも呼ぶ)を計測する。加速度センサ111は、計測した加速度を制御部113に出力する。例えば、加速度センサ111には、圧電型や、ピエゾ抵抗型、静電容量型等の方式のセンサを用いることができる。加速度センサ111として用いられるセンサは、加速度を計測できれば、限定を加えない。 The acceleration sensor 111 is a sensor that measures acceleration in three axial directions (also called spatial acceleration). The acceleration sensor 111 measures acceleration (also called spatial acceleration) as a physical quantity related to foot movement. The acceleration sensor 111 outputs the measured acceleration to the control unit 113. For example, the acceleration sensor 111 can be a piezoelectric type, a piezo-resistive type, a capacitance type, or other type of sensor. There are no limitations on the sensor used as the acceleration sensor 111 as long as it can measure acceleration.

 角速度センサ112は、3軸周りの角速度(空間角速度とも呼ぶ)を計測するセンサである。角速度センサ112は、足の動きに関する物理量として、角速度(空間角速度とも呼ぶ)を計測する。角速度センサ112は、計測した角速度を制御部113に出力する。例えば、角速度センサ112には、振動型や静電容量型等の方式のセンサを用いることができる。角速度センサ112として用いられるセンサは、角速度を計測できれば、限定を加えない。 Angular velocity sensor 112 is a sensor that measures angular velocity (also called spatial angular velocity) around three axes. Angular velocity sensor 112 measures angular velocity (also called spatial angular velocity) as a physical quantity related to foot movement. Angular velocity sensor 112 outputs the measured angular velocity to control unit 113. For example, a vibration type, capacitance type, or other type of sensor can be used as angular velocity sensor 112. There are no limitations on the sensor used as angular velocity sensor 112 as long as it can measure angular velocity.

 センサ110は、例えば、加速度や角速度を計測する慣性計測装置によって実現される。慣性計測装置の一例として、IMU(Inertial Measurement Unit)があげられる。IMUは、3軸方向の加速度を計測する加速度センサ111と、3軸周りの角速度を計測する角速度センサ112を含む。センサ110は、VG(Vertical Gyro)やAHRS(Attitude Heading Reference System)などの慣性計測装置によって実現されてもよい。また、センサ110は、GPS/INS(Global Positioning System/Inertial Navigation System)によって実現されてもよい。センサ110は、足の動きに関する物理量を計測できれば、慣性計測装置以外の装置によって実現されてもよい。 The sensor 110 is realized, for example, by an inertial measurement unit that measures acceleration and angular velocity. An example of an inertial measurement unit is an IMU (Inertial Measurement Unit). The IMU includes an acceleration sensor 111 that measures acceleration in three axial directions and an angular velocity sensor 112 that measures angular velocity around three axes. The sensor 110 may be realized by an inertial measurement unit such as a VG (Vertical Gyro) or an AHRS (Attitude Heading Reference System). The sensor 110 may also be realized by a GPS/INS (Global Positioning System/Inertial Navigation System). The sensor 110 may be realized by a device other than an inertial measurement unit as long as it can measure physical quantities related to foot movement.

 図3は、両足の靴100の中に、計測装置10が配置される一例を示す概念図である。図3の例では、足弓の裏側に当たる位置に、計測装置10が設置される。例えば、計測装置10は、靴100の中に挿入されるインソールに配置される。例えば、計測装置10は、靴100の底面に配置されてもよい。例えば、計測装置10は、靴100の本体に埋設されてもよい。計測装置10は、靴100から着脱できてもよいし、靴100から着脱できなくてもよい。計測装置10は、足の動きに関するセンサデータを計測できさえすれば、足弓の裏側ではない位置に設置されてもよい。また、計測装置10は、ユーザが履いている靴下や、ユーザが装着しているアンクレット等の装飾品に設置されてもよい。また、計測装置10は、足に直に貼り付けられたり、足に埋め込まれたりしてもよい。疾病リスクの推定が可能なデータを計測できれば、計測装置10は、片方の靴100の中に配置されてもよい。 3 is a conceptual diagram showing an example of the measurement device 10 being placed in the shoes 100 of both feet. In the example of FIG. 3, the measurement device 10 is placed at a position that corresponds to the back side of the arch of the foot. For example, the measurement device 10 is placed in an insole inserted into the shoe 100. For example, the measurement device 10 may be placed on the bottom surface of the shoe 100. For example, the measurement device 10 may be embedded in the body of the shoe 100. The measurement device 10 may be detachable from the shoe 100, or may not be detachable from the shoe 100. The measurement device 10 may be placed at a position other than the back side of the arch of the foot, as long as it can measure sensor data related to foot movement. The measurement device 10 may also be placed in socks worn by the user or in an accessory such as an anklet worn by the user. The measurement device 10 may also be attached directly to the foot or embedded in the foot. The measurement device 10 may also be placed in one of the shoes 100, as long as it can measure data that can be used to estimate disease risk.

 図3の例では、計測装置10(センサ110)を基準として、左右方向のx軸、前後方向のy軸、上下方向のz軸を含むローカル座標系が設定される。図3には、左足と右足とで同じ座標系が設定される例を示す。例えば、同じスペックで生産されたセンサ110が左右の靴100の中に配置される場合、左右の靴100に配置されるセンサ110の上下の向き(Z軸方向の向き)は、同じ向きである。この場合、左足に由来するセンサデータに設定されるローカル座標系の3軸と、右足に由来するセンサデータに設定されるローカル座標系の3軸とは、左右で同じである。本開示においては、x軸は左方を正とし、y軸は後方を正とし、z軸は上方を正とする。 In the example of FIG. 3, a local coordinate system is set with the measuring device 10 (sensor 110) as the reference, including an x-axis in the left-right direction, a y-axis in the front-back direction, and a z-axis in the up-down direction. FIG. 3 shows an example in which the same coordinate system is set for the left foot and the right foot. For example, when sensors 110 manufactured with the same specifications are placed in the left and right shoes 100, the up-down orientation (Z-axis orientation) of the sensors 110 placed in the left and right shoes 100 is the same. In this case, the three axes of the local coordinate system set for the sensor data derived from the left foot and the three axes of the local coordinate system set for the sensor data derived from the right foot are the same for the left and right. In this disclosure, the x-axis is positive to the left, the y-axis is positive backward, and the z-axis is positive upward.

 図4は、足弓の裏側に設置された計測装置10(センサ110)に設定されるローカル座標系(x軸、y軸、z軸)と、地面に対して設定される世界座標系(X軸、Y軸、Z軸)について説明するための概念図である。図4には、左足と右足とで異なる座標系が設定された例を示す。世界座標系(X軸、Y軸、Z軸)では、進行方向に正対した状態のユーザが直立した状態で、ユーザの横方向がX軸方向、ユーザの背面の方向がY軸方向、重力方向がZ軸方向に設定される。なお、図4の例は、ローカル座標系(x軸、y軸、z軸)と世界座標系(X軸、Y軸、Z軸)の関係を概念的に示すものであり、ユーザの歩行に応じて変動するローカル座標系と世界座標系の関係を正確に示すものではない。 FIG. 4 is a conceptual diagram for explaining the local coordinate system (x-axis, y-axis, z-axis) set in the measuring device 10 (sensor 110) installed on the back side of the arch, and the world coordinate system (x-axis, y-axis, z-axis) set with respect to the ground. FIG. 4 shows an example in which different coordinate systems are set for the left foot and the right foot. In the world coordinate system (x-axis, y-axis, z-axis), the user's lateral direction is set to the x-axis direction, the direction of the user's back is set to the y-axis direction, and the direction of gravity is set to the z-axis direction when the user is standing upright facing the direction of travel. Note that the example in FIG. 4 conceptually shows the relationship between the local coordinate system (x-axis, y-axis, z-axis) and the world coordinate system (x-axis, y-axis, z-axis), and does not accurately show the relationship between the local coordinate system and the world coordinate system, which changes according to the user's walking.

 図5は、人体に対して設定される面(人体面とも呼ぶ)について説明するための概念図である。本実施形態では、身体を左右に分ける矢状面、身体を前後に分ける冠状面、身体を水平に分ける水平面が定義される。なお、図5のように、足の中心線を進行方向に向けて直立した状態では、世界座標系とローカル座標系が一致するものとする。図5には、左足と右足とで異なる座標系が設定された例を示す。本実施形態においては、X軸(x軸)を回転軸とする矢状面内の回転をロール、Y軸(y軸)を回転軸とする冠状面内の回転をピッチ、Z軸(z軸)を回転軸とする水平面内の回転をヨーと定義する。また、X軸(x軸)を回転軸とする矢状面内の回転角をロール角、Y軸(y軸)を回転軸とする冠状面内の回転角をピッチ角、Z軸(z軸)を回転軸とする水平面内の回転角をヨー角と定義する。 FIG. 5 is a conceptual diagram for explaining the planes (also called human body planes) set for the human body. In this embodiment, a sagittal plane that divides the body into left and right, a coronal plane that divides the body into front and back, and a horizontal plane that divides the body horizontally are defined. As shown in FIG. 5, when the user stands upright with the center line of the foot facing the direction of travel, the world coordinate system and the local coordinate system are assumed to match. FIG. 5 shows an example in which different coordinate systems are set for the left and right feet. In this embodiment, the rotation in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll, the rotation in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch, and the rotation in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw. In addition, the rotation angle in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll angle, the rotation angle in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch angle, and the rotation angle in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw angle.

 制御部113(制御手段)は、加速度センサ111および角速度センサ112にセンサデータを計測させる。例えば、制御部113は、疾病リスク推定装置13から送信された計測開始信号に応じて、加速度センサ111および角速度センサ112に計測を開始させる。例えば、制御部113は、ユーザの歩行検知に応じて、加速度センサ111および角速度センサ112に計測を開始させてもよい。例えば、制御部113は、予め設定された所定期間を越えて両足の垂直方向の高さが同じであった後に、左右いずれかの足の進行方向への動き出しが検出された時点を起点として、歩隔の計測を開始する。また、制御部113は、予め設定された所定タイミングにおいて、歩隔の計測を開始するように構成されてもよい。 The control unit 113 (control means) causes the acceleration sensor 111 and the angular velocity sensor 112 to measure sensor data. For example, the control unit 113 causes the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to a measurement start signal transmitted from the disease risk estimation device 13. For example, the control unit 113 may cause the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to detection of the user walking. For example, the control unit 113 starts measuring the step width starting from the point in time when it is detected that either the left or right foot has started to move in the forward direction after the vertical heights of both feet have remained the same for a predetermined period of time. The control unit 113 may also be configured to start measuring the step width at a predetermined timing.

 制御部113は、加速度センサ111から、3軸方向の加速度を取得する。また、制御部113は、角速度センサ112から、3軸周りの角速度を取得する。例えば、制御部113は、取得された角速度および加速度等の物理量(アナログデータ)をAD変換(Analog-to-Digital Conversion)する。なお、加速度センサ111および角速度センサ112によって計測された物理量(アナログデータ)は、加速度センサ111および角速度センサ112の各々においてデジタルデータに変換されてもよい。例えば、角速度および加速度等の物理量(アナログデータ)をAD変換するAD変換回路が併設されてもよい。制御部113は、変換後のデジタルデータ(センサデータとも呼ぶ)を通信部115に出力する。例えば、制御部113は、センサデータを記憶部(図示しない)に一時的に記憶させてもよい。 The control unit 113 acquires the acceleration in three axial directions from the acceleration sensor 111. The control unit 113 also acquires the angular velocity around three axes from the angular velocity sensor 112. For example, the control unit 113 performs analog-to-digital conversion (ADC) of the acquired physical quantities (analog data) such as angular velocity and acceleration. The physical quantities (analog data) measured by the acceleration sensor 111 and the angular velocity sensor 112 may be converted to digital data in each of the acceleration sensor 111 and the angular velocity sensor 112. For example, an ADC circuit that performs ADC of the physical quantities (analog data) such as angular velocity and acceleration may be provided. The control unit 113 outputs the converted digital data (also called sensor data) to the communication unit 115. For example, the control unit 113 may temporarily store the sensor data in a storage unit (not shown).

 センサデータには、デジタルデータに変換された加速度データと、デジタルデータに変換された角速度データとが少なくとも含まれる。加速度データは、3軸方向の加速度ベクトルを含む。角速度データは、3軸周りの角速度ベクトルを含む。加速度データおよび角速度データには、それらのデータの取得時間が紐付けられる。また、制御部113は、加速度データおよび角速度データに対して、実装誤差や温度補正、直線性補正などの補正を加えてもよい。 The sensor data includes at least acceleration data converted into digital data and angular velocity data converted into digital data. The acceleration data includes acceleration vectors in three axial directions. The angular velocity data includes angular velocity vectors about three axes. The acceleration data and angular velocity data are linked to the time at which they were acquired. The control unit 113 may also apply corrections such as corrections for mounting errors, temperature corrections, and linearity corrections to the acceleration data and angular velocity data.

 例えば、制御部113は、後述する歩容指標のうち少なくともいずれかを計算してもよい。その場合、計測装置10は、算出された歩容指標を疾病リスク推定装置13に出力する。例えば、制御部113は、後述する身体能力の推定に用いられる特徴量を計算してもよい。その場合、計測装置10は、算出された特徴量を疾病リスク推定装置13に出力する。 For example, the control unit 113 may calculate at least one of the gait indices described below. In that case, the measurement device 10 outputs the calculated gait indices to the disease risk estimation device 13. For example, the control unit 113 may calculate a feature amount used to estimate physical ability described below. In that case, the measurement device 10 outputs the calculated feature amount to the disease risk estimation device 13.

 例えば、制御部113は、計測装置10の全体制御やデータ処理を行うマイクロコンピュータやマイクロコントローラによって実現される。例えば、制御部113は、CPU(Central Processing Unit)やRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等を有する。 For example, the control unit 113 is realized by a microcomputer or microcontroller that performs overall control of the measuring device 10 and performs data processing. For example, the control unit 113 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.

 通信部115(通信手段)は、制御部113からセンサデータを取得する。通信部115は、取得したセンサデータを疾病リスク推定装置13に送信する。通信部115から送信されたセンサデータは、疾病リスク推定装置13によって受信される。センサデータの送信タイミングについては、特に限定しない。例えば、通信部115は、予め設定された送信タイミングにおいて、センサデータを送信する。例えば、通信部115は、センサデータの計測に応じて、リアルタイムでそのセンサデータを送信する。例えば、通信部115は、所定期間に計測されたセンサデータを記憶しておき、予め設定されたタイミングにおいて、記憶されたセンサデータを一括で送信してもよい。例えば、通信部115(通信手段)は、疾病リスク推定装置13から計測開始信号を受信するように構成されてもよい。この場合、通信部115は、受信された計測開始信号を制御部113に出力する。 The communication unit 115 (communication means) acquires sensor data from the control unit 113. The communication unit 115 transmits the acquired sensor data to the disease risk estimation device 13. The sensor data transmitted from the communication unit 115 is received by the disease risk estimation device 13. There are no particular limitations on the timing of transmitting the sensor data. For example, the communication unit 115 transmits the sensor data at a preset transmission timing. For example, the communication unit 115 transmits the sensor data in real time according to the measurement of the sensor data. For example, the communication unit 115 may store sensor data measured over a predetermined period and transmit the stored sensor data all at once at a preset timing. For example, the communication unit 115 (communication means) may be configured to receive a measurement start signal from the disease risk estimation device 13. In this case, the communication unit 115 outputs the received measurement start signal to the control unit 113.

 例えば、通信部115は、無線通信を介して、疾病リスク推定装置13にセンサデータを送信する。例えば、通信部115は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、疾病リスク推定装置13にセンサデータを送信する。通信部115の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。通信部115は、ケーブルなどの有線を介して、疾病リスク推定装置13にセンサデータを送信してもよい。 For example, the communication unit 115 transmits the sensor data to the disease risk estimation device 13 via wireless communication. For example, the communication unit 115 transmits the sensor data to the disease risk estimation device 13 via a wireless communication function (not shown) that complies with standards such as Bluetooth (registered trademark) or WiFi (registered trademark). The communication function of the communication unit 115 may be in accordance with standards other than Bluetooth (registered trademark) or WiFi (registered trademark). The communication unit 115 may transmit the sensor data to the disease risk estimation device 13 via a wired connection such as a cable.

 電源117は、計測装置10が動作するための電力を供給する電池である。例えば、電源117は、コイン型やボタン型のように、薄型形状の電池によって実現される。例えば、電源117は、リチウム一次電池や、酸化銀電池、アルカリボタン電池、空気亜鉛電池などの一次電池によって実現される。一次電池によって実現される場合、電源117は、高寿命な電池によって実現されることが好ましい。また、電源117は、充電が可能な二次電池によって実現されてもよい。二次電池によって実現される場合、電源117は、有線充電可能な電池であってもよいし、無線給電可能な電池であってもよい。電源117が無線給電可能であれば、玄関や下駄箱などのように履物が置かれる場所に無線給電装置を配置しておけばよい。計測装置10が搭載された履物を無線給電装置に重ねておけば、未使用時において計測装置10を適宜充電できる。 The power source 117 is a battery that supplies power for the measurement device 10 to operate. For example, the power source 117 is realized by a thin battery such as a coin type or button type. For example, the power source 117 is realized by a primary battery such as a lithium primary battery, a silver oxide battery, an alkaline button battery, or an air zinc battery. When realized by a primary battery, the power source 117 is preferably realized by a long-life battery. The power source 117 may also be realized by a rechargeable secondary battery. When realized by a secondary battery, the power source 117 may be a battery that can be charged via a wired connection or a battery that can be wirelessly powered. If the power source 117 is capable of wireless power supply, a wireless power supply device may be placed in a place where footwear is placed, such as an entrance or a shoe cupboard. If footwear equipped with the measurement device 10 is placed on the wireless power supply device, the measurement device 10 can be appropriately charged when not in use.

 〔疾病リスク推定装置〕
 図6は、疾病リスク推定装置13の構成の一例を示すブロック図である。疾病リスク推定装置13は、取得部131、波形処理部132、歩容指標計算部133、記憶部134、身体能力推定部135、疾病リスク推定部136、および出力部137を有する。波形処理部132、歩容指標計算部133、身体能力推定部135、および疾病リスク推定部136は、リスク推定部15を構成する。波形処理部132および歩容指標計算部133は、計算部130を構成する。身体能力推定部135および疾病リスク推定部136は、推定部140を構成する。
[Disease risk estimation device]
6 is a block diagram showing an example of the configuration of the disease risk estimation device 13. The disease risk estimation device 13 has an acquisition unit 131, a waveform processing unit 132, a gait index calculation unit 133, a storage unit 134, a physical ability estimation unit 135, a disease risk estimation unit 136, and an output unit 137. The waveform processing unit 132, the gait index calculation unit 133, the physical ability estimation unit 135, and the disease risk estimation unit 136 constitute the risk estimation unit 15. The waveform processing unit 132 and the gait index calculation unit 133 constitute the calculation unit 130. The physical ability estimation unit 135 and the disease risk estimation unit 136 constitute the estimation unit 140.

 取得部131(取得手段)は、計測装置10からセンサデータを取得する。取得部131は、無線通信を介して、計測装置10からセンサデータを受信する。例えば、取得部131は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、計測装置10からセンサデータを受信する。なお、計測装置10と通信できさえすれば、取得部131の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。取得部131は、ケーブルなどの有線を介して、計測装置10からセンサデータを受信してもよい。例えば、取得部131は、計測装置10によって算出された歩容指標や特徴量を取得してもよい。 The acquisition unit 131 (acquisition means) acquires sensor data from the measurement device 10. The acquisition unit 131 receives the sensor data from the measurement device 10 via wireless communication. For example, the acquisition unit 131 receives the sensor data from the measurement device 10 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark). Note that the communication function of the acquisition unit 131 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 10. The acquisition unit 131 may receive the sensor data from the measurement device 10 via a wired connection such as a cable. For example, the acquisition unit 131 may acquire gait indices and feature amounts calculated by the measurement device 10.

 また、取得部131は、ユーザの身体情報(属性)を取得する。身体情報は、性別、生年月日、身長、および体重を含む。生年月日は、年齢に変換される。例えば、身体情報は、入力装置(図示しない)を介して入力される。例えば、身体情報は、ユーザが使用する携帯端末を介して入力される。例えば、身体情報は、記憶部134に予め記憶させておけばよい。身体情報は、ユーザによる入力に応じて、任意のタイミングで更新されてもよい。 The acquisition unit 131 also acquires physical information (attributes) of the user. The physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. For example, the physical information is input via an input device (not shown). For example, the physical information is input via a mobile terminal used by the user. For example, the physical information may be stored in advance in the storage unit 134. The physical information may be updated at any time in response to input by the user.

 波形処理部132(波形処理手段)は、取得部131からセンサデータを取得する。波形処理部132は、センサデータに含まれる3軸方向の加速度および3軸周りの角速度の時系列データから、一歩行周期分の時系列データを抽出する。一歩行周期分の時系列データを歩行波形データとも呼ぶ。波形処理部132は、センサデータの時系列データから検出される歩行イベントのタイミングに基づいて、歩行波形データを抽出する。例えば、波形処理部132は、踵接地のタイミングを始点とし、次の踵接地のタイミングを終点とする歩行波形データを抽出する。 The waveform processing unit 132 (waveform processing means) acquires sensor data from the acquisition unit 131. The waveform processing unit 132 extracts time series data for one walking cycle from the time series data of acceleration in three axial directions and angular velocity around three axes contained in the sensor data. The time series data for one walking cycle is also called walking waveform data. The waveform processing unit 132 extracts walking waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the waveform processing unit 132 extracts walking waveform data that starts at the timing of a heel strike and ends at the timing of the next heel strike.

 図7は、右足を基準とする一歩行周期について説明するための概念図である。左足を基準とする一歩行周期も、右足と同様である。図7の横軸は、右足の踵が地面に着地した時点を起点とし、次に右足の踵が地面に着地した時点を終点とする右足の一歩行周期を示す。図7の横軸は、一歩行周期を100%として正規化されている。一歩行周期を100%で正規化することを第1正規化と呼ぶ。片足の一歩行周期は、足の裏側の少なくとも一部が地面に接している立脚相と、足の裏側が地面から離れている遊脚相とに大別される。立脚相は、足の裏側の少なくとも一部が地面に接している期間である。立脚相は、さらに、立脚初期T1、立脚中期T2、立脚終期T3、遊脚前期T4に細分される。遊脚相は、足の裏側が地面から離れている期間である。遊脚相は、さらに、遊脚初期T5、遊脚中期T6、遊脚終期T7に細分される。図7の横軸は、立脚相が60%、遊脚相が40%になるように正規化されている。立脚相が60%、遊脚相が40%になるように歩行波形データを正規化することを第2正規化と呼ぶ。なお、図7に示す期間は一例であって、一歩行周期を構成する期間や、それらの期間の名称等を限定するものではない。 Figure 7 is a conceptual diagram for explaining a step cycle based on the right foot. The step cycle based on the left foot is the same as that of the right foot. The horizontal axis of Figure 7 shows one walking cycle of the right foot, starting from the point when the heel of the right foot lands on the ground and ending at the point when the heel of the right foot lands on the ground. The horizontal axis of Figure 7 is normalized with the step cycle as 100%. Normalizing one walking cycle to 100% is called the first normalization. One walking cycle of one foot is broadly divided into a stance phase in which at least a part of the sole of the foot is in contact with the ground and a swing phase in which the sole of the foot is off the ground. The stance phase is a period in which at least a part of the sole of the foot is in contact with the ground. The stance phase is further divided into an early stance phase T1, a mid stance phase T2, a final stance phase T3, and an early swing phase T4. The swing phase is a period in which the sole of the foot is off the ground. The swing phase is further divided into early swing T5, mid swing T6, and final swing T7. The horizontal axis in FIG. 7 is normalized so that the stance phase is 60% and the swing phase is 40%. Normalizing the gait waveform data so that the stance phase is 60% and the swing phase is 40% is called second normalization. Note that the periods shown in FIG. 7 are merely examples, and do not limit the periods that make up a step cycle or the names of these periods.

 図7のように、歩行においては、複数の事象が発生する。歩行においては、歩行における複数の事象を歩行イベントとも呼ぶ。P1は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。P2は、右足の足裏が接地した状態で、左足の爪先が地面から離れる事象(反対足爪先離地)を表す(OTO:Opposite Toe Off)。P3は、右足の足裏が接地した状態で、右足の踵が持ち上がる事象(踵持ち上がり)を表す(HR:Heel Rise)。P4は、左足の踵が接地した事象(反対足踵接地)である(OHS:Opposite Heel Strike)。P5は、左足の足裏が接地した状態で、右足の爪先が地面から離れる事象(爪先離地)を表す(TO:Toe Off)。P6は、左足の足裏が接地した状態で、左足と右足が交差する事象(足交差)を表す(FA:Foot Adjacent)。P7は、左足の足裏が接地した状態で、右足の脛骨が地面に対してほぼ垂直になる事象(脛骨垂直)を表す(TV:Tibia Vertical)。P8は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。P8は、P1から始まる歩行周期の終点に相当するとともに、次の歩行周期の起点に相当する。なお、図7に示す歩行イベントは一例であって、歩行において発生する事象や、それらの事象の名称を限定するものではない。 As shown in Figure 7, multiple events occur during walking. Multiple events during walking are also called walking events. P1 represents the event of the heel of the right foot touching the ground (heel strike) (HS: Heel Strike). P2 represents the event of the toe of the left foot lifting off the ground (opposite toe off) while the sole of the right foot is on the ground (OTO: Opposite Toe Off). P3 represents the event of the right heel lifting off the ground (heel rise) while the sole of the right foot is on the ground (HR: Heel Rise). P4 represents the event of the left heel touching the ground (opposite heel strike) (OHS: Opposite Heel Strike). P5 represents the event of the right toe lifting off the ground (toe off) while the sole of the left foot is on the ground (TO: Toe Off). P6 represents an event in which the left and right feet cross (foot crossing) with the sole of the left foot touching the ground (FA: Foot Adjacent). P7 represents an event in which the tibia of the right foot is nearly perpendicular to the ground with the sole of the left foot touching the ground (TV: Tibia Vertical). P8 represents an event in which the heel of the right foot touches the ground (heel strike) (HS: Heel Strike). P8 corresponds to the end of the walking cycle that begins with P1, and corresponds to the starting point of the next walking cycle. Note that the walking events shown in Figure 7 are merely examples, and do not limit the events that occur during walking or the names of those events.

 踵接地のタイミングは、進行方向加速度(Y方向加速度)の時系列データに表れる極大ピークの直後の極小ピークのタイミングである。踵接地タイミングの目印になる極大ピークは、一歩行周期分の歩行波形データの最大ピークに相当する。連続する踵接地の間の区間が、一歩行周期に相当する。爪先離地のタイミングは、進行方向加速度(Y方向加速度)の時系列データに変動が表れない立脚相の期間の後に表れる極大ピークの立ち上がりのタイミングである。ロール角が最小のタイミングと、ロール角が最大のタイミングとの中点のタイミングが、立脚中期に相当する。 The timing of heel strike is the timing of the minimum peak immediately after the maximum peak that appears in the time series data of forward acceleration (Y-direction acceleration). The maximum peak that marks the timing of heel strike corresponds to the maximum peak of the gait waveform data for one step cycle. The section between successive heel strikes corresponds to one step cycle. The timing of toe off is the timing of the rise of the maximum peak that appears after the stance phase period in which no fluctuations appear in the time series data of forward acceleration (Y-direction acceleration). The midpoint between the timing of the minimum roll angle and the timing of the maximum roll angle corresponds to the mid-stance phase.

 波形処理部132は、抽出された一歩行周期分の歩行波形データの時間を、0~100%(パーセント)の歩行周期に正規化(第1正規化)する。0~100%の歩行周期に含まれる1%や10%などのタイミングを、歩行フェーズとも呼ぶ。また、波形処理部132は、第1正規化された一歩行周期分の歩行波形データに関して、立脚相が60%、遊脚相が40%になるように正規化(第2正規化)する。歩行波形データを第2正規化すれば、特徴量が抽出される歩行フェーズのずれを低減できる。波形処理部132は、正規化された歩行波形データを歩容指標計算部133に出力する。 The waveform processing unit 132 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent). The timing of 1%, 10%, etc. included in the 0 to 100% walking cycle is also called a walking phase. The waveform processing unit 132 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%. By second normalizing the walking waveform data, it is possible to reduce the deviation in the walking phase from which feature values are extracted. The waveform processing unit 132 outputs the normalized walking waveform data to the gait index calculation unit 133.

 例えば、波形処理部132は、進行方向加速度(Y方向加速度)を用いて、一歩行周期分の歩行波形データを抽出/正規化する。波形処理部132は、進行方向加速度(Y方向加速度)以外の加速度/角速度に関しては、進行方向加速度(Y方向加速度)の歩行周期に合わせて、一歩行周期分の歩行波形データを抽出/正規化する。また、波形処理部132は、3軸周りの角速度の時系列データを積分することで、3軸周りの角度の時系列データを生成してもよい。その場合、波形処理部132は、3軸周りの角度に関しても、進行方向加速度(Y方向加速度)の歩行周期に合わせて、一歩行周期分の歩行波形データを抽出/正規化する。 For example, the waveform processing unit 132 extracts and normalizes walking waveform data for one step cycle using the forward acceleration (Y-direction acceleration). For accelerations/angular velocities other than the forward acceleration (Y-direction acceleration), the waveform processing unit 132 extracts and normalizes walking waveform data for one step cycle in accordance with the walking cycle of the forward acceleration (Y-direction acceleration). The waveform processing unit 132 may also generate time series data of angles around three axes by integrating time series data of angular velocities around three axes. In that case, the waveform processing unit 132 extracts and normalizes walking waveform data for one step cycle in accordance with the walking cycle of the forward acceleration (Y-direction acceleration) for angles around three axes as well.

 波形処理部132は、進行方向加速度(Y方向加速度)以外の加速度/角速度を用いて、一歩行周期分の歩行波形データを抽出/正規化してもよい。例えば、波形処理部132は、垂直方向加速度(Z方向加速度)の時系列データから、踵接地や爪先離地を検出してもよい(図面は省略)。踵接地のタイミングは、垂直方向加速度(Z方向加速度)の時系列データに表れる急峻な極小ピークのタイミングである。急峻な極小ピークのタイミングにおいては、垂直方向加速度(Z方向加速度)の値がほぼ0になる。踵接地のタイミングの目印になる極小ピークは、一歩行周期分の歩行波形データの最小ピークに相当する。連続する踵接地の間の区間が、一歩行周期である。爪先離地のタイミングは、垂直方向加速度(Z方向加速度)の時系列データが、踵接地の直後の極大ピークの後に変動の小さい区間を経た後に、なだらかに増大する途中の変曲点のタイミングである。また、波形処理部132は、進行方向加速度(Y方向加速度)および垂直方向加速度(Z方向加速度)の両方を用いて、一歩行周期分の歩行波形データを抽出/正規化してもよい。また、波形処理部132は、進行方向加速度(Y方向加速度)および垂直方向加速度(Z方向加速度)以外の加速度や角速度、角度等を用いて、一歩行周期分の歩行波形データを抽出/正規化してもよい。 The waveform processing unit 132 may extract/normalize the walking waveform data for one step cycle using acceleration/angular velocity other than the forward acceleration (Y-direction acceleration). For example, the waveform processing unit 132 may detect heel strike and toe lift from the time series data of vertical acceleration (Z-direction acceleration) (not shown in the drawing). The timing of heel strike is the timing of a steep minimum peak that appears in the time series data of vertical acceleration (Z-direction acceleration). At the timing of the steep minimum peak, the value of the vertical acceleration (Z-direction acceleration) becomes almost 0. The minimum peak that marks the timing of heel strike corresponds to the minimum peak of the walking waveform data for one step cycle. The section between successive heel strikes is the one step cycle. The timing of toe lift is the timing of an inflection point in the middle of the time series data of vertical acceleration (Z-direction acceleration) gradually increasing after a section of small fluctuation following the maximum peak immediately after heel strike. The waveform processing unit 132 may also extract/normalize the walking waveform data for one step cycle using both the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration). The waveform processing unit 132 may also extract/normalize the walking waveform data for one step cycle using acceleration, angular velocity, angle, etc. other than the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration).

 波形処理部132は、歩行波形データから、身体能力の推定に用いられる特徴量(身体能力特徴量)を抽出する。波形処理部132は、少なくとも一つの身体能力の推定に用いられる身体能力特徴量を抽出する。例えば、波形処理部132は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力のうち少なくともいずれかの推定に用いられる身体能力特徴量を抽出する。例えば、波形処理部132は、予め設定された条件に従って、歩行フェーズクラスターごとの身体能力特徴量を抽出する。歩行フェーズクラスターは、時間的に連続する歩行フェーズを統合したクラスターである。歩行フェーズクラスターは、少なくとも一つの歩行フェーズを含む。歩行フェーズクラスターには、単一の歩行フェーズも含まれる。波形処理部132は、抽出された身体能力特徴量を身体能力推定部135に出力する。 The waveform processing unit 132 extracts features (physical ability features) used to estimate physical abilities from the walking waveform data. The waveform processing unit 132 extracts physical ability features used to estimate at least one physical ability. For example, the waveform processing unit 132 extracts physical ability features used to estimate at least one of physical abilities such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. For example, the waveform processing unit 132 extracts physical ability features for each walking phase cluster according to preset conditions. A walking phase cluster is a cluster that integrates walking phases that are consecutive in time. A walking phase cluster includes at least one walking phase. A walking phase cluster also includes a single walking phase. The waveform processing unit 132 outputs the extracted physical ability features to the physical ability estimation unit 135.

 歩容指標計算部133(歩容指標計算手段)は、正規化された歩行波形データを波形処理部132から取得する。歩容指標計算部133は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する。正規化された歩行波形データを用いて算出できれば、算出される歩容指標については、特に限定を加えない。例えば、歩容指標計算部133は、距離や高さ、角度、速度、時間、フレイルレベル、CPEI(Center of Pressure Exclusion Index)などに関する歩容指標を計算する。以下において、代表的な歩容指標をあげる。以下の歩容指標の具体的な計算方法については、省略する。 The gait index calculation unit 133 (gait index calculation means) acquires normalized gait waveform data from the waveform processing unit 132. The gait index calculation unit 133 uses the normalized gait waveform data to calculate gait indices used to estimate physical ability. There are no particular limitations on the gait indices to be calculated, so long as they can be calculated using normalized gait waveform data. For example, the gait index calculation unit 133 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc. Representative gait indices are listed below. Specific calculation methods for the following gait indices will be omitted.

 例えば、歩容指標計算部133は、歩容指標として、距離や高さに関する指標を計算する。例えば、歩容指標計算部133は、歩幅や、外回し距離、足上げ高さ、FTC(Foot Clearance)、MTC(Minimum Toe Clearance)を計算する。歩幅は、歩行中における前足と後足との距離を示す。外回し距離は、遊脚相において、進行方向に対して足が外側に離れた距離の最大値を示す。足上げ高さは、遊脚相において、計測装置10(センサ110)と地面との距離の最大値を示す。FTCは、遊脚相における踵と地面との距離の最大値を示す。MTCは、遊脚相における爪先と地面との距離の最小値を示す。 For example, the gait index calculation unit 133 calculates indices related to distance and height as gait indices. For example, the gait index calculation unit 133 calculates stride length, turning distance, foot lift height, FTC (Foot Clearance), and MTC (Minimum Toe Clearance). Stride length indicates the distance between the front foot and the rear foot while walking. Turning distance indicates the maximum distance that the foot is moved outward in the direction of travel during the swing phase. Foot lift height indicates the maximum distance between the measuring device 10 (sensor 110) and the ground during the swing phase. FTC indicates the maximum distance between the heel and the ground during the swing phase. MTC indicates the minimum distance between the toe and the ground during the swing phase.

 例えば、歩容指標計算部133は、歩容指標として、角度に関する指標を計算する。例えば、歩容指標計算部133は、接地角度や、離地角度、爪先の向き、踵接地のロール角、爪先離地のロール角、遊脚ピーク角速度、母趾角を計算する。接地角度は、踵接地時において、足裏面と地面とがなす角度の最大値を示す。離地角度は、遊脚相において、足裏面と地面とがなす角度を示す。爪先の向きは、遊脚相において、進行方向に対する爪先の向きの平均値を示す。踵接地のロール角は、後方の視座から見て、踵接地時における足首と地面とのなす角度である。爪先離地のロール角は、後方の視座から見て、蹴り出し時における足首と地面とのなす角度である。遊脚ピーク角速度は、蹴り出し直後から爪先が地面に最近接するまでの区間における足関節背屈方向の角速度である。母趾角は、足の親指が人差し指側へ傾いている角度を示す。具体的には、母趾角は、第一中足骨の中心線と第一基節骨の中心線とのなす角である。 For example, the gait index calculation unit 133 calculates indexes related to angles as gait indices. For example, the gait index calculation unit 133 calculates the contact angle, the take-off angle, the toe direction, the heel contact roll angle, the toe off roll angle, the swing leg peak angular velocity, and the big toe angle. The contact angle indicates the maximum angle between the sole of the foot and the ground at heel contact. The take-off angle indicates the angle between the sole of the foot and the ground during the swing phase. The toe direction indicates the average value of the direction of the toe relative to the direction of travel during the swing phase. The heel contact roll angle is the angle between the ankle and the ground at heel contact as viewed from a rear perspective. The toe off roll angle is the angle between the ankle and the ground at push-off as viewed from a rear perspective. The swing leg peak angular velocity is the angular velocity in the ankle dorsiflexion direction in the section from immediately after push-off until the toe comes closest to the ground. The hallux angle indicates the angle at which the big toe is tilted toward the index toe. Specifically, the hallux angle is the angle between the center line of the first metatarsal bone and the center line of the first proximal phalanx.

 例えば、歩容指標計算部133は、歩容指標として、速度に関する指標を計算する。例えば、歩容指標計算部133は、歩行速度や、ケイデンス、遊脚時最大速度を計算する。歩行速度は、歩行における速さを示す。ケイデンスは、1分間当たりの歩数を示す。遊脚時最大速度は、遊脚相において足を振り出す速度を示す。 For example, the gait index calculation unit 133 calculates an index related to speed as a gait index. For example, the gait index calculation unit 133 calculates walking speed, cadence, and maximum swing speed. Walking speed indicates the walking speed. Cadence indicates the number of steps per minute. Maximum swing speed indicates the speed at which the leg is swung out during the swing phase.

 例えば、歩容指標計算部133は、歩容指標として、時間に関する指標を計算する。例えば、歩容指標計算部133は、立脚時間や、荷重時間、足底接地時間、蹴り出し時間、遊脚時間、DST(Double Support Time)を計算する。立脚時間は、歩行中に足が地面に接地している時間を示す。立脚時間は、荷重時間、足底接地時間、および蹴り出し時間の和である。荷重時間は、立脚相において、踵が地面に接地してから爪先が地面に接地するまでの時間である。足底接地時間は、立脚相において、足底全体が地面に接地して、足底と地面が水平になっている時間である。蹴り出し時間は、立脚相において、足底接地の状態から爪先が地面を蹴り出すまでの時間である。遊脚時間は、歩行中に、足が地面から離れている時間を示す。DSTは、DST1とDST2に分けられる。DST1は、両足が同時に地面に接地している期間において、計測装置10(センサ110)の実装された方の足が反対足よりも前方にある時間を示す。DST2は、両足が同時に地面に接地している期間において、計測装置10(センサ110)の実装された方の足が反対足よりも後方にある時間を示す。 For example, the gait index calculation unit 133 calculates time-related indices as gait indices. For example, the gait index calculation unit 133 calculates stance time, load time, sole contact time, push-off time, swing time, and DST (Double Support Time). Stance time indicates the time that the foot is on the ground while walking. Stance time is the sum of load time, sole contact time, and push-off time. Load time is the time from when the heel touches the ground until the toe touches the ground during the stance phase. Sole contact time is the time during the stance phase when the entire sole of the foot is on the ground and the sole of the foot is horizontal to the ground. Push-off time is the time from when the sole of the foot is on the ground until the toe pushes off the ground during the stance phase. Swing time indicates the time that the foot is off the ground while walking. DST is divided into DST1 and DST2. DST1 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is in front of the other foot during a period when both feet are on the ground at the same time. DST2 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is behind the other foot during a period when both feet are on the ground at the same time.

 例えば、歩容指標計算部133は、歩容指標として、フレイルレベルやCPEI(Center of Pressure Exclusion Index)を計算する。フレイルレベルは、歩行状態に応じたフレイル状態の推定値である。例えば、歩容指標計算部133は、フレイルレベルとして、健康を示す判定結果R1、フレイルの可能性を示す判定結果R2、フレイルの可能性が高い判定結果R3などの指標を推定する。CPEIは、立脚相の期間中に地面にかかる足圧中心部の移動の膨らむ割合の推定値を示す。 For example, the gait index calculation unit 133 calculates a frailty level and a center of pressure exclusion index (CPEI) as the gait index. The frailty level is an estimated value of a frailty state according to a walking state. For example, the gait index calculation unit 133 estimates an index such as a judgment result R1 indicating health, a judgment result R2 indicating a possibility of frailty, and a judgment result R3 indicating a high possibility of frailty as the frailty level. The CPEI indicates an estimated value of a swelling rate of the movement of the center of foot pressure applied to the ground during the stance phase.

 記憶部134(記憶手段)は、歩行波形データから抽出された身体能力特徴量を用いて身体能力を推定する身体能力推定モデル(後述する)を記憶する。例えば、身体能力は、握力、動的バランス、下肢筋力、移動能力、および静的バランスのうち少なくともいずれかである。身体能力は、握力、動的バランス、下肢筋力、移動能力、および静的バランス以外が含まれてもよい。記憶部134は、複数の被験者に関して学習された身体能力推定モデルを記憶する。例えば、身体能力推定モデルは、歩行波形データから抽出された身体能力特徴量の入力に応じて、身体能力に関する指標(身体能力スコア)を出力する。 The memory unit 134 (storage means) stores a physical ability estimation model (described later) that estimates physical ability using physical ability features extracted from the walking waveform data. For example, the physical ability is at least one of grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance. The physical ability may include other than grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance. The memory unit 134 stores physical ability estimation models trained for multiple subjects. For example, the physical ability estimation model outputs an index of physical ability (physical ability score) in response to input of physical ability features extracted from the walking waveform data.

 また、記憶部134は、身体情報、歩容指標、および身体能力スコアを用いて疾病リスクを推定する疾病リスク推定モデル(後述する)を記憶する。疾病リスクは、特定疾病にかかるリスクを示す。例えば、特定疾病には、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などが含まれる。例えば、特定疾病には、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などが含まれる。特定疾病には、上述以外の疾病が含まれてもよい。記憶部134は、複数の被験者に関して学習された疾病リスク推定モデルを記憶する。例えば、疾病リスク推定モデルは、身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病リスクに関する指標(疾病リスクスコア)を出力する。 The memory unit 134 also stores a disease risk estimation model (described later) that estimates disease risk using physical information, gait index, and physical ability score. The disease risk indicates the risk of contracting a specific disease. For example, specific diseases include gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, specific diseases include lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome. Specific diseases may include diseases other than those mentioned above. The memory unit 134 stores a disease risk estimation model trained on multiple subjects. For example, the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of physical information, gait index, and physical ability score.

 例えば、身体能力推定モデルおよび疾病リスク推定モデルは、製品の工場出荷時において、記憶部134に記憶させておけばよい。身体能力推定モデルおよび疾病リスク推定モデルは、疾病リスク推定装置13をユーザが使用する前のキャリブレーション時等のタイミングにおいて、記憶部134に記憶させてもよい。例えば、外部のサーバ等の記憶装置(図示しない)に保存された身体能力推定モデルおよび疾病リスク推定モデルが用いられてもよい。その場合、その記憶装置と接続されたインターフェース(図示しない)を介して、身体能力推定モデルおよび疾病リスク推定モデルにアクセスできればよい。 For example, the physical ability estimation model and disease risk estimation model may be stored in the memory unit 134 when the product is shipped from the factory. The physical ability estimation model and disease risk estimation model may also be stored in the memory unit 134 at a timing such as at the time of calibration before the disease risk estimation device 13 is used by a user. For example, a physical ability estimation model and disease risk estimation model stored in a storage device (not shown) such as an external server may be used. In that case, it is sufficient if the physical ability estimation model and disease risk estimation model can be accessed via an interface (not shown) connected to the storage device.

 また、記憶部134は、ユーザの身体情報(属性)を記憶する。身体情報は、性別、生年月日、身長、および体重を含む。生年月日は、年齢に変換される。身体情報は、任意のタイミングで更新されてもよい。 The storage unit 134 also stores the user's physical information (attributes). The physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. The physical information may be updated at any time.

 身体能力推定部135(身体能力推定手段)は、歩行波形データから抽出された身体能力特徴量を波形処理部132から取得する。また、身体能力推定部135は、記憶部134に記憶された身体情報(属性)を取得する。身体能力推定部135は、身体能力特徴量および身体情報(属性)を用いて、身体能力スコアを推定する。身体能力推定部135は、記憶部134に記憶された身体能力推定モデルに、身体能力特徴量とユーザの身体情報(属性)を入力する。例えば、身体能力推定部135は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスのうち少なくともいずれかの身体能力に関する身体能力スコアを推定する。身体能力推定部135による身体能力スコアの推定に関しては、後述する。身体能力推定部135は、身体能力推定モデルから出力される身体能力スコアを、疾病リスク推定部136に出力する。 The physical ability estimation unit 135 (physical ability estimation means) acquires the physical ability feature extracted from the walking waveform data from the waveform processing unit 132. The physical ability estimation unit 135 also acquires physical information (attributes) stored in the memory unit 134. The physical ability estimation unit 135 estimates a physical ability score using the physical ability feature and the physical information (attributes). The physical ability estimation unit 135 inputs the physical ability feature and the user's physical information (attributes) to a physical ability estimation model stored in the memory unit 134. For example, the physical ability estimation unit 135 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. The estimation of the physical ability score by the physical ability estimation unit 135 will be described later. The physical ability estimation unit 135 outputs the physical ability score output from the physical ability estimation model to the disease risk estimation unit 136.

 例えば、身体能力推定部135は、歩容指標計算部133によって算出された歩容指標を用いて、身体情報(属性)を推定してもよい。例えば、身体能力推定部135は、身体情報(属性)に相関を有する歩容指標を用いて、身体情報(属性)を推定する。例えば、加齢によって筋力が低下すると、歩行速度やケイデンスなどに低下がみられる。そのため、歩行速度やケイデンスなどを用いれば、正確な年齢までは推定できなくても、年代くらいは推定できる。例えば、身長と歩幅との間にも相関関係がある。そのため、歩幅を用いれば、正確な年齢までは推定できなくても、年代くらいは推定できる。また、特定の歩容指標を組み合わせれば、より正確に年齢を推定することも可能である。このように構成されれば、身長や、体重、年齢、性別などの身体情報のうちいずれかを入力せずに、計測装置10によって計測されたセンサデータを用いて、身体情報を推定できる。年齢や体重、BMI(Body Mass Index)、靴のサイズなどの情報を入力したくないユーザがいることも想定される。そのようなユーザの疾病リスクを推定するためには、歩容指標を用いて身体情報(属性)を推定することが有用である。例えば、身体能力推定部135は、身体情報(属性)の入力値と推定値とを比較してもよい。身体情報(属性)の入力値と推定値との間の乖離が大きい場合、ユーザが入力した入力値に誤りがある可能性がある。そのような場合、身体情報(属性)の入力値の確認を促す通知や警告を、ユーザの端末装置等に通知してもよい。 For example, the physical ability estimation unit 135 may estimate the physical information (attributes) using the gait index calculated by the gait index calculation unit 133. For example, the physical ability estimation unit 135 estimates the physical information (attributes) using a gait index that has a correlation with the physical information (attributes). For example, when muscle strength decreases due to aging, a decrease is observed in walking speed and cadence. Therefore, if walking speed and cadence are used, it is possible to estimate the age, even if the exact age cannot be estimated. For example, there is a correlation between height and stride length. Therefore, if stride length is used, it is possible to estimate the age, even if the exact age cannot be estimated. In addition, it is possible to estimate the age more accurately by combining specific gait indices. With this configuration, it is possible to estimate the physical information using the sensor data measured by the measurement device 10 without inputting any of the physical information such as height, weight, age, and sex. It is also assumed that there are users who do not want to input information such as age, weight, BMI (Body Mass Index), and shoe size. In order to estimate the disease risk of such a user, it is useful to estimate physical information (attributes) using gait indices. For example, the physical ability estimation unit 135 may compare the input value of the physical information (attributes) with the estimated value. If there is a large discrepancy between the input value of the physical information (attributes) and the estimated value, there is a possibility that the input value entered by the user contains an error. In such a case, a notification or warning may be sent to the user's terminal device, etc., to prompt the user to check the input value of the physical information (attributes).

 例えば、身体情報(属性)の推定値は、記憶部134に記憶させておく。なお、身体情報(属性)は、リスク推定部15を構成する波形処理部132、歩容指標計算部133、身体能力推定部135、および疾病リスク推定部136のうちいずれかによって推定されればよい。例えば、身体情報(属性)を推定する構成要素が疾病リスク推定装置13に追加されてもよい。例えば、外部の推定装置(図示しない)によって推定された身体情報(属性)の推定値を、取得部131が取得してもよい。 For example, the estimated values of the physical information (attributes) are stored in the memory unit 134. The physical information (attributes) may be estimated by any one of the waveform processing unit 132, the gait index calculation unit 133, the physical ability estimation unit 135, and the disease risk estimation unit 136 constituting the risk estimation unit 15. For example, a component that estimates the physical information (attributes) may be added to the disease risk estimation device 13. For example, the acquisition unit 131 may acquire the estimated values of the physical information (attributes) estimated by an external estimation device (not shown).

 次に、身体能力推定部135による身体能力スコアの推定例について一例をあげて説明する。ここでは、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスの推定に用いられる特徴量の一例について説明する。なお、以下にあげる例は、身体能力推定部135によって推定される身体能力を限定するものではない。身体能力推定部135によって推定される身体能力は、疾病リスクの推定対象である疾病に応じて、適宜選択されればよい。 Next, an example of the estimation of the physical ability score by the physical ability estimation unit 135 will be described. Here, an example of the feature values used to estimate grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance will be described. Note that the examples given below do not limit the physical abilities estimated by the physical ability estimation unit 135. The physical abilities estimated by the physical ability estimation unit 135 may be appropriately selected depending on the disease for which the disease risk is to be estimated.

 <握力(全身の総合筋力)>
 身体能力の1つである握力と全身の総合筋力との間には、相関関係がある。また、握力は、膝伸展力との間にも相関関係がある。例えば、握力の推定値は、総合筋力の指標である。例えば、握力の推定値に応じたスコア(総合筋力スコアとも呼ぶ)が、総合筋力の指標である。総合筋力スコアは、総合筋力の指標である握力が、予め設定された基準で点数化された値である。握力は、性別や年齢、身長などの属性の影響を受ける。そのため、総合筋力スコアは、属性ごとの基準で点数化されてもよい。特に、握力は、性別の影響を受ける。そのため、総合筋力スコアは、性別に応じて異なる基準で点数化されてもよい。なお、総合筋力の指標は、総合筋力をスコア化できれば、握力に限定されない。
<Grip strength (total muscle strength of the whole body)>
There is a correlation between grip strength, which is one of the physical abilities, and the total muscle strength of the whole body. Grip strength is also correlated with knee extension strength. For example, an estimated value of grip strength is an index of total muscle strength. For example, a score according to an estimated value of grip strength (also called a total muscle strength score) is an index of total muscle strength. The total muscle strength score is a value obtained by scoring grip strength, which is an index of total muscle strength, according to a preset criterion. Grip strength is affected by attributes such as gender, age, and height. Therefore, the total muscle strength score may be scored according to a criterion for each attribute. In particular, grip strength is affected by gender. Therefore, the total muscle strength score may be scored according to different criteria depending on gender. Note that the index of total muscle strength is not limited to grip strength as long as the total muscle strength can be scored.

 握力の推定に用いられる特徴量が抽出される歩行フェーズは、性別によって異なる。男性の場合、大腿四頭筋の活動と握力との間に相関がある。そのため、男性の握力の推定には、大腿四頭筋の活動の特徴が表れる歩行フェーズから抽出される特徴量が用いられる。女性の場合、大腿四頭筋の外側広筋、中間広筋、および内側広筋の活動と握力との間に相関がある。そのため、女性の握力の推定には、外側広筋、中間広筋、および内側広筋の活動の特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The walking phase from which the features used to estimate grip strength are extracted differs depending on gender. For men, there is a correlation between quadriceps activity and grip strength. Therefore, to estimate men's grip strength, features extracted from walking phases in which the characteristics of quadriceps activity are apparent are used. For women, there is a correlation between grip strength and activity of the vastus lateralis, vastus intermedius, and vastus medialis muscles of the quadriceps. Therefore, to estimate women's grip strength, features extracted from walking phases in which the characteristics of vastus lateralis, vastus intermedius, and vastus medialis muscles are apparent are used.

 男性の握力の推定には、特徴量AM1、特徴量AM2、特徴量AM3、および特徴量AM4が用いられる。特徴量AM1は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データの歩行フェーズ3%の区間から抽出される。歩行フェーズ3%は、立脚初期T1に含まれる。特徴量AM1には、主に、大腿四頭筋のうち外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。特徴量AM2は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データの歩行フェーズ59~62%の区間から抽出される。歩行フェーズ59~62%は、遊脚前期T4に含まれる。特徴量AM2には、主に、大腿四頭筋のうち大腿直筋の動きに関する特徴が含まれる。特徴量AM3は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データの歩行フェーズ59~62%の区間から抽出される。歩行フェーズ59~62%は、遊脚前期T4に含まれる。特徴量AM3には、主に、大腿四頭筋のうち大腿直筋の動きに関する特徴が含まれる。特徴量AM4は、両足が地面に同時に接地している期間のうち、踵接地から反対足爪先離地までの期間の割合(DST1)である。DST1は、一歩行周期における、踵接地から反対足爪先離地までの期間の割合である。特徴量AM4には、主に、大腿四頭筋に起因する特徴が含まれる。 Features AM1, AM2, AM3, and AM4 are used to estimate the grip strength of a man. Feature AM1 is extracted from the 3% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 3% walking phase is included in the initial stance phase T1. Feature AM1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis, which are among the quadriceps muscles. Feature AM2 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 59-62% walking phase is included in the early swing phase T4. Feature AM2 mainly includes features related to the movement of the rectus femoris, which is among the quadriceps muscles. Feature AM3 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). 59-62% of the walking phase is included in the early swing phase T4. Feature AM3 mainly includes features related to the movement of the rectus femoris, which is one of the quadriceps muscles. Feature AM4 is the proportion of the period from heel-contact to toe-off of the opposite foot during the period when both feet are simultaneously on the ground (DST1). DST1 is the proportion of the period from heel-contact to toe-off of the opposite foot during one stride cycle. Feature AM4 mainly includes features attributable to the quadriceps muscles.

 女性の握力の推定には、特徴量AF1、特徴量AF2、および特徴量AF3が用いられる。特徴量AF1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データの歩行フェーズ13%の区間から抽出される。歩行フェーズ13%は、立脚中期T2に含まれる。特徴量AF1には、主に、大腿四頭筋のうち外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。特徴量AF2は、冠状面内(Y軸周り)の角速度(ピッチ角速度)の時系列データに関する歩行波形データの歩行フェーズ7~10%の区間から抽出される。歩行フェーズ7~10%は、立脚初期T1に含まれる。特徴量AF2には、主に、外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。特徴量AF3は、両足が地面に同時に接地している期間のうち、反対足踵接地から爪先離地までの期間の割合(DST2)である。DST2は、一歩行周期における、反対足踵接地から爪先離地までの期間の割合である。DST1とDST2の和が、一歩行周期において、両足が地面に同時に接地している期間に相当する。特徴量AF3には、主に、外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。 Feature AF1, feature AF2, and feature AF3 are used to estimate the grip strength of women. Feature AF1 is extracted from a 13% section of the walking phase of the walking waveform data related to the time series data of lateral acceleration (X-direction acceleration). The 13% walking phase is included in the mid-stance phase T2. Feature AF1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis of the quadriceps. Feature AF2 is extracted from a 7-10% section of the walking phase of the walking waveform data related to the time series data of the angular velocity (pitch angular velocity) in the coronal plane (around the Y-axis). The 7-10% walking phase is included in the early stance phase T1. Feature AF2 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis. Feature AF3 is the proportion of the period from heel contact to toe-off of the opposite foot to the period during which both feet are simultaneously on the ground (DST2). DST2 is the ratio of the period from heel contact to toe-off of the opposite foot in a gait cycle. The sum of DST1 and DST2 corresponds to the period during which both feet are simultaneously in contact with the ground in a gait cycle. Feature AF3 mainly includes features related to the movements of the vastus lateralis, vastus intermedius, and vastus medialis.

 <動的バランス>
 身体能力の1つである動的バランスは、ファンクショナル・リーチ・テスト(FRT:Functional Reach Test)の成績によって評価できる。本開示では、両手を水平面に対して90度挙上して立位した状態から、可能な限り前方へ上肢を移動させた状態における指先間の距離(ファンクショナル・リーチ距離とも呼ぶ)で、FRTの成績を評価する。ファンクショナル・リーチ距離(以下、FR距離と呼ぶ)は、FRTの成績値である。FR距離が大きいほど、FRTの成績が高い。動的バランスは、両手で行われるFRT以外で評価されてもよい。例えば、動的バランスは、片手で行われるFRTや、その他のFRTのバリエーションに関する成績で評価されてもよい。
<Dynamic balance>
Dynamic balance, which is one of the physical abilities, can be evaluated by the results of a Functional Reach Test (FRT). In the present disclosure, the results of the FRT are evaluated by the distance between the fingertips (also called the functional reach distance) when the upper limbs are moved forward as far as possible from a standing position with both hands raised at 90 degrees relative to the horizontal plane. The functional reach distance (hereinafter, called the FR distance) is the FRT performance value. The larger the FR distance, the higher the FRT performance. The dynamic balance may be evaluated by something other than the FRT performed with both hands. For example, the dynamic balance may be evaluated by the performance of the FRT performed with one hand or other variations of the FRT.

 動的バランスの指標は、FR距離である。例えば、FR距離の推定値が、動的バランスの指標である。例えば、FR距離の推定値に応じたスコア(動的バランススコアとも呼ぶ)が、動的バランスの指標である。動的バランススコアは、動的バランスの指標であるFR距離を、予め設定された基準で点数化した値である。動的バランスは、身長などの属性の影響を受ける。そのため、動的バランススコアは、属性ごとの基準で点数化されてもよい。なお、動的バランスの指標は、動的バランスをスコア化できれば、FR距離に限定されない。FR距離は、中殿筋や腸骨筋、ハムストリングス(大腿二頭筋長頭)、前脛骨筋等の活動、および足先の向きを外側にする代償動作の大きさとの間に相関がある。そのため、FR距離の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The index of dynamic balance is the FR distance. For example, an estimated value of the FR distance is the index of dynamic balance. For example, a score according to the estimated value of the FR distance (also called the dynamic balance score) is the index of dynamic balance. The dynamic balance score is a value obtained by scoring the FR distance, which is an index of dynamic balance, using a preset criterion. Dynamic balance is affected by attributes such as height. Therefore, the dynamic balance score may be scored using a criterion for each attribute. Note that the index of dynamic balance is not limited to the FR distance as long as dynamic balance can be scored. The FR distance is correlated with the activity of the gluteus medius, iliac muscle, hamstrings (long head of biceps femoris), tibialis anterior muscle, etc., and the magnitude of the compensatory movement of turning the toes outward. Therefore, the feature quantity extracted from the walking phase in which these features appear is used to estimate the FR distance.

 FR距離の推定には、特徴量B1、特徴量B2、特徴量B3、特徴量B4、および特徴量B5が用いられる。特徴量B1は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データの歩行フェーズ75-79%の区間から抽出される。歩行フェーズ75-79%は、遊脚中期T6に含まれる。特徴量B1には、主に、前脛骨筋や大腿二頭筋短頭の動きに関する特徴が含まれる。特徴量B2は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データの歩行フェーズ62%の区間から抽出される。歩行フェーズ62%は、遊脚初期T5に含まれる。特徴量B2には、主に、腸骨筋の動きに関する特徴が含まれる。特徴量B3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ7~8%の区間から抽出される。歩行フェーズ7~8%は、立脚初期T1に含まれる。特徴量B3には、主に、中殿筋の動きに関する特徴が含まれる。特徴量B4は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ57~58%の区間から抽出される。歩行フェーズ57~58%は、遊脚前期T4に含まれる。特徴量B4には、主に、代償動作に関する特徴が含まれる。代償動作は、加齢に伴うバランス能力や筋機能の低下を補うために、足角を変化させて安定性を獲得する動作である。特徴量B5は、遊脚相における水平面内における足角の平均値である。例えば、特徴量B5は、歩行波形データの遊脚相における平均値である。言い換えると、特徴量B5は、水平面内(Z軸周り)の角速度の時系列データに関する歩行波形データの積分値である。特徴量B5には、主に、代償動作に関する特徴が含まれる。 Features B1, B2, B3, B4, and B5 are used to estimate the FR distance. Feature B1 is extracted from the 75-79% walking phase of the gait waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 75-79% walking phase is included in the mid-swing phase T6. Feature B1 mainly includes features related to the movement of the tibialis anterior and the short head of the biceps femoris. Feature B2 is extracted from the 62% walking phase of the gait waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). The 62% walking phase is included in the early swing phase T5. Feature B2 mainly includes features related to the movement of the iliacus. Feature B3 is extracted from the 7-8% walking phase of the gait waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis). The 7-8% walking phase is included in the early stance phase T1. The feature B3 mainly includes features related to the movement of the gluteus medius. The feature B4 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis). The walking phase 57-58% is included in the early swing phase T4. The feature B4 mainly includes features related to the compensatory movement. The compensatory movement is a movement to change the foot angle to obtain stability in order to compensate for the deterioration of balance ability and muscle function that occurs with aging. The feature B5 is the average value of the foot angle in the horizontal plane during the swing phase. For example, the feature B5 is the average value in the swing phase of the walking waveform data. In other words, the feature B5 is the integral value of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The feature B5 mainly includes features related to the compensatory movement.

 <下肢筋力>
 身体能力の1つである下肢筋力は、椅子立ち上がりテストの成績によって評価できる。本開示では、椅子の立ち座りを5回繰り返す5回椅子立ち上がりテストの成績を評価する。5回椅子立ち上がりテストのことを、SS-5(Sit to Stand-5)テストとも呼ぶ。5回椅子立ち上がりテストの成績は、椅子の立ち座りを5回繰り返す時間(立ち座り時間とも呼ぶ)で評価する。立ち座り時間は、SS-5テストの成績値である。立ち座り時間が短いほど、SS-5テストの成績が高い。30秒間における椅子の立ち座り動作回数を計測する30秒椅子立ち上がり(CS-30)テストの成績で評価されてもよい。
<Lower limb strength>
Lower limb muscle strength, which is one of the physical abilities, can be evaluated by the results of a chair stand test. In the present disclosure, the results of the 5-times chair stand test, in which the person stands up and sits down on a chair five times, are evaluated. The 5-times chair stand test is also called the SS-5 (Sit to Stand-5) test. The results of the 5-times chair stand test are evaluated based on the time it takes to stand up and sit down on a chair five times (also called the sit-to-stand time). The sit-to-stand time is the score value of the SS-5 test. The shorter the sit-to-stand time, the higher the score of the SS-5 test. The results may also be evaluated based on the results of a 30-second chair stand (CS-30) test, which measures the number of times the person stands up and sits down on a chair in 30 seconds.

 下肢筋力の指標は、立ち座り時間である。例えば、5回立ち座り時間の推定値が、下肢筋力の指標である。例えば、立ち座り時間の推定値に応じたスコア(下肢筋力スコアとも呼ぶ)が、下肢筋力の指標である。下肢筋力スコアは、下肢筋力の指標である立ち座り時間を、予め設定された基準で点数化した値である。下肢筋力は、年齢などの属性の影響を受ける。そのため、下肢筋力スコアは、属性ごとの基準で点数化されてもよい。なお、下肢筋力の指標は、下肢筋力をスコア化できれば、立ち座り時間に限定されない。立ち座り時間は、大腿四頭筋や、ハムストリングス、前脛骨筋、腓腹筋との間に相関がある。そのため、立ち座り時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The index of lower limb muscle strength is the sit-stand time. For example, an estimate of the sit-stand time five times is an index of lower limb muscle strength. For example, a score according to the estimate of the sit-stand time (also called the lower limb muscle strength score) is an index of lower limb muscle strength. The lower limb muscle strength score is a value obtained by scoring the sit-stand time, which is an index of lower limb muscle strength, using a preset criterion. Lower limb muscle strength is affected by attributes such as age. Therefore, the lower limb muscle strength score may be scored using a criterion for each attribute. Note that the index of lower limb muscle strength is not limited to the sit-stand time, as long as the lower limb muscle strength can be scored. The sit-stand time is correlated with the quadriceps, hamstrings, tibialis anterior, and gastrocnemius. Therefore, feature values extracted from the walking phase in which these features appear are used to estimate the sit-stand time.

 下肢筋力の推定には、特徴量C1、特徴量C2、特徴量C3、および特徴量C4が含まれる。特徴量C1は、矢状面内(X軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ42~54%の区間から抽出される。歩行フェーズ42~54%は、立脚終期T3から遊脚前期T4にかけた区間である。特徴量C1には、主に、腓腹筋の動きに関する特徴が含まれる。特徴量C2は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ99~100%の区間から抽出される。歩行フェーズ99~100%は、遊脚終期T7の終盤である。特徴量C2には、主に、大腿四頭筋やハムストリングス、前脛骨筋の動きに関する特徴が含まれる。特徴量C3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ10~12%の区間から抽出される。歩行フェーズ10~12%は、立脚中期T2の序盤である。特徴量C3には、主に、大腿四頭筋やハムストリングス、腓腹筋の動きに関する特徴が含まれる。特徴量C4は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ99%の区間から抽出される。歩行フェーズ99%は、遊脚終期T7の終盤である。特徴量C4には、主に、大腿四頭筋やハムストリングス、前脛骨筋の動きに関する特徴が含まれる。 The estimation of lower limb muscle strength includes feature C1, feature C2, feature C3, and feature C4. Feature C1 is extracted from the section of walking phase 42-54% of the walking waveform data related to the time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 42-54% is the section from the end of stance phase T3 to the early swing phase T4. Feature C1 mainly includes features related to the movement of the gastrocnemius. Feature C2 is extracted from the section of walking phase 99-100% of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). Walking phase 99-100% is the end of the end of swing phase T7. Feature C2 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior. Feature C3 is extracted from the 10% to 12% walking phase section of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). The 10% to 12% walking phase is the beginning of mid-stance phase T2. Feature C3 mainly includes features related to the movement of the quadriceps, hamstrings, and gastrocnemius. Feature C4 is extracted from the 99% walking phase section of the walking waveform data related to the time series data of angles (posture angles) in the horizontal plane (around the Z-axis). The 99% walking phase is the end of end-swing phase T7. Feature C4 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior.

 <移動能力>
 身体能力の1つである移動能力は、TUG(Time Up and Go)テストの成績によって評価できる。本開示では、椅子から立ち上がり、3m(メートル)先の目印まで歩いて方向転換し、再び椅子に座るまでの時間(TUG所要時間とも呼ぶ)で、TUGテストの成績を評価する。TUG所要時間は、TUGテストの成績値である。TUG所要時間が短いほど、TUGテストの成績が高い。移動能力は、TUGテスト以外の移動能力に関するテストの成績で評価されてもよい。
<Movement Ability>
Mobility, which is one of the physical abilities, can be evaluated by the results of a TUG (Time Up and Go) test. In the present disclosure, the results of the TUG test are evaluated based on the time it takes to stand up from a chair, walk to a landmark 3 meters away, change direction, and sit back down on the chair (also called the TUG time). The TUG time is the score value of the TUG test. The shorter the TUG time, the higher the score of the TUG test. Mobility may be evaluated by the score of a test related to mobility other than the TUG test.

 移動能力の指標は、TUG所要時間である。例えば、TUG所要時間の推定値が、移動能力の指標である。例えば、TUG所要時間の推定値に応じたスコア(移動能力スコアとも呼ぶ)が、移動能力の指標である。移動能力スコアは、移動能力の指標であるTUG所要時間を、予め設定された基準で点数化した値である。移動能力は、年齢などの属性の影響を受ける。そのため、移動能力スコアは、属性ごとの基準で点数化されてもよい。なお、移動能力の指標は、移動能力をスコア化できれば、TUG所要時間に限定されない。TUG所要時間は、大腿四頭筋や、中殿筋、前脛骨筋との間に相関がある。そのため、TUG所要時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The index of mobility is the time required for TUG. For example, an estimate of the time required for TUG is an index of mobility. For example, a score according to the estimate of the time required for TUG (also called a mobility score) is an index of mobility. The mobility score is a value obtained by scoring the time required for TUG, which is an index of mobility, using a preset criterion. Mobility is affected by attributes such as age. Therefore, the mobility score may be scored using a criterion for each attribute. Note that the index of mobility is not limited to the time required for TUG, as long as mobility can be scored. The time required for TUG is correlated with the quadriceps, gluteus medius, and tibialis anterior. Therefore, feature quantities extracted from the walking phase in which these features appear are used to estimate the time required for TUG.

 移動能力の推定には、特徴量D1、特徴量D2、特徴量D3、特徴量D4、特徴量D5、および特徴量D6が用いられる。特徴量D1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データの歩行フェーズ64~65%の区間から抽出される。歩行フェーズ64~65%は、遊脚初期T5に含まれる。特徴量D1には、主に、立ち座り動作における大腿四頭筋の動きに関する特徴が含まれる。特徴量D2は、矢状面内(X軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ57~58%の区間から抽出される。歩行フェーズ57~58%は、遊脚前期T4に含まれる。特徴量D2には、主に、足の蹴り出し速度に関連する大腿四頭筋の動きに関する特徴が含まれる。特徴量D3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ19~20%の区間から抽出される。歩行フェーズ19~20%は、立脚中期T2に含まれる。特徴量D3には、主に、方向転換における中殿筋の動きに関する特徴が含まれる。特徴量D4は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ12~13%の区間から抽出される。歩行フェーズ12~13%は、立脚中期T2の序盤である。特徴量D4には、主に、方向転換における中殿筋の動きに関する特徴が含まれる。特徴量D5は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ74~75%の区間から抽出される。歩行フェーズ74~75%は、遊脚中期T6の序盤である。特徴量D5には、主に、立ち座りおよび方向転換における前脛骨筋の動きに関する特徴が含まれる。特徴量D6は、冠状面内(Y軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ76~80%の区間から抽出される。歩行フェーズ76~80%は、遊脚中期T6に含まれる。特徴量D6には、主に、立ち座りおよび方向転換における前脛骨筋の動きに関する特徴が含まれる。 Feature amount D1, feature amount D2, feature amount D3, feature amount D4, feature amount D5, and feature amount D6 are used to estimate mobility. Feature amount D1 is extracted from the section of walking phase 64-65% of walking waveform data related to time series data of lateral acceleration (X-direction acceleration). Walking phase 64-65% is included in early swing phase T5. Feature amount D1 mainly includes features related to the movement of the quadriceps in the standing and sitting movements. Feature amount D2 is extracted from the section of walking phase 57-58% of walking waveform data related to time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 57-58% is included in early swing phase T4. Feature amount D2 mainly includes features related to the movement of the quadriceps related to the kicking speed of the foot. The feature amount D3 is extracted from a section of the walking phase 19-20% of the walking waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis). The walking phase 19-20% is included in the mid-stance phase T2. The feature amount D3 mainly includes features related to the movement of the gluteus medius muscle in the change of direction. The feature amount D4 is extracted from a section of the walking phase 12-13% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 12-13% is the beginning of the mid-stance phase T2. The feature amount D4 mainly includes features related to the movement of the gluteus medius muscle in the change of direction. The feature amount D5 is extracted from a section of the walking phase 74-75% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 74-75% is the beginning of the mid-swing phase T6. Feature D5 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction. Feature D6 is extracted from the section of the walking phase 76-80% of the walking waveform data related to the time series data of the angle (posture angle) in the coronal plane (around the Y axis). The walking phase 76-80% is included in the mid-swing phase T6. Feature D6 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction.

 <静的バランス>
 身体能力の1つである静的バランスは、片脚立位テストの成績によって評価できる。本開示では、目を閉じて、片脚を地面から5cm(センチメートル)挙上した状態を維持した時間(片脚立位時間とも呼ぶ)で、片脚立位テストの成績を評価する。片脚立位時間は、静的バランスの成績値である。片脚立位時間が大きいほど、静的バランスの成績が高い。静的バランスは、閉眼片脚立位テスト以外の成績で評価されてもよい。例えば、静的バランスは、目を開けた状態での片脚立位テスト(開眼片脚立位テスト)や、その他の片脚立位テストのバリエーションで評価されてもよい。
<Static balance>
Static balance, which is one of the physical abilities, can be evaluated by the performance of a one-leg standing test. In the present disclosure, the performance of the one-leg standing test is evaluated based on the time (also called one-leg standing time) during which the eyes are closed and one leg is raised 5 cm (centimeters) from the ground. The one-leg standing time is a performance value of static balance. The longer the one-leg standing time, the higher the performance of static balance. Static balance may be evaluated by a performance other than the one-leg standing test with eyes closed. For example, static balance may be evaluated by a one-leg standing test with eyes open (one-leg standing test with eyes open) or other variations of the one-leg standing test.

 静的バランスの指標は、片脚立位時間である。例えば、片脚立位時間の推定値が、静的バランスの指標である。例えば、片脚立位時間の推定値に応じたスコア(静的バランススコアとも呼ぶ)が、静的バランスの指標である。静的バランススコアは、静的バランスの指標である片脚立位時間を、予め設定された基準で点数化した値である。静的バランスは、年齢や身長などの属性の影響を受ける。そのため、静的バランススコアは、属性ごとの基準で点数化されてもよい。なお、静的バランスの指標は、静的バランスをスコア化できれば、片脚立位時間に限定されない。片脚立位時間は、中殿筋や長内転筋、縫工筋、内外転筋肉群との間に相関がある。そのため、片脚立位時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The static balance index is the single leg standing time. For example, an estimate of the single leg standing time is an index of static balance. For example, a score according to the estimate of the single leg standing time (also called the static balance score) is an index of static balance. The static balance score is a value obtained by scoring the single leg standing time, which is an index of static balance, using a preset criterion. Static balance is affected by attributes such as age and height. Therefore, the static balance score may be scored using a criterion for each attribute. Note that the static balance index is not limited to the single leg standing time as long as the static balance can be scored. The single leg standing time is correlated with the gluteus medius, adductor longus, sartorius, and abductor and adductor muscles. Therefore, the feature values extracted from the walking phase in which these features appear are used to estimate the single leg standing time.

 静的バランスの推定には、特徴量E1、特徴量E2、特徴量E3、特徴量E4、特徴量E5、特徴量E6、および特徴量E7が用いられる。特徴量E1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データの歩行フェーズ13-19%の区間から抽出される。歩行フェーズ13-19%は、立脚中期T2に含まれる。特徴量E1には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E2は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データの歩行フェーズ95%の区間から抽出される。歩行フェーズ95%は、遊脚終期T7の終盤である。特徴量E2には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ64-65%の区間から抽出される。歩行フェーズ64-65%は、遊脚初期T5に含まれる。特徴量E3には、主に、長内転筋および縫工筋の動きに関する特徴が含まれる。特徴量E4は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ11-16%の区間から抽出される。歩行フェーズ11-16%は、立脚中期T2に含まれる。特徴量E4には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E5は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ57-58%の区間から抽出される。歩行フェーズ57-58%は、遊脚前期T4に含まれる。特徴量E5には、主に、長内転筋および縫工筋の動きに関する特徴が含まれる。特徴量E6は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ100%の区間から抽出される。歩行フェーズ100%は、遊脚終期T7から立脚初期T1に切り替わる踵接地のタイミングに相当する。歩行フェーズ100%における歩行波形データの特徴量は、足裏が接地した状態における足角に相当する。特徴量E6には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E7は、遊脚相において足の中心軸が進行軸から最も離れたタイミングにおける、進行軸と足の距離(分回し量)である。特徴量E7は、被験者の身長で規格化された分回し量である。特徴量E7には、主に、内外転筋肉群の動きに関する特徴が含まれる。 Features E1, E2, E3, E4, E5, E6, and E7 are used to estimate static balance. Feature E1 is extracted from the 13-19% gait phase section of the gait waveform data related to the time series data of lateral acceleration (X-direction acceleration). The 13-19% gait phase is included in the mid-stance phase T2. Feature E1 mainly includes features related to the movement of the gluteus medius. Feature E2 is extracted from the 95% gait phase section of the gait waveform data related to the time series data of vertical acceleration (Z-direction acceleration). The 95% gait phase is the end of the end-swing phase T7. Feature E2 mainly includes features related to the movement of the gluteus medius. Feature E3 is extracted from the 64-65% gait phase section of the gait waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). The walking phase 64-65% is included in the early swing phase T5. The feature amount E3 mainly includes features related to the movement of the adductor longus and sartorius. The feature amount E4 is extracted from the section of the walking phase 11-16% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 11-16% is included in the mid-stance phase T2. The feature amount E4 mainly includes features related to the movement of the gluteus medius. The feature amount E5 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 57-58% is included in the early swing phase T4. The feature amount E5 mainly includes features related to the movement of the adductor longus and sartorius. The feature amount E6 is extracted from the section of the walking phase 100% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis). The 100% walking phase corresponds to the timing of heel contact when switching from the final swing phase T7 to the initial stance phase T1. The feature value of the gait waveform data in the 100% walking phase corresponds to the foot angle when the sole of the foot is in contact with the ground. Feature value E6 mainly includes features related to the movement of the gluteus medius. Feature value E7 is the distance between the axis of motion and the foot (circumflex over). Feature value E7 is the amount of circumflex over normalized by the subject's height. Feature value E7 mainly includes features related to the movement of the abductor and adductor muscles.

 図8は、身体能力を推定する身体能力推定モデル150の一例を示す概念図である。歩行波形データから抽出された特徴量は、身体能力を推定する身体能力推定モデル150に入力される。また、歩行波形データから抽出された特徴量データに加えて、ユーザの身体情報(属性)が入力される。図8においては、身体能力推定モデル150に入力される身体情報(属性)を省略する。歩行波形データから抽出された身体能力特徴量の入力に応じて、身体能力推定モデル150は、身体能力に関連する身体能力スコアを出力する。図8の例において、身体能力推定モデル150は、握力推定モデル151、動的バランス推定モデル152、下肢筋力推定モデル153、移動能力推定モデル154、および静的バランス推定モデル155を含む。握力推定モデル151、動的バランス推定モデル152、下肢筋力推定モデル153、移動能力推定モデル154、および静的バランス推定モデル155の各々は、モデルの推定対象ごとのスコアを出力する。なお、身体能力推定モデル150は、身体能力ごとのモデルで構成されず、単一のモデルによって構成されてもよい。また、身体能力推定モデル150は、身体能力スコアではなく、握力やFR距離、立ち座り時間、TUG所要時間、片脚立位時間などの身体能力値であってもよい。 8 is a conceptual diagram showing an example of a physical ability estimation model 150 that estimates physical ability. The feature values extracted from the walking waveform data are input to the physical ability estimation model 150 that estimates physical ability. In addition to the feature value data extracted from the walking waveform data, the user's physical information (attributes) is input. In FIG. 8, the physical information (attributes) input to the physical ability estimation model 150 is omitted. In response to the input of the physical ability feature values extracted from the walking waveform data, the physical ability estimation model 150 outputs a physical ability score related to the physical ability. In the example of FIG. 8, the physical ability estimation model 150 includes a grip strength estimation model 151, a dynamic balance estimation model 152, a lower limb muscle strength estimation model 153, a mobility estimation model 154, and a static balance estimation model 155. Each of the grip strength estimation model 151, the dynamic balance estimation model 152, the lower limb muscle strength estimation model 153, the mobility estimation model 154, and the static balance estimation model 155 outputs a score for each estimation target of the model. The physical ability estimation model 150 may be configured by a single model, not by a model for each physical ability. Also, the physical ability estimation model 150 may be a physical ability value such as grip strength, FR distance, standing and sitting time, TUG time, and one-legged standing time, instead of a physical ability score.

 握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3の入力に応じて、握力(全身の総合筋力)に関する握力スコアS1を出力する。例えば、握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3の入力に応じて、握力を出力するモデルであってもよい。例えば、握力推定モデル151は、男性用と女性用とで、異なるモデルであってもよい。総合筋力を推定するための身体能力特徴量の入力に応じて、握力の指標に関する推定結果が出力されれば、握力推定モデル151の推定結果には限定を加えない。例えば、握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3の入力に応じて、握力を出力するモデルであってもよい。例えば、握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3に加えて、年齢や身長などの属性データを用いて、握力を推定するモデルであってもよい。 The grip strength estimation model 151 outputs a grip strength score S1 related to grip strength (total muscle strength of the whole body) in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3. For example, the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3. For example, the grip strength estimation model 151 may be a different model for men and women. There are no limitations on the estimation result of the grip strength estimation model 151 as long as an estimation result related to a grip strength index is output in response to the input of a physical ability feature amount for estimating total muscle strength. For example, the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3. For example, the grip strength estimation model 151 may be a model that estimates grip strength using attribute data such as age and height in addition to the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.

 動的バランス推定モデル152は、特徴量B1~B5の入力に応じて、動的バランスに関する動的バランススコアS2を出力する。動的バランスを推定するための身体能力特徴量の入力に応じて、動的バランスの指標に関する推定結果が出力されれば、動的バランス推定モデル152の推定結果には限定を加えない。例えば、動的バランス推定モデル152は、特徴量B1~B5の入力に応じて、FR距離を出力するモデルであってもよい。例えば、動的バランス推定モデル152は、特徴量B1~B5に加えて、身長などの属性データを用いて、動的バランスを推定するモデルであってもよい。 The dynamic balance estimation model 152 outputs a dynamic balance score S2 related to dynamic balance in response to the input of the features B1 to B5. There are no limitations on the estimation results of the dynamic balance estimation model 152, so long as an estimation result related to a dynamic balance index is output in response to the input of the physical ability features for estimating dynamic balance. For example, the dynamic balance estimation model 152 may be a model that outputs the FR distance in response to the input of the features B1 to B5. For example, the dynamic balance estimation model 152 may be a model that estimates dynamic balance using attribute data such as height in addition to the features B1 to B5.

 下肢筋力推定モデル153は、特徴量C1~C4の入力に応じて、下肢筋力に関する下肢筋力スコアS3を出力する。下肢筋力を推定するための身体能力特徴量の入力に応じて、下肢筋力の指標に関する推定結果が出力されれば、下肢筋力推定モデル153の推定結果には限定を加えない。例えば、下肢筋力推定モデル153は、特徴量C1~C4の入力に応じて、下肢筋力に関する下肢筋力スコアS3を出力するモデルであってもよい。例えば、下肢筋力推定モデル153は、特徴量C1~C4に加えて、年齢などの属性データを用いて、動的バランスを推定するモデルであってもよい。 The lower limb muscle strength estimation model 153 outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4. There are no limitations on the estimation result of the lower limb muscle strength estimation model 153, so long as an estimation result related to an index of lower limb muscle strength is output in response to input of the physical ability features for estimating lower limb muscle strength. For example, the lower limb muscle strength estimation model 153 may be a model that outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4. For example, the lower limb muscle strength estimation model 153 may be a model that estimates dynamic balance using attribute data such as age in addition to the features C1 to C4.

 移動能力推定モデル154は、特徴量D1~D6の入力に応じて、移動能力に関する移動能力スコアS4を出力する。移動能力を推定するための身体能力特徴量の入力に応じて、移動能力の指標に関する推定結果が出力されれば、移動能力推定モデル154の推定結果には限定を加えない。例えば、移動能力推定モデル154は、特徴量D1~D6の入力に応じて、TUG所要時間を出力するモデルであってもよい。例えば、移動能力推定モデル154は、特徴量D1~D6に加えて、年齢などの属性データを用いて、移動能力を推定するモデルであってもよい。 The mobility estimation model 154 outputs a mobility score S4 related to mobility in response to the input of the features D1 to D6. There are no limitations on the estimation results of the mobility estimation model 154, so long as an estimation result related to a mobility index is output in response to the input of the physical ability features for estimating mobility. For example, the mobility estimation model 154 may be a model that outputs the TUG required time in response to the input of the features D1 to D6. For example, the mobility estimation model 154 may be a model that estimates mobility using attribute data such as age in addition to the features D1 to D6.

 静的バランス推定モデル155は、特徴量E1~E7の入力に応じて、静的バランスに関する静的バランススコアS5を出力する。静的バランスを推定するための身体能力特徴量の入力に応じて、静的バランスの指標に関する推定結果が出力されれば、静的バランス推定モデル155の推定結果には限定を加えない。例えば、静的バランス推定モデル155は、特徴量E1~E7の入力に応じて、片脚立位時間を出力するモデルであってもよい。例えば、静的バランス推定モデル155は、特徴量E1~E7に加えて、年齢や身長などの属性データを用いて、静的バランスを推定するモデルであってもよい。 The static balance estimation model 155 outputs a static balance score S5 related to static balance in response to the input of the features E1 to E7. There are no limitations on the estimation results of the static balance estimation model 155, so long as an estimation result related to a static balance index is output in response to the input of the physical ability features for estimating static balance. For example, the static balance estimation model 155 may be a model that outputs one-leg standing time in response to the input of the features E1 to E7. For example, the static balance estimation model 155 may be a model that estimates static balance using attribute data such as age and height in addition to the features E1 to E7.

 身体能力推定モデル150は、クラウドやサーバ等に構築された外部の記憶装置に保存されてもよい。その場合、身体能力推定部135は、その記憶装置と接続されたインターフェース(図示しない)を介して、身体能力推定モデル150を用いる。身体能力推定モデル150は、機械学習モデルである。例えば、身体能力推定モデル150は、複数の被験者に関する身体情報(属性)および歩容指標を説明変数とし、身体能力に関するスコアを目的変数とするデータセットを教師データとして学習させたモデルである。身体能力推定モデル150は、複数の被験者に関する身体情報(属性)および歩行波形データを説明変数とし、身体能力に関するスコアを目的変数とするデータセットを教師データとして学習させたモデルであってもよい。例えば、身体能力推定モデル150は、3軸方向の加速度、3軸周りの角速度、3軸周りの角度(姿勢角)の歩行波形データが説明変数に含まれる教師データを学習させたモデルであってもよい。 The physical ability estimation model 150 may be stored in an external storage device constructed in a cloud or a server. In this case, the physical ability estimation unit 135 uses the physical ability estimation model 150 via an interface (not shown) connected to the storage device. The physical ability estimation model 150 is a machine learning model. For example, the physical ability estimation model 150 is a model trained on a data set using as teacher data a data set in which physical information (attributes) and gait indices related to multiple subjects are explanatory variables and a score related to physical ability is an objective variable. The physical ability estimation model 150 may be a model trained on a data set using as teacher data a data set in which physical information (attributes) and gait waveform data related to multiple subjects are explanatory variables and a score related to physical ability is an objective variable. For example, the physical ability estimation model 150 may be a model trained on teacher data in which gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angle (posture angle) around three axes are included in explanatory variables.

 例えば、身体能力推定モデル150は、線形回帰のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、サポートベクターマシン(SVM:Support Vector Machine)のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、ガウス過程回帰(GPR:Gaussian Process Regression)のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、ランダムフォレスト(RF:Random Forest)のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、身体能力特徴量の入力に応じて、その身体能力特徴量の生成元の被験者を分類する教師なし学習によって生成されてもよい。身体能力推定モデル150を学習させるアルゴリズムには、特に限定を加えない。 For example, the physical ability estimation model 150 may be generated by learning using a linear regression algorithm. For example, the physical ability estimation model 150 may be generated by learning using a support vector machine (SVM) algorithm. For example, the physical ability estimation model 150 may be generated by learning using a Gaussian process regression (GPR) algorithm. For example, the physical ability estimation model 150 may be generated by learning using a random forest (RF) algorithm. For example, the physical ability estimation model 150 may be generated by unsupervised learning that classifies the subject from which the physical ability feature was generated according to the input of the physical ability feature. There are no particular limitations on the algorithm used to train the physical ability estimation model 150.

 疾病リスク推定部136(疾病リスク推定)は、身体能力推定部135によって推定された身体能力の推定結果(身体能力スコア)を取得する。また、疾病リスク推定部136は、歩容指標計算部133から歩容指標を取得する。さらに、疾病リスク推定部136は、ユーザの身体情報(属性)を記憶部134から取得する。疾病リスク推定部136は、身体能力スコア、歩容指標、および身体情報(属性)を用いて、疾病ごとのリスクが反映された疾病リスクを推定する。例えば、疾病リスク推定部136は、少なくとも歩容指標を用いて、疾病ごとのリスクが反映された疾病リスクを推定するように構成されればよい。例えば、疾病リスク推定部136は、予め設定された文書フォーマットに当てはめて生成された疾病リスクに応じたアドバイスが含まれる疾病リスク情報を生成する。例えば、疾病リスク情報は、大規模言語モデルを用いて、生成されてもよい。 The disease risk estimation unit 136 (disease risk estimation) acquires the estimation result of the physical ability (physical ability score) estimated by the physical ability estimation unit 135. In addition, the disease risk estimation unit 136 acquires the gait index from the gait index calculation unit 133. In addition, the disease risk estimation unit 136 acquires the user's physical information (attributes) from the storage unit 134. The disease risk estimation unit 136 estimates a disease risk reflecting the risk for each disease using the physical ability score, the gait index, and the physical information (attributes). For example, the disease risk estimation unit 136 may be configured to estimate a disease risk reflecting the risk for each disease using at least the gait index. For example, the disease risk estimation unit 136 generates disease risk information including advice corresponding to the disease risk generated by applying it to a preset document format. For example, the disease risk information may be generated using a large-scale language model.

 図9は、疾病リスク推定部136による疾病リスクの推定例を示す概念図である。疾病リスク推定部136は、特定疾病に関する疾病リスクの推定に用いられる身体情報、歩容指標、および身体能力スコアを、疾病リスク推定モデル160に入力する。疾病リスク推定モデル160には、特定疾病に関する疾病リスクの推定に用いられる身体情報、歩容指標、および身体能力スコアが入力される。身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病リスク推定モデル160は、特定疾病に関する疾病リスクスコアを出力する。図9の例では、複数の疾病の各々に関して、疾病リスクスコアが推定されている。疾病リスク推定モデル160は、疾病ごとのモデルで構成されてもよいし、単一のモデルで構成されてもよい。推定に用いられるデータが増えれば、疾病リスク推定モデル160による疾病リスクスコアの推定精度が向上する。 9 is a conceptual diagram showing an example of disease risk estimation by the disease risk estimation unit 136. The disease risk estimation unit 136 inputs physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease to the disease risk estimation model 160. The disease risk estimation model 160 receives the physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease. In response to the input of the physical information, gait index, and physical ability score, the disease risk estimation model 160 outputs a disease risk score for a specific disease. In the example of FIG. 9, a disease risk score is estimated for each of a plurality of diseases. The disease risk estimation model 160 may be configured with a model for each disease, or may be configured with a single model. As the amount of data used for estimation increases, the accuracy of the disease risk score estimation by the disease risk estimation model 160 improves.

 例えば、疾病リスク推定モデル160は、生活習慣病などの特定疾病に関する疾病リスクスコアを出力する。例えば、疾病リスク推定モデル160は、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などの特定疾病に関する疾病リスクスコアを出力する。例えば、疾病リスク推定モデル160は、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などが含まれる。なお、疾病リスク推定モデル160は、上述以外の疾病に関する疾病リスクスコアを出力するように構成されてもよい。例えば、疾病リスク推定モデル160は、健康診断の検査項目データを含めて、疾病リスクスコアを推定するように構成されてもよい。 For example, the disease risk estimation model 160 outputs a disease risk score for a specific disease such as a lifestyle-related disease. For example, the disease risk estimation model 160 outputs a disease risk score for a specific disease such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, the disease risk estimation model 160 includes lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome. The disease risk estimation model 160 may be configured to output a disease risk score for a disease other than those mentioned above. For example, the disease risk estimation model 160 may be configured to estimate a disease risk score including test item data from a health checkup.

 疾病リスク推定モデル160は、クラウドやサーバ等に構築された外部の記憶装置に保存されてもよい。その場合、疾病リスク推定部136は、その記憶装置と接続されたインターフェース(図示しない)を介して、疾病リスク推定モデル160を用いる。疾病リスク推定モデル160は、機械学習モデルである。例えば、疾病リスク推定モデル160は、複数の被験者に関する身体情報(属性)、歩容指標、および身体能力を説明変数とし、特定の疾病に関する疾病リスクスコアを目的変数とするデータセットを教師データとして学習させたモデルである。例えば、疾病リスク推定モデル160は、3軸方向の加速度、3軸周りの角速度、3軸周りの角度(姿勢角)の歩行波形データが説明変数に含まれる教師データを用いて学習させたモデルであってもよい。 The disease risk estimation model 160 may be stored in an external storage device constructed in a cloud or a server. In this case, the disease risk estimation unit 136 uses the disease risk estimation model 160 via an interface (not shown) connected to the storage device. The disease risk estimation model 160 is a machine learning model. For example, the disease risk estimation model 160 is a model trained using a data set that uses physical information (attributes), gait indices, and physical abilities of multiple subjects as explanatory variables and a disease risk score for a specific disease as a target variable as training data. For example, the disease risk estimation model 160 may be a model trained using training data in which gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angles around three axes (posture angles) are included as explanatory variables.

 例えば、疾病リスク推定モデル160は、線形回帰のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、サポートベクターマシン(SVM:Support Vector Machine)のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、ガウス過程回帰(GPR:Gaussian Process Regression)のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、ランダムフォレスト(RF:Random Forest)のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、特徴量データに応じて、その特徴量データの生成元の被験者を分類する教師なし学習によって生成されてもよい。疾病リスク推定モデル160を学習させるアルゴリズムには、特に限定を加えない。 For example, the disease risk estimation model 160 is generated by learning using a linear regression algorithm. For example, the disease risk estimation model 160 is generated by learning using a support vector machine (SVM) algorithm. For example, the disease risk estimation model 160 is generated by learning using a Gaussian process regression (GPR) algorithm. For example, the disease risk estimation model 160 is generated by learning using a random forest (RF) algorithm. For example, the disease risk estimation model 160 may be generated by unsupervised learning that classifies the subject from which the feature data was generated according to the feature data. There are no particular limitations on the algorithm used to train the disease risk estimation model 160.

 例えば、疾病リスク推定モデル160は、不完全異種変分オートエンコーダやランダムフォレストなどの機械学習モデルであってもよい。不完全異種変分オートエンコーダであれば、身体情報(属性)や、歩容指標、身体情報などの特徴に多少の欠損があっても、対象者(ユーザ)の疾病リスクを推定できる。 For example, the disease risk estimation model 160 may be a machine learning model such as an incomplete heterogeneous variational autoencoder or a random forest. If an incomplete heterogeneous variational autoencoder is used, the disease risk of the subject (user) can be estimated even if there is some loss in features such as physical information (attributes), gait indicators, and physical information.

 図9の例において、疾病リスク推定部136は、疾病リスク推定モデル160から出力された疾病リスクスコアに、疾病ごとの重みを掛け合わせることによって、疾病ごとのリスクが反映された疾病リスクスコアを計算する。疾病ごとの重みは、疾病のリスクが反映された値である。例えば、疾病ごとの重みは、疾病の危険性を示すランクに応じた値に設定される。例えば、ランクが低い疾病の重みと比べて、ランクが高い疾病に関する重みが大きな値に設定される。図9の例では、疾病A、疾病B、・・・、疾病Zの各々に対して、重みa、重みb、・・・、重みzの各々が設定される。例えば、疾病Bと比べて疾病Aの方が高リスクの場合、重みbと比べて重みaの方が大きな値に設定される。図9の例において、疾病Aの疾病リスクスコアはa×RAであり、疾病Bの疾病リスクスコアはb×RBであるまた、疾病Zの疾病リスクスコアはz×RZである。なお、疾病リスク推定モデル160は、身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病ごとのリスクが反映された疾病リスクスコアを出力するように構成されてもよい。 In the example of FIG. 9, the disease risk estimation unit 136 calculates a disease risk score reflecting the risk of each disease by multiplying the disease risk score output from the disease risk estimation model 160 by the weight for each disease. The weight for each disease is a value reflecting the risk of the disease. For example, the weight for each disease is set to a value according to the rank indicating the risk of the disease. For example, the weight for a disease with a high rank is set to a large value compared to the weight for a disease with a low rank. In the example of FIG. 9, weights a, b, ..., and z are set for each of disease A, disease B, ..., and disease Z. For example, when disease A is at a higher risk than disease B, weight a is set to a larger value than weight b. In the example of FIG. 9, the disease risk score for disease A is a x R A , the disease risk score for disease B is b x R B , and the disease risk score for disease Z is z x R Z. The disease risk estimation model 160 may be configured to output a disease risk score reflecting the risk of each disease according to input of physical information, gait index, and physical ability score.

 疾病ごとの重みは、疾病に罹った場合の指標に応じて設定される。例えば、疾病ごとの重みは、疾病に罹った場合の死亡率や余命、医療費などの指標に応じて設定される。例えば、死亡率が高いほど、重みが大きく設定される。例えば、余命が短いほど、重みが大きく設定される。例えば、医療費が大きいほど、重みが大きく設定される。疾病に罹った場合の指標は、ここであげた限りではなく、疾病のリスクに応じた値であればよい。 The weight for each disease is set according to the indicators for when one contracts the disease. For example, the weight for each disease is set according to indicators such as the mortality rate, life expectancy, and medical costs when one contracts the disease. For example, the higher the mortality rate, the higher the weight is set. For example, the shorter the life expectancy, the higher the weight is set. For example, the higher the medical costs, the higher the weight is set. The indicators for when one contracts the disease are not limited to those given here, and can be any value that corresponds to the risk of the disease.

 図10は、疾病リスク推定部136による疾病リスクの推定例を示す概念図である。図10の例において、疾病リスク推定部136は、疾病の組み合わせの危険性に応じた疾病リスクスコアを計算する。例えば、糖尿病と心臓病の組み合わせは、リスクが高い。そのため、それらの組み合わせに関しては、疾病リスクスコアが大きな値になる。 FIG. 10 is a conceptual diagram showing an example of disease risk estimation by the disease risk estimation unit 136. In the example of FIG. 10, the disease risk estimation unit 136 calculates a disease risk score according to the danger of the combination of diseases. For example, the combination of diabetes and heart disease is high risk. Therefore, the disease risk score for such combinations will be a large value.

 図10の例において、疾病リスク推定部136は、特定疾病に関する疾病リスクの推定に用いられる身体情報、歩容指標、および身体能力スコアを、疾病リスク推定モデル160に入力する。例えば、疾病リスク推定部136は、疾病リスク推定モデル160から出力された疾病リスクスコアに、疾病の組み合わせごとの重みを掛け合わせることによって、疾病の組み合わせごとのリスクが反映された疾病リスクスコアを計算する。疾病の組み合わせごとの重みは、疾病の組み合わせに応じたリスクが反映された値である。例えば、疾病の組み合わせごとの重みは、推定対象である疾病の組み合わせの危険性を示すランクに応じた値に設定される。例えば、ランクが低い疾病の組み合わせに関する重みと比べて、ランクが高い疾病の組み合わせに関する重みが大きな値に設定される。例えば、疾病リスク推定部136は、組み合わせられた疾病ごとのリスクが反映された疾病リスクスコアの積を、疾病の組み合わせごとの疾病リスクスコアとして計算する。疾病リスク推定部136は、3種類以上の疾病の組み合わせに対して疾病リスクスコアを計算してもよい。図10の例において、疾病Aと疾病Bとの組み合わせに関する疾病リスクスコアはRABであり、疾病Bと疾病Cとの組み合わせに関する疾病リスクスコアはRBCである。また、疾病Yと疾病Zとの組み合わせに関する疾病リスクスコアはRYZである。なお、疾病リスク推定モデル160は、身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病の組み合わせごとのリスクが反映された疾病リスクスコアを出力するように構成されてもよい。 In the example of FIG. 10, the disease risk estimation unit 136 inputs the physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease to the disease risk estimation model 160. For example, the disease risk estimation unit 136 multiplies the disease risk score output from the disease risk estimation model 160 by a weight for each disease combination to calculate a disease risk score reflecting the risk for each disease combination. The weight for each disease combination is a value reflecting the risk according to the disease combination. For example, the weight for each disease combination is set to a value according to the rank indicating the risk of the disease combination to be estimated. For example, the weight for a disease combination with a high rank is set to a large value compared to the weight for a disease combination with a low rank. For example, the disease risk estimation unit 136 calculates the product of the disease risk scores reflecting the risk of each combined disease as the disease risk score for each disease combination. The disease risk estimation unit 136 may calculate a disease risk score for a combination of three or more diseases. 10, the disease risk score for the combination of disease A and disease B is RAB , and the disease risk score for the combination of disease B and disease C is RBC . Moreover, the disease risk score for the combination of disease Y and disease Z is RYZ . Note that the disease risk estimation model 160 may be configured to output a disease risk score reflecting the risk for each combination of diseases in response to input of physical information, gait index, and physical ability score.

 疾病の組み合わせごとの重みは、それらの疾病に罹った場合の指標に応じて設定される。例えば、疾病の組み合わせごとの重みは、それらの疾病に合わせて罹った場合の死亡率や余命、医療費などの指標に応じて設定される。例えば、死亡率が高いほど、疾病の組み合わせごとの重みが大きく設定される。例えば、余命が短いほど、疾病の組み合わせごとの重みが大きく設定される。例えば、医療費が大きいほど、疾病の組み合わせごとの重みが大きく設定される。2以上の疾病に合わせて罹った場合の指標は、ここであげた限りではなく、疾病のリスクに応じた値であればよい。 The weighting for each combination of diseases is set according to the indicators when one contracts those diseases. For example, the weighting for each combination of diseases is set according to indicators such as mortality rate, life expectancy, and medical costs when one contracts those diseases. For example, the higher the mortality rate, the higher the weighting for each combination of diseases is set. For example, the shorter the life expectancy, the higher the weighting for each combination of diseases is set. For example, the higher the medical costs, the higher the weighting for each combination of diseases is set. The indicators when one contracts two or more diseases at the same time are not limited to those given here, and may be values according to the risk of the diseases.

 例えば、疾病リスク推定モデルは、身体情報、歩容指標、および身体能力スコアの入力に応じて、年平均レセプト発行数を出力するモデルであってもよい。年平均レセプト発行数は、特定疾病の診察で、個人が1年あたりに通院した回数に相当する。その場合、疾病リスク推定部136は、年平均レセプト発行数を用いて、疾病リスクスコアを計算する。例えば、疾病リスク推定モデルは、複数の被験者に関する身体情報(属性)、歩容指標、および身体能力を説明変数とし、特定の疾病に関する年平均レセプト数を目的変数とするデータセットを教師データとした学習で生成される。 For example, the disease risk estimation model may be a model that outputs the average number of receipts issued per year in response to inputs of physical information, gait index, and physical ability score. The average number of receipts issued per year corresponds to the number of times an individual visits the hospital per year for treatment of a specific disease. In this case, the disease risk estimation unit 136 calculates the disease risk score using the average number of receipts issued per year. For example, the disease risk estimation model is generated by learning using a data set in which physical information (attributes), gait index, and physical ability of multiple subjects are explanatory variables, and the average number of receipts issued per year for a specific disease is the objective variable, as training data.

 図11は、年平均レセプト発行数を推定する疾病リスク推定モデル165の一例を示す概念図である。疾病リスク推定部136は、身体情報、歩容指標、および身体能力スコアを疾病リスク推定モデル165に入力する。疾病リスク推定モデル165には、特定疾病に関する疾病リスクの推定に用いられる身体情報、歩容指標、および身体能力スコアが入力される。身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病リスク推定モデル165は、特定疾病に関する年平均レセプト発行数を出力する。図11の例では、複数の疾病の各々に関して、年平均レセプト発行数が推定されている。疾病リスク推定部136は、疾病リスク推定モデル165から出力された年平均レセプト発行数を用いて、疾病リスクスコアを計算する。 FIG. 11 is a conceptual diagram showing an example of a disease risk estimation model 165 that estimates the average annual number of receipts issued. The disease risk estimation unit 136 inputs physical information, gait index, and physical ability score to the disease risk estimation model 165. The disease risk estimation model 165 receives the physical information, gait index, and physical ability score used to estimate the disease risk for a specific disease. In response to the input of the physical information, gait index, and physical ability score, the disease risk estimation model 165 outputs the average annual number of receipts issued for a specific disease. In the example of FIG. 11, the average annual number of receipts issued is estimated for each of a plurality of diseases. The disease risk estimation unit 136 calculates the disease risk score using the average annual number of receipts issued output from the disease risk estimation model 165.

 ここで、年平均レセプト発行数を用いて、疾病リスク推定部136が疾病リスクスコアを計算する例について説明する。以下においては、3通りの計算例をあげる。なお、標準的な人の年平均レセプト発行数μ0が予め得られているものとする。疾病リスク推定モデル165は、疾病リスクの推定対象者に関する身体情報、歩容指標、および身体能力スコアの入力に応じて、特定疾病に関する年平均レセプト発行数μを出力する。 Here, an example will be described in which the disease risk estimation unit 136 calculates a disease risk score using the average annual number of medical receipts issued. Three calculation examples will be given below. It is assumed that the average annual number of medical receipts issued for a standard person μ 0 has been obtained in advance. The disease risk estimation model 165 outputs the average annual number of medical receipts issued μ for a specific disease in response to input of physical information, gait index, and physical ability score for a person whose disease risk is to be estimated.

 第1の手法において、疾病リスク推定部136は、疾病リスクスコアとして、標準的な人の年平均レセプト発行数μ0と、ユーザに関して推定された年平均レセプト発行数μとの比を計算する。疾病リスク推定部136は、以下の式1を用いて、疾病リスクスコアRS1を計算する。 In the first method, the disease risk estimation unit 136 calculates, as the disease risk score, the ratio of the average annual number of medical receipts issued for a standard person μ 0 to the average annual number of medical receipts issued μ estimated for the user. The disease risk estimation unit 136 calculates the disease risk score RS 1 using the following formula 1.

Figure JPOXMLDOC01-appb-M000001
第2の手法において、疾病リスク推定部136は、特定疾病に関する年平均レセプト発行数がポアソン分布に従うという仮定の下で、疾病リスクスコアを計算する。第2の手法において、疾病リスク推定部136は、標準的な人の年平均レセプト発行数の確率質量関数P0(X=k)と、ユーザに関して推定された年平均レセプト発行数の確率質量関数P(X=k)との比を、疾病リスクスコアとして計算する(kは自然数)。疾病リスク推定部136は、以下の式2を用いて、疾病リスクスコアRS2を計算する。
Figure JPOXMLDOC01-appb-M000001
In the second method, the disease risk estimation unit 136 calculates the disease risk score under the assumption that the annual average number of receipts issued for a specific disease follows a Poisson distribution. In the second method, the disease risk estimation unit 136 calculates the disease risk score as the ratio of the probability mass function P0 (X=k) of the annual average number of receipts issued for a standard person to the probability mass function P(X=k) of the annual average number of receipts issued estimated for the user (k is a natural number). The disease risk estimation unit 136 calculates the disease risk score RS2 using the following formula 2.

Figure JPOXMLDOC01-appb-M000002
第3の手法において、疾病リスク推定部136は、特定疾病に関する年平均レセプト発行数のオッズ比を計算する。疾病リスク推定部136は、以下の式3を用いて、疾病リスクスコアRS3を計算する。
Figure JPOXMLDOC01-appb-M000002
In the third method, the disease risk estimation unit 136 calculates the odds ratio of the annual average number of receipts issued for a specific disease. The disease risk estimation unit 136 calculates a disease risk score RS3 using the following formula 3.

Figure JPOXMLDOC01-appb-M000003
なお、上記の3通りの計算例は、一例であって、年平均レセプト発行数を用いた疾病リスクスコアの計算方法を限定するものではない。疾病リスク推定部136は、年平均レセプト発行数以外の指標を用いて、疾病リスクスコアを計算するように構成されてもよい。
Figure JPOXMLDOC01-appb-M000003
The above three calculation examples are merely examples, and do not limit the method of calculating the disease risk score using the annual average number of medical receipts issued. The disease risk estimation unit 136 may be configured to calculate the disease risk score using an index other than the annual average number of medical receipts issued.

 図11の例において、疾病リスク推定部136は、年平均レセプト発行数を用いて算出された疾病ごとの疾病リスクスコアRSに、疾病ごとの重みを掛け合わせて、疾病ごとのリスクが反映された疾病リスクスコアを計算する。図9の例と同様に、図11の例では、推定対象である疾病の危険性を示すランクに応じた値に設定された重みが用いられる。図11の例において、疾病Aの疾病リスクスコアはa×RSAであり、疾病Bの疾病リスクスコアはb×RSBであるまた、疾病Zの疾病リスクスコアはz×RSZである。なお、疾病リスク推定モデル160は、身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病ごとのリスクが反映されたスコアを出力するように構成されてもよい。また、疾病リスク推定部136は、疾病の組み合わせごとのリスクが反映されたスコアを出力するように構成されてもよい。 In the example of FIG. 11, the disease risk estimation unit 136 multiplies the disease risk score RS for each disease calculated using the annual average number of receipts issued by the weight for each disease to calculate a disease risk score reflecting the risk for each disease. As in the example of FIG. 9, in the example of FIG. 11, a weight set to a value corresponding to the rank indicating the risk of the disease to be estimated is used. In the example of FIG. 11, the disease risk score for disease A is a×RS A , the disease risk score for disease B is b×RS B , and the disease risk score for disease Z is z×RS Z. The disease risk estimation model 160 may be configured to output a score reflecting the risk for each disease in response to input of physical information, gait index, and physical ability score. The disease risk estimation unit 136 may also be configured to output a score reflecting the risk for each combination of diseases.

 出力部137(出力手段)は、疾病リスク推定部136によって推定された疾病リスクスコアに応じた疾病リスク情報を出力する。例えば、出力部137は、対象者(ユーザ)の携帯端末の画面に、疾病リスク情報を表示させる。例えば、出力部137は、疾病リスク情報を使用する外部システム等に対して、その疾病リスク情報を出力する。出力された疾病リスク情報の使用に関しては、特に限定を加えない。例えば、疾病リスク情報は、統計分析や疾病予防の研究などに用いられる。 The output unit 137 (output means) outputs disease risk information according to the disease risk score estimated by the disease risk estimation unit 136. For example, the output unit 137 displays the disease risk information on the screen of the subject (user)'s mobile terminal. For example, the output unit 137 outputs the disease risk information to an external system or the like that uses the disease risk information. There are no particular limitations on the use of the output disease risk information. For example, the disease risk information is used for statistical analysis, research into disease prevention, and the like.

 例えば、疾病リスク推定装置13は、対象者(ユーザ)が携帯する携帯端末(図示しない)を介して、クラウドやサーバに構築された外部システム等に接続される。携帯端末(図示しない)は、携帯可能な通信機器である。例えば、携帯端末は、スマートフォンや、スマートウォッチ、携帯電話等の通信機能を有する携帯型の通信機器である。例えば、疾病リスク推定装置13は、無線通信を介して、携帯端末に接続される。例えば、疾病リスク推定装置13は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、携帯端末に接続される。なお、疾病リスク推定装置13の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。例えば、疾病リスク推定装置13は、ケーブルなどの有線を介して、携帯端末に接続されてもよい。疾病リスク情報は、携帯端末にインストールされたアプリケーションによって使用されてもよい。その場合、携帯端末は、その携帯端末にインストールされたアプリケーションソフトウェア等によって、疾病リスク情報を用いた処理を実行する。 For example, the disease risk estimation device 13 is connected to an external system built on a cloud or a server via a mobile terminal (not shown) carried by the subject (user). The mobile terminal (not shown) is a portable communication device. For example, the mobile terminal is a mobile communication device having a communication function such as a smartphone, a smart watch, or a mobile phone. For example, the disease risk estimation device 13 is connected to the mobile terminal via wireless communication. For example, the disease risk estimation device 13 is connected to the mobile terminal via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark). Note that the communication function of the disease risk estimation device 13 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark). For example, the disease risk estimation device 13 may be connected to the mobile terminal via a wire such as a cable. The disease risk information may be used by an application installed on the mobile terminal. In that case, the mobile terminal executes processing using the disease risk information by application software or the like installed on the mobile terminal.

 (動作)
 次に、疾病リスク推定システム1の動作について図面を参照しながら説明する。以下においては、疾病リスク推定システム1に含まれる疾病リスク推定装置13の動作について説明する。図12は、疾病リスク推定装置13の動作の一例について説明するためのフローチャートである。図12のフローチャートに沿った処理の説明においては、疾病リスク推定装置13の構成要素を動作主体として説明する。図12のフローチャートに沿った処理の動作主体は、疾病リスク推定装置13であってもよい。
(Operation)
Next, the operation of the disease risk estimation system 1 will be described with reference to the drawings. The operation of the disease risk estimation device 13 included in the disease risk estimation system 1 will be described below. FIG. 12 is a flowchart for explaining an example of the operation of the disease risk estimation device 13. In explaining the processing according to the flowchart of FIG. 12, the components of the disease risk estimation device 13 will be described as the subject of the operations. The subject of the processing according to the flowchart of FIG. 12 may be the disease risk estimation device 13.

 図12において、まず、取得部131は、履物に搭載された計測装置10によって計測されたセンサデータの時系列データを取得する(ステップS11)。センサデータには、3軸方向の加速度および3軸周りの角速度が含まれる。 In FIG. 12, first, the acquisition unit 131 acquires time series data of sensor data measured by the measurement device 10 mounted on the footwear (step S11). The sensor data includes acceleration in three axial directions and angular velocity around three axes.

 次に、波形処理部132は、センサデータの時系列データから歩行波形データを抽出する(ステップS12)。歩行波形データは、一歩行周期分のセンサデータの時系列データに相当する。 Next, the waveform processing unit 132 extracts walking waveform data from the time series data of the sensor data (step S12). The walking waveform data corresponds to the time series data of the sensor data for one walking cycle.

 次に、波形処理部132は、抽出された歩行波形データを正規化する(ステップS13)。波形処理部132は、歩行波形データを一歩行周期100%で第1正規化する。また、波形処理部132は、立脚相が60%、遊脚相が40%になるように歩行波形データを第2正規化する。 Next, the waveform processing unit 132 normalizes the extracted walking waveform data (step S13). The waveform processing unit 132 performs first normalization on the walking waveform data so that the step period is 100%. The waveform processing unit 132 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.

 次に、歩容指標計算部133は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する(ステップS14)。例えば、歩容指標計算部133は、距離や高さ、角度、速度、時間、フレイルレベル、CPEIなどに関する歩容指標を計算する。 Next, the gait index calculation unit 133 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S14). For example, the gait index calculation unit 133 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.

 次に、身体能力推定部135は、身体情報および歩容指標を用いて、身体能力を推定する(ステップS15)。例えば、身体能力推定部135は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力スコアを推定する。 Next, the physical ability estimation unit 135 estimates physical ability using the physical information and gait indices (step S15). For example, the physical ability estimation unit 135 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.

 次に、疾病リスク推定部136は、身体情報、歩容指標、および身体能力を用いて、疾病ごとのリスクが反映された疾病リスクを推定する(ステップS16)。疾病リスク推定部136は、疾病ごとのリスクが反映された疾病リスクスコアを推定する。例えば、疾病リスク推定部136は、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などの疾病ごとのリスクが反映された疾病リスクスコアを推定する。例えば、疾病リスク推定部136は、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などの疾病ごとのリスクが反映された疾病リスクスコアを推定する。 Next, the disease risk estimation unit 136 estimates a disease risk that reflects the risk for each disease using the physical information, gait index, and physical ability (step S16). The disease risk estimation unit 136 estimates a disease risk score that reflects the risk for each disease. For example, the disease risk estimation unit 136 estimates a disease risk score that reflects the risk for each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, the disease risk estimation unit 136 estimates a disease risk score that reflects the risk for each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.

 次に、出力部137は、推定された疾病リスクに関する疾病リスク情報を出力する(ステップS17)。例えば、出力部137は、対象者(ユーザ)の携帯端末の画面に、疾病リスク情報を表示させる。例えば、出力部137は、疾病リスク情報を使用する外部システム等に対して、その疾病リスク情報を出力する。 Next, the output unit 137 outputs disease risk information related to the estimated disease risk (step S17). For example, the output unit 137 displays the disease risk information on the screen of the subject (user)'s mobile terminal. For example, the output unit 137 outputs the disease risk information to an external system or the like that uses the disease risk information.

 (適用例)
 次に、本実施形態に係る適用例について図面を参照しながら説明する。以下の適用例においては、靴に配置された計測装置10によって計測された特徴量データを用いて、疾病リスクを推定する例を示す。例えば、疾病リスク推定装置13の機能は、ユーザが携帯する携帯端末にインストールされる。疾病リスク推定装置13の機能は、ユーザが携帯する携帯端末とデータ通信可能に接続されたサーバやクラウドに実装されてもよい。
(Application example)
Next, application examples according to the present embodiment will be described with reference to the drawings. In the following application examples, an example is shown in which disease risk is estimated using feature amount data measured by a measuring device 10 placed on a shoe. For example, the function of the disease risk estimation device 13 is installed in a mobile terminal carried by a user. The function of the disease risk estimation device 13 may be implemented in a server or cloud connected to the mobile terminal carried by the user so as to be capable of data communication.

 図13~図14は、計測装置10が配置された靴100を履いて歩行するユーザの携帯する携帯端末170の画面に、疾病リスク推定装置13によって推定された疾病リスク情報を表示させる一例を示す概念図である。図13~図14の例では、ユーザの歩行中に計測されたセンサデータを用いて推定された疾病リスク情報が、携帯端末170の画面に表示される。携帯端末170の画面には、ユーザごとに推定された疾病リスク情報が、ユーザごとに最適化されて表示される。例えば、疾病リスク情報には、予め設定された文書フォーマットに当てはめて生成された疾病リスクに応じたアドバイスが含まれる。例えば、疾病リスクに応じたアドバイスは、大規模言語モデルを用いて、生成されてもよい。 13 and 14 are conceptual diagrams showing an example of displaying disease risk information estimated by the disease risk estimation device 13 on the screen of a mobile terminal 170 carried by a user walking while wearing shoes 100 in which a measuring device 10 is placed. In the example of FIGS. 13 and 14, disease risk information estimated using sensor data measured while the user is walking is displayed on the screen of the mobile terminal 170. Disease risk information estimated for each user is optimized for each user and displayed on the screen of the mobile terminal 170. For example, the disease risk information includes advice corresponding to the disease risk generated by fitting it to a preset document format. For example, advice corresponding to the disease risk may be generated using a large-scale language model.

 図13は、疾病の危険性を示すランクに応じた疾病リスクスコアを含む疾病リスク情報が、携帯端末170の画面に表示される例である。図13の例の場合、「疾病(ランク1):Y1、疾病(ランク2):Y2、疾病(ランク3):Y3、・・・、疾病(ランクQ):YQ」という疾病ごとのリスクが反映された疾病リスクスコアが、携帯端末170の画面に表示される。また、図13の例では、疾病リスクスコアに応じて、「疾病(ランク1)のリスクが高いです。YY病院で診察を受けることをお薦めします。」という疾病リスクに応じてユーザごとに最適化されたアドバイスを含む疾病リスク情報が、携帯端末170の画面に表示される。 FIG. 13 is an example in which disease risk information including a disease risk score according to a rank indicating the risk of the disease is displayed on the screen of the mobile terminal 170. In the example of FIG. 13, disease risk scores reflecting the risk of each disease, such as "Disease (Rank 1): Y1, Disease (Rank 2): Y2, Disease (Rank 3): Y3, ..., Disease (Rank Q): YQ", are displayed on the screen of the mobile terminal 170. Also, in the example of FIG. 13, disease risk information including advice optimized for each user according to the disease risk, such as "Your risk of disease (Rank 1) is high. We recommend that you receive a medical examination at YY Hospital," is displayed on the screen of the mobile terminal 170 according to the disease risk score.

 図14は、疾病の組み合わせの危険性に応じた疾病リスクスコアを含む疾病リスク情報が、携帯端末170の画面に表示される例である。図14の例の場合、「疾病A+疾病B:X1、疾病B+疾病C:X2、疾病B+疾病C:X3、・・・、疾病X+疾病Y:XZ」という疾病の組み合わせごとのリスクが反映された疾病リスクスコアが、携帯端末170の画面に表示される。また、図14の例では、疾病リスクスコアに応じて、「疾病Aと疾病Bの組み合わせのリスクが高いです。XX病院で診察を受けることをお薦めします。」という疾病リスクに応じたアドバイスを含む疾病リスク情報が、携帯端末170の画面に表示される。 FIG. 14 shows an example of disease risk information including a disease risk score according to the risk of disease combinations displayed on the screen of the mobile terminal 170. In the example of FIG. 14, disease risk scores reflecting the risk of each disease combination, such as "Disease A + Disease B: X1, Disease B + Disease C: X2, Disease B + Disease C: X3, ..., Disease X + Disease Y: XZ," are displayed on the screen of the mobile terminal 170. Also, in the example of FIG. 14, disease risk information including advice according to the disease risk, such as "The combination of disease A and disease B is high risk. We recommend that you receive a checkup at XX Hospital," is displayed on the screen of the mobile terminal 170 according to the disease risk score.

 上述の適用例に関して、携帯端末170の表示部に表示された疾病ごとのリスクが反映された疾病リスクに関する情報を確認したユーザは、自身の疾病リスクを認識できる。疾病リスク情報は、ユーザ以外に提供されてもよい。例えば、疾病リスク情報は、ユーザの体調管理を行う医師やトレーナーや、ユーザの家族などの使用する端末装置(図示しない)に出力されてもよい。例えば、疾病リスク情報は、健康管理等の目的で構築されたデータベース(図示しない)に記録されてもよい。疾病リスク情報の出力先や使用に関しては、特に限定を加えない。 With regard to the above-mentioned application example, a user who checks the information on disease risk reflecting the risk for each disease displayed on the display unit of the mobile terminal 170 can recognize his/her own disease risk. The disease risk information may be provided to a party other than the user. For example, the disease risk information may be output to a terminal device (not shown) used by a doctor or trainer who manages the user's physical condition, or by the user's family, etc. For example, the disease risk information may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the output destination or use of the disease risk information.

 以上のように、本実施形態の疾病リスク推定システムは、計測装置および疾病リスク推定装置を備える。計測装置は、疾病リスク情報の推定対象である対象者の履物に設置される。計測装置は、空間加速度および空間角速度を計測する。計測装置は、計測された空間加速度および空間角速度を用いてセンサデータを生成する。計測装置は、生成されたセンサデータを疾病リスク推定装置に送信する。疾病リスク推定装置は、取得部、リスク推定部、および出力部を備える。取得部は、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する。リスク推定部は、計算部および推定部を有する。計算部は、センサデータを用いて歩容指標を計算する。推定部は、センサデータを用いて算出された歩容指標を含むデータを疾病リスク推定モデルに入力する。疾病リスク推定モデルは、歩容指標を含むデータの入力に応じて疾病に関する疾病リスクの度合を示す疾病リスクスコアを出力する。推定部は、疾病リスク推定モデルから出力される疾病リスクスコアに応じて、疾病ごとのリスクが反映された疾病リスクを推定する。出力部は、推定された疾病リスクに応じた疾病リスク情報を出力する。 As described above, the disease risk estimation system of this embodiment includes a measurement device and a disease risk estimation device. The measurement device is installed on the footwear of a subject for whom disease risk information is to be estimated. The measurement device measures spatial acceleration and spatial angular velocity. The measurement device generates sensor data using the measured spatial acceleration and spatial angular velocity. The measurement device transmits the generated sensor data to the disease risk estimation device. The disease risk estimation device includes an acquisition unit, a risk estimation unit, and an output unit. The acquisition unit acquires sensor data measured according to the movement of the feet of a subject for whom disease risk is to be estimated. The risk estimation unit has a calculation unit and an estimation unit. The calculation unit calculates a gait index using the sensor data. The estimation unit inputs data including the gait index calculated using the sensor data to the disease risk estimation model. The disease risk estimation model outputs a disease risk score indicating the degree of disease risk related to a disease in response to the input of data including the gait index. The estimation unit estimates a disease risk reflecting the risk for each disease in response to the disease risk score output from the disease risk estimation model. The output unit outputs disease risk information according to the estimated disease risk.

 以上のように、本実施形態の疾病リスク推定装置は、対象者の足の動きに関するセンサデータに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する。すなわち、本実施形態によれば、足の動きに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定できる。 As described above, the disease risk estimation device of this embodiment estimates disease risk reflecting the risk for each disease using sensor data measured according to sensor data related to the subject's foot movements. In other words, according to this embodiment, it is possible to estimate disease risk reflecting the risk for each disease using sensor data measured according to foot movements.

 本実施形態の一態様において、推定部は、疾病の危険性を示すランクに応じた疾病ごとの重みを疾病リスクスコアにかけ合わせることによって、疾病ごとのリスクが反映された疾病リスクスコアを計算する。本態様によれば、疾病の危険性を示すランクに応じて、疾病ごとのリスクが反映された疾病リスクを推定できる。 In one aspect of this embodiment, the estimation unit calculates a disease risk score that reflects the risk of each disease by multiplying the disease risk score by a weight for each disease that corresponds to the rank indicating the risk of the disease. According to this aspect, it is possible to estimate a disease risk that reflects the risk of each disease according to the rank indicating the risk of the disease.

 本実施形態の一態様において、推定部は、疾病の組み合わせごとの重みを疾病リスクスコアに掛け合わせることによって、疾病の組み合わせごとのリスクが反映された疾病リスクスコアを計算する。本態様によれば、疾病の組み合わせごとのリスクが反映された疾病リスクスコアを推定できる。 In one aspect of this embodiment, the estimation unit calculates a disease risk score that reflects the risk of each disease combination by multiplying the disease risk score by a weight for each disease combination. According to this aspect, it is possible to estimate a disease risk score that reflects the risk of each disease combination.

 本実施形態の一態様において、疾病リスク推定装置は、ユーザによって閲覧可能な端末装置の画面に、対象者に関して最適化させて表示させる。本態様によれば、対象者に関して最適化させて提供できる。 In one aspect of this embodiment, the disease risk estimation device displays information optimized for the subject on the screen of a terminal device that can be viewed by the user. According to this aspect, information can be provided that is optimized for the subject.

 本実施形態の一態様において、疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルである。例えば、疾病リスク推定モデルは、不完全異種変分オートエンコーダを含む。本態様によれば、歩容指標などのデータに多少の欠損があっても、対象者の疾病リスクを推定できる。 In one aspect of this embodiment, the disease risk estimation model is a model trained using a machine learning technique. For example, the disease risk estimation model includes an incomplete heterogeneous variational autoencoder. According to this aspect, even if there is some loss of data such as gait indicators, the subject's disease risk can be estimated.

 (第2実施形態)
 次に、第2実施形態に係る疾病リスク推定装置について図面を参照しながら説明する。本実施形態の疾病リスク推定装置は、疾病リスクの変化傾向に応じた提案情報を含む疾病リスク情報出力する。
Second Embodiment
Next, a disease risk estimation device according to a second embodiment will be described with reference to the drawings. The disease risk estimation device according to this embodiment outputs disease risk information including suggested information according to a change trend of the disease risk.

 (構成)
 図15は、本開示における疾病リスク推定システム2の構成の一例を示すブロック図である。疾病リスク推定システム2は、計測装置20と疾病リスク推定装置23を備える。例えば、計測装置20は、疾病リスクの推定対象である対象者(ユーザ)の履物に設置される。例えば、疾病リスク推定装置23の機能は、対象者(ユーザ)の携帯する携帯端末にインストールされる。計測装置20は、第1実施形態の計測装置10と同様の構成である。以下においては、計測装置20については説明を省略し、疾病リスク推定装置23について説明する。なお、疾病リスク推定装置23の主な構成は、第1実施形態の疾病リスク推定装置13の構成と同様であるため、説明を省略する場合がある。
(composition)
FIG. 15 is a block diagram showing an example of the configuration of a disease risk estimation system 2 in the present disclosure. The disease risk estimation system 2 includes a measurement device 20 and a disease risk estimation device 23. For example, the measurement device 20 is installed in the footwear of a subject (user) whose disease risk is to be estimated. For example, the function of the disease risk estimation device 23 is installed in a mobile terminal carried by the subject (user). The measurement device 20 has the same configuration as the measurement device 10 of the first embodiment. In the following, a description of the measurement device 20 will be omitted, and only the disease risk estimation device 23 will be described. Note that the main configuration of the disease risk estimation device 23 is similar to the configuration of the disease risk estimation device 13 of the first embodiment, and therefore, the description may be omitted.

 〔疾病リスク推定装置〕
 図16は、疾病リスク推定装置23の構成の一例を示すブロック図である。疾病リスク推定装置23は、取得部231、計算部230、推定部240、記憶部234、変化傾向判定部245、および出力部237を有する。計算部230および推定部240は、リスク推定部25を構成する。
[Disease risk estimation device]
16 is a block diagram showing an example of the configuration of the disease risk estimation device 23. The disease risk estimation device 23 has an acquisition unit 231, a calculation unit 230, an estimation unit 240, a storage unit 234, a change tendency determination unit 245, and an output unit 237. The calculation unit 230 and the estimation unit 240 constitute the risk estimation unit 25.

 取得部231(取得手段)は、第1実施形態の取得部131と同様の構成である。取得部231は、計測装置20からセンサデータを取得する。取得部231は、無線通信を介して、計測装置20からセンサデータを受信する。例えば、取得部231は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、計測装置20からセンサデータを受信する。なお、計測装置20と通信できさえすれば、取得部231の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。取得部231は、ケーブルなどの有線を介して、計測装置20からセンサデータを受信してもよい。例えば、取得部231は、計測装置20によって算出された歩容指標や特徴量を取得してもよい。 The acquisition unit 231 (acquisition means) has the same configuration as the acquisition unit 131 of the first embodiment. The acquisition unit 231 acquires sensor data from the measurement device 20. The acquisition unit 231 receives the sensor data from the measurement device 20 via wireless communication. For example, the acquisition unit 231 receives the sensor data from the measurement device 20 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark). Note that the communication function of the acquisition unit 231 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 20. The acquisition unit 231 may receive the sensor data from the measurement device 20 via a wired connection such as a cable. For example, the acquisition unit 231 may acquire a gait index or a feature amount calculated by the measurement device 20.

 また、取得部231は、ユーザの身体情報(属性)を取得する。身体情報は、性別、生年月日、身長、および体重を含む。生年月日は、年齢に変換される。例えば、身体情報は、入力装置(図示しない)を介して入力される。例えば、身体情報は、ユーザが使用する携帯端末を介して入力される。例えば、身体情報は、記憶部234に予め記憶させておけばよい。身体情報は、ユーザによる入力に応じて、任意のタイミングで更新されてもよい。 The acquisition unit 231 also acquires the user's physical information (attributes). The physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. For example, the physical information is input via an input device (not shown). For example, the physical information is input via a mobile terminal used by the user. For example, the physical information may be stored in advance in the storage unit 234. The physical information may be updated at any time in response to input by the user.

 計算部230(計算手段)は、第1実施形態の計算部130と同様の構成である。計算部230は、第1実施形態の波形処理部132および歩容指標計算部133の機能を有する。計算部230は、取得部231からセンサデータを取得する。計算部230は、センサデータに含まれる3軸方向の加速度および3軸周りの角速度の時系列データから、一歩行周期分の時系列データ(歩行波形データ)を抽出する。計算部230は、センサデータの時系列データから検出される歩行イベントのタイミングに基づいて、歩行波形データを抽出する。例えば、計算部230は、踵接地のタイミングを始点とし、次の踵接地のタイミングを終点とする歩行波形データを抽出する。 The calculation unit 230 (calculation means) has the same configuration as the calculation unit 130 of the first embodiment. The calculation unit 230 has the functions of the waveform processing unit 132 and gait index calculation unit 133 of the first embodiment. The calculation unit 230 acquires sensor data from the acquisition unit 231. The calculation unit 230 extracts time series data for one walking cycle (gait waveform data) from the time series data of acceleration in three axial directions and angular velocity about three axes included in the sensor data. The calculation unit 230 extracts gait waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the calculation unit 230 extracts gait waveform data that starts from the timing of a heel strike and ends with the timing of the next heel strike.

 計算部230は、抽出された一歩行周期分の歩行波形データの時間を、0~100%(パーセント)の歩行周期に正規化(第1正規化)する。また、計算部230は、第1正規化された一歩行周期分の歩行波形データに関して、立脚相が60%、遊脚相が40%になるように正規化(第2正規化)する。 The calculation unit 230 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent). The calculation unit 230 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%.

 計算部230は、歩行波形データから、身体能力の推定に用いられる特徴量(身体能力特徴量)を抽出する。計算部230は、少なくとも一つの身体能力の推定に用いられる身体能力特徴量を抽出する。例えば、計算部230は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力のうち少なくともいずれかの推定に用いられる身体能力特徴量を抽出する。例えば、計算部230は、予め設定された条件に従って、歩行フェーズクラスターごとの身体能力特徴量を抽出する。計算部230は、抽出された身体能力特徴量を推定部240に出力する。 The calculation unit 230 extracts features (physical ability features) used to estimate physical abilities from the walking waveform data. The calculation unit 230 extracts physical ability features used to estimate at least one physical ability. For example, the calculation unit 230 extracts physical ability features used to estimate at least one of physical abilities such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. For example, the calculation unit 230 extracts physical ability features for each walking phase cluster according to preset conditions. The calculation unit 230 outputs the extracted physical ability features to the estimation unit 240.

 計算部230は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する。例えば、計算部230は、距離や高さ、角度、速度、時間、フレイルレベル、CPEI(Center of Pressure Exclusion Index)などに関する歩容指標を計算する。 The calculation unit 230 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability. For example, the calculation unit 230 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc.

 記憶部234(記憶手段)は、第1実施形態の記憶部134と同様の構成である。記憶部234は、歩行波形データから抽出された身体能力特徴量を用いて身体能力を推定する身体能力推定モデルを記憶する。例えば、身体能力推定モデルは、歩行波形データから抽出された身体能力特徴量の入力に応じて、身体能力に関する指標(身体能力スコア)を出力する。また、記憶部234は、身体情報、歩容指標、および身体能力スコアを用いて疾病リスクを推定する疾病リスク推定モデルを記憶する。例えば、疾病リスク推定モデルは、身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病リスクに関する指標(疾病リスクスコア)を出力する。 The memory unit 234 (storage means) has the same configuration as the memory unit 134 of the first embodiment. The memory unit 234 stores a physical ability estimation model that estimates physical ability using physical ability features extracted from gait waveform data. For example, the physical ability estimation model outputs an index related to physical ability (physical ability score) in response to input of physical ability features extracted from gait waveform data. The memory unit 234 also stores a disease risk estimation model that estimates disease risk using physical information, gait index, and physical ability score. For example, the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of physical information, gait index, and physical ability score.

 記憶部234は、複数の被験者に関して学習された身体能力推定モデルおよび疾病リスク推定モデルを記憶する。例えば、身体能力推定モデルおよび疾病リスク推定モデルは、製品の工場出荷時において、記憶部234に記憶させておけばよい。身体能力推定モデルおよび疾病リスク推定モデルは、疾病リスク推定装置23をユーザが使用する前のキャリブレーション時等のタイミングにおいて、記憶部234に記憶させてもよい。例えば、外部のサーバ等の記憶装置(図示しない)に保存された身体能力推定モデルおよび疾病リスク推定モデルが用いられてもよい。その場合、その記憶装置と接続されたインターフェース(図示しない)を介して、身体能力推定モデルおよび疾病リスク推定モデルにアクセスできればよい。 The memory unit 234 stores the physical ability estimation model and disease risk estimation model learned for multiple subjects. For example, the physical ability estimation model and disease risk estimation model may be stored in the memory unit 234 when the product is shipped from the factory. The physical ability estimation model and disease risk estimation model may also be stored in the memory unit 234 at a timing such as at the time of calibration before the disease risk estimation device 23 is used by a user. For example, a physical ability estimation model and disease risk estimation model saved in a storage device (not shown) such as an external server may be used. In that case, it is sufficient if the physical ability estimation model and disease risk estimation model can be accessed via an interface (not shown) connected to the storage device.

 また、記憶部234は、ユーザの身体情報(属性)を記憶する。身体情報は、性別、生年月日、身長、および体重を含む。生年月日は、年齢に変換される。身体情報は、任意のタイミングで更新されてもよい。 The storage unit 234 also stores the user's physical information (attributes). The physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. The physical information may be updated at any time.

 推定部240(推定手段)は、第1実施形態の推定部140と同様の構成である。推定部240は、第1実施形態の身体能力推定部135および疾病リスク推定部136の機能を含む。推定部240は、歩行波形データから抽出された身体能力特徴量を計算部230から取得する。また、推定部240は、記憶部234に記憶された身体情報(属性)を取得する。推定部240は、身体能力特徴量および身体情報(属性)を用いて、身体能力スコアを推定する。推定部240は、記憶部234に記憶された身体能力推定モデルに、身体能力特徴量とユーザの身体情報(属性)を入力する。例えば、推定部240は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスのうち少なくともいずれかの身体能力に関する身体能力スコアを推定する。推定部240は、身体能力スコア、歩容指標、および身体情報(属性)を用いて、疾病ごとのリスクが反映された疾病リスクスコアを推定する。推定部240は、推定した疾病リスクスコアを出力する。 The estimation unit 240 (estimation means) has the same configuration as the estimation unit 140 of the first embodiment. The estimation unit 240 includes the functions of the physical ability estimation unit 135 and the disease risk estimation unit 136 of the first embodiment. The estimation unit 240 acquires the physical ability feature extracted from the walking waveform data from the calculation unit 230. The estimation unit 240 also acquires the physical information (attributes) stored in the memory unit 234. The estimation unit 240 estimates a physical ability score using the physical ability feature and the physical information (attributes). The estimation unit 240 inputs the physical ability feature and the user's physical information (attributes) to the physical ability estimation model stored in the memory unit 234. For example, the estimation unit 240 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. The estimation unit 240 uses the physical ability score, the gait index, and the physical information (attributes) to estimate a disease risk score that reflects the risk of each disease. The estimation unit 240 outputs the estimated disease risk score.

 変化傾向判定部245は、疾病ごとのリスクが反映された疾病リスクスコアの時系列データを取得する。変化傾向判定部245は、疾病リスクスコアの時系列データの変化に応じて、疾病リスクごとの変化傾向を判定する。変化傾向判定部245は、疾病リスクスコアの時系列データに、増加傾向や低下傾向、停滞傾向などの変化傾向があるか判定する。変化傾向判定部245は、疾病リスクごとの変化傾向に応じて、疾病ごとの疾病リスクを判定する。 The change trend determination unit 245 acquires time series data of disease risk scores that reflect the risk for each disease. The change trend determination unit 245 determines the change trend for each disease risk according to changes in the time series data of the disease risk score. The change trend determination unit 245 determines whether there is a change trend, such as an increasing trend, a decreasing trend, or a stagnant trend, in the time series data of the disease risk score. The change trend determination unit 245 determines the disease risk for each disease according to the change trend for each disease risk.

 図17は、1人のユーザに関する疾病リスクスコアの時系列データの一例を示すグラフである。図17のグラフは、疾病リスクスコアの変化傾向が異なる3つの疾病に関する。例えば、変化傾向判定部245は、特定期間における疾病リスクスコアの傾きに応じて、変化傾向を判定する。例えば、変化傾向判定部245は、疾病リスクスコアの時系列データの曲線に合わせてフィッテイングされた接線の傾きに応じて、変化傾向を判定してもよい。 FIG. 17 is a graph showing an example of time series data of disease risk scores for one user. The graph in FIG. 17 relates to three diseases with different change trends in disease risk scores. For example, the change trend determination unit 245 determines the change trend according to the slope of the disease risk score in a specific period. For example, the change trend determination unit 245 may determine the change trend according to the slope of a tangent line fitted to the curve of the time series data of the disease risk score.

 図17の例において、疾病A(破線)の疾病リスクスコアの時系列データに関しては、停滞傾向が見られる。疾病B(一点鎖線)の疾病リスクスコアの時系列データに関しては、増加傾向が見られる。疾病C(二点鎖線)の疾病リスクスコアの時系列データに関しては、減少傾向が見られる。例えば、変化傾向判定部245は、疾病Aに関する疾病リスクスコアの停滞傾向に応じて、疾病Aのリスクに変化がないと判定する。例えば、変化傾向判定部245は、疾病Bに関する疾病リスクスコアの増加傾向に応じて、疾病Bのリスクに変化があると判定する。例えば、変化傾向判定部245は、疾病Cに関する疾病リスクスコアの減少傾向に応じて、疾病Cのリスクが減少したと判定する。 In the example of FIG. 17, a stagnation trend is observed for the time series data of the disease risk score for disease A (dashed line). An increase trend is observed for the time series data of the disease risk score for disease B (dash-dotted line). A decrease trend is observed for the time series data of the disease risk score for disease C (dash-dotted line). For example, the change trend determination unit 245 determines that there is no change in the risk of disease A in response to the stagnation trend of the disease risk score for disease A. For example, the change trend determination unit 245 determines that there is a change in the risk of disease B in response to the increase trend of the disease risk score for disease B. For example, the change trend determination unit 245 determines that the risk of disease C has decreased in response to the decrease trend of the disease risk score for disease C.

 図18は、複数のユーザに関する疾病リスクスコアの時系列データの一例を示すグラフである。図18のグラフは、同一の疾病リスクスコアの変化傾向が異なる3人のユーザに関する。ユーザ1(破線)の疾病リスクスコアの時系列データに関しては、停滞傾向が見られる。ユーザ2(一点鎖線)の疾病リスクスコアの時系列データに関しては、増加傾向が見られる。ユーザ3(二点鎖線)の疾病リスクスコアの時系列データに関しては、減少傾向が見られる。例えば、変化傾向判定部245は、ユーザ1に関する疾病リスクスコアの停滞傾向に応じて、疾病のリスクに変化がないと判定する。例えば、変化傾向判定部245は、ユーザ2に関する疾病リスクスコアの増加傾向に応じて、疾病のリスクに変化があると判定する。例えば、変化傾向判定部245は、ユーザ3に関する疾病リスクスコアの減少傾向に応じて、疾病のリスクが減少したと判定する。 18 is a graph showing an example of time series data of disease risk scores for multiple users. The graph in FIG. 18 relates to three users with different change trends of the same disease risk score. A stagnation trend is observed in the time series data of the disease risk score for user 1 (dashed line). An increase trend is observed in the time series data of the disease risk score for user 2 (dash-dotted line). A decrease trend is observed in the time series data of the disease risk score for user 3 (dash-dotted line). For example, the change trend determination unit 245 determines that there is no change in the disease risk in response to the stagnation trend of the disease risk score for user 1. For example, the change trend determination unit 245 determines that there is a change in the disease risk in response to the increase trend of the disease risk score for user 2. For example, the change trend determination unit 245 determines that the disease risk has decreased in response to the decrease trend of the disease risk score for user 3.

 図19は、複数のユーザに関する疾病リスクスコアの時系列データの一例を示すグラフである。図19のグラフは、同一の疾病リスクスコアの変化傾向が異なる3人のユーザに関する。図19は、疾病リスクスコアに設定された閾値に応じて、疾病リスクスコアの変化傾向を判定する例である。図19の例では、下限閾値TLおよび上限閾値TUが設定される。ユーザ1(破線)の疾病リスクスコアの時系列データに関しては、下限閾値TLを下回っている。ユーザ2(一点鎖線)の疾病リスクスコアの時系列データに関しては、下限閾値TLを上回り、さらに上限閾値TUを上回っている。ユーザ3(二点鎖線)の疾病リスクスコアの時系列データに関しては、下限閾値TLを上回っていたものの、時間経過につれて下限閾値TLを下回っている。例えば、変化傾向判定部245は、ユーザ1に関しては、疾病リスクスコアが下限閾値TLを下回っているため、疾病のリスクが低いと判定する。例えば、変化傾向判定部245は、ユーザ2に関しては、疾病リスクスコアが上限閾値TUを上回ったため、疾病のリスクが高いと判定する。例えば、変化傾向判定部245は、ユーザ3に関しては、疾病リスクスコアが下限閾値TLを下回ったため、疾病のリスクが低くなったと判定する。図19の例では、疾病リスクスコアに対して閾値が2つ設定された例をあげた。疾病リスクスコアに対する閾値は、1つだけ設定されていてもよいし、3つ以上設定されていてもよい。 FIG. 19 is a graph showing an example of time series data of disease risk scores for multiple users. The graph in FIG. 19 is for three users with different change trends of the same disease risk score. FIG. 19 is an example of determining the change trend of a disease risk score according to a threshold set for the disease risk score. In the example of FIG. 19, a lower threshold T L and an upper threshold T U are set. The time series data of the disease risk score of user 1 (dashed line) is below the lower threshold T L. The time series data of the disease risk score of user 2 (dotted line) exceeds the lower threshold T L and also exceeds the upper threshold T U. The time series data of the disease risk score of user 3 (dotted line) exceeded the lower threshold T L , but fell below the lower threshold T L over time. For example, the change trend determination unit 245 determines that the risk of disease is low for user 1 because the disease risk score is below the lower threshold T L. For example, the change trend determination unit 245 determines that the risk of disease is high for user 2 because the disease risk score has exceeded the upper threshold value T U. For example, the change trend determination unit 245 determines that the risk of disease is low for user 3 because the disease risk score has fallen below the lower threshold value T L. The example of FIG. 19 shows an example in which two threshold values are set for the disease risk score. Only one threshold value or three or more threshold values may be set for the disease risk score.

 変化傾向判定部245は、疾病ごとの疾病リスクに関する判定結果に応じた情報を生成する。例えば、変化傾向判定部245は、疾病ごとの疾病リスクに関する判定結果に応じた提案情報を生成する。例えば、変化傾向判定部245は、予め設定された文書フォーマットに当てはめて生成された疾病リスクに応じたアドバイスが含まれる提案情報を生成する。例えば、疾病リスクに応じたアドバイスは、大規模言語モデルを用いて、生成されてもよい。 The change trend determination unit 245 generates information according to the determination result regarding the disease risk for each disease. For example, the change trend determination unit 245 generates suggested information according to the determination result regarding the disease risk for each disease. For example, the change trend determination unit 245 generates suggested information including advice according to the disease risk generated by applying it to a preset document format. For example, advice according to the disease risk may be generated using a large-scale language model.

 出力部237(出力手段)は、第1実施形態の出力部137と同様の構成である。出力部237は、推定部240によって推定された疾病リスクスコアに応じた疾病リスク情報を出力する。また、出力部237は、変化傾向判定部245による判定結果に応じた提案情報を出力する。例えば、出力部237は、対象者(ユーザ)の携帯端末の画面に、疾病リスク情報や提案情報を表示させる。例えば、出力部237は、疾病リスク情報や提案情報を使用する外部システム等に対して、疾病リスク情報や提案情報を出力する。出力された疾病リスク情報や提案情報の使用に関しては、特に限定を加えない。例えば、疾病リスク情報や提案情報は、統計分析や疾病予防の研究などに用いられる。 The output unit 237 (output means) has the same configuration as the output unit 137 of the first embodiment. The output unit 237 outputs disease risk information according to the disease risk score estimated by the estimation unit 240. The output unit 237 also outputs suggested information according to the determination result by the change trend determination unit 245. For example, the output unit 237 displays the disease risk information and suggested information on the screen of the mobile terminal of the subject (user). For example, the output unit 237 outputs the disease risk information and suggested information to an external system or the like that uses the disease risk information and suggested information. There are no particular limitations on the use of the output disease risk information and suggested information. For example, the disease risk information and suggested information are used for statistical analysis, research on disease prevention, and the like.

 (動作)
 次に、疾病リスク推定システム2の動作について図面を参照しながら説明する。以下においては、疾病リスク推定システム2に含まれる疾病リスク推定装置23の動作について説明する。図20は、疾病リスク推定装置23の動作の一例について説明するためのフローチャートである。図20のフローチャートに沿った処理の説明においては、疾病リスク推定装置23の構成要素を動作主体として説明する。図20のフローチャートに沿った処理の動作主体は、疾病リスク推定装置23であってもよい。
(Operation)
Next, the operation of the disease risk estimation system 2 will be described with reference to the drawings. The operation of the disease risk estimation device 23 included in the disease risk estimation system 2 will be described below. FIG. 20 is a flowchart for explaining an example of the operation of the disease risk estimation device 23. In explaining the processing according to the flowchart of FIG. 20, the components of the disease risk estimation device 23 will be described as the subjects of operation. The subject of operation of the processing according to the flowchart of FIG. 20 may be the disease risk estimation device 23.

 図20において、まず、取得部231は、履物に搭載された計測装置20によって計測されたセンサデータの時系列データを取得する(ステップS21)。センサデータには、3軸方向の加速度および3軸周りの角速度が含まれる。 In FIG. 20, first, the acquisition unit 231 acquires time series data of sensor data measured by the measurement device 20 mounted on the footwear (step S21). The sensor data includes acceleration in three axial directions and angular velocity around three axes.

 次に、計算部230は、センサデータの時系列データから歩行波形データを抽出する(ステップS22)。歩行波形データは、一歩行周期分のセンサデータの時系列データに相当する。 Next, the calculation unit 230 extracts walking waveform data from the time series data of the sensor data (step S22). The walking waveform data corresponds to the time series data of the sensor data for one walking cycle.

 次に、計算部230は、抽出された歩行波形データを正規化する(ステップS23)。計算部230は、歩行波形データを一歩行周期100%で第1正規化する。また、計算部230は、立脚相が60%、遊脚相が40%になるように歩行波形データを第2正規化する。 Next, the calculation unit 230 normalizes the extracted walking waveform data (step S23). The calculation unit 230 performs first normalization on the walking waveform data so that the stride cycle is 100%. The calculation unit 230 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.

 次に、計算部230は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する(ステップS24)。例えば、計算部230は、距離や高さ、角度、速度、時間、フレイルレベル、CPEIなどに関する歩容指標を計算する。 Next, the calculation unit 230 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S24). For example, the calculation unit 230 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.

 次に、推定部240は、身体情報および歩容指標を用いて、身体能力を推定する(ステップS25)。例えば、推定部240は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力スコアを推定する。 Next, the estimation unit 240 estimates physical ability using the physical information and gait indices (step S25). For example, the estimation unit 240 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.

 次に、推定部240は、身体情報、歩容指標、および身体能力を用いて、疾病ごとのリスクが反映された疾病リスクを推定する(ステップS26)。推定部240は、疾病ごとのリスクが反映された疾病リスクスコアを推定する。例えば、推定部240は、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などの疾病ごとのリスクが反映された疾病リスクスコアを推定する。例えば、推定部240は、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などの疾病ごとのリスクが反映された疾病リスクスコアを推定する。 Next, the estimation unit 240 estimates a disease risk that reflects the risk of each disease using the physical information, gait index, and physical ability (step S26). The estimation unit 240 estimates a disease risk score that reflects the risk of each disease. For example, the estimation unit 240 estimates a disease risk score that reflects the risk of each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, the estimation unit 240 estimates a disease risk score that reflects the risk of each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.

 次に、変化傾向判定部245は、推定された疾病リスクの変化傾向を判定する(ステップS27)。変化傾向判定部245は、疾病リスクスコアの時系列データに関する変化傾向に応じた提案情報を生成する。 Next, the change trend determination unit 245 determines the change trend of the estimated disease risk (step S27). The change trend determination unit 245 generates proposal information according to the change trend of the time series data of the disease risk score.

 次に、出力部237は、推定された疾病リスクに関する疾病リスク情報と、判定結果に応じた提案情報とを出力する(ステップS28)。例えば、出力部237は、対象者(ユーザ)の携帯端末の画面に、疾病リスク情報や提案情報を表示させる。例えば、出力部237は、疾病リスク情報や提案情報を使用する外部システム等に対して、疾病リスク情報や提案情報を出力する。 Next, the output unit 237 outputs disease risk information related to the estimated disease risk and suggested information according to the determination result (step S28). For example, the output unit 237 displays the disease risk information and suggested information on the screen of the subject (user)'s mobile terminal. For example, the output unit 237 outputs the disease risk information and suggested information to an external system or the like that uses the disease risk information and suggested information.

 (適用例)
 次に、本実施形態に係る適用例について図面を参照しながら説明する。以下の適用例においては、靴に配置された計測装置20によって計測された特徴量データを用いて、疾病リスクを推定する例を示す。例えば、疾病リスク推定装置23の機能は、ユーザが携帯する携帯端末にインストールされる。疾病リスク推定装置23の機能は、ユーザが携帯する携帯端末とデータ通信可能に接続されたサーバやクラウドに実装されてもよい。
(Application example)
Next, application examples according to the present embodiment will be described with reference to the drawings. In the following application examples, an example is shown in which disease risk is estimated using feature amount data measured by a measuring device 20 placed on a shoe. For example, the function of the disease risk estimation device 23 is installed in a mobile device carried by the user. The function of the disease risk estimation device 23 may be implemented in a server or cloud connected to the mobile device carried by the user so as to be capable of data communication.

 図21~図22は、計測装置20が配置された靴200を履いて歩行するユーザの携帯する携帯端末270の画面に、疾病リスク推定装置23によって推定された疾病リスク情報を表示させる一例を示す概念図である。図21~図22の例では、ユーザの歩行中に計測されたセンサデータを用いて推定された疾病リスク情報が、携帯端末270の画面に表示される。携帯端末270の画面には、ユーザごとに推定された疾病リスク情報が、ユーザごとに最適化されて表示される。例えば、疾病リスク情報には、予め設定された文書フォーマットに当てはめて生成された疾病リスクに応じたアドバイスが含まれる。例えば、疾病リスクに応じたアドバイスは、大規模言語モデルを用いて、生成されてもよい。 21 and 22 are conceptual diagrams showing an example of displaying disease risk information estimated by the disease risk estimation device 23 on the screen of a mobile device 270 carried by a user walking while wearing shoes 200 in which a measuring device 20 is placed. In the example of FIGS. 21 and 22, disease risk information estimated using sensor data measured while the user is walking is displayed on the screen of the mobile device 270. Disease risk information estimated for each user is displayed on the screen of the mobile device 270 in an optimized manner for each user. For example, the disease risk information includes advice corresponding to the disease risk generated by fitting it to a preset document format. For example, advice corresponding to the disease risk may be generated using a large-scale language model.

 図21は、疾病リスクの変化傾向およびアドバイスを含む疾病リスク情報が、携帯端末270の画面に表示される例である。図21の例の場合、「疾病(ランク1):要検査、疾病(ランク2):要注意、・・・、疾病(ランクQ):・・・」という疾病リスクの変化傾向に応じた情報が、携帯端末270の画面に表示される。また、図21の例では、要検査である疾病リスクの変化傾向に応じて、「疾病(ランク1)のスコアが上限閾値を越えました。病院で診察を受けてください。」という疾病リスクの変化傾向に応じたアドバイスを含む疾病リスク情報が、携帯端末270の画面に表示される。さらに、図21の例では、要注意である疾病リスクの変化傾向に応じて、「疾病(ランク2)のスコアが下限閾値を越えています。食生活を見直してください。」という疾病リスクに応じたアドバイスを含む疾病リスク情報が、携帯端末270の画面に表示される。 21 is an example of disease risk information including a change trend of disease risk and advice displayed on the screen of the mobile terminal 270. In the example of FIG. 21, information according to the change trend of disease risk, such as "Disease (rank 1): examination required, Disease (rank 2): caution required, ..., Disease (rank Q): ..." is displayed on the screen of the mobile terminal 270. Also, in the example of FIG. 21, disease risk information including advice according to the change trend of disease risk, such as "The score for disease (rank 1) has exceeded the upper threshold. Please see a doctor at a hospital," is displayed on the screen of the mobile terminal 270 in accordance with the change trend of disease risk that requires examination. Furthermore, in the example of FIG. 21, disease risk information including advice according to disease risk, such as "The score for disease (rank 2) has exceeded the lower threshold. Please review your diet," is displayed on the screen of the mobile terminal 270 in accordance with the change trend of disease risk that requires caution.

 図22は、疾病リスクの変化傾向およびアドバイスを含む疾病リスク情報が、携帯端末270の画面に表示される例である。図22の例の場合、「疾病(ランク1):上昇傾向、疾病(ランク2):上昇傾向、・・・、疾病(ランクQ):・・・」という疾病リスクの変化傾向に応じた情報が、携帯端末270の画面に表示される。また、図22の例では、疾病リスクの変化傾向に応じて、「疾病(ランク1)と疾病(ランク2)の疾病リスクが上昇傾向です。YY病院で診察を受けることをお薦めします。」という疾病リスクに応じたアドバイスを含む疾病リスク情報が、携帯端末270の画面に表示される。 FIG. 22 is an example of disease risk information including the changing trend of disease risk and advice displayed on the screen of the mobile device 270. In the example of FIG. 22, information according to the changing trend of disease risk, such as "Disease (rank 1): rising trend, Disease (rank 2): rising trend, ..., Disease (rank Q): ...", is displayed on the screen of the mobile device 270. Also, in the example of FIG. 22, disease risk information including advice according to the disease risk, such as "Disease risk for disease (rank 1) and disease (rank 2) is on the rise. We recommend that you receive a checkup at YY Hospital," is displayed on the screen of the mobile device 270 according to the changing trend of disease risk.

 上述の適用例に関して、携帯端末270の表示部に表示された疾病リスクの変化傾向に応じた疾病リスク情報を確認したユーザは、自身の疾病リスクを認識できる。疾病リスク情報は、ユーザ以外に提供されてもよい。例えば、疾病リスク情報は、ユーザの体調管理を行う医師やトレーナーや、ユーザの家族などの使用する端末装置(図示しない)に出力されてもよい。例えば、疾病リスク情報は、健康管理等の目的で構築されたデータベース(図示しない)に記録されてもよい。疾病リスク情報の出力先や使用に関しては、特に限定を加えない。 Regarding the above application example, a user who checks the disease risk information according to the changing trend of disease risk displayed on the display unit of the mobile terminal 270 can recognize his/her own disease risk. The disease risk information may be provided to a person other than the user. For example, the disease risk information may be output to a terminal device (not shown) used by a doctor or trainer who manages the user's physical condition, or by the user's family, etc. For example, the disease risk information may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the output destination or use of the disease risk information.

 以上のように、本実施形態の疾病リスク推定システムは、計測装置および疾病リスク推定装置を備える。計測装置は、疾病リスク情報の推定対象である対象者の履物に設置される。計測装置は、空間加速度および空間角速度を計測する。計測装置は、計測された空間加速度および空間角速度を用いてセンサデータを生成する。計測装置は、生成されたセンサデータを疾病リスク推定装置に送信する。疾病リスク推定装置は、取得部、リスク推定部、変化傾向判定部、および出力部を備える。取得部は、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する。リスク推定部は、計算部および推定部を有する。計算部は、センサデータを用いて歩容指標を計算する。推定部は、センサデータを用いて算出された歩容指標を含むデータを疾病リスク推定モデルに入力する。疾病リスク推定モデルは、歩容指標を含むデータの入力に応じて疾病に関する疾病リスクの度合を示す疾病リスクスコアを出力する。推定部は、疾病リスク推定モデルから出力される疾病リスクスコアに応じて、疾病ごとのリスクが反映された疾病リスクを推定する。変化傾向判定部は、疾病リスクスコアの変化傾向に応じて、疾病ごとの疾病リスクを判定する。出力部は、推定された疾病リスクに応じた疾病リスク情報を出力する。 As described above, the disease risk estimation system of this embodiment includes a measurement device and a disease risk estimation device. The measurement device is installed on the footwear of a subject for whom disease risk information is to be estimated. The measurement device measures spatial acceleration and spatial angular velocity. The measurement device generates sensor data using the measured spatial acceleration and spatial angular velocity. The measurement device transmits the generated sensor data to the disease risk estimation device. The disease risk estimation device includes an acquisition unit, a risk estimation unit, a change trend determination unit, and an output unit. The acquisition unit acquires sensor data measured according to the movement of the feet of a subject for whom disease risk is to be estimated. The risk estimation unit has a calculation unit and an estimation unit. The calculation unit calculates a gait index using the sensor data. The estimation unit inputs data including the gait index calculated using the sensor data to the disease risk estimation model. The disease risk estimation model outputs a disease risk score indicating the degree of disease risk related to the disease in response to the input of data including the gait index. The estimation unit estimates a disease risk reflecting the risk for each disease in response to the disease risk score output from the disease risk estimation model. The change trend determination unit determines the disease risk for each disease according to the change trend of the disease risk score. The output unit outputs disease risk information according to the estimated disease risk.

 以上のように、本実施形態の疾病リスク推定装置は、対象者の足の動きに関するセンサデータに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する。本実施形態の疾病リスク推定装置は、疾病リスクスコアの変化傾向に応じて、疾病ごとの疾病リスクを判定する。すなわち、本実施形態によれば、疾病リスクスコアの変化傾向に応じて、疾病ごとのリスクが反映された疾病リスクを推定できる。 As described above, the disease risk estimation device of this embodiment estimates disease risk reflecting the risk for each disease using sensor data measured according to sensor data related to the subject's foot movements. The disease risk estimation device of this embodiment determines the disease risk for each disease according to the change trend of the disease risk score. In other words, according to this embodiment, it is possible to estimate disease risk reflecting the risk for each disease according to the change trend of the disease risk score.

 本実施形態の一態様において、変化傾向判定部は、疾病リスクスコアが増加傾向の疾病に関して疾病リスクが高いと判定する。変化傾向判定部は、疾病リスクスコアが低下傾向および停滞傾向のうちいずれかの疾病に関して疾病リスクが低いと判定する。本態様によれば、疾病リスクスコアの増加傾向、減少傾向、および停滞傾向に応じて、疾病リスクを判定できる。 In one aspect of this embodiment, the change trend determination unit determines that the disease risk is high for a disease whose disease risk score is on an increasing trend. The change trend determination unit determines that the disease risk is low for a disease whose disease risk score is on either a decreasing trend or a stagnant trend. According to this aspect, the disease risk can be determined according to the increasing, decreasing, and stagnant trend of the disease risk score.

 本実施形態の一態様において、変化傾向判定部は、疾病リスクスコアが閾値を上回った疾病に関して疾病リスクが高いと判定する。変化傾向判定部は、疾病リスクスコアが閾値を下回った疾病に関して疾病リスクが低いと判定する。本態様によれば、疾病リスクスコアと閾値との関係によって、疾病リスクを判定できる。 In one aspect of this embodiment, the change trend determination unit determines that the disease risk is high for a disease whose disease risk score exceeds the threshold. The change trend determination unit determines that the disease risk is low for a disease whose disease risk score falls below the threshold. According to this aspect, the disease risk can be determined based on the relationship between the disease risk score and the threshold.

 (第3実施形態)
 次に、第3実施形態に係る疾病リスク推定装置について図面を参照しながら説明する。本実施形態の疾病リスク推定装置は、疾病リスクに応じた提案情報を含む疾病リスク情報出力する。本実施形態の疾病リスク推定装置は、健康保険組合や生命保険会社などの保険関連機関に向けた提案情報を出力する。
Third Embodiment
Next, a disease risk estimation device according to a third embodiment will be described with reference to the drawings. The disease risk estimation device according to this embodiment outputs disease risk information including suggested information according to disease risk. The disease risk estimation device according to this embodiment outputs suggested information for insurance-related institutions such as health insurance associations and life insurance companies.

 (構成)
 図23は、本開示における疾病リスク推定システム3の構成の一例を示すブロック図である。疾病リスク推定システム3は、計測装置30と疾病リスク推定装置33を備える。例えば、計測装置30は、疾病リスクの推定対象である対象者の履物に設置される。例えば、疾病リスク推定装置33の機能は、対象者の携帯する携帯端末にインストールされる。計測装置30は、第1実施形態の計測装置10と同様の構成である。以下においては、計測装置30については説明を省略し、疾病リスク推定装置33について説明する。なお、疾病リスク推定装置33の主な構成は、第1実施形態の疾病リスク推定装置13の構成と同様であるため、説明を省略する場合がある。
(composition)
FIG. 23 is a block diagram showing an example of the configuration of a disease risk estimation system 3 in the present disclosure. The disease risk estimation system 3 includes a measurement device 30 and a disease risk estimation device 33. For example, the measurement device 30 is installed in the footwear of a subject whose disease risk is to be estimated. For example, the function of the disease risk estimation device 33 is installed in a mobile terminal carried by the subject. The measurement device 30 has the same configuration as the measurement device 10 of the first embodiment. In the following, a description of the measurement device 30 will be omitted, and only the disease risk estimation device 33 will be described. Note that the main configuration of the disease risk estimation device 33 is similar to the configuration of the disease risk estimation device 13 of the first embodiment, and therefore may be omitted from the description.

 〔疾病リスク推定装置〕
 図24は、疾病リスク推定装置33の構成の一例を示すブロック図である。疾病リスク推定装置33は、取得部331、計算部330、推定部340、記憶部334、提案情報生成部345、および出力部337を有する。計算部330および推定部340は、リスク推定部35を構成する。図24には、第1実施形態の構成に、提案情報生成部345が追加された構成を示す。提案情報生成部345は、第2実施形態の構成に追加されてもよい。
[Disease risk estimation device]
Fig. 24 is a block diagram showing an example of the configuration of a disease risk estimation device 33. The disease risk estimation device 33 has an acquisition unit 331, a calculation unit 330, an estimation unit 340, a storage unit 334, a proposed information generation unit 345, and an output unit 337. The calculation unit 330 and the estimation unit 340 constitute a risk estimation unit 35. Fig. 24 shows a configuration in which a proposed information generation unit 345 is added to the configuration of the first embodiment. The proposed information generation unit 345 may be added to the configuration of the second embodiment.

 取得部331(取得手段)は、第1実施形態の取得部131と同様の構成である。取得部331は、計測装置30からセンサデータを取得する。取得部331は、無線通信を介して、計測装置30からセンサデータを受信する。例えば、取得部331は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、計測装置30からセンサデータを受信する。なお、計測装置30と通信できさえすれば、取得部331の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。取得部331は、ケーブルなどの有線を介して、計測装置30からセンサデータを受信してもよい。例えば、取得部331は、計測装置30によって算出された歩容指標や特徴量を取得してもよい。 The acquisition unit 331 (acquisition means) has the same configuration as the acquisition unit 131 of the first embodiment. The acquisition unit 331 acquires sensor data from the measurement device 30. The acquisition unit 331 receives the sensor data from the measurement device 30 via wireless communication. For example, the acquisition unit 331 receives the sensor data from the measurement device 30 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark). Note that the communication function of the acquisition unit 331 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 30. The acquisition unit 331 may receive the sensor data from the measurement device 30 via a wired connection such as a cable. For example, the acquisition unit 331 may acquire gait indices and feature amounts calculated by the measurement device 30.

 また、取得部331は、ユーザの身体情報(属性)を取得する。身体情報は、性別、生年月日、身長、および体重を含む。生年月日は、年齢に変換される。例えば、身体情報は、入力装置(図示しない)を介して入力される。例えば、身体情報は、ユーザが使用する携帯端末を介して入力される。例えば、身体情報は、記憶部334に予め記憶させておけばよい。身体情報は、ユーザによる入力に応じて、任意のタイミングで更新されてもよい。 The acquisition unit 331 also acquires the user's physical information (attributes). The physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. For example, the physical information is input via an input device (not shown). For example, the physical information is input via a mobile terminal used by the user. For example, the physical information may be stored in advance in the storage unit 334. The physical information may be updated at any time in response to input by the user.

 計算部330(計算手段)は、第1実施形態の計算部130と同様の構成である。計算部330は、第1実施形態の波形処理部132および歩容指標計算部133の機能を有する。計算部330は、取得部331からセンサデータを取得する。計算部330は、センサデータに含まれる3軸方向の加速度および3軸周りの角速度の時系列データから、一歩行周期分の時系列データ(歩行波形データ)を抽出する。計算部330は、センサデータの時系列データから検出される歩行イベントのタイミングに基づいて、歩行波形データを抽出する。例えば、計算部330は、踵接地のタイミングを始点とし、次の踵接地のタイミングを終点とする歩行波形データを抽出する。 The calculation unit 330 (calculation means) has the same configuration as the calculation unit 130 of the first embodiment. The calculation unit 330 has the functions of the waveform processing unit 132 and gait index calculation unit 133 of the first embodiment. The calculation unit 330 acquires sensor data from the acquisition unit 331. The calculation unit 330 extracts time series data for one walking cycle (gait waveform data) from the time series data of acceleration in three axial directions and angular velocity about three axes included in the sensor data. The calculation unit 330 extracts gait waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the calculation unit 330 extracts gait waveform data that starts at the timing of a heel strike and ends at the timing of the next heel strike.

 計算部330は、抽出された一歩行周期分の歩行波形データの時間を、0~100%(パーセント)の歩行周期に正規化(第1正規化)する。また、計算部330は、第1正規化された一歩行周期分の歩行波形データに関して、立脚相が60%、遊脚相が40%になるように正規化(第2正規化)する。 The calculation unit 330 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent). The calculation unit 330 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%.

 計算部330は、歩行波形データから、身体能力の推定に用いられる特徴量(身体能力特徴量)を抽出する。計算部330は、少なくとも一つの身体能力の推定に用いられる身体能力特徴量を抽出する。例えば、計算部330は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力のうち少なくともいずれかの推定に用いられる身体能力特徴量を抽出する。例えば、計算部330は、予め設定された条件に従って、歩行フェーズクラスターごとの身体能力特徴量を抽出する。計算部330は、抽出された身体能力特徴量を推定部340に出力する。 The calculation unit 330 extracts features (physical ability features) used to estimate physical abilities from the walking waveform data. The calculation unit 330 extracts physical ability features used to estimate at least one physical ability. For example, the calculation unit 330 extracts physical ability features used to estimate at least one of physical abilities such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. For example, the calculation unit 330 extracts physical ability features for each walking phase cluster according to preset conditions. The calculation unit 330 outputs the extracted physical ability features to the estimation unit 340.

 計算部330は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する。例えば、計算部330は、距離や高さ、角度、速度、時間、フレイルレベル、CPEI(Center of Pressure Exclusion Index)などに関する歩容指標を計算する。 The calculation unit 330 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability. For example, the calculation unit 330 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc.

 記憶部334(記憶手段)は、第1実施形態の記憶部134と同様の構成である。記憶部334は、歩行波形データから抽出された身体能力特徴量を用いて身体能力を推定する身体能力推定モデルを記憶する。例えば、身体能力推定モデルは、歩行波形データから抽出された身体能力特徴量の入力に応じて、身体能力に関する指標(身体能力スコア)を出力する。また、記憶部334は、身体情報、歩容指標、および身体能力スコアを用いて疾病リスクを推定する疾病リスク推定モデルを記憶する。例えば、疾病リスク推定モデルは、身体情報、歩容指標、および身体能力スコアの入力に応じて、疾病リスクに関する指標(疾病リスクスコア)を出力する。 The memory unit 334 (storage means) has the same configuration as the memory unit 134 of the first embodiment. The memory unit 334 stores a physical ability estimation model that estimates physical ability using physical ability features extracted from gait waveform data. For example, the physical ability estimation model outputs an index related to physical ability (physical ability score) in response to input of physical ability features extracted from gait waveform data. The memory unit 334 also stores a disease risk estimation model that estimates disease risk using physical information, gait index, and physical ability score. For example, the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of physical information, gait index, and physical ability score.

 記憶部334は、複数の被験者に関して学習された身体能力推定モデルおよび疾病リスク推定モデルを記憶する。例えば、身体能力推定モデルおよび疾病リスク推定モデルは、製品の工場出荷時において、記憶部334に記憶させておけばよい。身体能力推定モデルおよび疾病リスク推定モデルは、疾病リスク推定装置33を対象者が使用する前のキャリブレーション時等のタイミングにおいて、記憶部334に記憶させてもよい。例えば、外部のサーバ等の記憶装置(図示しない)に保存された身体能力推定モデルおよび疾病リスク推定モデルが用いられてもよい。その場合、その記憶装置と接続されたインターフェース(図示しない)を介して、身体能力推定モデルおよび疾病リスク推定モデルにアクセスできればよい。 The memory unit 334 stores the physical ability estimation model and disease risk estimation model learned for multiple subjects. For example, the physical ability estimation model and disease risk estimation model may be stored in the memory unit 334 when the product is shipped from the factory. The physical ability estimation model and disease risk estimation model may also be stored in the memory unit 334 at a timing such as at the time of calibration before the disease risk estimation device 33 is used by the subject. For example, a physical ability estimation model and disease risk estimation model saved in a storage device (not shown) such as an external server may be used. In that case, it is sufficient if the physical ability estimation model and disease risk estimation model can be accessed via an interface (not shown) connected to the storage device.

 また、記憶部334は、対象者の身体情報(属性)を記憶する。身体情報は、性別、生年月日、身長、および体重を含む。生年月日は、年齢に変換される。身体情報は、任意のタイミングで更新されてもよい。 The storage unit 334 also stores the subject's physical information (attributes). The physical information includes gender, date of birth, height, and weight. The date of birth is converted to age. The physical information may be updated at any time.

 推定部340(推定手段)は、第1実施形態の推定部140と同様の構成である。推定部340は、第1実施形態の身体能力推定部135および疾病リスク推定部136の機能を含む。推定部340は、歩行波形データから抽出された身体能力特徴量を計算部330から取得する。また、推定部340は、記憶部334に記憶された身体情報(属性)を取得する。推定部340は、身体能力特徴量および身体情報(属性)を用いて、身体能力スコアを推定する。推定部340は、記憶部334に記憶された身体能力推定モデルに、身体能力特徴量と対象者の身体情報(属性)を入力する。例えば、推定部340は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスのうち少なくともいずれかの身体能力に関する身体能力スコアを推定する。推定部340は、身体能力スコア、歩容指標、および身体情報(属性)を用いて、疾病ごとのリスクが反映された疾病リスクスコアを推定する。推定部340は、推定した疾病リスクスコアを出力する。 The estimation unit 340 (estimation means) has the same configuration as the estimation unit 140 of the first embodiment. The estimation unit 340 includes the functions of the physical ability estimation unit 135 and the disease risk estimation unit 136 of the first embodiment. The estimation unit 340 acquires the physical ability feature extracted from the walking waveform data from the calculation unit 330. The estimation unit 340 also acquires the physical information (attributes) stored in the memory unit 334. The estimation unit 340 estimates a physical ability score using the physical ability feature and the physical information (attributes). The estimation unit 340 inputs the physical ability feature and the subject's physical information (attributes) to the physical ability estimation model stored in the memory unit 334. For example, the estimation unit 340 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the whole body), dynamic balance, lower limb muscle strength, mobility, and static balance. The estimation unit 340 uses the physical ability score, the gait index, and the physical information (attributes) to estimate a disease risk score that reflects the risk of each disease. The estimation unit 340 outputs the estimated disease risk score.

 提案情報生成部345は、疾病ごとのリスクが反映された疾病リスクスコアを取得する。提案情報生成部345は、疾病リスクスコアに応じて、健康保険組合や生命保険会社などの保険関連機関に向けた提案情報を生成する。例えば、提案情報生成部345は、健康保険組合や生命保険会社などの保険関連機関に向けて、被保険者である対象者に関する提案情報を含む疾病リスク情報を生成する。健康保険組合や生命保険会社は、疾病リスク情報の取得に応じて、被保険者である対象者に対して、提案情報に応じたアクションを取ることができる。 The proposed information generation unit 345 acquires a disease risk score that reflects the risk for each disease. The proposed information generation unit 345 generates proposed information for insurance-related institutions such as health insurance associations and life insurance companies based on the disease risk score. For example, the proposed information generation unit 345 generates disease risk information including proposed information regarding the insured person for insurance-related institutions such as health insurance associations and life insurance companies. The health insurance associations and life insurance companies can take action for the insured person based on the proposed information in response to acquiring the disease risk information.

 提案情報生成部345は、疾病ごとの疾病リスクスコアに応じた提案情報を生成する。例えば、提案情報生成部345は、疾病ごとの疾病リスクスコアの変化傾向に応じた提案情報を生成してもよい。例えば、提案情報生成部345は、予め設定された文書フォーマットに当てはめて生成された疾病リスクスコアに応じたアドバイスが含まれる提案情報を生成する。例えば、疾病リスクスコアに応じたアドバイスは、大規模言語モデルを用いて、生成されてもよい。 The proposed information generating unit 345 generates proposed information according to the disease risk score for each disease. For example, the proposed information generating unit 345 may generate proposed information according to the change trend of the disease risk score for each disease. For example, the proposed information generating unit 345 generates proposed information including advice according to the disease risk score generated by applying it to a preset document format. For example, advice according to the disease risk score may be generated using a large-scale language model.

 出力部337(出力手段)は、第1実施形態の出力部137と同様の構成である。出力部337は、推定部340によって推定された疾病リスクスコアに応じた疾病リスク情報を出力する。また、出力部337は、提案情報生成部345による疾病リスクスコアに応じた提案情報を出力する。例えば、出力部337は、疾病リスク情報や提案情報を使用する外部システム等に対して、疾病リスク情報や提案情報を出力する。例えば、出力部337は、健康保険組合や生命保険会社などの保険関連機関で使用される端末装置(図示しない)に対して、疾病リスク情報や提案情報を出力する。この場合、健康保険組合や生命保険会社などの保険関連機関は、疾病リスク情報や提案情報を閲覧するユーザに該当する。出力された疾病リスク情報や提案情報の使用に関しては、特に限定を加えない。例えば、疾病リスク情報や提案情報は、健康保険組合が対象者に対して特定保健指導をするタイミングの判定に用いられる。例えば、疾病リスク情報や提案情報は、生命保険会社が対象者に対して保険料の割引や特典などのインセンティブを付与するタイミングの判定に用いられる。例えば、疾病リスク情報や提案情報は、統計分析や疾病予防の研究などに用いられてもよい。 The output unit 337 (output means) has the same configuration as the output unit 137 of the first embodiment. The output unit 337 outputs disease risk information according to the disease risk score estimated by the estimation unit 340. The output unit 337 also outputs proposed information according to the disease risk score by the proposed information generation unit 345. For example, the output unit 337 outputs the disease risk information and the proposed information to an external system or the like that uses the disease risk information and the proposed information. For example, the output unit 337 outputs the disease risk information and the proposed information to a terminal device (not shown) used by an insurance-related institution such as a health insurance association or a life insurance company. In this case, the insurance-related institution such as a health insurance association or a life insurance company corresponds to a user who views the disease risk information and the proposed information. There are no particular limitations on the use of the output disease risk information and the proposed information. For example, the disease risk information and the proposed information are used by the health insurance association to determine the timing of providing specific health guidance to the subject. For example, the disease risk information and the proposed information are used by the life insurance company to determine the timing of providing incentives such as insurance premium discounts and benefits to the subject. For example, disease risk information and recommendation information may be used for statistical analysis and research into disease prevention.

 (動作)
 次に、疾病リスク推定システム3の動作について図面を参照しながら説明する。以下においては、疾病リスク推定システム3に含まれる疾病リスク推定装置33の動作について説明する。図25は、疾病リスク推定装置33の動作の一例について説明するためのフローチャートである。図25のフローチャートに沿った処理の説明においては、疾病リスク推定装置33の構成要素を動作主体として説明する。図25のフローチャートに沿った処理の動作主体は、疾病リスク推定装置33であってもよい。
(Operation)
Next, the operation of the disease risk estimation system 3 will be described with reference to the drawings. The operation of the disease risk estimation device 33 included in the disease risk estimation system 3 will be described below. FIG. 25 is a flowchart for explaining an example of the operation of the disease risk estimation device 33. In explaining the processing according to the flowchart of FIG. 25, the components of the disease risk estimation device 33 will be described as the subjects of operation. The subject of operation of the processing according to the flowchart of FIG. 25 may be the disease risk estimation device 33.

 図25において、まず、取得部331は、履物に搭載された計測装置30によって計測されたセンサデータの時系列データを取得する(ステップS31)。センサデータには、3軸方向の加速度および3軸周りの角速度が含まれる。 In FIG. 25, first, the acquisition unit 331 acquires time series data of sensor data measured by the measurement device 30 mounted on the footwear (step S31). The sensor data includes acceleration in three axial directions and angular velocity around three axes.

 次に、計算部330は、センサデータの時系列データから歩行波形データを抽出する(ステップS32)。歩行波形データは、一歩行周期分のセンサデータの時系列データに相当する。 Next, the calculation unit 330 extracts walking waveform data from the time series data of the sensor data (step S32). The walking waveform data corresponds to the time series data of the sensor data for one walking cycle.

 次に、計算部330は、抽出された歩行波形データを正規化する(ステップS33)。計算部330は、歩行波形データを一歩行周期100%で第1正規化する。また、計算部330は、立脚相が60%、遊脚相が40%になるように歩行波形データを第2正規化する。 Next, the calculation unit 330 normalizes the extracted walking waveform data (step S33). The calculation unit 330 performs first normalization on the walking waveform data so that the stride cycle is 100%. The calculation unit 330 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.

 次に、計算部330は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する(ステップS34)。例えば、計算部330は、距離や高さ、角度、速度、時間、フレイルレベル、CPEIなどに関する歩容指標を計算する。 Next, the calculation unit 330 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S34). For example, the calculation unit 330 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.

 次に、推定部340は、身体情報および歩容指標を用いて、身体能力を推定する(ステップS35)。例えば、推定部340は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力スコアを推定する。 Next, the estimation unit 340 estimates physical ability using the physical information and gait indices (step S35). For example, the estimation unit 340 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance.

 次に、推定部340は、身体情報、歩容指標、および身体能力を用いて、疾病ごとのリスクが反映された疾病リスクを推定する(ステップS36)。推定部340は、疾病ごとのリスクが反映された疾病リスクスコアを推定する。例えば、推定部340は、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などの疾病ごとのリスクが反映された疾病リスクスコアを推定する。例えば、推定部340は、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などの疾病ごとのリスクが反映された疾病リスクスコアを推定する。 Next, the estimation unit 340 estimates a disease risk that reflects the risk of each disease using the physical information, gait index, and physical ability (step S36). The estimation unit 340 estimates a disease risk score that reflects the risk of each disease. For example, the estimation unit 340 estimates a disease risk score that reflects the risk of each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, the estimation unit 340 estimates a disease risk score that reflects the risk of each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.

 次に、提案情報生成部345は、推定された疾病リスクに応じて、健康保険組合や生命保険会社などの保険関連機関に向けた提案情報を生成する(ステップS37)。 Next, the proposed information generation unit 345 generates proposed information for insurance-related institutions such as health insurance associations and life insurance companies based on the estimated disease risk (step S37).

 次に、出力部337は、疾病リスクに関する疾病リスク情報と、保険関連機関に向けた提案情報を出力する(ステップS38)。例えば、疾病リスク情報や提案情報は、健康保険組合が対象者に対して特定保健指導をするタイミングの判定に用いられる。例えば、疾病リスク情報や提案情報は、生命保険会社が対象者に対して保険料の割引や特典などのインセンティブを付与するタイミングの判定に用いられる。例えば、疾病リスク情報や提案情報は、統計分析や疾病予防の研究などに用いられてもよい。 Next, the output unit 337 outputs disease risk information related to disease risk and proposal information for insurance-related institutions (step S38). For example, the disease risk information and proposal information are used by a health insurance association to determine the timing for providing specific health guidance to the subject. For example, the disease risk information and proposal information are used by a life insurance company to determine the timing for providing incentives such as insurance premium discounts and special benefits to the subject. For example, the disease risk information and proposal information may be used for statistical analysis and research into disease prevention.

 (適用例)
 次に、本実施形態に係る適用例について図面を参照しながら説明する。以下の適用例においては、疾病リスク推定システム3を用いたサービスを提供する事業者、そのサービスを利用する保険関連機関、および保険関連機関からの給付等を受給する対象者の関係を示す。以下においては、健康保険組合と生命保険会社の例について個別に説明する。
(Application example)
Next, application examples according to the present embodiment will be described with reference to the drawings. In the following application examples, the relationship between a business providing a service using the disease risk estimation system 3, an insurance-related institution using the service, and a recipient who receives benefits from the insurance-related institution is shown. Below, examples of a health insurance association and a life insurance company are described separately.

 〔健康保険組合〕
 図26は、保険関連機関が健康保険組合の例である。事業者は、健康保険組合に対して、疾病リスク推定システム3を用いたサービスを提供する。事業者は、健康保険組合との間で締結された契約に基づいて、被保険者に関する疾病リスク情報や提案情報を健康保険組合に提供する。健康保険組合は、疾病リスク推定システム3を用いたサービスの利用料を事業者に支払う。事業者と健康保険組合との間の契約においては、個人情報の取り扱いや、適切なデータの管理に関するルールが明確化される。事業者は、疾病リスクスコアが参考情報であり、医学的な正確性や完全性を保証するものではない点を明確に説明する。
[Health Insurance Association]
FIG. 26 shows an example in which the insurance-related institution is a health insurance association. The business provides the health insurance association with a service using a disease risk estimation system 3. Based on a contract concluded with the health insurance association, the business provides the health insurance association with disease risk information and proposal information regarding the insured person. The health insurance association pays the business a usage fee for the service using the disease risk estimation system 3. The contract between the business and the health insurance association clarifies rules regarding the handling of personal information and appropriate data management. The business clearly explains that the disease risk score is reference information and does not guarantee medical accuracy or completeness.

 健康保険組合は、個人情報保護方針やデータ管理の内容に関して、被保険者に対して十分に説明した上で、被保険者からの同意を得る。個人情報保護方針やデータ管理の内容に関して変更があった場合、健康保険組合は、被保険者に対して説明し、被保険者からの同意を得る。例えば、被保険者からの同意は、電子的に実施される。健康保険組合は、事業者から提供される疾病リスク情報の内容に応じて、被保険者に対して特定保健指導を行う。 The health insurance society will fully explain the details of the personal information protection policy and data management to the insured person and obtain their consent. If there are any changes to the personal information protection policy or data management, the health insurance society will explain the changes to the insured person and obtain their consent. For example, consent from the insured person will be obtained electronically. The health insurance society will provide specific health guidance to the insured person depending on the disease risk information provided by the business operator.

 被保険者は、健康保険組合に健康保険料を支払う主体である。被保険者は、健康保険組合と契約した事業者から、計測装置30が搭載された専用インソールの貸与あるいは供与を受ける。事業者は、疾病リスク推定装置33の機能を有する専用アプリのインストール方法や操作方法、専用インソールの装着方法などに関するサポートを提供する。事業者は、健康保険組合と連携し、新機能の追加やアップデートを実施して、被保険者に対して適切なサポートを提供する。被保険者は、疾病リスク推定装置33の機能を有する専用アプリを、自身の携帯端末にインストールする。疾病リスク推定装置33の機能は、事業者が管理するクラウドサーバにインストールされていてもよい。被保険者は、専用インソールが装着された靴を履いて、専用アプリがインストールされた携帯端末を携帯して歩く。専用アプリは、被保険者の歩行に応じて計測装置30によって計測されたセンサデータを用いて、疾病リスクスコアを推定する。専用アプリは、疾病リスクスコアに応じた疾病リスク情報を含むデータを事業者のクラウドサーバにアップロードする。専用アプリは、計測装置30によって計測されたセンサデータを、事業者が管理するクラウドサーバにアップロードしてもよい。例えば、専用アプリは、被保険者が携帯する携帯端末の画面に、疾病リスク推定装置33によって推定された疾病リスクスコアに応じた疾病リスク情報を表示させる。例えば、被保険者は、疾病リスク情報に含まれる改善アドバイスに従って、生活習慣を改善する。 The insured person is the entity that pays health insurance premiums to the health insurance association. The insured person is loaned or provided with a dedicated insole equipped with a measuring device 30 by a business that has a contract with the health insurance association. The business provides support regarding the installation and operation of a dedicated app having the function of the disease risk estimation device 33, and the wearing of the dedicated insole. The business cooperates with the health insurance association to add new functions and perform updates to provide appropriate support to the insured person. The insured person installs a dedicated app having the function of the disease risk estimation device 33 on his/her mobile device. The function of the disease risk estimation device 33 may be installed on a cloud server managed by the business. The insured person wears shoes equipped with the dedicated insole and walks while carrying a mobile device on which the dedicated app is installed. The dedicated app estimates a disease risk score using sensor data measured by the measuring device 30 according to the insured person's walking. The dedicated app uploads data including disease risk information according to the disease risk score to the business's cloud server. The dedicated app may upload the sensor data measured by the measuring device 30 to a cloud server managed by the business operator. For example, the dedicated app displays disease risk information corresponding to the disease risk score estimated by the disease risk estimation device 33 on the screen of a mobile device carried by the insured person. For example, the insured person improves their lifestyle habits in accordance with the improvement advice included in the disease risk information.

 健康保険組合で使用される端末装置は、事業者のクラウドサーバから被保険者の疾病リスク情報をダウンロードする。健康保険組合は、疾病リスク情報を参照する。健康保険組合は、疾病リスク情報に含まれる疾病リスクスコアに応じて、被保険者に対する特定保健指導を行う。特定保健指導は、専門的な知識を持つ専門家が行う。健康保険組合は、被保険者の疾病リスクスコアを定期的に参照し、スコアの変化に応じて専門家による健康サポートやカウンセリングを実施する。例えば、健康保険組合は、定期的な相談会やイベントを開催し、計測装置30を用いた健康維持に関する情報提供を行う。また、健康保険組合は、被保険者の意見や要望を取り入れる。健康保険組合は、疾病リスク推定システム3が適用されたことによって、被保険者の健康改善や医療費削減が実現されたか定期的に検証・評価する。 The terminal device used by the health insurance association downloads the disease risk information of the insured from the carrier's cloud server. The health insurance association refers to the disease risk information. The health insurance association provides specific health guidance to the insured according to the disease risk score included in the disease risk information. The specific health guidance is provided by experts with specialized knowledge. The health insurance association periodically refers to the disease risk score of the insured, and provides health support and counseling by experts according to changes in the score. For example, the health insurance association holds regular consultation sessions and events, and provides information on maintaining health using the measuring device 30. The health insurance association also takes into account the opinions and requests of the insured. The health insurance association periodically verifies and evaluates whether the application of the disease risk estimation system 3 has resulted in improvements in the insured's health and reductions in medical expenses.

 図27は、健康保険組合で使用される端末装置380Aの画面に、被保険者に関する疾病リスク情報が表示された例である。端末装置380Aの画面には、「被保険者Kに関して、疾病(ランク1)の疾病リスクが、特定保健指導の基準を越えました。」という疾病リスクスコアに応じた情報が表示される。また、端末装置380Aの画面には、「被保険者Kに対して、特定保健指導の通知を送信することをお薦めします。」という提案情報が表示される。この提案情報は、健康保険組合から被保険者に対して特定保健指導を通知するのに適切なタイミングで表示される。さらに、端末装置380Aの画面には、「被保険者Kに特定保健指導の通知を送信しますか?」という提案情報が表示される。端末装置380Aの画面に表示された疾病リスク情報を確認した職員は、被保険者に対して特定保健指導を通知できる。例えば、端末装置380Aの画面に表示された「YES」ボタンが押下されると、被保険者の携帯する携帯端末に、特定保健指導の通知が送信される。 27 is an example of disease risk information for an insured person displayed on the screen of a terminal device 380A used by a health insurance association. The screen of the terminal device 380A displays information according to the disease risk score, such as "The disease risk of disease (rank 1) for insured person K has exceeded the standard for specific health guidance." The screen of the terminal device 380A also displays suggested information, such as "We recommend that you send a notice of specific health guidance to insured person K." This suggested information is displayed at an appropriate time for the health insurance association to notify the insured person of the specific health guidance. Furthermore, the screen of the terminal device 380A displays suggested information, such as "Do you want to send a notice of specific health guidance to insured person K?" A staff member who has checked the disease risk information displayed on the screen of the terminal device 380A can notify the insured person of the specific health guidance. For example, when the "YES" button displayed on the screen of the terminal device 380A is pressed, a notice of specific health guidance is sent to the mobile device carried by the insured person.

 図28は、計測装置30が配置された靴300を履いて歩行する被保険者の携帯する携帯端末370の画面に、健康保険組合の端末装置380Aから送信された特定保健指導の通知に応じた情報が表示された例である。図28の例の場合、「疾病(ランク1)の疾病リスクが高くなっています。特定保健指導を受けてください。」というお知らせが、携帯端末370の画面に表示される。また、図28の例では、疾病リスクスコアに応じて、「特定保健指導の対象に該当します。速やかに健康管理センターに予約を入れてください。」という特定保健指導に関するアドバイスを含む疾病リスク情報が、携帯端末370の画面に表示される。また、疾病リスク情報は、被保険者全体の統計情報を含んでもよい。例えば、特定保健指導の通知対象となった被保険者と疾病リスクスコアが類似する他の被保険者のうち、特定保健指導を受けたことによって疾病リスクスコアが改善した被保険者の割合が提示されてもよい。具体的には、特定保健指導に関するアドバイスに、「あなたと類似する疾病リスクとなった人のうち70%の人は、特定保険指導を受けたことによって、疾病リスクが改善しています。」といった案内を含める。これにより、被保険者は、自分と類似する状態の人の動向を参考にしながら、自身の健康管理を行うことができる。 28 shows an example in which information in response to a notification of specific health guidance sent from a terminal device 380A of a health insurance association is displayed on the screen of a mobile terminal 370 carried by an insured person walking while wearing shoes 300 in which a measuring device 30 is placed. In the example of FIG. 28, a notice stating "Your disease risk for disease (rank 1) is high. Please receive specific health guidance" is displayed on the screen of the mobile terminal 370. Also, in the example of FIG. 28, disease risk information including advice regarding specific health guidance, such as "You are a candidate for specific health guidance. Please make an appointment with a health management center immediately," is displayed on the screen of the mobile terminal 370 according to the disease risk score. Furthermore, the disease risk information may include statistical information of the entire insured person. For example, the percentage of insured persons whose disease risk scores have improved as a result of receiving specific health guidance among other insured persons with disease risk scores similar to the insured person who was the target of the notification of specific health guidance may be presented. Specifically, advice regarding specific health guidance will include information such as, "70% of people who have a similar disease risk to you have improved their disease risk by receiving specific health guidance." This will allow insured persons to manage their own health while referring to the trends of people in a similar situation to themselves.

 携帯端末370の表示部に表示された特定保健指導の通知に応じた情報を確認した被保険者は、特定保健指導を受ける必要があることを認識できる。特定保健指導の通知は、被保険者以外に提供されてもよい。例えば、特定保健指導の通知は、被保険者の体調管理を行う医師やトレーナーや、被保険者の家族、被保険者の会社の上司などの使用する端末装置(図示しない)に送信されてもよい。例えば、特定保健指導の通知は、健康管理等の目的で構築されたデータベース(図示しない)に記録されてもよい。特定保健指導の通知の送信先や使用に関しては、特に限定を加えない。 The insured person who checks the information corresponding to the specific health guidance notification displayed on the display unit of the mobile terminal 370 can recognize the need to receive specific health guidance. The specific health guidance notification may be provided to a person other than the insured person. For example, the specific health guidance notification may be sent to a terminal device (not shown) used by a doctor or trainer who manages the insured person's physical condition, a family member of the insured person, or a superior at the insured person's company. For example, the specific health guidance notification may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the destination or use of the specific health guidance notification.

 〔生命保険会社〕
 図29は、保険関連機関が生命保険会社の例である。事業者は、生命保険会社に対して、疾病リスク推定システム3を用いたサービスを提供する。事業者は、生命保険会社との間で締結された契約に基づいて、保険契約者に関する疾病リスク情報や提案情報を生命保険会社に提供する。生命保険会社は、疾病リスク推定システム3を用いたサービスの利用料を事業者に支払う。事業者と生命保険会社との間の契約においては、個人情報の取り扱いや、適切なデータの管理に関するルールが明確化される。事業者は、疾病リスクスコアが参考情報であり、医学的な正確性や完全性を保証するものではない点を明確に説明する。
[Life Insurance Companies]
FIG. 29 shows an example in which the insurance-related institution is a life insurance company. The business provides the life insurance company with a service using the disease risk estimation system 3. Based on a contract concluded with the life insurance company, the business provides the life insurance company with disease risk information and proposal information regarding the policyholder. The life insurance company pays the business a fee for the service using the disease risk estimation system 3. The contract between the business and the life insurance company clarifies rules regarding the handling of personal information and appropriate data management. The business clearly explains that the disease risk score is reference information and does not guarantee medical accuracy or completeness.

 生命保険会社は、個人情報保護方針やデータ管理の内容に関して、保険契約者に対して十分に説明した上で、保険契約者からの同意を得る。個人情報保護方針やデータ管理の内容に関して変更があった場合、生命保険会社は、保険契約者に対して説明し、保険契約者からの同意を得る。例えば、保険契約者からの同意は、電子的に実施される。生命保険会社は、事業者から提供される疾病リスク情報の内容に応じて、保険契約者に対してインセンティブを付与する。 Life insurance companies will fully explain the details of their personal information protection policies and data management to policyholders and obtain their consent. If there are any changes to the details of their personal information protection policies or data management, the life insurance companies will explain the changes to their policyholders and obtain their consent. For example, consent from policyholders will be obtained electronically. Life insurance companies will provide incentives to policyholders depending on the content of disease risk information provided by carriers.

 保険契約者は、生命保険会社に対して保険料を支払う主体である。保険契約者は、生命保険会社と契約した事業者から、計測装置30が搭載された専用インソールの貸与あるいは供与を受ける。事業者は、疾病リスク推定装置33の機能を有する専用アプリのインストール方法や操作方法、専用インソールの装着方法などに関するサポートを提供する。事業者は、健康保険組合と連携し、新機能の追加やアップデートを実施して、保険契約者に対して適切なサポートを提供する。保険契約者は、疾病リスク推定装置33の機能を有する専用アプリを、自身の携帯端末にインストールする。疾病リスク推定装置33の機能は、事業者が管理するクラウドサーバにインストールされていてもよい。保険契約者は、専用インソールが装着された靴を履いて、専用アプリがインストールされた携帯端末を携帯して歩く。専用アプリは、保険契約者の歩行に応じて計測装置30によって計測されたセンサデータを用いて、疾病リスクスコアを推定する。専用アプリは、疾病リスクスコアに応じた疾病リスク情報を含むデータを事業者のクラウドサーバにアップロードする。専用アプリは、計測装置30によって計測されたセンサデータを、事業者が管理するクラウドサーバにアップロードしてもよい。例えば、専用アプリは、保険契約者が携帯する携帯端末の画面に、疾病リスク推定装置33によって推定された疾病リスクスコアに応じた疾病リスク情報を表示させる。例えば、保険契約者は、疾病リスク情報に含まれる改善アドバイスに従って、生活習慣を改善する。 The policyholder is the entity that pays the insurance premium to the life insurance company. The policyholder is loaned or provided with a dedicated insole equipped with the measuring device 30 by a business that has a contract with the life insurance company. The business provides support regarding the installation and operation of a dedicated app having the function of the disease risk estimation device 33, and the wearing of the dedicated insole. The business cooperates with the health insurance association to add new functions and perform updates to provide appropriate support to the policyholder. The policyholder installs a dedicated app having the function of the disease risk estimation device 33 on his/her mobile device. The function of the disease risk estimation device 33 may be installed on a cloud server managed by the business. The policyholder wears shoes equipped with the dedicated insole and walks while carrying a mobile device equipped with the dedicated app. The dedicated app estimates a disease risk score using sensor data measured by the measuring device 30 according to the policyholder's walking. The dedicated app uploads data including disease risk information according to the disease risk score to the cloud server of the business. The dedicated app may upload the sensor data measured by the measuring device 30 to a cloud server managed by the business operator. For example, the dedicated app displays disease risk information corresponding to the disease risk score estimated by the disease risk estimation device 33 on the screen of a mobile device carried by the policyholder. For example, the policyholder improves their lifestyle habits in accordance with the improvement advice included in the disease risk information.

 生命保険会社で使用される端末装置は、事業者のクラウドサーバから保険契約者の疾病リスク情報をダウンロードする。健康保険組合は、疾病リスク情報を参照する。生命保険会社は、疾病リスク情報に含まれる疾病リスクスコアに応じて、保険契約者に対してインセンティブを付与する。例えば、生命保険会社は、保険料の割引や特典などのインセンティブを付与する。例えば、生命保険会社は、保険契約者が意欲的に取り組むインセンティブとなるように、達成による報酬や段階的な目標設定を行う。例えば、生命保険会社は、保険契約者の健康改善状況に基づいた保険商品の企画を提供する。健康保険組合は、保険契約者の疾病リスクスコアを定期的に参照し、スコアの変化に応じて専門家による健康サポートやカウンセリングを実施する。例えば、生命保険会社は、定期的な相談会やイベントを開催し、計測装置30を用いた健康維持に関する情報提供を行う。また、生命保険会社は、保険契約者の意見や要望を取り入れる。健康保険組合は、疾病リスク推定システム3が適用されたことによって、保険契約者の健康改善や医療費削減が実現されたか定期的に検証・評価する。 The terminal device used by the life insurance company downloads the policyholder's disease risk information from the operator's cloud server. The health insurance association refers to the disease risk information. The life insurance company provides incentives to the policyholder according to the disease risk score included in the disease risk information. For example, the life insurance company provides incentives such as discounts on insurance premiums and special benefits. For example, the life insurance company sets rewards for achievement and gradual goals to motivate the policyholder to take action. For example, the life insurance company provides insurance product plans based on the policyholder's health improvement status. The health insurance association periodically refers to the policyholder's disease risk score and provides health support and counseling by experts according to changes in the score. For example, the life insurance company holds regular consultations and events and provides information on maintaining health using the measuring device 30. The life insurance company also takes into account the opinions and requests of the policyholder. The health insurance association periodically verifies and evaluates whether the application of the disease risk estimation system 3 has resulted in the policyholder's health improvement and reduction in medical expenses.

 図30は、健康保険組合で使用される端末装置380Bの画面に、保険契約者に関する疾病リスク情報が表示された例である。端末装置380Bの画面には、「保険契約者Lに関して、疾病(ランク2)の疾病リスクスコアが、インセンティブ付与の基準を下回りました。」という疾病リスクスコアに応じた情報が表示される。また、端末装置380Bの画面には、「保険契約者Lに対して、インセンティブ付与の通知を送信することをお薦めします。」という提案情報が表示される。この提案情報は、生命保険会社から保険契約者に対してインセンティブを付与するのに適切なタイミングで表示される。さらに、端末装置380Bの画面には、「保険契約者Lにインセンティブ付与の通知を送信しますか?」という提案情報が表示される。端末装置380Bの画面に表示された疾病リスク情報を確認した職員は、保険契約者に対してインセンティブ付与を通知できる。例えば、端末装置380Bの画面に表示された「YES」ボタンが押下されると、保険契約者の携帯する携帯端末に、インセンティブ付与の通知が送信される。 FIG. 30 shows an example of disease risk information for a policyholder displayed on the screen of a terminal device 380B used by a health insurance association. The screen of the terminal device 380B displays information according to the disease risk score, such as "The disease risk score for disease (rank 2) for policyholder L has fallen below the standard for granting incentives." The screen of the terminal device 380B also displays suggested information, such as "We recommend that you send a notice of incentive grant to policyholder L." This suggested information is displayed at an appropriate time for the life insurance company to grant an incentive to the policyholder. The screen of the terminal device 380B also displays suggested information, such as "Would you like to send a notice of incentive grant to policyholder L?" A staff member who has checked the disease risk information displayed on the screen of the terminal device 380B can notify the policyholder of the grant of an incentive. For example, when the "YES" button displayed on the screen of the terminal device 380B is pressed, a notice of incentive grant is sent to the mobile terminal carried by the policyholder.

 図31は、計測装置30が配置された靴300を履いて歩行する保険契約者の携帯する携帯端末370の画面に、生命保険会社の端末装置380Bから送信されたインセンティブ付与の通知に応じた情報が表示された例である。図31の例の場合、「疾病Aの疾病リスクが基準を下回りました。生命保険会社からインセンティブが付与されました。」というお知らせが、携帯端末370の画面に表示される。また、図31の例では、疾病リスクスコアに応じて、「6月から6か月の間、保険料を10%割引します。」というインセンティブ付与に関する情報が、携帯端末370の画面に表示される。 Figure 31 shows an example in which information in response to a notification of incentive provision sent from the life insurance company's terminal device 380B is displayed on the screen of a mobile terminal 370 carried by a policyholder walking in shoes 300 with a measuring device 30 placed on them. In the example of Figure 31, a notice stating "Your disease risk for disease A has fallen below the standard. An incentive has been provided by the life insurance company" is displayed on the screen of the mobile terminal 370. Also, in the example of Figure 31, information regarding incentive provision, stating "Your insurance premiums will be discounted by 10% for six months starting in June," is displayed on the screen of the mobile terminal 370 according to the disease risk score.

 携帯端末370の表示部に表示されたインセンティブ付与に関する情報を確認した保険契約者は、インセンティブを受けることを認識できる。インセンティブ付与の通知は、保険契約者以外に提供されてもよい。例えば、インセンティブ付与の通知は、保険契約者の体調管理を行う医師やトレーナーや、保険契約者の家族、保険契約者の会社の上司などの使用する端末装置(図示しない)に送信されてもよい。例えば、インセンティブ付与の通知は、健康管理等の目的で構築されたデータベース(図示しない)に記録されてもよい。インセンティブ付与の通知の送信先や使用に関しては、特に限定を加えない。 The policyholder who checks the information regarding the grant of the incentive displayed on the display unit of the mobile terminal 370 can recognize that he or she will receive an incentive. The notification of the grant of the incentive may be provided to a person other than the policyholder. For example, the notification of the grant of the incentive may be sent to a terminal device (not shown) used by a doctor or trainer who manages the policyholder's physical condition, a family member of the policyholder, or the policyholder's superiors at work. For example, the notification of the grant of the incentive may be recorded in a database (not shown) constructed for the purpose of health management, etc. There are no particular limitations on the destination or use of the notification of the grant of the incentive.

 以上のように、本実施形態の疾病リスク推定システムは、計測装置および疾病リスク推定装置を備える。計測装置は、疾病リスク情報の推定対象である対象者の履物に設置される。計測装置は、空間加速度および空間角速度を計測する。計測装置は、計測された空間加速度および空間角速度を用いてセンサデータを生成する。計測装置は、生成されたセンサデータを疾病リスク推定装置に送信する。疾病リスク推定装置は、取得部、リスク推定部、提案情報生成部、および出力部を備える。取得部は、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する。リスク推定部は、計算部および推定部を有する。計算部は、センサデータを用いて歩容指標を計算する。推定部は、センサデータを用いて算出された歩容指標を含むデータを疾病リスク推定モデルに入力する。疾病リスク推定モデルは、歩容指標を含むデータの入力に応じて疾病に関する疾病リスクの度合を示す疾病リスクスコアを出力する。推定部は、疾病リスク推定モデルから出力される疾病リスクスコアに応じて、疾病ごとのリスクが反映された疾病リスクを推定する。変化傾向判定部は、疾病リスクスコアの変化傾向に応じて、疾病ごとの疾病リスクを判定する。提案情報生成部は、疾病ごとのリスクが反映された疾病リスクに応じて、保険関連機関に向けた提案情報を生成する。出力部は、推定された疾病リスクに応じた疾病リスク情報を出力する。 As described above, the disease risk estimation system of this embodiment includes a measurement device and a disease risk estimation device. The measurement device is installed on the footwear of a subject for whom disease risk information is to be estimated. The measurement device measures spatial acceleration and spatial angular velocity. The measurement device generates sensor data using the measured spatial acceleration and spatial angular velocity. The measurement device transmits the generated sensor data to the disease risk estimation device. The disease risk estimation device includes an acquisition unit, a risk estimation unit, a proposed information generation unit, and an output unit. The acquisition unit acquires sensor data measured according to the movement of the feet of a subject for whom disease risk is to be estimated. The risk estimation unit has a calculation unit and an estimation unit. The calculation unit calculates a gait index using the sensor data. The estimation unit inputs data including the gait index calculated using the sensor data to the disease risk estimation model. The disease risk estimation model outputs a disease risk score indicating the degree of disease risk related to the disease in response to the input of data including the gait index. The estimation unit estimates a disease risk reflecting the risk for each disease in response to the disease risk score output from the disease risk estimation model. The change trend determination unit determines the disease risk for each disease according to the change trend of the disease risk score. The proposal information generation unit generates proposal information for insurance-related institutions according to the disease risk reflecting the risk for each disease. The output unit outputs disease risk information according to the estimated disease risk.

 以上のように、本実施形態の疾病リスク推定装置は、対象者の足の動きに関するセンサデータに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する。本実施形態の疾病リスク推定装置は、疾病ごとのリスクが反映された疾病リスクに応じて、保険関連機関に向けた提案情報を生成する。すなわち、本実施形態によれば、対象者に関して計測されたセンサデータを用いて、保険関連機関に向けた提案情報を生成できる。 As described above, the disease risk estimation device of this embodiment estimates a disease risk that reflects the risk for each disease, using sensor data measured according to sensor data related to the subject's foot movements. The disease risk estimation device of this embodiment generates proposal information for insurance-related institutions according to the disease risk that reflects the risk for each disease. In other words, according to this embodiment, proposal information for insurance-related institutions can be generated using sensor data measured related to the subject.

 本実施形態の一態様において、保険関連機関は健康保険組合である。取得部は、健康保険組合の被保険者の歩行に応じて計測されたセンサデータを取得する。リスク推定部は、取得されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する。提案情報生成部は、推定された疾病ごとのリスクが反映された疾病リスクに応じて、被保険者に対して特定保健指導を通知するタイミングを含む提案情報を生成する。出力部は、特定保健指導を通知するタイミングを含む提案情報を、健康保険組合で使用される端末装置に送信する。本態様によれば、被保険者に関して計測されたセンサデータを用いて、被保険者に対して特定保健指導を通知するタイミングを含む提案情報を生成できる。 In one aspect of this embodiment, the insurance-related institution is a health insurance association. The acquisition unit acquires sensor data measured according to the walking of an insured person of the health insurance association. The risk estimation unit estimates a disease risk reflecting the risk for each disease using the acquired sensor data. The proposed information generation unit generates proposed information including the timing for notifying the insured person of specific health guidance according to the disease risk reflecting the estimated risk for each disease. The output unit transmits the proposed information including the timing for notifying the insured person of specific health guidance to a terminal device used by the health insurance association. According to this aspect, proposed information including the timing for notifying the insured person of specific health guidance can be generated using sensor data measured on the insured person.

 本実施形態の一態様において、保険関連機関は生命保険会社である。取得部は、生命保険会社の保険契約者の歩行に応じて計測されたセンサデータを取得する。リスク推定部は、取得されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する。提案情報生成部は、推定された疾病ごとのリスクが反映された疾病リスクに応じて、保険契約者に対してインセンティブを付与するタイミングを含む提案情報を生成する。出力部は、インセンティブを付与するタイミングを含む提案情報を、生命保険会社で使用される端末装置に送信する。本態様によれば、保険契約者に関して計測されたセンサデータを用いて、保険契約者に対してインセンティブを付与するタイミングを含む提案情報を生成できる。 In one aspect of this embodiment, the insurance-related institution is a life insurance company. The acquisition unit acquires sensor data measured according to the walking of a policyholder of the life insurance company. The risk estimation unit estimates a disease risk reflecting the risk for each disease using the acquired sensor data. The proposal information generation unit generates proposal information including the timing for granting an incentive to the policyholder according to the disease risk reflecting the estimated risk for each disease. The output unit transmits the proposal information including the timing for granting the incentive to a terminal device used by the life insurance company. According to this aspect, proposal information including the timing for granting an incentive to the policyholder can be generated using sensor data measured on the policyholder.

 (第4実施形態)
 次に、第4実施形態に係る疾病リスク推定装置について図面を参照しながら説明する。本実施形態の疾病リスク推定装置は、第1~第3実施形態の疾病リスク推定システムに含まれる疾病リスク推定装置を簡略化した構成である。
Fourth Embodiment
Next, a disease risk estimation device according to a fourth embodiment will be described with reference to the drawings. The disease risk estimation device of this embodiment has a simplified configuration of the disease risk estimation device included in the disease risk estimation systems of the first to third embodiments.

 (構成)
 図32は、本開示における疾病リスク推定装置40の構成の一例を示すブロック図である。疾病リスク推定装置40は、取得部41、リスク推定部45、および出力部47を備える。
(composition)
32 is a block diagram showing an example of the configuration of a disease risk estimation device 40 in the present disclosure. The disease risk estimation device 40 includes an acquisition unit 41, a risk estimation unit 45, and an output unit 47.

 取得部41は、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する。リスク推定部45は、取得されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する。出力部47は、推定された疾病リスクに応じた疾病リスク情報を出力する。 The acquisition unit 41 acquires sensor data measured according to the foot movements of a subject for whom disease risk is to be estimated. The risk estimation unit 45 uses the acquired sensor data to estimate a disease risk that reflects the risk for each disease. The output unit 47 outputs disease risk information according to the estimated disease risk.

 (動作)
 次に、疾病リスク推定装置40の動作について図面を参照しながら説明する。図33は、疾病リスク推定装置40の動作の一例について説明するためのフローチャートである。図33のフローチャートに沿った処理の説明においては、疾病リスク推定装置40の構成要素を動作主体として説明する。図33のフローチャートに沿った処理の動作主体は、疾病リスク推定装置40であってもよい。
(Operation)
Next, the operation of the disease risk estimation device 40 will be described with reference to the drawings. Fig. 33 is a flowchart for explaining an example of the operation of the disease risk estimation device 40. In explaining the processing according to the flowchart of Fig. 33, the components of the disease risk estimation device 40 will be described as the subject of the operations. The subject of the processing according to the flowchart of Fig. 33 may be the disease risk estimation device 40.

 図33において、まず、取得部41は、疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する(ステップS41)。 In FIG. 33, first, the acquisition unit 41 acquires sensor data measured according to the foot movements of a subject whose disease risk is to be estimated (step S41).

 リスク推定部45は、取得されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する(ステップS42)。 The risk estimation unit 45 uses the acquired sensor data to estimate disease risk that reflects the risk for each disease (step S42).

 出力部47は、推定された疾病リスクに応じた疾病リスク情報を出力する(ステップS43)。 The output unit 47 outputs disease risk information according to the estimated disease risk (step S43).

 以上のように、本実施形態の疾病リスク推定装置は、対象者の足の動きに関するセンサデータに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する。すなわち、本実施形態によれば、足の動きに応じて計測されたセンサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定できる。 As described above, the disease risk estimation device of this embodiment estimates disease risk reflecting the risk for each disease using sensor data measured according to sensor data related to the subject's foot movements. In other words, according to this embodiment, it is possible to estimate disease risk reflecting the risk for each disease using sensor data measured according to foot movements.

 (ハードウェア)
 次に、本開示における制御や処理を実行するハードウェア構成について、図面を参照しながら説明する。ここでは、そのようなハードウェア構成の一例として、図34の情報処理装置90(コンピュータ)をあげる。図34の情報処理装置90は、本開示における制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
(Hardware)
Next, a hardware configuration for executing the control and processing in the present disclosure will be described with reference to the drawings. Here, an information processing device 90 (computer) in Fig. 34 is given as an example of such a hardware configuration. The information processing device 90 in Fig. 34 is an example of a configuration for executing the control and processing in the present disclosure, and does not limit the scope of the present disclosure.

 図34のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図34においては、インターフェースをI/F(Interface)と略記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して、互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93、および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。 As shown in FIG. 34, the information processing device 90 includes a processor 91, a main memory device 92, an auxiliary memory device 93, an input/output interface 95, and a communication interface 96. In FIG. 34, the interface is abbreviated as I/F (Interface). The processor 91, the main memory device 92, the auxiliary memory device 93, the input/output interface 95, and the communication interface 96 are connected to each other via a bus 98 so as to be able to communicate data with each other. In addition, the processor 91, the main memory device 92, the auxiliary memory device 93, and the input/output interface 95 are connected to a network such as the Internet or an intranet via the communication interface 96.

 プロセッサ91は、補助記憶装置93等に格納されたプログラム(命令)を、主記憶装置92に展開する。例えば、プログラムは、本開示における制御や処理を実行するためのソフトウェアプログラムである。プロセッサ91は、主記憶装置92に展開されたプログラムを実行する。プロセッサ91は、プログラムを実行することによって、本開示における制御や処理を実行する。 The processor 91 expands a program (instructions) stored in the auxiliary storage device 93 or the like into the main storage device 92. For example, the program is a software program for executing the control and processing in this disclosure. The processor 91 executes the program expanded into the main storage device 92. The processor 91 executes the program to execute the control and processing in this disclosure.

 主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92には、プロセッサ91によって、補助記憶装置93等に格納されたプログラムが展開される。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリによって実現される。また、主記憶装置92として、MRAM(Magneto resistive Random Access Memory)などの不揮発性メモリが構成/追加されてもよい。 The main memory 92 has an area in which programs are expanded. Programs stored in the auxiliary memory 93 or the like are expanded in the main memory 92 by the processor 91. The main memory 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory). In addition, a non-volatile memory such as an MRAM (Magneto-resistive Random Access Memory) may be configured/added to the main memory 92.

 補助記憶装置93は、プログラムなどの種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって実現される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。 The auxiliary storage device 93 stores various data such as programs. The auxiliary storage device 93 is realized by a local disk such as a hard disk or flash memory. Note that it is also possible to omit the auxiliary storage device 93 by configuring the various data to be stored in the main storage device 92.

 入出力インターフェース95は、規格や仕様に基づいて、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。外部機器と接続されるインターフェースとして、入出力インターフェース95と通信インターフェース96とが共通化されてもよい。 The input/output interface 95 is an interface for connecting the information processing device 90 to peripheral devices based on standards and specifications. The communication interface 96 is an interface for connecting to external systems and devices via a network such as the Internet or an intranet based on standards and specifications. The input/output interface 95 and the communication interface 96 may be a common interface for connecting to external devices.

 情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器が接続されてもよい。それらの入力機器は、情報や設定の入力に使用される。入力機器としてタッチパネルが用いられる場合、タッチパネルの機能を有する画面がインターフェースになる。プロセッサ91と入力機器とは、入出力インターフェース95を介して接続される。 If necessary, input devices such as a keyboard, mouse, or touch panel may be connected to the information processing device 90. These input devices are used to input information and settings. When a touch panel is used as the input device, a screen having the function of a touch panel becomes the interface. The processor 91 and the input devices are connected via an input/output interface 95.

 情報処理装置90には、情報を表示するための表示機器が備え付けられてもよい。表示機器が備え付けられる場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられる。情報処理装置90と表示機器は、入出力インターフェース95を介して接続される。 The information processing device 90 may be equipped with a display device for displaying information. If a display device is equipped, the information processing device 90 is equipped with a display control device (not shown) for controlling the display of the display device. The information processing device 90 and the display device are connected via an input/output interface 95.

 情報処理装置90には、ドライブ装置が備え付けられてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体に格納されたデータやプログラムの読み込みや、情報処理装置90の処理結果の記録媒体への書き込みを仲介する。情報処理装置90とドライブ装置は、入出力インターフェース95を介して接続される。 The information processing device 90 may be equipped with a drive device. The drive device acts as an intermediary between the processor 91 and a recording medium (program recording medium) to read data and programs stored on the recording medium and to write the processing results of the information processing device 90 to the recording medium. The information processing device 90 and the drive device are connected via an input/output interface 95.

 以上が、本開示における制御や処理を可能とするためのハードウェア構成の一例である。図34のハードウェア構成は、本開示における制御や処理を実行するためのハードウェア構成の一例であって、本開示の範囲を限定するものではない。本開示における制御や処理をコンピュータに実行させるプログラムも本開示の範囲に含まれる。 The above is an example of a hardware configuration for enabling the control and processing in this disclosure. The hardware configuration in FIG. 34 is an example of a hardware configuration for executing the control and processing in this disclosure, and does not limit the scope of this disclosure. Programs that cause a computer to execute the control and processing in this disclosure are also included in the scope of this disclosure.

 本開示におけるプログラムを記録したプログラム記録媒体も、本開示の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体によって実現されてもよい。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現されてもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。  Program recording media on which the programs of the present disclosure are recorded are also included within the scope of the present disclosure. The recording media can be realized, for example, as optical recording media such as CDs (Compact Discs) and DVDs (Digital Versatile Discs). The recording media may also be realized as semiconductor recording media such as USB (Universal Serial Bus) memory and SD (Secure Digital) cards. The recording media may also be realized as magnetic recording media such as flexible disks, or other recording media. When the programs executed by the processor are recorded on a recording medium, the recording medium corresponds to a program recording medium.

 本開示における構成要素は、任意に組み合わせられてもよい。本開示における構成要素は、ソフトウェアによって実現されてもよい。本開示における構成要素は、回路によって実現されてもよい。 The components in this disclosure may be combined in any manner. The components in this disclosure may be implemented by software. The components in this disclosure may be implemented by circuits.

 以上、実施の形態を参照して本開示を説明したが、本開示は上述の実施の形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。そして、各実施の形態は、適宜他の実施の形態と組み合わせることができる。 The present disclosure has been described above with reference to the embodiments, but the present disclosure is not limited to the above-mentioned embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present disclosure within the scope of the present disclosure. Furthermore, each embodiment can be combined with other embodiments as appropriate.

 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する取得部と、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定するリスク推定部と、
 推定された前記疾病リスクに応じた疾病リスク情報を出力する出力部と、を備える疾病リスク推定装置。
(付記2)
 前記リスク推定部は、
 前記センサデータを用いて歩容指標を計算する計算部と、
 前記歩容指標を含むデータの入力に応じて前記疾病に関する前記疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する推定部と、を有する付記1に記載の疾病リスク推定装置。
(付記3)
 前記推定部は、
 疾病の危険性を示すランクに応じた疾病ごとの重みを前記疾病リスクスコアにかけ合わせることによって、疾病ごとのリスクが反映された前記疾病リスクスコアを計算する付記2に記載の疾病リスク推定装置。
(付記4)
 前記推定部は、
 疾病の組み合わせごとの重みを前記疾病リスクスコアに掛け合わせることによって、疾病の組み合わせごとのリスクが反映された前記疾病リスクスコアを計算する付記2に記載の疾病リスク推定装置。
(付記5)
 前記疾病リスクスコアの変化傾向に応じて、疾病ごとの疾病リスクを判定する変化傾向判定部を備える付記2に記載の疾病リスク推定装置。
(付記6)
 前記変化傾向判定部は、
 前記疾病リスクスコアが増加傾向の疾病に関して疾病リスクが高いと判定し、
 前記疾病リスクスコアが低下傾向および停滞傾向のうちいずれかの疾病に関して疾病リスクが低いと判定する付記5に記載の疾病リスク推定装置。
(付記7)
 前記変化傾向判定部は、
 前記疾病リスクスコアが閾値を上回った疾病に関して疾病リスクが高いと判定し、
 前記疾病リスクスコアが前記閾値を下回った疾病に関して疾病リスクが低いと判定する付記5に記載の疾病リスク推定装置。
(付記8)
 疾病ごとのリスクが反映された前記疾病リスクに応じて、保険関連機関に向けた提案情報を生成する提案情報生成部を備える付記2に記載の疾病リスク推定装置。
(付記9)
 前記保険関連機関は健康保険組合であり、
 前記取得部は、
 前記健康保険組合の被保険者の歩行に応じて計測された前記センサデータを取得し、
 前記リスク推定部は、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された前記疾病リスクを推定し、
 前記提案情報生成部は、
 推定された疾病ごとのリスクが反映された前記疾病リスクに応じて、前記被保険者に対して特定保健指導を通知するタイミングを含む前記提案情報を生成し、
 前記出力部は、
 前記特定保健指導を通知するタイミングを含む前記提案情報を、前記健康保険組合で使用される端末装置に送信する付記8に記載の疾病リスク推定装置。
(付記10)
 前記保険関連機関は生命保険会社であり、
 前記取得部は、
 前記生命保険会社の保険契約者の歩行に応じて計測された前記センサデータを取得し、
 前記リスク推定部は、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された前記疾病リスクを推定し、
 前記提案情報生成部は、
 推定された疾病ごとのリスクが反映された前記疾病リスクに応じて、前記保険契約者に対してインセンティブを付与するタイミングを含む前記提案情報を生成し、
 前記出力部は、
 前記インセンティブを付与するタイミングを含む前記提案情報を、前記生命保険会社で使用される端末装置に送信する付記8に記載の疾病リスク推定装置。
(付記11)
 前記疾病リスク推定モデルは、
 機械学習の手法を用いて学習されたモデルであり、
 不完全異種変分オートエンコーダを含む付記2に記載の疾病リスク推定装置。
(付記12)
 付記1乃至11のいずれか一つに記載の疾病リスク推定装置と、
 前記疾病リスク情報の推定対象である前記対象者の履物に設置され、空間加速度および空間角速度を計測し、計測された前記空間加速度および前記空間角速度を用いて前記センサデータを生成し、生成された前記センサデータを前記疾病リスク推定装置に送信する計測装置と、を備える疾病リスク推定システム。
(付記13)
 前記疾病リスク推定装置は、
 ユーザによって閲覧可能な端末装置の画面に、前記対象者に関して最適化された前記疾病リスク情報を表示させる付記12に記載の疾病リスク推定システム。
(付記14)
 コンピュータが、
 疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得し、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定し、
 推定された前記疾病リスクに応じた疾病リスク情報を出力する疾病リスク推定方法。
(付記15)
 コンピュータが、
 前記センサデータを用いて歩容指標を計算し、
 前記歩容指標を含むデータの入力に応じて前記疾病に関する前記疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、
 前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する付記14に記載の疾病リスク推定方法。
(付記16)
 コンピュータが、
 疾病の危険性を示すランクに応じた疾病ごとの重みを前記疾病リスクスコアにかけ合わせることによって、疾病ごとのリスクが反映された前記疾病リスクスコアを計算する付記15に記載の疾病リスク推定方法。
(付記17)
 コンピュータが、
 疾病の組み合わせごとの重みを前記疾病リスクスコアに掛け合わせることによって、疾病の組み合わせごとのリスクが反映された前記疾病リスクスコアを計算する付記15に記載の疾病リスク推定方法。
(付記18)
 コンピュータが、
 前記疾病リスクスコアの変化傾向に応じて、疾病ごとの疾病リスクを判定する付記15に記載の疾病リスク推定方法。
(付記19)
 コンピュータが、
 疾病ごとのリスクが反映された前記疾病リスクに応じて、保険関連機関に向けた提案情報を生成する付記15に記載の疾病リスク推定方法。
(付記20)
 疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する処理と、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する処理と、
 推定された前記疾病リスクに応じた疾病リスク情報を出力する処理と、をコンピュータに実行させるプログラムを記録させたコンピュータ読み取り可能な非一過性の記録媒体。
A part or all of the above-described embodiments can be described as, but is not limited to, the following supplementary notes.
(Appendix 1)
An acquisition unit that acquires sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated;
a risk estimation unit that estimates a disease risk reflecting the risk for each disease by using the acquired sensor data;
An output unit that outputs disease risk information corresponding to the estimated disease risk.
(Appendix 2)
The risk estimation unit is
a calculation unit that calculates a gait index using the sensor data;
a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk related to the disease in response to input of data including the gait index, the disease risk estimation model inputting data including the gait index calculated using the sensor data, and estimating disease risk information according to the disease risk score output from the disease risk estimation model.
(Appendix 3)
The estimation unit is
A disease risk estimation device as described in Appendix 2, which calculates the disease risk score reflecting the risk of each disease by multiplying the disease risk score by a weight for each disease corresponding to a rank indicating the risk of the disease.
(Appendix 4)
The estimation unit is
A disease risk estimation device as described in Appendix 2, which calculates the disease risk score reflecting the risk of each combination of diseases by multiplying the disease risk score by a weight for each combination of diseases.
(Appendix 5)
A disease risk estimation device as described in Appendix 2, comprising a change trend determination unit that determines the disease risk for each disease based on the change trend of the disease risk score.
(Appendix 6)
The change tendency determination unit
Determining that the disease risk is high for a disease whose disease risk score is on the rise;
A disease risk estimation device as described in Appendix 5, which determines that the disease risk is low for any disease for which the disease risk score is on a downward trend or a stagnant trend.
(Appendix 7)
The change tendency determination unit
A disease risk is determined to be high for a disease whose disease risk score exceeds a threshold value;
A disease risk estimation device as described in Appendix 5, which determines that the disease risk is low for a disease whose disease risk score is below the threshold.
(Appendix 8)
A disease risk estimation device as described in Appendix 2, comprising a proposal information generation unit that generates proposal information for insurance-related institutions in accordance with the disease risk reflecting the risk for each disease.
(Appendix 9)
The insurance-related institution is a health insurance association,
The acquisition unit is
Acquire the sensor data measured according to the walking of the insured person of the health insurance association;
The risk estimation unit is
Using the acquired sensor data, a disease risk reflecting a risk for each disease is estimated;
The proposal information generation unit,
generating the proposal information including a timing for notifying the insured person of specific health guidance in accordance with the disease risk reflecting the estimated risk for each disease;
The output unit is
A disease risk estimation device as described in Appendix 8, which transmits the proposal information, including the timing for notifying the specific health guidance, to a terminal device used by the health insurance association.
(Appendix 10)
The insurance-related institution is a life insurance company;
The acquisition unit is
acquiring the sensor data measured according to the walking of a policyholder of the life insurance company;
The risk estimation unit is
Using the acquired sensor data, a disease risk reflecting a risk for each disease is estimated;
The proposal information generation unit,
generating the proposal information including a timing for granting an incentive to the policyholder according to the disease risk reflecting the estimated risk for each disease;
The output unit is
A disease risk estimation device as described in Appendix 8, which transmits the proposal information, including the timing of granting the incentive, to a terminal device used by the life insurance company.
(Appendix 11)
The disease risk estimation model is
This is a model trained using machine learning techniques.
3. The disease risk estimation apparatus of claim 2, comprising an incomplete heterogeneous variational autoencoder.
(Appendix 12)
A disease risk estimation device according to any one of appendix 1 to 11,
A disease risk estimation system comprising: a measuring device that is installed in the footwear of the subject whose disease risk information is to be estimated, measures spatial acceleration and spatial angular velocity, generates the sensor data using the measured spatial acceleration and spatial angular velocity, and transmits the generated sensor data to the disease risk estimation device.
(Appendix 13)
The disease risk estimation device comprises:
A disease risk estimation system as described in Appendix 12, which displays the disease risk information optimized for the subject on a screen of a terminal device that can be viewed by a user.
(Appendix 14)
The computer
Acquire sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated;
Using the acquired sensor data, a disease risk reflecting the risk for each disease is estimated;
A disease risk estimation method that outputs disease risk information corresponding to the estimated disease risk.
(Appendix 15)
The computer
Calculating a gait index using the sensor data;
inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of the disease risk related to the disease in response to input of data including the gait index;
A disease risk estimation method as described in Appendix 14, which estimates disease risk information according to the disease risk score output from the disease risk estimation model.
(Appendix 16)
The computer
A disease risk estimation method as described in Appendix 15, in which the disease risk score is multiplied by a weight for each disease corresponding to a rank indicating the risk of the disease, thereby calculating the disease risk score reflecting the risk of each disease.
(Appendix 17)
The computer
A disease risk estimation method as described in Appendix 15, in which the disease risk score reflecting the risk of each combination of diseases is calculated by multiplying the disease risk score by a weight for each combination of diseases.
(Appendix 18)
The computer
A disease risk estimation method described in Appendix 15, in which the disease risk for each disease is determined based on the trend of change in the disease risk score.
(Appendix 19)
The computer
A disease risk estimation method as described in Appendix 15, which generates proposal information for insurance-related institutions based on the disease risk reflecting the risk for each disease.
(Appendix 20)
A process of acquiring sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated;
A process of estimating a disease risk reflecting the risk for each disease using the acquired sensor data;
A non-transitory computer-readable recording medium having recorded thereon a program for causing a computer to execute the process of: outputting disease risk information corresponding to the estimated disease risk.

 1、2、3  疾病リスク推定システム
 10、20、30  計測装置
 13、23、33、40  疾病リスク推定装置
 15  リスク推定部
 41  取得部
 45  リスク推定部
 47  出力部
 110  センサ
 111  加速度センサ
 112  角速度センサ
 113  制御部
 115  通信部
 117  電源
 130、230、330  計算部
 131、231、331  取得部
 132  波形処理部
 133  歩容指標計算部
 134、234、334  記憶部
 135  身体能力推定部
 136  疾病リスク推定部
 137、237、337  出力部
 140、240  推定部
 245  変化傾向判定部
 345  提案情報生成部
1, 2, 3 Disease risk estimation system 10, 20, 30 Measurement device 13, 23, 33, 40 Disease risk estimation device 15 Risk estimation unit 41 Acquisition unit 45 Risk estimation unit 47 Output unit 110 Sensor 111 Acceleration sensor 112 Angular velocity sensor 113 Control unit 115 Communication unit 117 Power supply 130, 230, 330 Calculation unit 131, 231, 331 Acquisition unit 132 Waveform processing unit 133 Gait index calculation unit 134, 234, 334 Storage unit 135 Physical ability estimation unit 136 Disease risk estimation unit 137, 237, 337 Output unit 140, 240 Estimation unit 245 Change tendency determination unit 345 Proposal information generation unit

Claims (20)

 疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する取得部と、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定するリスク推定部と、
 推定された前記疾病リスクに応じた疾病リスク情報を出力する出力部と、を備える疾病リスク推定装置。
An acquisition unit that acquires sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated;
a risk estimation unit that estimates a disease risk reflecting the risk for each disease by using the acquired sensor data;
An output unit that outputs disease risk information corresponding to the estimated disease risk.
 前記リスク推定部は、
 前記センサデータを用いて歩容指標を計算する計算部と、
 前記歩容指標を含むデータの入力に応じて前記疾病に関する前記疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する推定部と、を有する請求項1に記載の疾病リスク推定装置。
The risk estimation unit is
a calculation unit that calculates a gait index using the sensor data;
a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk related to the disease in response to input of data including the gait index, the disease risk estimation model inputting data including the gait index calculated using the sensor data, and estimating disease risk information corresponding to the disease risk score output from the disease risk estimation model.
 前記推定部は、
 疾病の危険性を示すランクに応じた疾病ごとの重みを前記疾病リスクスコアにかけ合わせることによって、疾病ごとのリスクが反映された前記疾病リスクスコアを計算する請求項2に記載の疾病リスク推定装置。
The estimation unit is
3. A disease risk estimation device as described in claim 2, wherein the disease risk score reflecting the risk of each disease is calculated by multiplying the disease risk score by a weight for each disease corresponding to a rank indicating the risk of the disease.
 前記推定部は、
 疾病の組み合わせごとの重みを前記疾病リスクスコアに掛け合わせることによって、疾病の組み合わせごとのリスクが反映された前記疾病リスクスコアを計算する請求項2に記載の疾病リスク推定装置。
The estimation unit is
The disease risk estimation device according to claim 2 , wherein the disease risk score reflecting the risk of each combination of diseases is calculated by multiplying the disease risk score by a weight for each combination of diseases.
 前記疾病リスクスコアの変化傾向に応じて、疾病ごとの疾病リスクを判定する変化傾向判定部を備える請求項2に記載の疾病リスク推定装置。 The disease risk estimation device according to claim 2, further comprising a change trend determination unit that determines the disease risk for each disease according to the change trend of the disease risk score.  前記変化傾向判定部は、
 前記疾病リスクスコアが増加傾向の疾病に関して疾病リスクが高いと判定し、
 前記疾病リスクスコアが低下傾向および停滞傾向のうちいずれかの疾病に関して疾病リスクが低いと判定する請求項5に記載の疾病リスク推定装置。
The change tendency determination unit
Determining that the disease risk is high for a disease whose disease risk score is on the rise;
The disease risk estimation device according to claim 5 , wherein the disease risk score is determined to be low for any of diseases for which the disease risk score shows a declining or stagnant trend.
 前記変化傾向判定部は、
 前記疾病リスクスコアが閾値を上回った疾病に関して疾病リスクが高いと判定し、
 前記疾病リスクスコアが前記閾値を下回った疾病に関して疾病リスクが低いと判定する請求項5に記載の疾病リスク推定装置。
The change tendency determination unit
A disease risk is determined to be high for a disease whose disease risk score exceeds a threshold value;
The disease risk estimation device according to claim 5 , wherein the disease risk is determined to be low for a disease whose disease risk score is below the threshold.
 疾病ごとのリスクが反映された前記疾病リスクに応じて、保険関連機関に向けた提案情報を生成する提案情報生成部を備える請求項2に記載の疾病リスク推定装置。 The disease risk estimation device according to claim 2, further comprising a proposal information generation unit that generates proposal information for insurance-related institutions in accordance with the disease risk that reflects the risk for each disease.  前記保険関連機関は健康保険組合であり、
 前記取得部は、
 前記健康保険組合の被保険者の歩行に応じて計測された前記センサデータを取得し、
 前記リスク推定部は、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された前記疾病リスクを推定し、
 前記提案情報生成部は、
 推定された疾病ごとのリスクが反映された前記疾病リスクに応じて、前記被保険者に対して特定保健指導を通知するタイミングを含む前記提案情報を生成し、
 前記出力部は、
 前記特定保健指導を通知するタイミングを含む前記提案情報を、前記健康保険組合で使用される端末装置に送信する請求項8に記載の疾病リスク推定装置。
The insurance-related institution is a health insurance association,
The acquisition unit is
Acquire the sensor data measured according to the walking of the insured person of the health insurance association;
The risk estimation unit is
Using the acquired sensor data, a disease risk reflecting a risk for each disease is estimated;
The proposal information generation unit,
generating the proposal information including a timing for notifying the insured person of specific health guidance in accordance with the disease risk reflecting the estimated risk for each disease;
The output unit is
The disease risk estimation device according to claim 8 , wherein the proposal information including the timing of notifying the specific health guidance is transmitted to a terminal device used by the health insurance association.
 前記保険関連機関は生命保険会社であり、
 前記取得部は、
 前記生命保険会社の保険契約者の歩行に応じて計測された前記センサデータを取得し、
 前記リスク推定部は、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された前記疾病リスクを推定し、
 前記提案情報生成部は、
 推定された疾病ごとのリスクが反映された前記疾病リスクに応じて、前記保険契約者に対してインセンティブを付与するタイミングを含む前記提案情報を生成し、
 前記出力部は、
 前記インセンティブを付与するタイミングを含む前記提案情報を、前記生命保険会社で使用される端末装置に送信する請求項8に記載の疾病リスク推定装置。
The insurance-related institution is a life insurance company;
The acquisition unit is
acquiring the sensor data measured according to the walking of a policyholder of the life insurance company;
The risk estimation unit is
Using the acquired sensor data, a disease risk reflecting a risk for each disease is estimated;
The proposal information generation unit,
generating the proposal information including a timing for granting an incentive to the policyholder according to the disease risk reflecting the estimated risk for each disease;
The output unit is
9. The disease risk estimation device according to claim 8, wherein the proposal information including the timing of granting the incentive is transmitted to a terminal device used by the life insurance company.
 前記疾病リスク推定モデルは、
 機械学習の手法を用いて学習されたモデルであり、
 不完全異種変分オートエンコーダを含む請求項2に記載の疾病リスク推定装置。
The disease risk estimation model is
This is a model trained using machine learning techniques.
The disease risk estimation apparatus of claim 2 , comprising an incomplete heterogeneous variational autoencoder.
 請求項1乃至11のいずれか一項に記載の疾病リスク推定装置と、
 前記疾病リスク情報の推定対象である前記対象者の履物に設置され、空間加速度および空間角速度を計測し、計測された前記空間加速度および前記空間角速度を用いて前記センサデータを生成し、生成された前記センサデータを前記疾病リスク推定装置に送信する計測装置と、を備える疾病リスク推定システム。
A disease risk estimation device according to any one of claims 1 to 11,
A disease risk estimation system comprising: a measuring device that is installed in the footwear of the subject whose disease risk information is to be estimated, measures spatial acceleration and spatial angular velocity, generates the sensor data using the measured spatial acceleration and spatial angular velocity, and transmits the generated sensor data to the disease risk estimation device.
 前記疾病リスク推定装置は、
 ユーザによって閲覧可能な端末装置の画面に、前記対象者に関して最適化された前記疾病リスク情報を表示させる請求項12に記載の疾病リスク推定システム。
The disease risk estimation device comprises:
The disease risk estimation system according to claim 12 , wherein the disease risk information optimized for the subject is displayed on a screen of a terminal device viewable by a user.
 コンピュータが、
 疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得し、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定し、
 推定された前記疾病リスクに応じた疾病リスク情報を出力する疾病リスク推定方法。
The computer
Acquire sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated;
Using the acquired sensor data, a disease risk reflecting the risk for each disease is estimated;
A disease risk estimation method that outputs disease risk information corresponding to the estimated disease risk.
 コンピュータが、
 前記センサデータを用いて歩容指標を計算し、
 前記歩容指標を含むデータの入力に応じて前記疾病に関する前記疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、
 前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する請求項14に記載の疾病リスク推定方法。
The computer
Calculating a gait index using the sensor data;
inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of the disease risk related to the disease in response to input of data including the gait index;
The disease risk estimation method according to claim 14, further comprising estimating disease risk information according to the disease risk score output from the disease risk estimation model.
 コンピュータが、
 疾病の危険性を示すランクに応じた疾病ごとの重みを前記疾病リスクスコアにかけ合わせることによって、疾病ごとのリスクが反映された前記疾病リスクスコアを計算する請求項15に記載の疾病リスク推定方法。
The computer
The disease risk estimation method according to claim 15, wherein the disease risk score reflecting the risk of each disease is calculated by multiplying the disease risk score by a weight for each disease corresponding to a rank indicating the risk of the disease.
 コンピュータが、
 疾病の組み合わせごとの重みを前記疾病リスクスコアに掛け合わせることによって、疾病の組み合わせごとのリスクが反映された前記疾病リスクスコアを計算する請求項15に記載の疾病リスク推定方法。
The computer
The disease risk estimation method according to claim 15, wherein the disease risk score reflecting the risk of each combination of diseases is calculated by multiplying the disease risk score by a weight for each combination of diseases.
 コンピュータが、
 前記疾病リスクスコアの変化傾向に応じて、疾病ごとの疾病リスクを判定する請求項15に記載の疾病リスク推定方法。
The computer
The disease risk estimation method according to claim 15, wherein the disease risk for each disease is determined according to a change trend of the disease risk score.
 コンピュータが、
 疾病ごとのリスクが反映された前記疾病リスクに応じて、保険関連機関に向けた提案情報を生成する請求項15に記載の疾病リスク推定方法。
The computer
The disease risk estimation method according to claim 15 , further comprising generating proposal information for insurance-related institutions in accordance with the disease risk reflecting the risk for each disease.
 疾病リスクの推定対象である対象者の足の動きに応じて計測されたセンサデータを取得する処理と、
 取得された前記センサデータを用いて、疾病ごとのリスクが反映された疾病リスクを推定する処理と、
 推定された前記疾病リスクに応じた疾病リスク情報を出力する処理と、をコンピュータに実行させるプログラムを記録させたコンピュータ読み取り可能な非一過性の記録媒体。
A process of acquiring sensor data measured according to foot movements of a subject who is a subject for whom a disease risk is to be estimated;
A process of estimating a disease risk reflecting the risk for each disease using the acquired sensor data;
A non-transitory computer-readable recording medium having recorded thereon a program for causing a computer to execute the process of: outputting disease risk information corresponding to the estimated disease risk.
PCT/JP2023/023044 2023-06-22 2023-06-22 Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium Pending WO2024261936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/023044 WO2024261936A1 (en) 2023-06-22 2023-06-22 Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/023044 WO2024261936A1 (en) 2023-06-22 2023-06-22 Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium

Publications (1)

Publication Number Publication Date
WO2024261936A1 true WO2024261936A1 (en) 2024-12-26

Family

ID=93935185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023044 Pending WO2024261936A1 (en) 2023-06-22 2023-06-22 Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium

Country Status (1)

Country Link
WO (1) WO2024261936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7728056B1 (en) * 2025-07-08 2025-08-22 貴久 森 Health Management System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309465A (en) * 2005-04-27 2006-11-09 Sense It Smart Corp Dental health management system, oral cavity information analyzing device, dental disease analyzing method and program
JP2007199948A (en) * 2006-01-25 2007-08-09 Dainakomu:Kk Disease risk information display device and program
JP2010026855A (en) * 2008-07-22 2010-02-04 Omron Healthcare Co Ltd Device for determining health condition
WO2020045245A1 (en) * 2018-08-31 2020-03-05 日本電信電話株式会社 State transition prediction device, and device, method, and program for learning predictive model
JP2020197948A (en) * 2019-06-03 2020-12-10 株式会社ノーニューフォークスタジオ Insurance suggestion system, insurance suggestion method, and insurance suggestion program
JP2021176039A (en) * 2020-05-01 2021-11-04 コニカミノルタ株式会社 Medical checkup support system, control program of medical checkup support system, and support method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309465A (en) * 2005-04-27 2006-11-09 Sense It Smart Corp Dental health management system, oral cavity information analyzing device, dental disease analyzing method and program
JP2007199948A (en) * 2006-01-25 2007-08-09 Dainakomu:Kk Disease risk information display device and program
JP2010026855A (en) * 2008-07-22 2010-02-04 Omron Healthcare Co Ltd Device for determining health condition
WO2020045245A1 (en) * 2018-08-31 2020-03-05 日本電信電話株式会社 State transition prediction device, and device, method, and program for learning predictive model
JP2020197948A (en) * 2019-06-03 2020-12-10 株式会社ノーニューフォークスタジオ Insurance suggestion system, insurance suggestion method, and insurance suggestion program
JP2021176039A (en) * 2020-05-01 2021-11-04 コニカミノルタ株式会社 Medical checkup support system, control program of medical checkup support system, and support method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7728056B1 (en) * 2025-07-08 2025-08-22 貴久 森 Health Management System

Similar Documents

Publication Publication Date Title
US10024660B2 (en) Method to determine physical properties of the ground
US20240115159A1 (en) System and method for classifying gait and posture abnormality
JP7726283B2 (en) Estimation device, information presentation system, estimation method, and program
JP2023512987A (en) Systems and methods for monitoring patient spine, balance, gait, or posture
Manna et al. Optimal locations and computational frameworks of FSR and IMU sensors for measuring gait abnormalities
JP7758061B2 (en) Muscle strength evaluation device, muscle strength evaluation system, muscle strength evaluation method, and program
JP7677410B2 (en) Estimation device, estimation system, estimation method, and program
WO2024261936A1 (en) Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium
Zhang et al. Automatic detection of fatigued gait patterns in older adults: an intelligent portable device integrating force and inertial measurements with machine learning
Cai et al. mhealth technologies toward active health information collection and tracking in daily life: A dynamic gait monitoring example
Ainsworth et al. How to assess physical activity in clinical practice and for scholarly work
US20240148276A1 (en) Estimation device, estimation method, and program recording medium
US20240138713A1 (en) Harmonic index estimation device, estimation system, harmonic index estimation method, and recording medium
WO2024261997A1 (en) Information generating device, information providing system, information providing method, and recording medium
WO2025022479A1 (en) Information providing device, information providing system, information providing method, and recording medium
WO2024261935A1 (en) Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium
WO2025041185A1 (en) Information providing device, information providing system, information providing method, and recording medium
WO2025027673A1 (en) Information providing device, information providing system, information providing method, and recording medium
WO2025032627A1 (en) Information providing device, information providing system, information providing method, and recording medium
Saadion et al. Experimental study of gait monitoring on wearable shoes insole and analysis: a review
JP7525057B2 (en) Biometric information processing device, information processing system, biological information processing method, and program
JP7726299B2 (en) Falling tendency estimation device, falling tendency estimation system, falling tendency estimation method, and program
WO2024261996A1 (en) Information generation device, information provision system, information generation method, and recording medium
JP7729406B2 (en) Dynamic balance estimation device, dynamic balance estimation system, dynamic balance estimation method, and program
JP7772091B2 (en) Muscle strength index estimation device, muscle strength index estimation system, muscle strength index estimation method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23942372

Country of ref document: EP

Kind code of ref document: A1