[go: up one dir, main page]

WO2024261997A1 - Information generating device, information providing system, information providing method, and recording medium - Google Patents

Information generating device, information providing system, information providing method, and recording medium Download PDF

Info

Publication number
WO2024261997A1
WO2024261997A1 PCT/JP2023/023269 JP2023023269W WO2024261997A1 WO 2024261997 A1 WO2024261997 A1 WO 2024261997A1 JP 2023023269 W JP2023023269 W JP 2023023269W WO 2024261997 A1 WO2024261997 A1 WO 2024261997A1
Authority
WO
WIPO (PCT)
Prior art keywords
disease risk
estimation model
health
disease
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2023/023269
Other languages
French (fr)
Japanese (ja)
Inventor
洵 安川
晨暉 黄
史行 二瓶
浩司 梶谷
善喬 野崎
康介 西原
謙一郎 福司
謙太郎 中原
あずさ 古川
裕明 中野
和也 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to PCT/JP2023/023269 priority Critical patent/WO2024261997A1/en
Publication of WO2024261997A1 publication Critical patent/WO2024261997A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • This disclosure relates to an information generating device, an information providing system, an information providing method, and a recording medium.
  • Time-series sensor data contains characteristics associated with walking events that are related to physical conditions. If the disease risk of a subject can be estimated based on the characteristics associated with walking events, it will be possible to provide information based on disease risk to companies with many employees.
  • Patent Document 1 discloses a member health status management system that manages the health status of members such as employees belonging to a company.
  • the system of Patent Document 1 acquires primary analysis data based on the health status analyzed by a health service provider.
  • the system of Patent Document 1 generates evaluation criteria based on the acquired primary analysis data.
  • the system of Patent Document 1 generates secondary analysis data for a member based on the member's health status information relating to the same items as the health status information related to the primary analysis data used to generate the evaluation criteria, and the evaluation criteria.
  • the system of Patent Document 1 notifies the member of the generated secondary analysis data.
  • the method of Patent Document 1 required obtaining health status information of members from multiple health service providers. Therefore, the method of Patent Document 1 could not manage the health status of members unless the health status information of members was obtained from multiple health service providers. In other words, the method of Patent Document 1 could not provide health measures according to the disease risk of members engaged in daily work.
  • the purpose of this disclosure is to provide an information generating device, an information providing system, an information providing method, and a recording medium that can provide health measures according to the disease risk of managed individuals engaged in daily work.
  • An information generating device includes an acquisition unit that acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person, a risk estimation unit that estimates a disease risk for each disease for at least one managed person using the acquired sensor data, a proposed information generating unit that generates proposed information including health measures according to the disease risk for at least one managed person, and an output unit that outputs the generated proposed information.
  • sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person is acquired, the acquired sensor data is used to estimate a disease risk for each disease for the at least one managed person, suggested information including health measures according to the disease risk for the at least one managed person is generated, and the generated suggested information is output.
  • a program causes a computer to execute the following processes: acquiring sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person; estimating a disease risk for each disease for at least one managed person using the acquired sensor data; generating suggested information including health measures according to the disease risk for at least one managed person; and outputting the generated suggested information.
  • This disclosure makes it possible to provide an information generating device, an information providing system, an information providing method, and a recording medium that can provide health measures according to the disease risk of managed individuals engaged in daily work.
  • FIG. 1 is a block diagram showing an example of a configuration of an information providing system according to the present disclosure.
  • 1 is a block diagram showing an example of a configuration of a measurement device included in an information providing system according to the present disclosure.
  • 1 is a conceptual diagram showing an example of the arrangement of measuring devices provided in an information providing system according to the present disclosure.
  • 1 is a conceptual diagram for explaining a coordinate system set in a measurement device included in an information provision system in the present disclosure.
  • FIG. FIG. 2 is a conceptual diagram for explaining a human body surface used in the description of the present disclosure.
  • 2 is a block diagram showing an example of a configuration of an information generating device included in the information providing system in the present disclosure.
  • FIG. FIG. 1 is a conceptual diagram for explaining a walking cycle used in the explanation of the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining a physical ability estimation model used by an information generating device included in an information providing system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining an example of estimating disease risk by the information providing system in the present disclosure.
  • 1 is a conceptual diagram for explaining an example of estimating disease risk by the information providing system in the present disclosure.
  • FIG. 11 is a conceptual diagram for explaining an example of an estimation of a health measure by the information provision system in the present disclosure.
  • 10 is a flowchart for explaining an example of an operation of an information generating device included in the information providing system in the present disclosure.
  • 10 is a flowchart for illustrating an example of a gait index calculation process performed by an information generating device included in the information provision system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining a physical ability estimation model used by an information generating device included in an information providing system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining an example of estimating disease risk by the information providing
  • FIG. 1 is a conceptual diagram for explaining a service that uses an information providing system in the present disclosure.
  • 1 is a conceptual diagram showing a display example of suggested information including health measures provided from an information providing system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining a service that uses an information providing system in the present disclosure.
  • 1 is a conceptual diagram showing a display example of suggested information including health measures provided from an information providing system in the present disclosure.
  • FIG. 1 is a conceptual diagram for explaining a service that uses an information providing system in the present disclosure.
  • 1 is a conceptual diagram showing a display example of suggested information including health measures provided from an information providing system in the present disclosure.
  • 1 is a block diagram showing an example of a configuration of an information generating device according to the present disclosure.
  • 11 is a flowchart for explaining an example of an operation of the information generating device in the present disclosure.
  • FIG. 2 is a conceptual diagram illustrating an example of a hardware configuration according to the present disclosure.
  • the information provision system according to the present embodiment estimates health measures customized for each company using sensor data related to foot movements measured according to the walking of employees (subjects of management) belonging to the company.
  • the method according to the present embodiment can be applied not only to companies but also to any organization having multiple members (subjects of management). For example, the method according to the present embodiment can be applied to organizations such as local governments.
  • FIG. 1 is a block diagram showing an example of the configuration of an information providing system 1 in the present disclosure.
  • the information providing system 1 includes a measuring device 10 and an information generating device 12.
  • the measuring device 10 is installed in the footwear of an employee (managed person) belonging to a company.
  • the function of the information generating device 12 is implemented in a server or cloud connected via a network to a mobile terminal carried by the managed person or a repeater installed inside the building where the managed person works.
  • the function of the information generating device 12 may be implemented in a mobile terminal carried by the subject.
  • the configurations of the measuring device 10 and the information generating device 12 will be described individually.
  • [Measuring equipment] 2 is a block diagram showing an example of the configuration of the measurement device 10.
  • the measurement device 10 has a sensor 110, a control unit 113, a communication unit 115, and a power source 117.
  • the sensor 110 has an acceleration sensor 111 and an angular velocity sensor 112.
  • the sensor 110 may include sensors other than the acceleration sensor 111 and the angular velocity sensor 112. Descriptions of sensors other than the acceleration sensor 111 and the angular velocity sensor 112 that may be included in the sensor 110 will be omitted.
  • the acceleration sensor 111 is a sensor that measures acceleration in three axial directions (also called spatial acceleration).
  • the acceleration sensor 111 measures acceleration (also called spatial acceleration) as a physical quantity related to foot movement.
  • the acceleration sensor 111 outputs the measured acceleration to the control unit 113.
  • the acceleration sensor 111 can be a piezoelectric type, a piezo-resistive type, a capacitance type, or other type of sensor. There are no limitations on the sensor used as the acceleration sensor 111 as long as it can measure acceleration.
  • Angular velocity sensor 112 is a sensor that measures angular velocity (also called spatial angular velocity) around three axes. Angular velocity sensor 112 measures angular velocity (also called spatial angular velocity) as a physical quantity related to foot movement. Angular velocity sensor 112 outputs the measured angular velocity to control unit 113.
  • angular velocity sensor 112 For example, a vibration type, capacitance type, or other type of sensor can be used as angular velocity sensor 112. There are no limitations on the sensor used as angular velocity sensor 112 as long as it can measure angular velocity.
  • the sensor 110 is realized, for example, by an inertial measurement unit that measures acceleration and angular velocity.
  • An example of an inertial measurement unit is an IMU (Inertial Measurement Unit).
  • the IMU includes an acceleration sensor 111 that measures acceleration in three axial directions and an angular velocity sensor 112 that measures angular velocity around three axes.
  • the sensor 110 may be realized by an inertial measurement unit such as a VG (Vertical Gyro) or an AHRS (Attitude Heading Reference System).
  • the sensor 110 may also be realized by a GPS/INS (Global Positioning System/Inertial Navigation System).
  • the sensor 110 may be realized by a device other than an inertial measurement unit as long as it can measure physical quantities related to foot movement.
  • the measurement device 10 is placed at a position that corresponds to the back side of the arch of the foot.
  • the measurement device 10 is placed in an insole inserted into the shoe 100.
  • the measurement device 10 may be placed on the bottom surface of the shoe 100.
  • the measurement device 10 may be embedded in the body of the shoe 100.
  • the measurement device 10 may be detachable from the shoe 100, or may not be detachable from the shoe 100.
  • the measurement device 10 may be placed at a position other than the back side of the arch of the foot, as long as it can measure sensor data related to foot movement.
  • the measurement device 10 may also be placed in socks worn by the person to be managed, or in an accessory such as an anklet worn by the person to be managed.
  • the measurement device 10 may also be attached directly to the foot or embedded in the foot.
  • the measurement device 10 may also be placed in one of the shoes 100, as long as it can measure data that can be used to estimate disease risk.
  • a local coordinate system is set with the measuring device 10 (sensor 110) as the reference, including an x-axis in the left-right direction, a y-axis in the front-back direction, and a z-axis in the up-down direction.
  • FIG. 3 shows an example in which the same coordinate system is set for the left foot and the right foot.
  • the up-down orientation (Z-axis orientation) of the sensors 110 placed in the left and right shoes 100 is the same.
  • the three axes of the local coordinate system set for the sensor data derived from the left foot and the three axes of the local coordinate system set for the sensor data derived from the right foot are the same for the left and right.
  • the x-axis is positive to the left
  • the y-axis is positive backward
  • the z-axis is positive upward.
  • FIG. 4 is a conceptual diagram for explaining the local coordinate system (x-axis, y-axis, z-axis) set in the measuring device 10 (sensor 110) installed on the back side of the arch, and the world coordinate system (x-axis, y-axis, z-axis) set with respect to the ground.
  • FIG. 4 shows an example in which different coordinate systems are set for the left foot and the right foot.
  • the world coordinate system x-axis, y-axis, z-axis
  • the lateral direction of the managed person is set as the x-axis direction
  • the direction of the back of the managed person is set as the y-axis direction
  • the direction of gravity is set as the z-axis direction when the managed person stands upright facing the direction of travel.
  • FIG. 4 conceptually shows the relationship between the local coordinate system (x-axis, y-axis, z-axis) and the world coordinate system (x-axis, y-axis, z-axis), and does not accurately show the relationship between the local coordinate system and the world coordinate system, which changes according to the walking of the managed person.
  • FIG. 5 is a conceptual diagram for explaining the planes (also called human body planes) set for the human body.
  • a sagittal plane that divides the body into left and right a coronal plane that divides the body into front and back, and a horizontal plane that divides the body horizontally are defined.
  • FIG. 5 shows an example in which different coordinate systems are set for the left and right feet.
  • the rotation in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll
  • the rotation in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch
  • the rotation in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw.
  • the rotation angle in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll angle
  • the rotation angle in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch angle
  • the rotation angle in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw angle.
  • the control unit 113 causes the acceleration sensor 111 and the angular velocity sensor 112 to measure sensor data.
  • the control unit 113 causes the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to a measurement start signal transmitted from the information generating device 12.
  • the control unit 113 may cause the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to detection of the walking of the managed person.
  • the control unit 113 starts measuring the step width starting from the point in time when it is detected that either the left or right foot has started to move in the forward direction after both feet have been at the same vertical height for a predetermined period of time.
  • the control unit 113 may also be configured to start measuring the step width at a predetermined timing.
  • the control unit 113 acquires the acceleration in three axial directions from the acceleration sensor 111.
  • the control unit 113 also acquires the angular velocity around three axes from the angular velocity sensor 112.
  • the control unit 113 performs AD (Analog-to-Digital) conversion of the acquired physical quantities (analog data) such as angular velocity and acceleration.
  • the physical quantities (analog data) measured by the acceleration sensor 111 and the angular velocity sensor 112 may be converted to digital data in each of the acceleration sensor 111 and the angular velocity sensor 112.
  • an AD conversion circuit that AD converts the physical quantities (analog data) such as angular velocity and acceleration may be provided.
  • the control unit 113 outputs the converted digital data (also called sensor data) to the communication unit 115.
  • the control unit 113 may temporarily store the sensor data in a storage unit (not shown).
  • the sensor data includes at least acceleration data converted into digital data and angular velocity data converted into digital data.
  • the acceleration data includes acceleration vectors in three axial directions.
  • the angular velocity data includes angular velocity vectors about three axes.
  • the acceleration data and angular velocity data are linked to the time at which they were acquired.
  • the control unit 113 may also apply corrections such as corrections for mounting errors, temperature corrections, and linearity corrections to the acceleration data and angular velocity data.
  • control unit 113 may calculate at least one of the gait indices described below. In that case, the measurement device 10 outputs the calculated gait indices to the information generating device 12. For example, the control unit 113 may calculate a feature amount used to estimate physical ability described below. In that case, the measurement device 10 outputs the calculated feature amount to the information generating device 12.
  • control unit 113 is realized by a microcomputer or microcontroller that performs overall control of the measuring device 10 and performs data processing.
  • control unit 113 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory etc.
  • the communication unit 115 acquires sensor data from the control unit 113.
  • the communication unit 115 transmits the acquired sensor data to the information generating device 12.
  • the timing of transmitting the sensor data There are no particular limitations on the timing of transmitting the sensor data.
  • the communication unit 115 transmits the sensor data at a preset transmission timing.
  • the communication unit 115 transmits the sensor data in real time according to the measurement of the sensor data.
  • the communication unit 115 may store sensor data measured over a predetermined period of time and transmit the stored sensor data all at once at a preset timing.
  • the communication unit 115 may be configured to receive a measurement start signal from the information generating device 12. In this case, the communication unit 115 outputs the received measurement start signal to the control unit 113.
  • the communication unit 115 transmits the sensor data to the information generating device 12 via wireless communication.
  • the communication unit 115 transmits the sensor data to the information generating device 12 via a wireless communication function (not shown) that complies with standards such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the communication unit 115 may be compliant with standards other than Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication unit 115 may transmit the sensor data to the information generating device 12 via a wired connection such as a cable.
  • the power source 117 is a battery that supplies power for the measurement device 10 to operate.
  • the power source 117 is realized by a thin battery such as a coin type or button type.
  • the power source 117 is realized by a primary battery such as a lithium primary battery, a silver oxide battery, an alkaline button battery, or an air zinc battery.
  • the power source 117 is preferably realized by a long-life battery.
  • the power source 117 may also be realized by a rechargeable secondary battery.
  • the power source 117 may be a battery that can be charged via a wired connection or a battery that can be wirelessly powered.
  • a wireless power supply device may be placed in a place where footwear is placed, such as an entrance or a shoe cupboard. If footwear equipped with the measurement device 10 is placed on the wireless power supply device, the measurement device 10 can be appropriately charged when not in use.
  • [Information generating device] 6 is a block diagram showing an example of the configuration of the information generating device 12.
  • the information generating device 12 has an acquiring unit 121, a waveform processing unit 122, a gait index calculating unit 123, a storage unit 124, a physical ability estimating unit 125, a disease risk estimating unit 126, a proposed information generating unit 127, and an output unit 129.
  • the waveform processing unit 122, the gait index calculating unit 123, the physical ability estimating unit 125, and the disease risk estimating unit 126 constitute the risk estimating unit 15.
  • the waveform processing unit 122 and the gait index calculating unit 123 constitute the calculating unit 13.
  • the physical ability estimating unit 125 and the disease risk estimating unit 126 constitute the estimating unit 14.
  • the acquisition unit 121 acquires sensor data from the measurement device 10 mounted on the footwear of the managed person.
  • the acquisition unit 121 receives the sensor data from the measurement device 10 via wireless communication.
  • the sensor data may include location information of the managed person's mobile terminal (not shown), which is the source of the sensor data.
  • the location information is measured by a GPS (Global Positioning System) function mounted on the mobile terminal and added to the sensor data.
  • the acquisition unit 121 receives the sensor data from the measurement device 10 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the acquisition unit 121 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 10.
  • the acquisition unit 121 may receive the sensor data from the measurement device 10 via a wired connection such as a cable.
  • the acquisition unit 121 may acquire gait indices and feature amounts calculated by the measurement device 10.
  • the acquisition unit 121 also acquires attribute data of the managed person.
  • the attribute data includes gender, date of birth, height, and weight.
  • the date of birth is converted to age.
  • the gender, date of birth (age), height, and weight contained in the attribute data are also called physical information.
  • the attribute data is input via an input device (not shown).
  • the attribute data is input via a terminal device used by the administrator.
  • the attribute data is input via a mobile terminal used by the managed person.
  • the attribute data may be stored in advance in the storage unit 124.
  • the attribute data may be updated at any time in response to input by the managed person or the administrator.
  • the waveform processing unit 122 acquires sensor data from the acquisition unit 121.
  • the waveform processing unit 122 extracts time series data for one walking cycle from the time series data of acceleration in three axial directions and angular velocity around three axes contained in the sensor data.
  • the time series data for one walking cycle is also called walking waveform data.
  • the waveform processing unit 122 extracts walking waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the waveform processing unit 122 extracts walking waveform data that starts at the timing of a heel strike and ends at the timing of the next heel strike.
  • Figure 7 is a conceptual diagram for explaining a step cycle based on the right foot.
  • the step cycle based on the left foot is the same as that of the right foot.
  • the horizontal axis of Figure 7 shows one walking cycle of the right foot, starting from the point when the heel of the right foot lands on the ground and ending at the point when the heel of the right foot lands on the ground.
  • the horizontal axis of Figure 7 is normalized with the step cycle as 100%. Normalizing one walking cycle to 100% is called the first normalization.
  • One walking cycle of one foot is broadly divided into a stance phase in which at least a part of the sole of the foot is in contact with the ground and a swing phase in which the sole of the foot is off the ground.
  • the stance phase is a period in which at least a part of the sole of the foot is in contact with the ground.
  • the stance phase is further divided into an early stance phase T1, a mid stance phase T2, a final stance phase T3, and an early swing phase T4.
  • the swing phase is a period in which the sole of the foot is off the ground.
  • the swing phase is further divided into early swing T5, mid swing T6, and final swing T7.
  • the horizontal axis in FIG. 7 is normalized so that the stance phase is 60% and the swing phase is 40%. Normalizing the gait waveform data so that the stance phase is 60% and the swing phase is 40% is called second normalization. Note that the periods shown in FIG. 7 are merely examples, and do not limit the periods that make up a step cycle or the names of these periods.
  • P1 represents the event of the heel of the right foot touching the ground (heel strike) (HS: Heel Strike).
  • P2 represents the event of the toe of the left foot lifting off the ground (opposite toe off) while the sole of the right foot is on the ground (OTO: Opposite Toe Off).
  • P3 represents the event of the right heel lifting off the ground (heel rise) while the sole of the right foot is on the ground (HR: Heel Rise).
  • P4 represents the event of the left heel touching the ground (opposite heel strike) (OHS: Opposite Heel Strike).
  • P5 represents the event of the right toe lifting off the ground (toe off) while the sole of the left foot is on the ground (TO: Toe Off).
  • P6 represents an event in which the left and right feet cross (foot crossing) with the sole of the left foot touching the ground (FA: Foot Adjacent).
  • P7 represents an event in which the tibia of the right foot is nearly perpendicular to the ground with the sole of the left foot touching the ground (TV: Tibia Vertical).
  • P8 represents an event in which the heel of the right foot touches the ground (heel strike) (HS: Heel Strike).
  • P8 corresponds to the end of the walking cycle that begins with P1, and corresponds to the starting point of the next walking cycle. Note that the walking events shown in Figure 7 are merely examples, and do not limit the events that occur during walking or the names of those events.
  • the timing of heel strike is the timing of the minimum peak immediately after the maximum peak that appears in the time series data of forward acceleration (Y-direction acceleration).
  • the maximum peak that marks the timing of heel strike corresponds to the maximum peak of the gait waveform data for one step cycle.
  • the section between successive heel strikes corresponds to one step cycle.
  • the timing of toe off is the timing of the rise of the maximum peak that appears after the stance phase period in which no fluctuations appear in the time series data of forward acceleration (Y-direction acceleration).
  • the midpoint between the timing of the minimum roll angle and the timing of the maximum roll angle corresponds to the mid-stance phase.
  • the waveform processing unit 122 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent). The timing of 1%, 10%, etc. included in the 0 to 100% walking cycle is also called a walking phase.
  • the waveform processing unit 122 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%. By second normalizing the walking waveform data, it is possible to reduce the deviation of the walking phase from which the feature is extracted.
  • the waveform processing unit 122 outputs the normalized walking waveform data to the gait index calculation unit 123.
  • the waveform processing unit 122 may extract/normalize the walking waveform data for one step cycle using acceleration/angular velocity other than the forward acceleration (Y-direction acceleration). For example, the waveform processing unit 122 may detect heel strike and toe lift from the time series data of vertical acceleration (Z-direction acceleration) (not shown).
  • the timing of heel strike is the timing of a steep minimum peak that appears in the time series data of vertical acceleration (Z-direction acceleration). At the timing of the steep minimum peak, the value of the vertical acceleration (Z-direction acceleration) becomes almost 0.
  • the minimum peak that marks the timing of heel strike corresponds to the minimum peak of the walking waveform data for one step cycle.
  • the section between successive heel strikes is the one step cycle.
  • the timing of toe lift is the timing of an inflection point in the middle of the time series data of vertical acceleration (Z-direction acceleration) gradually increasing after a section of small fluctuation following the maximum peak immediately after heel strike.
  • the waveform processing unit 122 may also extract/normalize the walking waveform data for one step cycle using both the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration).
  • the waveform processing unit 122 may also extract/normalize the walking waveform data for one step cycle using acceleration, angular velocity, angle, etc. other than the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration).
  • the gait index calculation unit 123 acquires normalized gait waveform data from the waveform processing unit 122.
  • the gait index calculation unit 123 uses the normalized gait waveform data to calculate gait indices used to estimate physical ability.
  • gait indices used to estimate physical ability.
  • the gait index calculation unit 123 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc. Representative gait indices are listed below. Specific calculation methods for the following gait indices will be omitted.
  • the gait index calculation unit 123 calculates indices related to distance and height as gait indices. For example, the gait index calculation unit 123 calculates stride length, turning distance, foot lift height, FTC (Foot Clearance), and MTC (Minimum Toe Clearance). Stride length indicates the distance between the front foot and the rear foot while walking. Turning distance indicates the maximum distance that the foot is moved outward in the direction of travel during the swing phase. Foot lift height indicates the maximum distance between the measuring device 10 (sensor 110) and the ground during the swing phase. FTC indicates the maximum distance between the heel and the ground during the swing phase. MTC indicates the minimum distance between the toe and the ground during the swing phase.
  • stride length indicates the distance between the front foot and the rear foot while walking.
  • Turning distance indicates the maximum distance that the foot is moved outward in the direction of travel during the swing phase.
  • Foot lift height indicates the maximum distance between the measuring device 10 (sensor 110) and the ground during the swing phase.
  • FTC indicates the maximum distance between the heel and
  • the gait index calculation unit 123 calculates indexes related to angles as gait indices. For example, the gait index calculation unit 123 calculates the contact angle, the take-off angle, the toe direction, the heel contact roll angle, the toe off roll angle, the swing leg peak angular velocity, and the big toe angle.
  • the contact angle indicates the maximum angle between the sole of the foot and the ground at heel contact.
  • the take-off angle indicates the angle between the sole of the foot and the ground during the swing phase.
  • the toe direction indicates the average value of the direction of the toe relative to the direction of travel during the swing phase.
  • the heel contact roll angle is the angle between the ankle and the ground at heel contact as viewed from a rear perspective.
  • the toe off roll angle is the angle between the ankle and the ground at push-off as viewed from a rear perspective.
  • the swing leg peak angular velocity is the angular velocity in the ankle dorsiflexion direction in the section from immediately after push-off until the toe comes closest to the ground.
  • the hallux angle indicates the angle at which the big toe is tilted toward the index toe. Specifically, the hallux angle is the angle between the center line of the first metatarsal bone and the center line of the first proximal phalanx.
  • the gait index calculation unit 123 calculates an index related to speed as a gait index. For example, the gait index calculation unit 123 calculates walking speed, cadence, and maximum swing speed. Walking speed indicates the walking speed. Cadence indicates the number of steps per minute. Maximum swing speed indicates the speed at which the leg is swung out during the swing phase.
  • the gait index calculation unit 123 calculates time-related indices as gait indices. For example, the gait index calculation unit 123 calculates stance time, load time, sole contact time, push-off time, swing time, and DST (Double Support Time). Stance time indicates the time that the foot is on the ground while walking. Stance time is the sum of load time, sole contact time, and push-off time. Load time is the time from when the heel touches the ground until the toe touches the ground during the stance phase. Sole contact time is the time during the stance phase when the entire sole of the foot is on the ground and the sole of the foot is horizontal to the ground.
  • Stance time indicates the time that the foot is on the ground while walking. Stance time is the sum of load time, sole contact time, and push-off time.
  • Load time is the time from when the heel touches the ground until the toe touches the ground during the stance phase. Sole contact time is the time during the stance phase when the entire sole of the foot is on the ground and
  • Push-off time is the time from when the sole of the foot is on the ground until the toe pushes off the ground during the stance phase.
  • Swing time indicates the time that the foot is off the ground while walking.
  • DST is divided into DST1 and DST2.
  • DST1 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is in front of the other foot during a period when both feet are on the ground at the same time.
  • DST2 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is behind the other foot during a period when both feet are on the ground at the same time.
  • the gait index calculation unit 123 calculates a frailty level and a center of pressure exclusion index (CPEI) as the gait index.
  • the frailty level is an estimated value of a frailty state according to a walking state.
  • the gait index calculation unit 123 estimates an index such as a judgment result R1 indicating health, a judgment result R2 indicating a possibility of frailty, and a judgment result R3 indicating a high possibility of frailty as the frailty level.
  • the CPEI indicates an estimated value of a swelling rate of the movement of the center of foot pressure applied to the ground during the stance phase.
  • the memory unit 124 stores a physical ability estimation model (described later) that estimates physical ability using physical ability features extracted from the walking waveform data.
  • the physical ability is at least one of grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the physical ability may include other than grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance.
  • the memory unit 124 stores physical ability estimation models trained for multiple subjects. For example, the physical ability estimation model outputs an index of physical ability (physical ability score) in response to input of physical ability features extracted from the walking waveform data. If physical ability is not used in estimating disease risk, the physical ability estimation model can be omitted.
  • the storage unit 124 also stores a disease risk estimation model (described later) that estimates disease risk using attribute data, gait index, and physical ability score.
  • the disease risk indicates the risk of contracting a specific disease.
  • the specific diseases include gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • the specific diseases include lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.
  • the specific diseases may include diseases other than those mentioned above.
  • the storage unit 124 stores disease risk estimation models learned for multiple subjects.
  • the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of attribute data, gait index, and physical ability score.
  • the disease risk estimation model may be a model that outputs a disease risk score in response to input of gait index and attribute data without using a physical ability score. In that case, the physical ability estimation model may not be used.
  • the storage unit 124 also stores a health measure estimation model that outputs health measures for a managed person in response to an input of a disease risk related to the managed person.
  • the health measure estimation model is a model that has been trained using a disease risk score and a data set of health measures as teacher data.
  • the health measure estimation model is a model that has been trained to output information including advice and comments from experts such as industrial physicians, public health nurses, physical therapists, doctors, and nurses in response to an input of a disease risk score.
  • the health measures may be health measures directed at individual disease risks, or health measures directed at disease risks of multiple managed persons.
  • the health measure estimation model may be a model that outputs corporate health measures for multiple managed persons in response to an input of disease risks related to the multiple managed persons.
  • the health measure estimation model may be a model customized for each company.
  • the corporate health measures may include health measures according to the working style of the company.
  • the health measure estimation model may be a model customized according to the working style of the company.
  • the health measure estimation model may include a large-scale language model that outputs sentences including corporate health measures in response to an input of disease risks related to multiple managed persons.
  • the storage unit 124 stores the physical ability estimation model, disease risk estimation model, and health measure estimation model learned for multiple subjects.
  • the physical ability estimation model, disease risk estimation model, and health measure estimation model may be stored in the storage unit 124 when the product is shipped from the factory.
  • the physical ability estimation model, disease risk estimation model, and health measure estimation model may be stored in the storage unit 124 at the timing of calibration of the information generating device 12.
  • the physical ability estimation model, disease risk estimation model, and health measure estimation model stored in a storage device (not shown) such as an external server may be used. In that case, it is sufficient to access the physical ability estimation model, disease risk estimation model, and health measure estimation model via an interface (not shown) connected to the storage device.
  • the storage unit 124 also stores attributes of the managed persons.
  • the attribute data includes gender, date of birth (age), height, and weight.
  • the attribute data may be updated at any time.
  • the storage unit 124 may store health check data of the managed persons.
  • the health check data can be a factor in improving the accuracy of estimating disease risk scores and health measures.
  • the health check data of the managed persons includes diagnostic results for statutory items in the health check at the time of employment and regular health checks.
  • the health check data of the managed persons may also include diagnostic results for items other than statutory items in the health check at the time of employment and regular health checks.
  • the physical ability estimation unit 125 acquires physical ability features extracted from the walking waveform data from the waveform processing unit 122.
  • the physical ability estimation unit 125 also acquires attributes stored in the memory unit 124.
  • the physical ability estimation unit 125 estimates a physical ability score using the physical ability features and attributes.
  • the physical ability estimation unit 125 inputs the physical ability features and attributes of the managed person to a physical ability estimation model stored in the memory unit 124.
  • the physical ability estimation unit 125 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. The estimation of the physical ability score by the physical ability estimation unit 125 will be described later.
  • the physical ability estimation unit 125 outputs the physical ability score output from the physical ability estimation model to the disease risk estimation unit 126.
  • the physical ability estimation unit 125 may be appropriately selected depending on the disease for which the disease risk is to be estimated.
  • the disease risk estimation unit 126 may be configured to estimate the disease risk using the gait index and attribute data without using the physical ability score. In that case, the physical ability estimation unit 125 may be omitted from the estimation unit 14.
  • ⁇ Grip strength (total muscle strength of the whole body)> There is a correlation between grip strength, which is one of the physical abilities, and the total muscle strength of the whole body. Grip strength is also correlated with knee extension strength. For example, an estimated value of grip strength is an index of total muscle strength. For example, a score according to an estimated value of grip strength (also called a total muscle strength score) is an index of total muscle strength. The total muscle strength score is a value obtained by scoring grip strength, which is an index of total muscle strength, according to a preset criterion. Grip strength is affected by attributes such as gender, age, and height. Therefore, the total muscle strength score may be scored according to a criterion for each attribute. In particular, grip strength is affected by gender. Therefore, the total muscle strength score may be scored according to different criteria depending on gender. Note that the index of total muscle strength is not limited to grip strength as long as the total muscle strength can be scored.
  • the walking phase from which the features used to estimate grip strength are extracted differs depending on gender. For men, there is a correlation between quadriceps activity and grip strength. Therefore, to estimate men's grip strength, features extracted from walking phases in which the characteristics of quadriceps activity are apparent are used. For women, there is a correlation between grip strength and activity of the vastus lateralis, vastus intermedius, and vastus medialis muscles of the quadriceps. Therefore, to estimate women's grip strength, features extracted from walking phases in which the characteristics of vastus lateralis, vastus intermedius, and vastus medialis muscles are apparent are used.
  • Feature AM1 is extracted from the 3% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction).
  • the 3% walking phase is included in the initial stance phase T1.
  • Feature AM1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis, which are among the quadriceps muscles.
  • Feature AM2 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction).
  • the 59-62% walking phase is included in the early swing phase T4.
  • Feature AM2 mainly includes features related to the movement of the rectus femoris, which is among the quadriceps muscles.
  • Feature AM3 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). 59-62% of the walking phase is included in the early swing phase T4.
  • Feature AM3 mainly includes features related to the movement of the rectus femoris, which is one of the quadriceps muscles.
  • Feature AM4 is the proportion of the period from heel-contact to toe-off of the opposite foot during the period when both feet are simultaneously on the ground (DST1).
  • DST1 is the proportion of the period from heel-contact to toe-off of the opposite foot during one stride cycle.
  • Feature AM4 mainly includes features attributable to the quadriceps muscles.
  • Feature AF1, feature AF2, and feature AF3 are used to estimate the grip strength of women.
  • Feature AF1 is extracted from a 13% section of the walking phase of the walking waveform data related to the time series data of lateral acceleration (X-direction acceleration). The 13% walking phase is included in the mid-stance phase T2.
  • Feature AF1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis of the quadriceps.
  • Feature AF2 is extracted from a 7-10% section of the walking phase of the walking waveform data related to the time series data of the angular velocity (pitch angular velocity) in the coronal plane (around the Y-axis). The 7-10% walking phase is included in the early stance phase T1.
  • Feature AF2 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis.
  • Feature AF3 is the proportion of the period from heel contact to toe-off of the opposite foot to the period during which both feet are simultaneously on the ground (DST2).
  • DST2 is the ratio of the period from heel contact to toe-off of the opposite foot in a gait cycle.
  • the sum of DST1 and DST2 corresponds to the period during which both feet are simultaneously in contact with the ground in a gait cycle.
  • Feature AF3 mainly includes features related to the movements of the vastus lateralis, vastus intermedius, and vastus medialis.
  • Dynamic balance which is one of the physical abilities, can be evaluated by the results of a Functional Reach Test (FRT).
  • FRT Functional Reach Test
  • the results of the FRT are evaluated by the distance between the fingertips (also called the functional reach distance) when the upper limbs are moved forward as far as possible from a standing position with both hands raised at 90 degrees relative to the horizontal plane.
  • the functional reach distance (hereinafter, called the FR distance) is the FRT performance value. The larger the FR distance, the higher the FRT performance.
  • the dynamic balance may be evaluated by something other than the FRT performed with both hands. For example, the dynamic balance may be evaluated by the performance of the FRT performed with one hand or other variations of the FRT.
  • the index of dynamic balance is the FR distance.
  • an estimated value of the FR distance is the index of dynamic balance.
  • a score according to the estimated value of the FR distance (also called the dynamic balance score) is the index of dynamic balance.
  • the dynamic balance score is a value obtained by scoring the FR distance, which is an index of dynamic balance, using a preset criterion. Dynamic balance is affected by attributes such as height. Therefore, the dynamic balance score may be scored using a criterion for each attribute. Note that the index of dynamic balance is not limited to the FR distance as long as dynamic balance can be scored.
  • the FR distance is correlated with the activity of the gluteus maxims, iliac muscle, hamstrings (long head of biceps femoris), tibialis anterior muscle, etc., and the magnitude of the compensatory movement of turning the toes outward. Therefore, the feature quantity extracted from the walking phase in which these features appear is used to estimate the FR distance.
  • Feature B1 is extracted from the 75-79% walking phase of the gait waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 75-79% walking phase is included in the mid-swing phase T6.
  • Feature B1 mainly includes features related to the movement of the tibialis anterior and the short head of the biceps femoris.
  • Feature B2 is extracted from the 62% walking phase of the gait waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). The 62% walking phase is included in the early swing phase T5.
  • Feature B2 mainly includes features related to the movement of the iliacus.
  • Feature B3 is extracted from the 7-8% walking phase of the gait waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis). The 7-8% walking phase is included in the early stance phase T1.
  • the feature B3 mainly includes features related to the movement of the gluteus maxims.
  • the feature B4 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis). The walking phase 57-58% is included in the early swing phase T4.
  • the feature B4 mainly includes features related to the compensatory movement.
  • the compensatory movement is a movement to change the foot angle to obtain stability in order to compensate for the deterioration of balance ability and muscle function that occurs with aging.
  • the feature B5 is the average value of the foot angle in the horizontal plane during the swing phase.
  • the feature B5 is the average value in the swing phase of the walking waveform data.
  • the feature B5 is the integral value of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the feature B5 mainly includes features related to the compensatory movement.
  • Lower limb muscle strength which is one of the physical abilities, can be evaluated by the results of a chair stand test.
  • the results of the 5-times chair stand test in which the person stands up and sits down on a chair five times, are evaluated.
  • the 5-times chair stand test is also called the SS-5 (Sit to Stand-5) test.
  • the results of the 5-times chair stand test are evaluated based on the time it takes to stand up and sit down on a chair five times (also called the sit-to-stand time).
  • the sit-to-stand time is the score value of the SS-5 test. The shorter the sit-to-stand time, the higher the score of the SS-5 test.
  • the results may also be evaluated based on the results of a 30-second chair stand (CS-30) test, which measures the number of times the person stands up and sits down on a chair in 30 seconds.
  • CS-30 30-second chair stand
  • the index of lower limb muscle strength is the sit-stand time.
  • an estimate of the sit-stand time five times is an index of lower limb muscle strength.
  • a score according to the estimate of the sit-stand time (also called the lower limb muscle strength score) is an index of lower limb muscle strength.
  • the lower limb muscle strength score is a value obtained by scoring the sit-stand time, which is an index of lower limb muscle strength, using a preset criterion.
  • Lower limb muscle strength is affected by attributes such as age. Therefore, the lower limb muscle strength score may be scored using a criterion for each attribute.
  • the index of lower limb muscle strength is not limited to the sit-stand time, as long as the lower limb muscle strength can be scored.
  • the sit-stand time is correlated with the quadriceps, hamstrings, tibialis anterior, and gastrocnemius. Therefore, feature values extracted from the walking phase in which these features appear are used to estimate the sit-stand time.
  • the estimation of lower limb muscle strength includes feature C1, feature C2, feature C3, and feature C4.
  • Feature C1 is extracted from the section of walking phase 42-54% of the walking waveform data related to the time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 42-54% is the section from the end of stance phase T3 to the early swing phase T4.
  • Feature C1 mainly includes features related to the movement of the gastrocnemius.
  • Feature C2 is extracted from the section of walking phase 99-100% of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). Walking phase 99-100% is the end of the end of swing phase T7.
  • Feature C2 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior.
  • Feature C3 is extracted from the 10% to 12% walking phase section of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). The 10% to 12% walking phase is the beginning of mid-stance phase T2.
  • Feature C3 mainly includes features related to the movement of the quadriceps, hamstrings, and gastrocnemius.
  • Feature C4 is extracted from the 99% walking phase section of the walking waveform data related to the time series data of angles (posture angles) in the horizontal plane (around the Z-axis). The 99% walking phase is the end of end-swing phase T7.
  • Feature C4 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior.
  • Mobility which is one of the physical abilities, can be evaluated by the results of a TUG (Time Up and Go) test.
  • TUG Time Up and Go
  • the results of the TUG test are evaluated based on the time it takes to stand up from a chair, walk to a landmark 3 meters away, change direction, and sit back down on the chair (also called the TUG time).
  • the TUG time is the score value of the TUG test. The shorter the TUG time, the higher the score of the TUG test.
  • Mobility may be evaluated by the score of a test related to mobility other than the TUG test.
  • the index of mobility is the time required for TUG.
  • an estimate of the time required for TUG is an index of mobility.
  • a score according to the estimate of the time required for TUG (also called a mobility score) is an index of mobility.
  • the mobility score is a value obtained by scoring the time required for TUG, which is an index of mobility, using a preset criterion. Mobility is affected by attributes such as age. Therefore, the mobility score may be scored using a criterion for each attribute. Note that the index of mobility is not limited to the time required for TUG, as long as mobility can be scored.
  • the time required for TUG is correlated with the quadriceps, gluteus minims, and tibialis anterior. Therefore, feature quantities extracted from the walking phase in which these features appear are used to estimate the time required for TUG.
  • Feature amount D1, feature amount D2, feature amount D3, feature amount D4, feature amount D5, and feature amount D6 are used to estimate mobility.
  • Feature amount D1 is extracted from the section of walking phase 64-65% of walking waveform data related to time series data of lateral acceleration (X-direction acceleration). Walking phase 64-65% is included in early swing phase T5.
  • Feature amount D1 mainly includes features related to the movement of the quadriceps in the standing and sitting movements.
  • Feature amount D2 is extracted from the section of walking phase 57-58% of walking waveform data related to time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 57-58% is included in early swing phase T4.
  • Feature amount D2 mainly includes features related to the movement of the quadriceps related to the kicking speed of the foot.
  • the feature amount D3 is extracted from a section of the walking phase 19-20% of the walking waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis).
  • the walking phase 19-20% is included in the mid-stance phase T2.
  • the feature amount D3 mainly includes features related to the movement of the gluteus maxims muscle in the change of direction.
  • the feature amount D4 is extracted from a section of the walking phase 12-13% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 12-13% is the beginning of the mid-stance phase T2.
  • the feature amount D4 mainly includes features related to the movement of the gluteus maxims muscle in the change of direction.
  • the feature amount D5 is extracted from a section of the walking phase 74-75% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 74-75% is the beginning of the mid-swing phase T6.
  • Feature D5 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction.
  • Feature D6 is extracted from the section of the walking phase 76-80% of the walking waveform data related to the time series data of the angle (posture angle) in the coronal plane (around the Y axis).
  • the walking phase 76-80% is included in the mid-swing phase T6.
  • Feature D6 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction.
  • Static balance which is one of the physical abilities, can be evaluated by the performance of a one-leg standing test.
  • the performance of the one-leg standing test is evaluated based on the time (also called the one-leg standing time) during which the eyes are closed and one leg is raised 5 centimeters (cm) from the ground.
  • the one-leg standing time is a performance value of static balance. The longer the one-leg standing time, the higher the performance of static balance.
  • Static balance may be evaluated by a performance other than the one-leg standing test with eyes closed. For example, static balance may be evaluated by a one-leg standing test with eyes open (one-leg standing test with eyes open) or other variations of the one-leg standing test.
  • the static balance index is the single leg standing time.
  • an estimate of the single leg standing time is an index of static balance.
  • a score according to the estimate of the single leg standing time (also called the static balance score) is an index of static balance.
  • the static balance score is a value obtained by scoring the single leg standing time, which is an index of static balance, using a preset criterion. Static balance is affected by attributes such as age and height. Therefore, the static balance score may be scored using a criterion for each attribute.
  • the static balance index is not limited to the single leg standing time as long as the static balance can be scored.
  • the single leg standing time is correlated with the gluteus maxims, adductor longus, sartorius, and abductor and adductor muscles. Therefore, the feature values extracted from the walking phase in which these features appear are used to estimate the single leg standing time.
  • Feature E1 is extracted from the 13-19% gait phase section of the gait waveform data related to the time series data of lateral acceleration (X-direction acceleration).
  • the 13-19% gait phase is included in the mid-stance phase T2.
  • Feature E1 mainly includes features related to the movement of the gluteus medius.
  • Feature E2 is extracted from the 95% gait phase section of the gait waveform data related to the time series data of vertical acceleration (Z-direction acceleration).
  • the 95% gait phase is the end of the end-swing phase T7.
  • Feature E2 mainly includes features related to the movement of the gluteus minims.
  • Feature E3 is extracted from the 64-65% gait phase section of the gait waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis).
  • the walking phase 64-65% is included in the early swing phase T5.
  • the feature amount E3 mainly includes features related to the movement of the adductor longus and sartorius.
  • the feature amount E4 is extracted from the section of the walking phase 11-16% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 11-16% is included in the mid-stance phase T2.
  • the feature amount E4 mainly includes features related to the movement of the gluteus minims.
  • the feature amount E5 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis).
  • the walking phase 57-58% is included in the early swing phase T4.
  • the feature amount E5 mainly includes features related to the movement of the adductor longus and sartorius.
  • the feature amount E6 is extracted from the section of the walking phase 100% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis).
  • the walking phase of 100% corresponds to the timing of heel contact when switching from the end of swing phase T7 to the beginning of stance phase T1.
  • the feature value of the walking waveform data at the walking phase of 100% corresponds to the foot angle when the sole of the foot is in contact with the ground.
  • Feature value E6 mainly includes features related to the movement of the gluteus medius.
  • Feature value E7 is the distance between the axis of motion and the foot (circumflex over) at the timing when the central axis of the foot is farthest from the axis of motion during the swing phase.
  • Feature value E7 is the amount of circular motion normalized by the height of the person to be managed.
  • Feature value E7 mainly includes features related to the movement of the abductor and adductor muscles.
  • the physical ability estimation model 150 includes a grip strength estimation model 151, a dynamic balance estimation model 152, a lower limb muscle strength estimation model 153, a mobility estimation model 154, and a static balance estimation model 155.
  • Each of the grip strength estimation model 151, the dynamic balance estimation model 152, the lower limb muscle strength estimation model 153, the mobility estimation model 154, and the static balance estimation model 155 outputs a score for each estimation target of the model.
  • the physical ability estimation model 150 may be configured by a single model, not by a model for each physical ability. Also, the physical ability estimation model 150 may be a physical ability value such as grip strength, FR distance, standing and sitting time, TUG time, and one-legged standing time, instead of a physical ability score.
  • the grip strength estimation model 151 outputs a grip strength score S1 related to grip strength (total muscle strength of the whole body) in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the grip strength estimation model 151 may be a different model for men and women. There are no limitations on the estimation result of the grip strength estimation model 151 as long as an estimation result related to a grip strength index is output in response to the input of a physical ability feature amount for estimating total muscle strength.
  • the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the grip strength estimation model 151 may be a model that estimates grip strength using attribute data such as age and height in addition to the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.
  • the dynamic balance estimation model 152 outputs a dynamic balance score S2 related to dynamic balance in response to the input of the features B1 to B5.
  • a dynamic balance score S2 related to dynamic balance in response to the input of the features B1 to B5.
  • the dynamic balance estimation model 152 may be a model that outputs the FR distance in response to the input of the features B1 to B5.
  • the dynamic balance estimation model 152 may be a model that estimates dynamic balance using attribute data such as height in addition to the features B1 to B5.
  • the lower limb muscle strength estimation model 153 outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4.
  • the lower limb muscle strength estimation model 153 may be a model that outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4.
  • the lower limb muscle strength estimation model 153 may be a model that estimates dynamic balance using attribute data such as age in addition to the features C1 to C4.
  • the mobility estimation model 154 outputs a mobility score S4 related to mobility in response to the input of the features D1 to D6.
  • a mobility score S4 related to mobility in response to the input of the features D1 to D6.
  • the mobility estimation model 154 may be a model that outputs the TUG required time in response to the input of the features D1 to D6.
  • the mobility estimation model 154 may be a model that estimates mobility using attribute data such as age in addition to the features D1 to D6.
  • the static balance estimation model 155 outputs a static balance score S5 related to static balance in response to the input of the features E1 to E7.
  • a static balance score S5 related to static balance in response to the input of the features E1 to E7.
  • the static balance estimation model 155 may be a model that outputs one-leg standing time in response to the input of the features E1 to E7.
  • the static balance estimation model 155 may be a model that estimates static balance using attribute data such as age and height in addition to the features E1 to E7.
  • the physical ability estimation model 150 may be stored in an external storage device constructed in a cloud or a server. In this case, the physical ability estimation unit 125 uses the physical ability estimation model 150 via an interface (not shown) connected to the storage device.
  • the physical ability estimation model 150 is a machine learning model.
  • the physical ability estimation model 150 is a model trained on a data set using the attributes and gait indices of multiple subjects as explanatory variables and the physical ability score as the objective variable as teacher data.
  • the physical ability estimation model 150 may be a model trained on a data set using the attributes and gait waveform data of multiple subjects as explanatory variables and the physical ability score as the objective variable as teacher data.
  • the physical ability estimation model 150 may be a model trained on teacher data including gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angle (posture angle) around three axes as explanatory variables.
  • the physical ability estimation model 150 may be generated by learning using a linear regression algorithm.
  • the physical ability estimation model 150 may be generated by learning using a support vector machine (SVM) algorithm.
  • the physical ability estimation model 150 may be generated by learning using a Gaussian process regression (GPR) algorithm.
  • the physical ability estimation model 150 may be generated by learning using a random forest (RF) algorithm.
  • the physical ability estimation model 150 may be generated by unsupervised learning that classifies the physical abilities of the managed person according to physical ability features. There are no particular limitations on the algorithm used to train the physical ability estimation model 150.
  • the disease risk estimation unit 126 acquires the estimation result of the physical ability (physical ability score) estimated by the physical ability estimation unit 125.
  • the disease risk estimation unit 126 also acquires the gait index from the gait index calculation unit 123.
  • the disease risk estimation unit 126 acquires the attribute data of the managed person from the storage unit 124.
  • the disease risk estimation unit 126 estimates the disease risk for each disease using the physical ability score, the gait index, and the attribute data.
  • the disease risk estimation unit 126 may be configured to estimate the disease risk for each disease including the health check data.
  • the disease risk estimation unit 126 may be configured to estimate the disease risk for each disease using at least the gait index.
  • the disease risk estimation unit 126 associates the estimated disease risk for each disease with the managed person and stores it in the storage unit 124.
  • the disease risk for each disease of the managed person may be accumulated in a dedicated database (not shown).
  • the disease risk estimation unit 126 inputs attribute data, gait index, and physical ability score used to estimate the disease risk for a specific disease to the disease risk estimation model 160.
  • the disease risk estimation model 160 receives the attribute data, gait index, and physical ability score used to estimate the disease risk for a specific disease.
  • the disease risk estimation model 160 outputs a disease risk score for a specific disease.
  • a disease risk score is estimated for each of a plurality of diseases.
  • the disease risk estimation model 160 may be configured as a model for each disease, or as a single model. When a physical ability score is not used, the disease risk estimation model 160 may be configured to output a disease risk score for a specific disease in response to the input of the attribute data and gait index.
  • the disease risk estimation model 160 outputs a disease risk score for a specific disease such as a lifestyle-related disease.
  • the disease risk estimation model 160 outputs a disease risk score for a specific disease such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • the disease risk estimation model 160 includes lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.
  • the disease risk estimation model 160 may be configured to output a disease risk score for diseases other than those mentioned above.
  • the disease risk estimation model 160 is configured to output a disease risk score for a specific disease in response to inputs of health check data, attribute data, gait index, and physical ability score.
  • the disease risk estimation model 160 may be configured to output a disease risk score for a specific disease in response to inputs of health check data, gait index, and physical ability score.
  • the disease risk estimation model 160 may be stored in an external storage device constructed in a cloud or a server. In this case, the disease risk estimation unit 126 uses the disease risk estimation model 160 via an interface (not shown) connected to the storage device.
  • the disease risk estimation model 160 is a machine learning model.
  • the disease risk estimation model 160 is a model trained using a data set that uses attribute data, gait indices, and physical ability scores related to multiple managed persons as explanatory variables and a disease risk score related to a specific disease as a target variable as training data.
  • the disease risk estimation model 160 may be a model trained using training data in which gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angles around three axes (posture angles) are included as explanatory variables.
  • the disease risk estimation model 160 is generated by learning using a linear regression algorithm.
  • the disease risk estimation model 160 is generated by learning using a support vector machine (SVM) algorithm.
  • the disease risk estimation model 160 is generated by learning using a Gaussian process regression (GPR) algorithm.
  • the disease risk estimation model 160 is generated by learning using a random forest (RF) algorithm.
  • the disease risk estimation model 160 may be generated by unsupervised learning that classifies the disease risk of the managed person according to attribute data, gait index, and physical ability score. There are no particular limitations on the algorithm used to train the disease risk estimation model 160.
  • the disease risk estimation model 160 may be a machine learning model such as an incomplete heterogeneous variational autoencoder or a random forest. If an incomplete heterogeneous variational autoencoder is used, the disease risk of the managed individual can be estimated even if there are some missing data in the attribute data, gait index, physical ability score, etc.
  • FIG. 10 is a conceptual diagram showing an example of a disease risk estimation model 165 that estimates the annual average number of receipts issued.
  • the disease risk estimation unit 126 inputs attribute data, gait index, and physical ability score to the disease risk estimation model 165.
  • the disease risk estimation model 165 receives attribute data, gait index, and physical ability score used to estimate the disease risk for a specific disease.
  • the disease risk estimation model 165 outputs the annual average number of receipts issued for a specific disease.
  • the annual average number of receipts issued is estimated for each of a plurality of diseases.
  • the disease risk estimation unit 126 calculates a disease risk score using the annual average number of receipts issued output from the disease risk estimation model 165. The annual average number of receipts issued may be used as the disease risk score.
  • the disease risk estimation unit 126 calculates a disease risk score using the average annual number of receipts issued. Three calculation examples will be given below. It is assumed that the average annual number of receipts issued for a standard person ⁇ 0 has been obtained in advance.
  • the disease risk estimation model 165 outputs the average annual number of receipts issued ⁇ for a specific disease in response to input of attribute data on the managed person, gait index, and physical ability score.
  • the disease risk estimation unit 126 calculates, as the disease risk score, the ratio of the average annual number of medical receipts issued for a standard person ⁇ 0 to the average annual number of medical receipts issued for the managed person ⁇ .
  • the disease risk estimation unit 126 calculates the disease risk score RS1 using the following formula 1.
  • the disease risk estimation unit 126 calculates the odds ratio of the annual average number of receipts issued for a specific disease.
  • the disease risk estimation unit 126 calculates a disease risk score RS3 using the following formula 3.
  • the above three calculation examples are merely examples, and do not limit the method of calculating the disease risk score using the annual average number of medical receipts issued.
  • the disease risk estimation unit 126 may be configured to calculate the disease risk score using an index other than the annual average number of medical receipts issued.
  • the proposed information generating unit 127 acquires disease risk scores for the managed persons. For example, the proposed information generating unit 127 acquires disease risk scores for specific diseases for multiple managed persons. For example, the proposed information generating unit 127 acquires disease risk scores for multiple specific diseases for multiple managed persons.
  • the proposed information generating unit 127 inputs the acquired disease risk scores for the multiple managed persons into a health measure estimation model.
  • the proposed information generating unit 127 generates proposed information according to health measures that are output from the health measure estimation model in response to the input of disease risk scores for the multiple managed persons.
  • the health measure estimation model 170 may be stored in an external storage device constructed in a cloud, a server, or the like. In this case, the proposal information generation unit 127 uses the health measure estimation model 170 via an interface (not shown) connected to the storage device.
  • the health measure estimation model 170 is a machine learning model.
  • the health measure estimation model 170 is a model trained on a data set using disease risk scores for multiple subjects as explanatory variables and health measures as objective variables as training data.
  • the health policy estimation model 170 is generated by learning using a linear regression algorithm.
  • the health policy estimation model 170 is generated by learning using a support vector machine (SVM) algorithm.
  • the health policy estimation model 170 is generated by learning using a Gaussian process regression (GPR) algorithm.
  • the health policy estimation model 170 is generated by learning using a random forest (RF) algorithm.
  • the health policy estimation model 170 may be generated by unsupervised learning that classifies the health measures of the managed individuals according to their disease risk scores. There are no particular limitations on the algorithm used to train the health policy estimation model 170.
  • the health measure estimation model 170 may be a machine learning model such as an incomplete heterogeneous variational autoencoder or a random forest. If an incomplete heterogeneous variational autoencoder is used, it is possible to estimate the health measures of the managed individual even if there are some gaps in the disease risk score.
  • the proposal information generation unit 127 inputs disease risk scores for multiple managed persons 1 to M to the health measure estimation model 170 (M is a natural number).
  • the health measure estimation model 170 outputs at least one health measure 1 to N (N is a natural number).
  • the health measure estimation model 170 outputs at least one health measure 1 to N in response to the input of a disease risk score for a specific disease.
  • the health measure estimation model 170 may be configured to output at least one health measure 1 to N in response to the input of disease risk scores for multiple specific diseases.
  • the health measure estimation model 170 may also be configured to output at least one health measure 1 to N in response to the input of a disease risk score for at least one specific disease for a managed person.
  • the proposed information generation unit 127 generates proposed information including at least one health measure for the company to which the managed person belongs. For example, the proposed information generation unit 127 applies the measure to a preset document format to generate the proposed information. For example, the proposed information generation unit 127 may generate the proposed information using a large-scale language model. Upon obtaining the proposed information, the company's health management officer can take action according to the proposed information.
  • the proposal information generating unit 127 generates proposal information including a health measure such as periodically broadcasting music for exercises or broadcasting a voice encouraging employees to go home when it is time to finish work. For example, the proposal information generating unit 127 generates proposal information including a health measure such as turning off the lights on the work floor when it is time to finish work. For example, the proposal information generating unit 127 generates proposal information including a proposal to the company to reduce the salt content of food at the convenience store. For example, the proposal information generating unit 127 generates proposal information including health measures related to cafeteria menus and opening and closing times of smoking areas. For example, the proposal information generating unit 127 generates proposal information including a proposal to reduce cup noodles and increase salads for employees who are subject to management.
  • a health measure such as periodically broadcasting music for exercises or broadcasting a voice encouraging employees to go home when it is time to finish work.
  • the proposal information generating unit 127 generates proposal information including a health measure such as turning off the lights on the work floor when it is time to finish work
  • the proposal information generating unit 127 generates proposal information including a proposal to limit the use of elevators in order to encourage employees who are subject to management to exercise.
  • the proposal information generating unit 127 may generate health measures at a level related to corporate management.
  • the proposal information generating unit 127 may generate information in which the financial indicators of the company are visualized according to changes in the disease risk of employees who are subject to management.
  • the output unit 129 outputs the proposed information including the health measures estimated by the proposed information generation unit 127.
  • the output unit 129 outputs the proposed information to a terminal device or a server managed by the company to which the managed person belongs.
  • the output unit 129 may display the proposed information on the screen of the managed person's mobile terminal.
  • the output unit 129 may output the proposed information to an external system or the like that uses the proposed information.
  • the proposed information may be used for statistical analysis, research on disease prevention, and the like.
  • the information generating device 12 is connected to an external system built on a cloud or a server via a mobile terminal (not shown) carried by the person to be managed.
  • the mobile terminal is a portable communication device.
  • the mobile terminal is a portable communication device having a communication function such as a smartphone, a smart watch, or a mobile phone.
  • the information generating device 12 is connected to the mobile terminal via wireless communication.
  • the information generating device 12 is connected to the mobile terminal via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark).
  • the communication function of the information generating device 12 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark).
  • the information generating device 12 may be connected to the mobile terminal via a wire such as a cable.
  • the proposed information may be used by an application installed on the mobile terminal. In that case, the mobile terminal executes a process using the proposed information by application software or the like installed on the mobile terminal.
  • Fig. 12 is a flowchart for explaining an example of the operation of the information generating device 12.
  • the components of the information generating device 12 will be explained as the subject of the operation.
  • the subject of the process according to the flowchart of Fig. 12 may be the information generating device 12.
  • the acquisition unit 121 acquires time series data of sensor data measured by the measurement device 10 mounted on the footwear of the person to be managed (step S11).
  • the sensor data includes acceleration in three axial directions and angular velocity around three axes.
  • the calculation unit 13 executes a gait index calculation process using the acquired sensor data (step S12).
  • the calculation unit 13 calculates a gait index used to estimate physical ability. Details of the gait index calculation process in step S12 will be described later ( FIG. 13 ).
  • the physical ability estimation unit 125 estimates physical ability using the attribute data and gait index (step S13). For example, the physical ability estimation unit 125 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. If disease risk is estimated without using physical ability, step S13 can be omitted.
  • the disease risk estimation unit 126 estimates the disease risk of the managed person using the attribute data, gait index, and physical ability (step S14).
  • the disease risk estimation unit 126 estimates the disease risk of the managed person using the attribute data and gait index.
  • the disease risk estimation unit 126 estimates the disease risk score of the managed person.
  • the disease risk estimation unit 126 estimates the disease risk score for each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • the disease risk estimation unit 126 estimates the disease risk score for each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.
  • the memory unit 124 accumulates the disease risk estimated for the managed individual (step S15).
  • the disease risk accumulated in the memory unit 124 is used to estimate health measures.
  • the disease risk may be accumulated in a database (not shown) connected to the information generating device 12.
  • the proposed information generation unit 127 estimates health measures for at least one of the managed individuals using the disease risks stored in the storage unit 124 (step S16).
  • the proposed information generation unit 127 generates proposed information including the estimated health measures.
  • the output unit 129 outputs the proposed information including the generated health measures (step S17).
  • the output unit 129 outputs the proposed information to a terminal device or a server managed by the company to which the managed person belongs.
  • the output unit 129 outputs the proposed information to an external system or the like that uses the proposed information.
  • the output unit 129 may display the proposed information on the screen of the managed person's mobile terminal.
  • attribute data of the managed persons does not necessarily have to be acquired. If attribute data is not acquired from the managed persons, a model can be used that estimates disease risk without using attribute data. Also, the managed persons may be asked in advance for consent to acquiring the attribute data. At that time, the benefits of acquiring the attribute data may be communicated to the managed persons, and consent to acquiring the attribute data may be encouraged. An example of a benefit here is that more accurate risk estimation results can be obtained.
  • FIG. 13 is a flowchart for explaining an example of the operation of the calculation unit 13.
  • the components of the calculation unit 13 will be described as the subject of the operation.
  • the subject of the operation of the process according to the flowchart in FIG. 13 may be the information generating device 12 or the calculation unit 13.
  • the waveform processing unit 122 extracts walking waveform data from the time series data of the sensor data (step S121).
  • the walking waveform data corresponds to the time series data of the sensor data for one walking cycle.
  • the waveform processing unit 122 normalizes the extracted walking waveform data (step S122).
  • the waveform processing unit 122 performs first normalization on the walking waveform data so that the step period is 100%.
  • the waveform processing unit 122 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.
  • the gait index calculation unit 123 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S123). For example, the gait index calculation unit 123 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.
  • the business provides the company with a service using the information provision system 1. Based on a contract concluded with the company, the business provides the company with proposed information including estimated health measures according to the employee's disease risk. The company pays the business a fee for the service using the information provision system 1. When employee health checkup data is used to estimate the health measures, the company provides the business with the employee health checkup data. In the contract between the business and the company, rules regarding the handling of personal information and appropriate data management are clarified. The business clearly explains that the proposed information is for reference only and does not guarantee medical accuracy or completeness.
  • companies will fully explain to employees the details of their personal information protection policies and data management, and obtain consent from employees regarding the use of personal information and data. Furthermore, if there are any changes to the details of their personal information protection policies and data management, companies will explain the changes to their employees and obtain consent from them. For example, consent from employees will be obtained electronically. Companies will consider what health measures to provide to employees based on the content of the proposed information provided by business operators, and provide appropriate health measures to employees.
  • An employee is a person employed by a company.
  • the employee is loaned or provided with a special insole equipped with the measuring device 10 by a business operator who has a contract with the company.
  • the employee performs work while wearing shoes equipped with the special insoles and carrying a mobile terminal (not shown) capable of communicating with the measuring device 10.
  • the mobile terminal uploads the sensor data measured by the measuring device 10 to the business operator's cloud server.
  • the sensor data uploaded to the cloud server is used to estimate disease risks and health measures.
  • a terminal device (not shown) used by a company downloads proposed information including health measures from the business operator's cloud server.
  • the company's manager refers to the health measures included in the proposed information and considers health measures for employees.
  • the company's manager periodically refers to the health measures included in the proposed information and considers countermeasures in response to changes in the health measures.
  • the company holds health consultation sessions and events and incorporates employees' opinions and requests regarding countermeasures in response to changes in health measures.
  • FIG. 14 is a correlation diagram showing the relationship between the business operator, company A, and employees (managed persons) in the present disclosure.
  • Company A is an industry in which many employees engage in desk work. In industries with a lot of desk work, employees often sit in the same position for long periods of time, and there is a risk that they will develop back pain. In addition, in industries with a lot of desk work, there are fewer opportunities to walk, which weakens leg muscles, and there is a risk that employees will develop lifestyle-related diseases such as obesity, diabetes, and high blood pressure.
  • FIG. 15 shows an example in which proposed information generated by the information generating device 12 is displayed on the screen of a terminal device 180A used by a manager who manages the health status of employees.
  • the proposed information including health measures optimized for company A is displayed on the screen of the terminal device 180A.
  • proposed information including multiple health measures is displayed on the screen.
  • the first health measure is a suggestion that "We have a department with many employees who are at high risk of developing back pain. We suggest that you regularly do health exercises.” For Company A, where most of the work is done at a desk, the risk of back pain tends to increase due to sitting for long periods of time. For example, for Company A, health measures that include the keyword "health exercises," which involves standing up and moving the body regularly, are inferred. For example, text other than the keyword "health exercises" is generated using templates or large-scale language models. The address of the link related to "health exercises” is displayed on the screen of terminal device 180A. The administrator can refer to the information at the link and consider whether to adopt "health exercises" as a health measure.
  • the second health measure is a proposal that reads, "There is a department with many employees who are at high risk of lifestyle-related diseases. We suggest that you increase the number of walking events.” For Company A, where most of the work is done at a desk, there is a tendency for the risk of lifestyle-related diseases to increase due to weakened leg muscles. For example, for Company A, health measures that include the keyword "walking," which refers to walking long distances, are estimated. For example, text other than the keyword "walking" is generated using templates or large-scale language models. The address of the link related to "walking" is displayed on the screen of terminal device 180A. The administrator can refer to the information at the link and consider whether to adopt "walking" as a health measure.
  • FIG. 16 is a correlation diagram showing the relationship between the business operator, company B, and employees (managed persons) in the present disclosure.
  • Company B is a delivery company.
  • Employees of the delivery company often perform physical labor such as carrying luggage stored in warehouses and luggage loaded on cargo vehicles. For example, employees are at risk of developing back pain due to repeated unnatural postures to lift heavy luggage.
  • employees of the delivery company may repeatedly drink and eat excessively to satisfy hunger after work. Repeated overeating and drinking may cause the risk of developing various diseases such as diabetes, high blood pressure, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.
  • FIG. 17 shows an example in which proposed information generated by the information generating device 12 is displayed on the screen of a terminal device 180B used by a manager who manages the health status of employees.
  • the proposed information including health measures optimized for company B is displayed on the screen of the terminal device 180B.
  • proposed information including multiple health measures optimized for company B is displayed on the screen.
  • the first health measure is a proposal that reads, "There is a department with many employees who are at high risk of back pain. We suggest that you hire a masseuse.”
  • Company B which has a lot of physical labor, the risk of back pain tends to increase due to repeated awkward postures when lifting heavy loads.
  • health measures that include the keyword "massage therapist,” who cares for employees' bodies at appropriate times, are estimated. For example, text other than the keyword “massage therapist" is generated using templates and large-scale language models.
  • the address of the link related to "massage therapist” is displayed on the screen of terminal device 180B. The administrator can refer to the information at the link and consider whether to hire "massage therapist" as a health measure.
  • the second health measure is a proposal that reads, "There is a department with many employees who are at high risk for various diseases. We suggest that you regularly meet with a registered dietitian.”
  • Company B which has a lot of physical labor, there is a tendency for the risk of various diseases to increase due to repeated overeating and drinking to satisfy hunger after work.
  • health measures that include the keyword "registered dietitian” who cares for employees' eating habits are estimated.
  • text other than the keyword "registered dietitian” is generated using templates and large-scale language models.
  • the screen of terminal device 180B displays the address of the link related to "registered dietitian.” The administrator can refer to the information at the link and consider whether to employ a "registered dietitian" as a health measure.
  • FIG. 18 is a correlation diagram showing the relationship between the business operator, company C, and employees (managed persons) in the present disclosure.
  • Company C is a retailer such as a supermarket.
  • Employees who work as cashiers at supermarket stores often work for long periods of time while standing. Such a posture puts strain on the knees, and there is a risk of developing osteoarthritis in the future.
  • cashier work since cashiers must deal with a variety of customers in succession, the mental burden accumulates, and there is a risk of developing mental illnesses such as insomnia and depression.
  • FIG. 19 shows an example in which proposed information generated by the information generating device 12 is displayed on the screen of a terminal device 180C used by a manager who manages the health status of employees.
  • the proposed information including health measures optimized for company C is displayed on the screen of the terminal device 180C.
  • proposed information including multiple health measures optimized for company C is displayed on the screen.
  • the first health measure is a proposal that reads, "There is a department with many employees who are at high risk of osteoarthritis of the knee. I suggest that you install a training machine in the break room.”
  • the risk of osteoarthritis of the knee tends to increase due to working for long periods of time while standing.
  • health measures that include the keyword "training machine” that allows employees to train their legs during breaks are estimated.
  • text other than the keyword "training machine” is generated using a template or a large-scale language model.
  • the address of the link related to "training machine” is displayed on the screen of terminal device 180C. The administrator can refer to the information at the link and consider whether to adopt "training machine” as a health measure.
  • the second health measure is a proposal that "There is a department with many employees who are at high risk of mental illness. We suggest that employees have regular interviews with a counselor.” For company C, the risk of mental illness tends to increase due to continuously dealing with a variety of customers. For example, for company C, health measures including the keyword "counselor” who cares for the mental health of employees are estimated. For example, text other than the keyword “counselor” is generated using a template or a large-scale language model. The address of the link related to "counselor” is displayed on the screen of terminal device 180C. The administrator can refer to the information at the link and consider whether to adopt "counselor” as a health measure.
  • the information provision system of this embodiment includes a measurement device and an information generating device.
  • the measurement device is installed in the footwear of at least one of the subjects.
  • the measurement device measures acceleration and angular velocity.
  • the measurement device generates sensor data using the measured acceleration and angular velocity.
  • the measurement device transmits the generated sensor data to the information generating device.
  • the information generating device includes an acquisition unit, a risk estimation unit, a proposed information generating unit, and an output unit.
  • the acquisition unit acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of the at least one managed person.
  • the risk estimation unit estimates a disease risk for each disease for the at least one managed person using the acquired sensor data.
  • the proposed information generation unit generates proposed information including health measures according to the disease risk for the at least one managed person.
  • the output unit outputs the generated proposed information.
  • the information generating device of this embodiment estimates disease risk using sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of the managed person.
  • the information generating device of this embodiment generates suggested information including health measures according to the estimated disease risk. Therefore, according to this embodiment, it is possible to provide health measures according to the disease risk of the managed person engaged in daily work.
  • the risk estimation unit has a calculation unit and an estimation unit.
  • the calculation unit calculates a gait index using sensor data.
  • the estimation unit inputs data including the gait index calculated using the sensor data to a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk for each disease in response to input of data including the gait index.
  • the estimation unit estimates disease risk information corresponding to the disease risk score output from the disease risk estimation model.
  • disease risk information corresponding to the disease risk score can be estimated by inputting data including the gait index calculated using sensor data to the disease risk estimation model.
  • the proposal information generation unit estimates health measures according to the disease risk score of at least one managed person using a health measure estimation model customized to the working style of the managed person. According to this aspect, by using a health measure estimation model customized to the working style of the managed person, it is possible to estimate health measures optimized for the working style of the managed person.
  • the proposal information generation unit estimates health measures according to the disease risk score of at least one managed person using a health measure estimation model customized to the industry of the organization to which the managed person belongs. According to this aspect, by using a health measure estimation model customized to the industry of the organization to which the managed person belongs, it is possible to estimate health measures optimized for the industry of the organization.
  • the information generating device displays proposed information including health measures optimized for the organization on the screen of a terminal device used in the organization to which the managed person belongs.
  • proposed information including health measures estimated according to the disease risk of the managed person can be provided in an optimized manner for the organization to which the managed person belongs.
  • the information generating device according to this embodiment has a simplified configuration of the information generating device included in the information providing system according to the first embodiment.
  • composition 20 is a block diagram showing an example of a configuration of an information generating device 20 in the present disclosure.
  • the information generating device 20 includes an acquiring unit 21, a risk estimating unit 25, a proposed information generating unit 27, and an output unit 29.
  • the acquisition unit 21 acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person.
  • the risk estimation unit 25 uses the acquired sensor data to estimate a disease risk for each disease for at least one managed person.
  • the proposed information generation unit 27 generates proposed information including health measures according to the disease risk for at least one managed person.
  • the output unit 29 outputs the generated proposed information.
  • Fig. 21 is a flowchart for explaining an example of the operation of the information generating device 20.
  • the components of the information generating device 20 will be explained as the subject of the operation.
  • the subject of the process according to the flowchart of Fig. 21 may be the information generating device 20.
  • the acquisition unit 21 acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one of the managed persons (step S21).
  • the risk estimation unit 25 uses the acquired sensor data to estimate the disease risk for at least one managed person (step S22).
  • the output unit 29 outputs the generated proposal information (step S24).
  • the information generating device of this embodiment estimates disease risk using sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of the managed person.
  • the information generating device of this embodiment generates suggested information including health measures according to the estimated disease risk. Therefore, according to this embodiment, it is possible to provide health measures according to the disease risk of the managed person engaged in daily work.
  • an information processing device 90 (computer) in Fig. 22 is given as an example of such a hardware configuration.
  • the information processing device 90 in Fig. 22 is an example of a configuration for executing the control and processing according to each embodiment, and does not limit the scope of the present disclosure.
  • the information processing device 90 includes a processor 91, a main memory device 92, an auxiliary memory device 93, an input/output interface 95, and a communication interface 96.
  • the interface is abbreviated as I/F (Interface).
  • the processor 91, the main memory device 92, the auxiliary memory device 93, the input/output interface 95, and the communication interface 96 are connected to each other via a bus 98 so as to be able to communicate data with each other.
  • the processor 91, the main memory device 92, the auxiliary memory device 93, and the input/output interface 95 are connected to a network such as the Internet or an intranet via the communication interface 96.
  • the processor 91 expands a program (instructions) stored in the auxiliary storage device 93 or the like into the main storage device 92.
  • the program is a software program for executing the control and processing of each embodiment.
  • the processor 91 executes the program expanded into the main storage device 92.
  • the processor 91 executes the program to execute the control and processing of each embodiment.
  • the main memory 92 has an area in which programs are expanded. Programs stored in the auxiliary memory 93 or the like are expanded in the main memory 92 by the processor 91.
  • the main memory 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory).
  • a non-volatile memory such as an MRAM (Magneto-resistive Random Access Memory) may be configured/added to the main memory 92.
  • the auxiliary storage device 93 stores various data such as programs.
  • the auxiliary storage device 93 is realized by a local disk such as a hard disk or flash memory. Note that it is also possible to omit the auxiliary storage device 93 by configuring the various data to be stored in the main storage device 92.
  • the input/output interface 95 is an interface for connecting the information processing device 90 to peripheral devices based on standards and specifications.
  • the communication interface 96 is an interface for connecting to external systems and devices via a network such as the Internet or an intranet based on standards and specifications.
  • the input/output interface 95 and the communication interface 96 may be a common interface for connecting to external devices.
  • input devices such as a keyboard, mouse, or touch panel may be connected to the information processing device 90. These input devices are used to input information and settings.
  • a touch panel is used as the input device, a screen having the function of a touch panel becomes the interface.
  • the processor 91 and the input devices are connected via an input/output interface 95.
  • the information processing device 90 may be equipped with a display device for displaying information. If a display device is equipped, the information processing device 90 is equipped with a display control device (not shown) for controlling the display of the display device. The information processing device 90 and the display device are connected via an input/output interface 95.
  • the information processing device 90 may be equipped with a drive device.
  • the drive device acts as an intermediary between the processor 91 and a recording medium (program recording medium) to read data and programs stored on the recording medium and to write the processing results of the information processing device 90 to the recording medium.
  • the information processing device 90 and the drive device are connected via an input/output interface 95.
  • the above is an example of a hardware configuration for enabling the control and processing according to each embodiment of the present invention.
  • the hardware configuration in FIG. 22 is an example of a hardware configuration for executing the control and processing according to each embodiment, and does not limit the scope of the present invention. Programs that cause a computer to execute the control and processing according to each embodiment are also included in the scope of the present invention.
  • the scope of the present invention also includes a program recording medium on which the program according to each embodiment is recorded.
  • the recording medium can be realized, for example, as an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the recording medium may also be realized as a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card.
  • the recording medium may also be realized as a magnetic recording medium such as a flexible disk, or other recording medium.
  • the components of each embodiment may be combined in any manner.
  • the components of each embodiment may be realized by software.
  • the components of each embodiment may be realized by circuitry.
  • An acquisition unit that acquires sensor data including acceleration and angular velocity measured by a measurement device mounted on the footwear of at least one of the managed persons;
  • a risk estimation unit that estimates a disease risk for each disease of at least one of the managed individuals using the acquired sensor data;
  • a proposal information generating unit configured to generate proposal information including health measures according to a disease risk of at least one of the management subjects; and an output unit that outputs the generated proposal information.
  • the risk estimation unit is a calculation unit that calculates a gait index using the sensor data; an estimation unit that inputs data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk for each disease in response to input of data including the gait index, and estimates disease risk information corresponding to the disease risk score output from the disease risk estimation model.
  • the proposal information generation unit An information generating device as described in Appendix 2, which estimates the health measure according to the disease risk score of at least one of the managed persons using a health measure estimation model that outputs the health measure according to the input of the disease risk score.
  • the proposal information generation unit 4.
  • the information generating device described in claim 3 which estimates the health measure according to the disease risk score of at least one of the managed persons using the health measure estimation model customized to suit the working style of the managed persons.
  • Appendix 5 The proposal information generation unit, 4.
  • Appendix 6) the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique, The disease risk estimation model is 4.
  • the measuring device includes: An information provision system that is installed on the footwear of at least one of the managed persons, measures spatial acceleration and spatial angular velocity, generates sensor data using the measured spatial acceleration and spatial angular velocity, and transmits the generated sensor data to the information generation device.
  • the information generating device includes: An information providing system as described in Appendix 7, which displays the proposed information including the health measures optimized for the organization on a screen of a terminal device used in the organization to which the managed person belongs.
  • the computer Acquire sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one of the managed persons; Using the acquired sensor data, estimate a disease risk for each disease for at least one of the managed individuals; Generate proposal information including health measures according to a disease risk for at least one of the managed persons; The information generating method outputs the generated proposal information.
  • (Appendix 10) Calculating a gait index using the sensor data; inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of disease risk for each disease in response to input of data including the gait index; An information generating method described in Appendix 9, which estimates disease risk information according to the disease risk score output from the disease risk estimation model.
  • An information generation method described in Appendix 10 which estimates the health measure corresponding to the disease risk score of at least one of the managed persons using a health measure estimation model that outputs the health measure in response to the input of the disease risk score. (Appendix 12) 12.
  • the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique, The disease risk estimation model is 12.
  • Appendix 15 A process of acquiring sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one person to be managed; A process of estimating a disease risk for each disease for at least one of the managed individuals using the acquired sensor data; A process of generating proposal information including health measures according to a disease risk for at least one of the managed persons; and a computer-readable non-transitory recording medium having recorded thereon a program for causing a computer to execute a process of outputting the generated proposal information.
  • Appendix 16 A process of calculating a gait index using the sensor data; A process of inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of disease risk for each disease in response to input of data including the gait index; A non-transitory computer-readable recording medium described in Appendix 15, having a program recorded thereon to cause a computer to execute the following steps: estimating disease risk information according to the disease risk score output from the disease risk estimation model.
  • Appendix 17 A non-transitory computer-readable recording medium as described in Appendix 16, having recorded thereon a program for causing a computer to execute a process of estimating the health measure according to the disease risk score of at least one of the managed persons using a health measure estimation model that outputs the health measure according to the input of the disease risk score.
  • Appendix 18 18.
  • Appendix 19 18.
  • a non-transitory computer-readable recording medium having recorded thereon a program for causing a computer to execute a process of estimating the health measure according to the disease risk score of at least one of the managed persons, using the health measure estimation model customized to the industry of the organization to which the managed persons belong.
  • the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique, The disease risk estimation model is 20.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention provides, in order to provide a health measure according to a disease risk of a management target person engaged in daily work, an information generating device comprising: an acquisition unit that acquires sensor data including an acceleration and an angular velocity measured by a measurement device installed in a footwear of at least one management target person; a risk estimation unit that uses the acquired sensor data to estimate a disease risk for each disease concerning the at least one management target person; a proposal information generation unit that generates proposal information including a health measure according to the disease risk concerning the at least one management target person; and an output unit that outputs the generated proposal information.

Description

情報生成装置、情報提供システム、情報提供方法、および記録媒体Information generating device, information providing system, information providing method, and recording medium

 本開示は、情報生成装置、情報提供システム、情報提供方法、および記録媒体に関する。 This disclosure relates to an information generating device, an information providing system, an information providing method, and a recording medium.

 ヘルスケアへの関心の高まりに伴って、歩容に応じた情報を提供するサービスに注目が集まっている。例えば、靴等の履物に実装されたセンサによって計測されたセンサデータを用いて、歩容を解析する技術が開発されている。センサデータの時系列データには、身体状態と関連する歩行イベントに伴った特徴が表れる。歩行イベントに伴った特徴によって対象者の疾病リスクを推定できれば、多くの従業員を抱える企業に対して、疾病リスクに応じた情報を提供できる。 As interest in healthcare grows, attention is being focused on services that provide information based on gait. For example, technology is being developed that analyzes gait using sensor data measured by sensors mounted in footwear such as shoes. Time-series sensor data contains characteristics associated with walking events that are related to physical conditions. If the disease risk of a subject can be estimated based on the characteristics associated with walking events, it will be possible to provide information based on disease risk to companies with many employees.

 特許文献1には、企業に所属する従業員等の構成員の健康状態を管理する構成員健康状態管理システムについて開示されている。特許文献1のシステムは、健康サービス提供者において解析された健康状態に基づく一次解析データを取得する。特許文献1のシステムは、取得した一次解析データに基づいて、評価基準を生成する。特許文献1のシステムは、評価基準の生成に用いられた一次解析データに関連する健康状態情報と同一の項目に関する構成員の健康状態情報と、評価基準とに基づいて、その構成員に関する二次解析データを生成する。特許文献1のシステムは、生成された二次解析データをその構成員に通知する。 Patent Document 1 discloses a member health status management system that manages the health status of members such as employees belonging to a company. The system of Patent Document 1 acquires primary analysis data based on the health status analyzed by a health service provider. The system of Patent Document 1 generates evaluation criteria based on the acquired primary analysis data. The system of Patent Document 1 generates secondary analysis data for a member based on the member's health status information relating to the same items as the health status information related to the primary analysis data used to generate the evaluation criteria, and the evaluation criteria. The system of Patent Document 1 notifies the member of the generated secondary analysis data.

特開2020-013230号公報JP 2020-013230 A

 特許文献1の手法では、複数の健康サービス提供者から構成員の健康状態情報を取得する必要があった。そのため、特許文献1の手法では、複数の健康サービス提供者から構成員の健康状態情報を取得しない限り、構成員の健康状態を管理できなかった。換言すると、特許文献1の手法では、日常業務に従事する構成員の疾病リスクに応じた健康施策を提供できなかった。 The method of Patent Document 1 required obtaining health status information of members from multiple health service providers. Therefore, the method of Patent Document 1 could not manage the health status of members unless the health status information of members was obtained from multiple health service providers. In other words, the method of Patent Document 1 could not provide health measures according to the disease risk of members engaged in daily work.

 本開示の目的は、日常業務に従事する管理対象者の疾病リスクに応じた健康施策を提供できる情報生成装置、情報提供システム、情報提供方法、および記録媒体を提供することにある。 The purpose of this disclosure is to provide an information generating device, an information providing system, an information providing method, and a recording medium that can provide health measures according to the disease risk of managed individuals engaged in daily work.

 本開示の一態様の情報生成装置は、少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する取得部と、取得されたセンサデータを用いて、少なくとも一人の管理対象者に関する疾病ごとの疾病リスクを推定するリスク推定部と、少なくとも一人の管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する提案情報生成部と、生成された提案情報を出力する出力部と、を備える。 An information generating device according to one embodiment of the present disclosure includes an acquisition unit that acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person, a risk estimation unit that estimates a disease risk for each disease for at least one managed person using the acquired sensor data, a proposed information generating unit that generates proposed information including health measures according to the disease risk for at least one managed person, and an output unit that outputs the generated proposed information.

 本開示の一態様の情報生成方法においては、少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得し、取得されたセンサデータを用いて、少なくとも一人の管理対象者に関する疾病ごとの疾病リスクを推定し、少なくとも一人の管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成し、生成された提案情報を出力する。 In one embodiment of the information generation method disclosed herein, sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person is acquired, the acquired sensor data is used to estimate a disease risk for each disease for the at least one managed person, suggested information including health measures according to the disease risk for the at least one managed person is generated, and the generated suggested information is output.

 本開示の一態様のプログラムは、少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する処理と、取得されたセンサデータを用いて、少なくとも一人の管理対象者に関する疾病ごとの疾病リスクを推定する処理と、少なくとも一人の管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する処理と、生成された提案情報を出力する処理と、をコンピュータに実行させる。 A program according to one embodiment of the present disclosure causes a computer to execute the following processes: acquiring sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person; estimating a disease risk for each disease for at least one managed person using the acquired sensor data; generating suggested information including health measures according to the disease risk for at least one managed person; and outputting the generated suggested information.

 本開示によれば、日常業務に従事する管理対象者の疾病リスクに応じた健康施策を提供できる情報生成装置、情報提供システム、情報提供方法、および記録媒体を提供することが可能になる。 This disclosure makes it possible to provide an information generating device, an information providing system, an information providing method, and a recording medium that can provide health measures according to the disease risk of managed individuals engaged in daily work.

本開示における情報提供システムの構成の一例を示すブロック図である。1 is a block diagram showing an example of a configuration of an information providing system according to the present disclosure. 本開示における情報提供システムが備える計測装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of a configuration of a measurement device included in an information providing system according to the present disclosure. 本開示における情報提供システムが備える計測装置の配置例を示す概念図である。1 is a conceptual diagram showing an example of the arrangement of measuring devices provided in an information providing system according to the present disclosure. 本開示における情報提供システムが備える計測装置に設定された座標系について説明するための概念図である。1 is a conceptual diagram for explaining a coordinate system set in a measurement device included in an information provision system in the present disclosure. FIG. 本開示の説明で用いられる人体面について説明するための概念図である。FIG. 2 is a conceptual diagram for explaining a human body surface used in the description of the present disclosure. 本開示における情報提供システムが備える情報生成装置の構成の一例を示すブロック図である。2 is a block diagram showing an example of a configuration of an information generating device included in the information providing system in the present disclosure. FIG. 本開示の説明で用いられる歩行周期について説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a walking cycle used in the explanation of the present disclosure. 本開示における情報提供システムが備える情報生成装置が用いる身体能力推定モデルについて説明するための概念図である。1 is a conceptual diagram for explaining a physical ability estimation model used by an information generating device included in an information providing system in the present disclosure. FIG. 本開示における情報提供システムによる疾病リスクの推定例について説明するための概念図である。1 is a conceptual diagram for explaining an example of estimating disease risk by the information providing system in the present disclosure. 本開示における情報提供システムによる疾病リスクの推定例について説明するための概念図である。1 is a conceptual diagram for explaining an example of estimating disease risk by the information providing system in the present disclosure. 本開示における情報提供システムによる健康施策の推定例について説明するための概念図である。FIG. 11 is a conceptual diagram for explaining an example of an estimation of a health measure by the information provision system in the present disclosure. 本開示における情報提供システムが備える情報生成装置の動作の一例について説明するためのフローチャートである。10 is a flowchart for explaining an example of an operation of an information generating device included in the information providing system in the present disclosure. 本開示における情報提供システムが備える情報生成装置による歩容指標計算処理の一例について説明するためのフローチャートである。10 is a flowchart for illustrating an example of a gait index calculation process performed by an information generating device included in the information provision system in the present disclosure. 本開示における情報提供システムを利用したサービスについて説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a service that uses an information providing system in the present disclosure. 本開示における情報提供システムから提供された健康施策を含む提案情報の表示例を示す概念図である。1 is a conceptual diagram showing a display example of suggested information including health measures provided from an information providing system in the present disclosure. 本開示における情報提供システムを利用したサービスについて説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a service that uses an information providing system in the present disclosure. 本開示における情報提供システムから提供された健康施策を含む提案情報の表示例を示す概念図である。1 is a conceptual diagram showing a display example of suggested information including health measures provided from an information providing system in the present disclosure. 本開示における情報提供システムを利用したサービスについて説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a service that uses an information providing system in the present disclosure. 本開示における情報提供システムから提供された健康施策を含む提案情報の表示例を示す概念図である。1 is a conceptual diagram showing a display example of suggested information including health measures provided from an information providing system in the present disclosure. 本開示における情報生成装置の構成の一例を示すブロック図である。1 is a block diagram showing an example of a configuration of an information generating device according to the present disclosure. 本開示における情報生成装置の動作の一例について説明するためのフローチャートである。11 is a flowchart for explaining an example of an operation of the information generating device in the present disclosure. 本開示におけるハードウェア構成の一例を示す概念図である。FIG. 2 is a conceptual diagram illustrating an example of a hardware configuration according to the present disclosure.

 以下に、本開示を実施するための形態について図面を用いて説明する。本開示において、各実施形態の説明において使用される図面は、1以上の実施形態に関連付けられる。また、各図面に含まれる要素は、1以上の実施形態に当てはまりうる。以下に述べる実施形態には、本開示を実施するために技術的に好ましい限定がされているが、開示の範囲を以下に限定するものではない。以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。 Below, the embodiments for implementing the present disclosure are described with reference to the drawings. In this disclosure, the drawings used in the description of each embodiment relate to one or more embodiments. Furthermore, elements included in each drawing may apply to one or more embodiments. The embodiments described below are limited in a way that is technically preferable for implementing the present disclosure, but the scope of the disclosure is not limited to the following. In all drawings used in the description of the embodiments below, similar parts are given the same reference numerals unless there is a particular reason. In the embodiments below, repeated description of similar configurations and operations may be omitted.

 (第1実施形態)
 まず、本実施形態に係る情報提供システムの一例について図面を参照しながら説明する。本実施形態の情報提供システムは、企業に所属する従業員(管理対象者)の歩行に応じて計測された足の動きに関するセンサデータを用いて、企業ごとにカスタマイズされた健康施策を推定する。本実施形態の手法は、企業のみならず、複数の構成員(管理対象者)を抱えた任意の組織に適用できる。例えば、本実施形態の手法は、自治体などの組織にも適用できる。
First Embodiment
First, an example of an information provision system according to the present embodiment will be described with reference to the drawings. The information provision system according to the present embodiment estimates health measures customized for each company using sensor data related to foot movements measured according to the walking of employees (subjects of management) belonging to the company. The method according to the present embodiment can be applied not only to companies but also to any organization having multiple members (subjects of management). For example, the method according to the present embodiment can be applied to organizations such as local governments.

 (構成)
 図1は、本開示における情報提供システム1の構成の一例を示すブロック図である。情報提供システム1は、計測装置10と情報生成装置12を備える。例えば、計測装置10は、企業に所属する従業員(管理対象者)の履物に設置される。例えば、情報生成装置12の機能は、管理対象者の携帯する携帯端末や、管理対象者が勤務する建物の内部に設置された中継器などにネットワーク経由で接続されたサーバやクラウドに実装される。例えば、情報生成装置12の機能は、対象者の携帯する携帯端末に実装されてもよい。以下においては、計測装置10および情報生成装置12の構成について、個別に説明する。
(composition)
FIG. 1 is a block diagram showing an example of the configuration of an information providing system 1 in the present disclosure. The information providing system 1 includes a measuring device 10 and an information generating device 12. For example, the measuring device 10 is installed in the footwear of an employee (managed person) belonging to a company. For example, the function of the information generating device 12 is implemented in a server or cloud connected via a network to a mobile terminal carried by the managed person or a repeater installed inside the building where the managed person works. For example, the function of the information generating device 12 may be implemented in a mobile terminal carried by the subject. In the following, the configurations of the measuring device 10 and the information generating device 12 will be described individually.

 〔計測装置〕
 図2は、計測装置10の構成の一例を示すブロック図である。計測装置10は、センサ110、制御部113、通信部115、電源117を有する。センサ110は、加速度センサ111と角速度センサ112を有する。センサ110には、加速度センサ111および角速度センサ112以外のセンサが含まれてもよい。センサ110に含まれうる加速度センサ111および角速度センサ112以外のセンサについては、説明を省略する。
[Measuring equipment]
2 is a block diagram showing an example of the configuration of the measurement device 10. The measurement device 10 has a sensor 110, a control unit 113, a communication unit 115, and a power source 117. The sensor 110 has an acceleration sensor 111 and an angular velocity sensor 112. The sensor 110 may include sensors other than the acceleration sensor 111 and the angular velocity sensor 112. Descriptions of sensors other than the acceleration sensor 111 and the angular velocity sensor 112 that may be included in the sensor 110 will be omitted.

 加速度センサ111は、3軸方向の加速度(空間加速度とも呼ぶ)を計測するセンサである。加速度センサ111は、足の動きに関する物理量として、加速度(空間加速度とも呼ぶ)を計測する。加速度センサ111は、計測した加速度を制御部113に出力する。例えば、加速度センサ111には、圧電型や、ピエゾ抵抗型、静電容量型等の方式のセンサを用いることができる。加速度センサ111として用いられるセンサは、加速度を計測できれば、限定を加えない。 The acceleration sensor 111 is a sensor that measures acceleration in three axial directions (also called spatial acceleration). The acceleration sensor 111 measures acceleration (also called spatial acceleration) as a physical quantity related to foot movement. The acceleration sensor 111 outputs the measured acceleration to the control unit 113. For example, the acceleration sensor 111 can be a piezoelectric type, a piezo-resistive type, a capacitance type, or other type of sensor. There are no limitations on the sensor used as the acceleration sensor 111 as long as it can measure acceleration.

 角速度センサ112は、3軸周りの角速度(空間角速度とも呼ぶ)を計測するセンサである。角速度センサ112は、足の動きに関する物理量として、角速度(空間角速度とも呼ぶ)を計測する。角速度センサ112は、計測した角速度を制御部113に出力する。例えば、角速度センサ112には、振動型や静電容量型等の方式のセンサを用いることができる。角速度センサ112として用いられるセンサは、角速度を計測できれば、限定を加えない。 Angular velocity sensor 112 is a sensor that measures angular velocity (also called spatial angular velocity) around three axes. Angular velocity sensor 112 measures angular velocity (also called spatial angular velocity) as a physical quantity related to foot movement. Angular velocity sensor 112 outputs the measured angular velocity to control unit 113. For example, a vibration type, capacitance type, or other type of sensor can be used as angular velocity sensor 112. There are no limitations on the sensor used as angular velocity sensor 112 as long as it can measure angular velocity.

 センサ110は、例えば、加速度や角速度を計測する慣性計測装置によって実現される。慣性計測装置の一例として、IMU(Inertial Measurement Unit)があげられる。IMUは、3軸方向の加速度を計測する加速度センサ111と、3軸周りの角速度を計測する角速度センサ112を含む。センサ110は、VG(Vertical Gyro)やAHRS(Attitude Heading Reference System)などの慣性計測装置によって実現されてもよい。また、センサ110は、GPS/INS(Global Positioning System/Inertial Navigation System)によって実現されてもよい。センサ110は、足の動きに関する物理量を計測できれば、慣性計測装置以外の装置によって実現されてもよい。 The sensor 110 is realized, for example, by an inertial measurement unit that measures acceleration and angular velocity. An example of an inertial measurement unit is an IMU (Inertial Measurement Unit). The IMU includes an acceleration sensor 111 that measures acceleration in three axial directions and an angular velocity sensor 112 that measures angular velocity around three axes. The sensor 110 may be realized by an inertial measurement unit such as a VG (Vertical Gyro) or an AHRS (Attitude Heading Reference System). The sensor 110 may also be realized by a GPS/INS (Global Positioning System/Inertial Navigation System). The sensor 110 may be realized by a device other than an inertial measurement unit as long as it can measure physical quantities related to foot movement.

 図3は、両足の靴100の中に、計測装置10が配置される一例を示す概念図である。図3の例では、足弓の裏側に当たる位置に、計測装置10が設置される。例えば、計測装置10は、靴100の中に挿入されるインソールに配置される。例えば、計測装置10は、靴100の底面に配置されてもよい。例えば、計測装置10は、靴100の本体に埋設されてもよい。計測装置10は、靴100から着脱できてもよいし、靴100から着脱できなくてもよい。計測装置10は、足の動きに関するセンサデータを計測できさえすれば、足弓の裏側ではない位置に設置されてもよい。また、計測装置10は、管理対象者が履いている靴下や、管理対象者が装着しているアンクレット等の装飾品に設置されてもよい。また、計測装置10は、足に直に貼り付けられたり、足に埋め込まれたりしてもよい。疾病リスクの推定が可能なデータを計測できれば、計測装置10は、片方の靴100の中に配置されてもよい。 3 is a conceptual diagram showing an example of the measurement device 10 being placed in the shoes 100 of both feet. In the example of FIG. 3, the measurement device 10 is placed at a position that corresponds to the back side of the arch of the foot. For example, the measurement device 10 is placed in an insole inserted into the shoe 100. For example, the measurement device 10 may be placed on the bottom surface of the shoe 100. For example, the measurement device 10 may be embedded in the body of the shoe 100. The measurement device 10 may be detachable from the shoe 100, or may not be detachable from the shoe 100. The measurement device 10 may be placed at a position other than the back side of the arch of the foot, as long as it can measure sensor data related to foot movement. The measurement device 10 may also be placed in socks worn by the person to be managed, or in an accessory such as an anklet worn by the person to be managed. The measurement device 10 may also be attached directly to the foot or embedded in the foot. The measurement device 10 may also be placed in one of the shoes 100, as long as it can measure data that can be used to estimate disease risk.

 図3の例では、計測装置10(センサ110)を基準として、左右方向のx軸、前後方向のy軸、上下方向のz軸を含むローカル座標系が設定される。図3には、左足と右足とで同じ座標系が設定される例を示す。例えば、同じスペックで生産されたセンサ110が左右の靴100の中に配置される場合、左右の靴100に配置されるセンサ110の上下の向き(Z軸方向の向き)は、同じ向きである。この場合、左足に由来するセンサデータに設定されるローカル座標系の3軸と、右足に由来するセンサデータに設定されるローカル座標系の3軸とは、左右で同じである。本開示においては、x軸は左方を正とし、y軸は後方を正とし、z軸は上方を正とする。 In the example of FIG. 3, a local coordinate system is set with the measuring device 10 (sensor 110) as the reference, including an x-axis in the left-right direction, a y-axis in the front-back direction, and a z-axis in the up-down direction. FIG. 3 shows an example in which the same coordinate system is set for the left foot and the right foot. For example, when sensors 110 manufactured with the same specifications are placed in the left and right shoes 100, the up-down orientation (Z-axis orientation) of the sensors 110 placed in the left and right shoes 100 is the same. In this case, the three axes of the local coordinate system set for the sensor data derived from the left foot and the three axes of the local coordinate system set for the sensor data derived from the right foot are the same for the left and right. In this disclosure, the x-axis is positive to the left, the y-axis is positive backward, and the z-axis is positive upward.

 図4は、足弓の裏側に設置された計測装置10(センサ110)に設定されるローカル座標系(x軸、y軸、z軸)と、地面に対して設定される世界座標系(X軸、Y軸、Z軸)について説明するための概念図である。図4には、左足と右足とで異なる座標系が設定された例を示す。世界座標系(X軸、Y軸、Z軸)では、進行方向に正対した状態の管理対象者が直立した状態で、管理対象者の横方向がX軸方向、管理対象者の背面の方向がY軸方向、重力方向がZ軸方向に設定される。なお、図4の例は、ローカル座標系(x軸、y軸、z軸)と世界座標系(X軸、Y軸、Z軸)の関係を概念的に示すものであり、管理対象者の歩行に応じて変動するローカル座標系と世界座標系の関係を正確に示すものではない。 FIG. 4 is a conceptual diagram for explaining the local coordinate system (x-axis, y-axis, z-axis) set in the measuring device 10 (sensor 110) installed on the back side of the arch, and the world coordinate system (x-axis, y-axis, z-axis) set with respect to the ground. FIG. 4 shows an example in which different coordinate systems are set for the left foot and the right foot. In the world coordinate system (x-axis, y-axis, z-axis), the lateral direction of the managed person is set as the x-axis direction, the direction of the back of the managed person is set as the y-axis direction, and the direction of gravity is set as the z-axis direction when the managed person stands upright facing the direction of travel. Note that the example in FIG. 4 conceptually shows the relationship between the local coordinate system (x-axis, y-axis, z-axis) and the world coordinate system (x-axis, y-axis, z-axis), and does not accurately show the relationship between the local coordinate system and the world coordinate system, which changes according to the walking of the managed person.

 図5は、人体に対して設定される面(人体面とも呼ぶ)について説明するための概念図である。本実施形態では、身体を左右に分ける矢状面、身体を前後に分ける冠状面、身体を水平に分ける水平面が定義される。なお、図5のように、足の中心線を進行方向に向けて直立した状態では、世界座標系とローカル座標系が一致するものとする。図5には、左足と右足とで異なる座標系が設定された例を示す。本実施形態においては、X軸(x軸)を回転軸とする矢状面内の回転をロール、Y軸(y軸)を回転軸とする冠状面内の回転をピッチ、Z軸(z軸)を回転軸とする水平面内の回転をヨーと定義する。また、X軸(x軸)を回転軸とする矢状面内の回転角をロール角、Y軸(y軸)を回転軸とする冠状面内の回転角をピッチ角、Z軸(z軸)を回転軸とする水平面内の回転角をヨー角と定義する。 FIG. 5 is a conceptual diagram for explaining the planes (also called human body planes) set for the human body. In this embodiment, a sagittal plane that divides the body into left and right, a coronal plane that divides the body into front and back, and a horizontal plane that divides the body horizontally are defined. As shown in FIG. 5, when the user stands upright with the center line of the foot facing the direction of travel, the world coordinate system and the local coordinate system are assumed to match. FIG. 5 shows an example in which different coordinate systems are set for the left and right feet. In this embodiment, the rotation in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll, the rotation in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch, and the rotation in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw. In addition, the rotation angle in the sagittal plane around the X-axis (x-axis) as the rotation axis is defined as roll angle, the rotation angle in the coronal plane around the Y-axis (y-axis) as the rotation axis is defined as pitch angle, and the rotation angle in the horizontal plane around the Z-axis (z-axis) as the rotation axis is defined as yaw angle.

 制御部113(制御手段)は、加速度センサ111および角速度センサ112にセンサデータを計測させる。例えば、制御部113は、情報生成装置12から送信された計測開始信号に応じて、加速度センサ111および角速度センサ112に計測を開始させる。例えば、制御部113は、管理対象者の歩行検知に応じて、加速度センサ111および角速度センサ112に計測を開始させてもよい。例えば、制御部113は、予め設定された所定期間を越えて両足の垂直方向の高さが同じであった後に、左右いずれかの足の進行方向への動き出しが検出された時点を起点として、歩隔の計測を開始する。また、制御部113は、予め設定された所定タイミングにおいて、歩隔の計測を開始するように構成されてもよい。 The control unit 113 (control means) causes the acceleration sensor 111 and the angular velocity sensor 112 to measure sensor data. For example, the control unit 113 causes the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to a measurement start signal transmitted from the information generating device 12. For example, the control unit 113 may cause the acceleration sensor 111 and the angular velocity sensor 112 to start measurement in response to detection of the walking of the managed person. For example, the control unit 113 starts measuring the step width starting from the point in time when it is detected that either the left or right foot has started to move in the forward direction after both feet have been at the same vertical height for a predetermined period of time. The control unit 113 may also be configured to start measuring the step width at a predetermined timing.

 制御部113は、加速度センサ111から、3軸方向の加速度を取得する。また、制御部113は、角速度センサ112から、3軸周りの角速度を取得する。例えば、制御部113は、取得された角速度および加速度等の物理量(アナログデータ)をAD(Analog-to-Digital)変換する。なお、加速度センサ111および角速度センサ112によって計測された物理量(アナログデータ)は、加速度センサ111および角速度センサ112の各々においてデジタルデータに変換されてもよい。例えば、角速度および加速度等の物理量(アナログデータ)をAD変換するAD変換回路が併設されてもよい。制御部113は、変換後のデジタルデータ(センサデータとも呼ぶ)を通信部115に出力する。例えば、制御部113は、センサデータを記憶部(図示しない)に一時的に記憶させてもよい。 The control unit 113 acquires the acceleration in three axial directions from the acceleration sensor 111. The control unit 113 also acquires the angular velocity around three axes from the angular velocity sensor 112. For example, the control unit 113 performs AD (Analog-to-Digital) conversion of the acquired physical quantities (analog data) such as angular velocity and acceleration. The physical quantities (analog data) measured by the acceleration sensor 111 and the angular velocity sensor 112 may be converted to digital data in each of the acceleration sensor 111 and the angular velocity sensor 112. For example, an AD conversion circuit that AD converts the physical quantities (analog data) such as angular velocity and acceleration may be provided. The control unit 113 outputs the converted digital data (also called sensor data) to the communication unit 115. For example, the control unit 113 may temporarily store the sensor data in a storage unit (not shown).

 センサデータには、デジタルデータに変換された加速度データと、デジタルデータに変換された角速度データとが少なくとも含まれる。加速度データは、3軸方向の加速度ベクトルを含む。角速度データは、3軸周りの角速度ベクトルを含む。加速度データおよび角速度データには、それらのデータの取得時間が紐付けられる。また、制御部113は、加速度データおよび角速度データに対して、実装誤差や温度補正、直線性補正などの補正を加えてもよい。 The sensor data includes at least acceleration data converted into digital data and angular velocity data converted into digital data. The acceleration data includes acceleration vectors in three axial directions. The angular velocity data includes angular velocity vectors about three axes. The acceleration data and angular velocity data are linked to the time at which they were acquired. The control unit 113 may also apply corrections such as corrections for mounting errors, temperature corrections, and linearity corrections to the acceleration data and angular velocity data.

 例えば、制御部113は、後述する歩容指標のうち少なくともいずれかを計算してもよい。その場合、計測装置10は、算出された歩容指標を情報生成装置12に出力する。例えば、制御部113は、後述する身体能力の推定に用いられる特徴量を計算してもよい。その場合、計測装置10は、算出された特徴量を情報生成装置12に出力する。 For example, the control unit 113 may calculate at least one of the gait indices described below. In that case, the measurement device 10 outputs the calculated gait indices to the information generating device 12. For example, the control unit 113 may calculate a feature amount used to estimate physical ability described below. In that case, the measurement device 10 outputs the calculated feature amount to the information generating device 12.

 例えば、制御部113は、計測装置10の全体制御やデータ処理を行うマイクロコンピュータやマイクロコントローラによって実現される。例えば、制御部113は、CPU(Central Processing Unit)やRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等を有する。 For example, the control unit 113 is realized by a microcomputer or microcontroller that performs overall control of the measuring device 10 and performs data processing. For example, the control unit 113 has a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), flash memory, etc.

 通信部115(通信手段)は、制御部113からセンサデータを取得する。通信部115は、取得したセンサデータを情報生成装置12に送信する。センサデータの送信タイミングについては、特に限定しない。例えば、通信部115は、予め設定された送信タイミングにおいて、センサデータを送信する。例えば、通信部115は、センサデータの計測に応じて、リアルタイムでそのセンサデータを送信する。例えば、通信部115は、所定期間に計測されたセンサデータを記憶しておき、予め設定されたタイミングにおいて、記憶されたセンサデータを一括で送信してもよい。例えば、通信部115は、情報生成装置12から計測開始信号を受信するように構成されてもよい。この場合、通信部115は、受信された計測開始信号を制御部113に出力する。 The communication unit 115 (communication means) acquires sensor data from the control unit 113. The communication unit 115 transmits the acquired sensor data to the information generating device 12. There are no particular limitations on the timing of transmitting the sensor data. For example, the communication unit 115 transmits the sensor data at a preset transmission timing. For example, the communication unit 115 transmits the sensor data in real time according to the measurement of the sensor data. For example, the communication unit 115 may store sensor data measured over a predetermined period of time and transmit the stored sensor data all at once at a preset timing. For example, the communication unit 115 may be configured to receive a measurement start signal from the information generating device 12. In this case, the communication unit 115 outputs the received measurement start signal to the control unit 113.

 例えば、通信部115は、無線通信を介して、情報生成装置12にセンサデータを送信する。例えば、通信部115は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、情報生成装置12にセンサデータを送信する。通信部115の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。通信部115は、ケーブルなどの有線を介して、情報生成装置12にセンサデータを送信してもよい。 For example, the communication unit 115 transmits the sensor data to the information generating device 12 via wireless communication. For example, the communication unit 115 transmits the sensor data to the information generating device 12 via a wireless communication function (not shown) that complies with standards such as Bluetooth (registered trademark) or WiFi (registered trademark). The communication function of the communication unit 115 may be compliant with standards other than Bluetooth (registered trademark) or WiFi (registered trademark). The communication unit 115 may transmit the sensor data to the information generating device 12 via a wired connection such as a cable.

 電源117は、計測装置10が動作するための電力を供給する電池である。例えば、電源117は、コイン型やボタン型のように、薄型形状の電池によって実現される。例えば、電源117は、リチウム一次電池や、酸化銀電池、アルカリボタン電池、空気亜鉛電池などの一次電池によって実現される。一次電池によって実現される場合、電源117は、高寿命な電池によって実現されることが好ましい。また、電源117は、充電が可能な二次電池によって実現されてもよい。二次電池によって実現される場合、電源117は、有線充電可能な電池であってもよいし、無線給電可能な電池であってもよい。電源117が無線給電可能であれば、玄関や下駄箱などのように履物が置かれる場所に無線給電装置を配置しておけばよい。計測装置10が搭載された履物を無線給電装置に重ねておけば、未使用時において計測装置10を適宜充電できる。 The power source 117 is a battery that supplies power for the measurement device 10 to operate. For example, the power source 117 is realized by a thin battery such as a coin type or button type. For example, the power source 117 is realized by a primary battery such as a lithium primary battery, a silver oxide battery, an alkaline button battery, or an air zinc battery. When realized by a primary battery, the power source 117 is preferably realized by a long-life battery. The power source 117 may also be realized by a rechargeable secondary battery. When realized by a secondary battery, the power source 117 may be a battery that can be charged via a wired connection or a battery that can be wirelessly powered. If the power source 117 is capable of wireless power supply, a wireless power supply device may be placed in a place where footwear is placed, such as an entrance or a shoe cupboard. If footwear equipped with the measurement device 10 is placed on the wireless power supply device, the measurement device 10 can be appropriately charged when not in use.

 〔情報生成装置〕
 図6は、情報生成装置12の構成の一例を示すブロック図である。情報生成装置12は、取得部121、波形処理部122、歩容指標計算部123、記憶部124、身体能力推定部125、疾病リスク推定部126、提案情報生成部127、および出力部129を有する。波形処理部122、歩容指標計算部123、身体能力推定部125、および疾病リスク推定部126は、リスク推定部15を構成する。波形処理部122および歩容指標計算部123は、計算部13を構成する。身体能力推定部125および疾病リスク推定部126は、推定部14を構成する。
[Information generating device]
6 is a block diagram showing an example of the configuration of the information generating device 12. The information generating device 12 has an acquiring unit 121, a waveform processing unit 122, a gait index calculating unit 123, a storage unit 124, a physical ability estimating unit 125, a disease risk estimating unit 126, a proposed information generating unit 127, and an output unit 129. The waveform processing unit 122, the gait index calculating unit 123, the physical ability estimating unit 125, and the disease risk estimating unit 126 constitute the risk estimating unit 15. The waveform processing unit 122 and the gait index calculating unit 123 constitute the calculating unit 13. The physical ability estimating unit 125 and the disease risk estimating unit 126 constitute the estimating unit 14.

 取得部121(取得手段)は、管理対象者の履物に搭載された計測装置10からセンサデータを取得する。取得部121は、無線通信を介して、計測装置10からセンサデータを受信する。例えば、センサデータには、センサデータの送信元である管理対象者の携帯端末(図示しない)の位置情報が含まれてもよい。例えば、位置情報は、携帯端末に搭載されたGPS(Global Positioning System)の機能によって計測され、センサデータに追加される。例えば、取得部121は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、計測装置10からセンサデータを受信する。なお、計測装置10と通信できさえすれば、取得部121の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。取得部121は、ケーブルなどの有線を介して、計測装置10からセンサデータを受信してもよい。例えば、取得部121は、計測装置10によって算出された歩容指標や特徴量を取得してもよい。 The acquisition unit 121 (acquisition means) acquires sensor data from the measurement device 10 mounted on the footwear of the managed person. The acquisition unit 121 receives the sensor data from the measurement device 10 via wireless communication. For example, the sensor data may include location information of the managed person's mobile terminal (not shown), which is the source of the sensor data. For example, the location information is measured by a GPS (Global Positioning System) function mounted on the mobile terminal and added to the sensor data. For example, the acquisition unit 121 receives the sensor data from the measurement device 10 via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark). Note that the communication function of the acquisition unit 121 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark) as long as it can communicate with the measurement device 10. The acquisition unit 121 may receive the sensor data from the measurement device 10 via a wired connection such as a cable. For example, the acquisition unit 121 may acquire gait indices and feature amounts calculated by the measurement device 10.

 また、取得部121は、管理対象者の属性データを取得する。属性データは、性別、生年月日、身長、および体重を含む。生年月日は、年齢に変換される。属性データに含まれる性別、生年月日(年齢)、身長、および体重は、身体情報とも呼ばれる。例えば、属性データは、入力装置(図示しない)を介して入力される。例えば、属性データは、管理者が使用する端末装置を介して入力される。例えば、属性データは、管理対象者が使用する携帯端末を介して入力される。例えば、属性データは、記憶部124に予め記憶させておけばよい。属性データは、管理対象者や管理者による入力に応じて、任意のタイミングで更新されてもよい。 The acquisition unit 121 also acquires attribute data of the managed person. The attribute data includes gender, date of birth, height, and weight. The date of birth is converted to age. The gender, date of birth (age), height, and weight contained in the attribute data are also called physical information. For example, the attribute data is input via an input device (not shown). For example, the attribute data is input via a terminal device used by the administrator. For example, the attribute data is input via a mobile terminal used by the managed person. For example, the attribute data may be stored in advance in the storage unit 124. The attribute data may be updated at any time in response to input by the managed person or the administrator.

 波形処理部122(波形処理手段)は、取得部121からセンサデータを取得する。波形処理部122は、センサデータに含まれる3軸方向の加速度および3軸周りの角速度の時系列データから、一歩行周期分の時系列データを抽出する。一歩行周期分の時系列データを歩行波形データとも呼ぶ。波形処理部122は、センサデータの時系列データから検出される歩行イベントのタイミングに基づいて、歩行波形データを抽出する。例えば、波形処理部122は、踵接地のタイミングを始点とし、次の踵接地のタイミングを終点とする歩行波形データを抽出する。 The waveform processing unit 122 (waveform processing means) acquires sensor data from the acquisition unit 121. The waveform processing unit 122 extracts time series data for one walking cycle from the time series data of acceleration in three axial directions and angular velocity around three axes contained in the sensor data. The time series data for one walking cycle is also called walking waveform data. The waveform processing unit 122 extracts walking waveform data based on the timing of walking events detected from the time series data of the sensor data. For example, the waveform processing unit 122 extracts walking waveform data that starts at the timing of a heel strike and ends at the timing of the next heel strike.

 図7は、右足を基準とする一歩行周期について説明するための概念図である。左足を基準とする一歩行周期も、右足と同様である。図7の横軸は、右足の踵が地面に着地した時点を起点とし、次に右足の踵が地面に着地した時点を終点とする右足の一歩行周期を示す。図7の横軸は、一歩行周期を100%として正規化されている。一歩行周期を100%で正規化することを第1正規化と呼ぶ。片足の一歩行周期は、足の裏側の少なくとも一部が地面に接している立脚相と、足の裏側が地面から離れている遊脚相とに大別される。立脚相は、足の裏側の少なくとも一部が地面に接している期間である。立脚相は、さらに、立脚初期T1、立脚中期T2、立脚終期T3、遊脚前期T4に細分される。遊脚相は、足の裏側が地面から離れている期間である。遊脚相は、さらに、遊脚初期T5、遊脚中期T6、遊脚終期T7に細分される。図7の横軸は、立脚相が60%、遊脚相が40%になるように正規化されている。立脚相が60%、遊脚相が40%になるように歩行波形データを正規化することを第2正規化と呼ぶ。なお、図7に示す期間は一例であって、一歩行周期を構成する期間や、それらの期間の名称等を限定するものではない。 Figure 7 is a conceptual diagram for explaining a step cycle based on the right foot. The step cycle based on the left foot is the same as that of the right foot. The horizontal axis of Figure 7 shows one walking cycle of the right foot, starting from the point when the heel of the right foot lands on the ground and ending at the point when the heel of the right foot lands on the ground. The horizontal axis of Figure 7 is normalized with the step cycle as 100%. Normalizing one walking cycle to 100% is called the first normalization. One walking cycle of one foot is broadly divided into a stance phase in which at least a part of the sole of the foot is in contact with the ground and a swing phase in which the sole of the foot is off the ground. The stance phase is a period in which at least a part of the sole of the foot is in contact with the ground. The stance phase is further divided into an early stance phase T1, a mid stance phase T2, a final stance phase T3, and an early swing phase T4. The swing phase is a period in which the sole of the foot is off the ground. The swing phase is further divided into early swing T5, mid swing T6, and final swing T7. The horizontal axis in FIG. 7 is normalized so that the stance phase is 60% and the swing phase is 40%. Normalizing the gait waveform data so that the stance phase is 60% and the swing phase is 40% is called second normalization. Note that the periods shown in FIG. 7 are merely examples, and do not limit the periods that make up a step cycle or the names of these periods.

 図7のように、歩行においては、複数の事象が発生する。歩行においては、歩行における複数の事象を歩行イベントとも呼ぶ。P1は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。P2は、右足の足裏が接地した状態で、左足の爪先が地面から離れる事象(反対足爪先離地)を表す(OTO:Opposite Toe Off)。P3は、右足の足裏が接地した状態で、右足の踵が持ち上がる事象(踵持ち上がり)を表す(HR:Heel Rise)。P4は、左足の踵が接地した事象(反対足踵接地)である(OHS:Opposite Heel Strike)。P5は、左足の足裏が接地した状態で、右足の爪先が地面から離れる事象(爪先離地)を表す(TO:Toe Off)。P6は、左足の足裏が接地した状態で、左足と右足が交差する事象(足交差)を表す(FA:Foot Adjacent)。P7は、左足の足裏が接地した状態で、右足の脛骨が地面に対してほぼ垂直になる事象(脛骨垂直)を表す(TV:Tibia Vertical)。P8は、右足の踵が接地する事象(踵接地)を表す(HS:Heel Strike)。P8は、P1から始まる歩行周期の終点に相当するとともに、次の歩行周期の起点に相当する。なお、図7に示す歩行イベントは一例であって、歩行において発生する事象や、それらの事象の名称を限定するものではない。 As shown in Figure 7, multiple events occur during walking. Multiple events during walking are also called walking events. P1 represents the event of the heel of the right foot touching the ground (heel strike) (HS: Heel Strike). P2 represents the event of the toe of the left foot lifting off the ground (opposite toe off) while the sole of the right foot is on the ground (OTO: Opposite Toe Off). P3 represents the event of the right heel lifting off the ground (heel rise) while the sole of the right foot is on the ground (HR: Heel Rise). P4 represents the event of the left heel touching the ground (opposite heel strike) (OHS: Opposite Heel Strike). P5 represents the event of the right toe lifting off the ground (toe off) while the sole of the left foot is on the ground (TO: Toe Off). P6 represents an event in which the left and right feet cross (foot crossing) with the sole of the left foot touching the ground (FA: Foot Adjacent). P7 represents an event in which the tibia of the right foot is nearly perpendicular to the ground with the sole of the left foot touching the ground (TV: Tibia Vertical). P8 represents an event in which the heel of the right foot touches the ground (heel strike) (HS: Heel Strike). P8 corresponds to the end of the walking cycle that begins with P1, and corresponds to the starting point of the next walking cycle. Note that the walking events shown in Figure 7 are merely examples, and do not limit the events that occur during walking or the names of those events.

 踵接地のタイミングは、進行方向加速度(Y方向加速度)の時系列データに表れる極大ピークの直後の極小ピークのタイミングである。踵接地タイミングの目印になる極大ピークは、一歩行周期分の歩行波形データの最大ピークに相当する。連続する踵接地の間の区間が、一歩行周期に相当する。爪先離地のタイミングは、進行方向加速度(Y方向加速度)の時系列データに変動が表れない立脚相の期間の後に表れる極大ピークの立ち上がりのタイミングである。ロール角が最小のタイミングと、ロール角が最大のタイミングとの中点のタイミングが、立脚中期に相当する。 The timing of heel strike is the timing of the minimum peak immediately after the maximum peak that appears in the time series data of forward acceleration (Y-direction acceleration). The maximum peak that marks the timing of heel strike corresponds to the maximum peak of the gait waveform data for one step cycle. The section between successive heel strikes corresponds to one step cycle. The timing of toe off is the timing of the rise of the maximum peak that appears after the stance phase period in which no fluctuations appear in the time series data of forward acceleration (Y-direction acceleration). The midpoint between the timing of the minimum roll angle and the timing of the maximum roll angle corresponds to the mid-stance phase.

 波形処理部122は、抽出された一歩行周期分の歩行波形データの時間を、0~100%(パーセント)の歩行周期に正規化(第1正規化)する。0~100%の歩行周期に含まれる1%や10%などのタイミングを、歩行フェーズとも呼ぶ。また、波形処理部122は、第1正規化された一歩行周期分の歩行波形データに関して、立脚相が60%、遊脚相が40%になるように正規化(第2正規化)する。歩行波形データを第2正規化すれば、特徴量が抽出される歩行フェーズのずれを低減できる。波形処理部122は、正規化された歩行波形データを歩容指標計算部123に出力する。 The waveform processing unit 122 normalizes (first normalization) the time of the extracted walking waveform data for one step cycle to a walking cycle of 0 to 100% (percent). The timing of 1%, 10%, etc. included in the 0 to 100% walking cycle is also called a walking phase. The waveform processing unit 122 also normalizes (second normalization) the first normalized walking waveform data for one step cycle so that the stance phase is 60% and the swing phase is 40%. By second normalizing the walking waveform data, it is possible to reduce the deviation of the walking phase from which the feature is extracted. The waveform processing unit 122 outputs the normalized walking waveform data to the gait index calculation unit 123.

 例えば、波形処理部122は、進行方向加速度(Y方向加速度)を用いて、一歩行周期分の歩行波形データを抽出/正規化する。波形処理部122は、進行方向加速度(Y方向加速度)以外の加速度/角速度に関しては、進行方向加速度(Y方向加速度)の歩行周期に合わせて、一歩行周期分の歩行波形データを抽出/正規化する。また、波形処理部122は、3軸周りの角速度の時系列データを積分することで、3軸周りの角度の時系列データを生成してもよい。その場合、波形処理部122は、3軸周りの角度に関しても、進行方向加速度(Y方向加速度)の歩行周期に合わせて、一歩行周期分の歩行波形データを抽出/正規化する。 For example, the waveform processing unit 122 extracts and normalizes walking waveform data for one step cycle using the forward acceleration (Y-direction acceleration). For accelerations/angular velocities other than the forward acceleration (Y-direction acceleration), the waveform processing unit 122 extracts and normalizes walking waveform data for one step cycle in accordance with the walking cycle of the forward acceleration (Y-direction acceleration). The waveform processing unit 122 may also generate time series data of angles around three axes by integrating time series data of angular velocities around three axes. In that case, the waveform processing unit 122 extracts and normalizes walking waveform data for one step cycle in accordance with the walking cycle of the forward acceleration (Y-direction acceleration) for angles around three axes as well.

 波形処理部122は、進行方向加速度(Y方向加速度)以外の加速度/角速度を用いて、一歩行周期分の歩行波形データを抽出/正規化してもよい。例えば、波形処理部122は、垂直方向加速度(Z方向加速度)の時系列データから、踵接地や爪先離地を検出してもよい(図面は省略)。踵接地のタイミングは、垂直方向加速度(Z方向加速度)の時系列データに表れる急峻な極小ピークのタイミングである。急峻な極小ピークのタイミングにおいては、垂直方向加速度(Z方向加速度)の値がほぼ0になる。踵接地のタイミングの目印になる極小ピークは、一歩行周期分の歩行波形データの最小ピークに相当する。連続する踵接地の間の区間が、一歩行周期である。爪先離地のタイミングは、垂直方向加速度(Z方向加速度)の時系列データが、踵接地の直後の極大ピークの後に変動の小さい区間を経た後に、なだらかに増大する途中の変曲点のタイミングである。また、波形処理部122は、進行方向加速度(Y方向加速度)および垂直方向加速度(Z方向加速度)の両方を用いて、一歩行周期分の歩行波形データを抽出/正規化してもよい。また、波形処理部122は、進行方向加速度(Y方向加速度)および垂直方向加速度(Z方向加速度)以外の加速度や角速度、角度等を用いて、一歩行周期分の歩行波形データを抽出/正規化してもよい。 The waveform processing unit 122 may extract/normalize the walking waveform data for one step cycle using acceleration/angular velocity other than the forward acceleration (Y-direction acceleration). For example, the waveform processing unit 122 may detect heel strike and toe lift from the time series data of vertical acceleration (Z-direction acceleration) (not shown). The timing of heel strike is the timing of a steep minimum peak that appears in the time series data of vertical acceleration (Z-direction acceleration). At the timing of the steep minimum peak, the value of the vertical acceleration (Z-direction acceleration) becomes almost 0. The minimum peak that marks the timing of heel strike corresponds to the minimum peak of the walking waveform data for one step cycle. The section between successive heel strikes is the one step cycle. The timing of toe lift is the timing of an inflection point in the middle of the time series data of vertical acceleration (Z-direction acceleration) gradually increasing after a section of small fluctuation following the maximum peak immediately after heel strike. The waveform processing unit 122 may also extract/normalize the walking waveform data for one step cycle using both the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration). The waveform processing unit 122 may also extract/normalize the walking waveform data for one step cycle using acceleration, angular velocity, angle, etc. other than the forward acceleration (Y-direction acceleration) and the vertical acceleration (Z-direction acceleration).

 波形処理部122は、歩行波形データから、身体能力の推定に用いられる特徴量(身体能力特徴量)を抽出する。波形処理部122は、少なくとも一つの身体能力の推定に用いられる身体能力特徴量を抽出する。例えば、波形処理部122は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力のうち少なくともいずれかの推定に用いられる身体能力特徴量を抽出する。例えば、波形処理部122は、予め設定された条件に従って、歩行フェーズクラスターごとの身体能力特徴量を抽出する。歩行フェーズクラスターは、時間的に連続する歩行フェーズを統合したクラスターである。歩行フェーズクラスターは、少なくとも一つの歩行フェーズを含む。歩行フェーズクラスターには、単一の歩行フェーズも含まれる。波形処理部122は、抽出された身体能力特徴量を身体能力推定部125に出力する。疾病リスクの推定において身体能力が用いられない場合は、身体能力特徴量の抽出は省略できる。 The waveform processing unit 122 extracts features (physical ability features) used to estimate physical abilities from the walking waveform data. The waveform processing unit 122 extracts physical ability features used to estimate at least one physical ability. For example, the waveform processing unit 122 extracts physical ability features used to estimate at least one of physical abilities such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. For example, the waveform processing unit 122 extracts physical ability features for each walking phase cluster according to a preset condition. A walking phase cluster is a cluster that integrates walking phases that are consecutive in time. A walking phase cluster includes at least one walking phase. A walking phase cluster also includes a single walking phase. The waveform processing unit 122 outputs the extracted physical ability features to the physical ability estimation unit 125. If physical ability is not used in estimating disease risk, the extraction of physical ability features can be omitted.

 歩容指標計算部123(歩容指標計算手段)は、正規化された歩行波形データを波形処理部122から取得する。歩容指標計算部123は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する。正規化された歩行波形データを用いて算出できれば、算出される歩容指標については、特に限定を加えない。例えば、歩容指標計算部123は、距離や高さ、角度、速度、時間、フレイルレベル、CPEI(Center of Pressure Exclusion Index)などに関する歩容指標を計算する。以下において、代表的な歩容指標をあげる。以下の歩容指標の具体的な計算方法については、省略する。 The gait index calculation unit 123 (gait index calculation means) acquires normalized gait waveform data from the waveform processing unit 122. The gait index calculation unit 123 uses the normalized gait waveform data to calculate gait indices used to estimate physical ability. There are no particular limitations on the gait indices to be calculated, so long as they can be calculated using normalized gait waveform data. For example, the gait index calculation unit 123 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI (Center of Pressure Exclusion Index), etc. Representative gait indices are listed below. Specific calculation methods for the following gait indices will be omitted.

 例えば、歩容指標計算部123は、歩容指標として、距離や高さに関する指標を計算する。例えば、歩容指標計算部123は、歩幅や、外回し距離、足上げ高さ、FTC(Foot Clearance)、MTC(Minimum Toe Clearance)を計算する。歩幅は、歩行中における前足と後足との距離を示す。外回し距離は、遊脚相において、進行方向に対して足が外側に離れた距離の最大値を示す。足上げ高さは、遊脚相において、計測装置10(センサ110)と地面との距離の最大値を示す。FTCは、遊脚相における踵と地面との距離の最大値を示す。MTCは、遊脚相における爪先と地面との距離の最小値を示す。 For example, the gait index calculation unit 123 calculates indices related to distance and height as gait indices. For example, the gait index calculation unit 123 calculates stride length, turning distance, foot lift height, FTC (Foot Clearance), and MTC (Minimum Toe Clearance). Stride length indicates the distance between the front foot and the rear foot while walking. Turning distance indicates the maximum distance that the foot is moved outward in the direction of travel during the swing phase. Foot lift height indicates the maximum distance between the measuring device 10 (sensor 110) and the ground during the swing phase. FTC indicates the maximum distance between the heel and the ground during the swing phase. MTC indicates the minimum distance between the toe and the ground during the swing phase.

 例えば、歩容指標計算部123は、歩容指標として、角度に関する指標を計算する。例えば、歩容指標計算部123は、接地角度や、離地角度、爪先の向き、踵接地のロール角、爪先離地のロール角、遊脚ピーク角速度、母趾角を計算する。接地角度は、踵接地時において、足裏面と地面とがなす角度の最大値を示す。離地角度は、遊脚相において、足裏面と地面とがなす角度を示す。爪先の向きは、遊脚相において、進行方向に対する爪先の向きの平均値を示す。踵接地のロール角は、後方の視座から見て、踵接地時における足首と地面とのなす角度である。爪先離地のロール角は、後方の視座から見て、蹴り出し時における足首と地面とのなす角度である。遊脚ピーク角速度は、蹴り出し直後から爪先が地面に最近接するまでの区間における足関節背屈方向の角速度である。母趾角は、足の親指が人差し指側へ傾いている角度を示す。具体的には、母趾角は、第一中足骨の中心線と第一基節骨の中心線とのなす角である。 For example, the gait index calculation unit 123 calculates indexes related to angles as gait indices. For example, the gait index calculation unit 123 calculates the contact angle, the take-off angle, the toe direction, the heel contact roll angle, the toe off roll angle, the swing leg peak angular velocity, and the big toe angle. The contact angle indicates the maximum angle between the sole of the foot and the ground at heel contact. The take-off angle indicates the angle between the sole of the foot and the ground during the swing phase. The toe direction indicates the average value of the direction of the toe relative to the direction of travel during the swing phase. The heel contact roll angle is the angle between the ankle and the ground at heel contact as viewed from a rear perspective. The toe off roll angle is the angle between the ankle and the ground at push-off as viewed from a rear perspective. The swing leg peak angular velocity is the angular velocity in the ankle dorsiflexion direction in the section from immediately after push-off until the toe comes closest to the ground. The hallux angle indicates the angle at which the big toe is tilted toward the index toe. Specifically, the hallux angle is the angle between the center line of the first metatarsal bone and the center line of the first proximal phalanx.

 例えば、歩容指標計算部123は、歩容指標として、速度に関する指標を計算する。例えば、歩容指標計算部123は、歩行速度や、ケイデンス、遊脚時最大速度を計算する。歩行速度は、歩行における速さを示す。ケイデンスは、1分間当たりの歩数を示す。遊脚時最大速度は、遊脚相において足を振り出す速度を示す。 For example, the gait index calculation unit 123 calculates an index related to speed as a gait index. For example, the gait index calculation unit 123 calculates walking speed, cadence, and maximum swing speed. Walking speed indicates the walking speed. Cadence indicates the number of steps per minute. Maximum swing speed indicates the speed at which the leg is swung out during the swing phase.

 例えば、歩容指標計算部123は、歩容指標として、時間に関する指標を計算する。例えば、歩容指標計算部123は、立脚時間や、荷重時間、足底接地時間、蹴り出し時間、遊脚時間、DST(Double Support Time)を計算する。立脚時間は、歩行中に足が地面に接地している時間を示す。立脚時間は、荷重時間、足底接地時間、および蹴り出し時間の和である。荷重時間は、立脚相において、踵が地面に接地してから爪先が地面に接地するまでの時間である。足底接地時間は、立脚相において、足底全体が地面に接地して、足底と地面が水平になっている時間である。蹴り出し時間は、立脚相において、足底接地の状態から爪先が地面を蹴り出すまでの時間である。遊脚時間は、歩行中に、足が地面から離れている時間を示す。DSTは、DST1とDST2に分けられる。DST1は、両足が同時に地面に接地している期間において、計測装置10(センサ110)の実装された方の足が反対足よりも前方にある時間を示す。DST2は、両足が同時に地面に接地している期間において、計測装置10(センサ110)の実装された方の足が反対足よりも後方にある時間を示す。 For example, the gait index calculation unit 123 calculates time-related indices as gait indices. For example, the gait index calculation unit 123 calculates stance time, load time, sole contact time, push-off time, swing time, and DST (Double Support Time). Stance time indicates the time that the foot is on the ground while walking. Stance time is the sum of load time, sole contact time, and push-off time. Load time is the time from when the heel touches the ground until the toe touches the ground during the stance phase. Sole contact time is the time during the stance phase when the entire sole of the foot is on the ground and the sole of the foot is horizontal to the ground. Push-off time is the time from when the sole of the foot is on the ground until the toe pushes off the ground during the stance phase. Swing time indicates the time that the foot is off the ground while walking. DST is divided into DST1 and DST2. DST1 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is in front of the other foot during a period when both feet are on the ground at the same time. DST2 indicates the time during which the foot on which the measuring device 10 (sensor 110) is mounted is behind the other foot during a period when both feet are on the ground at the same time.

 例えば、歩容指標計算部123は、歩容指標として、フレイルレベルやCPEI(Center of Pressure Exclusion Index)を計算する。フレイルレベルは、歩行状態に応じたフレイル状態の推定値である。例えば、歩容指標計算部123は、フレイルレベルとして、健康を示す判定結果R1、フレイルの可能性を示す判定結果R2、フレイルの可能性が高い判定結果R3などの指標を推定する。CPEIは、立脚相の期間中に地面にかかる足圧中心部の移動の膨らむ割合の推定値を示す。 For example, the gait index calculation unit 123 calculates a frailty level and a center of pressure exclusion index (CPEI) as the gait index. The frailty level is an estimated value of a frailty state according to a walking state. For example, the gait index calculation unit 123 estimates an index such as a judgment result R1 indicating health, a judgment result R2 indicating a possibility of frailty, and a judgment result R3 indicating a high possibility of frailty as the frailty level. The CPEI indicates an estimated value of a swelling rate of the movement of the center of foot pressure applied to the ground during the stance phase.

 記憶部124(記憶手段)は、歩行波形データから抽出された身体能力特徴量を用いて身体能力を推定する身体能力推定モデル(後述する)を記憶する。例えば、身体能力は、握力、動的バランス、下肢筋力、移動能力、および静的バランスのうち少なくともいずれかである。身体能力は、握力、動的バランス、下肢筋力、移動能力、および静的バランス以外が含まれてもよい。記憶部124は、複数の被験者に関して学習された身体能力推定モデルを記憶する。例えば、身体能力推定モデルは、歩行波形データから抽出された身体能力特徴量の入力に応じて、身体能力に関する指標(身体能力スコア)を出力する。疾病リスクの推定において身体能力が用いられない場合は、身体能力推定モデルは省略できる。 The memory unit 124 (storage means) stores a physical ability estimation model (described later) that estimates physical ability using physical ability features extracted from the walking waveform data. For example, the physical ability is at least one of grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance. The physical ability may include other than grip strength, dynamic balance, lower limb muscle strength, mobility, and static balance. The memory unit 124 stores physical ability estimation models trained for multiple subjects. For example, the physical ability estimation model outputs an index of physical ability (physical ability score) in response to input of physical ability features extracted from the walking waveform data. If physical ability is not used in estimating disease risk, the physical ability estimation model can be omitted.

 また、記憶部124は、属性データ、歩容指標、および身体能力スコアを用いて疾病リスクを推定する疾病リスク推定モデル(後述する)を記憶する。疾病リスクは、特定疾病にかかるリスクを示す。例えば、特定疾病には、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などが含まれる。例えば、特定疾病には、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などが含まれる。特定疾病には、上述以外の疾病が含まれてもよい。記憶部124は、複数の被験者に関して学習された疾病リスク推定モデルを記憶する。例えば、疾病リスク推定モデルは、属性データ、歩容指標、および身体能力スコアの入力に応じて、疾病リスクに関する指標(疾病リスクスコア)を出力する。例えば、疾病リスク推定モデルは、身体能力スコアを用いずに、歩容指標および属性データの入力に応じて、疾病リスクスコアを出力するモデルであってもよい。その場合、身体能力推定モデルが用いられなくてもよい。 The storage unit 124 also stores a disease risk estimation model (described later) that estimates disease risk using attribute data, gait index, and physical ability score. The disease risk indicates the risk of contracting a specific disease. For example, the specific diseases include gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, the specific diseases include lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome. The specific diseases may include diseases other than those mentioned above. The storage unit 124 stores disease risk estimation models learned for multiple subjects. For example, the disease risk estimation model outputs an index related to disease risk (disease risk score) in response to input of attribute data, gait index, and physical ability score. For example, the disease risk estimation model may be a model that outputs a disease risk score in response to input of gait index and attribute data without using a physical ability score. In that case, the physical ability estimation model may not be used.

 また、記憶部124は、管理対象者に関する疾病リスクの入力に応じて、その管理対象者に対する健康施策を出力する健康施策推定モデルを記憶する。例えば、健康施策推定モデルは、疾病リスクスコアおよび健康施策のデータセットを教師データとして学習させたモデルである。例えば、健康施策推定モデルは、疾病リスクスコアの入力に応じて、産業医や保健師、理学療法士、医師、看護師などの専門家のアドバイスやコメントを含む情報を出力するように訓練されたモデルである。健康施策は、個人の疾病リスクに向けられた健康施策であってもよいし、複数の管理対象者の疾病リスクに向けられた健康施策であってもよい。例えば、健康施策推定モデルは、複数の管理対象者に関する疾病リスクの入力に応じて、それらの管理対象者に対する企業としての健康施策を出力するモデルであってもよい。例えば、健康施策推定モデルは、企業ごとにカスタマイズされたモデルであってもよい。例えば、企業としての健康施策は、その企業の働き方に応じた健康に関する施策を含んでもよい。例えば、健康施策推定モデルは、企業の働き方に応じてカスタマイズされたモデルであってもよい。例えば、健康施策推定モデルは、複数の管理対象者に関する疾病リスクの入力に応じて、企業としての健康施策を含む文章を出力する大規模言語モデルを含んでもよい。 The storage unit 124 also stores a health measure estimation model that outputs health measures for a managed person in response to an input of a disease risk related to the managed person. For example, the health measure estimation model is a model that has been trained using a disease risk score and a data set of health measures as teacher data. For example, the health measure estimation model is a model that has been trained to output information including advice and comments from experts such as industrial physicians, public health nurses, physical therapists, doctors, and nurses in response to an input of a disease risk score. The health measures may be health measures directed at individual disease risks, or health measures directed at disease risks of multiple managed persons. For example, the health measure estimation model may be a model that outputs corporate health measures for multiple managed persons in response to an input of disease risks related to the multiple managed persons. For example, the health measure estimation model may be a model customized for each company. For example, the corporate health measures may include health measures according to the working style of the company. For example, the health measure estimation model may be a model customized according to the working style of the company. For example, the health measure estimation model may include a large-scale language model that outputs sentences including corporate health measures in response to an input of disease risks related to multiple managed persons.

 記憶部124は、複数の被験者に関して学習された身体能力推定モデル、疾病リスク推定モデル、および健康施策推定モデルを記憶する。例えば、身体能力推定モデル、疾病リスク推定モデル、および健康施策推定モデルは、製品の工場出荷時において、記憶部124に記憶させておけばよい。身体能力推定モデル、疾病リスク推定モデル、および健康施策推定モデルは、情報生成装置12のキャリブレーションのタイミングにおいて、記憶部124に記憶させてもよい。例えば、外部のサーバ等の記憶装置(図示しない)に保存された身体能力推定モデル、疾病リスク推定モデル、および健康施策推定モデルが用いられてもよい。その場合、記憶装置と接続されたインターフェース(図示しない)を介して、身体能力推定モデル、疾病リスク推定モデル、および健康施策推定モデルにアクセスできればよい。 The storage unit 124 stores the physical ability estimation model, disease risk estimation model, and health measure estimation model learned for multiple subjects. For example, the physical ability estimation model, disease risk estimation model, and health measure estimation model may be stored in the storage unit 124 when the product is shipped from the factory. The physical ability estimation model, disease risk estimation model, and health measure estimation model may be stored in the storage unit 124 at the timing of calibration of the information generating device 12. For example, the physical ability estimation model, disease risk estimation model, and health measure estimation model stored in a storage device (not shown) such as an external server may be used. In that case, it is sufficient to access the physical ability estimation model, disease risk estimation model, and health measure estimation model via an interface (not shown) connected to the storage device.

 また、記憶部124は、管理対象者の属性を記憶する。属性データは、性別、生年月日(年齢)、身長、および体重を含む。属性データは、任意のタイミングで更新されてもよい。さらに、記憶部124には、管理対象者の健康診断データを記憶してもよい。健康診断データは、疾病リスクスコアや健康施策の推定精度を向上させる要素になりうる。例えば、管理対象者の健康診断データは、雇入れ時健康診断や定期健康診断における法定項目に関する診断結果を含む。管理対象者の健康診断データは、雇入れ時健康診断や定期健康診断における法定項目以外の項目に関する診断結果を含んでもよい。 The storage unit 124 also stores attributes of the managed persons. The attribute data includes gender, date of birth (age), height, and weight. The attribute data may be updated at any time. Furthermore, the storage unit 124 may store health check data of the managed persons. The health check data can be a factor in improving the accuracy of estimating disease risk scores and health measures. For example, the health check data of the managed persons includes diagnostic results for statutory items in the health check at the time of employment and regular health checks. The health check data of the managed persons may also include diagnostic results for items other than statutory items in the health check at the time of employment and regular health checks.

 身体能力推定部125(身体能力推定手段)は、歩行波形データから抽出された身体能力特徴量を波形処理部122から取得する。また、身体能力推定部125は、記憶部124に記憶された属性を取得する。身体能力推定部125は、身体能力特徴量および属性を用いて、身体能力スコアを推定する。身体能力推定部125は、記憶部124に記憶された身体能力推定モデルに、管理対象者の身体能力特徴量と属性を入力する。例えば、身体能力推定部125は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスのうち少なくともいずれかの身体能力に関する身体能力スコアを推定する。身体能力推定部125による身体能力スコアの推定に関しては、後述する。身体能力推定部125は、身体能力推定モデルから出力される身体能力スコアを、疾病リスク推定部126に出力する。 The physical ability estimation unit 125 (physical ability estimation means) acquires physical ability features extracted from the walking waveform data from the waveform processing unit 122. The physical ability estimation unit 125 also acquires attributes stored in the memory unit 124. The physical ability estimation unit 125 estimates a physical ability score using the physical ability features and attributes. The physical ability estimation unit 125 inputs the physical ability features and attributes of the managed person to a physical ability estimation model stored in the memory unit 124. For example, the physical ability estimation unit 125 estimates a physical ability score related to at least one of the physical abilities of grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. The estimation of the physical ability score by the physical ability estimation unit 125 will be described later. The physical ability estimation unit 125 outputs the physical ability score output from the physical ability estimation model to the disease risk estimation unit 126.

 次に、身体能力推定部125による身体能力スコアの推定例について一例をあげて説明する。ここでは、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスの推定に用いられる特徴量の一例について説明する。なお、以下にあげる例は、身体能力推定部125によって推定される身体能力を限定するものではない。身体能力推定部125によって推定される身体能力は、疾病リスクの推定対象である疾病に応じて、適宜選択されればよい。なお、身体能力スコアを用いずに、歩容指標および属性データを用いて疾病リスクを推定するように、疾病リスク推定部126が構成されてもよい。その場合、推定部14から身体能力推定部125が省かれてもよい。 Next, an example of the estimation of the physical ability score by the physical ability estimation unit 125 will be described. Here, an example of the feature values used to estimate grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance will be described. Note that the following example does not limit the physical ability estimated by the physical ability estimation unit 125. The physical ability estimated by the physical ability estimation unit 125 may be appropriately selected depending on the disease for which the disease risk is to be estimated. Note that the disease risk estimation unit 126 may be configured to estimate the disease risk using the gait index and attribute data without using the physical ability score. In that case, the physical ability estimation unit 125 may be omitted from the estimation unit 14.

 <握力(全身の総合筋力)>
 身体能力の1つである握力と全身の総合筋力との間には、相関関係がある。また、握力は、膝伸展力との間にも相関関係がある。例えば、握力の推定値は、総合筋力の指標である。例えば、握力の推定値に応じたスコア(総合筋力スコアとも呼ぶ)が、総合筋力の指標である。総合筋力スコアは、総合筋力の指標である握力が、予め設定された基準で点数化された値である。握力は、性別や年齢、身長などの属性の影響を受ける。そのため、総合筋力スコアは、属性ごとの基準で点数化されてもよい。特に、握力は、性別の影響を受ける。そのため、総合筋力スコアは、性別に応じて異なる基準で点数化されてもよい。なお、総合筋力の指標は、総合筋力をスコア化できれば、握力に限定されない。
<Grip strength (total muscle strength of the whole body)>
There is a correlation between grip strength, which is one of the physical abilities, and the total muscle strength of the whole body. Grip strength is also correlated with knee extension strength. For example, an estimated value of grip strength is an index of total muscle strength. For example, a score according to an estimated value of grip strength (also called a total muscle strength score) is an index of total muscle strength. The total muscle strength score is a value obtained by scoring grip strength, which is an index of total muscle strength, according to a preset criterion. Grip strength is affected by attributes such as gender, age, and height. Therefore, the total muscle strength score may be scored according to a criterion for each attribute. In particular, grip strength is affected by gender. Therefore, the total muscle strength score may be scored according to different criteria depending on gender. Note that the index of total muscle strength is not limited to grip strength as long as the total muscle strength can be scored.

 握力の推定に用いられる特徴量が抽出される歩行フェーズは、性別によって異なる。男性の場合、大腿四頭筋の活動と握力との間に相関がある。そのため、男性の握力の推定には、大腿四頭筋の活動の特徴が表れる歩行フェーズから抽出される特徴量が用いられる。女性の場合、大腿四頭筋の外側広筋、中間広筋、および内側広筋の活動と握力との間に相関がある。そのため、女性の握力の推定には、外側広筋、中間広筋、および内側広筋の活動の特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The walking phase from which the features used to estimate grip strength are extracted differs depending on gender. For men, there is a correlation between quadriceps activity and grip strength. Therefore, to estimate men's grip strength, features extracted from walking phases in which the characteristics of quadriceps activity are apparent are used. For women, there is a correlation between grip strength and activity of the vastus lateralis, vastus intermedius, and vastus medialis muscles of the quadriceps. Therefore, to estimate women's grip strength, features extracted from walking phases in which the characteristics of vastus lateralis, vastus intermedius, and vastus medialis muscles are apparent are used.

 男性の握力の推定には、特徴量AM1、特徴量AM2、特徴量AM3、および特徴量AM4が用いられる。特徴量AM1は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データの歩行フェーズ3%の区間から抽出される。歩行フェーズ3%は、立脚初期T1に含まれる。特徴量AM1には、主に、大腿四頭筋のうち外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。特徴量AM2は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データの歩行フェーズ59~62%の区間から抽出される。歩行フェーズ59~62%は、遊脚前期T4に含まれる。特徴量AM2には、主に、大腿四頭筋のうち大腿直筋の動きに関する特徴が含まれる。特徴量AM3は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データの歩行フェーズ59~62%の区間から抽出される。歩行フェーズ59~62%は、遊脚前期T4に含まれる。特徴量AM3には、主に、大腿四頭筋のうち大腿直筋の動きに関する特徴が含まれる。特徴量AM4は、両足が地面に同時に接地している期間のうち、踵接地から反対足爪先離地までの期間の割合(DST1)である。DST1は、一歩行周期における、踵接地から反対足爪先離地までの期間の割合である。特徴量AM4には、主に、大腿四頭筋に起因する特徴が含まれる。 Features AM1, AM2, AM3, and AM4 are used to estimate the grip strength of a man. Feature AM1 is extracted from the 3% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 3% walking phase is included in the initial stance phase T1. Feature AM1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis, which are among the quadriceps muscles. Feature AM2 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 59-62% walking phase is included in the early swing phase T4. Feature AM2 mainly includes features related to the movement of the rectus femoris, which is among the quadriceps muscles. Feature AM3 is extracted from the 59-62% walking phase section of the walking waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). 59-62% of the walking phase is included in the early swing phase T4. Feature AM3 mainly includes features related to the movement of the rectus femoris, which is one of the quadriceps muscles. Feature AM4 is the proportion of the period from heel-contact to toe-off of the opposite foot during the period when both feet are simultaneously on the ground (DST1). DST1 is the proportion of the period from heel-contact to toe-off of the opposite foot during one stride cycle. Feature AM4 mainly includes features attributable to the quadriceps muscles.

 女性の握力の推定には、特徴量AF1、特徴量AF2、および特徴量AF3が用いられる。特徴量AF1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データの歩行フェーズ13%の区間から抽出される。歩行フェーズ13%は、立脚中期T2に含まれる。特徴量AF1には、主に、大腿四頭筋のうち外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。特徴量AF2は、冠状面内(Y軸周り)の角速度(ピッチ角速度)の時系列データに関する歩行波形データの歩行フェーズ7~10%の区間から抽出される。歩行フェーズ7~10%は、立脚初期T1に含まれる。特徴量AF2には、主に、外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。特徴量AF3は、両足が地面に同時に接地している期間のうち、反対足踵接地から爪先離地までの期間の割合(DST2)である。DST2は、一歩行周期における、反対足踵接地から爪先離地までの期間の割合である。DST1とDST2の和が、一歩行周期において、両足が地面に同時に接地している期間に相当する。特徴量AF3には、主に、外側広筋、中間広筋、および内側広筋の動きに関する特徴が含まれる。 Feature AF1, feature AF2, and feature AF3 are used to estimate the grip strength of women. Feature AF1 is extracted from a 13% section of the walking phase of the walking waveform data related to the time series data of lateral acceleration (X-direction acceleration). The 13% walking phase is included in the mid-stance phase T2. Feature AF1 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis of the quadriceps. Feature AF2 is extracted from a 7-10% section of the walking phase of the walking waveform data related to the time series data of the angular velocity (pitch angular velocity) in the coronal plane (around the Y-axis). The 7-10% walking phase is included in the early stance phase T1. Feature AF2 mainly includes features related to the movement of the vastus lateralis, vastus intermedius, and vastus medialis. Feature AF3 is the proportion of the period from heel contact to toe-off of the opposite foot to the period during which both feet are simultaneously on the ground (DST2). DST2 is the ratio of the period from heel contact to toe-off of the opposite foot in a gait cycle. The sum of DST1 and DST2 corresponds to the period during which both feet are simultaneously in contact with the ground in a gait cycle. Feature AF3 mainly includes features related to the movements of the vastus lateralis, vastus intermedius, and vastus medialis.

 <動的バランス>
 身体能力の1つである動的バランスは、ファンクショナル・リーチ・テスト(FRT:Functional Reach Test)の成績によって評価できる。本開示では、両手を水平面に対して90度挙上して立位した状態から、可能な限り前方へ上肢を移動させた状態における指先間の距離(ファンクショナル・リーチ距離とも呼ぶ)で、FRTの成績を評価する。ファンクショナル・リーチ距離(以下、FR距離と呼ぶ)は、FRTの成績値である。FR距離が大きいほど、FRTの成績が高い。動的バランスは、両手で行われるFRT以外で評価されてもよい。例えば、動的バランスは、片手で行われるFRTや、その他のFRTのバリエーションに関する成績で評価されてもよい。
<Dynamic balance>
Dynamic balance, which is one of the physical abilities, can be evaluated by the results of a Functional Reach Test (FRT). In the present disclosure, the results of the FRT are evaluated by the distance between the fingertips (also called the functional reach distance) when the upper limbs are moved forward as far as possible from a standing position with both hands raised at 90 degrees relative to the horizontal plane. The functional reach distance (hereinafter, called the FR distance) is the FRT performance value. The larger the FR distance, the higher the FRT performance. The dynamic balance may be evaluated by something other than the FRT performed with both hands. For example, the dynamic balance may be evaluated by the performance of the FRT performed with one hand or other variations of the FRT.

 動的バランスの指標は、FR距離である。例えば、FR距離の推定値が、動的バランスの指標である。例えば、FR距離の推定値に応じたスコア(動的バランススコアとも呼ぶ)が、動的バランスの指標である。動的バランススコアは、動的バランスの指標であるFR距離を、予め設定された基準で点数化した値である。動的バランスは、身長などの属性の影響を受ける。そのため、動的バランススコアは、属性ごとの基準で点数化されてもよい。なお、動的バランスの指標は、動的バランスをスコア化できれば、FR距離に限定されない。FR距離は、中殿筋や腸骨筋、ハムストリングス(大腿二頭筋長頭)、前脛骨筋等の活動、および足先の向きを外側にする代償動作の大きさとの間に相関がある。そのため、FR距離の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The index of dynamic balance is the FR distance. For example, an estimated value of the FR distance is the index of dynamic balance. For example, a score according to the estimated value of the FR distance (also called the dynamic balance score) is the index of dynamic balance. The dynamic balance score is a value obtained by scoring the FR distance, which is an index of dynamic balance, using a preset criterion. Dynamic balance is affected by attributes such as height. Therefore, the dynamic balance score may be scored using a criterion for each attribute. Note that the index of dynamic balance is not limited to the FR distance as long as dynamic balance can be scored. The FR distance is correlated with the activity of the gluteus medius, iliac muscle, hamstrings (long head of biceps femoris), tibialis anterior muscle, etc., and the magnitude of the compensatory movement of turning the toes outward. Therefore, the feature quantity extracted from the walking phase in which these features appear is used to estimate the FR distance.

 FR距離の推定には、特徴量B1、特徴量B2、特徴量B3、特徴量B4、および特徴量B5が用いられる。特徴量B1は、進行方向加速度(Y方向加速度)の時系列データに関する歩行波形データの歩行フェーズ75-79%の区間から抽出される。歩行フェーズ75-79%は、遊脚中期T6に含まれる。特徴量B1には、主に、前脛骨筋や大腿二頭筋短頭の動きに関する特徴が含まれる。特徴量B2は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データの歩行フェーズ62%の区間から抽出される。歩行フェーズ62%は、遊脚初期T5に含まれる。特徴量B2には、主に、腸骨筋の動きに関する特徴が含まれる。特徴量B3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ7~8%の区間から抽出される。歩行フェーズ7~8%は、立脚初期T1に含まれる。特徴量B3には、主に、中殿筋の動きに関する特徴が含まれる。特徴量B4は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ57~58%の区間から抽出される。歩行フェーズ57~58%は、遊脚前期T4に含まれる。特徴量B4には、主に、代償動作に関する特徴が含まれる。代償動作は、加齢に伴うバランス能力や筋機能の低下を補うために、足角を変化させて安定性を獲得する動作である。特徴量B5は、遊脚相における水平面内における足角の平均値である。例えば、特徴量B5は、歩行波形データの遊脚相における平均値である。言い換えると、特徴量B5は、水平面内(Z軸周り)の角速度の時系列データに関する歩行波形データの積分値である。特徴量B5には、主に、代償動作に関する特徴が含まれる。 Features B1, B2, B3, B4, and B5 are used to estimate the FR distance. Feature B1 is extracted from the 75-79% walking phase of the gait waveform data related to the time series data of the acceleration in the forward direction (acceleration in the Y direction). The 75-79% walking phase is included in the mid-swing phase T6. Feature B1 mainly includes features related to the movement of the tibialis anterior and the short head of the biceps femoris. Feature B2 is extracted from the 62% walking phase of the gait waveform data related to the time series data of the acceleration in the vertical direction (acceleration in the Z direction). The 62% walking phase is included in the early swing phase T5. Feature B2 mainly includes features related to the movement of the iliacus. Feature B3 is extracted from the 7-8% walking phase of the gait waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis). The 7-8% walking phase is included in the early stance phase T1. The feature B3 mainly includes features related to the movement of the gluteus medius. The feature B4 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis). The walking phase 57-58% is included in the early swing phase T4. The feature B4 mainly includes features related to the compensatory movement. The compensatory movement is a movement to change the foot angle to obtain stability in order to compensate for the deterioration of balance ability and muscle function that occurs with aging. The feature B5 is the average value of the foot angle in the horizontal plane during the swing phase. For example, the feature B5 is the average value in the swing phase of the walking waveform data. In other words, the feature B5 is the integral value of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The feature B5 mainly includes features related to the compensatory movement.

 <下肢筋力>
 身体能力の1つである下肢筋力は、椅子立ち上がりテストの成績によって評価できる。本開示では、椅子の立ち座りを5回繰り返す5回椅子立ち上がりテストの成績を評価する。5回椅子立ち上がりテストのことを、SS-5(Sit to Stand-5)テストとも呼ぶ。5回椅子立ち上がりテストの成績は、椅子の立ち座りを5回繰り返す時間(立ち座り時間とも呼ぶ)で評価する。立ち座り時間は、SS-5テストの成績値である。立ち座り時間が短いほど、SS-5テストの成績が高い。30秒間における椅子の立ち座り動作回数を計測する30秒椅子立ち上がり(CS-30)テストの成績で評価されてもよい。
<Lower limb strength>
Lower limb muscle strength, which is one of the physical abilities, can be evaluated by the results of a chair stand test. In the present disclosure, the results of the 5-times chair stand test, in which the person stands up and sits down on a chair five times, are evaluated. The 5-times chair stand test is also called the SS-5 (Sit to Stand-5) test. The results of the 5-times chair stand test are evaluated based on the time it takes to stand up and sit down on a chair five times (also called the sit-to-stand time). The sit-to-stand time is the score value of the SS-5 test. The shorter the sit-to-stand time, the higher the score of the SS-5 test. The results may also be evaluated based on the results of a 30-second chair stand (CS-30) test, which measures the number of times the person stands up and sits down on a chair in 30 seconds.

 下肢筋力の指標は、立ち座り時間である。例えば、5回立ち座り時間の推定値が、下肢筋力の指標である。例えば、立ち座り時間の推定値に応じたスコア(下肢筋力スコアとも呼ぶ)が、下肢筋力の指標である。下肢筋力スコアは、下肢筋力の指標である立ち座り時間を、予め設定された基準で点数化した値である。下肢筋力は、年齢などの属性の影響を受ける。そのため、下肢筋力スコアは、属性ごとの基準で点数化されてもよい。なお、下肢筋力の指標は、下肢筋力をスコア化できれば、立ち座り時間に限定されない。立ち座り時間は、大腿四頭筋や、ハムストリングス、前脛骨筋、腓腹筋との間に相関がある。そのため、立ち座り時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The index of lower limb muscle strength is the sit-stand time. For example, an estimate of the sit-stand time five times is an index of lower limb muscle strength. For example, a score according to the estimate of the sit-stand time (also called the lower limb muscle strength score) is an index of lower limb muscle strength. The lower limb muscle strength score is a value obtained by scoring the sit-stand time, which is an index of lower limb muscle strength, using a preset criterion. Lower limb muscle strength is affected by attributes such as age. Therefore, the lower limb muscle strength score may be scored using a criterion for each attribute. Note that the index of lower limb muscle strength is not limited to the sit-stand time, as long as the lower limb muscle strength can be scored. The sit-stand time is correlated with the quadriceps, hamstrings, tibialis anterior, and gastrocnemius. Therefore, feature values extracted from the walking phase in which these features appear are used to estimate the sit-stand time.

 下肢筋力の推定には、特徴量C1、特徴量C2、特徴量C3、および特徴量C4が含まれる。特徴量C1は、矢状面内(X軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ42~54%の区間から抽出される。歩行フェーズ42~54%は、立脚終期T3から遊脚前期T4にかけた区間である。特徴量C1には、主に、腓腹筋の動きに関する特徴が含まれる。特徴量C2は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ99~100%の区間から抽出される。歩行フェーズ99~100%は、遊脚終期T7の終盤である。特徴量C2には、主に、大腿四頭筋やハムストリングス、前脛骨筋の動きに関する特徴が含まれる。特徴量C3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ10~12%の区間から抽出される。歩行フェーズ10~12%は、立脚中期T2の序盤である。特徴量C3には、主に、大腿四頭筋やハムストリングス、腓腹筋の動きに関する特徴が含まれる。特徴量C4は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ99%の区間から抽出される。歩行フェーズ99%は、遊脚終期T7の終盤である。特徴量C4には、主に、大腿四頭筋やハムストリングス、前脛骨筋の動きに関する特徴が含まれる。 The estimation of lower limb muscle strength includes feature C1, feature C2, feature C3, and feature C4. Feature C1 is extracted from the section of walking phase 42-54% of the walking waveform data related to the time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 42-54% is the section from the end of stance phase T3 to the early swing phase T4. Feature C1 mainly includes features related to the movement of the gastrocnemius. Feature C2 is extracted from the section of walking phase 99-100% of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). Walking phase 99-100% is the end of the end of swing phase T7. Feature C2 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior. Feature C3 is extracted from the 10% to 12% walking phase section of the walking waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). The 10% to 12% walking phase is the beginning of mid-stance phase T2. Feature C3 mainly includes features related to the movement of the quadriceps, hamstrings, and gastrocnemius. Feature C4 is extracted from the 99% walking phase section of the walking waveform data related to the time series data of angles (posture angles) in the horizontal plane (around the Z-axis). The 99% walking phase is the end of end-swing phase T7. Feature C4 mainly includes features related to the movement of the quadriceps, hamstrings, and tibialis anterior.

 <移動能力>
 身体能力の1つである移動能力は、TUG(Time Up and Go)テストの成績によって評価できる。本開示では、椅子から立ち上がり、3m(メートル)先の目印まで歩いて方向転換し、再び椅子に座るまでの時間(TUG所要時間とも呼ぶ)で、TUGテストの成績を評価する。TUG所要時間は、TUGテストの成績値である。TUG所要時間が短いほど、TUGテストの成績が高い。移動能力は、TUGテスト以外の移動能力に関するテストの成績で評価されてもよい。
<Movement Ability>
Mobility, which is one of the physical abilities, can be evaluated by the results of a TUG (Time Up and Go) test. In the present disclosure, the results of the TUG test are evaluated based on the time it takes to stand up from a chair, walk to a landmark 3 meters away, change direction, and sit back down on the chair (also called the TUG time). The TUG time is the score value of the TUG test. The shorter the TUG time, the higher the score of the TUG test. Mobility may be evaluated by the score of a test related to mobility other than the TUG test.

 移動能力の指標は、TUG所要時間である。例えば、TUG所要時間の推定値が、移動能力の指標である。例えば、TUG所要時間の推定値に応じたスコア(移動能力スコアとも呼ぶ)が、移動能力の指標である。移動能力スコアは、移動能力の指標であるTUG所要時間を、予め設定された基準で点数化した値である。移動能力は、年齢などの属性の影響を受ける。そのため、移動能力スコアは、属性ごとの基準で点数化されてもよい。なお、移動能力の指標は、移動能力をスコア化できれば、TUG所要時間に限定されない。TUG所要時間は、大腿四頭筋や、中殿筋、前脛骨筋との間に相関がある。そのため、TUG所要時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The index of mobility is the time required for TUG. For example, an estimate of the time required for TUG is an index of mobility. For example, a score according to the estimate of the time required for TUG (also called a mobility score) is an index of mobility. The mobility score is a value obtained by scoring the time required for TUG, which is an index of mobility, using a preset criterion. Mobility is affected by attributes such as age. Therefore, the mobility score may be scored using a criterion for each attribute. Note that the index of mobility is not limited to the time required for TUG, as long as mobility can be scored. The time required for TUG is correlated with the quadriceps, gluteus medius, and tibialis anterior. Therefore, feature quantities extracted from the walking phase in which these features appear are used to estimate the time required for TUG.

 移動能力の推定には、特徴量D1、特徴量D2、特徴量D3、特徴量D4、特徴量D5、および特徴量D6が用いられる。特徴量D1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データの歩行フェーズ64~65%の区間から抽出される。歩行フェーズ64~65%は、遊脚初期T5に含まれる。特徴量D1には、主に、立ち座り動作における大腿四頭筋の動きに関する特徴が含まれる。特徴量D2は、矢状面内(X軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ57~58%の区間から抽出される。歩行フェーズ57~58%は、遊脚前期T4に含まれる。特徴量D2には、主に、足の蹴り出し速度に関連する大腿四頭筋の動きに関する特徴が含まれる。特徴量D3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ19~20%の区間から抽出される。歩行フェーズ19~20%は、立脚中期T2に含まれる。特徴量D3には、主に、方向転換における中殿筋の動きに関する特徴が含まれる。特徴量D4は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ12~13%の区間から抽出される。歩行フェーズ12~13%は、立脚中期T2の序盤である。特徴量D4には、主に、方向転換における中殿筋の動きに関する特徴が含まれる。特徴量D5は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ74~75%の区間から抽出される。歩行フェーズ74~75%は、遊脚中期T6の序盤である。特徴量D5には、主に、立ち座りおよび方向転換における前脛骨筋の動きに関する特徴が含まれる。特徴量D6は、冠状面内(Y軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ76~80%の区間から抽出される。歩行フェーズ76~80%は、遊脚中期T6に含まれる。特徴量D6には、主に、立ち座りおよび方向転換における前脛骨筋の動きに関する特徴が含まれる。 Feature amount D1, feature amount D2, feature amount D3, feature amount D4, feature amount D5, and feature amount D6 are used to estimate mobility. Feature amount D1 is extracted from the section of walking phase 64-65% of walking waveform data related to time series data of lateral acceleration (X-direction acceleration). Walking phase 64-65% is included in early swing phase T5. Feature amount D1 mainly includes features related to the movement of the quadriceps in the standing and sitting movements. Feature amount D2 is extracted from the section of walking phase 57-58% of walking waveform data related to time series data of angular velocity in the sagittal plane (around the X-axis). Walking phase 57-58% is included in early swing phase T4. Feature amount D2 mainly includes features related to the movement of the quadriceps related to the kicking speed of the foot. The feature amount D3 is extracted from a section of the walking phase 19-20% of the walking waveform data related to the time series data of the angular velocity in the coronal plane (around the Y axis). The walking phase 19-20% is included in the mid-stance phase T2. The feature amount D3 mainly includes features related to the movement of the gluteus medius muscle in the change of direction. The feature amount D4 is extracted from a section of the walking phase 12-13% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 12-13% is the beginning of the mid-stance phase T2. The feature amount D4 mainly includes features related to the movement of the gluteus medius muscle in the change of direction. The feature amount D5 is extracted from a section of the walking phase 74-75% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 74-75% is the beginning of the mid-swing phase T6. Feature D5 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction. Feature D6 is extracted from the section of the walking phase 76-80% of the walking waveform data related to the time series data of the angle (posture angle) in the coronal plane (around the Y axis). The walking phase 76-80% is included in the mid-swing phase T6. Feature D6 mainly includes features related to the movement of the tibialis anterior muscle when standing up, sitting down, and changing direction.

 <静的バランス>
 身体能力の1つである静的バランスは、片脚立位テストの成績によって評価できる。本開示では、目を閉じて、片脚を地面から5センチメートル(cm)挙上した状態を維持した時間(片脚立位時間とも呼ぶ)で、片脚立位テストの成績を評価する。片脚立位時間は、静的バランスの成績値である。片脚立位時間が大きいほど、静的バランスの成績が高い。静的バランスは、閉眼片脚立位テスト以外の成績で評価されてもよい。例えば、静的バランスは、目を開けた状態での片脚立位テスト(開眼片脚立位テスト)や、その他の片脚立位テストのバリエーションで評価されてもよい。
<Static balance>
Static balance, which is one of the physical abilities, can be evaluated by the performance of a one-leg standing test. In the present disclosure, the performance of the one-leg standing test is evaluated based on the time (also called the one-leg standing time) during which the eyes are closed and one leg is raised 5 centimeters (cm) from the ground. The one-leg standing time is a performance value of static balance. The longer the one-leg standing time, the higher the performance of static balance. Static balance may be evaluated by a performance other than the one-leg standing test with eyes closed. For example, static balance may be evaluated by a one-leg standing test with eyes open (one-leg standing test with eyes open) or other variations of the one-leg standing test.

 静的バランスの指標は、片脚立位時間である。例えば、片脚立位時間の推定値が、静的バランスの指標である。例えば、片脚立位時間の推定値に応じたスコア(静的バランススコアとも呼ぶ)が、静的バランスの指標である。静的バランススコアは、静的バランスの指標である片脚立位時間を、予め設定された基準で点数化した値である。静的バランスは、年齢や身長などの属性の影響を受ける。そのため、静的バランススコアは、属性ごとの基準で点数化されてもよい。なお、静的バランスの指標は、静的バランスをスコア化できれば、片脚立位時間に限定されない。片脚立位時間は、中殿筋や長内転筋、縫工筋、内外転筋肉群との間に相関がある。そのため、片脚立位時間の推定には、これらの特徴が表れる歩行フェーズから抽出される特徴量が用いられる。 The static balance index is the single leg standing time. For example, an estimate of the single leg standing time is an index of static balance. For example, a score according to the estimate of the single leg standing time (also called the static balance score) is an index of static balance. The static balance score is a value obtained by scoring the single leg standing time, which is an index of static balance, using a preset criterion. Static balance is affected by attributes such as age and height. Therefore, the static balance score may be scored using a criterion for each attribute. Note that the static balance index is not limited to the single leg standing time as long as the static balance can be scored. The single leg standing time is correlated with the gluteus medius, adductor longus, sartorius, and abductor and adductor muscles. Therefore, the feature values extracted from the walking phase in which these features appear are used to estimate the single leg standing time.

 静的バランスの推定には、特徴量E1、特徴量E2、特徴量E3、特徴量E4、特徴量E5、特徴量E6、および特徴量E7が用いられる。特徴量E1は、横方向加速度(X方向加速度)の時系列データに関する歩行波形データの歩行フェーズ13-19%の区間から抽出される。歩行フェーズ13-19%は、立脚中期T2に含まれる。特徴量E1には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E2は、垂直方向加速度(Z方向加速度)の時系列データに関する歩行波形データの歩行フェーズ95%の区間から抽出される。歩行フェーズ95%は、遊脚終期T7の終盤である。特徴量E2には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E3は、冠状面内(Y軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ64-65%の区間から抽出される。歩行フェーズ64-65%は、遊脚初期T5に含まれる。特徴量E3には、主に、長内転筋および縫工筋の動きに関する特徴が含まれる。特徴量E4は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ11-16%の区間から抽出される。歩行フェーズ11-16%は、立脚中期T2に含まれる。特徴量E4には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E5は、水平面内(Z軸周り)における角速度の時系列データに関する歩行波形データの歩行フェーズ57-58%の区間から抽出される。歩行フェーズ57-58%は、遊脚前期T4に含まれる。特徴量E5には、主に、長内転筋および縫工筋の動きに関する特徴が含まれる。特徴量E6は、水平面内(Z軸周り)における角度(姿勢角)の時系列データに関する歩行波形データの歩行フェーズ100%の区間から抽出される。歩行フェーズ100%は、遊脚終期T7から立脚初期T1に切り替わる踵接地のタイミングに相当する。歩行フェーズ100%における歩行波形データの特徴量は、足裏が接地した状態における足角に相当する。特徴量E6には、主に、中殿筋の動きに関する特徴が含まれる。特徴量E7は、遊脚相において足の中心軸が進行軸から最も離れたタイミングにおける、進行軸と足の距離(分回し量)である。特徴量E7は、管理対象者の身長で規格化された分回し量である。特徴量E7には、主に、内外転筋肉群の動きに関する特徴が含まれる。 Features E1, E2, E3, E4, E5, E6, and E7 are used to estimate static balance. Feature E1 is extracted from the 13-19% gait phase section of the gait waveform data related to the time series data of lateral acceleration (X-direction acceleration). The 13-19% gait phase is included in the mid-stance phase T2. Feature E1 mainly includes features related to the movement of the gluteus medius. Feature E2 is extracted from the 95% gait phase section of the gait waveform data related to the time series data of vertical acceleration (Z-direction acceleration). The 95% gait phase is the end of the end-swing phase T7. Feature E2 mainly includes features related to the movement of the gluteus medius. Feature E3 is extracted from the 64-65% gait phase section of the gait waveform data related to the time series data of angular velocity in the coronal plane (around the Y-axis). The walking phase 64-65% is included in the early swing phase T5. The feature amount E3 mainly includes features related to the movement of the adductor longus and sartorius. The feature amount E4 is extracted from the section of the walking phase 11-16% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 11-16% is included in the mid-stance phase T2. The feature amount E4 mainly includes features related to the movement of the gluteus medius. The feature amount E5 is extracted from the section of the walking phase 57-58% of the walking waveform data related to the time series data of the angular velocity in the horizontal plane (around the Z axis). The walking phase 57-58% is included in the early swing phase T4. The feature amount E5 mainly includes features related to the movement of the adductor longus and sartorius. The feature amount E6 is extracted from the section of the walking phase 100% of the walking waveform data related to the time series data of the angle (posture angle) in the horizontal plane (around the Z axis). The walking phase of 100% corresponds to the timing of heel contact when switching from the end of swing phase T7 to the beginning of stance phase T1. The feature value of the walking waveform data at the walking phase of 100% corresponds to the foot angle when the sole of the foot is in contact with the ground. Feature value E6 mainly includes features related to the movement of the gluteus medius. Feature value E7 is the distance between the axis of motion and the foot (circumflex over) at the timing when the central axis of the foot is farthest from the axis of motion during the swing phase. Feature value E7 is the amount of circular motion normalized by the height of the person to be managed. Feature value E7 mainly includes features related to the movement of the abductor and adductor muscles.

 図8は、身体能力を推定する身体能力推定モデル150の一例を示す概念図である。歩行波形データから抽出された特徴量は、身体能力を推定する身体能力推定モデル150に入力される。また、歩行波形データから抽出された特徴量データに加えて、管理対象者の属性が入力される。図8においては、身体能力推定モデル150に入力される属性を省略する。歩行波形データから抽出された身体能力特徴量の入力に応じて、身体能力推定モデル150は、身体能力に関連する身体能力スコアを出力する。図8の例において、身体能力推定モデル150は、握力推定モデル151、動的バランス推定モデル152、下肢筋力推定モデル153、移動能力推定モデル154、および静的バランス推定モデル155を含む。握力推定モデル151、動的バランス推定モデル152、下肢筋力推定モデル153、移動能力推定モデル154、および静的バランス推定モデル155の各々は、モデルの推定対象ごとのスコアを出力する。なお、身体能力推定モデル150は、身体能力ごとのモデルで構成されず、単一のモデルによって構成されてもよい。また、身体能力推定モデル150は、身体能力スコアではなく、握力やFR距離、立ち座り時間、TUG所要時間、片脚立位時間などの身体能力値であってもよい。 8 is a conceptual diagram showing an example of a physical ability estimation model 150 that estimates physical ability. The feature values extracted from the walking waveform data are input to the physical ability estimation model 150 that estimates physical ability. In addition to the feature value data extracted from the walking waveform data, the attributes of the managed person are input. In FIG. 8, the attributes input to the physical ability estimation model 150 are omitted. In response to the input of the physical ability feature values extracted from the walking waveform data, the physical ability estimation model 150 outputs a physical ability score related to the physical ability. In the example of FIG. 8, the physical ability estimation model 150 includes a grip strength estimation model 151, a dynamic balance estimation model 152, a lower limb muscle strength estimation model 153, a mobility estimation model 154, and a static balance estimation model 155. Each of the grip strength estimation model 151, the dynamic balance estimation model 152, the lower limb muscle strength estimation model 153, the mobility estimation model 154, and the static balance estimation model 155 outputs a score for each estimation target of the model. The physical ability estimation model 150 may be configured by a single model, not by a model for each physical ability. Also, the physical ability estimation model 150 may be a physical ability value such as grip strength, FR distance, standing and sitting time, TUG time, and one-legged standing time, instead of a physical ability score.

 握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3の入力に応じて、握力(全身の総合筋力)に関する握力スコアS1を出力する。例えば、握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3の入力に応じて、握力を出力するモデルであってもよい。例えば、握力推定モデル151は、男性用と女性用とで、異なるモデルであってもよい。総合筋力を推定するための身体能力特徴量の入力に応じて、握力の指標に関する推定結果が出力されれば、握力推定モデル151の推定結果には限定を加えない。例えば、握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3の入力に応じて、握力を出力するモデルであってもよい。例えば、握力推定モデル151は、特徴量AM1~AM4または特徴量AF1~AF3に加えて、年齢や身長などの属性データを用いて、握力を推定するモデルであってもよい。 The grip strength estimation model 151 outputs a grip strength score S1 related to grip strength (total muscle strength of the whole body) in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3. For example, the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3. For example, the grip strength estimation model 151 may be a different model for men and women. There are no limitations on the estimation result of the grip strength estimation model 151 as long as an estimation result related to a grip strength index is output in response to the input of a physical ability feature amount for estimating total muscle strength. For example, the grip strength estimation model 151 may be a model that outputs grip strength in response to the input of the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3. For example, the grip strength estimation model 151 may be a model that estimates grip strength using attribute data such as age and height in addition to the feature amounts AM1 to AM4 or the feature amounts AF1 to AF3.

 動的バランス推定モデル152は、特徴量B1~B5の入力に応じて、動的バランスに関する動的バランススコアS2を出力する。動的バランスを推定するための身体能力特徴量の入力に応じて、動的バランスの指標に関する推定結果が出力されれば、動的バランス推定モデル152の推定結果には限定を加えない。例えば、動的バランス推定モデル152は、特徴量B1~B5の入力に応じて、FR距離を出力するモデルであってもよい。例えば、動的バランス推定モデル152は、特徴量B1~B5に加えて、身長などの属性データを用いて、動的バランスを推定するモデルであってもよい。 The dynamic balance estimation model 152 outputs a dynamic balance score S2 related to dynamic balance in response to the input of the features B1 to B5. There are no limitations on the estimation results of the dynamic balance estimation model 152, so long as an estimation result related to a dynamic balance index is output in response to the input of the physical ability features for estimating dynamic balance. For example, the dynamic balance estimation model 152 may be a model that outputs the FR distance in response to the input of the features B1 to B5. For example, the dynamic balance estimation model 152 may be a model that estimates dynamic balance using attribute data such as height in addition to the features B1 to B5.

 下肢筋力推定モデル153は、特徴量C1~C4の入力に応じて、下肢筋力に関する下肢筋力スコアS3を出力する。下肢筋力を推定するための身体能力特徴量の入力に応じて、下肢筋力の指標に関する推定結果が出力されれば、下肢筋力推定モデル153の推定結果には限定を加えない。例えば、下肢筋力推定モデル153は、特徴量C1~C4の入力に応じて、下肢筋力に関する下肢筋力スコアS3を出力するモデルであってもよい。例えば、下肢筋力推定モデル153は、特徴量C1~C4に加えて、年齢などの属性データを用いて、動的バランスを推定するモデルであってもよい。 The lower limb muscle strength estimation model 153 outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4. There are no limitations on the estimation result of the lower limb muscle strength estimation model 153, so long as an estimation result related to an index of lower limb muscle strength is output in response to input of the physical ability features for estimating lower limb muscle strength. For example, the lower limb muscle strength estimation model 153 may be a model that outputs a lower limb muscle strength score S3 related to lower limb muscle strength in response to input of the features C1 to C4. For example, the lower limb muscle strength estimation model 153 may be a model that estimates dynamic balance using attribute data such as age in addition to the features C1 to C4.

 移動能力推定モデル154は、特徴量D1~D6の入力に応じて、移動能力に関する移動能力スコアS4を出力する。移動能力を推定するための身体能力特徴量の入力に応じて、移動能力の指標に関する推定結果が出力されれば、移動能力推定モデル154の推定結果には限定を加えない。例えば、移動能力推定モデル154は、特徴量D1~D6の入力に応じて、TUG所要時間を出力するモデルであってもよい。例えば、移動能力推定モデル154は、特徴量D1~D6に加えて、年齢などの属性データを用いて、移動能力を推定するモデルであってもよい。 The mobility estimation model 154 outputs a mobility score S4 related to mobility in response to the input of the features D1 to D6. There are no limitations on the estimation results of the mobility estimation model 154, so long as an estimation result related to a mobility index is output in response to the input of the physical ability features for estimating mobility. For example, the mobility estimation model 154 may be a model that outputs the TUG required time in response to the input of the features D1 to D6. For example, the mobility estimation model 154 may be a model that estimates mobility using attribute data such as age in addition to the features D1 to D6.

 静的バランス推定モデル155は、特徴量E1~E7の入力に応じて、静的バランスに関する静的バランススコアS5を出力する。静的バランスを推定するための身体能力特徴量の入力に応じて、静的バランスの指標に関する推定結果が出力されれば、静的バランス推定モデル155の推定結果には限定を加えない。例えば、静的バランス推定モデル155は、特徴量E1~E7の入力に応じて、片脚立位時間を出力するモデルであってもよい。例えば、静的バランス推定モデル155は、特徴量E1~E7に加えて、年齢や身長などの属性データを用いて、静的バランスを推定するモデルであってもよい。 The static balance estimation model 155 outputs a static balance score S5 related to static balance in response to the input of the features E1 to E7. There are no limitations on the estimation results of the static balance estimation model 155, so long as an estimation result related to a static balance index is output in response to the input of the physical ability features for estimating static balance. For example, the static balance estimation model 155 may be a model that outputs one-leg standing time in response to the input of the features E1 to E7. For example, the static balance estimation model 155 may be a model that estimates static balance using attribute data such as age and height in addition to the features E1 to E7.

 身体能力推定モデル150は、クラウドやサーバ等に構築された外部の記憶装置に保存されてもよい。その場合、身体能力推定部125は、記憶装置と接続されたインターフェース(図示しない)を介して、身体能力推定モデル150を用いる。身体能力推定モデル150は、機械学習モデルである。例えば、身体能力推定モデル150は、複数の被験者に関する属性および歩容指標を説明変数とし、身体能力に関するスコアを目的変数とするデータセットを教師データとして学習させたモデルである。身体能力推定モデル150は、複数の被験者に関する属性および歩行波形データを説明変数とし、身体能力に関するスコアを目的変数とするデータセットを教師データとして学習させたモデルであってもよい。例えば、身体能力推定モデル150は、3軸方向の加速度、3軸周りの角速度、3軸周りの角度(姿勢角)の歩行波形データが説明変数に含まれる教師データを学習させたモデルであってもよい。 The physical ability estimation model 150 may be stored in an external storage device constructed in a cloud or a server. In this case, the physical ability estimation unit 125 uses the physical ability estimation model 150 via an interface (not shown) connected to the storage device. The physical ability estimation model 150 is a machine learning model. For example, the physical ability estimation model 150 is a model trained on a data set using the attributes and gait indices of multiple subjects as explanatory variables and the physical ability score as the objective variable as teacher data. The physical ability estimation model 150 may be a model trained on a data set using the attributes and gait waveform data of multiple subjects as explanatory variables and the physical ability score as the objective variable as teacher data. For example, the physical ability estimation model 150 may be a model trained on teacher data including gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angle (posture angle) around three axes as explanatory variables.

 例えば、身体能力推定モデル150は、線形回帰のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、サポートベクターマシン(SVM:Support Vector Machine)のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、ガウス過程回帰(GPR:Gaussian Process Regression)のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、ランダムフォレスト(RF:Random Forest)のアルゴリズムを用いた学習によって生成されてもよい。例えば、身体能力推定モデル150は、身体能力特徴量に応じて、管理対象者の身体能力を分類する教師なし学習によって生成されてもよい。身体能力推定モデル150を学習させるアルゴリズムには、特に限定を加えない。 For example, the physical ability estimation model 150 may be generated by learning using a linear regression algorithm. For example, the physical ability estimation model 150 may be generated by learning using a support vector machine (SVM) algorithm. For example, the physical ability estimation model 150 may be generated by learning using a Gaussian process regression (GPR) algorithm. For example, the physical ability estimation model 150 may be generated by learning using a random forest (RF) algorithm. For example, the physical ability estimation model 150 may be generated by unsupervised learning that classifies the physical abilities of the managed person according to physical ability features. There are no particular limitations on the algorithm used to train the physical ability estimation model 150.

 疾病リスク推定部126(疾病リスク推定手段)は、身体能力推定部125によって推定された身体能力の推定結果(身体能力スコア)を取得する。また、疾病リスク推定部126は、歩容指標計算部123から歩容指標を取得する。さらに、疾病リスク推定部126は、管理対象者の属性データを記憶部124から取得する。疾病リスク推定部126は、身体能力スコア、歩容指標、および属性データを用いて、疾病ごとの疾病リスクを推定する。疾病リスク推定部126は、健康診断データを含めて、疾病ごとの疾病リスクを推定するように構成されてもよい。例えば、疾病リスク推定部126は、少なくとも歩容指標を用いて、疾病ごとの疾病リスクを推定するように構成されればよい。疾病リスク推定部126は、推定された疾病ごとの疾病リスクを管理対象者に対応付けて、記憶部124に記憶させる。管理対象者の疾病ごとの疾病リスクは、専用のデータベース(図示しない)に蓄積されてもよい。 The disease risk estimation unit 126 (disease risk estimation means) acquires the estimation result of the physical ability (physical ability score) estimated by the physical ability estimation unit 125. The disease risk estimation unit 126 also acquires the gait index from the gait index calculation unit 123. Furthermore, the disease risk estimation unit 126 acquires the attribute data of the managed person from the storage unit 124. The disease risk estimation unit 126 estimates the disease risk for each disease using the physical ability score, the gait index, and the attribute data. The disease risk estimation unit 126 may be configured to estimate the disease risk for each disease including the health check data. For example, the disease risk estimation unit 126 may be configured to estimate the disease risk for each disease using at least the gait index. The disease risk estimation unit 126 associates the estimated disease risk for each disease with the managed person and stores it in the storage unit 124. The disease risk for each disease of the managed person may be accumulated in a dedicated database (not shown).

 図9は、疾病リスク推定部126による疾病リスクの推定例を示す概念図である。疾病リスク推定部126は、特定疾病に関する疾病リスクの推定に用いられる属性データ、歩容指標、および身体能力スコアを、疾病リスク推定モデル160に入力する。疾病リスク推定モデル160には、特定疾病に関する疾病リスクの推定に用いられる属性データ、歩容指標、および身体能力スコアが入力される。属性データ、歩容指標、および身体能力スコアの入力に応じて、疾病リスク推定モデル160は、特定疾病に関する疾病リスクスコアを出力する。図9の例では、複数の疾病の各々に関して、疾病リスクスコアが推定されている。疾病リスク推定モデル160は、疾病ごとのモデルで構成されてもよいし、単一のモデルで構成されてもよい。身体能力スコアが用いられない場合、疾病リスク推定モデル160は、属性データおよび歩容指標の入力に応じて、特定疾病に関する疾病リスクスコアを出力するように構成されてもよい。 9 is a conceptual diagram showing an example of disease risk estimation by the disease risk estimation unit 126. The disease risk estimation unit 126 inputs attribute data, gait index, and physical ability score used to estimate the disease risk for a specific disease to the disease risk estimation model 160. The disease risk estimation model 160 receives the attribute data, gait index, and physical ability score used to estimate the disease risk for a specific disease. In response to the input of the attribute data, gait index, and physical ability score, the disease risk estimation model 160 outputs a disease risk score for a specific disease. In the example of FIG. 9, a disease risk score is estimated for each of a plurality of diseases. The disease risk estimation model 160 may be configured as a model for each disease, or as a single model. When a physical ability score is not used, the disease risk estimation model 160 may be configured to output a disease risk score for a specific disease in response to the input of the attribute data and gait index.

 例えば、疾病リスク推定モデル160は、生活習慣病などの特定疾病に関する疾病リスクスコアを出力する。例えば、疾病リスク推定モデル160は、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などの特定疾病に関する疾病リスクスコアを出力する。例えば、疾病リスク推定モデル160は、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などが含まれる。なお、疾病リスク推定モデル160は、上述以外の疾病に関する疾病リスクスコアを出力するように構成されてもよい。 For example, the disease risk estimation model 160 outputs a disease risk score for a specific disease such as a lifestyle-related disease. For example, the disease risk estimation model 160 outputs a disease risk score for a specific disease such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, the disease risk estimation model 160 includes lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome. The disease risk estimation model 160 may be configured to output a disease risk score for diseases other than those mentioned above.

 推定に用いられるデータが増えれば、疾病リスク推定モデル160による疾病リスクスコアの推定精度が向上する。例えば、疾病リスク推定モデル160は、健康診断データ、属性データ、歩容指標、および身体能力スコアの入力に応じて、特定疾病に関する疾病リスクスコアを出力するように構成される。健康診断データの項目に属性データが含まれる場合、疾病リスク推定モデル160は、健康診断データ、歩容指標、および身体能力スコアの入力に応じて、特定疾病に関する疾病リスクスコアを出力するように構成されてもよい。 As the amount of data used for estimation increases, the accuracy of the disease risk score estimation by the disease risk estimation model 160 improves. For example, the disease risk estimation model 160 is configured to output a disease risk score for a specific disease in response to inputs of health check data, attribute data, gait index, and physical ability score. When attribute data is included in the health check data items, the disease risk estimation model 160 may be configured to output a disease risk score for a specific disease in response to inputs of health check data, gait index, and physical ability score.

 疾病リスク推定モデル160は、クラウドやサーバ等に構築された外部の記憶装置に保存されてもよい。その場合、疾病リスク推定部126は、記憶装置と接続されたインターフェース(図示しない)を介して、疾病リスク推定モデル160を用いる。疾病リスク推定モデル160は、機械学習モデルである。例えば、疾病リスク推定モデル160は、複数の管理対象者に関する属性データ、歩容指標、および身体能力スコアを説明変数とし、特定の疾病に関する疾病リスクスコアを目的変数とするデータセットを教師データとして学習させたモデルである。例えば、疾病リスク推定モデル160は、3軸方向の加速度、3軸周りの角速度、3軸周りの角度(姿勢角)の歩行波形データが説明変数に含まれる教師データを用いて学習させたモデルであってもよい。 The disease risk estimation model 160 may be stored in an external storage device constructed in a cloud or a server. In this case, the disease risk estimation unit 126 uses the disease risk estimation model 160 via an interface (not shown) connected to the storage device. The disease risk estimation model 160 is a machine learning model. For example, the disease risk estimation model 160 is a model trained using a data set that uses attribute data, gait indices, and physical ability scores related to multiple managed persons as explanatory variables and a disease risk score related to a specific disease as a target variable as training data. For example, the disease risk estimation model 160 may be a model trained using training data in which gait waveform data of acceleration in three axial directions, angular velocity around three axes, and angles around three axes (posture angles) are included as explanatory variables.

 例えば、疾病リスク推定モデル160は、線形回帰のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、サポートベクターマシン(SVM:Support Vector Machine)のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、ガウス過程回帰(GPR:Gaussian Process Regression)のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、ランダムフォレスト(RF:Random Forest)のアルゴリズムを用いた学習によって生成される。例えば、疾病リスク推定モデル160は、属性データ、歩容指標、および身体能力スコアに応じて、管理対象者の疾病リスクを分類する教師なし学習によって生成されてもよい。疾病リスク推定モデル160を学習させるアルゴリズムには、特に限定を加えない。 For example, the disease risk estimation model 160 is generated by learning using a linear regression algorithm. For example, the disease risk estimation model 160 is generated by learning using a support vector machine (SVM) algorithm. For example, the disease risk estimation model 160 is generated by learning using a Gaussian process regression (GPR) algorithm. For example, the disease risk estimation model 160 is generated by learning using a random forest (RF) algorithm. For example, the disease risk estimation model 160 may be generated by unsupervised learning that classifies the disease risk of the managed person according to attribute data, gait index, and physical ability score. There are no particular limitations on the algorithm used to train the disease risk estimation model 160.

 例えば、疾病リスク推定モデル160は、不完全異種変分オートエンコーダやランダムフォレストなどの機械学習モデルであってもよい。不完全異種変分オートエンコーダであれば、属性データや、歩容指標、身体能力スコアなどに多少の欠損があっても、管理対象者の疾病リスクを推定できる。 For example, the disease risk estimation model 160 may be a machine learning model such as an incomplete heterogeneous variational autoencoder or a random forest. If an incomplete heterogeneous variational autoencoder is used, the disease risk of the managed individual can be estimated even if there are some missing data in the attribute data, gait index, physical ability score, etc.

 図10は、年平均レセプト発行数を推定する疾病リスク推定モデル165の一例を示す概念図である。疾病リスク推定部126は、属性データ、歩容指標、および身体能力スコアを疾病リスク推定モデル165に入力する。疾病リスク推定モデル165には、特定疾病に関する疾病リスクの推定に用いられる属性データ、歩容指標、および身体能力スコアが入力される。属性データ、歩容指標、および身体能力スコアの入力に応じて、疾病リスク推定モデル165は、特定疾病に関する年平均レセプト発行数を出力する。図10の例では、複数の疾病の各々に関して、年平均レセプト発行数が推定されている。疾病リスク推定部126は、疾病リスク推定モデル165から出力された年平均レセプト発行数を用いて、疾病リスクスコアを計算する。なお、疾病リスクスコアとして、年平均レセプト発行数が用いられてもよい。 10 is a conceptual diagram showing an example of a disease risk estimation model 165 that estimates the annual average number of receipts issued. The disease risk estimation unit 126 inputs attribute data, gait index, and physical ability score to the disease risk estimation model 165. The disease risk estimation model 165 receives attribute data, gait index, and physical ability score used to estimate the disease risk for a specific disease. In response to the input of the attribute data, gait index, and physical ability score, the disease risk estimation model 165 outputs the annual average number of receipts issued for a specific disease. In the example of FIG. 10, the annual average number of receipts issued is estimated for each of a plurality of diseases. The disease risk estimation unit 126 calculates a disease risk score using the annual average number of receipts issued output from the disease risk estimation model 165. The annual average number of receipts issued may be used as the disease risk score.

 ここで、年平均レセプト発行数を用いて、疾病リスク推定部126が疾病リスクスコアを計算する例について説明する。以下においては、3通りの計算例をあげる。なお、標準的な人の年平均レセプト発行数μ0が予め得られているものとする。疾病リスク推定モデル165は、管理対象者に関する属性データ、歩容指標、および身体能力スコアの入力に応じて、特定疾病に関する年平均レセプト発行数μを出力する。 Here, an example will be described in which the disease risk estimation unit 126 calculates a disease risk score using the average annual number of receipts issued. Three calculation examples will be given below. It is assumed that the average annual number of receipts issued for a standard person μ 0 has been obtained in advance. The disease risk estimation model 165 outputs the average annual number of receipts issued μ for a specific disease in response to input of attribute data on the managed person, gait index, and physical ability score.

 第1の手法において、疾病リスク推定部126は、疾病リスクスコアとして、標準的な人の年平均レセプト発行数μ0と、管理対象者に関して推定された年平均レセプト発行数μとの比を計算する。疾病リスク推定部126は、以下の式1を用いて、疾病リスクスコアRS1を計算する。 In the first method, the disease risk estimation unit 126 calculates, as the disease risk score, the ratio of the average annual number of medical receipts issued for a standard person μ0 to the average annual number of medical receipts issued for the managed person μ. The disease risk estimation unit 126 calculates the disease risk score RS1 using the following formula 1.

Figure JPOXMLDOC01-appb-M000001
第2の手法において、疾病リスク推定部126は、特定疾病に関する年平均レセプト発行数がポアソン分布に従うという仮定の下で、疾病リスクスコアを計算する。第2の手法において、疾病リスク推定部126は、標準的な人の年平均レセプト発行数の確率質量関数P0(X=k)と、管理対象者に関して推定された年平均レセプト発行数の確率質量関数P(X=k)との比を、疾病リスクスコアとして計算する(kは自然数)。疾病リスク推定部126は、以下の式2を用いて、疾病リスクスコアRS2を計算する。
Figure JPOXMLDOC01-appb-M000001
In the second method, the disease risk estimation unit 126 calculates the disease risk score under the assumption that the annual average number of receipts issued for a specific disease follows a Poisson distribution. In the second method, the disease risk estimation unit 126 calculates the disease risk score as the ratio of the probability mass function P0 (X=k) of the annual average number of receipts issued for a standard person to the probability mass function P(X=k) of the annual average number of receipts issued estimated for the managed person (k is a natural number). The disease risk estimation unit 126 calculates the disease risk score RS2 using the following formula 2.

Figure JPOXMLDOC01-appb-M000002
第3の手法において、疾病リスク推定部126は、特定疾病に関する年平均レセプト発行数のオッズ比を計算する。疾病リスク推定部126は、以下の式3を用いて、疾病リスクスコアRS3を計算する。
Figure JPOXMLDOC01-appb-M000002
In the third method, the disease risk estimation unit 126 calculates the odds ratio of the annual average number of receipts issued for a specific disease. The disease risk estimation unit 126 calculates a disease risk score RS3 using the following formula 3.

Figure JPOXMLDOC01-appb-M000003
なお、上記の3通りの計算例は、一例であって、年平均レセプト発行数を用いた疾病リスクスコアの計算方法を限定するものではない。疾病リスク推定部126は、年平均レセプト発行数以外の指標を用いて、疾病リスクスコアを計算するように構成されてもよい。
Figure JPOXMLDOC01-appb-M000003
The above three calculation examples are merely examples, and do not limit the method of calculating the disease risk score using the annual average number of medical receipts issued. The disease risk estimation unit 126 may be configured to calculate the disease risk score using an index other than the annual average number of medical receipts issued.

 提案情報生成部127は、管理対象者の疾病リスクスコアを取得する。例えば、提案情報生成部127は、複数の管理対象者に関して、特定疾患の疾病リスクスコアを取得する。例えば、提案情報生成部127は、複数の管理対象者に関して、複数の特定疾患の疾病リスクスコアを取得する。提案情報生成部127は、取得した複数の管理対象者の疾病リスクスコアを健康施策推定モデルに入力する。提案情報生成部127は、複数の管理対象者に関する疾病リスクスコアの入力に応じて健康施策推定モデルから出力される健康施策に応じた提案情報を生成する。 The proposed information generating unit 127 acquires disease risk scores for the managed persons. For example, the proposed information generating unit 127 acquires disease risk scores for specific diseases for multiple managed persons. For example, the proposed information generating unit 127 acquires disease risk scores for multiple specific diseases for multiple managed persons. The proposed information generating unit 127 inputs the acquired disease risk scores for the multiple managed persons into a health measure estimation model. The proposed information generating unit 127 generates proposed information according to health measures that are output from the health measure estimation model in response to the input of disease risk scores for the multiple managed persons.

 健康施策推定モデル170は、クラウドやサーバ等に構築された外部の記憶装置に保存されてもよい。その場合、提案情報生成部127は、記憶装置と接続されたインターフェース(図示しない)を介して、健康施策推定モデル170を用いる。健康施策推定モデル170は、機械学習モデルである。例えば、健康施策推定モデル170は、複数の被験者に関する疾病リスクスコアを説明変数とし、健康施策を目的変数とするデータセットを教師データとして学習させたモデルである。 The health measure estimation model 170 may be stored in an external storage device constructed in a cloud, a server, or the like. In this case, the proposal information generation unit 127 uses the health measure estimation model 170 via an interface (not shown) connected to the storage device. The health measure estimation model 170 is a machine learning model. For example, the health measure estimation model 170 is a model trained on a data set using disease risk scores for multiple subjects as explanatory variables and health measures as objective variables as training data.

 例えば、健康施策推定モデル170は、線形回帰のアルゴリズムを用いた学習によって生成される。例えば、健康施策推定モデル170は、サポートベクターマシン(SVM:Support Vector Machine)のアルゴリズムを用いた学習によって生成される。例えば、健康施策推定モデル170は、ガウス過程回帰(GPR:Gaussian Process Regression)のアルゴリズムを用いた学習によって生成される。例えば、健康施策推定モデル170は、ランダムフォレスト(RF:Random Forest)のアルゴリズムを用いた学習によって生成される。例えば、健康施策推定モデル170は、疾病リスクスコアに応じて、管理対象者の健康施策を分類する教師なし学習によって生成されてもよい。健康施策推定モデル170を学習させるアルゴリズムには、特に限定を加えない。 For example, the health policy estimation model 170 is generated by learning using a linear regression algorithm. For example, the health policy estimation model 170 is generated by learning using a support vector machine (SVM) algorithm. For example, the health policy estimation model 170 is generated by learning using a Gaussian process regression (GPR) algorithm. For example, the health policy estimation model 170 is generated by learning using a random forest (RF) algorithm. For example, the health policy estimation model 170 may be generated by unsupervised learning that classifies the health measures of the managed individuals according to their disease risk scores. There are no particular limitations on the algorithm used to train the health policy estimation model 170.

 例えば、健康施策推定モデル170は、不完全異種変分オートエンコーダやランダムフォレストなどの機械学習モデルであってもよい。不完全異種変分オートエンコーダであれば、疾病リスクスコアに多少の欠損があっても、管理対象者の健康施策を推定できる。 For example, the health measure estimation model 170 may be a machine learning model such as an incomplete heterogeneous variational autoencoder or a random forest. If an incomplete heterogeneous variational autoencoder is used, it is possible to estimate the health measures of the managed individual even if there are some gaps in the disease risk score.

 図11は、健康施策推定モデル170を用いた健康施策の推定例を示す概念図である。提案情報生成部127は、複数の管理対象者1~Mに関する疾病リスクスコアを健康施策推定モデル170に入力する(Mは自然数)。複数の管理対象者1~Mに関する疾病リスクスコアの入力に応じて、健康施策推定モデル170は、少なくとも一つの健康施策1~Nを出力する(Nは自然数)。図11の例では、ある特定疾患に関する疾病リスクスコアの入力に応じて、健康施策推定モデル170が少なくとも一つの健康施策1~Nを出力する。複数の特定疾患に関する疾病リスクスコアの入力に応じて、少なくとも一つの健康施策1~Nを出力するように、健康施策推定モデル170が構成されてもよい。また、ある管理対象者に関する少なくとも一つの特定疾患に関する疾病リスクスコアの入力に応じて、少なくとも一つの健康施策1~Nを出力するように、健康施策推定モデル170が構成されてもよい。 11 is a conceptual diagram showing an example of estimating a health measure using the health measure estimation model 170. The proposal information generation unit 127 inputs disease risk scores for multiple managed persons 1 to M to the health measure estimation model 170 (M is a natural number). In response to the input of disease risk scores for multiple managed persons 1 to M, the health measure estimation model 170 outputs at least one health measure 1 to N (N is a natural number). In the example of FIG. 11, the health measure estimation model 170 outputs at least one health measure 1 to N in response to the input of a disease risk score for a specific disease. The health measure estimation model 170 may be configured to output at least one health measure 1 to N in response to the input of disease risk scores for multiple specific diseases. The health measure estimation model 170 may also be configured to output at least one health measure 1 to N in response to the input of a disease risk score for at least one specific disease for a managed person.

 例えば、提案情報生成部127は、管理対象者が所属する企業に向けて、少なくとも一つの健康施策を含む提案情報を生成する。例えば、提案情報生成部127は、予め設定された文書フォーマットに施策を当てはめて、提案情報を生成する。例えば、提案情報生成部127は、大規模言語モデルを用いて提案情報を生成してもよい。企業側の健康管理担当者は、提案情報の取得に応じて、その提案情報に応じたアクションを取ることができる。 For example, the proposed information generation unit 127 generates proposed information including at least one health measure for the company to which the managed person belongs. For example, the proposed information generation unit 127 applies the measure to a preset document format to generate the proposed information. For example, the proposed information generation unit 127 may generate the proposed information using a large-scale language model. Upon obtaining the proposed information, the company's health management officer can take action according to the proposed information.

 例えば、提案情報生成部127は、体操の音楽を定期的に放送したり、終業時刻になったら帰宅を促す音声を放送したりする健康施策を含む提案情報を生成する。例えば、提案情報生成部127は、終業時刻になったら就業フロアの照明を消灯する健康施策を含む提案情報を生成する。例えば、提案情報生成部127は、企業に対して、売店の食品の塩分を減らす提案を含む提案情報を生成する。例えば、提案情報生成部127は、食堂のメニューや、喫煙所の開閉時間に関する健康施策を含む提案情報を生成する。例えば、提案情報生成部127は、管理対象者である従業員に対して、カップ麺を減らしてサラダを増やす提案を含む提案情報を生成する。例えば、提案情報生成部127は、管理対象者である従業員の運動を促すために、エレベータの使用を制限することを薦める提案を含む提案情報を生成する。例えば、提案情報生成部127は、企業経営にかかわるレベルの健康施策を生成してもよい。例えば、提案情報生成部127は、管理対象者である従業員の疾病リスクの変化に応じて、企業の財務指標が視覚化された情報を生成してもよい。 For example, the proposal information generating unit 127 generates proposal information including a health measure such as periodically broadcasting music for exercises or broadcasting a voice encouraging employees to go home when it is time to finish work. For example, the proposal information generating unit 127 generates proposal information including a health measure such as turning off the lights on the work floor when it is time to finish work. For example, the proposal information generating unit 127 generates proposal information including a proposal to the company to reduce the salt content of food at the convenience store. For example, the proposal information generating unit 127 generates proposal information including health measures related to cafeteria menus and opening and closing times of smoking areas. For example, the proposal information generating unit 127 generates proposal information including a proposal to reduce cup noodles and increase salads for employees who are subject to management. For example, the proposal information generating unit 127 generates proposal information including a proposal to limit the use of elevators in order to encourage employees who are subject to management to exercise. For example, the proposal information generating unit 127 may generate health measures at a level related to corporate management. For example, the proposal information generating unit 127 may generate information in which the financial indicators of the company are visualized according to changes in the disease risk of employees who are subject to management.

 出力部129(出力手段)は、提案情報生成部127によって推定された健康施策を含む提案情報を出力する。例えば、出力部129は、管理対象者が所属する企業が管理する端末装置やサーバに、提案情報を出力する。例えば、出力部129は、管理対象者の携帯端末の画面に、提案情報を表示させてもよい。例えば、出力部129は、提案情報を使用する外部システム等に対して、その提案情報を出力してもよい。出力された提案情報の使用に関しては、特に限定を加えない。例えば、提案情報は、統計分析や疾病予防の研究などに用いられてもよい。 The output unit 129 (output means) outputs the proposed information including the health measures estimated by the proposed information generation unit 127. For example, the output unit 129 outputs the proposed information to a terminal device or a server managed by the company to which the managed person belongs. For example, the output unit 129 may display the proposed information on the screen of the managed person's mobile terminal. For example, the output unit 129 may output the proposed information to an external system or the like that uses the proposed information. There are no particular limitations on the use of the output proposed information. For example, the proposed information may be used for statistical analysis, research on disease prevention, and the like.

 例えば、情報生成装置12は、管理対象者が携帯する携帯端末(図示しない)を介して、クラウドやサーバに構築された外部システム等に接続される。携帯端末は、携帯可能な通信機器である。例えば、携帯端末は、スマートフォンや、スマートウォッチ、携帯電話等の通信機能を有する携帯型の通信機器である。例えば、情報生成装置12は、無線通信を介して、携帯端末に接続される。例えば、情報生成装置12は、Bluetooth(登録商標)やWiFi(登録商標)などの規格に則した無線通信機能(図示しない)を介して、携帯端末に接続される。なお、情報生成装置12の通信機能は、Bluetooth(登録商標)やWiFi(登録商標)以外の規格に則していてもよい。例えば、情報生成装置12は、ケーブルなどの有線を介して、携帯端末に接続されてもよい。提案情報は、携帯端末にインストールされたアプリケーションによって使用されてもよい。その場合、携帯端末は、その携帯端末にインストールされたアプリケーションソフトウェア等によって、提案情報を用いた処理を実行する。 For example, the information generating device 12 is connected to an external system built on a cloud or a server via a mobile terminal (not shown) carried by the person to be managed. The mobile terminal is a portable communication device. For example, the mobile terminal is a portable communication device having a communication function such as a smartphone, a smart watch, or a mobile phone. For example, the information generating device 12 is connected to the mobile terminal via wireless communication. For example, the information generating device 12 is connected to the mobile terminal via a wireless communication function (not shown) conforming to a standard such as Bluetooth (registered trademark) or WiFi (registered trademark). Note that the communication function of the information generating device 12 may conform to a standard other than Bluetooth (registered trademark) or WiFi (registered trademark). For example, the information generating device 12 may be connected to the mobile terminal via a wire such as a cable. The proposed information may be used by an application installed on the mobile terminal. In that case, the mobile terminal executes a process using the proposed information by application software or the like installed on the mobile terminal.

 (動作)
 次に、情報提供システム1の動作について図面を参照しながら説明する。以下においては、情報提供システム1に含まれる情報生成装置12の動作について説明する。図12は、情報生成装置12の動作の一例について説明するためのフローチャートである。図12のフローチャートに沿った処理の説明においては、情報生成装置12の構成要素を動作主体として説明する。図12のフローチャートに沿った処理の動作主体は、情報生成装置12であってもよい。
(Operation)
Next, the operation of the information providing system 1 will be described with reference to the drawings. The operation of the information generating device 12 included in the information providing system 1 will be described below. Fig. 12 is a flowchart for explaining an example of the operation of the information generating device 12. In the explanation of the process according to the flowchart of Fig. 12, the components of the information generating device 12 will be explained as the subject of the operation. The subject of the process according to the flowchart of Fig. 12 may be the information generating device 12.

 図12において、まず、取得部121は、管理対象者の履物に搭載された計測装置10によって計測されたセンサデータの時系列データを取得する(ステップS11)。センサデータには、3軸方向の加速度および3軸周りの角速度が含まれる。 In FIG. 12, first, the acquisition unit 121 acquires time series data of sensor data measured by the measurement device 10 mounted on the footwear of the person to be managed (step S11). The sensor data includes acceleration in three axial directions and angular velocity around three axes.

 次に、計算部13は、取得されたセンサデータを用いて、歩容指標計算処理を実行する(ステップS12)。計算部13は、歩容指標計算処理において、身体能力の推定に用いられる歩容指標を計算する。ステップS12の歩容指標計算処理の詳細については、後述する(図13)。 Next, the calculation unit 13 executes a gait index calculation process using the acquired sensor data (step S12). In the gait index calculation process, the calculation unit 13 calculates a gait index used to estimate physical ability. Details of the gait index calculation process in step S12 will be described later ( FIG. 13 ).

 次に、身体能力推定部125は、属性データおよび歩容指標を用いて、身体能力を推定する(ステップS13)。例えば、身体能力推定部125は、握力(全身の総合筋力)、動的バランス、下肢筋力、移動能力、および静的バランスなどの身体能力スコアを推定する。身体能力を用いずに疾病リスクが推定される場合、ステップS13は省略できる。 Next, the physical ability estimation unit 125 estimates physical ability using the attribute data and gait index (step S13). For example, the physical ability estimation unit 125 estimates physical ability scores such as grip strength (total muscle strength of the entire body), dynamic balance, lower limb muscle strength, mobility, and static balance. If disease risk is estimated without using physical ability, step S13 can be omitted.

 次に、疾病リスク推定部126は、属性データ、歩容指標、および身体能力を用いて、管理対象者の疾病リスクを推定する(ステップS14)。身体能力を用いずに疾病リスクが推定される場合、疾病リスク推定部126は、属性データおよび歩容指標を用いて、管理対象者の疾病リスクを推定する。疾病リスク推定部126は、管理対象者の疾病リスクスコアを推定する。例えば、疾病リスク推定部126は、痛風や、糖尿病、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などの疾病ごとの疾病リスクスコアを推定する。例えば、疾病リスク推定部126は、腰痛や、睡眠時無呼吸症候群、不眠症、鬱病、変形性膝関節症、パーキンソン症候群などの疾病ごとの疾病リスクスコアを推定する。 Next, the disease risk estimation unit 126 estimates the disease risk of the managed person using the attribute data, gait index, and physical ability (step S14). When the disease risk is estimated without using physical ability, the disease risk estimation unit 126 estimates the disease risk of the managed person using the attribute data and gait index. The disease risk estimation unit 126 estimates the disease risk score of the managed person. For example, the disease risk estimation unit 126 estimates the disease risk score for each disease, such as gout, diabetes, hypertension, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia. For example, the disease risk estimation unit 126 estimates the disease risk score for each disease, such as lower back pain, sleep apnea syndrome, insomnia, depression, osteoarthritis of the knee, and Parkinson's syndrome.

 次に、記憶部124は、管理対象者について推定された疾病リスクを蓄積する(ステップS15)。記憶部124に蓄積された疾病リスクは、健康施策の推定に用いられる。疾病リスクは、情報生成装置12に接続されたデータベース(図示しない)に蓄積されてもよい。 Next, the memory unit 124 accumulates the disease risk estimated for the managed individual (step S15). The disease risk accumulated in the memory unit 124 is used to estimate health measures. The disease risk may be accumulated in a database (not shown) connected to the information generating device 12.

 次に、提案情報生成部127は、記憶部124に蓄積された疾病リスクを用いて、少なくとも一人の管理対象者に関する健康施策を推定する(ステップS16)。提案情報生成部127は、推定された健康施策を含む提案情報を生成する。 Next, the proposed information generation unit 127 estimates health measures for at least one of the managed individuals using the disease risks stored in the storage unit 124 (step S16). The proposed information generation unit 127 generates proposed information including the estimated health measures.

 次に、出力部129は、生成された健康施策を含む提案情報を出力する(ステップS17)。例えば、出力部129は、管理対象者が所属する企業が管理する端末装置やサーバに、提案情報を出力する。例えば、出力部129は、提案情報を使用する外部システム等に対して、提案情報を出力する。例えば、出力部129は、管理対象者の携帯端末の画面に、提案情報を表示させてもよい。 Next, the output unit 129 outputs the proposed information including the generated health measures (step S17). For example, the output unit 129 outputs the proposed information to a terminal device or a server managed by the company to which the managed person belongs. For example, the output unit 129 outputs the proposed information to an external system or the like that uses the proposed information. For example, the output unit 129 may display the proposed information on the screen of the managed person's mobile terminal.

 なお、管理対象者の属性データについては、必ずしも取得しなくてもよい。管理対象者から属性データを取得しない場合、属性データを使用せずに疾病リスクを推定するモデルを使用することができる。また、事前に、属性データを取得することに対する同意を管理対象者に求めるようにしてもよい。その際、属性データを取得することで得られるメリットを管理対象者に伝え、属性データの取得に対する同意を促してもよい。ここでメリットとは、例えば、より高精度なリスク推定結果が得られることなどである。 Note that attribute data of the managed persons does not necessarily have to be acquired. If attribute data is not acquired from the managed persons, a model can be used that estimates disease risk without using attribute data. Also, the managed persons may be asked in advance for consent to acquiring the attribute data. At that time, the benefits of acquiring the attribute data may be communicated to the managed persons, and consent to acquiring the attribute data may be encouraged. An example of a benefit here is that more accurate risk estimation results can be obtained.

 〔歩容指標計算処理〕
 次に、情報生成装置12の計算部13による歩容指標計算処理(図12のステップS12)について図面を参照しながら説明する。図13は、計算部13の動作の一例について説明するためのフローチャートである。図13のフローチャートに沿った処理の説明においては、計算部13の構成要素を動作主体として説明する。図13のフローチャートに沿った処理の動作主体は、情報生成装置12や計算部13であってもよい。
[Gait index calculation process]
Next, the gait index calculation process (step S12 in FIG. 12 ) by the calculation unit 13 of the information generating device 12 will be described with reference to the drawings. FIG. 13 is a flowchart for explaining an example of the operation of the calculation unit 13. In explaining the process according to the flowchart in FIG. 13 , the components of the calculation unit 13 will be described as the subject of the operation. The subject of the operation of the process according to the flowchart in FIG. 13 may be the information generating device 12 or the calculation unit 13.

 図13において、まず、波形処理部122は、センサデータの時系列データから歩行波形データを抽出する(ステップS121)。歩行波形データは、一歩行周期分のセンサデータの時系列データに相当する。 In FIG. 13, first, the waveform processing unit 122 extracts walking waveform data from the time series data of the sensor data (step S121). The walking waveform data corresponds to the time series data of the sensor data for one walking cycle.

 次に、波形処理部122は、抽出された歩行波形データを正規化する(ステップS122)。波形処理部122は、歩行波形データを一歩行周期100%で第1正規化する。また、波形処理部122は、立脚相が60%、遊脚相が40%になるように歩行波形データを第2正規化する。 Next, the waveform processing unit 122 normalizes the extracted walking waveform data (step S122). The waveform processing unit 122 performs first normalization on the walking waveform data so that the step period is 100%. The waveform processing unit 122 also performs second normalization on the walking waveform data so that the stance phase is 60% and the swing phase is 40%.

 次に、歩容指標計算部123は、正規化された歩行波形データを用いて、身体能力の推定に用いられる歩容指標を計算する(ステップS123)。例えば、歩容指標計算部123は、距離や高さ、角度、速度、時間、フレイルレベル、CPEIなどに関する歩容指標を計算する。 Next, the gait index calculation unit 123 uses the normalized walking waveform data to calculate gait indices used to estimate physical ability (step S123). For example, the gait index calculation unit 123 calculates gait indices related to distance, height, angle, speed, time, frailty level, CPEI, etc.

 (適用例)
 次に、本実施形態に係る適用例について図面を参照しながら説明する。以下の適用例においては、情報提供システム1を用いたサービスを提供する事業者、そのサービスを利用する企業、および企業の管理対象者に相当する従業員の関係を示す。以下においては、3種類の業務形態に関する適用例1~3について説明する。以下の業務形態は一例であって、情報提供システム1の適用先を限定するものではない。また、以下においては、管理対象者である従業員の働き方に合わせてカスタマイズされた健康施策推定モデルが用いられる例をあげる。健康施策推定モデルは、管理対象者である従業員が所属する企業(組織)の業種に合わせてカスタマイズされてもよい。情報生成装置12によって生成される提案情報は、管理対象者である従業員に対する健康施策を含めば、以下の例に限定されない。
(Application example)
Next, application examples according to the present embodiment will be described with reference to the drawings. In the following application examples, the relationship between a business providing a service using the information provision system 1, a company using the service, and employees corresponding to the managed persons of the company will be described. In the following, application examples 1 to 3 relating to three types of business forms will be described. The following business forms are examples, and do not limit the application of the information provision system 1. In addition, in the following, an example will be given in which a health measure estimation model customized to the working style of an employee who is a managed person is used. The health measure estimation model may be customized to the industry of the company (organization) to which the employee who is a managed person belongs. The proposed information generated by the information generation device 12 is not limited to the following examples, as long as it includes health measures for the employees who are managed.

 事業者は、企業に対して、情報提供システム1を用いたサービスを提供する。事業者は、企業との間で締結された契約に基づいて、従業員の疾病リスクに応じて推定された健康施策を含む提案情報を企業に提供する。企業は、情報提供システム1を用いたサービスの利用料を事業者に支払う。健康施策の推定に従業員の健康診断データが用いられる場合、企業は、従業員の健康診断データを事業者に提供する。事業者と企業との間の契約においては、個人情報の取り扱いや、適切なデータの管理に関するルールが明確化される。事業者は、提案情報が参考情報であり、医学的な正確性や完全性を保証するものではない点を明確に説明する。 The business provides the company with a service using the information provision system 1. Based on a contract concluded with the company, the business provides the company with proposed information including estimated health measures according to the employee's disease risk. The company pays the business a fee for the service using the information provision system 1. When employee health checkup data is used to estimate the health measures, the company provides the business with the employee health checkup data. In the contract between the business and the company, rules regarding the handling of personal information and appropriate data management are clarified. The business clearly explains that the proposed information is for reference only and does not guarantee medical accuracy or completeness.

 企業は、個人情報保護方針やデータ管理の内容に関して、従業員に対して十分に説明した上で、個人情報やデータの使用に関して従業員からの同意を得る。また、個人情報保護方針やデータ管理の内容に関して変更があった場合、企業は、従業員に対して説明し、従業員からの同意を得る。例えば、従業員からの同意は、電子的に実施される。企業は、事業者から提供される提案情報の内容に応じて、従業員に提供する健康施策を検討し、従業員に対して適切な健康施策を提供する。 Companies will fully explain to employees the details of their personal information protection policies and data management, and obtain consent from employees regarding the use of personal information and data. Furthermore, if there are any changes to the details of their personal information protection policies and data management, companies will explain the changes to their employees and obtain consent from them. For example, consent from employees will be obtained electronically. Companies will consider what health measures to provide to employees based on the content of the proposed information provided by business operators, and provide appropriate health measures to employees.

 従業員は、企業に雇用された人物である。従業員は、企業と契約した事業者から、計測装置10が搭載された専用インソールの貸与あるいは供与を受ける。従業員は、専用インソールが装着された靴を履いて、計測装置10と通信可能な携帯端末(図示しない)を携帯して業務を遂行する。携帯端末は、計測装置10によって計測されたセンサデータを、事業者のクラウドサーバにアップロードする。クラウドサーバにアップロードされたセンサデータは、疾病リスクおよび健康施策の推定に用いられる。 An employee is a person employed by a company. The employee is loaned or provided with a special insole equipped with the measuring device 10 by a business operator who has a contract with the company. The employee performs work while wearing shoes equipped with the special insoles and carrying a mobile terminal (not shown) capable of communicating with the measuring device 10. The mobile terminal uploads the sensor data measured by the measuring device 10 to the business operator's cloud server. The sensor data uploaded to the cloud server is used to estimate disease risks and health measures.

 企業で使用される端末装置(図示しない)は、事業者のクラウドサーバから健康施策を含む提案情報をダウンロードする。企業の管理者は、提案情報に含まれる健康施策を参照して、従業員に対する健康施策を検討する。例えば、企業の管理者は、提案情報に含まれる健康施策を定期的に参照し、健康施策の変化に応じた対応策を検討する。例えば、企業は、健康に関する相談会やイベントを開催し、健康施策の変化に応じた対応策に対して、従業員の意見や要望を取り入れる。 A terminal device (not shown) used by a company downloads proposed information including health measures from the business operator's cloud server. The company's manager refers to the health measures included in the proposed information and considers health measures for employees. For example, the company's manager periodically refers to the health measures included in the proposed information and considers countermeasures in response to changes in the health measures. For example, the company holds health consultation sessions and events and incorporates employees' opinions and requests regarding countermeasures in response to changes in health measures.

 〔適用例1〕
 図14は、本開示における事業者、企業A、および従業員(管理対象者)の関係を示す相関図である。企業Aは、デスクワークに従事する従業員が多い業種である。デスクワークの多い業種では、同じ姿勢で長時間座っていることが多く、従業員が腰痛を発症するリスクがある。また、デスクワークの多い業種では、歩行する機会が減少して足の筋力が低下し、肥満や糖尿病、高血圧などの生活習慣病を従業員が発症するリスクがある。
[Application Example 1]
FIG. 14 is a correlation diagram showing the relationship between the business operator, company A, and employees (managed persons) in the present disclosure. Company A is an industry in which many employees engage in desk work. In industries with a lot of desk work, employees often sit in the same position for long periods of time, and there is a risk that they will develop back pain. In addition, in industries with a lot of desk work, there are fewer opportunities to walk, which weakens leg muscles, and there is a risk that employees will develop lifestyle-related diseases such as obesity, diabetes, and high blood pressure.

 図15は、従業員の健康状態を管理する管理者が使用する端末装置180Aの画面に、情報生成装置12によって生成された提案情報が表示された例である。端末装置180Aの画面には、企業Aに最適化された健康施策を含む提案情報が表示される。図15の例では、複数の健康施策を含む提案情報が画面に表示されている。 FIG. 15 shows an example in which proposed information generated by the information generating device 12 is displayed on the screen of a terminal device 180A used by a manager who manages the health status of employees. The proposed information including health measures optimized for company A is displayed on the screen of the terminal device 180A. In the example of FIG. 15, proposed information including multiple health measures is displayed on the screen.

 1つ目の健康施策は、「腰痛の発症リスクが高い従業員が多い部署があります。健康体操を定期的に行うことを提案します。」という提案である。デスクワークが多い企業Aに関しては、長時間座った姿勢を取り続けることが要因となって、腰痛の疾病リスクが高まる傾向がある。例えば、企業Aに関しては、定期的に立ち上がって体を動かす「健康体操」というキーワードを含む健康施策が推定される。例えば、「健康体操」というキーワード以外の文言は、テンプレートや大規模言語モデルを用いて生成される。端末装置180Aの画面には、「健康体操」に関するリンク先のアドレスが表示されている。管理者は、リンク先の情報を参照して、健康施策として「健康体操」を採用するか検討できる。 The first health measure is a suggestion that "We have a department with many employees who are at high risk of developing back pain. We suggest that you regularly do health exercises." For Company A, where most of the work is done at a desk, the risk of back pain tends to increase due to sitting for long periods of time. For example, for Company A, health measures that include the keyword "health exercises," which involves standing up and moving the body regularly, are inferred. For example, text other than the keyword "health exercises" is generated using templates or large-scale language models. The address of the link related to "health exercises" is displayed on the screen of terminal device 180A. The administrator can refer to the information at the link and consider whether to adopt "health exercises" as a health measure.

 2つ目の健康施策は、「生活習慣病の疾病リスクが高い従業員が多い部署があります。ウォーキングイベントを増やすことを提案します。」という提案である。デスクワークが多い企業Aに関しては、足の筋力が低下することが要因となって、生活習慣病の疾病リスクが高まる傾向がある。例えば、企業Aに関しては、長距離を歩行する「ウォーキング」というキーワードを含む健康施策が推定される。例えば、「ウォーキング」というキーワード以外の文言は、テンプレートや大規模言語モデルを用いて生成される。端末装置180Aの画面には、「ウォーキング」に関するリンク先のアドレスが表示されている。管理者は、リンク先の情報を参照して、健康施策として「ウォーキング」を採用するか検討できる。 The second health measure is a proposal that reads, "There is a department with many employees who are at high risk of lifestyle-related diseases. We suggest that you increase the number of walking events." For Company A, where most of the work is done at a desk, there is a tendency for the risk of lifestyle-related diseases to increase due to weakened leg muscles. For example, for Company A, health measures that include the keyword "walking," which refers to walking long distances, are estimated. For example, text other than the keyword "walking" is generated using templates or large-scale language models. The address of the link related to "walking" is displayed on the screen of terminal device 180A. The administrator can refer to the information at the link and consider whether to adopt "walking" as a health measure.

 〔適用例2〕
 図16は、本開示における事業者、企業B、および従業員(管理対象者)の関係を示す相関図である。企業Bは、配送業者である。配送業者の従業員は、倉庫に保管された荷物や、貨物車両に積載された荷物を運ぶような肉体労働が多い。例えば、重い荷物を持ち上げるために無理な姿勢を繰り返すことによって、従業員が腰痛を発症するリスクがある。また、配送業者の従業員は、労働後の空腹を満たすために暴飲暴食を繰り返す可能性がある。暴飲暴食を繰り返すと、糖尿病や、高血圧、腎結石症、肝硬変、動脈硬化、血栓塞栓症、脂質異常症、高コレステロール血症、高脂血症などの色々な疾病を発症するリスクがある。
[Application Example 2]
FIG. 16 is a correlation diagram showing the relationship between the business operator, company B, and employees (managed persons) in the present disclosure. Company B is a delivery company. Employees of the delivery company often perform physical labor such as carrying luggage stored in warehouses and luggage loaded on cargo vehicles. For example, employees are at risk of developing back pain due to repeated unnatural postures to lift heavy luggage. In addition, employees of the delivery company may repeatedly drink and eat excessively to satisfy hunger after work. Repeated overeating and drinking may cause the risk of developing various diseases such as diabetes, high blood pressure, nephrolithiasis, liver cirrhosis, arteriosclerosis, thromboembolism, dyslipidemia, hypercholesterolemia, and hyperlipidemia.

 図17は、従業員の健康状態を管理する管理者が使用する端末装置180Bの画面に、情報生成装置12によって生成された提案情報が表示された例である。端末装置180Bの画面には、企業Bに最適化された健康施策を含む提案情報が表示される。図17の例では、企業Bに最適化された複数の健康施策を含む提案情報が画面に表示されている。 FIG. 17 shows an example in which proposed information generated by the information generating device 12 is displayed on the screen of a terminal device 180B used by a manager who manages the health status of employees. The proposed information including health measures optimized for company B is displayed on the screen of the terminal device 180B. In the example of FIG. 17, proposed information including multiple health measures optimized for company B is displayed on the screen.

 1つ目の健康施策は、「腰痛の疾病リスクが高い従業員が多い部署があります。マッサージ師を雇用することを提案します。」という提案である。肉体労働が多い企業Bに関しては、重い荷物を持ち上げるために無理な姿勢を繰り返すことが要因となって、腰痛の疾病リスクが高まる傾向がある。例えば、企業Bに関しては、適切なタイミングで従業員の体をケアする「マッサージ師」というキーワードを含む健康施策が推定される。例えば、「マッサージ師」というキーワード以外の文言は、テンプレートや大規模言語モデルを用いて生成される。端末装置180Bの画面には、「マッサージ師」に関するリンク先のアドレスが表示されている。管理者は、リンク先の情報を参照して、健康施策として「マッサージ師」を採用するか検討できる。 The first health measure is a proposal that reads, "There is a department with many employees who are at high risk of back pain. We suggest that you hire a masseuse." For Company B, which has a lot of physical labor, the risk of back pain tends to increase due to repeated awkward postures when lifting heavy loads. For example, for Company B, health measures that include the keyword "massage therapist," who cares for employees' bodies at appropriate times, are estimated. For example, text other than the keyword "massage therapist" is generated using templates and large-scale language models. The address of the link related to "massage therapist" is displayed on the screen of terminal device 180B. The administrator can refer to the information at the link and consider whether to hire "massage therapist" as a health measure.

 2つ目の健康施策は、「色々な疾病の疾病リスクが高い従業員が多い部署があります。管理栄養士との面談を定期的に行う提案します。」という提案である。肉体労働が多い企業Bに関しては、労働後の空腹を満たすために暴飲暴食を繰り返すことが要因となって、色々な疾病の疾病リスクが高まる傾向がある。例えば、企業Bに関しては、従業員の食生活をケアする「管理栄養士」というキーワードを含む健康施策が推定される。例えば、「管理栄養士」というキーワード以外の文言は、テンプレートや大規模言語モデルを用いて生成される。端末装置180Bの画面には、「管理栄養士」に関するリンク先のアドレスが表示されている。管理者は、リンク先の情報を参照して、健康施策として「管理栄養士」を採用するか検討できる。 The second health measure is a proposal that reads, "There is a department with many employees who are at high risk for various diseases. We suggest that you regularly meet with a registered dietitian." For Company B, which has a lot of physical labor, there is a tendency for the risk of various diseases to increase due to repeated overeating and drinking to satisfy hunger after work. For example, for Company B, health measures that include the keyword "registered dietitian" who cares for employees' eating habits are estimated. For example, text other than the keyword "registered dietitian" is generated using templates and large-scale language models. The screen of terminal device 180B displays the address of the link related to "registered dietitian." The administrator can refer to the information at the link and consider whether to employ a "registered dietitian" as a health measure.

 〔適用例3〕
 図18は、本開示における事業者、企業C、および従業員(管理対象者)の関係を示す相関図である。企業Cは、スーパーマーケットなどの小売業者である。スーパーマーケットの店舗においてレジ業務に従事する従業員は、立ったままの姿勢で長時間作業を継続することが多い。そのような姿勢は、膝に負担がかかるため、将来的に変形性膝関節症が発症するリスクがある。また、レジ業務においては、連続して多様な客に対応するため、精神的な負荷が積み重なり、不眠症や鬱病などの心の病を発症するリスクがある。
[Application Example 3]
FIG. 18 is a correlation diagram showing the relationship between the business operator, company C, and employees (managed persons) in the present disclosure. Company C is a retailer such as a supermarket. Employees who work as cashiers at supermarket stores often work for long periods of time while standing. Such a posture puts strain on the knees, and there is a risk of developing osteoarthritis in the future. In addition, in cashier work, since cashiers must deal with a variety of customers in succession, the mental burden accumulates, and there is a risk of developing mental illnesses such as insomnia and depression.

 図19は、従業員の健康状態を管理する管理者が使用する端末装置180Cの画面に、情報生成装置12によって生成された提案情報が表示された例である。端末装置180Cの画面には、企業Cに最適化された健康施策を含む提案情報が表示される。図19の例では、企業Cに最適化された複数の健康施策を含む提案情報が画面に表示されている。 FIG. 19 shows an example in which proposed information generated by the information generating device 12 is displayed on the screen of a terminal device 180C used by a manager who manages the health status of employees. The proposed information including health measures optimized for company C is displayed on the screen of the terminal device 180C. In the example of FIG. 19, proposed information including multiple health measures optimized for company C is displayed on the screen.

 1つ目の健康施策は、「変形性膝関節症の疾病リスクが高い従業員が多い部署があります。休憩室にトレーニングマシンを設置することを提案します。」という提案である。企業Cに関しては、立ったままの姿勢で長時間作業を継続することが要因となって、変形性膝関節症の疾病リスクが高まる傾向がある。例えば、企業Cに関しては、休憩中に従業員が足を鍛えられる「トレーニングマシン」というキーワードを含む健康施策が推定される。例えば、「トレーニングマシン」というキーワード以外の文言は、テンプレートや大規模言語モデルを用いて生成される。端末装置180Cの画面には、「トレーニングマシン」に関するリンク先のアドレスが表示されている。管理者は、リンク先の情報を参照して、健康施策として「トレーニングマシン」を採用するか検討できる。 The first health measure is a proposal that reads, "There is a department with many employees who are at high risk of osteoarthritis of the knee. I suggest that you install a training machine in the break room." For company C, the risk of osteoarthritis of the knee tends to increase due to working for long periods of time while standing. For example, for company C, health measures that include the keyword "training machine" that allows employees to train their legs during breaks are estimated. For example, text other than the keyword "training machine" is generated using a template or a large-scale language model. The address of the link related to "training machine" is displayed on the screen of terminal device 180C. The administrator can refer to the information at the link and consider whether to adopt "training machine" as a health measure.

 2つ目の健康施策は、「心の病の疾病リスクが高い従業員が多い部署があります。カウンセラーとの面談を定期的に行う提案します。」という提案である。企業Cに関しては、連続して多様な客に対応することが要因となって、心の病の疾病リスクが高まる傾向がある。例えば、企業Cに関しては、従業員の心をケアする「カウンセラー」というキーワードを含む健康施策が推定される。例えば、「カウンセラー」というキーワード以外の文言は、テンプレートや大規模言語モデルを用いて生成される。端末装置180Cの画面には、「カウンセラー」に関するリンク先のアドレスが表示されている。管理者は、リンク先の情報を参照して、健康施策として「カウンセラー」を採用するか検討できる。 The second health measure is a proposal that "There is a department with many employees who are at high risk of mental illness. We suggest that employees have regular interviews with a counselor." For company C, the risk of mental illness tends to increase due to continuously dealing with a variety of customers. For example, for company C, health measures including the keyword "counselor" who cares for the mental health of employees are estimated. For example, text other than the keyword "counselor" is generated using a template or a large-scale language model. The address of the link related to "counselor" is displayed on the screen of terminal device 180C. The administrator can refer to the information at the link and consider whether to adopt "counselor" as a health measure.

 以上のように、本実施形態の情報提供システムは、計測装置および情報生成装置を備える。計測装置は、少なくとも一人の前記対象者の履物に設置される。計測装置は、加速度および角速度を計測する。計測装置は、計測された加速度および角速度を用いてセンサデータを生成する。計測装置は、生成されたセンサデータを情報生成装置に送信する。情報生成装置は、取得部、リスク推定部、提案情報生成部、および出力部を備える。
取得部は、少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する。リスク推定部は、取得されたセンサデータを用いて、少なくとも一人の管理対象者に関する疾病ごとの疾病リスクを推定する。提案情報生成部は、少なくとも一人の管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する。出力部は、生成された提案情報を出力する。
As described above, the information provision system of this embodiment includes a measurement device and an information generating device. The measurement device is installed in the footwear of at least one of the subjects. The measurement device measures acceleration and angular velocity. The measurement device generates sensor data using the measured acceleration and angular velocity. The measurement device transmits the generated sensor data to the information generating device. The information generating device includes an acquisition unit, a risk estimation unit, a proposed information generating unit, and an output unit.
The acquisition unit acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of the at least one managed person. The risk estimation unit estimates a disease risk for each disease for the at least one managed person using the acquired sensor data. The proposed information generation unit generates proposed information including health measures according to the disease risk for the at least one managed person. The output unit outputs the generated proposed information.

 本実施形態の情報生成装置は、管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを用いて、疾病リスクを推定する。本実施形態の情報生成装置は、推定された疾病リスクに応じた健康施策を含む提案情報を生成する。そのため、本実施形態によれば、日常業務に従事する管理対象者の疾病リスクに応じた健康施策を提供できる。 The information generating device of this embodiment estimates disease risk using sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of the managed person. The information generating device of this embodiment generates suggested information including health measures according to the estimated disease risk. Therefore, according to this embodiment, it is possible to provide health measures according to the disease risk of the managed person engaged in daily work.

 企業などの組織に属する管理対象者の健康を維持するためには、食生活や運動、仕事などの生活習慣に関する問題を改善するための健康施策が継続的に実行されることが好ましい。そのためには、健康施策に応じた行動による効果の実感や、行動を継続するための外的な動機付けが重要である。近年では、健康経営として、企業が従業員に対して生活習慣の改善・維持を促す健康施策が求められている。しかし、企業が単独で、従業員の生活習慣に関する施策を継続的に実行することは難しい。 In order to maintain the health of people under management who belong to a company or other organization, it is preferable to continually implement health measures to improve lifestyle problems such as diet, exercise, and work. To achieve this, it is important for employees to feel the effects of taking actions in response to health measures and to have external motivation to continue the actions. In recent years, as part of health management, companies have been required to implement health measures that encourage employees to improve and maintain their lifestyle habits. However, it is difficult for a company to continually implement measures related to employees' lifestyle habits on its own.

 本実施形態の手法によれば、組織に所属する管理対象者の健康意識や生活習慣を改善して、糖尿病や高血圧などの疾病リスクを下げるための健康経営を促進できる。例えば、本実施形態の手法によれば、複数の組織における管理対象者の属性や業種、勤務時間などの様々な因子に合わせた行動の提示や動機付けを自動的に行うことで、組織における生活習慣改善に向けた取り組みを省力化できる。 The method of this embodiment can promote health management to improve the health awareness and lifestyle habits of the managed persons belonging to an organization and reduce the risk of diseases such as diabetes and high blood pressure. For example, the method of this embodiment can reduce the effort required to improve lifestyle habits in an organization by automatically suggesting and motivating actions that are tailored to various factors such as the attributes, industry, and working hours of the managed persons in multiple organizations.

 本実施形態の一態様において、リスク推定部は、計算部および推定部を有する。計算部は、センサデータを用いて歩容指標を計算する。推定部は、歩容指標を含むデータの入力に応じて疾病ごとの疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、センサデータを用いて算出された歩容指標を含むデータを入力する。推定部は、疾病リスク推定モデルから出力される疾病リスクスコアに応じた疾病リスク情報を推定する。本態様によれば、センサデータを用いて算出された歩容指標を含むデータを疾病リスク推定モデルに入力することによって、疾病リスクスコアに応じた疾病リスク情報を推定できる。 In one aspect of this embodiment, the risk estimation unit has a calculation unit and an estimation unit. The calculation unit calculates a gait index using sensor data. The estimation unit inputs data including the gait index calculated using the sensor data to a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk for each disease in response to input of data including the gait index. The estimation unit estimates disease risk information corresponding to the disease risk score output from the disease risk estimation model. According to this aspect, disease risk information corresponding to the disease risk score can be estimated by inputting data including the gait index calculated using sensor data to the disease risk estimation model.

 本実施形態の一態様において、提案情報生成部は、疾病リスクスコアの入力に応じて健康施策を出力する健康施策推定モデルを用いて、少なくとも一人の管理対象者の疾病リスクスコアに応じた健康施策を推定する。本態様によれば、健康施策推定モデルに疾病リスクスコアを入力することによって、管理対象者の疾病リスクスコアに応じた健康施策を推定できる。 In one aspect of this embodiment, the proposed information generation unit estimates health measures corresponding to the disease risk score of at least one managed person using a health measure estimation model that outputs health measures in response to an input of a disease risk score. According to this aspect, by inputting a disease risk score into the health measure estimation model, it is possible to estimate health measures corresponding to the disease risk score of the managed person.

 本実施形態の一態様において、提案情報生成部は、管理対象者の働き方に合わせてカスタマイズされた健康施策推定モデルを用いて、少なくとも一人の管理対象者の疾病リスクスコアに応じた健康施策を推定する。本態様によれば、管理対象者の働き方に合わせてカスタマイズされた健康施策推定モデルを用いることによって、管理対象者の働き方に最適化された健康施策を推定できる。 In one aspect of this embodiment, the proposal information generation unit estimates health measures according to the disease risk score of at least one managed person using a health measure estimation model customized to the working style of the managed person. According to this aspect, by using a health measure estimation model customized to the working style of the managed person, it is possible to estimate health measures optimized for the working style of the managed person.

 本実施形態の一態様において、提案情報生成部は、管理対象者が所属する組織の業種に合わせてカスタマイズされた健康施策推定モデルを用いて、少なくとも一人の管理対象者の疾病リスクスコアに応じた健康施策を推定する。本態様によれば、管理対象者が所属する組織の業種に合わせてカスタマイズされた健康施策推定モデルを用いることによって、組織の業種に最適化された健康施策を推定できる。 In one aspect of this embodiment, the proposal information generation unit estimates health measures according to the disease risk score of at least one managed person using a health measure estimation model customized to the industry of the organization to which the managed person belongs. According to this aspect, by using a health measure estimation model customized to the industry of the organization to which the managed person belongs, it is possible to estimate health measures optimized for the industry of the organization.

 本実施形態の一態様において、健康施策推定モデルおよび疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルである。疾病リスク推定モデルは、不完全異種変分オートエンコーダを含む。本態様によれば、歩容指標などのデータに多少の欠損があっても、管理対象者の疾病リスクに応じた健康施策を推定できる。 In one aspect of this embodiment, the health measure estimation model and the disease risk estimation model are models trained using machine learning techniques. The disease risk estimation model includes an incomplete heterogeneous variational autoencoder. According to this aspect, even if there is some loss of data such as gait indicators, it is possible to estimate health measures according to the disease risk of the managed individual.

 本実施形態の一態様において、情報生成装置は、管理対象者が所属する組織で使用される端末装置の画面に、組織に関して最適化された健康施策を含む提案情報を表示させる。本態様によれば、管理対象者の疾病リスクに応じて推定された健康施策を含む提案情報を、その管理対象者が所属する組織に関して最適化して提供できる。 In one aspect of this embodiment, the information generating device displays proposed information including health measures optimized for the organization on the screen of a terminal device used in the organization to which the managed person belongs. According to this aspect, proposed information including health measures estimated according to the disease risk of the managed person can be provided in an optimized manner for the organization to which the managed person belongs.

 (第2実施形態)
 次に、第2実施形態に係る情報生成装置について図面を参照しながら説明する。本実施形態の情報生成装置は、第1実施形態の情報提供システムに含まれる情報生成装置を簡略化した構成である。
Second Embodiment
Next, an information generating device according to a second embodiment will be described with reference to the drawings. The information generating device according to this embodiment has a simplified configuration of the information generating device included in the information providing system according to the first embodiment.

 (構成)
 図20は、本開示における情報生成装置20の構成の一例を示すブロック図である。情報生成装置20は、取得部21、リスク推定部25、提案情報生成部27、および出力部29を備える。
(composition)
20 is a block diagram showing an example of a configuration of an information generating device 20 in the present disclosure. The information generating device 20 includes an acquiring unit 21, a risk estimating unit 25, a proposed information generating unit 27, and an output unit 29.

 取得部21は、少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する。リスク推定部25は、取得されたセンサデータを用いて、少なくとも一人の管理対象者に関する疾病ごとの疾病リスクを推定する。提案情報生成部27は、少なくとも一人の管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する。出力部29は、生成された提案情報を出力する。 The acquisition unit 21 acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one managed person. The risk estimation unit 25 uses the acquired sensor data to estimate a disease risk for each disease for at least one managed person. The proposed information generation unit 27 generates proposed information including health measures according to the disease risk for at least one managed person. The output unit 29 outputs the generated proposed information.

 (動作)
 次に、情報生成装置20の動作について図面を参照しながら説明する。図21は、情報生成装置20の動作の一例について説明するためのフローチャートである。図21のフローチャートに沿った処理の説明においては、情報生成装置20の構成要素を動作主体として説明する。図21のフローチャートに沿った処理の動作主体は、情報生成装置20であってもよい。
(Operation)
Next, the operation of the information generating device 20 will be described with reference to the drawings. Fig. 21 is a flowchart for explaining an example of the operation of the information generating device 20. In the explanation of the process according to the flowchart of Fig. 21, the components of the information generating device 20 will be explained as the subject of the operation. The subject of the process according to the flowchart of Fig. 21 may be the information generating device 20.

 図21において、まず、取得部21は、少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する(ステップS21)。 In FIG. 21, first, the acquisition unit 21 acquires sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one of the managed persons (step S21).

 次に、リスク推定部25は、取得されたセンサデータを用いて、少なくとも一人の管理対象者に関する疾病リスクを推定する(ステップS22)。 Next, the risk estimation unit 25 uses the acquired sensor data to estimate the disease risk for at least one managed person (step S22).

 次に、提案情報生成部27は、少なくとも一人の管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する(ステップS23)。 Next, the proposed information generation unit 27 generates proposed information including health measures according to the disease risk for at least one managed person (step S23).

 次に、出力部29は、生成された提案情報を出力する(ステップS24)。 Next, the output unit 29 outputs the generated proposal information (step S24).

 以上のように、本実施形態の情報生成装置は、管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを用いて、疾病リスクを推定する。本実施形態の情報生成装置は、推定された疾病リスクに応じた健康施策を含む提案情報を生成する。そのため、本実施形態によれば、日常業務に従事する管理対象者の疾病リスクに応じた健康施策を提供できる。 As described above, the information generating device of this embodiment estimates disease risk using sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of the managed person. The information generating device of this embodiment generates suggested information including health measures according to the estimated disease risk. Therefore, according to this embodiment, it is possible to provide health measures according to the disease risk of the managed person engaged in daily work.

 (ハードウェア)
 次に、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図面を参照しながら説明する。ここでは、そのようなハードウェア構成の一例として、図22の情報処理装置90(コンピュータ)をあげる。図22の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。
(Hardware)
Next, a hardware configuration for executing control and processing according to each embodiment of the present disclosure will be described with reference to the drawings. Here, an information processing device 90 (computer) in Fig. 22 is given as an example of such a hardware configuration. The information processing device 90 in Fig. 22 is an example of a configuration for executing the control and processing according to each embodiment, and does not limit the scope of the present disclosure.

 図22のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図22においては、インターフェースをI/F(Interface)と略記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して、互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93、および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。 As shown in FIG. 22, the information processing device 90 includes a processor 91, a main memory device 92, an auxiliary memory device 93, an input/output interface 95, and a communication interface 96. In FIG. 22, the interface is abbreviated as I/F (Interface). The processor 91, the main memory device 92, the auxiliary memory device 93, the input/output interface 95, and the communication interface 96 are connected to each other via a bus 98 so as to be able to communicate data with each other. In addition, the processor 91, the main memory device 92, the auxiliary memory device 93, and the input/output interface 95 are connected to a network such as the Internet or an intranet via the communication interface 96.

 プロセッサ91は、補助記憶装置93等に格納されたプログラム(命令)を、主記憶装置92に展開する。例えば、プログラムは、各実施形態の制御や処理を実行するためのソフトウェアプログラムである。プロセッサ91は、主記憶装置92に展開されたプログラムを実行する。プロセッサ91は、プログラムを実行することによって、各実施形態に係る制御や処理を実行する。 The processor 91 expands a program (instructions) stored in the auxiliary storage device 93 or the like into the main storage device 92. For example, the program is a software program for executing the control and processing of each embodiment. The processor 91 executes the program expanded into the main storage device 92. The processor 91 executes the program to execute the control and processing of each embodiment.

 主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92には、プロセッサ91によって、補助記憶装置93等に格納されたプログラムが展開される。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリによって実現される。また、主記憶装置92として、MRAM(Magneto resistive Random Access Memory)などの不揮発性メモリが構成/追加されてもよい。 The main memory 92 has an area in which programs are expanded. Programs stored in the auxiliary memory 93 or the like are expanded in the main memory 92 by the processor 91. The main memory 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory). In addition, a non-volatile memory such as an MRAM (Magneto-resistive Random Access Memory) may be configured/added to the main memory 92.

 補助記憶装置93は、プログラムなどの種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって実現される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。 The auxiliary storage device 93 stores various data such as programs. The auxiliary storage device 93 is realized by a local disk such as a hard disk or flash memory. Note that it is also possible to omit the auxiliary storage device 93 by configuring the various data to be stored in the main storage device 92.

 入出力インターフェース95は、規格や仕様に基づいて、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。外部機器と接続されるインターフェースとして、入出力インターフェース95と通信インターフェース96とが共通化されてもよい。 The input/output interface 95 is an interface for connecting the information processing device 90 to peripheral devices based on standards and specifications. The communication interface 96 is an interface for connecting to external systems and devices via a network such as the Internet or an intranet based on standards and specifications. The input/output interface 95 and the communication interface 96 may be a common interface for connecting to external devices.

 情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器が接続されてもよい。それらの入力機器は、情報や設定の入力に使用される。入力機器としてタッチパネルが用いられる場合、タッチパネルの機能を有する画面がインターフェースになる。プロセッサ91と入力機器とは、入出力インターフェース95を介して接続される。 If necessary, input devices such as a keyboard, mouse, or touch panel may be connected to the information processing device 90. These input devices are used to input information and settings. When a touch panel is used as the input device, a screen having the function of a touch panel becomes the interface. The processor 91 and the input devices are connected via an input/output interface 95.

 情報処理装置90には、情報を表示するための表示機器が備え付けられてもよい。表示機器が備え付けられる場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられる。情報処理装置90と表示機器は、入出力インターフェース95を介して接続される。 The information processing device 90 may be equipped with a display device for displaying information. If a display device is equipped, the information processing device 90 is equipped with a display control device (not shown) for controlling the display of the display device. The information processing device 90 and the display device are connected via an input/output interface 95.

 情報処理装置90には、ドライブ装置が備え付けられてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体に格納されたデータやプログラムの読み込みや、情報処理装置90の処理結果の記録媒体への書き込みを仲介する。情報処理装置90とドライブ装置は、入出力インターフェース95を介して接続される。 The information processing device 90 may be equipped with a drive device. The drive device acts as an intermediary between the processor 91 and a recording medium (program recording medium) to read data and programs stored on the recording medium and to write the processing results of the information processing device 90 to the recording medium. The information processing device 90 and the drive device are connected via an input/output interface 95.

 以上が、本発明の各実施形態に係る制御や処理を可能とするためのハードウェア構成の一例である。図22のハードウェア構成は、各実施形態に係る制御や処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。各実施形態に係る制御や処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。 The above is an example of a hardware configuration for enabling the control and processing according to each embodiment of the present invention. The hardware configuration in FIG. 22 is an example of a hardware configuration for executing the control and processing according to each embodiment, and does not limit the scope of the present invention. Programs that cause a computer to execute the control and processing according to each embodiment are also included in the scope of the present invention.

 各実施形態に係るプログラムを記録したプログラム記録媒体も、本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体によって実現されてもよい。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現されてもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。 The scope of the present invention also includes a program recording medium on which the program according to each embodiment is recorded. The recording medium can be realized, for example, as an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc). The recording medium may also be realized as a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card. The recording medium may also be realized as a magnetic recording medium such as a flexible disk, or other recording medium. When the program executed by the processor is recorded on a recording medium, the recording medium corresponds to a program recording medium.

 各実施形態の構成要素は、任意に組み合わせられてもよい。各実施形態の構成要素は、ソフトウェアによって実現されてもよい。各実施形態の構成要素は、回路によって実現されてもよい。 The components of each embodiment may be combined in any manner. The components of each embodiment may be realized by software. The components of each embodiment may be realized by circuitry.

 以上、実施の形態を参照して本開示を説明したが、本開示は上述の実施の形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。そして、各実施の形態は、適宜他の実施の形態と組み合わせることができる。 The present disclosure has been described above with reference to the embodiments, but the present disclosure is not limited to the above-mentioned embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present disclosure within the scope of the present disclosure. Furthermore, each embodiment can be combined with other embodiments as appropriate.

 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する取得部と、
 取得された前記センサデータを用いて、少なくとも一人の前記管理対象者に関する疾病ごとの疾病リスクを推定するリスク推定部と、
 少なくとも一人の前記管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する提案情報生成部と、
 生成された前記提案情報を出力する出力部と、を備える情報生成装置。
(付記2)
 前記リスク推定部は、
 前記センサデータを用いて歩容指標を計算する計算部と、
 前記歩容指標を含むデータの入力に応じて疾病ごとの疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する推定部と、を有する付記1に記載の情報生成装置。
(付記3)
 前記提案情報生成部は、
 前記疾病リスクスコアの入力に応じて前記健康施策を出力する健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する付記2に記載の情報生成装置。
(付記4)
 前記提案情報生成部は、
 前記管理対象者の働き方に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する付記3に記載の情報生成装置。
(付記5)
 前記提案情報生成部は、
 前記管理対象者が所属する組織の業種に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する付記3に記載の情報生成装置。
(付記6)
 前記健康施策推定モデルおよび前記疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルであり、
 前記疾病リスク推定モデルは、
 不完全異種変分オートエンコーダを含む付記3に記載の情報生成装置。
(付記7)
 付記1乃至6のいずれか一つに記載の情報生成装置と、
 前記計測装置とを備え、
 前記計測装置は、
 少なくとも一人の前記管理対象者の履物に設置され、空間加速度および空間角速度を計測し、計測された前記空間加速度および前記空間角速度を用いて前記センサデータを生成し、生成された前記センサデータを前記情報生成装置に送信する情報提供システム。
(付記8)
 前記情報生成装置は、
 前記管理対象者が所属する組織で使用される端末装置の画面に、組織に関して最適化された前記健康施策を含む前記提案情報を表示させる付記7に記載の情報提供システム。
(付記9)
 コンピュータが、
 少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得し、
 取得された前記センサデータを用いて、少なくとも一人の前記管理対象者に関する疾病ごとの疾病リスクを推定し、
 少なくとも一人の前記管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成し、
 生成された前記提案情報を出力する情報生成方法。
(付記10)
 前記センサデータを用いて歩容指標を計算し、
 前記歩容指標を含むデータの入力に応じて疾病ごとの疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、
 前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する付記9に記載の情報生成方法。
(付記11)
 前記疾病リスクスコアの入力に応じて前記健康施策を出力する健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する付記10に記載の情報生成方法。
(付記12)
 前記管理対象者の働き方に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する付記11に記載の情報生成方法。
(付記13)
 前記管理対象者が所属する組織の業種に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する付記11に記載の情報生成方法。
(付記14)
 前記健康施策推定モデルおよび前記疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルであり、
 前記疾病リスク推定モデルは、
 不完全異種変分オートエンコーダを含む付記11に記載の情報生成方法。
(付記15)
 少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する処理と、
 取得された前記センサデータを用いて、少なくとも一人の前記管理対象者に関する疾病ごとの疾病リスクを推定する処理と、
 少なくとも一人の前記管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する処理と、
 生成された前記提案情報を出力する処理と、をコンピュータに実行させるプログラムを記録させたコンピュータ読み取り可能な非一過性の記録媒体。
(付記16)
 前記センサデータを用いて歩容指標を計算する処理と、
 前記歩容指標を含むデータの入力に応じて疾病ごとの疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力する処理と、
 前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定処理と、をコンピュータに実行させるプログラムを記録させた付記15に記載のコンピュータ読み取り可能な非一過性の記録媒体。
(付記17)
 前記疾病リスクスコアの入力に応じて前記健康施策を出力する健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する処理をコンピュータに実行させるプログラムを記録させた付記16に記載のコンピュータ読み取り可能な非一過性の記録媒体。
(付記18)
 前記管理対象者の働き方に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する処理をコンピュータに実行させるプログラムを記録させた付記17に記載のコンピュータ読み取り可能な非一過性の記録媒体。
(付記19)
 前記管理対象者が所属する組織の業種に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する処理をコンピュータに実行させるプログラムを記録させた付記17に記載のコンピュータ読み取り可能な非一過性の記録媒体。
(付記20)
 前記健康施策推定モデルおよび前記疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルであり、
 前記疾病リスク推定モデルは、
 不完全異種変分オートエンコーダを含む付記17に記載のコンピュータ読み取り可能な非一過性の記録媒体。
A part or all of the above-described embodiments can be described as, but is not limited to, the following supplementary notes.
(Appendix 1)
An acquisition unit that acquires sensor data including acceleration and angular velocity measured by a measurement device mounted on the footwear of at least one of the managed persons;
A risk estimation unit that estimates a disease risk for each disease of at least one of the managed individuals using the acquired sensor data;
a proposal information generating unit configured to generate proposal information including health measures according to a disease risk of at least one of the management subjects;
and an output unit that outputs the generated proposal information.
(Appendix 2)
The risk estimation unit is
a calculation unit that calculates a gait index using the sensor data;
an estimation unit that inputs data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk for each disease in response to input of data including the gait index, and estimates disease risk information corresponding to the disease risk score output from the disease risk estimation model.
(Appendix 3)
The proposal information generation unit,
An information generating device as described in Appendix 2, which estimates the health measure according to the disease risk score of at least one of the managed persons using a health measure estimation model that outputs the health measure according to the input of the disease risk score.
(Appendix 4)
The proposal information generation unit,
4. The information generating device described in claim 3, which estimates the health measure according to the disease risk score of at least one of the managed persons using the health measure estimation model customized to suit the working style of the managed persons.
(Appendix 5)
The proposal information generation unit,
4. An information generation device as described in Appendix 3, which estimates the health measures according to the disease risk score of at least one of the managed persons using the health measure estimation model customized to the industry of the organization to which the managed persons belong.
(Appendix 6)
the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique,
The disease risk estimation model is
4. The information generating apparatus of claim 3, comprising an incomplete heterogeneous variational autoencoder.
(Appendix 7)
An information generating device according to any one of Supplementary Notes 1 to 6;
The measuring device,
The measuring device includes:
An information provision system that is installed on the footwear of at least one of the managed persons, measures spatial acceleration and spatial angular velocity, generates sensor data using the measured spatial acceleration and spatial angular velocity, and transmits the generated sensor data to the information generation device.
(Appendix 8)
The information generating device includes:
An information providing system as described in Appendix 7, which displays the proposed information including the health measures optimized for the organization on a screen of a terminal device used in the organization to which the managed person belongs.
(Appendix 9)
The computer
Acquire sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one of the managed persons;
Using the acquired sensor data, estimate a disease risk for each disease for at least one of the managed individuals;
Generate proposal information including health measures according to a disease risk for at least one of the managed persons;
The information generating method outputs the generated proposal information.
(Appendix 10)
Calculating a gait index using the sensor data;
inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of disease risk for each disease in response to input of data including the gait index;
An information generating method described in Appendix 9, which estimates disease risk information according to the disease risk score output from the disease risk estimation model.
(Appendix 11)
An information generation method described in Appendix 10, which estimates the health measure corresponding to the disease risk score of at least one of the managed persons using a health measure estimation model that outputs the health measure in response to the input of the disease risk score.
(Appendix 12)
12. The information generation method described in claim 11, which estimates the health measure according to the disease risk score of at least one of the managed persons using the health measure estimation model customized to suit the working style of the managed persons.
(Appendix 13)
12. An information generation method as described in claim 11, which estimates the health measures according to the disease risk score of at least one of the managed persons using the health measure estimation model customized to the industry of the organization to which the managed persons belong.
(Appendix 14)
the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique,
The disease risk estimation model is
12. The information generation method of claim 11, comprising an incomplete heterogeneous variational autoencoder.
(Appendix 15)
A process of acquiring sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one person to be managed;
A process of estimating a disease risk for each disease for at least one of the managed individuals using the acquired sensor data;
A process of generating proposal information including health measures according to a disease risk for at least one of the managed persons;
and a computer-readable non-transitory recording medium having recorded thereon a program for causing a computer to execute a process of outputting the generated proposal information.
(Appendix 16)
A process of calculating a gait index using the sensor data;
A process of inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of disease risk for each disease in response to input of data including the gait index;
A non-transitory computer-readable recording medium described in Appendix 15, having a program recorded thereon to cause a computer to execute the following steps: estimating disease risk information according to the disease risk score output from the disease risk estimation model.
(Appendix 17)
A non-transitory computer-readable recording medium as described in Appendix 16, having recorded thereon a program for causing a computer to execute a process of estimating the health measure according to the disease risk score of at least one of the managed persons using a health measure estimation model that outputs the health measure according to the input of the disease risk score.
(Appendix 18)
18. A non-transitory computer-readable recording medium according to claim 17, having recorded thereon a program for causing a computer to execute a process of estimating the health measure according to the disease risk score of at least one of the managed persons, using the health measure estimation model customized to suit the working style of the managed persons.
(Appendix 19)
18. A non-transitory computer-readable recording medium according to claim 17, having recorded thereon a program for causing a computer to execute a process of estimating the health measure according to the disease risk score of at least one of the managed persons, using the health measure estimation model customized to the industry of the organization to which the managed persons belong.
(Appendix 20)
the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique,
The disease risk estimation model is
20. The non-transitory computer-readable storage medium of claim 17, comprising an incomplete heterogeneous variational autoencoder.

 1  情報提供システム
 10  計測装置
 12  情報生成装置
 13  計算部
 14  推定部
 15  リスク推定部
 20  情報生成装置
 21  取得部
 25  リスク推定部
 27  提案情報生成部
 29  出力部
 110  センサ
 111  加速度センサ
 112  角速度センサ
 113  制御部
 115  通信部
 117  電源
 121  取得部
 122  波形処理部
 123   歩容指標計算部
 124 記憶部
 125  身体能力推定部
 126  疾病リスク推定部
 127  提案情報生成部
 129  出力部
REFERENCE SIGNS LIST 1 Information provision system 10 Measurement device 12 Information generation device 13 Calculation unit 14 Estimation unit 15 Risk estimation unit 20 Information generation device 21 Acquisition unit 25 Risk estimation unit 27 Proposed information generation unit 29 Output unit 110 Sensor 111 Acceleration sensor 112 Angular velocity sensor 113 Control unit 115 Communication unit 117 Power supply 121 Acquisition unit 122 Waveform processing unit 123 Gait index calculation unit 124 Memory unit 125 Physical ability estimation unit 126 Disease risk estimation unit 127 Proposed information generation unit 129 Output unit

Claims (20)

 少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する取得部と、
 取得された前記センサデータを用いて、少なくとも一人の前記管理対象者に関する疾病ごとの疾病リスクを推定するリスク推定部と、
 少なくとも一人の前記管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する提案情報生成部と、
 生成された前記提案情報を出力する出力部と、を備える情報生成装置。
An acquisition unit that acquires sensor data including acceleration and angular velocity measured by a measurement device mounted on the footwear of at least one of the managed persons;
A risk estimation unit that estimates a disease risk for each disease of at least one of the managed individuals using the acquired sensor data;
a proposal information generating unit configured to generate proposal information including health measures according to a disease risk of at least one of the management subjects;
and an output unit that outputs the generated proposal information.
 前記リスク推定部は、
 前記センサデータを用いて歩容指標を計算する計算部と、
 前記歩容指標を含むデータの入力に応じて疾病ごとの疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する推定部と、を有する請求項1に記載の情報生成装置。
The risk estimation unit is
a calculation unit that calculates a gait index using the sensor data;
2. The information generating device according to claim 1, further comprising: an estimation unit that inputs data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating the degree of disease risk for each disease in response to input of data including the gait index, and estimates disease risk information according to the disease risk score output from the disease risk estimation model.
 前記提案情報生成部は、
 前記疾病リスクスコアの入力に応じて前記健康施策を出力する健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する請求項2に記載の情報生成装置。
The proposal information generation unit,
The information generating device according to claim 2 , wherein the health measure corresponding to the disease risk score of at least one of the managed persons is estimated using a health measure estimation model that outputs the health measure in response to an input of the disease risk score.
 前記提案情報生成部は、
 前記管理対象者の働き方に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する請求項3に記載の情報生成装置。
The proposal information generation unit,
The information generating device according to claim 3 , wherein the health measure estimation model is customized to match the working style of the managed persons, and the health measure is estimated according to the disease risk score of at least one of the managed persons.
 前記提案情報生成部は、
 前記管理対象者が所属する組織の業種に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する請求項3に記載の情報生成装置。
The proposal information generation unit,
The information generating device according to claim 3 , wherein the health measure estimation model is customized to suit the industry of the organization to which the managed persons belong, and the health measure is estimated according to the disease risk score of at least one of the managed persons.
 前記健康施策推定モデルおよび前記疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルであり、
 前記疾病リスク推定モデルは、
 不完全異種変分オートエンコーダを含む請求項3に記載の情報生成装置。
the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique,
The disease risk estimation model is
4. The information generating apparatus of claim 3, comprising an incomplete heterogeneous variational autoencoder.
 請求項1乃至6のいずれか一項に記載の情報生成装置と、
 前記計測装置とを備え、
 前記計測装置は、
 少なくとも一人の前記管理対象者の履物に設置され、加速度および角速度を計測し、計測された加速度および角速度を用いて前記センサデータを生成し、生成された前記センサデータを前記情報生成装置に送信する情報提供システム。
An information generating device according to any one of claims 1 to 6;
The measuring device,
The measuring device includes:
An information provision system that is installed on the footwear of at least one of the managed persons, measures acceleration and angular velocity, generates the sensor data using the measured acceleration and angular velocity, and transmits the generated sensor data to the information generation device.
 前記情報生成装置は、
 前記管理対象者が所属する組織で使用される端末装置の画面に、組織に関して最適化された前記健康施策を含む前記提案情報を表示させる請求項7に記載の情報提供システム。
The information generating device includes:
8. The information providing system according to claim 7, wherein the proposed information including the health measure optimized for the organization is displayed on a screen of a terminal device used in an organization to which the person to be managed belongs.
 コンピュータが、
 少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得し、
 取得された前記センサデータを用いて、少なくとも一人の前記管理対象者に関する疾病ごとの疾病リスクを推定し、
 少なくとも一人の前記管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成し、
 生成された前記提案情報を出力する情報生成方法。
The computer
Acquire sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one of the managed persons;
Using the acquired sensor data, estimate a disease risk for each disease for at least one of the managed individuals;
Generate proposal information including health measures according to a disease risk for at least one of the managed persons;
The information generating method outputs the generated proposal information.
 前記センサデータを用いて歩容指標を計算し、
 前記歩容指標を含むデータの入力に応じて疾病ごとの疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力し、
 前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定する請求項9に記載の情報生成方法。
Calculating a gait index using the sensor data;
inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of disease risk for each disease in response to input of data including the gait index;
The information generating method according to claim 9 , further comprising estimating disease risk information according to the disease risk score output from the disease risk estimation model.
 前記疾病リスクスコアの入力に応じて前記健康施策を出力する健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する請求項10に記載の情報生成方法。 The information generation method according to claim 10, wherein the health measure corresponding to the disease risk score of at least one of the managed persons is estimated using a health measure estimation model that outputs the health measure according to the input of the disease risk score.  前記管理対象者の働き方に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する請求項11に記載の情報生成方法。 The information generation method according to claim 11, wherein the health measure estimation model is customized to match the working style of the managed persons, and the health measure is estimated according to the disease risk score of at least one of the managed persons.  前記管理対象者が所属する組織の業種に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する請求項11に記載の情報生成方法。 The information generation method according to claim 11, in which the health measures according to the disease risk score of at least one of the managed persons are estimated using the health measure estimation model customized to the industry of the organization to which the managed persons belong.  前記健康施策推定モデルおよび前記疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルであり、
 前記疾病リスク推定モデルは、
 不完全異種変分オートエンコーダを含む請求項11に記載の情報生成方法。
the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique,
The disease risk estimation model is
The method of claim 11 comprising an incomplete heterogeneous variational autoencoder.
 少なくとも一人の管理対象者の履物に搭載された計測装置によって計測された加速度および角速度を含むセンサデータを取得する処理と、
 取得された前記センサデータを用いて、少なくとも一人の前記管理対象者に関する疾病ごとの疾病リスクを推定する処理と、
 少なくとも一人の前記管理対象者に関する疾病リスクに応じた健康施策を含む提案情報を生成する処理と、
 生成された前記提案情報を出力する処理と、をコンピュータに実行させるプログラムを記録させたコンピュータ読み取り可能な非一過性の記録媒体。
A process of acquiring sensor data including acceleration and angular velocity measured by a measuring device mounted on the footwear of at least one person to be managed;
A process of estimating a disease risk for each disease for at least one of the managed individuals using the acquired sensor data;
A process of generating proposal information including health measures according to a disease risk for at least one of the managed persons;
and a computer-readable non-transitory recording medium having recorded thereon a program for causing a computer to execute a process of outputting the generated proposal information.
 前記センサデータを用いて歩容指標を計算する処理と、
 前記歩容指標を含むデータの入力に応じて疾病ごとの疾病リスクの度合を示す疾病リスクスコアを出力する疾病リスク推定モデルに、前記センサデータを用いて算出された前記歩容指標を含むデータを入力する処理と、
 前記疾病リスク推定モデルから出力される前記疾病リスクスコアに応じた疾病リスク情報を推定処理と、をコンピュータに実行させるプログラムを記録させた請求項15に記載のコンピュータ読み取り可能な非一過性の記録媒体。
A process of calculating a gait index using the sensor data;
A process of inputting data including the gait index calculated using the sensor data into a disease risk estimation model that outputs a disease risk score indicating a degree of disease risk for each disease in response to input of data including the gait index;
A non-transitory computer-readable recording medium as described in claim 15, having a program recorded thereon to cause a computer to execute the following steps: estimating disease risk information according to the disease risk score output from the disease risk estimation model.
 前記疾病リスクスコアの入力に応じて前記健康施策を出力する健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する処理をコンピュータに実行させるプログラムを記録させた請求項16に記載のコンピュータ読み取り可能な非一過性の記録媒体。 The non-transitory computer-readable recording medium according to claim 16, which has recorded thereon a program for causing a computer to execute a process of estimating the health measures according to the disease risk score of at least one of the managed persons, using a health measure estimation model that outputs the health measures according to the input of the disease risk score.  前記管理対象者の働き方に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する処理をコンピュータに実行させるプログラムを記録させた請求項17に記載のコンピュータ読み取り可能な非一過性の記録媒体。 The non-transitory computer-readable recording medium according to claim 17, which has recorded thereon a program for causing a computer to execute a process of estimating the health measures according to the disease risk score of at least one of the managed persons, using the health measure estimation model customized to the working style of the managed persons.  前記管理対象者が所属する組織の業種に合わせてカスタマイズされた前記健康施策推定モデルを用いて、少なくとも一人の前記管理対象者の前記疾病リスクスコアに応じた前記健康施策を推定する処理をコンピュータに実行させるプログラムを記録させた請求項17に記載のコンピュータ読み取り可能な非一過性の記録媒体。 The non-transitory computer-readable recording medium according to claim 17, which stores a program for causing a computer to execute a process of estimating the health measures according to the disease risk score of at least one of the managed persons, using the health measure estimation model customized to the industry of the organization to which the managed persons belong.  前記健康施策推定モデルおよび前記疾病リスク推定モデルは、機械学習の手法を用いて学習されたモデルであり、
 前記疾病リスク推定モデルは、
 不完全異種変分オートエンコーダを含む請求項17に記載のコンピュータ読み取り可能な非一過性の記録媒体。
the health measure estimation model and the disease risk estimation model are models trained using a machine learning technique,
The disease risk estimation model is
20. The non-transitory computer readable storage medium of claim 17, comprising an incomplete heterogeneous variational autoencoder.
PCT/JP2023/023269 2023-06-23 2023-06-23 Information generating device, information providing system, information providing method, and recording medium Pending WO2024261997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/023269 WO2024261997A1 (en) 2023-06-23 2023-06-23 Information generating device, information providing system, information providing method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/023269 WO2024261997A1 (en) 2023-06-23 2023-06-23 Information generating device, information providing system, information providing method, and recording medium

Publications (1)

Publication Number Publication Date
WO2024261997A1 true WO2024261997A1 (en) 2024-12-26

Family

ID=93935018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023269 Pending WO2024261997A1 (en) 2023-06-23 2023-06-23 Information generating device, information providing system, information providing method, and recording medium

Country Status (1)

Country Link
WO (1) WO2024261997A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074066A (en) * 2019-11-06 2021-05-20 花王株式会社 Walking guidance system
WO2023047558A1 (en) * 2021-09-27 2023-03-30 日本電気株式会社 Estimation device, information presentation system, estimation method, and recording medium
WO2023062666A1 (en) * 2021-10-11 2023-04-20 日本電気株式会社 Gait measurement device, gait measurement system, gait measurement method, and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074066A (en) * 2019-11-06 2021-05-20 花王株式会社 Walking guidance system
WO2023047558A1 (en) * 2021-09-27 2023-03-30 日本電気株式会社 Estimation device, information presentation system, estimation method, and recording medium
WO2023062666A1 (en) * 2021-10-11 2023-04-20 日本電気株式会社 Gait measurement device, gait measurement system, gait measurement method, and recording medium

Similar Documents

Publication Publication Date Title
US11887174B2 (en) Systems and methods for analyzing lower body movement to recommend footwear
JP7726283B2 (en) Estimation device, information presentation system, estimation method, and program
JP7758061B2 (en) Muscle strength evaluation device, muscle strength evaluation system, muscle strength evaluation method, and program
JP7677410B2 (en) Estimation device, estimation system, estimation method, and program
WO2024261936A1 (en) Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium
Ainsworth et al. How to assess physical activity in clinical practice and for scholarly work
WO2024261997A1 (en) Information generating device, information providing system, information providing method, and recording medium
US20240148277A1 (en) Estimation device, estimation method, and program recording medium
US20240138713A1 (en) Harmonic index estimation device, estimation system, harmonic index estimation method, and recording medium
WO2024261935A1 (en) Disease risk estimation device, disease risk estimation system, disease risk estimation method, and recording medium
WO2025041185A1 (en) Information providing device, information providing system, information providing method, and recording medium
JP7726299B2 (en) Falling tendency estimation device, falling tendency estimation system, falling tendency estimation method, and program
WO2025022479A1 (en) Information providing device, information providing system, information providing method, and recording medium
WO2024261996A1 (en) Information generation device, information provision system, information generation method, and recording medium
JP7525057B2 (en) Biometric information processing device, information processing system, biological information processing method, and program
WO2025027673A1 (en) Information providing device, information providing system, information providing method, and recording medium
JP7670172B2 (en) LOWER LIMB MUSCLE STRENGTH ESTIMATION DEVICE, LOWER LIMB MUSCLE STRENGTH ESTIMATION SYSTEM, LOWER LIMB MUSCLE STRENGTH ESTIMATION METHOD, AND PROGRAM
Saadion et al. Experimental study of gait monitoring on wearable shoes insole and analysis: a review
US20240330771A1 (en) Information processing device, information processing method, program recording medium, and model being trained
JP7729406B2 (en) Dynamic balance estimation device, dynamic balance estimation system, dynamic balance estimation method, and program
US11752390B2 (en) Housing equipment presentation apparatus, system, method and program
WO2025032627A1 (en) Information providing device, information providing system, information providing method, and recording medium
Abdullah Design and Development of Biofeedback Stick Technology (BfT) to Improve the Quality of Life of Walking Stick Users
Tasca A machine learning approach for spatio-temporal gait analysis based on a head-mounted inertial sensor
JP2024101908A (en) Estimation device, estimation system, estimation method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23942429

Country of ref document: EP

Kind code of ref document: A1