[go: up one dir, main page]

WO2021262239A1 - Dispositifs de mémoire liés et leurs procédés de fabrication - Google Patents

Dispositifs de mémoire liés et leurs procédés de fabrication Download PDF

Info

Publication number
WO2021262239A1
WO2021262239A1 PCT/US2020/067428 US2020067428W WO2021262239A1 WO 2021262239 A1 WO2021262239 A1 WO 2021262239A1 US 2020067428 W US2020067428 W US 2020067428W WO 2021262239 A1 WO2021262239 A1 WO 2021262239A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
selector
substrate
single crystalline
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2020/067428
Other languages
English (en)
Inventor
Raghuveer S. Makala
Johann Alsmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk Technologies LLC
Original Assignee
SanDisk Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/913,766 external-priority patent/US11538817B2/en
Priority claimed from US16/913,717 external-priority patent/US11903218B2/en
Application filed by SanDisk Technologies LLC filed Critical SanDisk Technologies LLC
Priority to CN202080080467.5A priority Critical patent/CN114730764B/zh
Priority to KR1020227017454A priority patent/KR102707979B1/ko
Priority to EP20942180.9A priority patent/EP4055629A4/fr
Publication of WO2021262239A1 publication Critical patent/WO2021262239A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Definitions

  • the present disclosure relates generally to the field of memory devices and specifically to bonded memory devices and methods of making the same.
  • a ferroelectric material refers to a material that displays spontaneous polarization of electrical charges in the absence of an applied electric field.
  • the net polarization P of electrical charges within the ferroelectric material is non-zero in the minimum energy state.
  • spontaneous ferroelectric polarization of the material occurs, and the ferroelectric material accumulates surfaces charges of opposite polarity types on two opposing surfaces.
  • Polarization P of a ferroelectric material as a function of an applied voltage V thereacross displays hysteresis.
  • the product of the remanent polarization and the coercive field of a ferroelectric material is a metric for characterizing effectiveness of the ferroelectric material.
  • a ferroelectric memory device is a memory device containing the ferroelectric material which is used to store information.
  • the ferroelectric material acts as the memory material of the memory device.
  • the dipole moment of the ferroelectric material is programmed in two different orientations (e.g., “up” or “down” polarization positions based on atom positions, such as oxygen and/or metal atom positions, in the crystal lattice) depending on the polarity of the applied electric field to the ferroelectric material to store information in the ferroelectric material.
  • the different orientations of the dipole moment of the ferroelectric material may be detected by the electric field generated by the dipole moment of the ferroelectric material.
  • a memory device comprises a first electrically conductive line laterally extending along a first horizontal direction, a memory pillar structure overlying and contacting the first electrically conductive line, wherein the memory pillar structure comprises a single crystalline ferroelectric material plate in which an entirety of a ferroelectric material is single crystalline, and a second electrically conductive line laterally extending along a second horizontal direction and overlying and contacting the memory pillar structure.
  • a method of forming a memory device comprises providing a first substrate with a single crystalline semiconductor layer therein or thereupon, epitaxially growing a single crystalline ferroelectric material layer on the single crystalline semiconductor layer, forming a first metallic material layer on the single crystalline ferroelectric material layer to form a first layer stack comprising at least the single crystalline ferroelectric material layer and the first metallic material layer, forming a second layer stack comprising a selector material layer and a second metallic material layer over a second substrate, and bonding the second layer stack to the first layer stack.
  • a method of forming a memory device comprises providing a first assembly comprising a first substrate containing first electrically conductive lines comprising word lines or bit lines, forming at least a portion of a memory cell over the first electrically conductive lines, providing a second assembly comprising a second substrate containing second electrically conductive lines comprising other ones of word lines or bit lines; and bonding the first assembly to the second assembly such that the memory cell is located between the first electrically conductive lines and the second electrically conductive lines.
  • One of the first electrically conductive lines comprises a word line or bit line of the memory cell and one of the second electrically conductive lines comprises the other one of the word line or bit line of the memory cell.
  • a method of forming a memory device comprises providing a first assembly comprising at least a portion of a memory cell located over a first substrate, providing a second assembly comprising at least a portion of a selector element located over a second substrate, and bonding the first assembly to the second assembly such that the memory cell is bonded to its respective selector element.
  • FIG. 1A is a vertical cross-sectional view of a first substrate after formation of a single crystalline semiconductor layer thereupon according to a first embodiment of the present disclosure.
  • FIG. IB is a vertical cross-sectional view of an assembly including the first substrate after formation of a semiconductor oxide layer thereupon according to the first embodiment of the present disclosure.
  • FIG. 1C is a vertical cross-sectional view of the assembly including the first substrate after formation of a hydrogen implanted layer and removal of the semiconductor oxide layer according to the first embodiment of the present disclosure.
  • FIG. ID is a vertical cross-sectional view of the assembly including the first substrate after formation of a single crystalline ferroelectric material layer and a first metallic material layer according to the first embodiment of the present disclosure.
  • FIG. 2A is a vertical cross-sectional view along plane A - A’ in FIG. 2B of a second substrate after formation of first electrically conductive lines laterally spaced by first dielectric rails thereupon according to the first embodiment of the present disclosure.
  • FIG. 2B is a top-down view of the structure of FIG. 2A.
  • FIG. 3 is a vertical cross-sectional view of an assembly including the second substrate after formation of a lower electrode layer, a selector material layer, an upper electrode layer, and a second metallic material layer thereupon according to the first embodiment of the present disclosure.
  • FIG. 4 is a vertical cross-sectional view of a first exemplary structure after bonding the second metallic material layer to the first metallic material layer according to the first embodiment of the present disclosure.
  • FIG. 5 is a vertical cross-sectional view of the first exemplary structure after removing an assembly of the first substrate and a proximal single crystalline semiconductor sublayer by cleaving the single crystalline semiconductor layer at the hydrogen implanted layer according to the first embodiment of the present disclosure.
  • FIG. 6 is a vertical cross-sectional view of the first exemplary structure after formation of a metallic cap layer according to the first embodiment of the present disclosure.
  • FIG. 7 is a vertical cross-sectional view of the first exemplary structure after formation of an array of memory pillar structures according to the first embodiment of the present disclosure.
  • FIG. 8A is a vertical cross-sectional view along plane A - A’ in FIG. 8B of the first exemplary structure after formation of a dielectric isolation structure according to the first embodiment of the present disclosure.
  • FIG. 8B is a top-down view of the first exemplary structure of FIG. 8A.
  • FIG. 9A is a vertical cross-sectional view along plane A - A’ in FIG. 9B of the first exemplary structure after formation of second electrically conductive lines laterally spaced by second dielectric rails according to the first embodiment of the present disclosure.
  • FIG. 9B is a top-down view of the first exemplary structure of FIG. 9A.
  • FIG. 10A is a vertical cross-sectional view along plane A - A’ in FIG. 10B of an alternative configuration of the first exemplary structure after formation of second electrically conductive lines laterally spaced by second dielectric rails according to the first embodiment of the present disclosure.
  • FIG. 10B is a top-down view of the first exemplary structure of FIG. 10A.
  • FIG. 11 A is a vertical cross-sectional view of a first substrate after formation of a single crystalline semiconductor layer thereupon according to a second embodiment of the present disclosure.
  • FIG. 1 IB is a vertical cross-sectional view of an assembly including the first substrate after formation of a single crystalline ferroelectric material layer and a first metallic material layer according to the second embodiment of the present disclosure.
  • FIG. 12 is a vertical cross-sectional view of a second exemplary structure after attaching an assembly of a second substrate, first electrically conductive lines laterally spaced by first dielectric rails, a lower electrode layer, a selector material layer, an upper electrode layer, and a second metallic material layer according to the second embodiment of the present disclosure.
  • FIG. 13 is a vertical cross-sectional view of the second exemplary structure after thinning the first substrate according to the second embodiment of the present disclosure.
  • FIG. 14 is a vertical cross-sectional view of the second exemplary structure after removal of the thinned first substrate according to the second embodiment of the present disclosure.
  • FIG. 15 is a vertical cross-sectional view of the second exemplary structure after formation of a metallic cap layer according to the second embodiment of the present disclosure.
  • FIG. 16 is a vertical cross-sectional view of the second exemplary structure after formation of an array of memory pillar structures according to the second embodiment of the present disclosure.
  • FIG. 17A is a vertical cross-sectional view of the second exemplary structure after formation of a dielectric isolation structure according to the second embodiment of the present disclosure.
  • FIG. 17B is a top-down view of the second exemplary structure of FIG. 17A.
  • FIG. 18A is a vertical cross-sectional view of the second exemplary structure after formation of second electrically conductive lines laterally spaced by second dielectric rails according to the second embodiment of the present disclosure.
  • FIG. 18B is a top-down view of the second exemplary structure of FIG. 18 A.
  • FIG. 19 is a vertical cross-sectional view of an alternative configuration of the second exemplary structure after removal of the single crystalline semiconductor layer according to the second embodiment of the present disclosure.
  • FIG. 20A is a vertical cross-sectional view of the alternative configuration of the second exemplary structure after formation of second electrically conductive lines laterally spaced by second dielectric rails according to the second embodiment of the present disclosure.
  • FIG. 20B is a top-down view of the second exemplary structure of FIG. 20A.
  • FIGS. 21 A and 2 IB are schematic diagrams of electrostatic potential energy band profiles of ferroelectric tunnel junction devices of the first and second embodiments of the present disclosure.
  • FIGS. 22A, 23, 24, 25 A, 26 and 27 are vertical cross-sectional views of steps in a method of forming a third exemplary structure according to the third embodiment of the present disclosure.
  • FIGS. 22B and 25B are top-down views of the third exemplary structure of FIGS. 22A and 25 A, respectively.
  • FIGS. 28A, 29, 30, 31A, 32 and 33 are vertical cross-sectional views of steps in a method of forming a fourth exemplary structure according to the fourth embodiment of the present disclosure.
  • FIGS. 28B and 31B are top-down views of the fourth exemplary structure of FIGS. 28A and 31 A, respectively.
  • FIGS. 34, 35, 36, 37, 38 and 39 are vertical cross-sectional views of steps in a method of forming an alternative configuration of the fourth exemplary structure according to an alternative aspect of the fourth embodiment of the present disclosure.
  • FIGS. 40, 41, 42, 43 and 44 are vertical cross-sectional views of steps in methods of forming other alternative configurations of the fourth exemplary structure according to other alternative aspects of the fourth embodiment of the present disclosure.
  • Embodiments of the present disclosure provide bonded memory devices and methods of making thereof by bonding different portions of the same memory cell to each other.
  • ferroelectric tunnel junction devices are formed by wafer bonding to obtain a high quality crystalline ferroelectric tunnel dielectric layer which is epitaxially grown on a template layer followed by bonding the ferroelectric tunnel dielectric layer to the selector element which is formed on a separate substrate.
  • magnetoresistive random access memory (MRAM) and phase change memory (PCM) memory devices are bonded to one of word or bit lines and/or to a selector element formed on a separate substrate to avoid damaging the MRAM and PCM layers during reactive ion etching of the word or bit lines.
  • MRAM magnetoresistive random access memory
  • PCM phase change memory
  • a “contact” between elements refers to a direct contact between elements that provides an edge or a surface shared by the elements. If two or more elements are not in direct contact with each other or among one another, the two elements are “disjoined from” each other or “disjoined among” one another.
  • a first element located “on” a second element can be located on the exterior side of a surface of the second element or on the interior side of the second element.
  • a first element is located “directly on” a second element if there exist a physical contact between a surface of the first element and a surface of the second element.
  • a first element is “electrically connected to” a second element if there exists a conductive path consisting of at least one conductive material between the first element and the second element.
  • a “prototype” structure or an “in-process” structure refers to a transient structure that is subsequently modified in the shape or composition of at least one component therein.
  • a “layer” refers to a material portion including a region having a thickness.
  • a layer may extend over the entirety of an underlying or overlying structure, or may have an extent less than the extent of an underlying or overlying structure. Further, a layer may be a region of a homogeneous or inhomogeneous continuous structure that has a thickness less than the thickness of the continuous structure. For example, a layer may be located between any pair of horizontal planes between, or at, a top surface and a bottom surface of the continuous structure. A layer may extend horizontally, vertically, and/or along a tapered surface.
  • a substrate may be a layer, may include one or more layers therein, or may have one or more layer thereupon, thereabove, and/or therebelow.
  • a first surface and a second surface are “vertically coincident” with each other if the second surface overlies or underlies the first surface and there exists a vertical plane or a substantially vertical plane that includes the first surface and the second surface.
  • a substantially vertical plane is a plane that extends straight along a direction that deviates from a vertical direction by an angle less than 5 degrees.
  • a vertical plane or a substantially vertical plane is straight along a vertical direction or a substantially vertical direction, and may, or may not, include a curvature along a direction that is perpendicular to the vertical direction or the substantially vertical direction.
  • a “memory level” or a “memory array level” refers to the level corresponding to a general region between a first horizontal plane (i.e., a plane parallel to the top surface of the substrate) including topmost surfaces of an array of memory elements and a second horizontal plane including bottommost surfaces of the array of memory elements.
  • a “through-stack” element refers to an element that vertically extends through a memory level.
  • Ferroelectric properties of a ferroelectric material depend on stabilizing a particular crystalline phase of the ferroelectric material.
  • hafnium oxide based layers exhibit ferroelectricity only in an orthorhombic phase (e.g., a non-centrosymmetric orthorhombic phase).
  • the first and second embodiments of the present disclosure are directed to a memory device including crystalline ferroelectric memory elements and methods of making the same, the various aspects of which are described below.
  • the crystalline layers of the memory device stabilize the ferroelectric crystallographic phase of the ferroelectric material to provide a high-performance ferroelectric device.
  • the crystalline ferroelectric material comprises a relatively thin, epitaxial hafnium oxide based layer in the orthorhombic phase.
  • the hafnium oxide based layer is epitaxially grown on a germanium based buffer layer. After growth, the epitaxial hafnium oxide based layer is transferred to another substrate by wafer bonding and layer transfer methods.
  • a first exemplary structure according to a first embodiment of the present disclosure includes a first substrate 10L.
  • the first substrate 10L which can be a single crystalline substrate on which a single crystalline semiconductor material can be subsequently grown.
  • the first substrate 10L may be a commercially available single crystalline silicon wafer.
  • a single crystalline semiconductor layer 20L can be formed upon a top surface of the first substrate 10L by an epitaxial semiconductor deposition process.
  • the single crystalline semiconductor layer 20L can include a germanium-containing single crystalline semiconductor material.
  • the single crystalline semiconductor layer 20L can include germanium or a silicon-germanium alloy.
  • the single crystalline semiconductor layer 20L may include germanium at an atomic percentage in a range from 50 % to 100 %.
  • the single crystalline semiconductor layer 20L can be formed by performing an epitaxial semiconductor deposition process.
  • the bottom portion of the single crystalline semiconductor layer 20L may have a vertically graded material composition such that the atomic concentration of germanium increases with a distance from the top surface of the first substrate 10L.
  • the top portion of the single crystalline semiconductor layer 20L may include germanium at an atomic percentage in a range from 50 % to 100 %, such as from 80 % to 90 %.
  • the top portion of the single crystalline semiconductor layer 20L may include germanium at an atomic percentage of 100 %.
  • the thickness of the single crystalline semiconductor layer 20L may be in a range from 50 nm to 600 nm, such as from 100 nm to 300 nm, although lesser and greater thicknesses may also be employed.
  • an optional semiconductor oxide layer 25 can be formed on the top surface of the single crystalline semiconductor layer 20L.
  • the semiconductor oxide layer 25 may be formed by oxidation of a surface portion of the single crystalline semiconductor layer 20L.
  • the semiconductor oxide layer 25 may include germanium oxide, silicon oxide, or a silicon-germanium oxide.
  • the thickness of the semiconductor oxide layer 25 can be in a range from 5 nm to 50 nm, such as from 10 nm to 30 nm, although lesser and greater thicknesses may also be employed.
  • hydrogen or deuterium atoms can be implanted through the semiconductor oxide layer 25 into the single crystalline semiconductor layer 20L to form an implanted layer (i.e., hydrogen or deuterium implanted region) 23.
  • the single crystalline semiconductor layer 20L is divided into a proximal single crystalline semiconductor layer 22L and a distal single crystalline semiconductor layer 24L.
  • the thickness of the proximal single crystalline semiconductor layer 22L may be in a range from 25 nm to 300 nm, such as from 50 nm to 150 nm, although lesser and greater thicknesses may also be employed.
  • the thickness of the distal single crystalline semiconductor layer 24L may be in a range from 25 nm to 300 nm, such as from 50 nm to 150 nm, although lesser and greater thicknesses may also be employed.
  • the distal single crystalline semiconductor layer 24L may comprise, and/or may consist essentially of, germanium or a silicon-germanium alloy including germanium at an atomic percentage in a range from 50 % to 100 %.
  • the semiconductor oxide layer 25 can be removed, for example, by a selective wet etch process.
  • a suitable surface clean process may be performed on a physically exposed top surface of the distal single crystalline semiconductor layer 24L.
  • a memory material layer such as a single crystalline ferroelectric material layer 30L can be epitaxially grown on the top surface of the distal single crystalline semiconductor layer 24L.
  • the single crystalline ferroelectric material layer 30L includes a single crystalline ferroelectric material that is epitaxially aligned to the single crystalline semiconductor material of the distal single crystalline semiconductor layer 24L.
  • the single crystalline ferroelectric material layer 30L can include a transition metal oxide material.
  • the transition metal oxide material comprises a hafnium oxide based material, which comprises doped or undoped hafnium oxide.
  • the single crystalline ferroelectric material layer 30L may include single crystalline hafnium oxide doped with zirconium (also referred to as hafnium- zirconium oxide), silicon, strontium aluminum, yttrium, germanium and/or gadolinium.
  • the transition metal oxide material comprises a perovskite material, such as barium titanate (such as BaTi(1 ⁇ 4; BT), europium barium titanate, lead scandium tantalate (such as Pb(Sc x Tai- x )0 3 ), lead titanate (such as PbTiCT; PT), lead zirconate titanate (such as Pb (Zr,Ti) O3; PZT), lithium niobate (such as LiNbCF; LN), (LaAlCF)), potassium niobate (such as KNbCF), sodium bismuth titanate (such as Nao . sBio .
  • barium titanate such as BaTi(1 ⁇ 4; BT
  • europium barium titanate such as BaTi(1 ⁇ 4; BT
  • lead scandium tantalate such as Pb(Sc x Tai- x )0 3
  • lead titanate such as PbTiCT; PT
  • sTiO lithium tantalate
  • lead lanthanum titanate such as (Pb,La)Ti0 3 (PLT)
  • lead lanthanum zirconate titanate such as (Pb,La)(Zr,Ti)0 3 (PLZT)
  • layers of strontium titanate (SrTiCb) or strontium ruthenate (SrRuCF) may be used as the distal crystalline layer 24L.
  • the single crystalline ferroelectric material layer 30L may be epitaxially grown by atomic layer deposition or another suitable method.
  • the dopants may be introduced in-situ or ex-situ (for example, by ion implantation).
  • the thickness of the single crystalline ferroelectric material layer 30L may be in a range from 2 nm to 30 nm, such as from 5 nm to 15 nm, for example about 10 nm, although lesser and greater thicknesses may also be employed.
  • a thermal anneal can be performed to improve crystallinity of the material of the single crystalline ferroelectric material layer 30L and to enhance ferroelectric properties (such as magnitude of electrical polarization) of the ferroelectric material of the single crystalline ferroelectric material layer 30L.
  • layer 30L may be a hafnium oxide based ferroelectric layer having the ferroelectric non-centrosymmetric orthorhombic phase after the anneal.
  • a first metallic material layer 40L can be formed by deposition of a first metallic material on the top surface of the single crystalline ferroelectric material layer 30L.
  • the first metallic material layer 40L may include an elemental metal, such as W, Mo or Ru, and/or a conductive metallic compound material, such as MoN, TiN, TaN, or WN.
  • the first metallic material layer 40L can be formed by chemical vapor deposition or by physical vapor deposition.
  • the first metallic material layer 40L can have a thickness in a range from 5 nm to 50 nm, such as from 10 nm to 25 nm, although lesser and greater thicknesses may also be employed.
  • a second substrate 110L can be provided.
  • the second substrate 110L may include an insulating material layer at a topmost portion thereof.
  • the second substrate 110L may include a semiconductor substrate such as a silicon wafer, and semiconductor devices (not expressly shown) such as field effect transistors that are formed on the semiconductor substrate.
  • Dielectric material layers (not expressly shown) embedding metal interconnect structures (not expressly shown) can be formed over the semiconductor devices.
  • the metal interconnect structures can provide electrical interconnection among the various nodes of the semiconductor devices.
  • a dielectric material layer can be deposited over the second substrate 110L.
  • the dielectric material layer includes a dielectric material such as silicon oxide, and can be formed by chemical vapor deposition.
  • the thickness of the dielectric material layer may be in a range from 50 nm to 500 nm, although lesser and greater thicknesses can also be employed.
  • a photoresist layer (not shown) can be applied over the dielectric material layer, and can be lithographically patterned to form a line and space pattern. Elongated openings laterally extending along a first horizontal direction hdl and laterally spaced apart among one another along a second horizontal direction hd2 can be formed in the photoresist layer.
  • the width of each opening along the second horizontal direction hd2 can be in a range from 10 nm to 50 nm, such as 15 nm to 25 nm, although lesser and greater widths can also be employed.
  • the pitch of the line and space pattern may be in a range from 20 nm to 100 nm, such as from 30 nm to 50 nm, although lesser and greater pitches may also be employed.
  • the pattern in the photoresist layer can be transferred through the dielectric material layer by an anisotropic etch process.
  • the photoresist layer can be employed as an etch mask during the anisotropic etch process.
  • First line trenches can be formed through the dielectric material layer.
  • the photoresist layer can be subsequently removed, for example, by ashing.
  • Remaining portions of the dielectric material layer comprise first dielectric rails 122.
  • An optional metallic liner layer including a metallic barrier material can be deposited in the first line trenches and over the first dielectric rails 122.
  • the metallic liner layer can include a conductive metallic barrier material such as a conductive metallic nitride material (e.g., TiN, TaN, and/or WN) and/or a conductive metallic carbide material (e.g.,
  • the metallic liner layer can be deposited by chemical vapor deposition or physical vapor deposition.
  • a metallic fill material layer can be deposited over the metallic liner layer.
  • the metallic fill material layer includes a metallic material having high electrical resistivity.
  • the metallic fill material layer can include copper, tungsten, titanium, tantalum, molybdenum, ruthenium, cobalt, or a combination thereof.
  • Excess portions of the metallic fill material layer and the metallic liner layer can be removed from above the horizontal plane including the top surface of the first dielectric rails. Each remaining portion of the metallic fill material layer comprises a first metallic fill material portion.
  • Each remaining portion of the metallic liner layer comprises a first metallic liner.
  • first electrically conductive lines 120 laterally extend along the first horizontal direction hdl, and are laterally spaced apart along the second horizontal direction hd2.
  • first electrically conductive lines 120 laterally spaced by first dielectric rails 122 are formed over the second substrate 110L.
  • the first electrically conductive lines 120 may be formed first by depositing one or more electrically conductive layers over the second substrate 110L, followed by patterning the one or more electrically conductive layers by reactive ion etching (RIE) to form the lines 120.
  • RIE reactive ion etching
  • the first dielectric rails 122 are then formed between the first electrically conductive lines 120 by depositing the dielectric material layer between the first electrically conductive lines 120 and planarizing the dielectric material layer.
  • a layer stack comprising a selector material layer 134L and a second metallic material layer 140L can be formed over the first electrically conductive lines 120.
  • the layer stack can include, from bottom to top, a lower electrode layer 132L, the selector material layer 134L, an upper electrode layer 136L, and the second metallic material layer 140L.
  • the combination of the lower electrode layer 132L, the selector material layer 134L, and the upper electrode layer 136L is herein referred to as selector- level layers 130L.
  • Each of the lower electrode layer 132L and the upper electrode layer 136L includes at least one electrically conductive material.
  • the at least one electrically conductive material may include a non-metallic conductive material.
  • Exemplary non-metallic conductive materials that can be employed for the lower electrode layer 132L and the upper electrode layer 136L include amorphous carbon, amorphous boron-doped carbon, amorphous nitrogen-doped carbon, amorphous silicon, amorphous germanium, alloys or mixtures thereof, and layer stacks thereof.
  • Each of the lower electrode layer 132L and the upper electrode layer 136L may be free of transition metal elements.
  • Each of the lower electrode layer 132L and the upper electrode layer 136L may be deposited by chemical vapor deposition, physical vapor deposition, or atomic layer deposition.
  • Each of the lower electrode layer 132L and the upper electrode layer 136L can have a respective thickness in a range from 0.5 nm to 10 nm, such as from 1 nm to 5 nm, although lesser and greater thicknesses may also be employed.
  • the selector material layer 134L includes a material that can function as a voltage-dependent switch.
  • the selector material layer 134L can include any suitable threshold switch material which exhibits non-linear electrical behavior, such as an ovonic threshold switch material or a diode threshold switch material (e.g., materials for p-n semiconductor diode, p-i-n semiconductor diode, Schottky diode or metal-insulator-metal diode).
  • the selector material layer 134L includes an ovonic threshold switch material.
  • an ovonic threshold switch is a device that does not crystallize in a low resistance state under a voltage above the threshold voltage, and reverts back to a high resistance state when not subjected to a voltage above the threshold voltage across the OTS material layer.
  • an “ovonic threshold switch material” refers to a material that displays a non-linear resistivity curve under an applied external bias voltage such that the resistivity of the material decreases with the magnitude of the applied external bias voltage. In other words, an ovonic threshold switch material is non-Ohmic, and becomes more conductive under a higher external bias voltage than under a lower external bias voltage.
  • An ovonic threshold switch material can be non-crystalline (for example, amorphous) in a high resistance state, and can remain non-crystalline (for example, remain amorphous) in a low resistance state during application of a voltage above its threshold voltage across the OTS material.
  • the OTS material can revert back to the high resistance state when the high voltage above its threshold voltage is removed.
  • the ovonic threshold switch material can remain non-crystalline (e.g., amorphous).
  • the ovonic threshold switch material can comprise layer a chalcogenide material which exhibits hysteresis in both the write and read states.
  • the chalcogenide material may be a GeTe compound or a Ge-Se compound doped with a dopant selected from As, N, and C, such as a Ge-Se- As compound semiconductor material.
  • the ovonic threshold switch material layer can include a selector material layer 134L which contains any ovonic threshold switch material.
  • the selector material layer 134L can include, and/or can consist essentially of, a GeSeAs alloy, a GeSe alloy, a SeAs alloy, a GeTe alloy, or a SiTe alloy.
  • the material of the selector material layer 134L can be selected such that the resistivity of the selector material layer 134L decreases at least by two orders of magnitude (i.e., by more than a factor of 100) upon application of an external bias voltage that exceeds a critical bias voltage magnitude (also referred to as threshold voltage).
  • a critical bias voltage magnitude also referred to as threshold voltage
  • the composition and the thickness of the selector material layer 134L can be selected such that the critical bias voltage magnitude can be in a range from 1 V to 4 V, although lesser and greater voltages can also be employed for the critical bias voltage magnitude.
  • the thickness of the selector material layer 134L can be, for example, in a range from 5 nm to 40 nm, such as 10 nm to 20 nm, although lesser and greater thicknesses can also be employed.
  • the second metallic material layer 140L can be formed by deposition of a second metallic material on the top surface of the selector-level layers 130L.
  • the second metallic material layer 140L may include an elemental metal (such as W or Ru) and/or a conductive metallic compound material such as (TiN, TaN, or WN).
  • the second metallic material layer 140L can be formed by chemical vapor deposition or by physical vapor deposition.
  • the second metallic material layer 140L can have a thickness in a range from 5 nm to 50 nm, such as from 10 nm to 25 nm, although lesser and greater thicknesses may also be employed.
  • the materials of the first metallic material layer 40L and the second metallic material layer 140L can be selected such that the first metallic material layer 40L and the second metallic material layer 140L can be subsequently bonded to each other.
  • the material of the second metallic material layer 140L may be the same as, or may be different from, the material of the first metallic material layer 40L.
  • the structure of FIG. 3 and the structure of FIG. ID can be positioned such that the second metallic material layer 140L contacts the first metallic material layer 40L.
  • a first thermal anneal process is performed to bond the second metallic material layer 140L to the first metallic material layer 40L.
  • the temperature of the first thermal anneal process can be in a range from 200 degrees Celsius to 500 degrees Celsius, such as from 250 degrees Celsius to 400 degrees Celsius.
  • the temperature of the first thermal anneal process may be limited by the thermal stability of the ferroelectric material of the single crystalline ferroelectric material layer 30L and the thermal stability of the implanted layer 23.
  • the second metallic material layer 140L may be omitted, and metal - hybrid bonding can be used instead.
  • the single crystalline semiconductor layer 20L i.e., 22L, 24L
  • a second thermal anneal process can be performed to induce bubbling of hydrogen or deuterium atoms in the hydrogen implanted layer 23.
  • the temperature of the second thermal anneal process may be in a range from 500 degrees Celsius to 700 degrees Celsius.
  • the assembly of the first substrate 10L and the proximal single crystalline semiconductor layer 22L can be detached from the assembly including the second substrate 110L, the first electrically conductive lines 120 and the first dielectric rails 122, the selector-level layers 130L, the second metallic material layer 140L, the first metallic material layer 40L, the single crystalline ferroelectric material layer 30L, and the distal single crystalline semiconductor layer 24L (which is hereafter referred to as a single crystalline semiconductor layer 24L).
  • the single crystalline semiconductor layer 24L may be removed by selective etching to expose the single crystalline ferroelectric material layer 30L.
  • the single crystalline semiconductor layer 24L may be retained either partially or completely as part of an electrode of a ferroelectric tunnel junction memory device.
  • a metallic cap layer 50L can be optionally deposited on the top surface of the single crystalline semiconductor layer 24L (if layer 24L is retained). If layer 24L is removed, then the metallic cap layer 50L can be optionally deposited on the top surface of the single crystalline ferroelectric material layer 30L, such that the device shown in FIGS. 10A and 10B is formed after the steps shown in FIGS. 7 to 8B and described below.
  • the metallic cap layer 50L comprises, and/or consists essentially of, a material selected from an elemental metal, an intermetallic alloy, a conductive metallic nitride material, a conductive metallic carbide material, and a conductive carbon-based material.
  • Exemplary elemental metals that can be employed for the metallic cap layer 50L include transition metals.
  • Exemplary conductive metallic nitride materials include TiN, TaN, MoN and WN.
  • Exemplary conductive metallic carbide materials include TiC, TaC, and WC.
  • Conductive carbon-based materials include amorphous carbon or diamond-like carbon doped with suitable dopant atoms such as nitrogen to increase the electrical conductivity.
  • the metallic cap layer 50L can consist essentially of W, TiN, TaN, MoN or WN.
  • the metallic cap layer 50L can be formed by physical vapor deposition or chemical vapor deposition.
  • the thickness of the metallic cap layer 50L can be in a range from 10 nm to 80 nm, such as from 20 nm to 50 nm, and/or from 30 nm to 40 nm, although lesser and greater thicknesses can also be employed.
  • a photoresist and hard mask layer can be applied over the metallic cap layer 50L, and can be lithographically patterned to form a two-dimensional array of discrete photoresist material portions 57.
  • the two-dimensional array of discrete photoresist and hard mask material portions 57 can be formed as a two- dimensional periodic rectangular array.
  • the two-dimensional array of discrete photoresist and hard mask material portions 57 may have a pitch along the second horizontal direction hd2 that is the same as the pitch of the first electrically conductive lines 120 along the second horizontal direction, and may have a pitch along the first horizontal direction hdl that is the same as the pitch along the first horizontal direction hdl of second electrically conductive lines to be subsequently formed.
  • An anisotropic etch process can be performed to transfer the pattern in the two- dimensional array of discrete photoresist material portions 57 through the layer stack including the metallic cap layer 50L, the distal single crystalline semiconductor layer 24L (if present), the single crystalline ferroelectric material layer 30L, the first metallic material layer 40L, the second metallic material layer 140L, and the selector-level layers 130L.
  • Each patterned portion of the layer stack of the metallic cap layer 50L, the distal single crystalline semiconductor layer 24L, the single crystalline ferroelectric material layer 30L, the first metallic material layer 40L, the second metallic material layer 140L, and the selector-level layers 130L comprises a memory pillar structure (130, 140, 40, 30, 24, 50).
  • At least one memory pillar structure (130, 140, 40, 30, 24, 50) can be formed by patterning the layer stack comprising the metallic cap layer 50L, the distal single crystalline semiconductor layer 24L, the single crystalline ferroelectric material layer 30L, the first metallic material layer 40L, the second metallic material layer 140L, and the selector-level layers 130L.
  • a two-dimensional periodic rectangular array of memory pillar structures (130, 140, 40, 30, 24, 50) can be formed.
  • Each memory pillar structure (130, 140, 40, 30, 24, 50) can include, from bottom to top, a selector element 130, a second metallic material plate 140, a first metallic material plate 40, a single crystalline ferroelectric material plate 30, an optional single crystalline semiconductor plate 24, and a metallic cap plate 50.
  • Each selector element 130 is a patterned portion of the selector-level layers 130L.
  • Each selector element 130 may include, from bottom to top, a lower electrode plate 132, a selector material plate 134, and an upper electrode plate 136.
  • Each second metallic material plate 140 is a patterned portion of the second metallic material layer 140L.
  • Each first metallic material plate 40 is a patterned portion of the first metallic material layer 40L.
  • Each single crystalline ferroelectric material plate 30 is a patterned portion of the single crystalline ferroelectric material layer 30L.
  • Each single crystalline semiconductor plate 24 (if present) is a patterned portion of the single crystalline semiconductor layer 24L.
  • Each metallic cap plate 50 is a patterned portion of the metallic cap layer 50L.
  • Each memory pillar structure (130, 140, 40, 30, 24, 50) can have at least one sidewall that extends from the top surface of the respective memory pillar structure (130, 140, 40, 30, 24, 50) to the bottom surface of the memory pillar structure (130, 140, 40, 30, 24, 50).
  • Each sidewall may be vertical, substantially vertical, or may have a taper angle in a range from 1 degree to 15 degrees.
  • the discrete photoresist and hard mask material portions 57 can be subsequently removed, for example, by ashing.
  • the memory pillar structures (130, 140, 40, 30, 24, 50) can have horizontal cross-sectional shapes of a rectangle, a rounded rectangle, a circle, an ellipse, or any generally curvilinear two-dimensional closed shape.
  • an optional dielectric diffusion barrier liner may be optionally formed on the physically exposed surfaces of the memory pillar structures (130, 140, 40, 30, 24, 50).
  • a dielectric fill material such as undoped silicate glass, a doped silicate glass, or organosilicate glass. Portions of the dielectric fill material and the dielectric diffusion barrier liner that overlie the horizontal plane including the top surfaces of the memory pillar structures (130, 140, 40, 30, 24, 50) by a planarization process such as a chemical mechanical planarization process. The top surfaces of the metallic cap plates 50 can be employed as stopping surfaces for the planarization process.
  • the remaining portions of the dielectric fill material and the dielectric diffusion barrier liner comprise a dielectric isolation structure 60.
  • the dielectric isolation structure 60 can laterally surround the two- dimensional array of memory pillar structures (130, 140, 40, 30, 24, 50).
  • a dielectric material layer can be deposited over the two-dimensional array of memory pillar structures (130, 140, 40, 30, 24, 50).
  • the dielectric material layer includes a dielectric material such as silicon oxide, and can be formed by chemical vapor deposition.
  • the thickness of the dielectric material layer may be in a range from 50 nm to 500 nm, although lesser and greater thicknesses can also be employed.
  • a photoresist layer (not shown) can be applied over the dielectric material layer, and can be lithographically patterned to form a line and space pattern.
  • Elongated openings laterally extending along the second horizontal direction hd2 and laterally spaced apart among one another along the first horizontal direction hdl can be formed in the photoresist layer.
  • the width of each opening along the first horizontal direction hdl can be in a range from 10 nm to 50 nm, such as 15 nm to 25 nm, although lesser and greater widths can also be employed.
  • the pitch of the line and space pattern may be in a range from 20 nm to 100 nm, such as from 30 nm to 50 nm, although lesser and greater pitches may also be employed.
  • the pitch of the line and space pattern can be the same as the pitch of the two-dimensional array of memory pillar structures (130, 140, 40, 30, 24, 50) along the first horizontal direction hdl.
  • the pattern in the photoresist layer can be transferred through the dielectric material layer by an anisotropic etch process.
  • the photoresist layer can be employed as an etch mask during the anisotropic etch process.
  • an additional hard mask layer (not shown) may be used in conjunction with the photoresist layer to define the line and space pattern.
  • Second line trenches can be formed through the dielectric material layer.
  • the photoresist layer and hard mask layer can be subsequently removed, for example, by ashing. Remaining portions of the dielectric material layer comprise second dielectric rails 90.
  • a metallic liner layer including a metallic barrier material can be deposited in the second line trenches and over the second dielectric rails 90.
  • the metallic liner layer can include a conductive metallic barrier material such as a conductive metallic nitride material (e.g., TiN, TaN, MoN and/or WN) and/or a conductive metallic carbide material (e.g., TiC, TaC, and/or WC).
  • the metallic liner layer can be deposited by chemical vapor deposition or physical vapor deposition.
  • a metallic fill material layer can be deposited over the metallic liner layer.
  • the metallic fill material layer includes a metallic material having high electrical resistivity.
  • the metallic fill material layer can include copper, tungsten, titanium, tantalum, molybdenum, ruthenium, cobalt, or a combination thereof.
  • each remaining portion of the metallic fill material layer comprises a second metallic fill material portion.
  • Each remaining portion of the metallic liner layer comprises a second metallic liner.
  • Each contiguous combination of a second metallic liner and a second metallic fill material portion constitutes a second electrically conductive line 80.
  • the second electrically conductive lines 80 laterally extend along the second horizontal direction hd2, and are laterally spaced apart along the first horizontal direction hdl.
  • the second electrically conductive lines 80 may be formed first by depositing one or more electrically conductive layers, followed by patterning the one or more electrically conductive layers by reactive ion etching (RIE) to form the lines 80.
  • RIE reactive ion etching
  • the second dielectric rails 90 are then formed between the second electrically conductive lines 80 by depositing the dielectric material layer between the second electrically conductive lines 80 and planarizing the dielectric material layer.
  • each memory pillar structure (130, 140, 40, 30, 24, 50) can include, and may consist of, a selector element 130, a second metallic material plate 140, a first metallic material plate 40, a single crystalline ferroelectric material plate 30, and a metallic cap plate 50.
  • an exemplary structure according to a second embodiment of the present disclosure includes a first substrate 10F, which may be the same as the first substrate 10F of FIG. 1A.
  • a single crystalline semiconductor layer 20F can be formed on a top surface of the first substrate 10F by an epitaxial semiconductor deposition process.
  • the single crystalline semiconductor layer 20F can include a germanium-containing single crystalline semiconductor material.
  • the single crystalline semiconductor layer 20F can include germanium or a silicon-germanium alloy.
  • the single crystalline semiconductor layer 20L may include germanium at an atomic percentage in a range from 50 % to 100 %.
  • the single crystalline semiconductor layer 20L can be formed by performing an epitaxial semiconductor deposition process.
  • the bottom portion of the single crystalline semiconductor layer 20L may have a vertically graded material composition such that the atomic concentration of germanium increases with a distance from the top surface of the first substrate 10L.
  • the top portion of the single crystalline semiconductor layer 20L may include germanium at an atomic percentage in a range from 50 % to 100 %, such as from 80 % to 90 %. In one embodiment, the top portion of the single crystalline semiconductor layer 20L may include germanium at an atomic percentage of 100 %.
  • the thickness of the single crystalline semiconductor layer 20L may be in a range from 25 nm to 300 nm, such as from 50 nm to 150 nm, although lesser and greater thicknesses may also be employed.
  • a single crystalline ferroelectric material layer 30L can be epitaxially grown on the top surface of the single crystalline semiconductor layer 20L.
  • the single crystalline ferroelectric material layer 30L includes a single crystalline ferroelectric material that is epitaxially aligned to the single crystalline semiconductor material of the single crystalline semiconductor layer 20L.
  • the single crystalline ferroelectric material layer 30L can include a transition metal oxide material, as described with respect to the first embodiment.
  • a thermal anneal can be performed to improve crystallinity of the material of the single crystalline ferroelectric material layer 30L and to enhance ferroelectric properties (such as magnitude of electrical polarization) of the ferroelectric material of the single crystalline ferroelectric material layer 30L.
  • a first metallic material layer 40L can be formed by deposition of a first metallic material on the top surface of the single crystalline ferroelectric material layer 30L.
  • the first metallic material layer 40L may include an elemental metal (such as W, Mo or Ru) and/or a conductive metallic compound material such as (TiN, TaN, or WN).
  • the first metallic material layer 40L can be formed by chemical vapor deposition or by physical vapor deposition.
  • the first metallic material layer 40L can have a thickness in a range from 5 nm to 50 nm, such as from 10 nm to 25 nm, although lesser and greater thicknesses may also be employed.
  • the structure of FIG. 3 is provided, and the second metallic material layer 140L is bonded to the first metallic material layer 40L by performing a thermal anneal process.
  • the first substrate 10L can be thinned from the backside by performing a thinning process.
  • the thinning process may comprise a grinding process, a wet etch process, a dry etch process, and/or a polishing process.
  • the thickness of the first substrate 10L after thinning may be in a range from 100 nm to 5,000 nm.
  • the remaining portion of the first substrate 10L may be removed selective to the single crystalline semiconductor layer 20L by an additional thinning process, which may include a chemical mechanical polishing process.
  • the top surface of the single crystalline semiconductor layer 20L can be physically exposed.
  • the processing steps of FIG. 6 can be performed to form a metallic cap layer 50L.
  • the processing steps of FIG. 7 can be performed to form a two-dimensional array of memory pillar structures (130, 140, 40, 30, 24, 50).
  • FIGS. 17A and 17B the processing steps of FIGS. 8A and 8B can be performed to form a dielectric isolation structure 60.
  • FIGS. 18A and 18B the processing steps of FIGS. 9 A and 9B can be performed to form second electrically conductive lines 80 and second dielectric rails 90.
  • FIG. 19 an alternative configuration of the second exemplary structure can be derived from the second exemplary structure of FIG. 14 by removing the single crystalline semiconductor layer 20L selective to the material of the single crystalline ferroelectric material layer 30L.
  • the metallic cap layer 50L can be deposited directly on the top surface of the single crystalline ferroelectric material layer 30L.
  • FIGS. 20A and 20B the processing steps of FIGS. 16, 17A and 17B, and 18A and 18B can be performed to provide an alternative configuration of the second exemplary structure.
  • a memory cell of a ferroelectric tunnel junction memory device is formed in each memory pillar structure.
  • the memory cell of the ferroelectric tunnel junction memory device includes a ferroelectric tunneling dielectric layer which comprises the single crystalline ferroelectric material plate 30 located between lower and upper electrodes, which comprise the first metallic material plate 40 and the metallic cap plate 50, respectively.
  • the single crystalline semiconductor plate 24 (if present, as shown in FIG. 9A) may comprise a portion of the upper electrode.
  • the memory cell of the ferroelectric tunnel junction memory device may also include the selector element (e.g., steering element) 130.
  • Each selector element 130 may include, from bottom to top, a lower electrode comprising the lower electrode plate 132, an upper electrode comprising the upper electrode plate 136 and a selector material (e.g., OTS or diode) comprising the selector material plate 134 located between the lower electrode 132 and the upper electrode 136.
  • the conductive lines (120, 80) may comprise a respective bit line and word line of the memory cell.
  • the memory cell displays modulation in tunneling electrical resistance depending on the direction of polarization of the electric dipole moments in the ferroelectric tunneling dielectric layer 30. The direction of polarization of the electric dipole moments in the portion of the ferroelectric tunneling dielectric layer 30 can be programmed by applying a programming voltage across the ferroelectric tunneling memory element.
  • the magnitude of the programming voltage can be selected such that the selector element 130 turns on under an external bias voltage having a magnitude of the programming voltage, and does not turn on under an external bias voltage of less than the magnitude of the programming voltage (e.g., one half of the magnitude of the programming voltage).
  • the programming voltage applied to the bit line relative to the word line can have a magnitude that is sufficient to turn on the selector element 130, and can be positive or negative depending on the target direction of polarization of the electric dipole moments in the programmed portion of the ferroelectric tunneling dielectric layer 30.
  • the sensing of the direction of the electric dipole moments in the portion of the ferroelectric tunneling dielectric layer 30 between a selected bit line and a selected word line can be effected by applying a sensing voltage between the selected bit line and the selected word line.
  • the magnitude of the sensing voltage can be selected such that the selector element 130 turns on under an external bias voltage having a magnitude of the sensing voltage, and does not turn on under an external bias voltage less than the magnitude of the sensing voltage (e.g., one half of the magnitude of the sensing voltage). Further, the magnitude of the sensing voltage is lower than the magnitude of the programming voltage, and is insufficient to program a portion of the ferroelectric tunneling dielectric layer 30.
  • the magnitude of the sensing voltage can be about 50 mV ⁇ 200 mV higher than the turn-on voltage for the selector element 130.
  • the selected portion of the ferroelectric tunneling dielectric layer 30 provides modulation of electrical resistance depending on the direction of the polarization of the electric dipole moments. Thus, a selected portion of a ferroelectric tunneling dielectric layer 30 between a selected bit line and a selected word line in an array can be sensed without disturbing unselected memory cells.
  • FIGS. 21A and 21B electrostatic potential energy band profiles are illustrated for a ferroelectric tunnel junction devices of the first and second embodiments.
  • the devices include a first conductor, a tunneling ferroelectric dielectric, and a second conductor for two different polarization directions of the tunneling ferroelectric dielectric.
  • the first conductor and the second conductor can be different, and the magnitude and the lateral extent of the distortion in the conduction band due to the dipole moment P in the ferroelectric tunneling dielectric can be asymmetric.
  • the asymmetric band modulations induced in the ferroelectric tunnel junction can change the tunneling electrical resistance of the ferroelectric tunnel junction depending on the direction of the electric dipole moment in the ferroelectric tunneling dielectric.
  • polarization reversal of a ferroelectric tunnel junction can modulate a tunnel transmission coefficient induced by two different average barrier heights.
  • electrostatic potential energy band profiles for the two different polarization states of the ferroelectric tunneling dielectric provide two different electrical resistance states, which can be employed to program and store a data bit.
  • the ratio of the conductance in the low electrical resistance state to the conductance in the high resistance state can be in a range from 10 to 1,000, such as from 30 to 300, although lesser and greater ratios may also be employed.
  • the polarization state of the ferroelectric tunneling dielectric exhibits a hysteresis curve as a function of an external voltage bias across the first conductor and the second conductor, and is capable of storing a data bit.
  • the programmable resistance states of a ferroelectric tunnel junction is used in various ferroelectric memory devices of the first and second embodiments of the present disclosure.
  • a memory device comprises a first electrically conductive line 120 laterally extending along a first horizontal direction hdl, a memory pillar structure (130, 140, 40, 30, optionally 24, 50) overlying and contacting the first electrically conductive line 120, wherein the memory pillar structure comprises a single crystalline ferroelectric material plate 30 in which an entirety of a ferroelectric material is single crystalline, and a second electrically conductive line 80 laterally extending along a second horizontal direction hd2 and overlying and contacting the memory pillar structure.
  • the memory pillar structure (130, 140, 40, 30, optionally 24, 50) comprises a first metallic material plate 40 contacting a bottom surface of the single crystalline ferroelectric material plate 30.
  • the memory pillar structure (130, 140, 40, 30, optionally 24, 50) further comprises a selector material plate 134 underlying the first metallic material plate 40.
  • a bonding interface is located between the selector material plate 134 and the single crystalline ferroelectric material plate 30. The bonding interface may be located between the first metallic material plate 40 and the second metallic material layer 140.
  • the memory device comprises: a lower electrode plate 132 contacting a bottom surface of the selector material plate 134 and comprising a first non- metallic conductive material; and an upper electrode plate 136 contacting a top surface of the selector material plate 134 and comprising a second non-metallic conductive material.
  • the selector plate comprises an ovonic threshold switch material.
  • each of the first non-metallic conductive material and the second non-metallic conductive material is selected from amorphous carbon, amorphous boron-doped carbon, amorphous nitrogen-doped carbon, amorphous silicon, amorphous germanium, alloys thereof, or layer stacks thereof.
  • the memory pillar structure (130, 140, 40, 30, optionally 24, 50) comprises a second metallic material plate 140 contacting a bottom surface of the first metallic material plate 40 and bonded to the first metallic material plate 40.
  • the ferroelectric material of the single crystalline ferroelectric material plate 30 comprises doped or undoped hafnium oxide having an orthorhombic phase.
  • the memory pillar structure (130, 140, 40, 30, optionally 24, 50) comprises a semiconductor plate (such as a single crystalline semiconductor plate 24) contacting a top surface of the single crystalline ferroelectric material plate 30.
  • the semiconductor plate comprises a single crystalline semiconductor material.
  • the single crystalline semiconductor material of the semiconductor plate is epitaxially aligned to the ferroelectric material of the single crystalline ferroelectric material plate 30.
  • the semiconductor plate comprises single crystalline germanium or silicon germanium.
  • the memory pillar structure (130, 140, 40, 30, optionally 24, 50) comprises a metallic cap plate 50 overlying the single crystalline ferroelectric material plate 30 and contacting the second electrically conductive line 80.
  • the memory device comprises a ferroelectric tunnel junction memory device.
  • the first and second embodiments of the present disclosure provide a single crystalline ferroelectric tunneling dielectric layer in a ferroelectric tunnel junction (FTJ) memory device which provides superior ferroelectric properties due to the single crystalline structure. Furthermore, an easy to deposit single crystal semiconductor layer can be used as an epitaxial template for a hafnium oxide based single crystalline ferroelectric tunneling dielectric layer instead of a more difficult to deposit perovskite template layer.
  • FJ ferroelectric tunnel junction
  • the memory material layer comprises a phase change memory material layer rather than a ferroelectric tunneling dielectric layer
  • the memory device comprises a phase change memory (PCM) device, such as a phase change random access memory (“PCRAM” or “PRAM”) device rather than a FTJ memory device.
  • PCM phase change memory
  • the phase change memory material layer may be damaged by the reactive ion etch (RIE) used to pattern thick overlying word or bit lines. Therefore, in the third embodiment, the phase change memory material layer is formed over a first set of patterned lines (e.g., word lines or bit lines) located over a first substrate. The first set of patterned lines are patterned by RIE prior to deposition of the phase change memory material layer.
  • RIE reactive ion etch
  • the second set of patterned lines (e.g., the other ones of the word lines or bit lines) are formed over a second substrate followed by bonding the second set of patterned lines to a layer stack containing the phase change memory material layer.
  • the phase change memory material layer is not exposed to an extended reactive etch process which etches the thick conductive lines. This reduces or prevents damage of the phase change memory material layer.
  • the second electrically conductive lines 80 and the second dielectric material rails 90 are formed over the first substrate 10L.
  • the second electrically conductive lines 80 may be formed by depositing one or more electrically conductive layers described in the prior embodiments, followed by patterning the one or more electrically conductive layers by reactive ion etching (RIE) to form the lines 80.
  • RIE reactive ion etching
  • the second dielectric rails 90 are then formed between the second electrically conductive lines 80 by depositing the dielectric material layer between the second electrically conductive lines 80 and planarizing the dielectric material layer.
  • a layer stack is formed over the second electrically conductive lines 80 and the second dielectric material rails 90 located over the first substrate 10L.
  • the layer stack includes a non-metallic conductive material layer 326L.
  • exemplary non-metallic conductive materials that can be employed for layer 326L include amorphous carbon, amorphous boron-doped carbon, or amorphous nitrogen-doped carbon.
  • the non- metallic conductive material layer 326L thickness in a range from 10 nm to 50 nm, such as from 20 nm to 30 nm, although lesser and greater thicknesses may also be employed.
  • a relatively thin second metallic material layer 342L can be formed by deposition of a second metallic material on the top surface of the non-metallic conductive material layer 326L.
  • the second metallic material layer 342L may include an elemental metal, such as W or Ru, and/or a conductive metallic compound material, such as TiN, TaN, or WN.
  • the second metallic material layer 342L can be formed by chemical vapor deposition or by physical vapor deposition.
  • the second metallic material layer 342L can have a thickness in a range from 1 nm to 5 nm, such as from 2 nm to 3 nm, although lesser and greater thicknesses may also be employed.
  • phase change memory material refers to a material having at least two different phases providing different resistivity.
  • the at least two different phases can be provided, for example, by controlling the rate of cooling from a heated state to provide an amorphous state having a higher resistivity and a polycrystalline state having a lower resistivity.
  • the higher resistivity state of the phase change memory material can be achieved by faster quenching of the phase change memory material after heating to an amorphous state
  • the lower resistivity state of the phase change memory material can be achieved by slower cooling of the phase change memory material after heating to the amorphous state.
  • Exemplary phase change memory materials include, but are not limited to, germanium antimony telluride compounds such as Ge2Sb2Te5 (GST), germanium antimony compounds, indium germanium telluride compounds, aluminum selenium telluride compounds, indium selenium telluride compounds, and aluminum indium selenium telluride compounds. These compounds (e.g., compound semiconductor material) may be doped (e.g., nitrogen doped GST) or undoped.
  • the resistive memory material layer can include, and/or can consist essentially of, a material selected from a germanium antimony telluride compound, a germanium antimony compound, an indium germanium telluride compound, an aluminum selenium telluride compound, an indium selenium telluride compound, or an aluminum indium selenium telluride compound.
  • the thickness of the at least one memory material layer 15L can be in a range from 10 nm to 60 nm, such as from 20 nm to 50 nm and/or from 25 nm to 35 nm, although lesser and greater thicknesses can also be employed.
  • a relatively thin first metallic material layer 340L can be formed by deposition of a first metallic material on the top surface of the phase change memory material layer 330L.
  • the first metallic material layer 340L may include an elemental metal, such as W or Ru, and/or a conductive metallic compound material, such as TiN, TaN, or WN.
  • the first metallic material layer 340L can be formed by chemical vapor deposition or by physical vapor deposition.
  • the first metallic material layer 340L can have a thickness in a range from 1 nm to 5 nm, such as from 2 nm to 3 nm, although lesser and greater thicknesses may also be employed.
  • the stack of the selector-level layers 130L is formed over the first metallic material layer 340L.
  • the selector-level layers 130L include the same layers as in the first embodiment (i.e., the lower electrode layer 132L, the selector material layer 134L, and the upper electrode layer 136L stacked up-side down compared to the first and second embodiments), and will not be described in more detail with respect to this third embodiment.
  • the above described layers 326L, 342L, 330L, 340L and 130L
  • memory pillar structures (326, 342, 330, 340 and 130) each of which contains a respective PRAM memory cell (330, 340, 342).
  • any suitable patterning method such as photolithography and etching may be used to form the memory pillar structures, as described above with respect to the first and second embodiments.
  • the etching process used to etch the memory pillar structures may be selected such that it does not significantly damage the phase change memory material layer 130L.
  • the dielectric isolation structure 60 is then formed such that it laterally surrounds the two-dimensional array of memory pillar structures (326, 342, 330, 340 and 130).
  • Each memory pillar structure (326, 342, 330, 340 and 130) comprises a phase change memory material plate 330 located between first and second electrode plates (340, 342) of the PRAM memory cell (330, 340, 342).
  • a non-metallic conductive material plate 326 is located between the second electrode 342 and the second electrically conductive lines 80 (i.e., word lines or bit lines).
  • a selector element 130 is located above the first electrode plate 340.
  • the selector element includes a selector material plate 134 located between first and second electrode plates (132, 136) of the selector element 130.
  • the first electrically conductive lines 120 may be formed by depositing one or more electrically conductive layers over the second substrate 110L, followed by patterning the one or more electrically conductive layers by reactive ion etching (RIE) to form the lines 120.
  • RIE reactive ion etching
  • the first dielectric rails 122 are then formed between the first electrically conductive lines 120 by depositing the dielectric material layer between the first electrically conductive lines 120 and planarizing the dielectric material layer.
  • the first electrically conductive lines 120 and the first dielectric rails 122 located over the second substrate 110L are bonded to the dielectric isolation structure 60 and the array of memory pillar structures (326, 342, 330, 340 and 130) located over the first substrate 10L.
  • Any suitable bonding may be used, such as metal to metal bonding, dielectric to dielectric bonding, or a combination thereof (i.e., hybrid bonding) may be used.
  • the first substrate 10L may optionally be removed from the second electrically conductive lines 80 and reused to form additional memory devices.
  • the First substrate may be removed by any suitable method.
  • the first substrate 10L may be removed by implanting hydrogen or deuterium into the bottom of the first substrate to form an implanted layer followed by annealing the first substrate to cleave the first substrate along the implanted layer, similar to the method described in the first embodiment.
  • the first substrate 10L may be removed by grinding and polishing, as described in the second embodiment.
  • the memory device comprises a magnetoresistive random access memory (“MRAM”) device rather than a FTJ memory device.
  • MRAM magnetoresistive random access memory
  • Each memory cell of the MRAM device may contain a magnetic tunnel junction (MTJ).
  • MTJ magnetic tunnel junction
  • the MRAM device may comprised a spin- transfer torque (STT) type MRAM device.
  • the MTJ may be damaged by the reactive ion etch (RIE) used to pattern thick overlying word or bit lines. Therefore, in the fourth embodiment, the MTJ is formed over a first set of patterned lines (e.g., word lines or bit lines) located over a first substrate. The first set of patterned lines are patterned by RIE prior to deposition of the MTJ. The second set of patterned lines (e.g., the other ones of the word lines or bit lines) are formed over a second substrate followed by bonding the second set of patterned lines to a layer stack containing the MTJ. In the fourth embodiment, the MTJ is not exposed to an extended reactive etch process which etches thick conductive lines.
  • RIE reactive ion etch
  • the second electrically conductive lines 80 and the second dielectric material rails 90 are formed over the first substrate 10L.
  • the second electrically conductive lines 80 may be formed by depositing one or more electrically conductive layers described in the prior embodiments, followed by patterning the one or more electrically conductive layers by reactive ion etching (RIE) to form the lines 80.
  • RIE reactive ion etching
  • the second dielectric rails 90 are then formed between the second electrically conductive lines 80 by depositing the dielectric material layer between the second electrically conductive lines 80 and planarizing the dielectric material layer.
  • a layer stack including an optional metallic cap layer 158L and a MTJ stack 150L is formed over the second electrically conductive lines 80 and the second dielectric material rails 90 located over the first substrate 10L.
  • the stack includes, from bottom to top or from top to bottom, the metallic cap layer 158L, a reference layer 152L (which is also referred to as a magnetic pinned layer), a tunnel barrier layer 154L, and a free layer 156L, which together form an MTJ stack 150L of the STT MRAM memory cell.
  • the thickness of the MTJ can be in a range from 10 nm to 40 nm, such as 20 nm to 30 nm.
  • the metallic cap layer 158L includes a nonmagnetic metallic material such as at least one nonmagnetic transition metal or a nonmagnetic transition metal alloy.
  • the metallic cap layer 158F may include, and or may consist essentially of, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Re, Os, Ir, alloys thereof, or a conductive metallic nitride (e.g., TaN) or a conductive metallic carbide thereof.
  • the metallic cap layer 158L maybe deposited by physical vapor deposition or chemical vapor deposition.
  • the thickness of the metallic cap layer 158L may be in a range from 1 nm to 20 nm, such as from 2 nm to 10 nm, although lesser and greater thicknesses can also be employed.
  • the reference layer 152L can have a fixed magnetization direction which can be a horizontal direction or a vertical direction.
  • the reference layer 152L can be formed as single ferromagnetic material layer or multiple ferromagnetic material layers that are magnetically coupled among one another to provide a same magnetization direction throughout.
  • the reference layer 152L may include a Co/Ni multilayer structure or a Co/Pt multilayer structure.
  • the reference layer 152L can additionally include a thin non magnetic layer comprised of tantalum or tungsten having a thickness in a range from 0.2 nm to 0.5 nm and a thin CoFeB layer having a thickness in a range from 0.5 nm to 3 nm.
  • the thickness of the reference layer 152L can be in a range from 2 nm to 5 nm.
  • the reference layer 152L may be provided in a synthetic antiferromagnet (SAF) structure that includes a hard magnetization layer (not expressly shown), an antiferromagnetic coupling layer (e.g., a Ru layer, not expressly shown), and the reference layer 152L.
  • SAF synthetic antiferromagnet
  • the magnetization of the hard magnetization layer and the magnetization of the magnetic pinned layer can be antiferromagnetically coupled through the antiferromagnetic coupling layer.
  • the tunnel barrier layer 154L can include a tunnel barrier dielectric material such as magnesium oxide or aluminum oxide.
  • the tunnel barrier layer 154L can have a thickness in a range from 0.6 nm to 2 nm, such as from 0.8 nm to 1.2 nm.
  • the tunnel barrier layer 154L contacts the reference layer 152L, and provides spin- sensitive tunneling of electrical currents between the reference layer 152L and the free layer 156L. In other words, the amount of electrical current that passes through the tunnel barrier layer 154L depends on the relative alignment of magnetization between the reference layer 152L and the free layer 156L, i.e., whether the magnetization directions are parallel or antiparallel to each other.
  • the free layer 156L can be formed as single ferromagnetic material layer or multiple ferromagnetic material layers that are magnetically coupled among one another to provide a same magnetization direction throughout.
  • the thickness of the free layer 156L is less than 2 nm, and preferably less than 1.5 nm, such as from 0.8 nm to 1.5 nm.
  • the free layer 156L can include a CoFeB layer and/or a CoFe layer.
  • the free layer 156L can be programmed by flowing electrical current along a vertical direction either upward or downward. Additional layers (not shown) may be included in the MTJ 150.
  • the stack of the selector-level layers 130L is formed over the MTJ stack 150L.
  • the selector-level layers 130L include the same layers as in the first embodiment (i.e., the lower electrode layer 132L, the selector material layer 134L, and the upper electrode layer 136L stacked up-side down compared to the first and second embodiments), and will not be described in more detail with respect to this fourth embodiment.
  • the order of deposition of the metallic cap layer 158L and the stack of the selector-level layers 130L may be reversed, such that the stack of the selector-level layers 130L is formed between the MTJ stack 150L and the first substrate 10L, while the metallic cap layer 158L is formed over the MTJ stack 150L.
  • the above described layers are then patterned into memory pillar structures (158, 152, 154, 156, and 130).
  • Any suitable patterning method may be used. For example, photolithography and etching may be used to pattern the stack of the selector-level layers 130L, while ion beam milling may be used to pattern the MTJ stack 150L and the metallic cap layer 158L to form the MTJ 150 and a metallic cap plate 158.
  • the dielectric isolation structure 60 is then formed such that it laterally surrounds the two-dimensional array of memory pillar structures (158, 152, 154,
  • Each memory pillar structure (158, 152, 154, 156, and 130) comprises a MRAM memory cell containing the MTJ 150 in which the tunnel barrier plate 154 located between the reference layer plate 152 and the free layer plate 156.
  • the metallic cap plate 158 is located on one side of the MTJ 150.
  • a selector element 130 is located above or below the MTJ 150.
  • the selector element includes a selector material plate 134 located between first and second electrode plates (132, 136) of the selector element 130.
  • the first electrically conductive lines 120 may be formed by depositing one or more electrically conductive layers over the second substrate 110L, followed by patterning the one or more electrically conductive layers by reactive ion etching (RIE) to form the lines 120.
  • RIE reactive ion etching
  • the first dielectric rails 122 are then formed between the first electrically conductive lines 120 by depositing the dielectric material layer between the first electrically conductive lines 120 and planarizing the dielectric material layer.
  • the first electrically conductive lines 120 and the first dielectric rails 122 located over the second substrate 110L are bonded to dielectric isolation structure 60 and the array of memory pillar structures (158, 152, 154, 156, and 130) located over the first substrate 10L.
  • Any suitable bonding may be used, such as metal to metal bonding, dielectric to dielectric bonding, or a combination thereof (i.e., hybrid bonding) may be used.
  • the first substrate 10F may optionally be removed from the second electrically conductive lines 80 and reused to form additional memory devices.
  • the first substrate may be removed by any suitable method.
  • the first substrate 10L may be removed by implanting hydrogen or deuterium into the bottom of the first substrate to form an implanted layer followed by annealing the First substrate to cleave the first substrate along the implanted layer, similar to the method described in the first embodiment.
  • the first substrate 10L may be removed by grinding and polishing, as described in the second embodiment.
  • a release layer (e.g., silicon oxide or silicon nitride layer) may be formed between the first substrate 10L and the second electrically conductive lines 80, followed by selectively etching the release layer to remove the first substrate 10L.
  • the stack of the selector-level layers 130L are formed over the first electrically conductive lines 120 located over the second substrate 110L instead of being formed over the MTJ stack 150L located over the first substrate 10L.
  • the stack of the selector-level layers 130L may be patterned (e.g., by photolithography and etching) into selector elements 130 while located over the second substrate 100L, as shown in FIG. 35.
  • a dielectric isolation structure 160 is then formed to surround the selector elements 130.
  • the MTJ stack 150L and the optional metallic cap layer 158L are formed over the second electrically conductive lines 80 located over the first substrate 10L, as shown in FIG. 36.
  • the MTJ stack 150L and the metallic cap layer 158L are patterned (e.g., by ion beam milling) while they are located over the first substrate 10L, as shown in FIG. 37 and as described above with respect to FIG. 24.
  • a dielectric isolation structure 60 is then formed to surround the MTJ 150 pillars.
  • a second assembly comprising the stack of the selector-level layers 130L, the first electrically conductive lines 120 and the second substrate 110L is bonded to the first assembly containing the second electrically conductive lines 80, at least a portion of a memory cell (e.g., the MTJ 150) and the first substrate 10L.
  • the MTJ 150 is located between the word lines and the bit lines after the bonding.
  • Each respective MTJ 150 forms a memory cell located in the same memory pillar structure (130, 150, 158) as its respective selector element 130.
  • the stack of the selector- level layers 130L may be patterned (e.g., by photolithography and etching) into selector elements 130 after the bonding step.
  • the MTJ stack 150L may be patterned into the MTJ 150 before or after the bonding step.
  • the MTJ 150 is not damaged during high temperature deposition of the stack of the selector-level layers 130L and vice-versa.
  • the selector element 130 is not damaged during ion beam milling of the MTJ stack 150L if the MTJ stack 150L is patterned over a different substrate from the substrate supporting the stack of the selector- level layers 130L.
  • the MTJ stack 150L may be patterned into the MTJ 150 before the bonding step, as shown in FIG. 37.
  • the unpattemed stack of the selector-level layers 130L is provided over the second substrate 110L, as shown in FIG. 40.
  • the first electrically conductive lines 120 may be omitted from the second substrate 110L.
  • the unpattemed stack of the selector-level layers 130L is then bonded to the MTJ 150 located over the first substrate 10L, as shown in FIG. 41.
  • the second substrate 110L may be removed from the bonded assembly and the stack of the selector- level layers 130L is patterned (e.g., by photolithography and etching) into selector elements 130 after the bonding step.
  • the dielectric isolation structure 160 is then formed to surround the selector elements 130, as shown in FIG. 42.
  • the first electrically conductive lines 120 are then formed over the selector element 130, as described above.
  • the MTJ stack 150L located over the first substrate 10L is bonded to the unpatterned stack of the selector- level layers 130L located over the first electrically conductive lines 120 over the first substrate 10L, as shown in FIG. 43.
  • the second electrically conductive lines 80 may be omitted from above the first substrate 10L.
  • the first substrate 10L may be removed from the bonded assembly.
  • the MTJ stack 150L is patterned (e.g., by ion beam milling) into MTJs 150 and the stack of the selector-level layers 130L is patterned (e.g., by photolithography and etching) into selector elements 130 after the bonding step. If the MTJ stack 150L is patterned into the MTJs 150 after the bonding step, then the patterning of the stack of the selector-level layers 130L and the MTJ stack 150L may be carried out consecutively during a common patterning step using different etching or milling steps for each set of layers.
  • the second electrically conductive lines 80 are then formed over the MTJ 150 as described above, to form the structure shown in FIG. 33.
  • the third and fourth embodiments provide a method of forming a memory device, such as a PCM or MRAM device, which comprises providing a first assembly comprising a first substrate 10L containing first electrically conductive lines comprising word lines or bit lines (e.g., 120 or 80), forming at least a portion of a memory cell (330, 150) over the first electrically conductive lines, providing a second assembly comprising a second substrate 110L containing second electrically conductive lines comprising other ones of word lines or bit lines (e.g., 80 or 120); and bonding the first assembly to the second assembly such that the memory cell is located between the first electrically conductive lines and the second electrically conductive lines.
  • One of the first electrically conductive lines comprises a word line or bit line of the memory cell and one of the second electrically conductive lines comprises the other one of the word line or bit line of the memory cell.
  • the memory cell may be located in a memory pillar structure, which may also include a selector element 130 of the memory cell (330, 150) located in the memory pillar structure.
  • the selector element 130 may comprise an ovonic threshold switch plate.
  • the memory device comprises the phase change memory (PCM) device
  • the memory cell comprises a phase change memory cell comprising a phase change memory material plate 330.
  • the method of the third embodiment includes forming selector-level layers 130L over a phase change material layer 330L located over electrically conductive lines 80 and the first substrate 10L, and patterning the selector-level layers 130L to form the selector element 130, and patterning the phase change material layer 30L to form the phase change material plate 330 prior to bonding the first assembly to the second assembly in which the selector element 130 is located between the electrically conductive lines 120 and the phase change material plate 330.
  • the memory device comprises a magnetoresistive random access memory (MRAM) device
  • the memory cell comprises an MRAM memory cell comprising a magnetic tunnel junction (MTJ) 150 containing a tunnel barrier plate 154 located between a ferromagnetic reference plate 152 and a ferromagnetic free plate 156.
  • MRAM magnetoresistive random access memory
  • MTJ magnetic tunnel junction
  • 28A - 33 includes forming a MTJ stack 150L comprising a tunnel barrier layer 154L located between a ferromagnetic reference layer 152L and a ferromagnetic free layer 156L located over electrically conductive lines 90 and the first substrate 10, forming selector-level layers 130L over the MTJ stack 150L, and patterning the selector-level layers and the MTJ stack to form the selector element 130 and the MTJ 150.
  • the step of bonding the first assembly to the second assembly occurs after forming the selector element and the MTJ.
  • an alternative method of the fourth embodiment illustrated in FIGS. 34 - 39 includes forming a MTJ stack 150L comprising a tunnel barrier layer 154L located between a ferromagnetic reference layer 152L and a ferromagnetic free layer 156L located over electrically conductive lines 80 and the first substrate 10L, patterning the MTJ stack to form the MTJ 150, forming selector-level layers 130L over the electrically conductive lines 120 located over the second substrate 110L, and patterning the selector-level layers to form the selector element 130.
  • the step of bonding the first assembly to the second assembly occurs after forming the selector element 130 and forming the MTJ 150 such that the selector element is bonded to the MTJ.
  • a method of forming a memory device comprises providing a first assembly comprising at least a portion of a memory cell (30, 150) located over a first substrate 10L, providing a second assembly comprising at least a portion of a selector element 130 located over a second substrate 110L, and bonding the first assembly to the second assembly such that the memory cell is bonded to its respective selector element.
  • the memory cell and the selector element may be located in a memory pillar structure, and the selector element may comprise an ovonic threshold switch plate, as described above.
  • the method may also include removing at least one of the first substrate 10L or the second substrate 110L after the step of bonding the second layer stack to the first layer stack.
  • the memory device comprises a ferroelectric tunnel junction (FTJ) memory device and the memory cell comprises a ferroelectric material layer 30 located between first and second electrodes (40, 50).
  • FJ ferroelectric tunnel junction
  • the memory device comprises a magnetoresistive random access memory (MRAM) device and the memory cell comprises an MRAM memory cell comprising a magnetic tunnel junction (MTJ) 150 containing a tunnel barrier plate 154 located between a ferromagnetic reference plate 152 and a ferromagnetic free plate 156.
  • MRAM magnetoresistive random access memory
  • MTJ magnetic tunnel junction
  • 34 to 39 includes forming a MTJ stack 150L comprising a tunnel barrier layer 154L located between a ferromagnetic reference layer 152L and a ferromagnetic free layer 156L located over the first substrate 10L, patterning the MTJ stack 150L to form the MTJ 150 over the first substrate 10L, forming selector-level layers 130L over the second substrate 110L, and pattering the selector-level layers 130L to form the selector element 130 over the second substrate 110L.
  • the step of bonding the first assembly to the second assembly occurs after forming the selector element 130 and forming the MTJ 150 such that the selector element is bonded to the MTJ.
  • the method of another alternative aspect of the fourth embodiment illustrated in FIGS. 40 to 42 includes forming a MTJ stack 150L comprising a tunnel barrier layer 154L located between a ferromagnetic reference layer 152L and a ferromagnetic free layer 156L located over the first substrate 10L, patterning the MTJ stack 150L to form the MTJ 150, forming selector-level layers 130L over the second substrate 110L, removing the second substrate 110L, and pattering the selector-level layers 130L to form the selector element 130 after removing the second substrate 110L.
  • the step of bonding the first assembly to the second assembly occurs after forming MTJ 150 and before patterning the selector-level layers 130L such that the selector-level layers 130L are bonded to the MTJ 150.
  • a MTJ stack 150L comprising a tunnel barrier layer 154L located between a ferromagnetic reference layer 152L and a ferromagnetic free layer 156L located over the first substrate 10L, removing the first substrate 10L, forming selector-level layers 130L over the second substrate 110L, patterning the MTJ stack 150L to form the MTJ 150 and pattering the selector-level layers 130L to form the selector element 130 after removing the first substrate 10L.
  • the step of bonding the first assembly to the second assembly occurs before patterning the MTJ stack 150L and before patterning the selector- level layers 130L such that the selector-level layers 130L are bonded to the MTJ stack 150L.
  • the stacked and bonded memory device of any embodiment of the present disclosure may be repeated multiple times in the vertical direction to obtain a stacked memory device with multiple memory cell levels between multiple word line levels and bit line levels.
  • a second memory cell level (130, 140, 40, 30, 24, 50) may be formed by bonding over the second lines 80 followed by providing additional first lines 120 over the second memory cell level.
  • Three or more memory levels may also be formed by continuing the bonding process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

Selon l'invention, au moins une partie d'une cellule de mémoire est formée sur un premier substrat et au moins une partie d'un élément de direction ou d'un mot ou d'une ligne de bit de la cellule de mémoire est formée sur un second substrat. La ou les parties de la cellule de mémoire sont liées à au moins une partie d'un élément de direction ou d'un mot ou d'une ligne de bits. Le premier et/ou le second substrat peut être retirés après la liaison.
PCT/US2020/067428 2020-06-26 2020-12-30 Dispositifs de mémoire liés et leurs procédés de fabrication Ceased WO2021262239A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080080467.5A CN114730764B (zh) 2020-06-26 2020-12-30 键合的存储器设备及其制作方法
KR1020227017454A KR102707979B1 (ko) 2020-06-26 2020-12-30 접합된 메모리 디바이스 및 그 제조 방법
EP20942180.9A EP4055629A4 (fr) 2020-06-26 2020-12-30 Dispositifs de mémoire liés et leurs procédés de fabrication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/913,766 US11538817B2 (en) 2020-06-26 2020-06-26 Bonded memory devices and methods of making the same
US16/913,717 2020-06-26
US16/913,717 US11903218B2 (en) 2020-06-26 2020-06-26 Bonded memory devices and methods of making the same
US16/913,766 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021262239A1 true WO2021262239A1 (fr) 2021-12-30

Family

ID=79281688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/067428 Ceased WO2021262239A1 (fr) 2020-06-26 2020-12-30 Dispositifs de mémoire liés et leurs procédés de fabrication

Country Status (4)

Country Link
EP (1) EP4055629A4 (fr)
KR (1) KR102707979B1 (fr)
CN (1) CN114730764B (fr)
WO (1) WO2021262239A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240412991A1 (en) * 2023-06-08 2024-12-12 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic bonding structure and method of forming same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060091437A1 (en) * 2004-11-02 2006-05-04 Samsung Electronics Co., Ltd. Resistive memory device having array of probes and method of manufacturing the resistive memory device
US20070107774A1 (en) * 2004-07-22 2007-05-17 Pfleiderer Water Systmes Gmbh Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof
WO2009031387A1 (fr) 2007-09-06 2009-03-12 Fuji Electric Holdings Co., Ltd. ÉLÉMENT DE JONCTION TUNNEL FERROMAGNÉTIQUE AYANT UNE COUCHE LIBRE DE SiB (Fe, Co, Ni)
US20090147392A1 (en) 2007-12-05 2009-06-11 Commissariat A L'energie Atomique Magnetic element with thermally-assisted writing
US20160064391A1 (en) * 2014-08-26 2016-03-03 Qualcomm Incorporated Dynamic random access memory cell including a ferroelectric capacitor
US20160380185A1 (en) 2014-03-13 2016-12-29 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
US20180358410A1 (en) * 2017-06-08 2018-12-13 SK Hynix Inc. Resistance change memory devices

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2943914B2 (ja) * 1997-02-19 1999-08-30 日本電気株式会社 半導体装置およびその製造方法
JPH11220103A (ja) * 1998-01-30 1999-08-10 Toshiba Corp 半導体記憶装置及びその製造方法
US6198652B1 (en) * 1998-04-13 2001-03-06 Kabushiki Kaisha Toshiba Non-volatile semiconductor integrated memory device
JP2002170935A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd 強誘電体メモリ
JP4058971B2 (ja) * 2001-03-26 2008-03-12 セイコーエプソン株式会社 強誘電体メモリ及び電子機器
JP2007081112A (ja) * 2005-09-14 2007-03-29 Matsushita Electric Ind Co Ltd 強誘電体メモリ装置およびその製造方法
EP1845567A1 (fr) * 2006-04-11 2007-10-17 STMicroelectronics S.r.l. Dispositif de mémoire à changement de phase et procédé associé
CN101789490B (zh) * 2010-01-28 2012-09-05 复旦大学 一种铁电氧化物/半导体复合薄膜二极管阻变存储器
US10665695B2 (en) * 2012-04-09 2020-05-26 Monolithic 3D Inc. 3D semiconductor device with isolation layers
JP2014229758A (ja) * 2013-05-22 2014-12-08 ソニー株式会社 半導体装置およびその製造方法
JP6062552B2 (ja) * 2014-03-17 2017-01-18 株式会社東芝 不揮発性記憶装置
US9633724B2 (en) * 2014-07-07 2017-04-25 Crossbar, Inc. Sensing a non-volatile memory device utilizing selector device holding characteristics
JP6367152B2 (ja) * 2015-06-08 2018-08-01 東芝メモリ株式会社 記憶装置
US20170345831A1 (en) * 2016-05-25 2017-11-30 Micron Technology, Inc. Ferroelectric Devices and Methods of Forming Ferroelectric Devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070107774A1 (en) * 2004-07-22 2007-05-17 Pfleiderer Water Systmes Gmbh Bistable resistance value acquisition device, manufacturing method thereof, metal oxide thin film, and manufacturing method thereof
US20060091437A1 (en) * 2004-11-02 2006-05-04 Samsung Electronics Co., Ltd. Resistive memory device having array of probes and method of manufacturing the resistive memory device
WO2009031387A1 (fr) 2007-09-06 2009-03-12 Fuji Electric Holdings Co., Ltd. ÉLÉMENT DE JONCTION TUNNEL FERROMAGNÉTIQUE AYANT UNE COUCHE LIBRE DE SiB (Fe, Co, Ni)
US20090147392A1 (en) 2007-12-05 2009-06-11 Commissariat A L'energie Atomique Magnetic element with thermally-assisted writing
US20160380185A1 (en) 2014-03-13 2016-12-29 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
US20160064391A1 (en) * 2014-08-26 2016-03-03 Qualcomm Incorporated Dynamic random access memory cell including a ferroelectric capacitor
US20180358410A1 (en) * 2017-06-08 2018-12-13 SK Hynix Inc. Resistance change memory devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4055629A4

Also Published As

Publication number Publication date
CN114730764B (zh) 2025-12-05
CN114730764A (zh) 2022-07-08
KR20220088472A (ko) 2022-06-27
KR102707979B1 (ko) 2024-09-23
EP4055629A1 (fr) 2022-09-14
EP4055629A4 (fr) 2024-02-14

Similar Documents

Publication Publication Date Title
US12362301B2 (en) Bonded memory devices and methods of making the same
US11538817B2 (en) Bonded memory devices and methods of making the same
US10529852B2 (en) Ferroelectric memory device and method of manufacturing the same
EP4055636B1 (fr) Dispositif de mémoire contenant des doubles couches d'arrêt de gravure pour éléments de sélection et son procédé de fabrication
US11031435B2 (en) Memory device containing ovonic threshold switch material thermal isolation and method of making the same
US9613689B1 (en) Self-selecting local bit line for a three-dimensional memory array
US20050040482A1 (en) EPIR device and semiconductor devices utilizing the same
JP2013522911A (ja) 金属酸化物抵抗率スイッチング層と共に使用する下部電極
US20220165937A1 (en) Bonded memory devices and methods of making the same
WO2020247038A1 (fr) Dispositif de mémoire à changement de phase et à modèle de cristallisation et son procédé de fabrication
US11903218B2 (en) Bonded memory devices and methods of making the same
US11887640B2 (en) Voltage-controlled magnetic anisotropy memory device including an anisotropy-enhancing dust layer and methods for forming the same
KR20200093720A (ko) 자기 기억 소자
US10957370B1 (en) Integration of epitaxially grown channel selector with two terminal resistive switching memory element
US11176981B1 (en) Spinel containing magnetic tunnel junction and method of making the same
US20220344580A1 (en) Three dimensional perpendicular magnetic tunnel junction with thin film transistor array
US10186551B1 (en) Buried tap for a vertical transistor used with a perpendicular magnetic tunnel junction (PMTJ)
US10937479B1 (en) Integration of epitaxially grown channel selector with MRAM device
US20220392953A1 (en) Voltage-controlled magnetic anisotropy memory device including an anisotropy-enhancing dust layer and methods for forming the same
CN114730764B (zh) 键合的存储器设备及其制作方法
US11443790B2 (en) Spinel containing magnetic tunnel junction and method of making the same
US20250107453A1 (en) Ordered alloy magnetic tunnel junction device
WO2022115984A1 (fr) Nouvelle structure cellulaire confinée à revêtement d'évidement et procédé de fabrication à courant de programmation et diaphonie thermique réduits pour mémoire à points x en 3d
US12414307B2 (en) Cross-point magnetoresistive memory array including self-aligned dielectric spacers and method of making thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227017454

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020942180

Country of ref document: EP

Effective date: 20220610

NENP Non-entry into the national phase

Ref country code: DE