WO2018131749A1 - Module de moteur d'apprentissage auto-adaptatif basé sur l'apprentissage profond - Google Patents
Module de moteur d'apprentissage auto-adaptatif basé sur l'apprentissage profond Download PDFInfo
- Publication number
- WO2018131749A1 WO2018131749A1 PCT/KR2017/002341 KR2017002341W WO2018131749A1 WO 2018131749 A1 WO2018131749 A1 WO 2018131749A1 KR 2017002341 W KR2017002341 W KR 2017002341W WO 2018131749 A1 WO2018131749 A1 WO 2018131749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- mission
- dna
- model
- engine module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
Definitions
- the present invention relates to a learning engine module, and more particularly, to a deep learning based self-adaptive learning engine module.
- AI technology is rapidly developing through deep learning based on artificial neural networks.
- existing artificial neural network technology or self-adaptation technology has a limitation in that it is difficult to process unstructured data because it cannot effectively implement the human brain mechanism, and it is difficult to apply to various situations because it is developed in a specific field. There is a limit that is not efficient.
- Korean Patent Publication No. 10-2012-0057319 Invention: Intelligent sensor middleware structure that can be applied to various environments and self-adaptable for smart environment configuration, published date: June 2012 Publication No. 10-1999-0044063 (name of the invention: a method for providing a self-adaptive management service using an information communication network, publication date: May 07, 2001) and the like have been disclosed.
- the present invention is proposed to solve the above problems of the proposed method, by combining self-adaptation technology and deep learning-based learning technology, by self-organizing the DNA mission and self-organizing the artificial neural network DNA model, Its purpose is to provide a deep learning-based self-adaptive learning engine module that can effectively understand the situation, build a model by itself, and effectively implement the human brain mechanism to solve the situation.
- the present invention is implemented in a modular form, easy to apply to a variety of systems, self-adaptive learning using the structured data and unstructured data, utilizing the learning results to understand the situation and scheduling, decision and prediction,
- the purpose of the present invention is to provide a deep learning-based self-adaptive learning engine module that can be applied to various recommendations and situational actions.
- Deep learning-based self-adaptive learning engine module according to a feature of the present invention for achieving the above object
- a mission organization unit for processing the data to self-organize the DNA mission
- Including the model learning unit for self-learning the self-constructed DNA model is characterized by its configuration.
- the mission organization Preferably, the mission organization, the mission organization, and
- the mission module may be a function of elements extracted from the data and positions of organizations.
- It may include a Special DNA Mission consisting of a combination of chains.
- the mission organization Preferably, the mission organization, the mission organization, and
- the tissue At least one of the blocks and chains of may be modified to self-organize DNA missions that change over time.
- the model component Preferably, the model component,
- the functional submodel may be a function of elements extracted from the data and sequences of thoughts.
- the deep learning-based self-adaptive learning engine module proposed by the present invention, by combining self-adaptive technology and deep learning-based learning technology, self-organizing the DNA mission and self-organizing the artificial neural network DNA model to understand the situation You can effectively implement the human brain mechanisms to identify missions, model and solve situations.
- the present invention is implemented in a modular form, easy to apply to a variety of systems, self-adaptive learning using the structured data and unstructured data, utilizing the learning results to understand the situation and scheduling, decision and prediction, It can be applied to recommendations and situational measures.
- FIG. 1 is a diagram showing the configuration of a deep learning-based self-adaptive learning engine module according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating a method of self-organizing a DNA mission in a mission organization unit of a deep learning-based self-adaptive learning engine module according to an embodiment of the present invention.
- FIG. 3 is a view illustrating an example of a method for configuring a DNA mission in a mission organization unit of a deep learning based self-adaptive learning engine module according to an embodiment of the present invention.
- FIG. 4 is a diagram illustrating a method of self-configuring a DNA model in a model constructing unit of a deep learning based self-adaptive learning engine module according to an embodiment of the present invention.
- the deep learning based self-adaptive learning engine module 100 may include a mission organization unit 110, a model constructing unit 120, and a model learning unit 130. It can be configured to include.
- the present invention combines self-adaptive technology with deep learning-based learning technology to self-organize DNA missions and self-organize artificial neural network DNA models to understand the situation by themselves, identify missions and create models to solve the situation.
- the human brain mechanism can be effectively implemented.
- the present invention is implemented in a modular form is easy to apply to a variety of systems.
- the mission organization unit 110 may process data to self-organize the DNA mission.
- the data may include not only structured data but also unstructured data such as natural language input by a person, and the mission organization unit 110 processes the data to construct a DNA mission using extracted elements. Can organize themselves.
- a separate preprocessing module (not shown) may be included for processing data to extract elements.
- the mission organization unit 110 may self-organize the DNA mission composed of the sum of the mission modules, and the mission module may include elements of the elements extracted from the data and positions of the positions of the organization members. It can be a function. At this time, the position of the organization member may be predetermined.
- the DNA mission may be a combination of Blocks of Organization and Chains. That is, the mission organization unit 110 may use a block chain combination technique to organize a DNA mission by combining a block and a chain of tissue.
- the mission organization unit 110 of the deep learning-based self-adaptive learning engine module 100 includes a block of organization (Block i, Block j, Block k, etc.) as shown in FIG. 2.
- DNA missions can be constructed by combining chains (Chain l, Chain m, Chain n, etc.) through blockchain combination technology.
- the constructed DNA mission may be expressed as the sum of the mission module, which is a function of the position of the element and the tissue member.
- the DNA mission may include a special DNA mission composed of a combination of chains. That is, according to the embodiment, the DNA mission may be composed of a combination of chains without block of tissue.
- FIG. 3 is a diagram illustrating a method of constructing a DNA mission over time in the mission organization unit 110 of the deep learning based self-adaptive learning engine module 100 according to an embodiment of the present invention.
- the mission organization unit 110 of the deep learning-based self-adaptive learning engine module 100 is extracted from elements and data within a mission and mission of a predetermined organization. By comparing and evaluating elements, you can organize your own DNA missions that change over time.
- the mission organization unit 110 may change the DNA mission of the organization at a specific time point (1), if the mission of the organization member is changed or the member itself is changed at a specific time point (2), and in the passage of time. Therefore, when the element exceeds a predetermined limit (3), at least one of the block and chain of the tissue can be changed to self-organize the DNA mission that changes over time.
- the mission organization unit 110 changes and combines both the block and the chain, Self-organizing DNA missions can change over time.
- the mission organization unit 110 keeps the block of the organization as it is. By altering and recombining the chain, the DNA mission can be self-organized.
- an element exceeds a predetermined threshold value (3) as time passes, the mission organization unit 110 automatically leaves the block of tissue intact. Chains can be altered and combined to self-organize DNA missions that change appropriately over time.
- the model constructing unit 120 may self-configure the deep learning-based artificial neural network DNA model using a self-organized DNA mission. That is, the model constructer 120 may receive a DNA mission from the mission organizer 110 as an input and construct a DNA model that can be trained on a deep learning basis. As such, the model constructing unit 120 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention may generate a DNA model using a DNA mission that is self-organized using elements extracted from data. Because of the configuration, the model can be flexibly changed in accordance with the input data.
- model constructor 120 self-constructs a DNA model consisting of a sum of functional submodels, and the submodels are functions of elements extracted from data and sequences of thoughts. Can be.
- the DNA model may be a combination of blocks of function and chains. That is, the model constructing unit 120 may use a block chain combination technique to organize a DNA model by combining a functional block and a chain.
- FIG. 4 is a diagram illustrating a method of self-configuring a DNA model in the model constructing unit 120 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention.
- Combination technologies can be combined to form functional submodels (Functional Submodel i, Functional Submodel j, Functional Submodel k, Functional Submodel m, Functional Submodel n, etc.) and to construct DNA models from the sum of the functional submodels.
- the model learner 130 may self-learn a self-constructed DNA model. That is, the model learning unit 130 is configured to learn the DNA model configured in the model constructing unit 120, and can learn through an artificial neural network technology, and utilizes the learning results of the model learning unit 130. It can be applied to understanding and scheduling, decision making and prediction, recommendation and situational action.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
La présente invention concerne un module de moteur d'apprentissage auto-adaptatif basé sur l'apprentissage profond selon lequel le mécanisme du cerveau humain pour identifier une mission de lui-même en comprenant une situation en résolvant la situation en créant un modèle peut être efficacement mis en œuvre en auto-organisant une mission d'ADN et auto-configurant un modèle d'ADN de réseau neuronal artificiel en combinant une technologie auto-adaptative et une technologie d'apprentissage basée sur l'apprentissage profond. En outre, la présente invention est mise en œuvre sous forme de module et peut donc être facilement appliquée sur divers systèmes et, en réalisant un apprentissage auto-adaptatif à l'aide de données structurées et de données non structurées, telles que la compréhension d'une situation, la planification, la prise de décision, la prédiction, la recommandation et la prise d'une mesure selon une situation, en utilisant le résultat d'apprentissage.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20170007354 | 2017-01-16 | ||
| KR10-2017-0007354 | 2017-01-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018131749A1 true WO2018131749A1 (fr) | 2018-07-19 |
Family
ID=60296273
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2017/002341 Ceased WO2018131749A1 (fr) | 2017-01-16 | 2017-03-03 | Module de moteur d'apprentissage auto-adaptatif basé sur l'apprentissage profond |
Country Status (2)
| Country | Link |
|---|---|
| KR (1) | KR101787611B1 (fr) |
| WO (1) | WO2018131749A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110245843A (zh) * | 2019-05-24 | 2019-09-17 | 深圳市元征科技股份有限公司 | 一种基于区块链的信息管理的方法及相关装置 |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109698822A (zh) * | 2018-11-28 | 2019-04-30 | 众安信息技术服务有限公司 | 基于公有区块链和加密神经网络的联合学习方法及系统 |
| KR102559590B1 (ko) | 2020-05-29 | 2023-07-26 | 한국전자통신연구원 | 신경망의 불확실성에 기반한 지식 증강 방법 및 장치 |
| KR20220081782A (ko) | 2020-12-09 | 2022-06-16 | 삼성전자주식회사 | 뉴럴 네트워크를 이용하는 데이터 처리 방법, 데이터 처리 장치 및 이를 포함한 전자 장치 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003317073A (ja) * | 2002-04-24 | 2003-11-07 | Fuji Xerox Co Ltd | ニューラルネットワーク処理装置 |
| JP2005182449A (ja) * | 2003-12-19 | 2005-07-07 | Takumi Ichimura | ニューラルネットワークによるデータベース解析装置 |
| KR20060076839A (ko) * | 2004-12-29 | 2006-07-05 | 학교법인 대양학원 | 상황인식 서비스를 제공하는 장치 및 방법 |
| KR20070043126A (ko) * | 2005-10-20 | 2007-04-25 | (주)아라게이트 | 게임용 인공지능 엔진시스템 |
| KR101607209B1 (ko) * | 2014-10-16 | 2016-03-30 | 아주대학교산학협력단 | 온톨로지를 이용한 자가적응시스템 및 자가적응방법 |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008041085A (ja) * | 2006-07-14 | 2008-02-21 | Pacific Technos Corp | 環境に対して自律的に適応する自律適応型システム |
-
2017
- 2017-03-03 WO PCT/KR2017/002341 patent/WO2018131749A1/fr not_active Ceased
- 2017-04-28 KR KR1020170055770A patent/KR101787611B1/ko not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003317073A (ja) * | 2002-04-24 | 2003-11-07 | Fuji Xerox Co Ltd | ニューラルネットワーク処理装置 |
| JP2005182449A (ja) * | 2003-12-19 | 2005-07-07 | Takumi Ichimura | ニューラルネットワークによるデータベース解析装置 |
| KR20060076839A (ko) * | 2004-12-29 | 2006-07-05 | 학교법인 대양학원 | 상황인식 서비스를 제공하는 장치 및 방법 |
| KR20070043126A (ko) * | 2005-10-20 | 2007-04-25 | (주)아라게이트 | 게임용 인공지능 엔진시스템 |
| KR101607209B1 (ko) * | 2014-10-16 | 2016-03-30 | 아주대학교산학협력단 | 온톨로지를 이용한 자가적응시스템 및 자가적응방법 |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110245843A (zh) * | 2019-05-24 | 2019-09-17 | 深圳市元征科技股份有限公司 | 一种基于区块链的信息管理的方法及相关装置 |
| CN110245843B (zh) * | 2019-05-24 | 2023-08-18 | 深圳市元征科技股份有限公司 | 一种基于区块链的信息管理的方法及相关装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101787611B1 (ko) | 2017-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018131749A1 (fr) | Module de moteur d'apprentissage auto-adaptatif basé sur l'apprentissage profond | |
| WO2018135696A1 (fr) | Plate-forme d'intelligence artificielle utilisant une technologie d'apprentissage auto-adaptative basée sur apprentissage profond | |
| WO2022163996A1 (fr) | Dispositif pour prédire une interaction médicament-cible à l'aide d'un modèle de réseau neuronal profond à base d'auto-attention, et son procédé | |
| WO2021096009A1 (fr) | Procédé et dispositif permettant d'enrichir la connaissance sur la base d'un réseau de relations | |
| WO2021132797A1 (fr) | Procédé de classification d'émotions de parole dans une conversation à l'aide d'une incorporation d'émotions mot par mot, basée sur un apprentissage semi-supervisé, et d'un modèle de mémoire à court et long terme | |
| WO2019066104A1 (fr) | Procédé et système de commande de traitement faisant appel à un apprentissage de réseau neuronal basé sur des données d'historique | |
| WO2021095987A1 (fr) | Procédé et appareil de complémentation de connaissances basée sur une entité de type multiple | |
| WO2018212394A1 (fr) | Procédé, dispositif et programme informatique pour l'exploitation d'un environnement d'apprentissage automatique | |
| WO2017164478A1 (fr) | Procédé et appareil de reconnaissance de micro-expressions au moyen d'une analyse d'apprentissage profond d'une dynamique micro-faciale | |
| WO2016159497A1 (fr) | Procédé, système et support d'enregistrement lisible par ordinateur non transitoire pour la présentation d'informations d'apprentissage | |
| WO2019059493A1 (fr) | Système de relation avec l'utilisateur utilisant un agent conversationnel | |
| WO2022260392A1 (fr) | Procédé et système pour générer un modèle de réseau neuronal artificiel de traitement d'image fonctionnant dans un terminal | |
| WO2021107422A1 (fr) | Procédé de surveillance de charge non intrusive utilisant des données de consommation d'énergie | |
| WO2024019474A1 (fr) | Onduleur bidirectionnel à fonction d'onduleur solaire | |
| WO2018143486A1 (fr) | Procédé de fourniture de contenu utilisant un système de modularisation pour analyse d'apprentissage profond | |
| WO2023224205A1 (fr) | Procédé de génération de modèle commun par synthèse de résultat d'apprentissage de modèle de réseau neuronal artificiel | |
| WO2023128093A1 (fr) | Appareil et procédé d'apprentissage par renforcement basés sur un environnement d'apprentissage utilisateur dans la conception de semi-conducteur | |
| WO2022139325A1 (fr) | Système informatique pour apprentissage adaptatif multi-domaine basé sur un réseau neuronal unique sans sur-apprentissage, et procédé associé | |
| WO2023106466A1 (fr) | Dispositif et procédé d'apprentissage en nuage d'intelligence artificielle basé sur un type de nuage d'apprentissage | |
| WO2018151366A1 (fr) | Module d'auto-composition de modèle de réseau neuronal artificiel utilisant une combinaison de chaînes de neuro-blocs | |
| WO2018212398A1 (fr) | Procédé d'analyse d'exploration d'esprit utilisant un lien entre des données de visualisation | |
| WO2023022406A1 (fr) | Procédé d'évaluation de capacité d'apprentissage, dispositif d'évaluation de capacité d'apprentissage et système d'évaluation de capacité d'apprentissage | |
| WO2023101117A1 (fr) | Procédé de gestion d'enseignement en distanciel à l'aide d'une reconnaissance de personne basée sur l'apprentissage profond | |
| WO2018147495A1 (fr) | Module destine a l'auto-organisation d'une mission à l'aide de combinaison neuro-bloc-chaîne | |
| WO2025048065A1 (fr) | Procédé et appareil de collecte de données par reconnaissance d'écran ihm et analyse d'image à l'aide d'une caméra |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17891825 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 211019) |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17891825 Country of ref document: EP Kind code of ref document: A1 |