[go: up one dir, main page]

WO2018131749A1 - Deep learning-based self-adaptive learning engine module - Google Patents

Deep learning-based self-adaptive learning engine module Download PDF

Info

Publication number
WO2018131749A1
WO2018131749A1 PCT/KR2017/002341 KR2017002341W WO2018131749A1 WO 2018131749 A1 WO2018131749 A1 WO 2018131749A1 KR 2017002341 W KR2017002341 W KR 2017002341W WO 2018131749 A1 WO2018131749 A1 WO 2018131749A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
mission
dna
model
engine module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2017/002341
Other languages
French (fr)
Korean (ko)
Inventor
윤희병
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dna System
Original Assignee
Dna System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dna System filed Critical Dna System
Publication of WO2018131749A1 publication Critical patent/WO2018131749A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models

Definitions

  • the present invention relates to a learning engine module, and more particularly, to a deep learning based self-adaptive learning engine module.
  • AI technology is rapidly developing through deep learning based on artificial neural networks.
  • existing artificial neural network technology or self-adaptation technology has a limitation in that it is difficult to process unstructured data because it cannot effectively implement the human brain mechanism, and it is difficult to apply to various situations because it is developed in a specific field. There is a limit that is not efficient.
  • Korean Patent Publication No. 10-2012-0057319 Invention: Intelligent sensor middleware structure that can be applied to various environments and self-adaptable for smart environment configuration, published date: June 2012 Publication No. 10-1999-0044063 (name of the invention: a method for providing a self-adaptive management service using an information communication network, publication date: May 07, 2001) and the like have been disclosed.
  • the present invention is proposed to solve the above problems of the proposed method, by combining self-adaptation technology and deep learning-based learning technology, by self-organizing the DNA mission and self-organizing the artificial neural network DNA model, Its purpose is to provide a deep learning-based self-adaptive learning engine module that can effectively understand the situation, build a model by itself, and effectively implement the human brain mechanism to solve the situation.
  • the present invention is implemented in a modular form, easy to apply to a variety of systems, self-adaptive learning using the structured data and unstructured data, utilizing the learning results to understand the situation and scheduling, decision and prediction,
  • the purpose of the present invention is to provide a deep learning-based self-adaptive learning engine module that can be applied to various recommendations and situational actions.
  • Deep learning-based self-adaptive learning engine module according to a feature of the present invention for achieving the above object
  • a mission organization unit for processing the data to self-organize the DNA mission
  • Including the model learning unit for self-learning the self-constructed DNA model is characterized by its configuration.
  • the mission organization Preferably, the mission organization, the mission organization, and
  • the mission module may be a function of elements extracted from the data and positions of organizations.
  • It may include a Special DNA Mission consisting of a combination of chains.
  • the mission organization Preferably, the mission organization, the mission organization, and
  • the tissue At least one of the blocks and chains of may be modified to self-organize DNA missions that change over time.
  • the model component Preferably, the model component,
  • the functional submodel may be a function of elements extracted from the data and sequences of thoughts.
  • the deep learning-based self-adaptive learning engine module proposed by the present invention, by combining self-adaptive technology and deep learning-based learning technology, self-organizing the DNA mission and self-organizing the artificial neural network DNA model to understand the situation You can effectively implement the human brain mechanisms to identify missions, model and solve situations.
  • the present invention is implemented in a modular form, easy to apply to a variety of systems, self-adaptive learning using the structured data and unstructured data, utilizing the learning results to understand the situation and scheduling, decision and prediction, It can be applied to recommendations and situational measures.
  • FIG. 1 is a diagram showing the configuration of a deep learning-based self-adaptive learning engine module according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a method of self-organizing a DNA mission in a mission organization unit of a deep learning-based self-adaptive learning engine module according to an embodiment of the present invention.
  • FIG. 3 is a view illustrating an example of a method for configuring a DNA mission in a mission organization unit of a deep learning based self-adaptive learning engine module according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a method of self-configuring a DNA model in a model constructing unit of a deep learning based self-adaptive learning engine module according to an embodiment of the present invention.
  • the deep learning based self-adaptive learning engine module 100 may include a mission organization unit 110, a model constructing unit 120, and a model learning unit 130. It can be configured to include.
  • the present invention combines self-adaptive technology with deep learning-based learning technology to self-organize DNA missions and self-organize artificial neural network DNA models to understand the situation by themselves, identify missions and create models to solve the situation.
  • the human brain mechanism can be effectively implemented.
  • the present invention is implemented in a modular form is easy to apply to a variety of systems.
  • the mission organization unit 110 may process data to self-organize the DNA mission.
  • the data may include not only structured data but also unstructured data such as natural language input by a person, and the mission organization unit 110 processes the data to construct a DNA mission using extracted elements. Can organize themselves.
  • a separate preprocessing module (not shown) may be included for processing data to extract elements.
  • the mission organization unit 110 may self-organize the DNA mission composed of the sum of the mission modules, and the mission module may include elements of the elements extracted from the data and positions of the positions of the organization members. It can be a function. At this time, the position of the organization member may be predetermined.
  • the DNA mission may be a combination of Blocks of Organization and Chains. That is, the mission organization unit 110 may use a block chain combination technique to organize a DNA mission by combining a block and a chain of tissue.
  • the mission organization unit 110 of the deep learning-based self-adaptive learning engine module 100 includes a block of organization (Block i, Block j, Block k, etc.) as shown in FIG. 2.
  • DNA missions can be constructed by combining chains (Chain l, Chain m, Chain n, etc.) through blockchain combination technology.
  • the constructed DNA mission may be expressed as the sum of the mission module, which is a function of the position of the element and the tissue member.
  • the DNA mission may include a special DNA mission composed of a combination of chains. That is, according to the embodiment, the DNA mission may be composed of a combination of chains without block of tissue.
  • FIG. 3 is a diagram illustrating a method of constructing a DNA mission over time in the mission organization unit 110 of the deep learning based self-adaptive learning engine module 100 according to an embodiment of the present invention.
  • the mission organization unit 110 of the deep learning-based self-adaptive learning engine module 100 is extracted from elements and data within a mission and mission of a predetermined organization. By comparing and evaluating elements, you can organize your own DNA missions that change over time.
  • the mission organization unit 110 may change the DNA mission of the organization at a specific time point (1), if the mission of the organization member is changed or the member itself is changed at a specific time point (2), and in the passage of time. Therefore, when the element exceeds a predetermined limit (3), at least one of the block and chain of the tissue can be changed to self-organize the DNA mission that changes over time.
  • the mission organization unit 110 changes and combines both the block and the chain, Self-organizing DNA missions can change over time.
  • the mission organization unit 110 keeps the block of the organization as it is. By altering and recombining the chain, the DNA mission can be self-organized.
  • an element exceeds a predetermined threshold value (3) as time passes, the mission organization unit 110 automatically leaves the block of tissue intact. Chains can be altered and combined to self-organize DNA missions that change appropriately over time.
  • the model constructing unit 120 may self-configure the deep learning-based artificial neural network DNA model using a self-organized DNA mission. That is, the model constructer 120 may receive a DNA mission from the mission organizer 110 as an input and construct a DNA model that can be trained on a deep learning basis. As such, the model constructing unit 120 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention may generate a DNA model using a DNA mission that is self-organized using elements extracted from data. Because of the configuration, the model can be flexibly changed in accordance with the input data.
  • model constructor 120 self-constructs a DNA model consisting of a sum of functional submodels, and the submodels are functions of elements extracted from data and sequences of thoughts. Can be.
  • the DNA model may be a combination of blocks of function and chains. That is, the model constructing unit 120 may use a block chain combination technique to organize a DNA model by combining a functional block and a chain.
  • FIG. 4 is a diagram illustrating a method of self-configuring a DNA model in the model constructing unit 120 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention.
  • Combination technologies can be combined to form functional submodels (Functional Submodel i, Functional Submodel j, Functional Submodel k, Functional Submodel m, Functional Submodel n, etc.) and to construct DNA models from the sum of the functional submodels.
  • the model learner 130 may self-learn a self-constructed DNA model. That is, the model learning unit 130 is configured to learn the DNA model configured in the model constructing unit 120, and can learn through an artificial neural network technology, and utilizes the learning results of the model learning unit 130. It can be applied to understanding and scheduling, decision making and prediction, recommendation and situational action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

According to the deep learning-based self-adaptive learning engine module suggested by the present invention, the mechanism of the human brain for identifying a mission on its own by understanding a situation, and resolving the situation by creating a model can be effectively implemented by self-organizing a DNA mission and self-configuring an artificial neural network DNA model by combining self-adaptive technology and deep learning-based learning technology. Further, the present invention is implemented in the form of a module and can therefore be easily applied to various systems and, by performing self-adaptive learning by using structured data and unstructured data, can be applied for various purposes, such as understanding a situation, scheduling, decision making, prediction, recommendation, and taking a measure according to a situation, by making use of the learning result.

Description

딥 러닝 기반의 자가 적응 학습 엔진 모듈Deep Learning based self-adaptive learning engine module

본 발명은 학습 엔진 모듈에 관한 것으로서, 보다 구체적으로는 딥 러닝 기반의 자가 적응 학습 엔진 모듈에 관한 것이다.The present invention relates to a learning engine module, and more particularly, to a deep learning based self-adaptive learning engine module.

주어진 상황이나 진행되는 상황을 이해하고 분석해서 의사결정을 내리는 인간의 두뇌 메커니즘을 기술적으로 구현하기 위한 연구는 꾸준히 이루어지고 있다. 특히, 인공지능 기술에 대한 관심이 높아지면서, 인공 신경망을 기반으로 한 딥 러닝(Deep Learning)을 통해서 AI 기술이 비약적으로 발전하고 있다.Research is ongoing to technologically implement the human brain mechanisms to make decisions by understanding and analyzing given or ongoing situations. In particular, as interest in artificial intelligence technology increases, AI technology is rapidly developing through deep learning based on artificial neural networks.

또한, 소프트웨어 공학에서는, 더 나은 사용자 경험을 위하여 사용자와 기기의 상황을 파악하고 맞춤화 된 사용자 서비스를 제공하려는 자가 적응 기술에 대한 요구가 증가하고 있으며, 다양한 분야에 적용되고 있다.In addition, in software engineering, there is an increasing demand for self-adaptive technology for understanding a user's and device's situation and providing customized user services for a better user experience.

그러나 이러한 딥 러닝 기반의 학습 기술이나 인공신경망과 소프트웨어 공학의 자가 적응 기술을 결합시킨 자가 적응 학습 관련 연구는 거의 진행된 바가 없는 실정이다.However, research on self-adaptive learning that combines deep learning-based learning technology or self-adaptation technology of artificial neural network and software engineering has hardly been conducted.

특히, 기존의 인공 신경망 기술이나 자가 적응 기술 등은, 인간의 두뇌 메커니즘을 효과적으로 구현할 수 없기 때문에 비구조화된 데이터의 처리가 어려운 한계가 있으며, 개별적인 분야에 특화되어 개발됨으로써, 다양한 상황에 적용이 어렵고 효율적이지 못한 한계가 있다.In particular, existing artificial neural network technology or self-adaptation technology has a limitation in that it is difficult to process unstructured data because it cannot effectively implement the human brain mechanism, and it is difficult to apply to various situations because it is developed in a specific field. There is a limit that is not efficient.

한편, 본 발명과 관련된 선행기술로서, 공개특허 제10-2012-0057319호(발명의 명칭: 다양한 환경에 적용 및 스마트 환경 구성을 위한 자기 적응이 가능한 지능형 센서 미들웨어 구조, 공개일자: 2012년 06월 05일), 공개특허 제10-1999-0044063호(발명의 명칭: 정보 통신망을 이용한 자가 적응 관리 서비스 제공 방법, 공개일자: 2001년 05월 07일) 등이 개시된 바 있다.On the other hand, as the prior art related to the present invention, Korean Patent Publication No. 10-2012-0057319 (Invention: Intelligent sensor middleware structure that can be applied to various environments and self-adaptable for smart environment configuration, published date: June 2012 Publication No. 10-1999-0044063 (name of the invention: a method for providing a self-adaptive management service using an information communication network, publication date: May 07, 2001) and the like have been disclosed.

본 발명은 기존에 제안된 방법들의 상기와 같은 문제점들을 해결하기 위해 제안된 것으로서, 자가 적응 기술과 딥 러닝 기반의 학습 기술을 결합하여, DNA 미션을 자가 조직하고 인공신경망 DNA 모델을 자가 구성함으로써, 상황을 이해해서 스스로 미션을 파악하고 모델을 만들어 상황을 해결하는 인간의 두뇌 메커니즘을 효과적으로 구현할 수 있는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈을 제공하는 것을 그 목적으로 한다.The present invention is proposed to solve the above problems of the proposed method, by combining self-adaptation technology and deep learning-based learning technology, by self-organizing the DNA mission and self-organizing the artificial neural network DNA model, Its purpose is to provide a deep learning-based self-adaptive learning engine module that can effectively understand the situation, build a model by itself, and effectively implement the human brain mechanism to solve the situation.

또한, 본 발명은, 모듈 형태로 구현되어 다양한 시스템에 적용이 용이하고, 구조화된 데이터 및 비구조화된 데이터를 이용해 자가 적응 학습을 하므로, 학습 결과를 활용하여 상황 이해 및 스케줄링, 의사결정 및 예측, 추천 및 상황 조치 등에 다양하게 적용할 수 있는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈을 제공하는 것을 그 목적으로 한다.In addition, the present invention is implemented in a modular form, easy to apply to a variety of systems, self-adaptive learning using the structured data and unstructured data, utilizing the learning results to understand the situation and scheduling, decision and prediction, The purpose of the present invention is to provide a deep learning-based self-adaptive learning engine module that can be applied to various recommendations and situational actions.

상기한 목적을 달성하기 위한 본 발명의 특징에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈은,Deep learning-based self-adaptive learning engine module according to a feature of the present invention for achieving the above object,

자가 적응 학습 엔진 모듈로서,Self-adaptive learning engine module

데이터를 처리하여 DNA 미션을 자가 조직하는 미션 조직부;A mission organization unit for processing the data to self-organize the DNA mission;

상기 자가 조직된 DNA 미션을 이용하여, 딥 러닝 기반의 인공신경망 DNA 모델을 자가 구성하는 모델 구성부; 및A model constructing unit for self-organizing a deep learning-based artificial neural network DNA model using the self-organized DNA mission; And

상기 자가 구성된 DNA 모델을 자가 학습하는 모델 학습부를 포함하는 것을 그 구성상의 특징으로 한다.Including the model learning unit for self-learning the self-constructed DNA model is characterized by its configuration.

바람직하게는, 상기 미션 조직부는,Preferably, the mission organization,

미션 모듈의 합으로 구성되는 상기 DNA 미션을 자가 조직하며,Self-organizing the DNA mission consisting of a sum of mission modules,

상기 미션 모듈은, 상기 데이터에서 추출된 요소(Elements)와 조직 구성원의 포지션(Positions of Organization)의 함수일 수 있다.The mission module may be a function of elements extracted from the data and positions of organizations.

더욱 바람직하게는, 상기 DNA 미션은,More preferably, the DNA mission,

조직의 블록(Blocks of Organization)과 체인(Chains)의 콤비네이션일 수 있다.It can be a combination of Blocks of Organization and Chains.

더욱 바람직하게는, 상기 DNA 미션은,More preferably, the DNA mission,

체인(Chains)의 콤비네이션으로 구성되는 특수 DNA 미션(Special DNA Mission)을 포함할 수 있다.It may include a Special DNA Mission consisting of a combination of chains.

바람직하게는, 상기 미션 조직부는,Preferably, the mission organization,

특정 시점에 조직의 DNA 미션이 변경되는 경우, 특정 시점에 조직 구성원에 대한 미션이 변경 또는 구성원 자체가 변경되는 경우, 및 시간의 흐름에 따라 요소가 미리 정해진 한계값을 초과하는 경우에, 상기 조직의 블록 및 체인 중 적어도 하나를 변경하여 시간에 따라 변화하는 DNA 미션을 자가 조직할 수 있다.When the organization's DNA mission changes at a certain point in time, when the mission for a member of the organization changes at some point, or when the member itself changes, and when an element exceeds a predetermined threshold over time, the tissue At least one of the blocks and chains of may be modified to self-organize DNA missions that change over time.

바람직하게는, 상기 모델 구성부는,Preferably, the model component,

기능적 하위 모델(Functional Submodel)의 합으로 구성되는 상기 DNA 모델을 자가 구성하며,Self-construct the DNA model consisting of the sum of the functional submodels,

상기 기능적 하위 모델은, 상기 데이터에서 추출된 요소(Elements)와 사고 시퀀스(Sequences of Thought)의 함수일 수 있다.The functional submodel may be a function of elements extracted from the data and sequences of thoughts.

더욱 바람직하게는, 상기 DNA 모델은,More preferably, the DNA model,

기능 블록(Blocks of Function)과 체인(Chains)의 콤비네이션일 수 있다.It may be a combination of Blocks of Function and Chains.

본 발명에서 제안하고 있는 딥 러닝 기반의 자가 적응 학습 엔진 모듈에 따르면, 자가 적응 기술과 딥 러닝 기반의 학습 기술을 결합하여, DNA 미션을 자가 조직하고 인공신경망 DNA 모델을 자가 구성함으로써, 상황을 이해해서 스스로 미션을 파악하고 모델을 만들어 상황을 해결하는 인간의 두뇌 메커니즘을 효과적으로 구현할 수 있다.According to the deep learning-based self-adaptive learning engine module proposed by the present invention, by combining self-adaptive technology and deep learning-based learning technology, self-organizing the DNA mission and self-organizing the artificial neural network DNA model to understand the situation You can effectively implement the human brain mechanisms to identify missions, model and solve situations.

또한, 본 발명은, 모듈 형태로 구현되어 다양한 시스템에 적용이 용이하고, 구조화된 데이터 및 비구조화된 데이터를 이용해 자가 적응 학습을 하므로, 학습 결과를 활용하여 상황 이해 및 스케줄링, 의사결정 및 예측, 추천 및 상황 조치 등에 다양하게 적용할 수 있다.In addition, the present invention is implemented in a modular form, easy to apply to a variety of systems, self-adaptive learning using the structured data and unstructured data, utilizing the learning results to understand the situation and scheduling, decision and prediction, It can be applied to recommendations and situational measures.

도 1은 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈의 구성을 도시한 도면.1 is a diagram showing the configuration of a deep learning-based self-adaptive learning engine module according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈의 미션 조직부에서, DNA 미션을 자가 조직하는 방법을 예를 들어 도시한 도면.2 is a diagram illustrating a method of self-organizing a DNA mission in a mission organization unit of a deep learning-based self-adaptive learning engine module according to an embodiment of the present invention.

도 3은 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈의 미션 조직부에서, 시간의 흐름에 따라 DNA 미션을 구성하는 방법을 예를 들어 도시한 도면.3 is a view illustrating an example of a method for configuring a DNA mission in a mission organization unit of a deep learning based self-adaptive learning engine module according to an embodiment of the present invention.

도 4는 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈의 모델 구성부에서, DNA 모델을 자가 구성하는 방법을 예를 들어 도시한 도면.4 is a diagram illustrating a method of self-configuring a DNA model in a model constructing unit of a deep learning based self-adaptive learning engine module according to an embodiment of the present invention.

<부호의 설명><Description of the code>

100: 본 발명의 일실시예에 따른 자가 적응 학습 엔진 모듈100: self-adaptive learning engine module according to an embodiment of the present invention

110: 미션 조직부110: Mission Organization

120: 모델 구성부120: model component

130: 모델 학습부130: model learning unit

이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. However, in describing the preferred embodiment of the present invention in detail, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions.

덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 ‘연결’ 되어 있다고 할 때, 이는 ‘직접적으로 연결’ 되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 ‘간접적으로 연결’ 되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 ‘포함’ 한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, in the specification, when a part is 'connected' to another part, it is not only 'directly connected' but also 'indirectly connected' with another element in between. Include. In addition, the term "comprising" a certain component means that the component may further include other components, except for the case where there is no contrary description.

도 1은 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 구성을 도시한 도면이다. 도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)은, 미션 조직부(110), 모델 구성부(120) 및 모델 학습부(130)를 포함하여 구성될 수 있다.1 is a diagram illustrating a configuration of a deep learning based self-adaptive learning engine module 100 according to an embodiment of the present invention. As shown in FIG. 1, the deep learning based self-adaptive learning engine module 100 according to an embodiment of the present invention may include a mission organization unit 110, a model constructing unit 120, and a model learning unit 130. It can be configured to include.

즉, 본 발명은, 자가 적응 기술과 딥 러닝 기반의 학습 기술을 결합하여, DNA 미션을 자가 조직하고 인공신경망 DNA 모델을 자가 구성함으로써, 상황을 이해해서 스스로 미션을 파악하고 모델을 만들어 상황을 해결하는 인간의 두뇌 메커니즘을 효과적으로 구현할 수 있다. 또한, 본 발명은 모듈 형태로 구현되어 다양한 시스템에 적용이 용이하다.In other words, the present invention combines self-adaptive technology with deep learning-based learning technology to self-organize DNA missions and self-organize artificial neural network DNA models to understand the situation by themselves, identify missions and create models to solve the situation. The human brain mechanism can be effectively implemented. In addition, the present invention is implemented in a modular form is easy to apply to a variety of systems.

이하에서는, 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)을 구성하는 각 구성요소에 대하여 상세히 설명하도록 한다.Hereinafter, each component of the deep learning based self-adaptive learning engine module 100 according to an embodiment of the present invention will be described in detail.

미션 조직부(110)는, 데이터를 처리하여 DNA 미션을 자가 조직(Self-Organization)할 수 있다. 이때, 데이터는 구조화 된 데이터 뿐 아니라 사람이 입력한 자연어와 같은 비구조화된 데이터를 포함할 수 있으며, 미션 조직부(110)는, 이러한 데이터를 처리하여 추출된 요소(Elements)를 이용하여 DNA 미션을 자가 조직할 수 있다. 실시예에 따라서는, 데이터를 처리하여 요소를 추출하기 위한 별도의 전처리 모듈(미도시)을 포함할 수도 있다.The mission organization unit 110 may process data to self-organize the DNA mission. In this case, the data may include not only structured data but also unstructured data such as natural language input by a person, and the mission organization unit 110 processes the data to construct a DNA mission using extracted elements. Can organize themselves. In some embodiments, a separate preprocessing module (not shown) may be included for processing data to extract elements.

보다 구체적으로는, 미션 조직부(110)는, 미션 모듈의 합으로 구성되는 DNA 미션을 자가 조직할 수 있으며, 미션 모듈은 데이터에서 추출된 요소(Elements)와 조직 구성원의 포지션(Positions of Organization)의 함수일 수 있다. 이때, 조직 구성원의 포지션은 미리 정해질 수 있다.More specifically, the mission organization unit 110 may self-organize the DNA mission composed of the sum of the mission modules, and the mission module may include elements of the elements extracted from the data and positions of the positions of the organization members. It can be a function. At this time, the position of the organization member may be predetermined.

한편, DNA 미션은, 조직의 블록(Blocks of Organization)과 체인(Chains)의 콤비네이션일 수 있다. 즉, 미션 조직부(110)는, 블록체인 콤비네이션(Block Chain Combination) 기술을 이용하여, 조직의 블록과 체인을 조합하여 DNA 미션을 조직할 수 있다.Meanwhile, the DNA mission may be a combination of Blocks of Organization and Chains. That is, the mission organization unit 110 may use a block chain combination technique to organize a DNA mission by combining a block and a chain of tissue.

도 2는 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 미션 조직부(110)에서, DNA 미션을 자가 조직하는 방법을 예를 들어 도시한 도면이다. 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 미션 조직부(110)는, 도 2에 도시된 바와 같은 조직의 블록(Block i, Block j, Block k 등)과 체인(Chain l, Chain m, Chain n 등)을 블록체인 콤비네이션 기술을 통해 조합하여 DNA 미션을 구성할 수 있다. 구성된 DNA 미션은 요소와 조직 구성원의 포지션의 함수인 미션 모듈의 합으로 표현될 수 있다.2 is a diagram illustrating a method of self-organizing a DNA mission in the mission organization unit 110 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention. The mission organization unit 110 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention includes a block of organization (Block i, Block j, Block k, etc.) as shown in FIG. 2. DNA missions can be constructed by combining chains (Chain l, Chain m, Chain n, etc.) through blockchain combination technology. The constructed DNA mission may be expressed as the sum of the mission module, which is a function of the position of the element and the tissue member.

또한, DNA 미션은, 체인(Chains)의 콤비네이션으로 구성되는 특수 DNA 미션(Special DNA Mission)을 포함할 수 있다. 즉, 실시예에 따라서는, 조직의 블록 없이 체인들만의 조합으로 DNA 미션을 구성할 수도 있다.In addition, the DNA mission may include a special DNA mission composed of a combination of chains. That is, according to the embodiment, the DNA mission may be composed of a combination of chains without block of tissue.

도 3은 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 미션 조직부(110)에서, 시간의 흐름에 따라 DNA 미션을 구성하는 방법을 예를 들어 도시한 도면이다. 도 3에 도시된 바와 같이, 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 미션 조직부(110)는, 미리 정해진 조직의 미션 및 미션 내의 요소와 데이터에서 추출된 요소들을 비교 및 평가하여, 시간의 흐름에 따라 변화하는 DNA 미션을 스스로 조직할 수 있다.FIG. 3 is a diagram illustrating a method of constructing a DNA mission over time in the mission organization unit 110 of the deep learning based self-adaptive learning engine module 100 according to an embodiment of the present invention. . As shown in FIG. 3, the mission organization unit 110 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention is extracted from elements and data within a mission and mission of a predetermined organization. By comparing and evaluating elements, you can organize your own DNA missions that change over time.

시간에 따라 변화하는 DNA 미션을 자가 조직하는 방법은, 도 3에 도시된 바와 같이 3가지가 있을 수 있다. 즉, 미션 조직부(110)는, 특정 시점에 조직의 DNA 미션이 변경되는 경우(①), 특정 시점에 조직 구성원에 대한 미션이 변경 또는 구성원 자체가 변경되는 경우(②), 및 시간의 흐름에 따라 요소가 미리 정해진 한계값을 초과하는 경우(③)에, 조직의 블록 및 체인 중 적어도 하나를 변경하여 시간에 따라 변화하는 DNA 미션을 자가 조직할 수 있다.There are three ways to self-organize DNA missions that change over time, as shown in FIG. That is, the mission organization unit 110 may change the DNA mission of the organization at a specific time point (①), if the mission of the organization member is changed or the member itself is changed at a specific time point (②), and in the passage of time. Therefore, when the element exceeds a predetermined limit (③), at least one of the block and chain of the tissue can be changed to self-organize the DNA mission that changes over time.

보다 구체적으로는, 도 3의 상단에 도시된 바와 같이, 특정 시점에 이미 자가 조직된 조직의 DNA 미션이 변경되는 경우(①), 미션 조직부(110)는 블록과 체인을 모두 변경하여 조합함으로써, DNA 미션이 시간에 따라 변화되도록 자가 조직할 수 있다. 또한, 도 3의 중간에 도시된 바와 같이, 특정 시점에 조직 구성원에 대해 미리 설정되어 있던 미션이 변경되거나, 조직 구성원 자체가 변경되는 경우(②), 미션 조직부(110)는 조직의 블록은 그대로 두고 체인을 변경하여 재조합함으로써, 변경 사항이 반영된 DNA 미션을 자가 조직할 수 있다. 마지막으로, 도 3의 하단에 도시된 바와 같이, 시간의 흐름에 따라 요소가 미리 정해진 한계값(Threshold Value)을 초과하는 경우(③)에는, 미션 조직부(110)는 조직의 블록은 그대로 두고 자동으로 체인을 변경하여 조합하여, 시간에 따라 적절하게 변화하는 DNA 미션을 자가 조직할 수 있다.More specifically, as shown in the upper part of FIG. 3, when the DNA mission of the tissue already self-organized at a specific time point is changed (①), the mission organization unit 110 changes and combines both the block and the chain, Self-organizing DNA missions can change over time. In addition, as shown in the middle of FIG. 3, when a mission previously set for an organization member is changed or an organization member itself is changed (②), the mission organization unit 110 keeps the block of the organization as it is. By altering and recombining the chain, the DNA mission can be self-organized. Finally, as shown at the bottom of FIG. 3, when an element exceeds a predetermined threshold value (③) as time passes, the mission organization unit 110 automatically leaves the block of tissue intact. Chains can be altered and combined to self-organize DNA missions that change appropriately over time.

모델 구성부(120)는, 자가 조직된 DNA 미션을 이용하여, 딥 러닝 기반의 인공신경망 DNA 모델을 자가 구성할 수 있다. 즉, 모델 구성부(120)는, 미션 조직부(110)로부터 DNA 미션을 전달받아 입력으로 하여 딥 러닝 기반으로 학습할 수 있는 DNA 모델을 구성할 수 있다. 이와 같이, 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 모델 구성부(120)는, 데이터에서 추출된 요소를 사용하여 자가 조직되는 DNA 미션을 이용해 DNA 모델을 구성하기 때문에, 입력되는 데이터에 따라 유연하게 변화하는 모델을 구성할 수 있다.The model constructing unit 120 may self-configure the deep learning-based artificial neural network DNA model using a self-organized DNA mission. That is, the model constructer 120 may receive a DNA mission from the mission organizer 110 as an input and construct a DNA model that can be trained on a deep learning basis. As such, the model constructing unit 120 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention may generate a DNA model using a DNA mission that is self-organized using elements extracted from data. Because of the configuration, the model can be flexibly changed in accordance with the input data.

또한, 모델 구성부(120)는, 기능적 하위 모델(Functional Submodel)의 합으로 구성되는 DNA 모델을 자가 구성하며, 하위 모델은 데이터에서 추출된 요소(Elements)와 사고 시퀀스(Sequences of Thought)의 함수일 수 있다.In addition, the model constructor 120 self-constructs a DNA model consisting of a sum of functional submodels, and the submodels are functions of elements extracted from data and sequences of thoughts. Can be.

DNA 모델은, 기능 블록(Blocks of Function)과 체인(Chains)의 콤비네이션일 수 있다. 즉, 모델 구성부(120)는, 블록체인 콤비네이션(Block Chain Combination) 기술을 이용하여, 기능의 블록과 체인을 조합하여 DNA 모델을 조직할 수 있다.The DNA model may be a combination of blocks of function and chains. That is, the model constructing unit 120 may use a block chain combination technique to organize a DNA model by combining a functional block and a chain.

도 4는 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 모델 구성부(120)에서, DNA 모델을 자가 구성하는 방법을 예를 들어 도시한 도면이다. 본 발명의 일실시예에 따른 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100)의 모델 구성부(120)는, 도 4에 도시된 바와 같은, 기능 블록(Block)과 체인(Chain)들을 블록체인 콤비네이션 기술을 통해 조합하여 기능적 하위 모델(Functional Submodel i, Functional Submodel j, Functional Submodel k, Functional Submodel m, Functional Submodel n 등)을 구성하고, 기능적 하위 모델의 합으로 DNA 모델을 구성할 수 있다.4 is a diagram illustrating a method of self-configuring a DNA model in the model constructing unit 120 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention. The model configuration unit 120 of the deep learning-based self-adaptive learning engine module 100 according to an embodiment of the present invention, as shown in FIG. 4, blocks block and chains as shown in FIG. 4. Combination technologies can be combined to form functional submodels (Functional Submodel i, Functional Submodel j, Functional Submodel k, Functional Submodel m, Functional Submodel n, etc.) and to construct DNA models from the sum of the functional submodels.

모델 학습부(130)는, 자가 구성된 DNA 모델을 자가 학습할 수 있다. 즉, 모델 학습부(130)는, 모델 구성부(120)에서 구성된 DNA 모델을 학습시키는 구성으로서, 인공 신경망 기술을 통해 학습을 할 수 있으며, 모델 학습부(130)의 학습 결과를 활용하여 상황 이해 및 스케줄링, 의사결정 및 예측, 추천 및 상황 조치 등에 다양하게 적용할 수 있다.The model learner 130 may self-learn a self-constructed DNA model. That is, the model learning unit 130 is configured to learn the DNA model configured in the model constructing unit 120, and can learn through an artificial neural network technology, and utilizes the learning results of the model learning unit 130. It can be applied to understanding and scheduling, decision making and prediction, recommendation and situational action.

이상 설명한 본 발명은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에 의하여 다양한 변형이나 응용이 가능하며, 본 발명에 따른 기술적 사상의 범위는 아래의 특허청구범위에 의하여 정해져야 할 것이다.The present invention described above may be variously modified or applied by those skilled in the art, and the scope of the technical idea according to the present invention should be defined by the following claims.

Claims (7)

자가 적응 학습 엔진 모듈(100)으로서,As a self-adaptive learning engine module 100, 데이터를 처리하여 DNA 미션을 자가 조직하는 미션 조직부(110);A mission organization unit 110 for processing the data to self-organize the DNA mission; 상기 자가 조직된 DNA 미션을 이용하여, 딥 러닝 기반의 인공신경망 DNA 모델을 자가 구성하는 모델 구성부(120); 및A model constructing unit 120 for self-organizing a deep learning-based artificial neural network DNA model using the self-organized DNA mission; And 상기 자가 구성된 DNA 모델을 자가 학습하는 모델 학습부(130)를 포함하는 것을 특징으로 하는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100).Deep learning-based self-adaptive learning engine module, characterized in that it comprises a model learning unit 130 for self-learning the self-configured DNA model. 제1항에 있어서, 상기 미션 조직부(110)는,The method of claim 1, wherein the mission organization unit 110, 미션 모듈의 합으로 구성되는 상기 DNA 미션을 자가 조직하며,Self-organizing the DNA mission consisting of a sum of mission modules, 상기 미션 모듈은, 상기 데이터에서 추출된 요소(Elements)와 조직 구성원의 포지션(Positions of Organization)의 함수인 것을 특징으로 하는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100).The mission module is a deep learning based self-adaptive learning engine module, characterized in that a function of the elements (Elements) extracted from the data (Positions of Organization). 제2항에 있어서, 상기 DNA 미션은,The method of claim 2, wherein the DNA mission, 조직의 블록(Blocks of Organization)과 체인(Chains)의 콤비네이션인 것을 특징으로 하는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100).Deep learning-based self-adaptive learning engine module, characterized in that it is a combination of Blocks of Organization and Chains. 제2항에 있어서, 상기 DNA 미션은,The method of claim 2, wherein the DNA mission, 체인(Chains)의 콤비네이션으로 구성되는 특수 DNA 미션(Special DNA Mission)을 포함하는 것을 특징으로 하는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100).Deep learning based self-adaptive learning engine module, characterized in that it comprises a special DNA Mission consisting of a combination of chains (Chains). 제1항에 있어서, 상기 미션 조직부(110)는,The method of claim 1, wherein the mission organization unit 110, 특정 시점에 조직의 DNA 미션이 변경되는 경우, 특정 시점에 조직 구성원에 대한 미션이 변경 또는 구성원 자체가 변경되는 경우, 및 시간의 흐름에 따라 요소가 미리 정해진 한계값을 초과하는 경우에, 상기 조직의 블록 및 체인 중 적어도 하나를 변경하여 시간에 따라 변화하는 DNA 미션을 자가 조직하는 것을 특징으로 하는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100).When the organization's DNA mission changes at a certain point in time, when the mission for a member of the organization changes at some point, or when the member itself changes, and when an element exceeds a predetermined threshold over time, the tissue Deep learning-based self-adaptive learning engine module 100, characterized in that by changing at least one of the block and chain of the self-organizing DNA mission that changes over time. 제1항에 있어서, 상기 모델 구성부(120)는,The method of claim 1, wherein the model configuration unit 120, 기능적 하위 모델(Functional Submodel)의 합으로 구성되는 상기 DNA 모델을 자가 구성하며,Self-construct the DNA model consisting of the sum of the functional submodels, 상기 기능적 하위 모델은, 상기 데이터에서 추출된 요소(Elements)와 사고 시퀀스(Sequences of Thought)의 함수인 것을 특징으로 하는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100).The functional sub-model is a deep learning based self-adaptive learning engine module, characterized in that a function of the elements (Elements) extracted from the data (Sequences of Thought). 제6항에 있어서, 상기 DNA 모델은,The method of claim 6, wherein the DNA model, 기능 블록(Blocks of Function)과 체인(Chains)의 콤비네이션인 것을 특징으로 하는, 딥 러닝 기반의 자가 적응 학습 엔진 모듈(100).Deep learning-based self-adaptive learning engine module, characterized in that it is a combination of Blocks of Function (Chains) and Chains (Chains).
PCT/KR2017/002341 2017-01-16 2017-03-03 Deep learning-based self-adaptive learning engine module Ceased WO2018131749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170007354 2017-01-16
KR10-2017-0007354 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131749A1 true WO2018131749A1 (en) 2018-07-19

Family

ID=60296273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002341 Ceased WO2018131749A1 (en) 2017-01-16 2017-03-03 Deep learning-based self-adaptive learning engine module

Country Status (2)

Country Link
KR (1) KR101787611B1 (en)
WO (1) WO2018131749A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110245843A (en) * 2019-05-24 2019-09-17 深圳市元征科技股份有限公司 A kind of method and relevant apparatus of the information management based on block chain

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698822A (en) * 2018-11-28 2019-04-30 众安信息技术服务有限公司 Combination learning method and system based on publicly-owned block chain and encryption neural network
KR102559590B1 (en) 2020-05-29 2023-07-26 한국전자통신연구원 Method and apparatus for increasing knowledge based on uncertainty in neural networks
KR20220081782A (en) 2020-12-09 2022-06-16 삼성전자주식회사 Method and apparatus for processing data using neural network and electronic device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317073A (en) * 2002-04-24 2003-11-07 Fuji Xerox Co Ltd Neural network processor
JP2005182449A (en) * 2003-12-19 2005-07-07 Takumi Ichimura Database analyzing system using neutral network
KR20060076839A (en) * 2004-12-29 2006-07-05 학교법인 대양학원 Apparatus and method for providing situational awareness service
KR20070043126A (en) * 2005-10-20 2007-04-25 (주)아라게이트 AI engine system for games
KR101607209B1 (en) * 2014-10-16 2016-03-30 아주대학교산학협력단 Self adaptive system and method using ontology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041085A (en) * 2006-07-14 2008-02-21 Pacific Technos Corp Autonomous adaptive system autonomously adapting to environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317073A (en) * 2002-04-24 2003-11-07 Fuji Xerox Co Ltd Neural network processor
JP2005182449A (en) * 2003-12-19 2005-07-07 Takumi Ichimura Database analyzing system using neutral network
KR20060076839A (en) * 2004-12-29 2006-07-05 학교법인 대양학원 Apparatus and method for providing situational awareness service
KR20070043126A (en) * 2005-10-20 2007-04-25 (주)아라게이트 AI engine system for games
KR101607209B1 (en) * 2014-10-16 2016-03-30 아주대학교산학협력단 Self adaptive system and method using ontology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110245843A (en) * 2019-05-24 2019-09-17 深圳市元征科技股份有限公司 A kind of method and relevant apparatus of the information management based on block chain
CN110245843B (en) * 2019-05-24 2023-08-18 深圳市元征科技股份有限公司 Information management method and related device based on blockchain

Also Published As

Publication number Publication date
KR101787611B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
WO2018131749A1 (en) Deep learning-based self-adaptive learning engine module
WO2018135696A1 (en) Artificial intelligence platform using self-adaptive learning technology based on deep learning
WO2022163996A1 (en) Device for predicting drug-target interaction by using self-attention-based deep neural network model, and method therefor
WO2021096009A1 (en) Method and device for supplementing knowledge on basis of relation network
WO2021132797A1 (en) Method for classifying emotions of speech in conversation by using semi-supervised learning-based word-by-word emotion embedding and long short-term memory model
WO2019066104A1 (en) Process control method and system which use history data-based neural network learning
WO2021095987A1 (en) Multi-type entity-based knowledge complementing method and apparatus
WO2018212394A1 (en) Method, device and computer program for operating machine learning framework
WO2017164478A1 (en) Method and apparatus for recognizing micro-expressions through deep learning analysis of micro-facial dynamics
WO2016159497A1 (en) Method, system, and non-transitory computer-readable recording medium for providing learning information
WO2019059493A1 (en) User care system using chatbot
WO2022260392A1 (en) Method and system for generating image processing artificial neural network model operating in terminal
WO2021107422A1 (en) Nonintrusive load monitoring method using energy consumption data
WO2024019474A1 (en) Bi-directional inverter with solar inverter function
WO2018143486A1 (en) Method for providing content using modularizing system for deep learning analysis
WO2023224205A1 (en) Method for generating common model through artificial neural network model training result synthesis
WO2023128093A1 (en) User learning environment-based reinforcement learning apparatus and method in semiconductor design
WO2022139325A1 (en) Computer system for multi-domain adaptive training based on single neural network without overfitting, and method thereof
WO2023106466A1 (en) Learning cloud type-based artificial intelligence cloud learning device and method
WO2018151366A1 (en) Self-composition module of artificial neural network model using neuro- blockchain combination
WO2018212398A1 (en) Mind-mining analysis method using link between view data
WO2023022406A1 (en) Learning ability evaluation method, learning ability evaluation device, and learning ability evaluation system
WO2023101117A1 (en) Method for non-face-to-face education management using deep learning-based person recognition
WO2018147495A1 (en) Module for self-organizing mission by using neuro-block-chain combination
WO2025048065A1 (en) Method and apparatus for collecting data through hmi screen recognition and image analysis by using camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 211019)

122 Ep: pct application non-entry in european phase

Ref document number: 17891825

Country of ref document: EP

Kind code of ref document: A1