[go: up one dir, main page]

WO2018154799A1 - 業務計画最適化装置及び業務計画最適化方法 - Google Patents

業務計画最適化装置及び業務計画最適化方法 Download PDF

Info

Publication number
WO2018154799A1
WO2018154799A1 PCT/JP2017/017209 JP2017017209W WO2018154799A1 WO 2018154799 A1 WO2018154799 A1 WO 2018154799A1 JP 2017017209 W JP2017017209 W JP 2017017209W WO 2018154799 A1 WO2018154799 A1 WO 2018154799A1
Authority
WO
WIPO (PCT)
Prior art keywords
business
evaluation value
simulation
narrowing
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/017209
Other languages
English (en)
French (fr)
Inventor
中村 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEXER RESEARCH Inc
Lexer Res Inc
Original Assignee
LEXER RESEARCH Inc
Lexer Res Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEXER RESEARCH Inc, Lexer Res Inc filed Critical LEXER RESEARCH Inc
Priority to CN201780086802.0A priority Critical patent/CN110337659A/zh
Priority to US16/487,208 priority patent/US11314238B2/en
Priority to EP17897299.8A priority patent/EP3588400B1/en
Priority to SG11201907101UA priority patent/SG11201907101UA/en
Publication of WO2018154799A1 publication Critical patent/WO2018154799A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention is, for example, an optimal work method in a work composed of elements such as work processes related to production in the manufacturing industry, machines, workers, transport workers related to logistics, and transport means such as forklifts.
  • the present invention relates to a business plan optimizing device and a business plan optimizing method for simulating a business in order to recognize the situation, or optimizing the way of business.
  • schedulers have been used as a computer processing technique for optimizing production plans in order to deal with such problems.
  • the logic in the scheduler is a search method that statically gives various conditions and narrows down the solutions that satisfy them. As a result, the generated optimal solution is in an optimal state under all conditions. Since it cannot be guaranteed in principle, it cannot be presented with reasonableness to users at the production site.
  • the above logic must be changed, and there is a problem that many users who do not have expertise in scheduling cannot cope with this.
  • the simulation of this production line is generally performed by a technique called discrete simulation.
  • the discrete simulation is performed by using software and each equipment element of a transportation means such as a thing, a machine, an operator, or a forklift.
  • the operation of each equipment element and the triggering conditions for triggering are set, and the triggering relationship is evaluated to predict the behavior of the production line (see Patent Documents 1 and 2).
  • a specific action is caused to occur in the equipment element that is the root of the production process network, so that the occurrence of the specific action is propagated to each equipment element in the production process network connected to the route.
  • the calculation of the simulation proceeds, and the state where the production on the production line proceeds is simulated.
  • Non-Patent Document 1 discloses that a manager device of a processing mechanism that executes parallel simulation calculation individually for each of many production simulation engines distributed on a network. It is disclosed that a production model with conditions added is passed, a value as a calculation result of an objective function is collected after a simulation calculation, and an optimum constraint condition for the production model is calculated by evaluating the calculation result group. Yes.
  • JP 2000-202742 A Japanese Patent No. 5688864
  • Non-Patent Document 1 when the processing mechanism for executing the parallel simulation calculation of Non-Patent Document 1 is used, various simulation calculations can be performed at a low cost and at a high speed without requiring very expensive hardware resources. .
  • the present invention is proposed in view of the above-mentioned problems, and can efficiently use hardware resources of a processing mechanism that executes parallel simulation operations, and can perform various simulation operations at high speed and reliably at a lower cost.
  • An object of the present invention is to provide a business plan optimization device and a business plan optimization method capable of recognizing an optimal business even when enormous cases are assumed.
  • the business plan optimizing device of the present invention includes a general processing unit and a plurality of simulators that are connected to the general processing unit through communication, and the general processing unit is within a fixed time period in which each of the simulators fluctuates. Recognize the processable amount over time, and request the simulation process of the simulation process within the optimum process amount recognized by each simulator together with the business situation information group and the simulation process condition for each simulator. And receiving a plurality of evaluation value groups as simulation processing results based on the business situation information group and the simulation processing condition from each of the simulators, and the highest evaluation based on a business objective function among the plurality of received evaluation value groups The evaluation value group is recognized.
  • the overall processing program, the overall processing program product, the overall processing program medium, or the computer-readable recording medium that records the overall processing program of the business plan optimization apparatus of the present invention is connected to a server and the server.
  • the server recognizes the amount of the simulator that can be processed within a certain period of time over time, and the processing recognized by each of the simulators.
  • the simulation processing request for the simulation processing within the optimum processing amount within the possible amount is transmitted to each simulator together with the business situation information group and the simulation processing condition, and the business situation information group and the simulation processing condition are transmitted from each simulator.
  • the overall processing program is characterized in that the functioning of the said server.
  • the overall processing unit can recognize the fluctuating processable amount of each simulator over time, and can cause each simulator to perform a simulation process within the optimum processing amount within the processable amount. Efficiently use the hardware resources of the processing mechanism that executes the simulation operation, and at a lower cost, for example, to ensure a variety of simulation operations at high speed even in the case of enormous cases such as high-mix low-volume production It can be carried out.
  • the overall processing unit receives a plurality of evaluation value groups as simulation processing results based on business situation information groups and simulation processing conditions from a plurality of simulators, and evaluates the highest evaluation based on a business objective function among the plurality of evaluation value groups.
  • the business plan optimization device is characterized in that the evaluation value group includes a similarity to the current business as an evaluation value. According to this, it is possible to recognize an optimum work that is easy for a site or a worker to perform without significantly changing the way of existing work. For example, when an evaluation value group is composed only of production-related indicators, even for production corresponding to the highest evaluation value group, for example, a production method that is difficult to deal with that has never been experienced before actually performing production.
  • the business plan optimization apparatus of the present invention includes a business situation information acquisition unit that acquires the business situation information, and the business situation information is transmitted from the business situation information acquisition unit to the overall processing unit.
  • the overall processing unit automatically recognizes the business situation information from the business situation information acquisition unit, causes the simulator group to perform a simulation process, and according to the business purpose and the highest evaluation value according to the business situation Recognize groups and recognize optimal work.
  • the overall processing unit generates an individual business instruction corresponding to the recognized highest evaluation value group, and transmits the individual business instruction to at least a worker terminal in substantially real time. It is characterized by that. Furthermore, it is preferable that the individual job instruction is transmitted as much as possible to each receivable unit such as a job status information acquisition unit capable of receiving the individual job instruction in addition to the worker terminal. According to this, the highest evaluation value group obtained from the business simulation and the optimal business are immediately reflected as individual business instructions, and the individual business instructions are quickly transmitted to the workers, etc. Construction and speedy execution of optimal work.
  • the business plan optimization apparatus of the present invention includes a narrowing control component that is connected to the overall processing unit in communication, and the overall processing unit simulates based on the narrowing condition of the narrowing control component and the business status information group.
  • a processing condition is generated.
  • the narrowing control component can be configured by a computer having a communication interface, a hard disk, or both, and the narrowing control component is preferably configured by a computer having a communication interface.
  • the overall processing unit can generate simulation processing conditions based on the narrowing conditions of the narrowing control component and the business situation information, so that necessary simulation processing conditions can be sequentially generated and used for simulation processing, It is possible to eliminate the need to prepare hardware that simultaneously generates a large number of simulation processing condition pattern lists according to business situation information by performing simulation calculations.
  • the narrowing degree of the narrowing condition of the narrowing control component can be changed, or the narrowing conditions of a plurality of narrowing degrees are set in the narrowing control component. It is characterized by. According to this, for example, when the administrator determines that it is necessary to perform simulation under different conditions for the result of the first highest evaluation value group obtained based on the first narrowing-down condition, The result of the evaluation value group of the second highest evaluation can be obtained using the second narrowing condition whose degree of narrowing is weaker than the narrowing condition of 1, or obtained based on a plurality of narrowing conditions It is possible to recognize the optimal evaluation value group and the optimal work from the evaluation value group of the highest evaluation. It is possible to reach the highest evaluation value group and the optimum business that are considered optimum from the judgment or that are considered optimum from the simulation processing based on a plurality of narrowing-down conditions.
  • the business plan optimization apparatus is characterized in that the narrowing control component generates the narrowing condition based on a set condition, and a plurality of narrowing control components are provided.
  • the narrowing control component generates the narrowing condition based on a set condition
  • a plurality of narrowing control components are provided.
  • the result of the value group is a result for a range depending on the first setting condition.
  • the second narrowing-down control is performed for specific individual conditions among the simulation processing conditions corresponding to the first highest evaluation value group.
  • the result of the second highest evaluation value group can be obtained by using the second narrowing condition generated from the second setting condition.
  • the processing based on the third and fourth narrowing conditions can be continuously executed. This is the best evaluation value group that is considered to be optimal while continuously changing without widening the range of narrowing down, without losing the result of being narrowed down too much and not being evaluated. Can reach the right job.
  • the first narrowing control component is installed at a place where a production plan is created, and the second narrowing control component is installed at the site.
  • the narrowing control component is installed, the same person or a different person sets the setting conditions for the first and second narrowing control components, respectively, and causes the first and second narrowing control components to generate the narrowing conditions
  • a method such as executing a business simulation, so that the business simulation process can be flexibly performed according to the necessity of the process planning process.
  • the general processing unit directly or indirectly receives information on the start and completion of simulation processing from another general processing unit of another business plan optimization device sharing the plurality of simulators.
  • the overall processing unit stops recognition of the amount of processing that can be performed within a certain period of time for each of the simulators during the period from the start to the completion of the simulation process. According to this, it is possible to perform the process of recognizing the processable amount of the simulator group over time with less labor, and to share the simulator group among a plurality of business plan optimization devices and efficiently use hardware resources. It becomes possible.
  • the business plan optimization method of the present invention is a business plan optimization method using the business plan optimization apparatus of the present invention, wherein the overall processing unit executes a simulation process for a first business range and performs a first process.
  • a step of recognizing the evaluation value group of the highest evaluation of the business range, a step of executing a simulation process for the second business range to recognize the evaluation value group of the highest evaluation of the second business range, and the first business A third simulation processing condition including a first simulation processing condition corresponding to the highest evaluation value group of the range and a second simulation processing condition corresponding to the highest evaluation value group of the second work range
  • the simulation process for the third business range including the first business range and the second business range is executed using the third simulated processing condition, and the highest evaluation of the third business range is performed.
  • the method includes a step of recognizing an evaluation value group. According to this, when simulation processing of the entire business is performed, the amount of calculation becomes enormous, and when a combination explosion occurs, a preliminary simulation is performed on a plurality of business ranges divided from the entire business, and each business range part
  • the simulation processing conditions of the entire business simulation are acquired from the results of optimization, and the evaluation value group of the highest evaluation of the entire business can be recognized based on the business objective function based on the simulation processing conditions. It is possible to efficiently recognize the highest evaluation value group and the optimum work with the amount of computation that can be executed.
  • simulation based on the scope of work divided from the entire work is performed, so it is easy to recognize easy-to-do work with few changes to the current work, and optimal work that is easy for the site and workers to do. Can be recognized. For example, based on the production plan that has been produced so far, combination operations are performed on the work ranges with the production order, partial optimization and optimization are performed, and this is sequentially processed for all work ranges. Furthermore, by performing simulation processing for the entire business, it is possible to change to an optimal plan on the extension of the previous plan.
  • the business plan optimization method of the present invention is a business plan optimization method using the business plan optimization apparatus of the present invention, wherein the overall processing unit generates a first simulation process based on a first narrowing-down condition.
  • a condition simulation processing request is transmitted to each simulator together with business situation information and the first simulation processing condition, and simulation processing based on the business situation information group and the first simulation processing condition is sent from each simulator.
  • the first plurality of evaluation value groups are received, and the first highest evaluation value group based on the first business objective function among the received first plurality of evaluation value groups is recognized and the first Recognizing a distribution of a plurality of evaluation value groups of one, storing and holding a second business objective function inputted based on the distribution of the first plurality of evaluation value groups, and storing the first plurality of evaluation value groups Based on the second business objective function And recognizes the Ku second evaluation value group of the highest rating.
  • the first plurality of evaluation value groups of the simulation processing results are evaluated by the first business objective function, the first highest evaluation value group based on the first business objective function is recognized, and further Evaluation of the second highest evaluation based on the second business objective function out of the first plurality of evaluation value groups using the second business objective function set with reference to the distribution of the first plurality of evaluation value groups Since the value group can be recognized, for example, when the administrator determines that there is a more appropriate solution or optimum work than the solution based on the first work objective function or the optimum work, the first The second business objective function is set with reference to the distribution of the plurality of evaluation value groups, and a solution based on the second business objective function or an optimal business is recognized, or a solution based on each of the plurality of business objective functions Or it is possible for the administrator to recognize the optimal work and review it Now, a plurality of evaluation value group, comprehensive, and multi-faceted review the evaluation value group of a plurality of highest evaluation, it is possible to recognize a more optimal business.
  • the business plan optimization method of the present invention is a business plan optimization method using the business plan optimization apparatus of the present invention, wherein the overall processing unit generates a first simulation process based on a first narrowing-down condition.
  • a condition simulation processing request is transmitted to each simulator together with the business situation information group and the first simulation processing condition, and simulation is performed based on the business situation information group and the first simulation processing condition from each simulator.
  • a first plurality of evaluation value groups is received as a processing result, and a first highest evaluation value group based on a first business objective function is recognized among the received first plurality of evaluation value groups, and Recognizing the distribution of the first plurality of evaluation value groups, storing and holding the second business objective function input based on the distribution of the first plurality of evaluation value groups, and based on the second narrowing condition Of the generated second simulation processing condition
  • a pseudo processing request is transmitted to each simulator together with the business situation information group and the second simulation processing condition, and the simulation processing based on the business situation information group and the second simulation processing condition is transmitted from each simulator.
  • the second plurality of evaluation value groups are received, and the second highest evaluation value group based on the second business objective function is recognized among the received second plurality of evaluation value groups, and the The distribution of the second plurality of evaluation value groups is recognized.
  • the first plurality of evaluation value groups of the simulation processing results are evaluated by the first business objective function, the first highest evaluation value group based on the first business objective function is recognized, and further Using the second business objective function set with reference to the distribution of the first plurality of evaluation value groups, the first plurality of evaluation value groups corresponding to the second narrowing condition and the second simulation processing condition; Can recognize the second highest evaluation value group and the distribution of the second plurality of evaluation value groups for another second plurality of evaluation value groups.
  • the administrator determines that there is a more appropriate solution or an optimal business than the solution based on the first narrowing condition, the first business objective function, or the optimal business, Set the second business objective function with reference to the distribution of multiple evaluation value groups, recognize the second narrowing condition, the solution based on the second business objective function, or the optimal business, It becomes possible for the administrator to recognize the solution based on the conditions, each of the plurality of business objective functions or the optimal business, and to perform a comparative study, etc., multiple narrowing conditions, multiple evaluation value groups by multiple business objective functions, A plurality of highest evaluation value groups can be studied comprehensively and multifacetedly to recognize even more optimal work.
  • the block diagram which shows the whole structure of the work plan optimization apparatus of 1st Embodiment of this invention The block diagram which shows the structure of the integrated process part in the work plan optimization apparatus of 1st Embodiment.
  • the flowchart which shows the business simulation process in the business plan optimization apparatus of 3rd Embodiment The block diagram which shows the structure of the narrowing-down control component in the work plan optimization apparatus of 4th Embodiment.
  • the business plan optimization apparatus 1 includes an overall processing unit 2, a plurality of simulators 3 connected and connected to the overall processing unit 2, and an overall processing unit.
  • Control component 4 that is communicatively connected to, a plurality of worker terminals 5 that are carried by the worker or arranged in the vicinity of the worker, and a plurality of job status information acquisition units 6 that acquire job status information It is a processing mechanism for parallel simulation calculation, and executes discrete simulation processing of work in parallel with a large number of simulators 3 provided in parallel.
  • the overall processing unit 2 is composed of, for example, a server that supervises the entire discrete simulation processing of the business plan optimizing apparatus 1, and as shown in FIG. 2, an arithmetic control unit 21 such as a CPU, ROM, RAM, hard disk, etc. , A storage unit 22 including a mouse and a keyboard, an output unit 24 such as a display and a printer, and a communication interface 25.
  • a server that supervises the entire discrete simulation processing of the business plan optimizing apparatus 1, and as shown in FIG. 2, an arithmetic control unit 21 such as a CPU, ROM, RAM, hard disk, etc.
  • a storage unit 22 including a mouse and a keyboard, an output unit 24 such as a display and a printer, and a communication interface 25.
  • the storage unit 22 includes a processing program storage unit 221 that stores a processing program such as a general processing program for business simulation that causes the arithmetic control unit 21 to execute predetermined processing, and a data storage unit that stores data necessary to perform the predetermined processing
  • the arithmetic control unit 21 executes overall processing of a predetermined business simulation according to the overall processing program.
  • a business objective function for recognizing the highest evaluation value group from among a plurality of evaluation value groups is set and stored so as to be changeable.
  • a business objective function is set in an appropriate manner capable of recognizing the highest evaluation value group from among a plurality of evaluation value groups. For example, a weighting coefficient for each evaluation value is set and a weighted linear sum is set. , And the evaluation value group having the maximum weighted linear sum can be recognized as the highest evaluation value group.
  • the evaluation value group having the maximum value is recognized as the highest evaluation value group.
  • Indicators that analyze the flow of goods, such as (the time to wait for production without each ⁇ part being produced), staging (the time that each ⁇ equipment is not in operation), worker availability (worker operation) Time / working hours), tooling operation rate (tool operation time / working time) and other indicators that indicate the working status of workers and molds and other factory resources, and total inventory in the production line ( ⁇ (process with each part) In the production line) It can be a total inventory costs (sigma (inventory ⁇ parts cost time ⁇ parts staying in step with each component)) Indices related to inventory and the cost of such.
  • Each simulator 3 is composed of, for example, a computer responsible for partial processing of the discrete simulation processing of the business plan optimizing device 1, and as shown in FIG. 3, an arithmetic control unit 31 such as a CPU, ROM, RAM, A storage unit 32 composed of a hard disk or the like, an input unit 33, an output unit 34, and a communication interface 35 are provided.
  • the plurality of simulators 3 and the overall processing unit 2 are connected to each other via communication interfaces 35 and 25 by wired communication, wireless communication, or a combination of wired communication and wireless communication, and at least when performing business simulation processing.
  • the storage unit 32 includes a processing program storage unit 321 that stores a processing program such as a simulation program of a business simulation that causes the arithmetic control unit 31 to execute a predetermined process, and environmental information such as a basic production line that executes a business such as production.
  • the data storage unit 322 stores data necessary for performing a predetermined process, and the arithmetic control unit 31 executes a predetermined simulation process according to a simulation program.
  • the narrow-down control component 4 is composed of, for example, a calculation control unit such as a CPU, a storage unit composed of a ROM, a RAM, a hard disk, etc., an input unit, an output unit, a computer having a communication interface, or a hard disk. Communication connection is established with the overall processing unit 2 via the communication interface 25. Communication connection of the overall processing unit 2 to the plurality of narrowing-down control components 4 is appropriate as long as it can be configured as needed for the required narrowing-down control component 4, and the overall processing unit 2 is used for generating simulated processing conditions.
  • the narrow-down control component 4 that stores the narrow-down conditions can be switched or changed. As shown in FIG. 1, a narrowing condition storage unit 41 is provided in the storage area of each narrowing control component 4, and the narrowing condition storage unit 41 stores narrowing conditions.
  • the narrow-down condition in the narrow-down condition storage unit 41 of the narrow-down control component 4 is input to the central processing unit 2 connected by communication, and the arithmetic control unit 21 of the general processing unit 2 follows the narrow-down condition and the job according to the general processing program.
  • a simulation processing condition is generated based on the situation information group.
  • the narrowing condition of the narrowing condition storage unit 41 can change the narrowing degree, and the calculation control unit 21 of the overall processing unit 2 is stored in the narrowing condition storage unit 41, for example.
  • a simulation processing condition is generated.
  • the range of the number of workers 5 to 15 people
  • the routing candidates where the product flows through the work station of the production factory R1, R2, R3, R4, R5,. , R8, the allowable range of change of the order of each product in the production plan: up to 15% of the total, etc.
  • the degree of narrowing of one, multiple or all individual narrowing conditions can be changed Is set.
  • the individual narrow-down condition group constituting the narrow-down condition of the required narrowing degree is one by the individual narrow-down conditions NC1 to NCn stored in the narrow-down condition storage unit 41 or the input unit 23.
  • Individual refinement conditions NC1 ′, NC2 ′,..., NCn ′ for example, the range of the number of workers: 5 to 10 people, the routing candidate where the product flows through the work station of the production factory: R1, R2, R3, R4,..., R7, change allowable range of the order of introduction of each product in the production plan: up to 10% of the total).
  • the narrowing condition storage unit 41 stores individual narrowing condition groups having different narrowing degrees as narrowing conditions for a plurality of narrowing degrees, and individual narrowing conditions for a specific narrowing degree selected and input from these groups. Simulated processing conditions may be generated using groups as narrowing conditions.
  • the narrowing condition storage unit 41 stores the first individual narrowing condition group of individual narrowing conditions NC1, NC2,..., NCn (for example, the range of the number of workers: 5 to 15 people, the product is a production factory Candidates for routing through the work stations: 7 pieces of R11, R12, R13, R14,..., R17, allowable range of change in the order of introduction of each product in the production plan: up to 15% of the total), and the first Individual refinement condition group of NC2 ', NC2', ..., NCn ', which is different in degree of refinement from individual refinement condition group (for example, the range of the number of workers: 5 to 10 people, products are produced Candidates for routing through the factory work station: R21, R22, R23, R24, ..., R26, change tolerance of the order of introduction of each product in the production plan: up to 10% of the total)), 1st , The second individual screening To store a third individual narrowing condition group having a narrowing degree different from that of the group, and to generate
  • the worker terminal 5 is, for example, a portable information terminal such as a smartphone, a personal computer, or a business dedicated terminal, and includes an arithmetic control unit 51 such as a CPU, a ROM, a RAM, a hard disk, and the like as shown in FIG.
  • a storage unit 52 an input unit 53 such as a touch panel, a mouse, and a keyboard, an output unit 54 such as a touch panel and a display, and a communication interface 55.
  • the storage unit 52 stores a processing program storage unit 521 that stores a processing program such as a business situation information processing program that causes the arithmetic control unit 51 to execute a predetermined process on the business situation information, and stores data necessary for performing the predetermined process.
  • the calculation control unit 51 has a data storage unit 522 and executes predetermined business situation information processing according to the business situation information processing program.
  • the business status information acquisition unit 6 acquires business status information and transmits the acquired business status information to the overall processing unit 2. For example, communication such as an input unit or reading unit, a communication interface, and an arithmetic control unit A control unit is provided.
  • the job status information acquisition unit 6 has a function of acquiring, for example, input job status information or acquiring job status information read by a reading unit that reads brain waves, body temperature, and the like and transmitting the acquired job status information to the overall processing unit 2
  • the operation status information is acquired from the operation speed of the production machine such as a production robot, a processing machine, an inspection device, a transfer device, etc.
  • IoT-based devices such as devices that transmit, barcodes, markings, or IC tags of products and parts that are read by the reading unit to acquire the completion status of products and parts and that are sent to the central processing unit 2 It is comprised by the apparatus part, and the operation status information such as the operation speed of the production machine is transferred to the worker terminal 5 by the short-range communication connection, and the worker terminal 5 transmits this operation status information to the overall processing unit 2.
  • the business situation It may be used as the broadcast acquisition unit 6.
  • the business situation information is transmitted from each business situation information acquisition unit 6 to the overall processing unit 2,
  • the overall processing unit 2 receives and acquires the business status information, and recognizes a business status information group at a specific time point constituted by the business status information (S1).
  • the transmission of business status information from the business status information acquisition unit 6 to the overall processing unit 2 is performed at regular time intervals, when a predetermined operation is completed, substantially in real time, or a combination thereof.
  • the business status information is received and acquired, and the business status information group at a specific time is determined and recognized.
  • the business situation information stored in the overall processing unit 2 also includes fixed information such as the type of production machine in a short period of time, and this fixed information is received from the business situation information acquisition unit 6 at a timely timing. It is possible to adopt a configuration for storing in advance in the overall processing unit 2.
  • the work status information acquired by the overall processing unit 2 includes, for example, work station related information such as parts storage station / assembly station / shipping station (work station ID, work target production number, work station production target amount, work station Production production volume, work start time, work end time, worker ID of the worker who worked at the work station, mold ID of the mold used at the work station, setup change time, temperature, humidity, pressure, etc.), work Related information (worker ID, start time, working time, break time, manufacturing number of the part that performed the work, work station ID that performed the work, walking route, physical information such as heart rate, body temperature, brain wave, etc.), Mold related information (mold ID, serial number of work part and work station ID, total number of shots, total number Tenancy count, number of shots after maintenance, location location history, etc.), parts related information (manufacturing number, target shipping date, warehousing date, work start date, work end date, shipping date, work station ID where work was performed, Mold ID used, worker ID, storage station ID, period placed in the storage station,
  • the work station related information in the above example is input or read into, for example, a device constituting the work status information acquisition unit 6 installed in the work station, and is transmitted to the overall processing unit 2 by this device.
  • the worker related information in the above example is input or read into the worker terminal 5 that also serves as the job status information acquisition unit 6, for example, and is transmitted to the overall processing unit 2 by the worker terminal 5.
  • the mold related information and the component related information in the above example are read by the business situation information acquisition unit 6 having a reading function, for example, information sequentially written on the IC tag provided on the mold and the part, and this business situation information acquisition The data is transmitted to the overall processing unit 2 by the unit 6.
  • the overall processing unit 2 for example, an individual refinement condition group that is changed and input by the input unit 23 with respect to the individual refinement condition group stored in the refinement condition storage unit 41 of the required refinement control component 4.
  • a simulation processing condition is generated on the basis of the narrowing-down condition of the required narrowing degree constituted by and the business status information group at the recognized specific time point, and is stored in the data storage unit 222 (S2).
  • the individual narrowing conditions NC1 ′, NC2 ′,..., NCn ′ for example, the range of the number of workers: 5 to 10 people, the product is a production factory And 15 routing candidates that flow through the work stations of R11, R12, R13, R14,..., R25, and the allowable range of change in the order of introduction of each product in the production plan: up to 10% of the total
  • AS1, AS2,..., ASn for example, information that the number of workers is eight, information that the products to be produced are P1 to P10, product P1 among the products P1 to P10 that are produced
  • To P5 is information indicating that production is complete, product P6 is information that R11 routing is selected, and product P6 is information that is the progress of steps 3 to 12 in R11 routing, product In-process inventory at each work station 6 is 2 in process 3, 6 in process 4, ...
  • NCn ′ and the business condition information AS1, AS2,..., ASn together with the individual narrowing conditions NC1 ′, NC2 ′,. .., ASn is narrow when there is a narrower condition range than the individual narrowing conditions NC1 ′, NC2,..., NCn ′ of the narrowing conditions of the required narrowing degree in the business status information AS1, AS2,.
  • Each simulation processing conditions SCi multiple individual condition group sc i1, sc i2, ..., simulation processing conditions SC1 expressed by sc im, SC2, ..., SCi , ..., 6 an example SCn.
  • the overall processing unit 2 changes the overall processing unit 2 of the work plan optimizing apparatus 1, more specifically, the arithmetic control unit 21 according to the overall processing program.
  • a processable amount within a predetermined time is recognized over time (S3).
  • the overall processing unit 2 acquires indices such as the CPU performance, CPU operation rate, memory capacity, and memory operation rate of the simulator 3 at a predetermined timing, and calculates and obtains a processable amount from these process indexes. Recognize.
  • the overall processing unit 2 Indexes such as CPU operating rate and memory operating rate such as fluctuation values are acquired at a predetermined timing, and the processable amount is calculated and recognized from the index of fixed values stored in advance and the acquired index such as fluctuation values. You may do it.
  • the predetermined timing at which the overall processing unit 2 acquires the index of the simulator 3 is, for example, when the simulation process of the business simulation is started, and when a plurality of evaluation value groups are received from the simulator 3 and the simulator 3 is simulated. It can be set as when the processing is completed.
  • the overall processing unit 2 of the work plan optimization apparatus 1 multiplies the processable amount by the load reduction rate stored in the data storage unit 222, for example, so that the optimum processing amount within the processable amount within a certain time of the simulator 3 is obtained. Is obtained (S4).
  • This load reduction rate for example, a predetermined value that prevents the processing speed of the simulator 3 from being lowered or stopped in the locked state is set.
  • the fixed time corresponding to the processable amount is stored in the data storage unit 222, and the overall processing unit 2 stores the index such as the CPU operation rate and the memory operation rate of the simulator 3 in the data storage unit 222. It is assumed that calculation is obtained from time. This fixed time can be set as appropriate.
  • the overall processing unit 2 transmits a simulation processing request to the simulator 3 together with the corresponding business status information group and the corresponding simulation processing conditions. If there is a target processing time until completion of the process of recognizing the highest evaluation value group based on the business objective function among the evaluation value group, the target processing time is set to a fixed time, or the predetermined target processing time is determined. It is possible to set a predetermined period of time as an integral time.
  • the target processing time and the predetermined ratio are stored in the data storage unit 222, and based on this, the overall processing unit 2 calculates and obtains a certain time, and the data storage unit It is preferable to store in 222.
  • the overall processing unit 2 generates a simulation processing request for simulation processing within the optimum processing amount of the simulator 3 and transmits the simulation processing request to the simulator 3 together with the corresponding business status information group and the corresponding simulation processing conditions. (S5).
  • the overall processing unit 2 executes simulation processing for an arbitrary pattern of a combination of business status information groups and simulation processing conditions, and the processing amount is calculated.
  • the overall processing unit 2 transmits the simulated processing request together with the corresponding business situation information and the corresponding simulated processing condition, for example, the simulated processing request R1 [AS1, AS2,..., ASn, SC1], the simulated processing request R2 [AS1, AS2,..., ASn, SC2], simulation processing request R3 [AS1, AS2,..., ASn, SC3],.
  • the processing of S3 to S5 is sequentially executed for a plurality of simulators 3 provided in parallel, but the integration of the processing amount of any one pattern of the combination of the business status information group and the simulation processing condition is In the case of corresponding to the same business situation information group and the simulation processing conditions generated in series in S2, it is preferable to store and use the accumulated processing amount once calculated and acquired.
  • an appropriate discrete simulation process for simulating a state transition due to a chain of discretely generated events can be used.
  • each element such as a work station
  • the specifications of the equipment elements are stored in the data storage unit 322 as equipment element information, work element information including work element triggering conditions and an output destination after the work is completed, and the equipment elements.
  • the link information with the work element is stored in the data storage unit 322, and the first equipment according to the satisfaction of the triggering condition of the work element information of the first work element linked with the first equipment element by the link information. It is preferable to use a configuration in which the discrete simulation process is executed so that the element executes the work and outputs the work element information of the first work element to the output destination after the work is completed.
  • the business condition information group [AS1, AS2,..., ASn] and the simulated processing condition SCi are used as calculation conditions for the calculation of the discrete simulation process.
  • Information necessary for discrete simulation processing such as basic information of the current business, such as specifications of elements other than the business status information group and simulation processing conditions, or environmental information of the current business, is input to the overall processing unit 2 after each.
  • a configuration that is transmitted to the simulator 3 and stored in each simulator 3 or a configuration that is input in each simulator 3 and stored in each simulator 3 can be used.
  • the simulator 3 transmits the evaluation value group [V 1i , V 2i , V 3i ,..., V ji ,..., V ni ] obtained by the calculation to the overall processing unit 2 (S8).
  • the overall processing unit 2 receives a plurality of evaluation value groups as simulation processing results based on the business situation information group and the simulation processing conditions from each simulator 3 that has executed the simulation processing (S9).
  • the highest evaluation value group based on the business objective function is recognized (S10).
  • a weighting coefficient is set for each evaluation value to obtain a weighted linear sum, and the evaluation value group having the maximum weighted linear sum is used as the highest evaluation value group.
  • the overall processing unit 2 displays the recognized highest evaluation value group in a predetermined format on the output unit 24 (S11).
  • This display format can be, for example, graphically displaying the weighted linear sum values of the highest evaluation value group and the other evaluation value groups as images.
  • the overall processing unit 2 recognizes the highest evaluation value group, recognizes the distribution of a plurality of evaluation value groups including the highest evaluation value group and other evaluation value groups, and outputs a plurality of evaluation values. It is preferable to display the distribution of the group or the distribution of the business purpose evaluation value such as the weighted linear sum of each evaluation value group on the output unit 24.
  • This distribution recognition and output format is, for example, a format in which the vertical axis is make span and lead time, the horizontal axis is the integrated value of inventory quantity, the vertical axis is equipment availability, and the horizontal axis is worker availability. It is possible to adopt a format for outputting using the evaluation value corresponding to each evaluation value group.
  • the overall processing unit 2 recognizes the fluctuating processable amount of each simulator 3 over time, and performs simulation processing within the optimum processing amount within the processable amount on each simulator 3.
  • Various simulation operations can be performed reliably at high speed while preventing them.
  • the overall processing unit 2 receives a plurality of evaluation value groups as simulation processing results based on the business situation information group and the simulation processing conditions from the plurality of simulators 3, and the highest evaluation based on the business objective function among the plurality of evaluation value groups.
  • the overall processing unit 2 automatically recognizes the business situation information from the business situation information acquisition unit 6, and the simulator 3 group Can perform simulation processing, recognize the highest evaluation value group according to the business purpose and in accordance with the business situation, and recognize the optimal business.
  • the overall processing unit 2 generates simulation processing conditions based on the screening conditions of the screening control component 4 and the business situation information, so that necessary simulation processing conditions can be sequentially generated and used for simulation processing. It is possible to eliminate the need for preparing hardware that simultaneously generates a pattern list of a large number of simulation processing conditions according to the situation information by performing a simulation calculation. Therefore, hardware resources can be used more efficiently, and the cost of hardware resources can be reduced.
  • the number of simulation processing conditions becomes astronomical, so obviously the unnecessary simulation processing conditions are reduced, the vast number of simulation processing conditions are reduced, and the amount of computation that can be calculated by the filtering conditions By calculating the number of simulation processing conditions, calculation for obtaining optimization can be performed, and the cost of hardware resources can be reduced.
  • the narrowing-down control component 4 for example, the priority of the delivery date corresponding to the customer request in the production plan, and the priority of the production facility to be actively operated from the viewpoint of equipment depreciation cost, quality control, etc. are set.
  • the narrowing-down degree of the narrowing-down condition of the narrowing-down control component 4 or by setting multiple narrowing-down conditions for the narrowing-down control component 4, for example, the first narrowing-down condition
  • the degree of narrowing is weaker than the first narrowing condition
  • the result of the second highest evaluation value group can be obtained using the second narrowing condition, or the optimum evaluation from among the highest evaluation value group obtained based on a plurality of narrowing conditions Can recognize the value group and the optimum work, do not lose the results that were excluded from the evaluation due to too much narrowing down, it is considered optimal from human judgment, or multiple narrowing down From the simulation process based on embedding conditions Highest rating evaluation value group that can reach the optimal operational.
  • the business plan optimizing apparatus 1 has the same overall configuration as that of the first embodiment shown in FIGS. 1 to 4, but the evaluation values V 1i and V constituting the evaluation value group. 2i , V 3i ,..., V ji ,..., V ni are different in that evaluation values representing the degree of similarity with the current job are included, and as shown in FIG.
  • An evaluation value group having an evaluation value of similarity is calculated and acquired as a simulation processing result based on the business status information group of the simulation processing request and the simulation processing conditions (S7 ′).
  • the overall processing unit 2 receives an evaluation value group having a plurality of similarity evaluation values as a simulation processing result based on the business situation information group and the simulation processing condition from each simulator 3 that has executed the simulation processing (S9).
  • the highest evaluation value group having the similarity evaluation value based on the business objective function is recognized (S10).
  • Other configurations and processing methods are the same as those in the first embodiment.
  • the method of calculating and obtaining the evaluation value of the similarity with the current job is, for example, the individual similarity between the routing pattern of the work station where the current product flows and the routing pattern of the work station where the product after virtual change flows
  • the individual similarity between the pattern of the work station that the current worker is in charge of and the pattern of the work station that the post-virtual worker is in charge of is expressed as a multidimensional vector between each pattern.
  • the distance calculated acquired in an appropriate manner such as existing ways of computing and obtaining individual similarity sr 1, sr 2, ..., sr n weighting factors stored in the data storage unit 322 of the simulator 3 to sw 1, sw 2 ,..., Sw n , respectively, and a weighted linear sum of individual similarities as a similarity evaluation value: sw 1 ⁇ sr 1 + sw 2 ⁇ sr 2 + ... + sw n ⁇ sr n can be configured to obtain and calculate.
  • the individual similarity can be evaluated by rating the degree of commonality, distance, etc.
  • the individual similarity between the routing pattern of the current work station and the routing pattern of the work station after virtual change sr i is higher as those proportions that work station set route as the routing passes in common, the higher as those proportions that work station with the same kind of features common is high is set as the routing For work stations on the route, the work station where the same element work is performed can be made higher as the proportion of the close physical distance of the work stations is higher.
  • the similarity with the current job as an evaluation value in the evaluation value group, there is no significant change in the way of existing work, and it is optimal for the site and workers to easily perform. Recognize business. For example, when an evaluation value group is composed only of production-related indicators, even for production corresponding to the highest evaluation value group, for example, a production method that is difficult to deal with that has never been experienced before actually performing production. Production, production that includes large relocations that force the production site to be difficult, or production that differs greatly from the conventional production policy, etc., but the evaluation value of the evaluation value group is similar to the current work It is possible to recognize “optimum production that is easy to make and easy to perform” that does not change greatly from the conventional method at the production site.
  • the business plan optimizing apparatus 1 of the third embodiment has the same overall configuration as that of the first embodiment of FIGS. 1 to 4, but is recognized by the overall processing unit 2 as shown in FIG.
  • the highest evaluation value group is displayed in a predetermined format by the output unit 24 (S11), and an individual job instruction corresponding to the recognized highest evaluation value group is generated, and the individual job instruction is abbreviated to at least the worker terminal 5. Transmit in real time (S12).
  • the individual business instruction is a business instruction executed by an individual business element or executed for an individual business element in the entire business corresponding to the highest evaluation value group.
  • the individual job instruction is transmitted as much as possible to each receivable unit such as the job status information acquisition unit 6 that can receive the individual job instruction in addition to the worker terminal 5.
  • the worker H3 performs the process 5 of the product P6 from 10:30 to 10:40 at the work station S008 and the process 6 of the product P10 from 10:40 to 10:55 at the work station S010. Instructions to perform and the like are listed.
  • the other configuration is the same as that of the work plan optimization apparatus 1 of the first embodiment.
  • the highest evaluation value group obtained from the work simulation and the optimum work are immediately reflected as individual work instructions, and the individual work instructions are quickly transmitted to the workers, etc. It is possible to quickly build a system and speed up the execution of optimal operations.
  • the work plan optimizing apparatus 1 of the fourth embodiment has the same overall configuration as that of the first embodiment of FIGS. 1 to 4, but as shown in FIG. Each of them is configured by a computer including an arithmetic control unit 401 such as a CPU, a storage unit 402 configured by a ROM, a RAM, a hard disk, and the like, an input unit 403, an output unit 404, and a communication interface 405.
  • a narrowing condition storage unit 41 is set, and in the program storage unit 42, a narrowing condition generation program is stored, and the arithmetic control unit 401 operates according to the narrowing condition generation program. Yes.
  • the first setting condition is input from the input unit 403 to the first narrowing control component 4 among the plurality of narrowing control components 4 (S21).
  • a first narrowing condition is generated (S22), and a process of storing the generated first narrowing condition in the narrowing condition storage unit 41 of the storage unit 402 is executed (S23).
  • the arithmetic control unit 401 reduces or increases the calculation processing amount from the first setting condition, in other words, narrows down the simulation processing range.
  • a process according to a predetermined calculation rule for expanding to an appropriate range is performed to generate a first narrowing condition.
  • the arithmetic control unit 401 according to the narrowing condition generation program, the individual narrowing condition groups NC1, NC2,..., NCn (for example, the number of workers) constituting the first narrowing condition Range: 6 types of 5 people, 7 people, 9 people, 11 people, 13 people, and 15 people and 5 types of routing candidates: R1, R3, R5, R7, R9.
  • the first narrowing condition that narrows down this simulation processing range by generating a permissible range for each product combination in the production plan, plus an allowable range of change in the order of introduction of each product: up to 15% of the total) Is stored in the filtering condition storage unit 41 of the storage unit 402.
  • the overall processing unit 2 generates and stores a first simulation processing condition based on the first narrowing condition, transmits a simulation processing request, receives a plurality of evaluation value groups as simulation processing results from the simulator 3, Recognition of evaluation evaluation value groups and recognition of distribution of a plurality of evaluation value groups, output of the highest evaluation value group, and output of distributions of a plurality of evaluation value groups are executed (S24).
  • the first simulation process corresponding to the highest evaluation value group stored in the data storage unit 222 of the overall processing unit 2 when the administrator determines that the simulation needs to be performed under different conditions.
  • the condition is output and confirmed, and a specific individual condition among the first simulation processing conditions corresponding to the highest evaluation value group is input to the second narrowing control component 4 as the second setting condition.
  • the second setting control component 4 receives the second setting condition from the input unit 403 (S25), and the calculation control unit 401 generates the second setting condition based on the second setting condition. (S26)
  • storage part 402 is performed (S27).
  • the overall processing unit 2 After that, the overall processing unit 2 generates and stores a second simulation processing condition based on the second narrowing condition, transmits a simulation processing request, and sets a plurality of evaluation value groups that are simulation processing results from the simulator 3. Reception, recognition of the highest evaluation value group and recognition of the distribution of the plurality of evaluation value groups, output of the highest evaluation value group, and output of the distribution of the plurality of evaluation value groups are executed.
  • the calculation control unit 401 of the second narrowing control component 4 performs a predetermined calculation rule for reducing or increasing the calculation processing amount from the first setting condition to an appropriate amount according to the narrowing condition generation program.
  • the second narrowing condition is generated by performing processing according to a predetermined calculation rule for narrowing or expanding the simulation processing range to an appropriate range.
  • the arithmetic control unit 401 follows the narrowing condition generation program.
  • NCn ′ for example, the range of the number of workers: 8 people, 9 people, 10 people, and the products in the production factory
  • Candidates for routing through the stations R4, R5, R6, and brute force combinations of each type. Allowable change in the order of introduction of each product in the production plan: 15% of the total range In, it generates a ... a plus), and stores the second narrowing conditions extend this simulation processing range narrowing-down condition storage unit 41 of the storage unit 402.
  • the first narrowing-down control component 4 that generates the first narrowing-down condition with a predetermined calculation rule for narrowing down the simulation processing range in the specific example described above, and the second with a predetermined calculation rule for extending the simulation processing range.
  • the multiple narrowing control components 4 generate the narrowing conditions with a predetermined calculation rule for narrowing down the simulation processing range from the setting conditions.
  • the predetermined calculation rule of the narrow-down control component 4 and the predetermined calculation rule of another narrow-down control component 4 can be different or the same.
  • the same narrowing control component 4 generates a narrowing condition with a predetermined calculation rule for narrowing down the simulation processing range from the setting condition, and a predetermined calculation rule for extending the simulated processing range from the setting condition.
  • narrowing control is performed using a part or all of a predetermined calculation rule for generating a narrowing condition from a setting condition as a part of the setting condition.
  • the calculation control unit 401 that inputs to the component 4 and cooperates with the narrowing condition generation program of the narrowing control component 4 includes the narrowing condition generation program and a part of the setting conditions corresponding to the input predetermined calculation rule. Based on the setting condition, the narrow-down condition may be generated.
  • a first setting condition “range of the number of workers: 5 to 15 people, routing candidates in which the product flows through the work station of the production factory: 100 of R1, R2, R3, R4, R5,..., R100 ( The closer the routing number is, the closer the routing is), the central routing among the routing candidates (for example, the routing that has already been performed and proven): R30, 10 routings around the central routing ”(Part of the setting condition corresponding to a part of the predetermined calculation rule),...” Is input to the first narrowing control component 4, the arithmetic control of the first narrowing control component 4
  • the unit 401 stores a part of a predetermined calculation rule such as “set the set number of workers and the brute force combination of the set routing candidates” and the like .., NCn (individual narrowing condition groups NC1, NC2,..., NCn constituting the first narrowing condition based on a narrowing condition generation program that is held and based on a part of setting conditions corresponding to a part of a predetermined calculation rule.
  • the range of the number of workers 11 combinations of 11 types of 5 to 15 people and 21 types of R20 to R40 centering on proven routing R30 plus other conditions ... 1 is generated as a narrowing-down condition, and simulation processing and acquisition of the highest evaluation value group are performed.
  • the specific individual condition among the first simulation processing conditions corresponding to the highest evaluation value group is “routing: R39”, and the second setting condition is “range of number of workers: 5 to 15”.
  • Center routing for example, routing of a specific individual condition in the first simulated processing condition corresponding to the highest evaluation value group: R39, combining 10 routes before and after the center routing.
  • the second narrowing The calculation control unit 401 of the control component 4 performs a predetermined condition according to a narrow-down condition generation program that stores and holds a part of a predetermined calculation rule such as “set the number of workers set and a brute force combination of set routing candidates”.
  • NCn ′ (for example, the range of the number of workers: 5), which constitutes the second narrowing condition based on a part of the setting condition corresponding to a part of the calculation rule
  • the business plan optimization device 1 and the business plan optimization method of the fourth embodiment in the process of generating the narrowing condition based on the set condition, it cooperates with the narrowing condition generation program of the narrowing control component 4.
  • the calculation control unit 401 may generate the narrowing condition from the setting condition by combining the items of the setting condition input to the narrowing control component 4 as they are.
  • the arithmetic control unit 401 of the first narrowing control component 4 sets the predetermined arithmetic rule“ set.
  • the individual refinement condition groups NC1, NC2, For example, a combination of one type of 10 workers and brute force combinations of all routing candidates R1 to R100 plus other conditions ... It generated as refinement condition, mock treated, so as to acquire the evaluation value group of the highest rating.
  • the specific individual condition among the first simulation processing conditions corresponding to the highest evaluation value group is “routing: R39”, and the second setting condition is “range of number of workers: 5 to 15”.
  • the calculation control unit 401 of the second narrowing control component 4 In accordance with the refinement condition generation program that stores and holds the operation rule “Set the number of workers set and the brute force combination of the set routing candidates” and the like, the individual refinement condition group NC1 ′ constituting the second refinement condition , NC2 ′,..., NCn ′ (for example, 11 combinations of 5 to 15 workers and the brute force combination of routing candidates R39, plus other conditions, etc.) It generated as refinement condition, mock treated, so as to acquire the evaluation value group of the highest rating.
  • arithmetic processing based on the first setting condition and the first narrowing condition, the second setting condition and the second narrowing down An arithmetic process based on the condition is performed, and further an arithmetic process based on the third setting condition and the third narrowing condition is performed.
  • the fourth, fifth,... .., Fifth,... May be processed to search for an optimum job.
  • a plurality of variables are set to a plurality of setting conditions such as performing a search by using two variables for a neighboring region in the third narrowing down while sequentially narrowing down two variables as the first and second narrowing downs. This is effective when, for example, a search is performed using a plurality of variables in the vicinity region of a suitable variable value under a further setting condition and a narrowing condition in which the result is narrowed down by a narrowing condition.
  • the calculation control unit 401 of the first narrowing-down control component 4 follows the narrowing-down condition generation program, and the individual narrowing-down condition group NC1 constituting the first narrowing-down condition, NC2,..., NCn (for example, the range of the number of workers: 1 to 10 persons and 362,880 combinations of production orders PS1, PS2, PS3,..., PS362,880, 362,880 ways (36,2 Each of 8,800), and generates the other conditions ... a plus) as the first narrowing conditions, mock treated, so as to acquire the evaluation value group of the highest rating.
  • NC1 constituting the first narrowing-down condition
  • NCn for example, the range of the number of workers: 1 to 10 persons and 362,880 combinations of production orders PS1, PS2, PS3,..., PS362,880, 362,880 ways (36,2 Each of 8,800
  • the specific individual condition among the first simulation processing conditions corresponding to the highest evaluation value group is “production order: PS67”, and the second setting condition is “range of number of workers: 5 to 15 people, the production factory produces 10 types of products P1 to P10, production order: PS67, set the total number of workers and the set production order brute force combination (part of the predetermined calculation rule), ...
  • the calculation control unit 401 of the second narrowing control component 4 follows the narrowing condition generation program, and the individual narrowing condition group constituting the second narrowing condition NC1 ′, NC2 ′,..., NCn ′ (for example, the range of the number of workers: 11 types of 5 to 15 people and the brute force combination of production order PS67 plus other conditions, etc.) 2nd Generated as a filter condition , Mock treated, so as to acquire the evaluation value group of the highest rating.
  • specific individual conditions among the second simulation processing conditions corresponding to the highest evaluation value group are “range of the number of workers: 12 people” and “production order: PS67”.
  • the third , NCn ′′ (for example, the range of the number of workers: 5 types of 10 to 14 people and the brute force combinations of production orders PS57 to PS77, Other conditions are added as a third narrowing condition, and simulation processing and acquisition of the highest evaluation value group are performed.
  • the simulation processing conditions in the respective embodiments as in “Production order in which the production factory produces 10 types of products P1 to P10: PS1, PS2, PS3,..., PS362, 880” in the first setting condition described above.
  • the narrowing-down condition and the setting condition it is preferable to set and use individual conditions in which the production order of a plurality of types of products produced by the production factory is replaced or individual conditions in which the order of introduction of each product is replaced. As a result, it is possible to reliably reach a variety of small-quantity production or optimum production of a variety of production and an optimum operation.
  • the first parameter or the first parameter in the narrowing condition input from the first narrowing control component 4 to the overall processing unit 2 is used.
  • 1 parameter group for example, the range of the number of workers, a candidate for routing in which the product flows through the work station of the production factory
  • the second parameter or the second parameter group (for example, the production order in which the production factory produces a plurality of types of products) is different, and the data storage unit 222 of the overall processing unit 2 stores the first parameter or the parameter group and the second parameter group. 2 is stored, and the overall processing unit 2 stores a parameter or parameter with inferior priority.
  • Parameter or parameter group with inferior priority when recognizing input of a high-priority parameter or parameter having a parameter group at the stage before transmission of the simulation processing request corresponding to the filtering condition having the data group
  • the processing corresponding to the narrowing condition having a priority may be suspended or stopped, and the processing corresponding to the narrowing condition having a parameter or parameter group having a high priority may be started.
  • This priority order is preferably determined by giving priority to those with high importance according to the degree of influence on productivity and the like.
  • the first narrowing-down condition is generated based on the first setting condition of the first narrowing-down control component 4, the first obtained based on this
  • the result of the highest evaluation value group is the result for the range depending on the first setting condition.
  • the administrator determines that the simulation needs to be performed under different conditions
  • the second narrowing-down control is performed for specific individual conditions among the simulation processing conditions corresponding to the first highest evaluation value group.
  • the second setting condition of the component 4 is set, and the result of the second highest evaluation value group can be obtained using the second narrowing condition generated from the second setting condition.
  • the processing based on the third and fourth narrowing conditions can be continuously executed.
  • a process for generating a narrowing condition with a predetermined calculation rule for narrowing down the simulated processing range from the set condition in a single narrowing control component 4 and a predetermined calculation rule for extending the simulated processing range from the set condition Even if you use a configuration that allows you to select both of the processing to generate the refinement condition in, without losing the same effect, that is, the result that was excluded from the evaluation target because the refinement degree was too strong, Without widening the scope of narrowing down, it is possible to reach the highest evaluation value group that is considered to be optimal and the optimal work while continuously changing.
  • the first narrowing control component 4 is installed at a place where a production plan is made, and the site The second narrowing control component 4 is installed, and the same person or a different person sets the setting conditions for the first and second narrowing control components 4, respectively. It is also possible to use a method such as generating a refinement condition and executing a business simulation, so that the business simulation process can be flexibly performed according to the necessity of the planning process of the business plan.
  • the amount of calculation processing for generating narrowing conditions from the setting conditions is distributed to a plurality of narrowing control components 4, and each narrowing control component 4 is generated. It is possible to reduce the processing load on the embedded control component 4. Furthermore, when searching for an optimal business by performing a plurality or a large number of arithmetic processes based on the first, second, third, fourth, fifth,...
  • the overall processing unit 2 is configured to generate simulation processing conditions based on the narrowing conditions of the narrowing control component 4, but for example, the overall processing unit 2 has the data storage unit 222. It is also possible to store the simulation processing conditions in the configuration and transmit the simulation processing request based on the simulation processing conditions to the simulator 3 to perform the simulation processing. Furthermore, the overall processing unit 2 recognizes the basic simulation processing conditions that are the basis stored in the data storage unit 222, recognizes the business situation information group at a specific point in time, and sets the individual conditions of the basic simulation processing conditions in the business situation information. When there is a narrower condition range, it is preferable to generate a simulation processing condition to which the narrower one is applied, and send a simulation processing request based on the simulation processing condition to the simulator 3 to perform the simulation processing.
  • the business simulation process or the business plan optimization process performed using the business plan optimization apparatus 1 of the first to fourth embodiments is not limited to the above-described one.
  • the highest evaluation of the first business range is performed by executing the simulation process for the first business range by the same processing as S1 to S10 etc.
  • the evaluation value group is recognized (S31), and the simulation process for the second business range is executed by the same processing as in S1 to S10, etc., regarding the second business range divided and recognized from the entire business.
  • the third simulated processing condition including the first simulated processing condition is set (S33), and the simulated processing for the third business range including the first working range and the second working range is performed using the third simulated processing condition. (S34), and the process of recognizing the highest evaluation value group in the third work range (S35) may be performed (the process of the first modification).
  • the third simulated processing condition for the third business scope can further include simulated processing conditions corresponding to the highest evaluation value group for the business scope other than the first and second business scopes. is there.
  • the production process ⁇ is set as the first work range
  • the production process ⁇ which is a subsequent process of the production process ⁇
  • the overall processing unit 2 and the simulator 3 store the simulation processing request ⁇ Ri together with the business status information groups ⁇ AS1, ⁇ AS2,..., ⁇ ASn at the specific time when the production process ⁇ recognizes the simulation process request ⁇ Ri and the simulation processing condition ⁇ SCi. Are transmitted to the simulator 3, and the simulation process is executed to recognize the highest evaluation value group of the production process ⁇ .
  • the overall processing unit 2 transmits the simulation process request ⁇ Ri to the simulator 3 together with the operation status information groups ⁇ BS1, ⁇ BS2,..., ⁇ BSn at the specific time point recognized by the production process ⁇ and the simulation process condition ⁇ SCi. This is executed to recognize the highest evaluation value group of the production process ⁇ .
  • the overall processing unit 2 uses the simulation processing condition ⁇ SCmax corresponding to the highest evaluation value group of the production process ⁇ as the first simulation processing condition, and the simulation processing condition corresponding to the evaluation value group of the highest evaluation of the production process ⁇ .
  • the third simulation processing condition [ ⁇ SCmax, ⁇ SCmax] is set with ⁇ SCmax as the second simulation processing condition, and the production process ( ⁇ + ⁇ corresponding to the third business range including the first business range and the second business range) ),
  • the simulated processing request ⁇ Ri is set to a business situation information group ⁇ AS1, ⁇ AS2,..., ⁇ ASn at a specific time in the production process ⁇ , and a business situation information group ⁇ BS1, ⁇ BS2,.
  • the third simulation process condition [ ⁇ SCmax, ⁇ SCmax] is transmitted to the simulator 3, and the simulation process is executed to execute the process of recognizing the highest evaluation value group of the entire production process ( ⁇ + ⁇ ).
  • the simulation processing conditions of the entire business simulation are obtained from the results of partial optimization of each business scope, and the evaluation value group of the highest evaluation of the entire business can be recognized based on the business objective function based on the simulation processing conditions. It is possible to efficiently recognize the evaluation value group with the highest evaluation and the optimum work with the amount of computation that can be actually executed with resources.
  • simulation based on the scope of work divided from the entire work is performed, so it is easy to recognize easy-to-do work with few changes to the current work, and optimal work that is easy for the site and workers to do. Can be recognized. For example, based on the production plan that has been produced so far, combination operations are performed on the work ranges with the production order, partial optimization and optimization are performed, and this is sequentially processed for all work ranges. Furthermore, by performing simulation processing for the entire business, it is possible to change to an optimal plan on the extension of the previous plan.
  • a simulation process request for a required simulation process condition corresponding to the first simulation process condition generated based on the required filter condition corresponding to the search condition is added to each of the job status information group and the first simulation process condition.
  • the first evaluation value group is received from each simulator 3 as a simulation processing result based on the business situation information group and the first simulation processing condition (S42), and transmitted to the simulator 3 (S41). Recognizing a first highest evaluation value group based on a predetermined business objective function corresponding to the first business objective function and recognizing a distribution of the first plurality of evaluation value groups.
  • the second business objective function input based on the distribution of the first plurality of evaluation value groups is stored and held (S44), and the second business objective function based on the second business objective function among the first plurality of evaluation value groups is stored.
  • the process of recognizing the second highest evaluation value group (S45) may be performed (the process of the second modification).
  • the overall processing unit 2 performs the same processing as in the above-described S1 to S11 and the like, and the first highest evaluation value based on the first business objective function among the received first plurality of evaluation value groups. And the distribution of the first plurality of evaluation value groups are recognized.
  • the function is input to the overall processing unit 2, and the overall processing unit 2 stores and holds the second business purpose function. After that, the overall processing unit 2 recognizes the second highest evaluation value group based on the second business objective function from the first plurality of evaluation value groups and outputs the second evaluation value group according to a predetermined input or the like. A process for recognizing the distribution of a plurality of evaluation value groups is executed.
  • the second business objective function is set with reference to the distribution of the plurality of evaluation value groups, and a solution based on the second business objective function or an optimal business is recognized, or a solution based on each of the plurality of business objective functions
  • a simulation processing request for the first simulation processing condition generated based on the narrowing conditions is transmitted to each simulator 3 together with the business situation information group and the first simulation processing condition (S51).
  • the first plurality of evaluation value groups are received as simulation processing results based on the information group and the first simulation processing condition (S52), and based on the first business objective function among the received first plurality of evaluation value groups Recognizing the first highest evaluation value group and recognizing the distribution of the first plurality of evaluation value groups (S53), the second inputted based on the distribution of the first plurality of evaluation value groups Memorize business objective function Then, a simulation processing request for the second simulation processing condition generated based on the second narrowing condition is transmitted to each simulator together with the business situation information group and the second simulation processing condition (S54).
  • a second plurality of evaluation value groups are received as simulation processing results based on the business situation information group and the second simulation processing condition from each simulator 3 (S56), and the received second plurality of evaluation value groups
  • the second highest evaluation value group based on the second business objective function may be recognized and the distribution of the second plurality of evaluation value groups may be recognized (S57) (third modification) Processing).
  • the overall processing unit 2 stores and holds the second business objective function by the same processing as in S41 to S44 of the second modified example, and further, the second different from the first narrowing-down condition.
  • the same processing as the above S1 to S11 etc. is performed, and the second highest evaluation value group based on the second business objective function among the received second plurality of evaluation value groups is obtained.
  • a process of recognizing and recognizing the distribution of the second plurality of evaluation value groups is executed.
  • the first plurality of evaluation value groups of the simulation processing results are evaluated by the first business objective function, and the first highest evaluation value group based on the first business objective function And using the second business objective function set with reference to the distribution of the first plurality of evaluation value groups, the first plurality corresponding to the second narrowing condition and the second simulation processing condition For the second plurality of evaluation value groups different from the evaluation value group, the distribution of the second highest evaluation value group and the second plurality of evaluation value groups can be recognized.
  • the administrator determines that there is a more appropriate solution or an optimal business than the solution based on the first narrowing condition, the first business objective function, or the optimal business, Set the second business objective function with reference to the distribution of multiple evaluation value groups, recognize the second narrowing condition, the solution based on the second business objective function, or the optimal business, It becomes possible for the administrator to recognize the solution based on the conditions, each of the plurality of business objective functions or the optimal business, and to perform a comparative study, etc., multiple narrowing conditions, multiple evaluation value groups by multiple business objective functions, A plurality of highest evaluation value groups can be studied comprehensively and multifacetedly to recognize even more optimal work.
  • a plurality of business plan optimization apparatuses 1 including a general processing unit 2 and a plurality of simulators 3 that are connected to the general processing unit 2 through communication.
  • the overall processing unit 2 of the one business plan optimization apparatus 1 simulates In response to the start of transmission of the processing request to the simulator 3, simulation processing start information is generated and transmitted to the overall processing unit 2 of the remaining business plan optimization apparatus 1 (S61).
  • the general processing unit 2 performs an operation of recognizing over time the processable amount of the simulator 3 of the simulator 3 group that fluctuates within a predetermined time in response to the reception of the simulation process start information of the simulator 3 group. Stop (S62), the overall processing unit 2 of the one work plan optimization apparatus 1 generates simulation processing completion information corresponding to the completion of reception of a plurality of evaluation values as the simulation processing result from the simulator 3 of the simulator 3 group. Is transmitted to the overall processing unit 2 of the remaining business plan optimization apparatus 1 (S63), and the overall processing unit 2 of the remaining business plan optimization apparatus 1 receives the simulation process completion information from the simulator 3 group in response to the reception of the simulation process completion information.
  • a plurality of business plan optimization apparatuses 1 each including a general processing unit 2 and a plurality of simulators 3 that are connected to the general processing unit 2 through communication are provided.
  • An integrated management device in which the plan optimization device 1 shares a group of simulators 3 made up of a plurality of simulators 3 and includes an arithmetic control unit, a control program for the arithmetic control unit, a storage unit, an input unit, an output unit, and a communication interface 10, each integrated processing unit 2 is connected to each other by communication.
  • the overall processing unit 2 of the one business plan optimization device 1 performs the first simulation.
  • the process start information is generated and transmitted to the integrated management apparatus 10 (S71), and the integrated management apparatus 10 or its operation control unit receives the first simulation process start information and receives the second simulation process start information.
  • Simulation processing start information is generated and transmitted to the overall processing unit 2 of the remaining business plan optimization device 1 (S72), and the overall processing unit 2 of the remaining business plan optimization device 1 performs the second simulation of the simulator 3 group.
  • the operation of recognizing the processable amount of the simulator 3 of the group of simulators 3 within a certain period of time is stopped over time (S73), and the overall processing unit of the one business plan optimization apparatus 1 2 generates first simulation processing completion information corresponding to the completion of reception of a plurality of evaluation values as simulation processing results from the simulators 3 of the simulator 3 group, and transmits the first simulation processing completion information to the integrated management device 10 (S74).
  • the overall processing unit 2 of the business plan optimizing apparatus 1 recognizes, over time, the processable amount of the simulator 3 of the simulator 3 group that varies within a certain time in response to the reception of the second simulation processing completion information of the simulator 3 group. The operation may be resumed (S76). Even with the configuration in which the overall processing unit 2 of the plurality of business plan optimization apparatuses 1 indirectly exchanges the start and stop of the simulation process, the process of recognizing the processable amount of the simulator group 3 can be performed with less labor. In addition, the simulator 3 group can be shared by a plurality of business plan optimization apparatuses 1 to efficiently use hardware resources.
  • the present invention can be used when obtaining an effect analysis by performing discrete simulations of various operations such as a production process, a distribution process, a layout plan of a factory, etc., and a personnel plan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

統括処理部2と、統括処理部2に通信接続されて統括される複数のシミュレーター3を備え、統括処理部2が、シミュレーター3のそれぞれの変動する処理可能量を経時的に認識し、それぞれのシミュレーター3の認識した処理可能量内の最適処理量内の模擬処理の模擬処理要求を業務状況情報群と模擬処理条件と併せてそれぞれのシミュレーター3に送信し、それぞれのシミュレーター3から業務状況情報群と模擬処理条件に基づく模擬処理結果として複数の評価値群を受信し、受信した複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識する業務計画最適化装置1。業務シミュレーションを行う際に、ハードウェア資源を効率的に使用し、より低コストで、多様なシミュレーション演算を高速で行い、最適な業務を認識することができる。

Description

業務計画最適化装置及び業務計画最適化方法
 本発明は、例えば製造業の生産に係る作業工程等のモノ、機械、作業者や物流に係る搬送作業者やフォークリフト等の搬送手段のような要素で構成される業務において、最適な業務の仕方を認識するために業務をシミュレーションする、もしくは、業務の仕方を最適化して立案するための業務計画最適化装置及び業務計画最適化方法に関する。
 近年、生産工場においては、市場の多様な需要に応じて多数の製品を製造する多品種少量生産の度合いが大きくなってきており、一つの生産ラインで複数の生産品目を生産しなければならない場合が増えている。多品種を同じ生産ラインで混合して製造する場合、製品が異なれば部品数や加工方法、組立方法が異なり、生産ラインの工程数が異なってくると共に、各工程での必要とする作業時間も各々異なってくるため、単一製品の生産体制では起こらなかった問題が発生する。
 例えば多様な製品を同じ生産ラインで製造しようとすると、各生産ロット間の干渉が発生し、生産順番を待つための滞留が発生する。具体的には、前工程で生産された各製品用の部品は、後工程である組立ラインに投入されるときに、他の製品の生産指示とぶつかり合ってどちらから待つこととなり、これが工程間での部品の一時的在庫となる。また、様々な無駄が発生する。具体的には、各工程で必要とする作業時間が製品によって異なると、各工程での作業時間のばらつきが生じ、各工程での手待ち時間が発生する。また、異なった製品を製造するためには、治工具の変更などの、いわゆる段取り替えが必要になる。また、工場内物流ではそれぞれの製品の生産計画に対応して、必要な部品を必要とする工程へタイムリーに供給しなければならないが、多様な製品を製造する場合にはこの部品供給も複雑化する。
 このような問題に対処するため、従来、生産計画を最適化するコンピューター処理技術としてスケジューラが利用されてきた。しかし、スケジューラでは、生産ラインでのワークの複雑な流れや作業者の変則的な動作などを対象とするためには対象とする生産ラインを分析したうえで、その生産計画を最適化するためのロジックを個別に開発する費用があった。実際の生産ラインに対応した詳細な挙動をロジック開発しようとすると、膨大な分析、開発時間がかかる。また、スケジューラにおけるロジックは様々な条件を静的に与えたうえで、それらを満足する解を絞り込んでいく探索方式であり、その結果、生成された最適解がすべての条件下での最適な状態であることを原理的に保証できないため、生産現場のユーザに対して合理性を持って提示するこができない。また、生産品目や生産ラインの設備変更などを行うと、上記のロジックを変更しなければならず、スケジューリングについての専門性を持たない多くのユーザはこれに対応することができないという不具合がある。
 このため、スケジューラに代わり、シミュレーション技術による効果分析を元に最適化を実現する方式が期待されている。この生産ラインのシミュレーションは、一般的に離散的シミュレーションと呼ばれる技術で行われており、離散的シミュレーションとは、ソフトウェアを用いて、モノ、機械、作業者やフォークリフト等の搬送手段の各設備要素と、各設備要素が惹起する動作と、惹起するための惹起条件を設定し、それらの惹起関係を評価して生産ラインの挙動を予測するものである(特許文献1、2参照)。
 生産ラインの離散的シミュレーションでは、生産プロセス・ネットワークのルート(根)としてとなる設備要素に固有動作を惹起させることで、ルートに連なる生産プロセス・ネットワークの各設備要素に固有動作の惹起が伝播されてシミュレーションの演算が進み、生産ラインにおける生産が進む状態が模擬される。この模擬による各設備要素の固有動作の開始時刻及び終了時刻、消費される部品数を記録しておくことで、各設備要素における稼働時間割合の時間的推移や、消費される部品数の時間的推移を予測することができ、又、一つの製品の生産にかかる延べ時間(リードタイム)、部品倉庫や部品棚に準備した部品が欠品していないかどうか、欠品した時刻などの部品供給物流に関する状態等も予測することができ、量産を開始する前に生産ラインの問題を分析することができる。これにより、生産ロットを投入する順番(生産計画)、生産するラインの選択、生産ラインの中で生産する各ステーションの選択とそれらを渡っていく流れ(ルーティング)、生産に利用する具体的な金型や工具などの選択、固有名を持った作業者が関わる工程の指示を確定させる。
 また、生産シミュレーションによる最適化演算を行う技術として、非特許文献1には、並列シミュレーション演算を実行する処理機構のマネージャー装置が、ネットワーク上に分散する多くの生産シミュレーション・エンジンそれぞれに対して個別に条件を付加した生産モデルを渡し、シミュレーション演算後に目的関数の演算結果としての値を収集すること、その演算結果群を評価することにより、生産モデルに対する最適な制約条件を算出することが開示されている。
特開2000-202742号公報 特許第5688864号公報
中村昌弘、槇原 正、杉浦純一、上岡洋介、「Dynamic Optimization Production System Based on Simulation Integrated Manufacturing and its Application to Mass Production」、International Journal of Automation Technology、FUJI Technology Press LTD、2017年1月5日、第11集、第1号(通巻第57号)、p.56-66
 ところで、従来の離散的シミュレーションでは、ある特定の条件を与えて対応するケースの演算処理を行った後、その条件の良否を判断するに留まる。多品種少量生産のように、ケースが条件の組み合わせで展開されて、膨大なケースが想定される場合には、単に離散的シミュレーションで個別に条件を検証することでは最適な条件を特定することは困難である。最適な条件を選び出すためには、生産条件の組み合わせで多様なケースを機械的に想定して条件を設定し、ケース毎の演算処理を行ってシミュレーションし、多量の演算処理を行うことが求められるため、通常は非常に高い処理能力のハードウェア資源が必要となる。しかしながら、斯様なハードウェア資源は非常に高価なものとなる。
 この場合、非特許文献1の並列シミュレーション演算を実行する処理機構を用いると、非常に高価なハードウェア資源を必要とせずに、低コストで、多様なシミュレーション演算を高速で行うことが可能となる。しかし、並列シミュレーション演算のハードウェア資源を効率的に使用し、これらの効果を実現するためには、並列シミュレーション演算のハードウェア資源の処理を具体化する必要がある。
 本発明は上記課題に鑑み提案するものであって、並列シミュレーション演算を実行する処理機構のハードウェア資源を効率的に使用し、より低コストで、多様なシミュレーション演算を高速で確実に行うことができ、膨大なケースが想定される場合にも最適な業務を認識することを可能にする業務計画最適化装置及び業務計画最適化方法を提供することを目的とする。
 本発明の業務計画最適化装置は、統括処理部と、前記統括処理部に通信接続されて統括される複数のシミュレーターを備え、前記統括処理部が、前記シミュレーターのそれぞれの変動する一定時間内の処理可能量を経時的に認識し、それぞれの前記シミュレーターの認識した前記処理可能量内の最適処理量内の模擬処理の模擬処理要求を業務状況情報群と模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、それぞれの前記シミュレーターから前記業務状況情報群と前記模擬処理条件に基づく模擬処理結果として複数の評価値群を受信し、受信した複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識することを特徴とする。
 また、本発明の業務計画最適化装置の統括処理プログラム、統括処理プログラム製品、統括処理プログラム媒体、又は統括処理プログラムを記録したコンピューターに読取可能な記録媒体は、サーバーと、前記サーバーに通信接続されて統括される複数のシミュレーターを備える業務計画最適化装置において、前記サーバーが、前記シミュレーターのそれぞれの変動する一定時間内の処理可能量を経時的に認識し、それぞれの前記シミュレーターの認識した前記処理可能量内の最適処理量内の模擬処理の模擬処理要求を業務状況情報群と模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、それぞれの前記シミュレーターから前記業務状況情報群と前記模擬処理条件に基づく模擬処理結果として複数の評価値群を受信し、受信した複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識する手段として、前記統括処理プログラムが前記サーバーを機能させることを特徴とする。
 これによれば、統括処理部が、それぞれのシミュレーターの変動する処理可能量を経時的に認識し、処理可能量内の最適処理量内の模擬処理をそれぞれのシミュレーターに行わせることができ、並列シミュレーション演算を実行する処理機構のハードウェア資源を効率的に使用し、より低コストで、例えば多品種少量生産のように膨大なケースが想定される場合にも多様なシミュレーション演算を高速で確実に行うことができる。また、統括処理部が、複数のシミュレーターから業務状況情報群と模擬処理条件に基づく模擬処理結果として複数の評価値群を受信し、複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識することにより、業務目的に応じ且つ業務状況に即した最適な業務を認識することができる。
 本発明の業務計画最適化装置は、前記評価値群に現業務との類似度が評価値として含まれることを特徴とする。
 これによれば、既存の業務の仕方を大幅に変更することがない、現場や従事者が行い易い最適な業務を認識することができる。例えば生産に関する指標だけで評価値群を構成した場合には、最高評価の評価値群に対応する生産でも、例えば実際に生産を実行する上では今まで経験したことのない対応の難しい生産の仕方を含む生産、生産現場に無理を強いる大きい配置転換を含む生産、或いは従来の生産方針と大きく生産方針が異なる生産等となる場合があるが、評価値群の評価値に現業務との類似度を含ませることにより、生産現場において「今までのやり方から大きくは変えない、作りやすい、行い易い最適な生産」を認識することができる。
 本発明の業務計画最適化装置は、前記業務状況情報を取得する業務状況情報取得部を備え、前記業務状況情報取得部から前記業務状況情報が前記統括処理部に送信されることを特徴とする。
 これによれば、統括処理部が業務状況情報を業務状況情報取得部から自動的に認識して、シミュレーター群に模擬処理を行わせ、業務目的に応じ且つ業務状況に即した最高評価の評価値群を認識し、最適な業務を認識することができる。
 本発明の業務計画最適化装置は、前記統括処理部が、認識した前記最高評価の評価値群に対応する個別業務指示を生成し、前記個別業務指示を少なくとも作業者端末に略リアルタイムで送信することを特徴とする。更に、個別業務指示は、作業者端末以外にも、個別業務指示を受信可能な業務状況情報取得部など受信可能な各部にできる限り送信する構成とすることが好ましい。
 これによれば、業務シミュレーションから得られた最高評価の評価値群、最適な業務を即座に個別業務指示として反映させ、その個別業務指示を作業者等に素早く伝達し、最適な業務体制の迅速な構築や最適な業務のスピーディな実行を図ることができる。
 本発明の業務計画最適化装置は、前記統括処理部と通信接続される絞込制御コンポーネントを備え、前記統括処理部が、前記絞込制御コンポーネントの絞込条件と前記業務状況情報群に基づき模擬処理条件を生成することを特徴とする。絞込制御コンポーネントは、通信インターフェイスを備えるコンピューター、又はハードディスク、又はその双方で構成することが可能であり、又、絞込制御コンポーネントは通信インターフェイスを備えるコンピューターで構成すると好ましい。
 これによれば、統括処理部が絞込制御コンポーネントの絞込条件と業務状況情報に基づき模擬処理条件を生成することにより、必要な模擬処理条件を逐次生成して模擬処理に用いることができ、業務状況情報に応じた膨大な数の模擬処理条件のパターンリストを同時にシミュレーション演算して生成するハードウェアを準備しておく必要を無くすことができる。従って、ハードウェア資源をより効率的に使用し、ハードウェア資源の低コスト化を図ることができる。また、条件の組み合わせが増えれば天文学的な数の模擬処理条件となるため、明らかに不要な模擬処理条件を削減し膨大な数の模擬処理条件を削減し、絞込条件により演算可能な量の模擬処理条件の数とすることで最適化を求める演算を可能とするとともに、ハードウェア資源の低コスト化を図ることができる。また、絞込制御コンポーネントには、例えば、生産計画における顧客要求に対応する納期の優先度や、設備償却費や品質管理などの観点から積極的に稼働させたい生産設備の優先度を設定することなど、市場変動の特性、生産ラインの特性や製造管理方針に従ったより合目的な絞込条件を設定することができ、統括処理部はより合目的な模擬処理条件を生成して模擬処理に用いることができる。また、絞込制御コンポーネントと統括処理部を一体とせずに通信接続する構成とすることにより、必要に応じて柔軟に合目的な絞込条件、合目的な模擬処理条件を使用することができ、シミュレーション処理の柔軟性、多様性、汎用性を高めることができる。
 本発明の業務計画最適化装置は、前記絞込制御コンポーネントの前記絞込条件の絞込度合が変更可能である、若しくは前記絞込制御コンポーネントに複数の絞込度合の前記絞込条件が設定されていることを特徴とする。
 これによれば、例えば第1の絞込条件に基づき得られた第1の最高評価の評価値群の結果に対し、管理者が異なる条件でシミュレーションを行う必要があると判断した場合に、第1の絞込条件よりも絞込度合の弱い第2の絞込条件を用いて第2の最高評価の評価値群の結果を得ることができる、或いは複数の絞込条件に基づいて得られた最高評価の評価値群の中から最適な評価値群、最適な業務を認識することができ、絞込度合を強くし過ぎて評価対象から外してしまった結果を逸失せずに、人為的な判断からも最適と考えられる、或いは複数の絞込条件に基づく模擬処理から最適と考えられる最高評価の評価値群、最適な業務に到達することができる。
 本発明の業務計画最適化装置は、前記絞込制御コンポーネントが設定条件に基づき前記絞込条件を生成すると共に、前記絞込制御コンポーネントが複数設けられることを特徴とする。
 これによれば、例えば第1の絞込条件が第1の絞込制御コンポーネントの第1の設定条件に基づいて生成されたものである場合、これに基づき得られた第1の最高評価の評価値群の結果は第1の設定条件に依存した範囲に対する結果となる。これに対し、管理者が異なる条件でシミュレーションを行う必要があると判断した場合に、第1の最高評価の評価値群に対応する模擬処理条件のうち特定の個別条件を第2の絞込制御コンポーネントの第2の設定条件として設定し、ここから生成された第2の絞込条件を用いて第2の最高評価の評価値群の結果を得ることができ、更に、これをもとに同様に第3、第4の絞込条件による処理を連続的に実行することができる。これにより絞込度合を強くし過ぎて評価対象から外してしまった結果を逸失せずに、絞込みの範囲を広めることなく、連続的に変化させながら最適と考えられる最高評価の評価値群、最適な業務に到達することができる。また、統括処理部と通信接続され絞込条件を生成する絞込制御コンポーネントを複数とすることにより、例えば生産計画を立案する場所に第1の絞込制御コンポーネントを設置すると共に、現場に第2の絞込制御コンポーネントを設置し、同一人或いは異なる者が第1、第2の絞込制御コンポーネントに設定条件をそれぞれ設定し、第1、第2の絞込制御コンポーネントに絞込条件を生成させて業務シミュレーションを実行させる等の使用の仕方も可能となり、業務計画の立案過程の必要性に合わせて柔軟に業務シミュレーション処理を行うことができる。
 本発明の業務計画最適化装置は、前記複数のシミュレーターを共用する別の業務計画最適化装置の別の統括処理部から模擬処理の開始と完了の情報を前記統括処理部が直接的若しくは間接的に受信し、前記統括処理部が、前記模擬処理の開始から完了までの間は前記シミュレーターのそれぞれの変動する一定時間内の処理可能量の経時的な認識を停止することを特徴とする。
 これによれば、シミュレーター群の処理可能量の経時的な認識処理を省力で行うことができると共に、シミュレーター群を複数の業務計画最適化装置で共用しハードウェア資源を効率的に利用することが可能となる。
 本発明の業務計画最適化方法は、本発明の業務計画最適化装置を用いる業務計画最適化方法であって、前記統括処理部が、第1の業務範囲に対する模擬処理を実行させて第1の業務範囲の最高評価の評価値群を認識する工程と、第2の業務範囲に対する模擬処理を実行させて第2の業務範囲の最高評価の評価値群を認識する工程と、前記第1の業務範囲の最高評価の評価値群に対応する第1の模擬処理条件と、前記第2の業務範囲の最高評価の評価値群に対応する第2の模擬処理条件とを含む第3の模擬処理条件を設定し、前記第1の業務範囲と前記第2の業務範囲を含む第3の業務範囲に対する模擬処理を前記第3の模擬処理条件を用いて実行させ、第3の業務範囲の最高評価の評価値群を認識する工程を備えることを特徴とする。
 これによれば、業務全体の模擬処理を行うと演算量が膨大になり、組み合わせ爆発を起こす場合等に、業務全体から分割された複数の業務範囲に事前のシミュレーションを行い、各業務範囲の部分最適化に関する結果から業務全体のシミュレーションの模擬処理条件を取得し、この模擬処理条件によって業務目的関数に基づき業務全体の最高評価の評価値群を認識することができ、ハードウェア資源で現実的に実行可能な演算量で効率的に最高評価の評価値群、最適な業務を認識することができる。また、この方法では、業務全体から分割された業務範囲に基づくシミュレーションを行うことから、現状の業務に対する変更の少ない、行い易い業務が認識されやすくなり、現場や従事者が行い易い最適な業務を認識することができる。例えば今まで生産を行ってきた生産計画をベースに生産順番のある業務範囲に対して組み合わせ演算を行い部分的な最適化、好適化を行い、それを全ての業務範囲に対して逐次、処理し、更に業務全体に対して模擬処理を行うことにより、今までの計画の延長線上で最適な計画に変更していくことができる。
 本発明の業務計画最適化方法は、本発明の業務計画最適化装置を用いる業務計画最適化方法であって、前記統括処理部が、第1の絞込条件に基づき生成した第1の模擬処理条件の模擬処理要求を業務状況情報と前記第1の模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、それぞれの前記シミュレーターから前記業務状況情報群と前記第1の模擬処理条件に基づく模擬処理結果として第1の複数の評価値群を受信し、受信した前記第1の複数の評価値群のうち第1の業務目的関数に基づく第1の最高評価の評価値群を認識すると共に前記第1の複数の評価値群の分布を認識し、前記第1の複数の評価値群の分布を基礎として入力された第2の業務目的関数を記憶保持し、前記第1の複数の評価値群のうち第2の業務目的関数に基づく第2の最高評価の評価値群を認識することを特徴とする。
 これによれば、模擬処理結果の第1の複数の評価値群を第1の業務目的関数で評価し、第1の業務目的関数に基づく第1の最高評価の評価値群を認識し、更に、第1の複数の評価値群の分布を参考に設定した第2の業務目的関数を用い、第1の複数の評価値群のうち第2の業務目的関数に基づく第2の最高評価の評価値群を認識することができるので、例えば第1の業務目的関数に基づく解或いは最適な業務によりも一層適切な解或いは最適な業務があるのではないかと管理者が判断した場合に、第1の複数の評価値群の分布を参考に第2の業務目的関数を設定し、第2の業務目的関数に基づく解或いは最適な業務を認識することや、複数の業務目的関数のそれぞれに基づく解或いは最適な業務を認識して管理者が対比検討すること等が可能となり、複数の評価値群、複数の最高評価の評価値群を総合的、多面的に検討して、より一層最適な業務を認識することができる。
 本発明の業務計画最適化方法は、本発明の業務計画最適化装置を用いる業務計画最適化方法であって、前記統括処理部が、第1の絞込条件に基づき生成した第1の模擬処理条件の模擬処理要求を業務状況情報群と前記第1の模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、それぞれの前記シミュレーターから前記業務状況情報群と前記第1の模擬処理条件に基づく模擬処理結果として第1の複数の評価値群を受信し、受信した前記第1の複数の評価値群のうち第1の業務目的関数に基づく第1の最高評価の評価値群を認識すると共に前記第1の複数の評価値群の分布を認識し、前記第1の複数の評価値群の分布を基礎として入力された第2の業務目的関数を記憶保持し、第2の絞込条件に基づき生成した第2の模擬処理条件の模擬処理要求を前記業務状況情報群と前記第2の模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、それぞれの前記シミュレーターから前記業務状況情報群と前記第2の模擬処理条件に基づく模擬処理結果として第2の複数の評価値群を受信し、受信した前記第2の複数の評価値群のうち前記第2の業務目的関数に基づく第2の最高評価の評価値群を認識すると共に前記第2の複数の評価値群の分布を認識することを特徴とする。
 これによれば、模擬処理結果の第1の複数の評価値群を第1の業務目的関数で評価し、第1の業務目的関数に基づく第1の最高評価の評価値群を認識し、更に、第1の複数の評価値群の分布を参考に設定した第2の業務目的関数を用い、第2の絞込条件、第2の模擬処理条件に対応する第1の複数の評価値群とは別の第2の複数の評価値群について、第2の最高評価の評価値群や第2の複数の評価値群の分布を認識することができる。従って、例えば第1の絞込条件、第1の業務目的関数に基づく解或いは最適な業務によりも一層適切な解或いは最適な業務があるのではないかと管理者が判断した場合に、第1の複数の評価値群の分布を参考に第2の業務目的関数を設定し、第2の絞込条件、第2の業務目的関数に基づく解或いは最適な業務を認識することや、複数の絞込条件、複数の業務目的関数のそれぞれに基づく解或いは最適な業務を認識して管理者が対比検討すること等が可能となり、複数の絞込条件、複数の業務目的関数による複数の評価値群、複数の最高評価の評価値群を総合的、多面的に検討して、より一層最適な業務を認識することができる。
 本発明によれば、業務シミュレーションを行う際に、並列シミュレーション演算を実行する処理機構のハードウェア資源を効率的に使用し、より低コストで、例えば多品種少量生産のように膨大なケースが想定される場合にも、多様なシミュレーション演算を高速で行い、最適な業務を認識することができる。
本発明の第1実施形態の業務計画最適化装置の全体構成を示すブロック図。 第1実施形態の業務計画最適化装置における統括処理部の構成を示すブロック図。 第1実施形態の業務計画最適化装置におけるシミュレーターの構成を示すブロック図。 第1実施形態の業務計画最適化装置における作業者端末の構成を示すブロック図。 第1実施形態の業務計画最適化装置における業務シミュレーション処理を示すフローチャート。 第1実施形態の業務計画最適化装置における模擬処理条件の例を示す図。 第2実施形態の業務計画最適化装置における業務シミュレーション処理を示すフローチャート。 第3実施形態の業務計画最適化装置における業務シミュレーション処理を示すフローチャート。 第4実施形態の業務計画最適化装置における絞込制御コンポーネントの構成を示すブロック図。 第4実施形態の業務計画最適化装置における絞込制御コンポーネントの絞込条件生成処理を示すフローチャート。 第1変形例の業務シミュレーション処理を示すフローチャート。 第2変形例の業務シミュレーション処理を示すフローチャート。 第3変形例の業務シミュレーション処理を示すフローチャート。 シミュレーター群を共用する複数の業務計画最適化装置の第1例を示すブロック図。 図14の第1例におけるシミュレーター群の使用に伴う処理を示すフローチャート。 シミュレーター群を共用する複数の業務計画最適化装置の第2例を示すブロック図。 図16の第2例におけるシミュレーター群の使用に伴う処理を示すフローチャート。
 〔第1実施形態の業務計画最適化装置〕
 本発明の第1実施形態の業務計画最適化装置1は、図1に示すように、統括処理部2と、統括処理部2に通信接続されて統括される複数のシミュレーター3と、統括処理部と通信接続される絞込制御コンポーネント4と、作業者が携帯する或いは作業者の近傍に配置される複数の作業者端末5と、業務状況情報を取得する複数の業務状況情報取得部6を備える並列シミュレーション演算の処理機構であり、並列して多数設けられるシミュレーター3で業務の離散的シミュレーション処理を並列実行するものである。
 統括処理部2は、例えば業務計画最適化装置1の全体の離散的シミュレーション処理を統括するサーバーで構成され、図2に示すように、CPU等の演算制御部21と、ROM、RAM、ハードディスク等で構成される記憶部22と、マウス、キーボード等の入力部23と、ディスプレイ、プリンター等の出力部24と、通信インターフェイス25を備える。
 記憶部22は、演算制御部21に所定処理を実行させる業務シミュレーションの統括処理プログラム等の処理プログラムを記憶する処理プログラム記憶部221と、所定処理を行うのに必要なデータを記憶するデータ記憶部222を有し、演算制御部21は、統括処理プログラムに従い、所定の業務シミュレーションの統括処理を実行する。処理プログラム記憶部221の統括処理プログラムには、複数の評価値群のうちから最高評価の評価値群を認識する業務目的関数が変更可能に設定されて記憶されている。
 この業務目的関数には、複数の評価値群のうちから最高評価の評価値群を認識可能な適宜の仕方で業務目的関数が設定され、例えば各評価値に対する重み係数を設定して重み付け線形和を取得し、重み付け線形和が最大値の評価値群を最高評価の評価値群として認識する等とすることが可能である。この重み付け線形和が最大値の評価値群を最高評価の評価値群として認識する場合の業務目的関数は、例えば評価値で構成される評価値群の重み付け線形和:S=w・V1i+w・V2i+w・V3i+…+w・Vji+…+w・Vni(w:重み係数、Vji:評価値群の評価値、n:評価値の全個数)と、重み付け線形和Sの中から最大値を取得するMAX関数:MAX(Si=1,2,…,t)、(tは重み付け線形和の全個数)等とから構成して設定し、複数の評価値群(V1i,V2i,V3i,…,Vji,…,Vnii=1,2,…tの中から業務目的評価値である重み付け線形和Sが最大値となる評価値群を最高評価の評価値群として認識する構成等とする。
 この重み付け線形和:Sと、重み付け線形和Sの中から最大値を取得するMAX関数:MAX(Si=1,2,…t)を業務目的関数とする例では、重み係数wj(j=1,2,…,n)のうち所要の重み係数を変更して業務目的関数を適宜変更することが可能である。また、評価値群の評価値Vji(i=1,2,…,t、j=1,2,…,n)としては、業務の評価に必要な適宜の評価値を設定、取得することが可能であり、例えばメイクスパン(生産終了時刻-生産開始時刻)、時間当り生産性(出来高/就業時間)、設備稼働率(Σ設備稼働時間/就業時間)等の生産性を表す指標、ブロッキング(Σ各部品が生産されずに生産を待つ時間)、スタービング(Σ各設備が稼働できる状態で稼働していない時間)等のモノの流れを分析する指標、作業者稼働率(作業者動作時間/就業時間)、ツーリング稼働率(ツール動作時間/就業時間)等の作業者や金型などの工場リソースの稼働状況を表す指標、生産ライン内の延べ在庫量(Σ(各部品がある工程に滞留する時間×部品の在庫量))、生産ライン内の延べ在庫コスト(Σ(各部品がある工程に滞留する時間×部品の在庫量×部品コスト))等の在庫やコストに関係する指標等とすることができる。
 各々のシミュレーター3は、例えば業務計画最適化装置1の離散的シミュレーション処理の部分的な処理を担うコンピューターで構成され、図3に示すように、CPU等の演算制御部31と、ROM、RAM、ハードディスク等で構成される記憶部32と、入力部33と、出力部34と、通信インターフェイス35を備える。複数のシミュレーター3と統括処理部2は、通信インターフェイス35、25を介して、有線通信、又は無線通信、又は有線通信と無線通信の組み合わせで通信接続され、少なくとも業務シミュレーション処理の実行時には通信接続される。
 記憶部32は、演算制御部31に所定処理を実行させる業務シミュレーションのシミュレーションプログラム等の処理プログラムを記憶する処理プログラム記憶部321と、生産等の業務を実行する基本的な生産ライン等の環境情報など、所定処理を行うのに必要なデータを記憶するデータ記憶部322を有し、演算制御部31は、シミュレーションプログラムに従い、所定のシミュレーション処理を実行する。
 絞込制御コンポーネント4は、例えばCPU等の演算制御部と、ROM、RAM、ハードディスク等で構成される記憶部と、入力部と、出力部と、通信インターフェイスを備えるコンピューター、或いはハードディスク等で構成され、統括処理部2と通信インターフェイス25を介して通信接続される。複数の絞込制御コンポーネント4に対する統括処理部2の通信接続は、所要の絞込制御コンポーネント4に対して所要時に行える構成であれば適宜であり、統括処理部2が模擬処理条件の生成に用いる絞込条件を格納する絞込制御コンポーネント4は切替可能或いは変更可能である。各々の絞込制御コンポーネント4の記憶領域には、図1に示すように、絞込条件格納部41が設けられ、絞込条件格納部41に絞込条件が格納されている。
 絞込制御コンポーネント4の絞込条件格納部41の絞込条件は通信接続される統括処理部2に入力され、統括処理部2の演算制御部21は、統括処理プログラムに従い、絞込条件と業務状況情報群に基づき模擬処理条件を生成する。本実施形態では、絞込条件格納部41の絞込条件は絞込度合を変更可能になっており、統括処理部2の演算制御部21は、例えば絞込条件格納部41に格納された状態のままの個別絞込条件群で構成される絞込条件、或いは入力部23で変更入力された個別絞込条件群で構成される所要の絞込度合の絞込条件と、業務状況情報群に基づき、模擬処理条件を生成する。
 絞込条件格納部41に格納されている絞込度合を変更可能な絞込条件の例としては、個別絞込条件NC1、個別絞込条件NC2、…、個別絞込条件NCnのような個別絞込条件群が設定され、具体的な内容の例として、作業者数の範囲:5~15人、製品が生産工場の作業ステーションを流れるルーティングの候補:R1,R2,R3,R4、R5、…、R8の8個、生産計画における各製品の投入順の変更許容範囲:全体の15%の範囲まで、等のようにして一、複数或いは全ての個別絞込条件の絞込度合が変更可能に設定される。この場合、所要の絞込度合の絞込条件を構成する個別絞込条件群は、絞込条件格納部41に格納された状態のままの個別絞込条件NC1~NCn、或いは入力部23で一部或いは全部に変更入力された個別絞込条件NC1’、NC2’、…、NCn’(例えば作業者数の範囲:5~10人、製品が生産工場の作業ステーションを流れるルーティングの候補:R1,R2,R3,R4、…、R7の7個、生産計画における各製品の投入順の変更許容範囲:全体の10%の範囲まで)等となる。
 尚、絞込条件格納部41に複数の絞込度合の絞込条件として絞込度合の異なる個別絞込条件群を格納し、この中から選択入力された特定の絞込度合の個別絞込条件群を絞込条件として模擬処理条件を生成するようにしてもよい。この場合には、絞込条件格納部41に、個別絞込条件NC1、NC2、…、NCnの第1の個別絞込条件群(例えば作業者数の範囲:5~15人、製品が生産工場の作業ステーションを流れるルーティングの候補:R11,R12,R13,R14、…、R17の7個、生産計画における各製品の投入順の変更許容範囲:全体の15%の範囲まで)と、第1の個別絞込条件群と絞込度合の異なる第2の個別絞込条件NC1’、NC2’、…、NCn’の個別絞込条件群(例えば作業者数の範囲:5~10人、製品が生産工場の作業ステーションを流れるルーティングの候補:R21,R22,R23,R24、…、R26の6個、生産計画における各製品の投入順の変更許容範囲:全体の10%の範囲まで)、更に 第1、第2の個別絞込条件群と絞込度合の異なる第3の個別絞込条件群等を格納し、この中から入力部23で選択入力された特定の絞込度合の個別絞込条件群を模擬処理条件を生成するための絞込条件とする。
 作業者端末5は、例えばスマートフォン等の携帯情報端末、或いはパーソナルコンピューター、或いは業務専用端末等であり、図4に示すように、CPU等の演算制御部51と、ROM、RAM、ハードディスク等で構成される記憶部52と、タッチパネル、マウス、キーボード等の入力部53と、タッチパネル、ディスプレイ等の出力部54と、通信インターフェイス55を備える。
 記憶部52は、演算制御部51に業務状況情報について所定処理を実行させる業務状況情報処理プログラム等の処理プログラムを記憶する処理プログラム記憶部521と、所定処理を行うのに必要なデータを記憶するデータ記憶部522を有し、演算制御部51は、業務状況情報処理プログラムに従い、所定の業務状況情報処理を実行する。
 業務状況情報取得部6は、業務状況情報を取得し、取得した業務状況情報を統括処理部2に送信するものであり、例えば入力部若しくは読取部と、通信インターフェイスと、演算制御部等の通信制御部を備える。業務状況情報取得部6は、例えば入力された業務状況情報を取得して若しくは脳波、体温等を読み取る読取部で読み取られた業務状況情報を取得して統括処理部2に送信する機能を有する作業者端末5が業務状況情報取得部6を兼用する構成に加え、生産ロボット、加工機、検査装置、搬送装置等の生産機械の稼働速度等から稼働状況情報等を取得して統括処理部2に送信する機器や、生産品や部品のバーコード、マーキング若しくはICタグ等を読取部で読み取って生産品や部品の完成状況を取得して統括処理部2に送信する機器等のIoT基盤の機器や装置部分で構成され、又、生産機械の稼働速度等の稼働状況情報を近距離通信接続で作業者端末5に転送し、この稼働状況情報を作業者端末5が統括処理部2に送信する構成を業務状況情報取得部6としてもよい。
 第1実施形態の業務計画最適化装置1による業務シミュレーション処理或いは業務計画最適化処理では、図5に示すように、各業務状況情報取得部6から業務状況情報が統括処理部2に送信され、統括処理部2は、業務状況情報を受信して取得し、業務状況情報で構成される特定時点の業務状況情報群を認識する(S1)。尚、業務状況情報取得部6から統括処理部2への業務状況情報の送信は、一定の時間間隔毎、所定の作業完了時、略リアルタイム或いはこれらの組み合わせによって行われ、統括処理部2は、これらの業務状況情報を受信して取得し、特定時点の業務状況情報群を確定して認識する。また、統括処理部2に記憶される業務状況情報には、生産機械の種類など短期間では固定的な情報も含まれ、この固定的な情報は業務状況情報取得部6から適時のタイミングで受信する構成、或いは統括処理部2に予め記憶しておく構成とすることが可能である。
 ここで統括処理部2が取得する業務状況情報としては、例えば部品保管ステーション・組立ステーション・出荷ステーション等の作業ステーション関連情報(作業ステーションID、作業対象製造番号、作業ステーションの生産目標量、作業ステーションの生産実績量、作業開始時刻、作業終了時刻、作業ステーションで作業した作業者の作業者ID、作業ステーションで利用した金型の金型ID、段取り替え時間、温度、湿度、気圧等)、作業者関連情報(作業者ID、始業時間、就業時間、休憩時間、作業を行った部品の製造番号、作業を行った作業ステーションID、歩行経路、心拍数・体温・脳波などの身体情報等)、金型関連情報(金型ID、作業を行った部品の製造番号とその作業ステーションID、延べショット数、延べメンテナンス回数、メンテナンス後のショット数、配置場所の履歴等)、部品関連情報(製造番号、目標出荷日、入庫日、作業開始日、作業終了日、出荷日、作業が行われた作業ステーションID、利用した金型ID、作業者ID、保管ステーションID、保管ステーションに置かれた期間、保管ステーションに置かれた期間の気温・湿度等)等が挙げられる。
 上記例の作業ステーション関連情報は、例えば作業ステーションに設置された業務状況情報取得部6を構成する機器に入力され或いは読み込まれ、この機器によって統括処理部2に送信される。また、上記例の作業者関連情報は、例えば業務状況情報取得部6を兼用する作業者端末5に入力され或いは読み込まれ、作業者端末5によって統括処理部2に送信される。また、上記例の金型関連情報、部品関連情報は、例えば金型、部品に設けられたICタグに逐次書き込まれる情報を読取機能を有する業務状況情報取得部6で読み取り、この業務状況情報取得部6によって統括処理部2に送信される。
 そして、統括処理部2は、例えば所要の絞込制御コンポーネント4の絞込条件格納部41に格納された状態の個別絞込条件群に対し、入力部23で変更入力された個別絞込条件群で構成される所要の絞込度合の絞込条件と、認識した特定時点の業務状況情報群に基づき、模擬処理条件を生成し、データ記憶部222に記憶する(S2)。例えば所要の絞込度合の絞込条件が個別絞込条件群を構成する個別絞込条件NC1’、NC2’、…、NCn’(例えば作業者数の範囲:5~10人、製品が生産工場の作業ステーションを流れるルーティングの候補:R11,R12,R13,R14、…、R25の15個、生産計画における各製品の投入順の変更許容範囲:全体の10%の範囲まで)であると共に、認識した特定時点の業務状況情報群がAS1、AS2、…、ASn(例えば、作業者数が8人である情報、生産する製品がP1~10である情報、生産する製品P1~P10のうち製品P1からP5までは生産完了である情報、製品P6はR11のルーティングを選択している情報、製品P6はR11のルーティングにおいて工程3~12まで進んだ進捗である情報、製品P6の各作業ステーションでの仕掛在庫がそれぞれ、工程3では2個、工程4では6個、…、工程12では3個である情報、製品P7~P10はまだ生産に仕掛っていない情報、それぞれの作業者がその時刻に従事している場所の情報……)である場合に、個別絞込条件NC1’、NC2’、…、NCn’と業務状況情報AS1、AS2、…、ASnとを合わせて、業務状況情報AS1、AS2、…、ASn中に所要の絞込度合の絞込条件の個別絞込条件NC1’、NC2、…、NCn’よりも条件範囲が狭いものがある場合には狭いものを適用した生成条件群[AS1、AS2、…、NCn’](例えば、作業者数が8人である情報、生産する製品がP1~10である情報、生産する製品P1~P10のうち製品P1からP5までは生産完了である情報、製品P6はR11のルーティングを選択している情報、製品P6はR11のルーティングにおいて工程3~12まで進んだ進捗である情報、製品P6の各作業ステーションでの仕掛在庫がそれぞれ、工程3では2個、工程4では6個、…、工程12では3個である情報、製品P7~P10はまだ生産に仕掛っていない情報、それぞれの作業者がその時刻に従事している場所の情報……、生産計画における各製品の投入順の変更許容範囲:全体の10%の範囲まで)を取得し、この生成条件群によって模擬処理条件SC1、SC2、…、SCi、…、SCnを生成する。
 模擬処理条件SCiは複数の個別条件sci1、sci2、…、scimで構成される、換言すれば複数の個別条件群で構成されており、模擬処理条件SCi=[sci1、sci2、…、scim]で示される。各模擬処理条件SCiを複数の個別条件群sci1、sci2、…、scimによって表した模擬処理条件SC1、SC2、…、SCi、…、SCnの例を図6に示す。
 また、統括処理部2は、図5に示すように、業務計画最適化装置1の統括処理部2が、より具体的には統括処理プログラムに従う演算制御部21が、シミュレーター3のそれぞれの変動する一定時間内の処理可能量を経時的に認識する(S3)。具体例としては、統括処理部2が、シミュレーター3のCPU性能、CPU稼働率、メモリ容量、メモリ稼働率等の指標を所定のタイミングで取得し、これらの処理指標から処理可能量を演算取得して認識する。
 尚、この処理可能量の認識処理では、各シミュレーター3のCPU性能やメモリ容量等の固定値の指標は統括処理部2のデータ記憶部222に予め記憶し、統括処理部2が、シミュレーター3のCPU稼働率、メモリ稼働率等の変動値等の指標を所定のタイミングで取得し、予め記憶している固定値の指標と取得した変動値等の指標から処理可能量を演算取得して認識するようにしてもよい。また、統括処理部2が、シミュレーター3の指標を取得する所定のタイミングは、例えば業務シミュレーションの模擬処理を開始する時と、シミュレーター3から複数の評価値群を受信して、このシミュレーター3の模擬処理が完了したことを認識した時等のように設定することが可能である。
 更に、業務計画最適化装置1の統括処理部2は、例えばデータ記憶部222に記憶した負荷軽減率を処理可能量に乗ずる等により、シミュレーター3の一定時間内の処理可能量内の最適処理量を演算取得する(S4)。この負荷軽減率としては、例えばシミュレーター3の処理速度を低下させたり、ロック状態で停止させたりしないようにする所定値が設定される。尚、処理可能量に対応する一定時間はデータ記憶部222に格納し、統括処理部2がシミュレーター3のCPU稼働率、メモリ稼働率等の変動値等の指標とデータ記憶部222に記憶する一定時間から演算取得する構成とする。この一定時間は適宜設定することが可能であり、例えば後述するように統括処理部2が模擬処理要求を対応する業務状況情報群と対応する模擬処理条件と併せてシミュレーター3に送信してから複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識する処理を完了するまでの目標処理時間がある場合にはこの目標処理時間を一定時間とし、或いはこの目標処理時間の所定割合の所定時間を一体時間として設定することが可能である。目標処理時間の所定割合の所定時間を一体時間として設定する場合、目標処理時間と所定割合をデータ記憶部222に格納し、これに基づき統括処理部2が一定時間を演算取得してデータ記憶部222に格納するようにすると良好である。
 次いで、統括処理部2は、シミュレーター3の最適処理量内の模擬処理の模擬処理要求を生成し、この模擬処理要求を対応する業務状況情報群と対応する模擬処理条件と併せてシミュレーター3に送信する(S5)。最適処理量内の模擬処理の模擬処理要求を生成する際には、例えば業務状況情報群と模擬処理条件の組み合わせの任意の1パターンについて統括処理部2で模擬処理を実行し、その処理量を積算して最適処理量内の模擬処理要求の個数を認識し、認識した個数の模擬処理要求を設定されている模擬処理条件の順番で生成する構成、或いは業務状況情報群の業務状況情報の個数と模擬処理条件の個別条件の個数とから業務状況情報群と模擬処理条件の組み合わせの任意の1パターンの処理量を積算し、その処理量から最適処理量内の模擬処理要求の個数を認識し、認識した個数の模擬処理要求を設定されている模擬処理条件の順番で生成する構成等とすることが可能である。
 統括処理部2が、模擬処理要求を対応する業務状況情報と対応する模擬処理条件と併せて送信する際には、例えば模擬処理要求R1[AS1、AS2、…、ASn、SC1]、模擬処理要求R2[AS1、AS2、…、ASn、SC2]、模擬処理要求R3[AS1、AS2、…、ASn、SC3]、…等のようにして、シミュレーター3に送信する。尚、S3~S5の処理は、並列して設けられている複数のシミュレーター3に対して逐次実行されるが、業務状況情報群と模擬処理条件の組み合わせの任意の1パターンの処理量の積算は、同一の業務状況情報群とS2で一連で生成された模擬処理条件に対応するものである場合には、一度演算取得した積算処理量を記憶保持して援用することが好ましい。
 シミュレーター3は、統括処理部2から模擬処理要求と対応する業務状況情報群及び対応する模擬処理条件を受信する(S6)。そして、シミュレーター3が、より具体的にはシミュレーションプログラムに従う演算制御部31が、模擬処理要求の業務状況情報群と模擬処理条件に基づく模擬処理結果として評価値群を演算取得する(S7)。評価値群を演算取得する際には、演算制御部31が離散的シミュレーション処理を実行し、評価値群を構成する評価値V1i、V2i、V3i、…、Vji、…、Vniのそれぞれを模擬処理要求Riの業務状況情報群[AS1、AS2、…、ASn]と模擬処理条件SCi=[sci1、sci2、…、scim]から演算取得する。
 ここでシミュレーター3が実行する離散的シミュレーション処理には離散的に発生する事象の連鎖による状態推移をシミュレーションする適宜の離散的シミュレーション処理を用いることが可能である。例えば作業ステーション等の各要素に対して、各要素が惹起する固有動作と、各要素の固有動作を惹起させるための条件と、固有動作の動作時間、必要な部品数等の所要量の諸元と共に、当該固有動作が終了した際に固有動作が終了したことを通知する出力先として他の作業ステーション等の他の要素をデータ記憶部322に設定して記憶させ、固有動作の出力に応じて他の要素の固有動作が惹起されるように処理プログラム記憶部321のシミュレーションプログラムに設定して各要素をネットワーク化し、業務プロセス・ネットワークの根となる要素に固有動作を惹起させて、根に連なるネットワークの各要素に固有動作の惹起を伝播させてシミュレーション演算を進める、換言すれば業務プロセスを進行させるシミュレーション処理など、各種の既存の離散的シミュレーションを用いることができ、この離散的シミュレーション処理の演算の際の演算条件として業務状況情報群[AS1、AS2、…、ASn]と模擬処理条件SCiが使用される。
 更に、特許文献2のように、設備要素の諸元を設備要素情報としてデータ記憶部322に記憶させると共に、作業要素の惹起条件と作業完了後の出力先を含む作業要素情報と、設備要素と作業要素とのリンク情報をデータ記憶部322に記憶させ、第1の設備要素とリンク情報でリンクされている第1の作業要素の作業要素情報の惹起条件の充足に応じて、第1の設備要素が作業を実行し、第1の作業要素の作業要素情報の作業完了後の出力先に出力するようにして離散的シミュレーション処理を実行する構成を用いると好適である。この場合にも、離散的シミュレーション処理の演算の際の演算条件として業務状況情報群[AS1、AS2、…、ASn]と模擬処理条件SCiが使用される。尚、業務状況情報群と模擬処理条件以外の要素の諸元等の現業務の基本情報或いは現業務の環境情報など離散的シミュレーション処理に必要な情報は、統括処理部2に入力されてから各シミュレーター3に送信されて各シミュレーター3で記憶される構成、或いは各シミュレーター3で入力されて各シミュレーター3で記憶される構成等とすることが可能である。
 その後、シミュレーター3は、演算取得した評価値群[V1i、V2i、V3i、…、Vji、…、Vni]を統括処理部2に送信する(S8)。統括処理部2は、模擬処理を実行した各々のシミュレーター3から業務状況情報群と模擬処理条件に基づく模擬処理結果として複数の評価値群を受信し(S9)、受信した全ての評価値群である複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識する(S10)。この最高評価の評価値群の認識では、上述の如く、例えば各評価値に対する重み係数を設定して重み付け線形和を取得し、重み付け線形和が最大値の評価値群を最高評価の評価値群として認識する業務目的関数等で認識することが可能である。
 更に、統括処理部2は、認識した最高評価の評価値群を所定形式で出力部24により表示する(S11)。この表示形式は、例えば最高評価の評価値群とそれ以外の評価値群のそれぞれの重み付け線形和の値を画像でグラフ表示すること等とすることができる。また、統括処理部2は、最高評価の評価値群を認識すると共に最高評価の評価値群とそれ以外の評価値群で構成される複数の評価値群の分布を認識し、複数の評価値群の分布、若しくは各評価値群の重み付け線形和等の業務目的評価値の分布等を出力部24で表示すると好適である。この分布の認識、出力形式は、例えば縦軸をメイクスパンやリードタイムとし、横軸を在庫量の積分値とする形式や、縦軸を設備の稼働率、横軸を作業者の稼働率とする形式等で、各評価値群の対応する評価値を用いて出力する形式等とすることが可能である。
 第1実施形態によれば、統括処理部2が、それぞれのシミュレーター3の変動する処理可能量を経時的に認識し、処理可能量内の最適処理量内の模擬処理をそれぞれのシミュレーター3に行わせることができ、並列シミュレーション演算を実行する処理機構のハードウェア資源を効率的に使用し、より低コストで、例えば多品種少量生産のように膨大なケースが想定される場合にも多様なシミュレーション演算を高速で確実に行うことができる。即ち、個々のシミュレーター3の所定時点の処理能力に応じて適切な模擬処理量を割り振ることにより、例えば個々のシミュレーター3に過大な負荷をかけて処理速度を低下させたり、停止状態にすることを防ぎながら、多様なシミュレーション演算を高速で確実に行うことができる。また、統括処理部2が、複数のシミュレーター3から業務状況情報群と模擬処理条件に基づく模擬処理結果として複数の評価値群を受信し、複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識することにより、業務目的に応じ且つ業務状況に即した最適な業務を認識することができる。
 また、業務状況情報取得部6から業務状況情報が統括処理部2に送信されることにより、統括処理部2が業務状況情報を業務状況情報取得部6から自動的に認識して、シミュレーター3群に模擬処理を行わせ、業務目的に応じ且つ業務状況に即した最高評価の評価値群を認識し、最適な業務を認識することができる。
 また、統括処理部2が絞込制御コンポーネント4の絞込条件と業務状況情報に基づき模擬処理条件を生成することにより、必要な模擬処理条件を逐次生成して模擬処理に用いることができ、業務状況情報に応じた膨大な数の模擬処理条件のパターンリストを同時にシミュレーション演算して生成するハードウェアを準備しておく必要を無くすことができる。従って、ハードウェア資源をより効率的に使用し、ハードウェア資源の低コスト化を図ることができる。また、条件の組み合わせが増えれば天文学的な数の模擬処理条件となるため、明らかに不要な模擬処理条件を削減し膨大な数の模擬処理条件を削減し、絞込条件により演算可能な量の模擬処理条件の数とすることで最適化を求める演算を可能とするとともに、ハードウェア資源の低コスト化を図ることができる。また、絞込制御コンポーネント4には、例えば、生産計画における顧客要求に対応する納期の優先度や、設備償却費や品質管理などの観点から積極的に稼働させたい生産設備の優先度を設定することなど、市場変動の特性、生産ラインの特性や製造管理方針に従ったより合目的な絞込条件を設定することができ、統括処理部4はより合目的な模擬処理条件を生成して模擬処理に用いることができる。また、絞込制御コンポーネント4と統括処理部2を一体とせずに通信接続する構成とすることにより、必要に応じて柔軟に合目的な絞込条件、合目的な模擬処理条件を使用することができ、シミュレーション処理の柔軟性、多様性、汎用性を高めることができる。
 また、絞込制御コンポーネント4の絞込条件の絞込度合を変更可能とする、若しくは絞込制御コンポーネント4に複数の絞込度合の絞込条件を設定することにより、例えば第1の絞込条件に基づき得られた第1の最高評価の評価値群の結果に対し、管理者が異なる条件でシミュレーションを行う必要があると判断した場合に、第1の絞込条件よりも絞込度合の弱い第2の絞込条件を用いて第2の最高評価の評価値群の結果を得ることができる、或いは複数の絞込条件に基づいて得られた最高評価の評価値群の中から最適な評価値群、最適な業務を認識することができ、絞込度合を強くし過ぎて評価対象から外してしまった結果を逸失せずに、人為的な判断からも最適と考えられる、或いは複数の絞込条件に基づく模擬処理から最適と考えられる最高評価の評価値群、最適な業務に到達することができる。
 〔第2実施形態の業務計画最適化装置〕
 本発明の第2実施形態の業務計画最適化装置1は、図1~図4の第1実施形態と同様の全体構成を有するものであるが、評価値群を構成する評価値V1i、V2i、V3i、…、Vji、…、Vniの中に現業務との類似度を表す評価値が含まれている点で相違し、図7に示すように、個々のシミュレーター3が、模擬処理要求の業務状況情報群と模擬処理条件に基づく模擬処理結果として類似度の評価値を有する評価値群を演算取得する(S7’)。そして、統括処理部2は、模擬処理を実行した各々のシミュレーター3から業務状況情報群と模擬処理条件に基づく模擬処理結果として複数の類似度評価値を有する評価値群を受信し(S9)、受信した全ての評価値群である複数の評価値群のうち業務目的関数に基づく類似度評価値を有する最高評価の評価値群を認識するようになっている(S10)。その他の構成、処理の仕方は第1実施形態と同様である。
 この現業務との類似度の評価値を演算取得する仕方は、例えば現状の製品が流れている作業ステーションのルーティングのパターンと仮想変更後の製品が流れる作業ステーションのルーティングのパターンとの個別類似度、現状の作業者が作業を担当する作業ステーションのパターンと仮想変更後の作業者が作業を担当する作業ステーションのパターンとの個別類似度等を、各パターンを多次元ベクトルで表現してベクトル間の距離を演算取得する既存の仕方等の適宜の仕方で演算取得し、個別類似度sr、sr、…、srにシミュレーター3のデータ記憶部322に格納された重み係数sw、sw、…、swをそれぞれ乗じて、類似度評価値として個別類似度の重み付け線形和:sw・sr+sw・sr+…+sw・srを演算取得する構成等とすることが可能である。ここで、個別類似度は、共通度合、距離等を評点化して評価すること等が可能であり、例えば現作業ステーションのルーティングのパターンと仮想変更後の作業ステーションのルーティングのパターンとの個別類似度sriは、ルーティングとして設定された経路が通過する作業ステーションが共通する割合が高いものほど高くなる、同種類の機能を持った作業ステーションが共通する割合が高いものほど高くなる、ルーティングとして設定された経路上の作業ステーションについて同一の要素作業が実施される作業ステーションの物理的距離が近い割合が高いものほど高くなるもの等とすることができる。
 第2実施形態によれば、評価値群に現業務との類似度を評価値として含ませることにより、既存の業務の仕方を大幅に変更することがない、現場や従事者が行い易い最適な業務を認識することができる。例えば生産に関する指標だけで評価値群を構成した場合には、最高評価の評価値群に対応する生産でも、例えば実際に生産を実行する上では今まで経験したことのない対応の難しい生産の仕方を含む生産、生産現場に無理を強いる大きい配置転換を含む生産、或いは従来の生産方針と大きく生産方針が異なる生産等となる場合があるが、評価値群の評価値に現業務との類似度を含ませることにより、生産現場において「今までのやり方から大きくは変えない、作りやすい、行い易い最適な生産」を認識することができる。
 〔第3実施形態の業務計画最適化装置〕
 第3実施形態の業務計画最適化装置1は、図1~図4の第1実施形態と同様の全体構成を有するものであるが、図8に示すように、統括処理部2が、認識した最高評価の評価値群を所定形式で出力部24により表示する(S11)と共に、認識した最高評価の評価値群に対応する個別業務指示を生成し、個別業務指示を少なくとも作業者端末5に略リアルタイムで送信する(S12)。個別業務指示は、最高評価の評価値群に対応する業務全体において、個別の業務要素が実行する或いは個別の業務要素に対して実行される業務指示である。個別業務指示は、作業者端末5以外にも、個別業務指示を受信可能な業務状況情報取得部6など受信可能な各部にできる限り送信する構成とすることが好ましい。個別業務指示としては、例えば、作業者H3は作業ステーションS008で製品P6の工程5を10:30から10:40まで行い、作業ステーションS010で製品P10の工程6を10:40から10:55まで行う指示等が挙げられる。それ以外の構成は第1実施形態の業務計画最適化装置1と同様である。
 第3実施形態によれば、業務シミュレーションから得られた最高評価の評価値群、最適な業務を即座に個別業務指示として反映させ、その個別業務指示を作業者等に素早く伝達し、最適な業務体制の迅速な構築や最適な業務のスピーディな実行を図ることができる。
 〔第4実施形態の業務計画最適化装置〕
 第4実施形態の業務計画最適化装置1は、図1~図4の第1実施形態と同様の全体構成を有するものであるが、図9に示すように、複数の絞込制御コンポーネント4のそれぞれが、CPU等の演算制御部401と、ROM、RAM、ハードディスク等で構成される記憶部402と、入力部403と、出力部404と、通信インターフェイス405を備えるコンピューターで構成される。記憶部402には、絞込条件格納部41が設定されていると共に、プログラム記憶部42に絞込条件生成プログラムが格納され、演算制御部401が絞込条件生成プログラムに従って動作するようになっている。
 そして、複数の絞込制御コンポーネント4のうち第1の絞込制御コンポーネント4に、図10に示すように、入力部403から第1の設定条件が入力され(S21)、演算制御部401は、第1の設定条件に基づき第1の絞込条件を生成し(S22)、生成した第1の絞込条件を記憶部402の絞込条件格納部41に格納する処理を実行する(S23)。
 例えば第1の設定条件として、「作業者数の範囲:5~15人、製品が生産工場の作業ステーションを流れるルーティングの候補:R1,R2,R3,R4、R5、…、R9の9個(ルーティング番号の近いものほど近似性があるルーティング)、生産計画における各製品の投入順の変更許容範囲:全体の15%の範囲まで、…」が入力された場合、第1の絞込制御コンポーネント4の演算制御部401は、絞込条件生成プログラムに従って、この第1の設定条件から演算処理量を削減或いは増加させて適量にするための所定の演算規則、換言すれば模擬処理範囲を絞込或いは拡張させて適切な範囲にするための所定の演算規則に従った処理を行って第1の絞込条件を生成する。この所定の演算規則の具体例として、「第1の設定条件における作業者数の範囲から第1の絞込条件に使用する作業者数を先頭の作業者数から一人置きに設定」、「第1の設定条件におけるルーティングの候補から第1の絞込条件に使用するルーティングの候補を先頭のルーティングの候補から一人置きに設定」、「設定した作業者数と設定したルーティングの候補の総当たり組み合わせを設定」等とされている場合、演算制御部401は、絞込条件生成プログラムに従って、第1の絞込条件を構成する個別絞込条件群NC1、NC2、…、NCn(例えば作業者数の範囲:5人、7人、9人、11人、13人、15人の6種類と製品が生産工場の作業ステーションを流れるルーティングの候補:R1,R3,R5、R7、R9の5種類との総当たり組み合わせのそれぞれに、生産計画における各製品の投入順の変更許容範囲:全体の15%の範囲まで、…を加えたもの)を生成し、この模擬処理範囲を絞り込んだ第1の絞込条件を記憶部402の絞込条件格納部41に格納する。
 その後、統括処理部2が第1の絞込条件に基づく第1の模擬処理条件の生成及び記憶、模擬処理要求の送信、シミュレーター3からの模擬処理結果である複数の評価値群の受信、最高評価の評価値群の認識及び複数の評価値群の分布の認識、最高評価の評価値群の出力及び複数の評価値群の分布の出力を実行する(S24)。これに対し、管理者が異なる条件でシミュレーションを行う必要があると判断した場合に、統括処理部2のデータ記憶部222に記憶されている最高評価の評価値群に対応する第1の模擬処理条件を出力させて確認し、最高評価の評価値群に対応する第1の模擬処理条件のうちの特定の個別条件を第2の設定条件として第2の絞込制御コンポーネント4に入力する。第2の絞込制御コンポーネント4には、入力部403から第2の設定条件が入力され(S25)、その演算制御部401は、第2の設定条件に基づき第2の絞込条件を生成し(S26)、生成した第2の絞込条件を記憶部402の絞込条件格納部41に格納する処理を実行する(S27)。更にその後は、統括処理部2は、第2の絞込条件に基づく第2の模擬処理条件の生成及び記憶、模擬処理要求の送信、シミュレーター3からの模擬処理結果である複数の評価値群の受信、最高評価の評価値群の認識及び複数の評価値群の分布の認識、最高評価の評価値群の出力及び複数の評価値群の分布の出力を実行する。
 例えば最高評価の評価値群に対応する第1の模擬処理条件のうちの特定の個別条件が「作業者数:9人」、「ルーティング:R5」であり、これが第2の設定条件として入力された場合、第2の絞込制御コンポーネント4の演算制御部401は、絞込条件生成プログラムに従って、この第1の設定条件から演算処理量を削減或いは増加させて適量にするための所定の演算規則、換言すれば模擬処理範囲を絞込或いは拡張させて適切な範囲にするための所定の演算規則に従った処理を行って第2の絞込条件を生成する。この所定の演算規則の具体例として、「第2の設定条件における作業者数に加え、この作業者数の前後の作業者数を設定」、「第2の設定条件におけるルーティングに加え、このルーティングの前後に設定されているルーティングを設定」、「設定した作業者数と設定したルーティングの候補の総当たり組み合わせを設定」等とされている場合、演算制御部401は、絞込条件生成プログラムに従って、第2の絞込条件を構成する個別絞込条件群NC1’、NC2、…、NCn’(例えば作業者数の範囲:8人、9人、10人の3種類と製品が生産工場の作業ステーションを流れるルーティングの候補:R4,R5、R6の3種類との総当たり組み合わせのそれぞれに、生産計画における各製品の投入順の変更許容範囲:全体の15%の範囲まで、…を加えたもの)を生成し、この模擬処理範囲を拡張した第2の絞込条件を記憶部402の絞込条件格納部41に格納する。
 前述の具体例の模擬処理範囲を絞り込むための所定の演算規則で第1の絞込条件を生成する第1の絞込制御コンポーネント4、模擬処理範囲を拡張するための所定の演算規則で第2の絞込条件を生成する第2の絞込制御コンポーネント4のように、複数の絞込制御コンポーネント4は、設定条件から模擬処理範囲を絞り込むための所定の演算規則で絞込条件を生成するものと、設定条件から模擬処理範囲を拡張するための所定の演算規則で絞込条件を生成するものを組み合わせる構成とすると、模擬処理範囲を最適化し易くなって好適である。尚、複数の絞込制御コンポーネント4の全てが設定条件から模擬処理範囲を絞り込むための所定の演算規則で絞込条件を生成するものとする構成、或いは複数の絞込制御コンポーネント4の全てが設定条件から模擬処理範囲を拡張するための所定の演算規則で絞込条件を生成するものとする構成とすることも可能である。また、複数の絞込制御コンポーネント4のうち一の絞込制御コンポーネント4と別の絞込制御コンポーネント4が設定条件から模擬処理範囲を絞り込むための所定の演算規則で絞込条件を生成するものである場合、又は、一の絞込制御コンポーネント4と別の絞込制御コンポーネント4が設定条件から模擬処理範囲を拡張するための所定の演算規則で絞込条件を生成するものである場合、一の絞込制御コンポーネント4の所定の演算規則と別の絞込制御コンポーネント4の所定の演算規則は異なるもの或いは同じものとすることが可能である。また、同一の絞込制御コンポーネント4が、設定条件から模擬処理範囲を絞り込むための所定の演算規則で絞込条件を生成する処理と、設定条件から模擬処理範囲を拡張するための所定の演算規則で絞込条件を生成する処理の双方を選択入力で可能なものとし、選択入力された方の所定の演算規則で絞込条件を生成するようにしても、模擬処理範囲を適切なものにし易くなり、更に、この双方処理が可能な絞込制御コンポーネント4を複数設けることにより、模擬処理範囲をより最適化し易くなる。
 また、第4実施形態の業務計画最適化装置1やその業務計画最適化方法において、設定条件から絞込条件を生成する所定の演算規則の一部或いは全部を設定条件の一部として絞込制御コンポーネント4に入力し、絞込制御コンポーネント4の絞込条件生成プログラムと協働する演算制御部401が、絞込条件生成プログラムと、入力された所定の演算規則に対応する設定条件の一部に基づき、設定条件から絞込条件を生成する構成としてもよい。
 例えば第1の設定条件として、「作業者数の範囲:5~15人、製品が生産工場の作業ステーションを流れるルーティングの候補:R1、R2、R3、R4、R5、…、R100の100個(ルーティング番号の近いものほど近似性があるルーティング)、ルーティングの候補のうちのうち中心のルーティング(例えば既に実施されて実績のあるルーティング):R30、中心のルーティングを中心とする前後10個ずつのルーティングを合わせて設定(所定の演算規則の一部に対応する設定条件の一部)、…」が第1の絞込制御コンポーネント4に入力された場合、第1の絞込制御コンポーネント4の演算制御部401が、所定の演算規則の一部「設定した作業者数と設定したルーティングの候補の総当たり組み合わせを設定」等を記憶保持する絞込条件生成プログラムに従い、且つ所定の演算規則の一部に対応する設定条件の一部に基づき、第1の絞込条件を構成する個別絞込条件群NC1、NC2、…、NCn(例えば作業者数の範囲:5~15人の11種類と実績のあるルーティングR30を中心とするR20~R40の21種類との総当たり組み合わせのそれぞれに、他の条件…を加えたもの)を第1の絞込条件として生成し、模擬処理、最高評価の評価値群の取得を行うようにする。
 更に、最高評価の評価値群に対応する第1の模擬処理条件のうちの特定の個別条件が「ルーティング:R39」であり、第2の設定条件として、「作業者数の範囲:5~15人、製品が生産工場の作業ステーションを流れるルーティングの候補:R1、R2、R3、R4、R5、…、R100の100個(ルーティング番号の近いものほど近似性があるルーティング)、ルーティングの候補のうちの中心のルーティング(例えば最高評価の評価値群に対応する第1の模擬処理条件のうちの特定の個別条件のルーティング):R39、中心のルーティングを中心とする前後10個ずつのルーティングを合わせて設定(所定の演算規則の一部に対応する設定条件の一部)、…」が第2の絞込制御コンポーネント4に入力された場合、第2の絞込制御コンポーネント4の演算制御部401が、所定の演算規則の一部「設定した作業者数と設定したルーティングの候補の総当たり組み合わせを設定」等を記憶保持する絞込条件生成プログラムに従い、且つ所定の演算規則の一部に対応する設定条件の一部に基づき、第2の絞込条件を構成する個別絞込条件群NC1’、NC2’、…、NCn’(例えば作業者数の範囲:5~15人の11種類と第1の模擬処理条件から選ばれた最高評価に対応する特定の個別条件であるルーティングR39を中心とするR29~R49の21種類との総当たり組み合わせのそれぞれに、他の条件…を加えたもの)を第2の絞込条件として生成し、模擬処理、最高評価の評価値群の取得を行うようにする。
 また、第4実施形態の業務計画最適化装置1やその業務計画最適化方法において、設定条件に基づき絞込条件を生成する処理において、絞込制御コンポーネント4の絞込条件生成プログラムと協働する演算制御部401が、絞込制御コンポーネント4に入力された設定条件の各項目をそのまま総当たり組み合わせさせるようにして、設定条件から絞込条件を生成する構成としてもよい。
 例えば第1の設定条件として、「作業者数の範囲:10人、製品が生産工場の作業ステーションを流れるルーティングの候補:R1、R2、R3、R4、R5、…、R100の100個(ルーティング番号の近いものほど近似性があるルーティング)、…」が第1の絞込制御コンポーネント4に入力された場合、第1の絞込制御コンポーネント4の演算制御部401が、所定の演算規則「設定した作業者数と設定したルーティングの候補の総当たり組み合わせを設定」等を記憶保持する絞込条件生成プログラムに従い、第1の絞込条件を構成する個別絞込条件群NC1、NC2、…、NCn(例えば作業者数10人の1種類と全てのルーティングの候補R1~R100の総当たり組み合わせのそれぞれに、他の条件…を加えたもの)を第1の絞込条件として生成し、模擬処理、最高評価の評価値群の取得を行うようにする。
 更に、最高評価の評価値群に対応する第1の模擬処理条件のうちの特定の個別条件が「ルーティング:R39」であり、第2の設定条件として、「作業者数の範囲:5~15人、製品が生産工場の作業ステーションを流れるルーティングの候補:R39、…」が第2の絞込制御コンポーネント4に入力された場合、第2の絞込制御コンポーネント4の演算制御部401が、所定の演算規則「設定した作業者数と設定したルーティングの候補の総当たり組み合わせを設定」等を記憶保持する絞込条件生成プログラムに従い、第2の絞込条件を構成する個別絞込条件群NC1’、NC2’、…、NCn’(例えば作業者数5~15人の11種類とルーティングの候補R39の総当たり組み合わせのそれぞれに、他の条件…を加えたもの)を第2の絞込条件として生成し、模擬処理、最高評価の評価値群の取得を行うようにする。
 また、第4実施形態の業務計画最適化装置1やその業務計画最適化方法において、第1の設定条件及び第1の絞込条件に基づく演算処理、第2の設定条件及び第2の絞込条件に基づく演算処理を行い、更に、第3の設定条件及び第3の絞込条件に基づく演算処理を行い、更には、必要に応じて、第4、第5、…の設定条件及び第4、第5、…の絞込条件に基づく演算処理を行って最適な業務を探索するようにしてもよい。この処理は、例えば2つの変数を第1、第2の絞り込みとして順番に絞り込みながら、第3の絞り込みで近傍領域に対して2つの変数による探索を行うなど、複数の変数を複数の設定条件及び絞込条件で絞り込み、その結果を加味した更なる設定条件及び絞込条件で、好適な変数値の近傍領域に対して複数の変数による探索を行う場合等に有効である。
 例えば第1の設定条件として、「作業者数の範囲:1~10人、生産工場が10種類の製品P1~P10を生産する生産順番:PS1、PS2、PS3、…、PS362,880(10の階乗、生産順番の番号の近いものほど近似性がある生産順番)、設定した作業者数と設定した生産順番の総当たり組み合わせを設定(所定の演算規則の一部)、…」が第1の絞込制御コンポーネント4に入力された場合、第1の絞込制御コンポーネント4の演算制御部401が、絞込条件生成プログラムに従い、第1の絞込条件を構成する個別絞込条件群NC1、NC2、…、NCn(例えば作業者数の範囲:1~10人の10種類と生産順番PS1、PS2、PS3、…、PS362,880の362,880通りとの総当たり組み合わせ(36,288,800)のそれぞれに、他の条件…を加えたもの)を第1の絞込条件として生成し、模擬処理、最高評価の評価値群の取得を行うようにする。
 更に、最高評価の評価値群に対応する第1の模擬処理条件のうちの特定の個別条件が「生産順番:PS67」であり、第2の設定条件として、「作業者数の範囲:5~15人、生産工場が10種類の製品P1~P10を生産する生産順番:PS67、設定した作業者数と設定した生産順番の総当たり組み合わせを設定(所定の演算規則の一部)、…」が第2の絞込制御コンポーネント4に入力された場合、第2の絞込制御コンポーネント4の演算制御部401が、絞込条件生成プログラムに従い、第2の絞込条件を構成する個別絞込条件群NC1’、NC2’、…、NCn’(例えば作業者数の範囲:5~15人の11種類と生産順番PS67との総当たり組み合わせのそれぞれに、他の条件…を加えたもの)を第2の絞込条件として生成し、模擬処理、最高評価の評価値群の取得を行うようにする。
 更に、最高評価の評価値群に対応する第2の模擬処理条件のうちの特定の個別条件が「作業者数の範囲:12人」「生産順番:PS67」であり、第2の設定条件として、「作業者数の範囲:10人~14人(前述の作業者数12人を中心に前後2個の人数)、生産工場が10種類の製品P1~P10を生産する生産順番のうちの中心の生産順番:PS67、中心の生産順番を中心とする前後10個ずつの生産順番を合わせて設定(所定の演算規則の一部に対応する設定条件の一部)、設定した作業者数と設定した生産順番の総当たり組み合わせを設定(所定の演算規則の一部)、…」が第3の絞込制御コンポーネント4に入力された場合、第3の絞込制御コンポーネント4の演算制御部401が、絞込条件生成プログラムに従い、第3の絞込条件を構成する個別絞込条件群NC1”、NC2”、…、NCn”(例えば作業者数の範囲:10~14人の5種類と生産順番PS57~PS77との総当たり組み合わせのそれぞれに、他の条件…を加えたもの)を第3の絞込条件として生成し、模擬処理、最高評価の評価値群の取得を行うようにする。
 尚、上述の第1の設定条件における「生産工場が10種類の製品P1~P10を生産する生産順番:PS1、PS2、PS3、…、PS362,880」のように、各実施形態における模擬処理条件、絞込条件、設定条件には、生産工場が生産する複数種類の製品の生産順番を置換した個別条件或いは各製品の投入順を置換した個別条件を設定して用いることが好ましい。これにより、多品種少量生産或いは多品種生産の最適な生産、最適な業務により確実に到達することが可能となる。
 また、第4実施形態の業務計画最適化装置1やその業務計画最適化方法において、第1の絞込制御コンポーネント4から統括処理部2に入力される絞込条件中の第1のパラメータ若しくは第1のパラメータ群(例えば作業者数の範囲、製品が生産工場の作業ステーションを流れるルーティングの候補)と、第2の絞込制御コンポーネント4から統括処理部2に入力される絞込条件中の第2のパラメータ若しくは第2のパラメータ群(例えば生産工場が複数種類の製品を生産する生産順番)を異種のものとし、統括処理部2のデータ記憶部222に、第1のパラメータ若しくはパラメータ群と第2のパラメータ若しくはパラメータ群のいずれか優先するであるかの優先順位を格納し、統括処理部2が、優先順位の劣るパラメータ若しくはパラメータ群を有する絞込条件に対応する模擬処理要求の送信前の段階で、優先順位の高いパラメータ若しくはパラメータ群を有する絞込条件の入力を認識した場合に、優先順位の劣るパラメータ若しくはパラメータ群を有する絞込条件に対応する処理を一時停止若しくは中止すると共に、優先順位の高いパラメータ若しくはパラメータ群を有する絞込条件に対応する処理を開始するようにしてもよい。この優先順位は生産性に対する影響度等に応じて重要性の高いものを優先させるようにして決めることが好ましい。
 第4実施形態によれば、例えば第1の絞込条件が第1の絞込制御コンポーネント4の第1の設定条件に基づいて生成されたものである場合、これに基づき得られた第1の最高評価の評価値群の結果は第1の設定条件に依存した範囲に対する結果となる。これに対し、管理者が異なる条件でシミュレーションを行う必要があると判断した場合に、第1の最高評価の評価値群に対応する模擬処理条件のうち特定の個別条件を第2の絞込制御コンポーネント4の第2の設定条件として設定し、ここから生成された第2の絞込条件を用いて第2の最高評価の評価値群の結果を得ることができ、更に、これをもとに同様に第3、第4の絞込条件による処理を連続的に実行することができる。これにより絞込度合を強くし過ぎて評価対象から外してしまった結果を逸失せずに、絞込みの範囲を広めることなく、連続的に変化させながら最適と考えられる最高評価の評価値群、最適な業務に到達することができる。尚、単独の絞込制御コンポーネント4に、設定条件から模擬処理範囲を絞り込むための所定の演算規則で絞込条件を生成する処理と、設定条件から模擬処理範囲を拡張するための所定の演算規則で絞込条件を生成する処理の双方を選択できるように設定する構成を用いても、同様の効果、即ち絞込度合を強くし過ぎて評価対象から外してしまった結果を逸失せずに、絞込みの範囲を広めることなく、連続的に変化させながら最適と考えられる最高評価の評価値群、最適な業務に到達することが可能である。
 また、統括処理部2と通信接続され絞込条件を生成する絞込制御コンポーネント4を複数とすることにより、例えば生産計画を立案する場所に第1の絞込制御コンポーネント4を設置すると共に、現場に第2の絞込制御コンポーネント4を設置し、同一人或いは異なる者が第1、第2の絞込制御コンポーネント4に設定条件をそれぞれ設定し、第1、第2の絞込制御コンポーネント2に絞込条件を生成させて業務シミュレーションを実行させる等の使用の仕方も可能となり、業務計画の立案過程の必要性に合わせて柔軟に業務シミュレーション処理を行うことができる。また、設定条件に基づき絞込条件を生成する絞込制御コンポーネント4を複数とすることにより、設定条件から絞込条件を生成する演算処理量を複数の絞込制御コンポーネント4に分散させ、各絞込制御コンポーネント4の演算処理負担を低減することができる。更に、第1、第2、第3、第4、第5、…の設定条件及び絞込条件に基づく演算処理を複数或いは多数行って最適な業務を探索する場合に、例えば変数1の好適な変数値と、変数2の好適な変数値と、変数3の好適な変数値を取得する処理を行う場合に、複数の絞込制御コンポーネント4で並行して設定条件から絞込条件を生成する処理を行うことができ、最適な業務に到達する全体的な処理を短時間で効率的に行うことができる。
 〔本明細書開示発明の包含範囲〕
 本明細書開示の発明は、発明として列記した各発明、各実施形態の他に、適用可能な範囲で、これらの部分的な内容を本明細書開示の他の内容に変更して特定したもの、或いはこれらの内容に本明細書開示の他の内容を付加して特定したもの、或いはこれらの部分的な内容を部分的な作用効果が得られる限度で削除して上位概念化して特定したものを包含する。そして、本明細書開示の発明には下記変形例や追記した内容も含まれる。
 例えば上記実施形態の業務計画最適化装置1では、統括処理部2が絞込制御コンポーネント4の絞込条件に基づき模擬処理条件を生成する構成としたが、例えば統括処理部2がデータ記憶部222に模擬処理条件を記憶し、この模擬処理条件による模擬処理要求をシミュレーター3に送信して模擬処理を行う構成とすることも可能である。更に、統括処理部2が、データ記憶部222に記憶した基礎となる基礎模擬処理条件を認識すると共に、特定時点の業務状況情報群を認識し、業務状況情報中に基礎模擬処理条件の個別条件よりも条件範囲が狭いものがある場合には狭いものを適用した模擬処理条件を生成し、この模擬処理条件による模擬処理要求をシミュレーター3に送信して模擬処理を行う構成とすると好適である。
 また、第1~第4実施形態の業務計画最適化装置1を用いて行う業務シミュレーション処理或いは業務計画最適化処理は上述したものに限定されず、例えば図11に示すように、統括処理部2が、業務全体の中から分割して認識した第1の業務範囲に関し、上記S1~S10等と同様の処理により、第1の業務範囲に対する模擬処理を実行させて第1の業務範囲の最高評価の評価値群を認識し(S31)、業務全体の中から分割して認識した第2の業務範囲に関し、上記S1~S10等と同様の処理により、第2の業務範囲に対する模擬処理を実行させて第2の業務範囲の最高評価の評価値群を認識し(S32)、第1の業務範囲の最高評価の評価値群に対応する第1の模擬処理条件と、第2の業務範囲の最高評価の評価値群に対応する第2の模擬処理条件とを含む第3の模擬処理条件を設定し(S33)、第1の業務範囲と第2の業務範囲を含む第3の業務範囲に対する模擬処理を第3の模擬処理条件を用いて実行させ(S34)、第3の業務範囲の最高評価の評価値群を認識する(S35)処理を行ってもよい(第1変形例の処理)。尚、第3の業務範囲に対する第3の模擬処理条件には、第1、第2の業務範囲以外の業務範囲に対する最高評価の評価値群に対応する模擬処理条件を更に含ませることが可能である。
 この処理においては、例えば第1の業務範囲として生産工程α、第2の業務範囲として生産工程αの後工程である生産工程βを設定し、生産工程α、β等に関する処理に必要なデータを統括処理部2、シミュレーター3に記憶させると共に、統括処理部2が、模擬処理要求αRiを生産工程αの認識した特定時点の業務状況情報群αAS1、αAS2、…、αASnと模擬処理条件αSCiと併せてシミュレーター3に送信し、模擬処理を実行させて生産工程αの最高評価の評価値群を認識する。また、統括処理部2は、模擬処理要求βRiを生産工程βの認識した特定時点の業務状況情報群βBS1、βBS2、…、βBSnと模擬処理条件βSCiと併せてシミュレーター3に送信し、模擬処理を実行させて生産工程βの最高評価の評価値群を認識する。
 そして、統括処理部2は、生産工程αの最高評価の評価値群に対応する模擬処理条件αSCmaxを第1の模擬処理条件とし、生産工程βの最高評価の評価値群に対応する模擬処理条件βSCmaxを第2の模擬処理条件として、第3の模擬処理条件[αSCmax、βSCmax]を設定し、第1の業務範囲と第2の業務範囲を含む第3の業務範囲に相当する生産工程(α+β)を設定し、模擬処理要求αβRiを、生産工程αの特定時点の業務状況情報群αAS1、αAS2、…、αASnと、生産工程βの特定時点の業務状況情報群βBS1、βBS2、…、βBSnと、第3の模擬処理条件[αSCmax、βSCmax]と併せてシミュレーター3に送信し、模擬処理を実行させて生産工程(α+β)全体の最高評価の評価値群を認識する処理等を実行する。
 第1変形例の処理によれば、業務全体の模擬処理を行うと演算量が膨大になり、組み合わせ爆発を起こす場合等に、業務全体から分割された複数の業務範囲に事前のシミュレーションを行い、各業務範囲の部分最適化に関する結果から業務全体のシミュレーションの模擬処理条件を取得し、この模擬処理条件によって業務目的関数に基づき業務全体の最高評価の評価値群を認識することができ、ハードウェア資源で現実的に実行可能な演算量で効率的に最高評価の評価値群、最適な業務を認識することができる。また、この方法では、業務全体から分割された業務範囲に基づくシミュレーションを行うことから、現状の業務に対する変更の少ない、行い易い業務が認識されやすくなり、現場や従事者が行い易い最適な業務を認識することができる。例えば今まで生産を行ってきた生産計画をベースに生産順番のある業務範囲に対して組み合わせ演算を行い部分的な最適化、好適化を行い、それを全ての業務範囲に対して逐次、処理し、更に業務全体に対して模擬処理を行うことにより、今までの計画の延長線上で最適な計画に変更していくことができる。
 また、第1~第4実施形態の業務計画最適化装置1を用いて行う別の業務シミュレーション処理或いは業務計画最適化処理として、例えば図12に示すように、統括処理部2が、第1の絞込条件に相当する所要の絞込条件に基づき生成した第1の模擬処理条件に相当する所要の模擬処理条件の模擬処理要求を業務状況情報群と第1の模擬処理条件と併せてそれぞれのシミュレーター3に送信し(S41)、それぞれのシミュレーター3から業務状況情報群と第1の模擬処理条件に基づく模擬処理結果として第1の複数の評価値群を受信し(S42)、受信した第1の複数の評価値群のうち第1の業務目的関数に相当する所定の業務目的関数に基づく第1の最高評価の評価値群を認識すると共に第1の複数の評価値群の分布を認識し(S43)、第1の複数の評価値群の分布を基礎として入力された第2の業務目的関数を記憶保持し(S44)、第1の複数の評価値群のうち第2の業務目的関数に基づく第2の最高評価の評価値群を認識する(S45)処理を行ってもよい(第2変形例の処理)。
 この処理においては、例えば統括処理部2が、上記S1~S11等と同様の処理を行って、受信した第1の複数の評価値群のうち第1の業務目的関数に基づく第1の最高評価の評価値群を認識すると共に第1の複数の評価値群の分布を認識する。そして、重み付け線形和:Sと、重み付け線形和Sの中から最大値を取得するMAX関数:MAX(Si=1,2,…t)を第1の業務目的関数とする例では、利用者が、第1の複数の評価値群の分布を基礎として、重み係数wj(j=1,2,…,n)のうち所要の重み係数を変更して第2の業務目的関数を統括処理部2に入力し、統括処理部2は第2の業務目的関数を記憶保持する。その後、統括処理部2は、所定の入力等に応じて、第1の複数の評価値群のうち第2の業務目的関数に基づく第2の最高評価の評価値群を認識すると共に第2の複数の評価値群の分布を認識する処理等を実行する。
 第2変形例の処理によれば、例えば第1の業務目的関数に基づく解或いは最適な業務によりも一層適切な解或いは最適な業務があるのではないかと管理者が判断した場合に、第1の複数の評価値群の分布を参考に第2の業務目的関数を設定し、第2の業務目的関数に基づく解或いは最適な業務を認識することや、複数の業務目的関数のそれぞれに基づく解或いは最適な業務を認識して管理者が対比検討すること等が可能となり、複数の評価値群、複数の最高評価の評価値群を総合的、多面的に検討して、より一層最適な業務を認識することができる。
 また、第1~第4実施形態の業務計画最適化装置1を用いて行う別の業務シミュレーション処理或いは業務計画最適化処理として、例えば図13に示すように、統括処理部2が、第1の絞込条件に基づき生成した第1の模擬処理条件の模擬処理要求を業務状況情報群と第1の模擬処理条件と併せてそれぞれのシミュレーター3に送信し(S51)、それぞれのシミュレーター3から業務状況情報群と第1の模擬処理条件に基づく模擬処理結果として第1の複数の評価値群を受信し(S52)、受信した第1の複数の評価値群のうち第1の業務目的関数に基づく第1の最高評価の評価値群を認識すると共に前記第1の複数の評価値群の分布を認識し(S53)、第1の複数の評価値群の分布を基礎として入力された第2の業務目的関数を記憶保持し(S54)、更に、第2の絞込条件に基づき生成した第2の模擬処理条件の模擬処理要求を業務状況情報群と第2の模擬処理条件と併せてそれぞれのシミュレーターに送信し(S55)、それぞれのシミュレーター3から業務状況情報群と第2の模擬処理条件に基づく模擬処理結果として第2の複数の評価値群を受信し(S56)、受信した第2の複数の評価値群のうち第2の業務目的関数に基づく第2の最高評価の評価値群を認識すると共に第2の複数の評価値群の分布を認識する(S57)処理を行ってもよい(第3変形例の処理)。
 この処理においては、例えば統括処理部2が、第2変形例のS41~S44と同様の処理により、第2の業務目的関数を記憶保持し、更に、第1の絞込条件とは異なる第2の絞込条件を用いて、上記S1~S11等と同様の処理を行い、受信した第2の複数の評価値群のうち第2の業務目的関数に基づく第2の最高評価の評価値群を認識すると共に第2の複数の評価値群の分布を認識する処理等を実行する。
 第3変形例の処理によれば、模擬処理結果の第1の複数の評価値群を第1の業務目的関数で評価し、第1の業務目的関数に基づく第1の最高評価の評価値群を認識し、更に、第1の複数の評価値群の分布を参考に設定した第2の業務目的関数を用い、第2の絞込条件、第2の模擬処理条件に対応する第1の複数の評価値群とは別の第2の複数の評価値群について、第2の最高評価の評価値群や第2の複数の評価値群の分布を認識することができる。従って、例えば第1の絞込条件、第1の業務目的関数に基づく解或いは最適な業務によりも一層適切な解或いは最適な業務があるのではないかと管理者が判断した場合に、第1の複数の評価値群の分布を参考に第2の業務目的関数を設定し、第2の絞込条件、第2の業務目的関数に基づく解或いは最適な業務を認識することや、複数の絞込条件、複数の業務目的関数のそれぞれに基づく解或いは最適な業務を認識して管理者が対比検討すること等が可能となり、複数の絞込条件、複数の業務目的関数による複数の評価値群、複数の最高評価の評価値群を総合的、多面的に検討して、より一層最適な業務を認識することができる。
 また、図14及び図15に示すように、統括処理部2と、統括処理部2に通信接続されて統括される複数のシミュレーター3を備える業務計画最適化装置1が複数設けられ、複数の業務計画最適化装置1が複数のシミュレーター3からなるシミュレーター3群を共用し、統括処理部2相互が通信接続されて構成されるシステムにおいて、一の業務計画最適化装置1の統括処理部2が模擬処理要求のシミュレーター3への送信開始に対応して模擬処理開始情報を生成して残りの業務計画最適化装置1の統括処理部2に送信し(S61)、残りの業務計画最適化装置1の統括処理部2がシミュレーター3群の模擬処理開始情報の受信に応じてシミュレーター3群のシミュレーター3の変動する一定時間内の処理可能量を経時的に認識する動作を停止し(S62)、一の業務計画最適化装置1の統括処理部2がシミュレーター3群のシミュレーター3からの模擬処理結果として複数の評価値の受信完了に対応して模擬処理完了情報を生成して残りの業務計画最適化装置1の統括処理部2に送信し(S63)、残りの業務計画最適化装置1の統括処理部2がシミュレーター3群の模擬処理完了情報の受信に応じてシミュレーター3群のシミュレーター3の変動する一定時間内の処理可能量を経時的に認識する動作を再開するようにしてもよい(S64)。この複数の業務計画最適化装置1の統括処理部2が模擬処理の開始と停止を直接的にやり取りする構成により、シミュレーター群3の処理可能量の経時的な認識処理を省力で行うことができると共に、シミュレーター3群を複数の業務計画最適化装置1で共用しハードウェア資源を効率的に利用することが可能となる。
 また、図16及び図17に示すように、統括処理部2と、統括処理部2に通信接続されて統括される複数のシミュレーター3を備える業務計画最適化装置1が複数設けられ、複数の業務計画最適化装置1が複数のシミュレーター3からなるシミュレーター3群を共用し、演算制御部と演算制御部の制御プログラムやデータを記憶する記憶部と入力部と出力部と通信インターフェイスを備える統合管理装置10に各統括処理部2が通信接続されて構成されるシステムにおいて、一の業務計画最適化装置1の統括処理部2が模擬処理要求のシミュレーター3への送信開始に対応して第1の模擬処理開始情報を生成して統合管理装置10に送信し(S71)、統合管理装置10或いはその演算制御部が第1の模擬処理開始情報の受信に応じて第2の模擬処理開始情報を生成して残りの業務計画最適化装置1の統括処理部2に送信し(S72)、残りの業務計画最適化装置1の統括処理部2がシミュレーター3群の第2の模擬処理開始情報の受信に応じてシミュレーター3群のシミュレーター3の変動する一定時間内の処理可能量を経時的に認識する動作を停止し(S73)、一の業務計画最適化装置1の統括処理部2がシミュレーター3群のシミュレーター3からの模擬処理結果として複数の評価値の受信完了に対応して第1の模擬処理完了情報を生成して統合管理装置10に送信し(S74)、統合管理装置10或いはその演算制御部が第1の模擬処理完了情報の受信に応じて第2の模擬処理完了情報を生成して残りの業務計画最適化装置1の統括処理部2に送信し(S75)、残りの業務計画最適化装置1の統括処理部2がシミュレーター3群の第2の模擬処理完了情報の受信に応じてシミュレーター3群のシミュレーター3の変動する一定時間内の処理可能量を経時的に認識する動作を再開するようにしてもよい(S76)。この複数の業務計画最適化装置1の統括処理部2が模擬処理の開始と停止を間接的にやり取りする構成によっても、シミュレーター群3の処理可能量の経時的な認識処理を省力で行うことができると共に、シミュレーター3群を複数の業務計画最適化装置1で共用しハードウェア資源を効率的に利用することが可能となる。
 本発明は、例えば生産工程、物流工程、工場等のレイアウト計画、要員計画等の各種業務の離散的シミュレーションを行って効果分析を得る際に利用することができる。
1…業務計画最適化装置 2…統括処理部 21…演算制御部 22…記憶部 221…処理プログラム記憶部 222…データ記憶部 23…入力部 24…出力部 25…通信インターフェイス 3…シミュレーター 31…演算制御部 32…記憶部 321…処理プログラム記憶部 322…データ記憶部 33…入力部 34…出力部 35…通信インターフェイス 4…絞込制御コンポーネント 41…絞込条件格納部 401…演算制御部 402…記憶部 42…プログラム記憶部 403…入力部 404…出力部 405…通信インターフェイス 5…作業者端末 51…演算制御部 52…記憶部 521…処理プログラム記憶部 522…データ記憶部 53…入力部 54…出力部 55…通信インターフェイス 6…業務状況情報取得部 10…統合管理装置
 

Claims (11)

  1.  統括処理部と、前記統括処理部に通信接続されて統括される複数のシミュレーターを備え、
     前記統括処理部が、
     前記シミュレーターのそれぞれの変動する一定時間内の処理可能量を経時的に認識し、
     それぞれの前記シミュレーターの認識した前記処理可能量内の最適処理量内の模擬処理の模擬処理要求を業務状況情報群と模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、
     それぞれの前記シミュレーターから前記業務状況情報群と前記模擬処理条件に基づく模擬処理結果として複数の評価値群を受信し、
     受信した複数の評価値群のうち業務目的関数に基づく最高評価の評価値群を認識する
     ことを特徴とする業務計画最適化装置。
  2.  前記評価値群に現業務との類似度が評価値として含まれることを特徴とする請求項1記載の業務計画最適化装置。
  3.  前記業務状況情報を取得する業務状況情報取得部を備え、
     前記業務状況情報取得部から前記業務状況情報が前記統括処理部に送信されることを特徴とする請求項1又は2記載の業務計画最適化装置。
  4.  前記統括処理部が、認識した前記最高評価の評価値群に対応する個別業務指示を生成し、前記個別業務指示を少なくとも作業者端末に略リアルタイムで送信することを特徴とする請求項1~3の何れかに記載の業務計画最適化装置。
  5.  前記統括処理部と通信接続される絞込制御コンポーネントを備え、
     前記統括処理部が、前記絞込制御コンポーネントの絞込条件と前記業務状況情報群に基づき模擬処理条件を生成することを特徴とする請求項1~4の何れかに記載の業務計画最適化装置。
  6.  前記絞込制御コンポーネントの前記絞込条件の絞込度合が変更可能である、若しくは前記絞込制御コンポーネントに複数の絞込度合の前記絞込条件が設定されていることを特徴とする請求項5記載の業務計画最適化装置。
  7.  前記絞込制御コンポーネントが設定条件に基づき前記絞込条件を生成すると共に、前記絞込制御コンポーネントが複数設けられることを特徴とする請求項5又は6記載の業務計画最適化装置。
  8.  前記複数のシミュレーターを共用する別の業務計画最適化装置の別の統括処理部から模擬処理の開始と完了の情報を前記統括処理部が直接的若しくは間接的に受信し、
     前記統括処理部が、前記模擬処理の開始から完了までの間は前記シミュレーターのそれぞれの変動する一定時間内の処理可能量の経時的な認識を停止することを特徴とする請求項1~7の何れかに記載の業務計画最適化装置。
  9.  請求項1~8の何れかに記載の業務計画最適化装置を用いる業務計画最適化方法であって、
     前記統括処理部が、
     第1の業務範囲に対する模擬処理を実行させて第1の業務範囲の最高評価の評価値群を認識する工程と、
     第2の業務範囲に対する模擬処理を実行させて第2の業務範囲の最高評価の評価値群を認識する工程と、
     前記第1の業務範囲の最高評価の評価値群に対応する第1の模擬処理条件と、前記第2の業務範囲の最高評価の評価値群に対応する第2の模擬処理条件とを含む第3の模擬処理条件を設定し、前記第1の業務範囲と前記第2の業務範囲を含む第3の業務範囲に対する模擬処理を前記第3の模擬処理条件を用いて実行させ、第3の業務範囲の最高評価の評価値群を認識する工程
     を備えることを特徴とする業務計画最適化方法。
  10.  請求項1~8の何れかに記載の業務計画最適化装置を用いる業務計画最適化方法であって、
     前記統括処理部が、
     第1の絞込条件に基づき生成した第1の模擬処理条件の模擬処理要求を業務状況情報群と前記第1の模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、
     それぞれの前記シミュレーターから前記業務状況情報群と前記第1の模擬処理条件に基づく模擬処理結果として第1の複数の評価値群を受信し、
     受信した前記第1の複数の評価値群のうち第1の業務目的関数に基づく第1の最高評価の評価値群を認識すると共に前記第1の複数の評価値群の分布を認識し、
     前記第1の複数の評価値群の分布を基礎として入力された第2の業務目的関数を記憶保持し、
     前記第1の複数の評価値群のうち第2の業務目的関数に基づく第2の最高評価の評価値群を認識することを特徴とする業務計画最適化方法。
  11.  請求項1~8の何れかに記載の業務計画最適化装置を用いる業務計画最適化方法であって、
     前記統括処理部が、
     第1の絞込条件に基づき生成した第1の模擬処理条件の模擬処理要求を業務状況情報群と前記第1の模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、
     それぞれの前記シミュレーターから前記業務状況情報群と前記第1の模擬処理条件に基づく模擬処理結果として第1の複数の評価値群を受信し、
     受信した前記第1の複数の評価値群のうち第1の業務目的関数に基づく第1の最高評価の評価値群を認識すると共に前記第1の複数の評価値群の分布を認識し、
     前記第1の複数の評価値群の分布を基礎として入力された第2の業務目的関数を記憶保持し、
     第2の絞込条件に基づき生成した第2の模擬処理条件の模擬処理要求を前記業務状況情報群と前記第2の模擬処理条件と併せてそれぞれの前記シミュレーターに送信し、
     それぞれの前記シミュレーターから前記業務状況情報群と前記第2の模擬処理条件に基づく模擬処理結果として第2の複数の評価値群を受信し、
     受信した前記第2の複数の評価値群のうち前記第2の業務目的関数に基づく第2の最高評価の評価値群を認識すると共に前記第2の複数の評価値群の分布を認識することを特徴とする業務計画最適化方法。
     
PCT/JP2017/017209 2017-02-24 2017-05-01 業務計画最適化装置及び業務計画最適化方法 Ceased WO2018154799A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780086802.0A CN110337659A (zh) 2017-02-24 2017-05-01 业务规划优化装置及业务规划优化方法
US16/487,208 US11314238B2 (en) 2017-02-24 2017-05-01 Plant operational plan optimization discrete event simulator device and method
EP17897299.8A EP3588400B1 (en) 2017-02-24 2017-05-01 Operational plan optimization device and operational plan optimization method
SG11201907101UA SG11201907101UA (en) 2017-02-24 2017-05-01 Operational plan optimization device and operational plan optimization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017033333A JP6962539B2 (ja) 2017-02-24 2017-02-24 業務計画最適化方法
JP2017-033333 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018154799A1 true WO2018154799A1 (ja) 2018-08-30

Family

ID=63252546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017209 Ceased WO2018154799A1 (ja) 2017-02-24 2017-05-01 業務計画最適化装置及び業務計画最適化方法

Country Status (7)

Country Link
US (1) US11314238B2 (ja)
EP (1) EP3588400B1 (ja)
JP (1) JP6962539B2 (ja)
CN (1) CN110337659A (ja)
SG (1) SG11201907101UA (ja)
TW (1) TWI808961B (ja)
WO (1) WO2018154799A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783450A1 (en) * 2019-08-23 2021-02-24 Henkel AG & Co. KGaA Method for applying an optimized processing treatment to items in an industrial treatment line and associated system
CN120170442A (zh) * 2025-05-22 2025-06-20 成都工业学院 一种基于惯性slam的智能装配机器人系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107861478B (zh) * 2017-10-17 2018-08-14 广东工业大学 一种智能车间平行控制方法及系统
JP6726255B2 (ja) * 2018-10-18 2020-07-22 日東電工株式会社 作業者選定システム、作業者選定方法及び作業者選定コンピュータ・プログラム
JP6845204B2 (ja) * 2018-10-30 2021-03-17 ファナック株式会社 ノウハウ作成装置、ノウハウ作成方法及びノウハウ作成プログラム
CN111861050B (zh) * 2019-04-25 2024-02-20 富联精密电子(天津)有限公司 生产制程管控装置、方法及计算机可读存储介质
US20210110461A1 (en) * 2019-10-10 2021-04-15 Coupang Corp. Systems and methods for optimization of a product inventory by intelligent adjustment of inbound purchase orders
JP7416597B2 (ja) * 2019-10-11 2024-01-17 株式会社日立製作所 情報処理装置、及び情報処理方法
WO2021090392A1 (ja) * 2019-11-06 2021-05-14 三菱電機株式会社 在庫費算出システム、在庫費算出方法および在庫費算出プログラム
JP7344101B2 (ja) * 2019-11-29 2023-09-13 株式会社日立製作所 情報処理装置および情報処理方法
CN111090526A (zh) * 2019-12-20 2020-05-01 北京浪潮数据技术有限公司 一种资源过滤方法、装置及相关组件
JP7341073B2 (ja) * 2020-01-22 2023-09-08 株式会社日立製作所 工場管理装置、工場管理方法、及び工場管理プログラム
JP7328923B2 (ja) * 2020-03-16 2023-08-17 株式会社東芝 情報処理装置、情報処理方法、及びコンピュータプログラム
JP7481676B2 (ja) * 2020-08-06 2024-05-13 オムロン株式会社 環境変更提案システムおよび環境変更提案プログラム
JP7685509B2 (ja) * 2020-08-26 2025-05-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理方法及び情報処理システム
CN114429625A (zh) * 2020-10-29 2022-05-03 株式会社松井制作所 管理系统及运算方法
US11436543B2 (en) * 2020-12-31 2022-09-06 Target Brands, Inc. Plan creation interfaces for warehouse operations
KR20230082998A (ko) * 2021-12-02 2023-06-09 현대자동차주식회사 부품 물류 시스템 및 그 운용방법
CN116449776A (zh) * 2023-03-16 2023-07-18 内蒙古领益智能科技有限公司 一种辅助开停工管理系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202742A (ja) 1999-01-14 2000-07-25 Kobe Steel Ltd シミュレ―ション方法及びその装置
JP2003288476A (ja) * 2002-03-28 2003-10-10 Hitachi Ltd 生産ラインの統合ライン能力評価・管理運用システム、および、その統合ライン能力評価・管理運用方法
JP2012008729A (ja) * 2010-06-23 2012-01-12 Nets:Kk 生産ラインシミュレーション装置およびプログラム
WO2013145512A1 (ja) * 2012-03-30 2013-10-03 日本電気株式会社 管理装置及び分散処理管理方法
JP5688864B2 (ja) 2013-09-03 2015-03-25 株式会社レクサー・リサーチ 生産システムシミュレーション装置、生産システムシミュレーション方法及び生産システムシミュレーションプログラム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229948A (en) * 1990-11-03 1993-07-20 Ford Motor Company Method of optimizing a serial manufacturing system
JPH06195347A (ja) * 1992-12-22 1994-07-15 Shimu Totsupusu:Kk 製造業における製造計画の自動スケジューリング方法
JP2848349B2 (ja) * 1996-09-03 1999-01-20 日本電気株式会社 原価積み上げシミュレーションシステム
JPH10240717A (ja) 1997-02-25 1998-09-11 Toshiba Corp 製造業シミュレータ
US6405157B1 (en) 1998-05-13 2002-06-11 Nec Corporation Evaluation value computing system in production line simulator
JP2002006934A (ja) 2000-06-27 2002-01-11 Matsushita Electric Works Ltd 製造ラインにおける作業者の配分調整方法とそのシステム
US7627493B1 (en) 2000-08-25 2009-12-01 SCA Holdings Production and distribution supply chain optimization software
AU2003253594A1 (en) * 2002-04-23 2003-11-10 Tokyo Electron Limited Method and apparatus for simplified system configuration
JP2004070574A (ja) 2002-08-05 2004-03-04 Mitsubishi Heavy Ind Ltd 作業者数の最適化方法
US20040230404A1 (en) * 2002-08-19 2004-11-18 Messmer Richard Paul System and method for optimizing simulation of a discrete event process using business system data
JP4008319B2 (ja) 2002-09-10 2007-11-14 三菱重工業株式会社 安全衛生管理モニタ装置、安全衛生管理モニタ方法および安全衛生管理モニタプログラム
US7499766B2 (en) * 2002-10-11 2009-03-03 Invistics Corporation Associated systems and methods for improving planning, scheduling, and supply chain management
US20060200333A1 (en) * 2003-04-10 2006-09-07 Mukesh Dalal Optimizing active decision making using simulated decision making
JP2005070883A (ja) 2003-08-28 2005-03-17 Toshiba Corp 作業者割付けプログラム
JP2005100092A (ja) 2003-09-25 2005-04-14 Sony Corp 半導体生産シミュレーション方法および半導体生産シミュレーションプログラム
JP4480734B2 (ja) * 2007-02-28 2010-06-16 株式会社レクサー・リサーチ 作業計画立案支援システム
EP2172887A3 (en) * 2008-09-30 2011-11-09 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
TWI394089B (zh) * 2009-08-11 2013-04-21 Univ Nat Cheng Kung 虛擬生產管制系統與方法及其電腦程式產品
CN101833709A (zh) * 2010-05-11 2010-09-15 同济大学 半导体生产线生产计划的混合智能优化方法
US8952805B2 (en) 2010-09-06 2015-02-10 Aurizon Operations Limited Worker's personal alarm device
KR101306528B1 (ko) 2010-11-17 2013-09-09 서울대학교산학협력단 작업자의 신체활동량 및 종합스트레스지수 예측 시스템
CN102023573B (zh) * 2010-12-10 2012-07-25 北京化工大学 半导体生产线投料控制方法
JP2015126804A (ja) 2013-12-27 2015-07-09 株式会社日立システムズ ウェアラブルデバイスおよびデータ収集方法
US20150220669A1 (en) 2014-02-04 2015-08-06 Ingersoll-Rand Company System and Method for Modeling, Simulation, Optimization, and/or Quote Creation
JP2016126440A (ja) * 2014-12-26 2016-07-11 大日本印刷株式会社 サーバ、情報管理方法、情報管理システム、及びプログラム
CN205028425U (zh) 2015-09-29 2016-02-10 广东石油化工学院 一种基于互联网技术的石化职工健康安全预警装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202742A (ja) 1999-01-14 2000-07-25 Kobe Steel Ltd シミュレ―ション方法及びその装置
JP2003288476A (ja) * 2002-03-28 2003-10-10 Hitachi Ltd 生産ラインの統合ライン能力評価・管理運用システム、および、その統合ライン能力評価・管理運用方法
JP2012008729A (ja) * 2010-06-23 2012-01-12 Nets:Kk 生産ラインシミュレーション装置およびプログラム
WO2013145512A1 (ja) * 2012-03-30 2013-10-03 日本電気株式会社 管理装置及び分散処理管理方法
JP5688864B2 (ja) 2013-09-03 2015-03-25 株式会社レクサー・リサーチ 生産システムシミュレーション装置、生産システムシミュレーション方法及び生産システムシミュレーションプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIRO NAKAMURATADASHI MAKIHARAJUN-ICHI SUGIURAYOSUKE KAMIOKA: "International Journal of Automation Technology", vol. 11, 5 January 2017, FUJI TECHNOLOGY PRESS LTD, article "Dynamic Optimization Production System Based on Simulation Integrated Manufacturing and its Application to Mass Production", pages: 56 - 66

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783450A1 (en) * 2019-08-23 2021-02-24 Henkel AG & Co. KGaA Method for applying an optimized processing treatment to items in an industrial treatment line and associated system
WO2021037693A1 (en) * 2019-08-23 2021-03-04 Henkel Ag & Co. Kgaa Method for applying an optimized processing treatment to items in an industrial treatment line and associated system
CN114365050A (zh) * 2019-08-23 2022-04-15 汉高股份有限及两合公司 对工业处理线中的物品应用优化加工处理的方法和相关系统
US12153410B2 (en) 2019-08-23 2024-11-26 Henkel Ag & Co. Kgaa Method for applying an optimized processing treatment to items in an industrial treatment line and associated system
KR102865134B1 (ko) 2019-08-23 2025-09-29 헨켈 아게 운트 코. 카게아아 산업용 처리 라인에서 최적화된 프로세싱 처리를 물품에 적용하기 위한 방법 및 연관된 시스템
CN120170442A (zh) * 2025-05-22 2025-06-20 成都工业学院 一种基于惯性slam的智能装配机器人系统

Also Published As

Publication number Publication date
EP3588400B1 (en) 2023-07-05
JP6962539B2 (ja) 2021-11-05
TWI808961B (zh) 2023-07-21
CN110337659A (zh) 2019-10-15
EP3588400A1 (en) 2020-01-01
JP2018139041A (ja) 2018-09-06
SG11201907101UA (en) 2019-09-27
US11314238B2 (en) 2022-04-26
EP3588400A4 (en) 2020-08-12
TW201835821A (zh) 2018-10-01
US20190377334A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6962539B2 (ja) 業務計画最適化方法
US20230004149A1 (en) Digital twin modeling and optimization of production processes
Li et al. Big data in product lifecycle management
US8849733B2 (en) Benchmarking progressive systems for solving combinatorial problems
KR101550740B1 (ko) 실시간 공장상황을 반영한 디지털 팩토리 생산능력 관리 시스템
Qu et al. Learning adaptive dispatching rules for a manufacturing process system by using reinforcement learning approach
US20240036561A1 (en) Production Line Design Device, Production Line Design System, and Production Line Design Method
Pfeiffer Novel methods for decision support in production planning and control
Ding et al. " ONE" a new tool for supply chain network optimization and simulation
Bucki et al. Modelling Decision‐Making Processes in the Management Support of the Manufacturing Element in the Logistic Supply Chain
JP7244128B2 (ja) 業務計画最適化装置及び業務計画最適化方法
Alfieri et al. Usage of SoS methodologies in production system design
Pereira et al. Applying Theory of Constraints (TOC) to digital twins: simulation and managerial outputs
CN117494886A (zh) 一种基于遗传算法的生产排程方法
EP4156041A1 (en) Information processing device, work plan specifying method, and work plan specifying program
JP2023170169A (ja) 生産計画装置、生産計画方法およびプログラム
Villarraga et al. Agent-based modeling and simulation for an order-to-cash process using netlogo
Kulcsár et al. An advanced model for solving industrial scheduling problems
Ishmetyev et al. On the aspect of implementing solutions for information support of industrial plant control systems
JP2023023386A (ja) 作業順序列生成装置および作業順序列生成方法
Long et al. Analysis of Priority Decision Rules Using MCDM Approach for a Dual-Resource Constrained Flexible Job Shop Scheduling by Simulation Method
Lee et al. Design of decision support system for yield management in semiconductor industry: application to artificial intelligence
Bikfalvi et al. On some functions of the MES applications supporting production operations management
US20250271834A1 (en) Production management device, production management method, and program
Arfiana et al. Analysis and design of the flow shop scheduling system in sausage production to minimize Makespan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017897299

Country of ref document: EP

Effective date: 20190924