WO2011132147A1 - Nouvelles structures organométalliques constituant un matériau d'électrode pour accumulateurs lithium-ion - Google Patents
Nouvelles structures organométalliques constituant un matériau d'électrode pour accumulateurs lithium-ion Download PDFInfo
- Publication number
- WO2011132147A1 WO2011132147A1 PCT/IB2011/051696 IB2011051696W WO2011132147A1 WO 2011132147 A1 WO2011132147 A1 WO 2011132147A1 IB 2011051696 W IB2011051696 W IB 2011051696W WO 2011132147 A1 WO2011132147 A1 WO 2011132147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode material
- metal
- lithium ion
- lithium
- porous metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F1/00—Compounds containing elements of Groups 1 or 11 of the Periodic Table
- C07F1/005—Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F1/00—Compounds containing elements of Groups 1 or 11 of the Periodic Table
- C07F1/02—Lithium compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to electrode materials which are suitable for a lithium ion accumulator and comprise a porous metal-organic framework, the metal-organic framework as such, the use thereof and also accumulators comprising the electrode material.
- Lithium ion batteries or lithium ion accumulators have a high energy density and are thermally stable.
- the fact that a high cell voltage can be obtained when using lithium because of its high negative standard potential is exploited.
- the high reactivity of elemental lithium requires the provision of special lithium sources and electrolytes.
- porous metal-organic frameworks which comprise lithium ions and are thus in principle suitable for lithium ion batteries or accumulators are described.
- G. de Combarieu et al., Chem. Mater. 21 (2009), 1602-161 1 describes the electrochemical suitability of a porous metal-organic framework based on iron terephthalate in lithium ion batteries.
- Li/Fe-based metal-organic frameworks having reversible redox properties and sorption properties are described by G. Ferey et al., Angewandte Chemie 1 19 (2007), 3323-3327.
- terephthalic acid serves as organic ligand in the metal-organic framework.
- an electrode material which is suitable for a lithium ion accumulator and comprises a porous metal-organic framework, wherein the framework comprises lithium ions and optionally at least one further metal ion and at least one at least bidentate organic compound and the at least one at least bidentate organic compound is based on a dihydroxydicarboxylic acid which can be reversibly oxidized to a quinoid structure.
- a further aspect of the present invention is a porous metal-organic framework as set forth here.
- the porous metal-organic framework of the invention comprises, firstly, lithium ions.
- the lithium ions can here be partly bound, in particular ionically, to deprotonated hydroxyl functions.
- Lithium ions can also serve to make up the skeleton of a framework. In this case, it is sufficient for only lithium ions to be present in the framework.
- one or more metal ions other than lithium can optionally be present. These then participate in formation of the metal-organic framework.
- a further metal ion can be present in addition to lithium ions. It is likewise possible for two, three, four or more than four further metal ions to be present.
- the metal ions can be derived from one metal or various metals. If at least two metal ions are derived from one and the same metal, these have to be present in different oxidation states.
- the porous metal-organic framework of the invention comprises no further metal ions in addition to lithium ions.
- the porous metal-organic framework of the invention comprises at least one further metal ion in addition to lithium ions.
- the at least one further metal ion is preferably selected from the group consisting of the metals cobalt, iron, nickel, copper, manganese, chromium, vanadium and titanium. Greater preference is given to cobalt, iron, nickel and copper. Cobalt and copper are even more preferred.
- At least one at least bidentate organic compound is necessary to build up the porous metal-organic framework of the invention. It is therefore possible for either one at least bidentate organic compound or a plurality of different at least bidentate organic compounds to be present.
- the at least one at least bidentate organic compound is based on a dihydroxydicarboxylic acid which can be reversibly oxidized to a quinoid structure.
- quinoid means, in particular, that the two hydroxy groups can be oxidized to oxo groups.
- Reversibly means, in particular, that, after reduction, the oxidation can be carried out again.
- the term "derived" means that the at least one at least bidentate organic compound is present in partially or completely deprotonated form in respect of the carboxy functions. Furthermore, it is preferred that the at least one at least bidentate organic compound is also at least partially deprotonated in the reduced state in respect of its hydroxy groups and binds lithium ions, usually via an ionic bond. Furthermore, the term “derived” means that the at least one at least bidentate organic compound can have further substituents. Thus, one or more independent substituents such as amino, methoxy, halogen or methyl groups can be present in addition to the carboxyl function. Preference is given to no further substituents or only F substituents being present.
- the term "derived" also means that the carboxyl function can be present as a sulfur analogue.
- the metal-organic framework can also comprise one or more monodentate ligands.
- the at least one at least bidentate organic compound has to have a parent molecule which is capable of forming the quinoid system. This is achieved, in particular, by the parent molecule having a double bond system conjugated with the oxo groups, in particular by the presence of C-C double bonds.
- parent molecules are known to those skilled in the art. Examples are benzene, naphthalene, phenanthrene or similar parent molecules. These then bear at least the hydroxy/hydroxide groups and the carboxy/carboxylate groups.
- the dihydroxydicarboxylic acid is a dihydroxybenzenedicarboxylic acid, in particular 2, 5-dihydroxyterephthalic acid.
- the porous metal-organic frameworks of the invention can in principle be prepared in the same way as comparable metal-organic frameworks which are known from the prior art.
- the preparation of doped or impregnated metal-organic frameworks is described, for example, in EP-B 1 785 428 and EP-A 1 070 538.
- the porous metal-organic frameworks (MOFs) as described, for example, in US 5,648,508, these can also be prepared by an electrochemical route. In this respect, reference is made to DE-A 103 55 087 and WO-A 2005/049892.
- the metal- organic frameworks prepared by this route have particularly good properties.
- a further aspect of the present invention is an accumulator comprising the electrode material of the invention.
- accumulators The production of accumulators according to the invention is known in principle from the prior art for the production of lithium ion accumulators or lithium ion batteries.
- reference may be made, for example, to DE-A 199 16 043. Since the structural principle for accumulators and batteries is the same in this respect, reference will hereinafter be made to a lithium ion battery or battery in the interest of simplicity.
- the electrode material which is suitable for the reversible storage of lithium ions is usually fixed to power outlet electrodes by means of a binder.
- electrons flow through an external voltage source and lithium cations flow through the electrolyte to the anode material.
- the lithium cations flow through the electrolyte while the electrons flow through a load from the anode material to the cathode material.
- an electrically insulating layer through which lithium cations can nevertheless pass is present between the two electrodes. This can be a solid electrolyte or a conventional separator.
- the required battery foils/films i.e. cathode foils, anode foils and separator foils
- the cathode and anode foils are connected to power outlet electrodes in the form of, for example, an aluminum or copper foil.
- Such metal foils ensure sufficient mechanical stability.
- the separator film on the other hand, must on its own withstand the mechanical stresses, which in the case of conventional separator films based on, for example, polyolefins in the thickness used does not present a problem.
- the present invention further provides for the use of a porous metal-organic framework according to the invention in an electrode material for lithium ion accumulators.
- the electrode material of the invention is particularly suitable for use in an accumulator.
- the electrode material can basically be used in electrochemical cells.
- the present invention therefore further provides an electrochemical cell comprising an electrode material according to the invention and also provides for the use of a porous metal-organic framework according to the invention in an electrode material for electrochemical cells.
- Fig. 1 XRD analysis of an Li-2,5-dihydroxyterephthalic acid MOF.
- the intensity I (Lin(Counts)) is shown as a function of the 2 theta scale (2 ⁇ ).
- the 2,5-dihydroxyterephthalic acid is dissolved in DMF.
- the lithium hydroxide is dissolved in water. This solution is slowly added dropwise to the first yellow solution. Shortly before the end of the addition, the solution becomes turbid and changes into a green suspension. This is filtered after 1 hour and the solid is washed 4 times with 100 ml each time of DMF. The filtercake is dried overnight at RT under reduced pressure.
- Example 2 Li Doping of a Co-2,5-dihydroxyterephthalic acid MOF (Co-DHBDC MOF)
- the Co-2,5-dihydroxyterephthalic acid MOF (see 2a) is suspended in DMF.
- the lithium hydroxide is dissolved in water. This solution is added dropwise to the first red suspension. The suspension becomes slightly dark red. After 2 hours, the suspension is filtered and the solid is washed 4 times with 100 ml each time of DMF. The filtercake is dried overnight at RT under reduced pressure and subsequently at 130°C for 16 hours under reduced pressure.
- Example 3 Li Doping of a Cu-2,5-dihydroxyterephthalic acid MOF (Cu-DHBDC MOF)
- the Cu-2,5-dihydroxyterephthalic acid MOF (see 3a) is suspended in DMF.
- the lithium hydroxide is dissolved in water. This solution is added dropwise to the first suspension. After 2 hours, the suspension was filtered and the solid was washed 4 times with 100 ml each time of DMF. The filtercake is dried overnight at RT under reduced pressure and subsequently at 130°C under reduced pressure for 16 hours.
- the dispersion was applied to Al foil by means of a doctor blade and dried at 120°C under reduced pressure for 10 hours.
- An electrochemical cell was constructed.
- Anode Li foil 50 ⁇ thick, separator: Freundenberg 2190, from Freundenberg; cathode on Al foil with MOF as described above; electrolyte: EC (ethylene carbonate)/DEC(diethyl carbonate) 3 : 7% by volume with lithium hexafluorophosphate (LIPF 6 ) 1 mol/l.
- EC ethylene carbonate
- DEC diethyl carbonate
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013505590A JP2013525972A (ja) | 2010-04-21 | 2011-04-19 | リチウムイオン蓄電池用の電極材料としての新規な金属有機構造体 |
| RU2012149351/04A RU2012149351A (ru) | 2010-04-21 | 2011-04-19 | Новые металлоорганические каркасные структуры в качестве электродного материала для литий-ионных аккумуляторов |
| CA2795517A CA2795517A1 (fr) | 2010-04-21 | 2011-04-19 | Nouvelles structures organometalliques constituant un materiau d'electrode pour accumulateurs lithium-ion |
| EP11771672A EP2561568A1 (fr) | 2010-04-21 | 2011-04-19 | Nouvelles structures organométalliques constituant un matériau d'électrode pour accumulateurs lithium-ion |
| CN201180019531XA CN102893434A (zh) | 2010-04-21 | 2011-04-19 | 作为用于锂离子蓄电池的电极材料的新型金属-有机骨架 |
| KR1020127029801A KR20130033369A (ko) | 2010-04-21 | 2011-04-19 | 리튬 이온 축전지용 전극 재료로서 신규한 금속 유기 구조체 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10160560.8 | 2010-04-21 | ||
| EP10160560 | 2010-04-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011132147A1 true WO2011132147A1 (fr) | 2011-10-27 |
Family
ID=44833772
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2011/051696 Ceased WO2011132147A1 (fr) | 2010-04-21 | 2011-04-19 | Nouvelles structures organométalliques constituant un matériau d'électrode pour accumulateurs lithium-ion |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP2561568A1 (fr) |
| JP (1) | JP2013525972A (fr) |
| KR (1) | KR20130033369A (fr) |
| CN (1) | CN102893434A (fr) |
| CA (1) | CA2795517A1 (fr) |
| RU (1) | RU2012149351A (fr) |
| WO (1) | WO2011132147A1 (fr) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9340884B2 (en) | 2010-12-15 | 2016-05-17 | Basf Se | Process for the electrochemical fluorination of organic compounds |
| US9527751B2 (en) | 2011-11-11 | 2016-12-27 | Basf Se | Organotemplate-free synthetic process for the production of a zeolitic material of the CHA-type structure |
| FR3063180A1 (fr) * | 2017-02-21 | 2018-08-24 | Commissariat Energie Atomique | Utilisation d'un compose hybride a matrice mixte organique-inorganique, dit mof, comme materiau actif d'electrode. |
| CN110491686A (zh) * | 2019-08-28 | 2019-11-22 | 齐鲁工业大学 | 一种双金属有机配位化合物电极材料的制备方法和应用 |
| FR3082513A1 (fr) * | 2018-06-18 | 2019-12-20 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de preparation d'un oxyde metallique lithie pouvant etre utilise comme materiau actif d'electrode positive |
| CN112490412A (zh) * | 2019-09-11 | 2021-03-12 | 肇庆市华师大光电产业研究院 | 一种新型钠离子电池负极材料及其制备方法 |
| WO2023207421A1 (fr) * | 2022-12-14 | 2023-11-02 | 湖北亿纬动力有限公司 | Matériau d'électrode positive de lithium-manganèse-fer-phosphate composite, son procédé de préparation et son application |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103165912A (zh) * | 2013-02-28 | 2013-06-19 | 北京化工大学常州先进材料研究院 | 一种用于锂空气电池阴极的催化剂及制备方法 |
| CN103706401B (zh) * | 2014-01-14 | 2016-04-13 | 东北师范大学 | 一种钴金属有机框架/大孔碳复合物的制备方法 |
| CN104393300B (zh) * | 2014-10-14 | 2017-09-29 | 中国科学院宁波材料技术与工程研究所 | 锂离子电池的电极材料及其在锂离子电池中的应用 |
| CN105390696B (zh) * | 2015-12-04 | 2018-01-23 | 华南师范大学 | 一种高比容量锂电池负极材料的制备方法 |
| CN106981661B (zh) * | 2017-06-05 | 2019-08-23 | 南京工业大学 | 一种锂离子电池电极材料的制备方法 |
| CN107887599A (zh) * | 2017-11-01 | 2018-04-06 | 上海纳米技术及应用国家工程研究中心有限公司 | Mof表面改性纳米片结构三元正极材料的制备方法及其产品和应用 |
| KR102488917B1 (ko) * | 2017-11-24 | 2023-01-17 | 한국재료연구원 | 금속 유기 골격체 기반의 3d 프린팅을 이용한 급속 충전용 전극 제조 방법 |
| CN109054035B (zh) * | 2018-06-29 | 2020-11-10 | 中国科学院合肥物质科学研究院 | 一种纳米花状Ti-MOF荧光探针材料及其制备方法与应用 |
| JP7354740B2 (ja) * | 2019-10-01 | 2023-10-03 | 株式会社豊田中央研究所 | 蓄電デバイスの製造方法及び蓄電デバイス用電極の活性化方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6350845B1 (en) * | 1999-06-28 | 2002-02-26 | Kaneka Corporation | Polyimide compositions and novel acid dianhydrides to be used therein |
| US20090005243A1 (en) * | 2007-04-23 | 2009-01-01 | Goddard William A | Doped metal organic frameworks for reversible H2 storage at ambient temperature |
| WO2009133366A2 (fr) * | 2008-04-29 | 2009-11-05 | Universitetet I Oslo | Composés organo-métalliques (mof) |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10355087A1 (de) * | 2003-11-24 | 2005-06-09 | Basf Ag | Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials |
| RU2007120575A (ru) * | 2004-11-04 | 2008-12-10 | Виз Энтерпрайсиз | Многокамерная емкость и колпачок для нее |
| CN101434612B (zh) * | 2007-11-14 | 2011-06-22 | 中国科学院大连化学物理研究所 | 一种金属有机骨架化合物材料及其制备和应用 |
-
2011
- 2011-04-19 KR KR1020127029801A patent/KR20130033369A/ko not_active Withdrawn
- 2011-04-19 WO PCT/IB2011/051696 patent/WO2011132147A1/fr not_active Ceased
- 2011-04-19 RU RU2012149351/04A patent/RU2012149351A/ru not_active Application Discontinuation
- 2011-04-19 JP JP2013505590A patent/JP2013525972A/ja not_active Withdrawn
- 2011-04-19 CN CN201180019531XA patent/CN102893434A/zh active Pending
- 2011-04-19 CA CA2795517A patent/CA2795517A1/fr not_active Abandoned
- 2011-04-19 EP EP11771672A patent/EP2561568A1/fr not_active Withdrawn
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6350845B1 (en) * | 1999-06-28 | 2002-02-26 | Kaneka Corporation | Polyimide compositions and novel acid dianhydrides to be used therein |
| US20090005243A1 (en) * | 2007-04-23 | 2009-01-01 | Goddard William A | Doped metal organic frameworks for reversible H2 storage at ambient temperature |
| WO2009133366A2 (fr) * | 2008-04-29 | 2009-11-05 | Universitetet I Oslo | Composés organo-métalliques (mof) |
Non-Patent Citations (1)
| Title |
|---|
| FÉREY GÉRARD ET AL.: "Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both eversible Redox and Sorption Properties.", ANGEW. CHEM. INT. ED., vol. 46, no. 18, 27 April 2007 (2007-04-27), pages 3259 - 3263, XP008163866 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9340884B2 (en) | 2010-12-15 | 2016-05-17 | Basf Se | Process for the electrochemical fluorination of organic compounds |
| US9527751B2 (en) | 2011-11-11 | 2016-12-27 | Basf Se | Organotemplate-free synthetic process for the production of a zeolitic material of the CHA-type structure |
| FR3063180A1 (fr) * | 2017-02-21 | 2018-08-24 | Commissariat Energie Atomique | Utilisation d'un compose hybride a matrice mixte organique-inorganique, dit mof, comme materiau actif d'electrode. |
| FR3082513A1 (fr) * | 2018-06-18 | 2019-12-20 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de preparation d'un oxyde metallique lithie pouvant etre utilise comme materiau actif d'electrode positive |
| WO2019243729A1 (fr) * | 2018-06-18 | 2019-12-26 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de preparation d'un oxyde metallique lithie pouvant etre utilise comme materiau actif d'electrode positive |
| US12077451B2 (en) | 2018-06-18 | 2024-09-03 | Commissariat à l'énergie atomique et aux énergies alternatives | Method for producing a lithium-containing metal oxide that can be used as an active material for a positive electrode |
| CN110491686A (zh) * | 2019-08-28 | 2019-11-22 | 齐鲁工业大学 | 一种双金属有机配位化合物电极材料的制备方法和应用 |
| CN112490412A (zh) * | 2019-09-11 | 2021-03-12 | 肇庆市华师大光电产业研究院 | 一种新型钠离子电池负极材料及其制备方法 |
| WO2023207421A1 (fr) * | 2022-12-14 | 2023-11-02 | 湖北亿纬动力有限公司 | Matériau d'électrode positive de lithium-manganèse-fer-phosphate composite, son procédé de préparation et son application |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2795517A1 (fr) | 2011-10-27 |
| KR20130033369A (ko) | 2013-04-03 |
| RU2012149351A (ru) | 2014-05-27 |
| CN102893434A (zh) | 2013-01-23 |
| JP2013525972A (ja) | 2013-06-20 |
| EP2561568A1 (fr) | 2013-02-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20110260100A1 (en) | Novel Metal-Organic Frameworks as Electrode Material for Lithium Ion Accumulators | |
| EP2561568A1 (fr) | Nouvelles structures organométalliques constituant un matériau d'électrode pour accumulateurs lithium-ion | |
| Sieuw et al. | A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds | |
| US9780412B2 (en) | Electrode materials for rechargeable zinc cells and batteries produced therefrom | |
| US9972867B2 (en) | Cosolvent electrolytes for electrochemical devices | |
| JP6039180B2 (ja) | リチウム空気電池 | |
| Hu et al. | Cobalt-based metal organic framework with superior lithium anodic performance | |
| US12068481B2 (en) | Positive electrode active material for sodium ion secondary battery | |
| KR101334186B1 (ko) | 전해액 및 이를 채용한 마그네슘 전지 | |
| WO2019191787A2 (fr) | Électrolytes à l'état solide à canaux ioniques biomimétiques pour batteries et leurs procédés de fabrication | |
| JP2022506400A (ja) | 水素ベース電池 | |
| US12266795B2 (en) | Positive electrode active material for sodium-ion secondary battery | |
| Zhou et al. | The combination of intercalation and conversion reactions to improve the volumetric capacity of the cathode in Li–S batteries | |
| KR20220153207A (ko) | Mof 겔 멤브레인과 그의 제조 방법, mof 겔 멤브레인 분리막 및 재충전이 가능한 유기 2차 전지 | |
| US20220255137A1 (en) | Conductive 2d metal-organic framework for aqueous rechargeable battery cathodes | |
| KR101768121B1 (ko) | 리튬 공기 전지 | |
| CN115911593B (zh) | 一种用于高压的可逆无枝晶的电池及其制备方法和应用 | |
| Nozaki et al. | Oxygen-powered sustainable FePO 4 preparation for sodium metal batteries with Li acetate recovery | |
| WO2001001505A1 (fr) | Materiau d'electrode positive destine a une pile indirecte au lithium, electrode positive destine a une cette pile et une telle pile | |
| Devic | The Potential of MOFs in the Field of Electrochemical Energy Storage | |
| JP2020031011A (ja) | 負極活物質 | |
| JP6778673B2 (ja) | リチウム空気二次電池 | |
| Thibonnet et al. | Metal Cyclen Supramolecular Entities Tailored by the Bridging Effect of Counter Anions as Potential Separator for Energy Storage Systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201180019531.X Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11771672 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2795517 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2013505590 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 8835/CHENP/2012 Country of ref document: IN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20127029801 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011771672 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2012149351 Country of ref document: RU Kind code of ref document: A |