[go: up one dir, main page]

WO2010077170A2 - Procédé et système pour la production de solvants organiques - Google Patents

Procédé et système pour la production de solvants organiques Download PDF

Info

Publication number
WO2010077170A2
WO2010077170A2 PCT/RU2009/000565 RU2009000565W WO2010077170A2 WO 2010077170 A2 WO2010077170 A2 WO 2010077170A2 RU 2009000565 W RU2009000565 W RU 2009000565W WO 2010077170 A2 WO2010077170 A2 WO 2010077170A2
Authority
WO
WIPO (PCT)
Prior art keywords
butanol
fermentation
fermentor
milling
organic solvents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/RU2009/000565
Other languages
English (en)
Other versions
WO2010077170A3 (fr
Inventor
Evgeniy Rubenovich Davidov
Petr Sergeevich Kanygin
Oleg Anatolievich Frakin
Igor Vladimirovich Cheremnov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
"PROF BUSINESS" LLC
Original Assignee
"PROF BUSINESS" LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by "PROF BUSINESS" LLC filed Critical "PROF BUSINESS" LLC
Publication of WO2010077170A2 publication Critical patent/WO2010077170A2/fr
Publication of WO2010077170A3 publication Critical patent/WO2010077170A3/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/02Bioreactors or fermenters combined with devices for liquid fuel extraction; Biorefineries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/02Pretreatment of the raw materials by chemical or physical means
    • D21B1/025Separating pith from fibrous vegetable materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/06Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/28Ball or rod mills
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/34Other mills or refiners
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a process for production of organic solvents, particularly acetone, butanol, ethanol using the anaerobic fermentation by butanol, acetone, and ethanol- producing bacteria, also the invention relates to a system for carrying out of the process.
  • Butanol fermentation also called acetone butanol ethanol (ABE) fermentation is one of the oldest fermentation processes. Butanol is the most valuable of the produced solvents.
  • Butanol is an important industrial chemical and is currently used as solvency enhancer in the formation of nitrocellulose lacquers, synthetic resins; as a feedstock chemical in the plastics industry and as a food grade extractant in the food and pharmaceutical industry. As it turned out butanol has excellent fuel characteristics. Compared to the currently popular fuel additive ethanol, butanol is more miscible with gasoline and diesel fuel, has a lower vapor pressure, and is less miscible with water, qualities that make butanol a superior fuel extender than ethanol. Use of butanol as fuel will contribute to clean air by reducing smog-creation compounds, harmful emissions (carbon monoxide).
  • the present invention is focused mainly on butanol production in ABE fermentation.
  • butanol is produced chemically by either the oxo process starting from propylene (with H 2 and CO over rhodium catalyst or nickel-cobalt catalyst) or the aldol process starting from acetaldehyde.
  • ABE fermentation was performed (and still is in some cases) by a wild microorganism of Clostridium acetobutylicum isolated from the natural enviroment (soil, lake sediments, etc.). Then the bacteria was subsequently modified by conventional strain improvement strategies, using physical and chemical mutagenesis (US5192673, US4757010, EP0973929).
  • Several processes developed in the last 20 years have involved recombinant microorganisms and genetic engineering technology has increasingly been used to improve established strains.
  • Recombinant DNA technology has allowed specific gene sequences to be transferred from one organism to another and allows additional methods to be introduced into strain improvement schemes. This can be used to increse the product yield by removing metabolic bottle-necks in pathways and by modifying specific metabolic steps (US 2007259410, WO 2007050671, etc.).
  • SU 1604852 discloses a method for anaerobic fermentation of starch based feedstock by Clostridium acetobutylicum wherein, the fermentation broth containing the amylolytic enzymes was taken off in 24 hours of fermentation process and the starch based feedstock was liquefied with this broth at 70-75 0 C for 15-20 minutes. Total solvent yield is 19g/l.
  • US 5753474 describes a process for the manufacture of butanol and like volatile organic compounds by fermenting carbohydrates, mainly polysaccharide, with microorganisms which convert carbohydrates into mainly butyric acid and other acids.
  • the acids are subsequently transferred to solventogenesis production stage using a different strain of bacteria which continuously produces butanol via multistage fermentation process that is stable, high yielding (weight product per unit weight carbohydrate) and productive (faster throughput).
  • RU 2044773 discloses a method for fermentation of carbohydrate-containing medium with bacteria which produce butanol, acetone, ethanol and/or isopropanol. The method is carried out in two steps. The first step involves growth of bacteria, at the second step bacteria are immobilized on porous carrier. Products are recovered by extraction with higher alcohols or higher fatty acids or by diffuse evaporation through membrane.
  • US 2005089979 discloses a continuous process for production of solvents, particularly acetone-butanol-ethanol using fermentation of solventogenic microorganisms and gas stripping.
  • gas stripping involves passing a flow of stripping gas through a liquid to form a stripping gas enriched in one or ore of the volatile components from the liquid. The volatile components are then removed using means known in the art, for example condensation.
  • a process for production of organic solvents comprising: - pretreating plant raw material,
  • the pretreatment comprises a coarse milling and then a fine milling, an enzyme complex is used for the saccharification, and the enzyme complex is matched to polysaccharide components of the raw material; the fermentation is carried out with predominant production of butanol by periodic pressure reduction in the fermentor and simultaneous removal of organic solvents and fermentation gases.
  • the present invention also relates to a system for carrying out of the process comprising a device for a coarse milling of plant material, an extractor, a device for fine milling, an agitation tank for mixing of the fine raw material with water, a tank for the saccharification of the obtained suspension, a fermentor, a vacuum-pump, a post-fermentor, a concentrator and a device for separating of the target products.
  • FIG. 1 is a schematic representation of a system for carrying out the claimed process of the present invention.
  • plant material includes various agricultural residues (straws, hulls, stems, stalks); deciduous and coniferous woods and herbaceous energy crops (swithgrass, Bermudagrass).
  • the compositions of these materials vary.
  • the major component is cellulose (35-50%), followed by hemicellulose (20-35%), and lignin (10-25%). Proteins, oils, and ash make up the remaining fraction of plant material.
  • the plant material is wood chips.
  • the term "wood chips” refers to shavings, sawdust, flakes and other such solid wood in the form of particles. It is possible to use the coniferous wood chips as the plant material.
  • One of advantages of the present invention is processing of agricultural residues, and forestry residues. Such cheap substrate results in very low costs of produced solvents.
  • Pretreatment refers to a process that converts plant biomass from its native form, in which it is recalcitrant to enzyme systems, into a form for which cellulose hydrolysis is effective.
  • effectively pretreated plant materials are characterized by an increased surface area (porosity) accessible to enzymes, and solubilization of lignin. Increased porosity results mainly from a combination of disruption of cellulose crystallinity, hemicellulose disruption and lignin redistribution and/or solubilization.
  • physical pretreatment techniques can include various types of milling, crushing, irradiation, steaming/steam explosion.
  • Chemical pretreatment techniques can include pretreatment with dilute acid, alkaline, organic solvent, ammonia, sulfur dioxide, carbon dioxide, ionic liquid.
  • Biological pretreatment can involve applying lignin-solubilizing microorganisms. Biological pretreatments appear to have the advantages of requiring no chemicals (if nutrient supplementation is not required) and low energy input. However, biological pretreatments are relatively slow processes, and most lignin-solubilizing microorganisms also solubilize or consume hemicellulose and cellulose (David M. Mousdale, Biofuels: biotechnology, chemistry and sustainable development, CRC Press, 2008, pp. 56-63).
  • milling can greatly increase the susceptibility to enzymic depolymerization of cellulose but we have discovered surprisingly that in result of two-stage milling process of the plant material cellulose crystallinity index is decreased from 65-70% to 10-20%. Also the time of saccharification of such milled material at pH 5-6 and temperature of 50 0 C is only 12-13 hours, and in column process 3-7 hours. The sugars yield is 50% from the weight of wood chips.
  • the coarse milling of plant material is carried out in mills, preferably in ball-mills to particles ranging in size from 1 mm to 2 mm with simultaneous drying by air blowing.
  • the process gives option to dry the raw material and prepare it for the fine milling.
  • the fine milling is carried out to particles ranging in size from 1 ⁇ m to 5 ⁇ m.
  • the fine milling is carried out in vibro energy, colloid, jet or impeller mill that provides the shearing force.
  • the fine wood powder has specific properties; particularly it is watered rapidly and goes down immediately compared to conventional wood chips that float awash. It is clear that such properties allow to enzymes to contact efficiently with cellulose material. Also the saccharification process of such activated material takes less water, and it is very important on an industrial scale. It gives option to improve the mixing with water, using ratio 1:6 (in case of untreated raw material 1:10).
  • the up-to-date mills produce the ultrafine powder in few seconds without significant energy consumption.
  • the plant material is coniferous wood chips.
  • wood extractives pitch and volatile organic compounds
  • wood chips are subjected to a solvent extraction process, preferably with acetone or ethanol (plant material: solvent ratio is 1:7 - 1:10).
  • cellulose fibrils occur in close association with xylans (monocotyls) or xyloglucans (dicotyls).
  • the enzymatic conversion of cellulose/xylans is a complex process involving the concerted action of exo/endocellulases and cellobiases yielding glucose and xylanases yielding xylooligomers and xylose.
  • Filamentous fungi are a source of cellulases and hemicellulases, as well as other enzymes useful in the enzymatic hydrolysis of major polysaccharides. In particular, strains of Trichoderma sp. and Penicillium sp. have previously used to hydrolyze crystalline cellulose.
  • strain of fungi Penicillium verruculosum can be used in the process of the saccharification, for the different sorts of plant material different strains of Penicillium verruculosum are used.
  • lignin is removed before the saccharification. Then the sugar solution is concentrated to 25-40% to avoid the contamination.
  • butanol, acetone, ethanol producing bacteria includes species of Clostridium, including Clostridium beijerinckii and Clostridium acetobutylicum, as well as another bacteria known in the art.
  • Other fermentation conditions such as temperature, pH are easily chosen by ordinary skill in the art without undue experimentation.
  • butanol As noted above the most important solvent is butanol.
  • the pressure reduction is set up when butanol concentration in the fermentor is approaching to toxic for producing bacteria, it means when butanol concentration in the fermentor is 8-9 g/1.
  • the pressure reduction is kept on until butanol concentration in the fermentor is 5-2 g/1.
  • the pressure in the fermentor during the removal is - 0.90 -0.94 kg/cm 2 .
  • the improved process results in high carbohydrate utilization and a high butanol yield as compared to current processes.
  • the process may be more easily understood with reference to FIG.l, where the schematic view of the system for carrying out of the claimed process is shown.
  • the plant raw material preferably wood chips are processed in a device for a coarse milling 1, which can be a ball-mill.
  • a device for fine milling 3 which can be a vibro energy, colloid or jet mill.
  • the obtained powder is mixed with water in an agitation tank 4.
  • the process of saccharification of the obtained suspension is g carried out in a tank 5, the formed lignin is removed and the solution of sugars is transferred into a fermentor 6.
  • the standard mixture of minerals was added into the fermentor 6. Then the medium was inoculated with cells of Clostridium acetobutylicum (e.g. VKM B-2531D) with density of 1-2 milliard/ml. 30 min after inoculation the intensive fermentation gas formation began, in 5-6 hours the organic acids production took place, in 10-12 hours the intensive production of organic solvents, the rate of solvent production was maximal to 28-36 hours. At this moment the cell concentration was also peak - 3-10 9 cells/ml of suspension.
  • Clostridium acetobutylicum e.g. VKM B-2531D
  • the pressure in the fermentor 6 was reduced by a vacuum-pump 10 to remove the solvents to concentration 5-2 g/1 from the fermentation broth and simultaneous feeding of the carbohydrate and mineral solution was carried out, maintaining the carbohydrate concentration in the fermentor about 8-12 g/1 at a flow rate of about 0.025 - 0.035 I/hour.
  • the process was allowed to proceed in the continuous mode for 500 hours, although there is almost no limitation of growth and solvent production.
  • the product is transferred into a post- fermentor 7, a concentrator 8.
  • the solvents are separated by rectification in a rectifying column 9.
  • Pumps 11 are used for liquid communication in the system.
  • a four-liter fermentor containing 2.4 1 water with 12O g wholemeal flour was inoculated with 300 ml of inoculum of Clostridium acetobutylicum VKPM B-4786 with density of 1-2 milliard/ml.
  • the fermentation was allowed to proceed in the batch mode for 72 h.
  • the temperature was maintained at 37 0 C.
  • the solvent vapors were taken off.
  • the ABE vapors were cooled in a condenser and in result 250 ml of solution, containing 5% butanol, 1.5% acetone and 0.5% ethanol was obtained.
  • Productivity was 3 g/l/day.
  • a four-liter fermentor containing 2.4 1 water with 12O g wholemeal flour was inoculated with 300 ml of inoculum of Clostridium acetobutylicum VKPM B-4786 with density of 1-2 milliard/ml. The fermentation was allowed to proceed at 37 0 C.
  • Wood chips are milled in the ball mill (AS-2M, Novosibirsk) to size of 1-2 mm and are dried on hot air to humidity no more than 10%.
  • the obtained wood chips are milled in the activation mill (OGO-3, Novosibirsk) to the size of l-5 ⁇ m.
  • the obtained mixture is suspended in water and the complex of hydrolytic enzyme (cellulase, xylanase, cellobiase) is added to the suspension in the ratio 2.5 g per 1 kg of the pulverized wood chips.
  • the saccharification was allowed to proceed at 37 0 C, pH 5 and in 12 hours the process is completed. 40% of carbohydrates are in the suspension and lignin is removed from the sugar solution by centrifugation.
  • a four-liter fermentor containing 2.5 1 of 4% obtained carbohydrate solution was inoculated with 300 ml of inoculum of Clostridium acetobutylicum VKM B-2531D with density of 1-2 milliard/ml. The fermentation was allowed to proceed at 37 0 C.
  • Wood chips are milled in the ball mill (AS-2M, Novosibirsk) to size of 1-2 mm and are dried on hot air to humidity no more than 10%. The obtained wood chips are extracted with ethanol (ratio 1:10). The wood chips are separated from extractant by centrifugation and the rest of solvent are removed by dry vapour.
  • the obtained wood chips are milled in the activation mill (OGO-3, Novosibirsk) to the size of l-5 ⁇ m.
  • the obtained mixture is suspended in water and the complex of hydrolytic enzyme (cellulase, xylanase, cellobiase) is added to the suspension in the ratio 2.5 g per 1 kg of the pulverized wood chips.
  • the saccharification was allowed to proceed at 37 0 C, pH 5 and in 12 hours the process is completed. 40% of carbohydrates are in the suspension and lignin is removed from the sugar solution by centrifugation.
  • a four-liter fermentor containing 2.5 1 of 4% obtained carbohydrate solution was inoculated with 300 ml of inoculum of Clostridium beijerinckii KM MSU (Moscow State University) No 101 with density of 1-2 milliard/ml. The fermentation was allowed to proceed at 37 0 C.
  • the claimed process, system and product have got the following advatages: the raw material is low-cost and readily available lignocellulosic material (which in many cases is obtained from wastes); the pretreatment of the raw material does not requre use of chemicals; high productivity of the enzymatic hydrolysis of lignocellulosic material to soluble sugars; high productivity of ABE fermentation process through providing the optimum conditions for fermentation; energy saving (in comparison with the distillation) recovery technology of ABE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La présente invention concerne un procédé de production de solvants organiques, principalement de butanol, par fermentation anaérobie de bactéries produisant du butanol, de l'acétone ou de l'éthanol, ainsi qu'un système permettant de mettre en oeuvre ce procédé, et le produit obtenu. Ledit procédé consiste à prétraiter une matière première, saccharifier le matériau prétraité avec des enzymes qui dégradent ou transforment ce matériau en solution sucrée, fermenter la solution sucrée avec des bactéries produisant du butanol, de l'acétone ou de l'éthanol dans un fermenteur, retirer les solvants organiques et les gaz de fermentation, et récupérer le produit final. Le prétraitement comprend un broyage grossier puis un broyage fin, un complexe enzymatique est utilisé pour la saccharification, et ce complexe est adapté aux polysaccharides de la matière première. La fermentation est réalisée avec production prédominante de butanol par réduction périodique de la pression dans le fermenteur et élimination simultanée des solvants organiques et des gaz de fermentation.
PCT/RU2009/000565 2008-12-29 2009-10-22 Procédé et système pour la production de solvants organiques Ceased WO2010077170A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2008151904 2008-12-29
RU2008151904/10A RU2405826C2 (ru) 2008-12-29 2008-12-29 Способ получения органических растворителей, установка для его осуществления, продукт, полученный описанным способом

Publications (2)

Publication Number Publication Date
WO2010077170A2 true WO2010077170A2 (fr) 2010-07-08
WO2010077170A3 WO2010077170A3 (fr) 2010-10-28

Family

ID=42310441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2009/000565 Ceased WO2010077170A2 (fr) 2008-12-29 2009-10-22 Procédé et système pour la production de solvants organiques

Country Status (2)

Country Link
RU (1) RU2405826C2 (fr)
WO (1) WO2010077170A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095975A3 (fr) * 2009-02-18 2011-01-13 Limited Liability Company "Prof Business" Procédé de régulation du rapport de solvants organiques pendant une biosynthèse
CN103667364A (zh) * 2013-12-12 2014-03-26 中国科学院成都生物研究所 一种粉葛同步酶处理发酵生产丁醇的方法
US20140315254A1 (en) * 2013-04-23 2014-10-23 Weyerhaeuser Nr Company Clean sugar and lignin from non-chemically pretreated lignocellulosic biomass
CN104499380A (zh) * 2014-12-18 2015-04-08 广西大学 一种利用纤维质固废物制备育苗容器的方法
CN108265083A (zh) * 2017-01-04 2018-07-10 北京化工大学 利用木质纤维素水解液分段制备乙醇、丙酮和丁醇的方法
US10017800B2 (en) 2013-04-23 2018-07-10 International Paper Company Clean sugar and lignin from non-chemically pretreated lignocellulosic biomass
WO2018185227A1 (fr) * 2017-04-07 2018-10-11 Weidmann Holding Ag Procédé de fabrication d'une matière fibreuse à l'échelle micrométrique et/ou à l'échelle nanométrique
US11278475B2 (en) 2017-04-07 2022-03-22 Weidmann Holding Ag Personal care composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757010A (en) 1982-03-08 1988-07-12 Institut Francais Du Petrole Production of clostridium acetobutylicum mutants of high butanol and acetone productivity, the resultant mutants and the use of these mutants in the joint production of butanol and acetone
SU1604852A1 (ru) 1988-12-21 1990-11-07 Воронежский технологический институт Способ сбраживани крахмалсодержащей среды дл получени ацетона, бутанола и этанола
US5192673A (en) 1990-04-30 1993-03-09 Michigan Biotechnology Institute Mutant strain of C. acetobutylicum and process for making butanol
RU2044773C1 (ru) 1987-03-10 1995-09-27 Др.Хельмут Эффенбергер Способ сбраживания углеводсодержащих сред с помощью бактерий, продуцирующих бутанол, ацетон, этанол и/или изопропанол, и устройство для его осуществления
US5753474A (en) 1995-12-26 1998-05-19 Environmental Energy, Inc. Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria
EP0973929A1 (fr) 1997-05-14 2000-01-26 The Board Of Trustees Of The University Of Illinois Procede de preparation de butanol utilisant une souche mutante de clostridium beijerinckii
US20050089979A1 (en) 2003-09-18 2005-04-28 Ezeji Thaddeus C. Process for continuous solvent production
WO2007050671A2 (fr) 2005-10-26 2007-05-03 E. I. Du Pont De Nemours And Company Production fermentaire d'alcools a quatre atomes de carbone
US20070259410A1 (en) 2006-05-02 2007-11-08 Donaldson Gail K Fermentive production of four carbon alcohols

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254986A (ja) * 1987-04-10 1988-10-21 Res Assoc Petroleum Alternat Dev<Rapad> アルコ−ルの製造法
US6364999B1 (en) * 1995-12-27 2002-04-02 Weyerhaeuser Company Process for producing a wood pulp having reduced pitch content and process and reduced VOC-emissions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4757010A (en) 1982-03-08 1988-07-12 Institut Francais Du Petrole Production of clostridium acetobutylicum mutants of high butanol and acetone productivity, the resultant mutants and the use of these mutants in the joint production of butanol and acetone
RU2044773C1 (ru) 1987-03-10 1995-09-27 Др.Хельмут Эффенбергер Способ сбраживания углеводсодержащих сред с помощью бактерий, продуцирующих бутанол, ацетон, этанол и/или изопропанол, и устройство для его осуществления
SU1604852A1 (ru) 1988-12-21 1990-11-07 Воронежский технологический институт Способ сбраживани крахмалсодержащей среды дл получени ацетона, бутанола и этанола
US5192673A (en) 1990-04-30 1993-03-09 Michigan Biotechnology Institute Mutant strain of C. acetobutylicum and process for making butanol
US5753474A (en) 1995-12-26 1998-05-19 Environmental Energy, Inc. Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria
EP0973929A1 (fr) 1997-05-14 2000-01-26 The Board Of Trustees Of The University Of Illinois Procede de preparation de butanol utilisant une souche mutante de clostridium beijerinckii
US20050089979A1 (en) 2003-09-18 2005-04-28 Ezeji Thaddeus C. Process for continuous solvent production
WO2007050671A2 (fr) 2005-10-26 2007-05-03 E. I. Du Pont De Nemours And Company Production fermentaire d'alcools a quatre atomes de carbone
US20070259410A1 (en) 2006-05-02 2007-11-08 Donaldson Gail K Fermentive production of four carbon alcohols

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Food biotechnology", 2006, CRC PRESS, pages: 527
"Handbook on Bioethanol: production and utilization", article "Applied Energy Technology", pages: 194
AKOPYAN V.B.; KORZHEVENKO G.N.; SHANGIN-BEREZOVSKIY G.N.: "The buried reserve of growth and development of live system", VESTNIK SELSKOHOZYASTVENNOY NAUKI, vol. 4, no. 380, 1988, pages 69 - 105
DAVID M. MOUSDALE: "Biofuels: biotechnology, chemistry and sustainable development", 2008, CRC PRESS, pages: 56 - 63

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095975A3 (fr) * 2009-02-18 2011-01-13 Limited Liability Company "Prof Business" Procédé de régulation du rapport de solvants organiques pendant une biosynthèse
US10017800B2 (en) 2013-04-23 2018-07-10 International Paper Company Clean sugar and lignin from non-chemically pretreated lignocellulosic biomass
US20140315254A1 (en) * 2013-04-23 2014-10-23 Weyerhaeuser Nr Company Clean sugar and lignin from non-chemically pretreated lignocellulosic biomass
US10072228B2 (en) 2013-04-23 2018-09-11 International Paper Company Clean sugar and lignin from non-chemically pretreated lignocellulosic biomass
CN103667364A (zh) * 2013-12-12 2014-03-26 中国科学院成都生物研究所 一种粉葛同步酶处理发酵生产丁醇的方法
CN103667364B (zh) * 2013-12-12 2016-04-13 中国科学院成都生物研究所 一种粉葛同步酶处理发酵生产丁醇的方法
CN104499380A (zh) * 2014-12-18 2015-04-08 广西大学 一种利用纤维质固废物制备育苗容器的方法
CN108265083A (zh) * 2017-01-04 2018-07-10 北京化工大学 利用木质纤维素水解液分段制备乙醇、丙酮和丁醇的方法
WO2018185227A1 (fr) * 2017-04-07 2018-10-11 Weidmann Holding Ag Procédé de fabrication d'une matière fibreuse à l'échelle micrométrique et/ou à l'échelle nanométrique
US11278475B2 (en) 2017-04-07 2022-03-22 Weidmann Holding Ag Personal care composition
US11696876B2 (en) 2017-04-07 2023-07-11 Weidmann Holdino AG Hair care or hair cleansing composition or skin care or skin cleansing composition
US12209363B2 (en) 2017-04-07 2025-01-28 Weidmann Holding Ag Method for producing microscale and/or nanoscale fiber material
US12409109B2 (en) 2017-04-07 2025-09-09 Weidmann Holding Ag Dry mixture and personal care composition as well as methods for their production

Also Published As

Publication number Publication date
WO2010077170A3 (fr) 2010-10-28
RU2405826C2 (ru) 2010-12-10
RU2008151904A (ru) 2010-07-10

Similar Documents

Publication Publication Date Title
CN101784668B (zh) 纤维生物质的并行糖化和发酵
Chen et al. Key technologies for bioethanol production from lignocellulose
Bothast et al. Ethanol production from agricultural biomass substrates
Sanchez et al. Trends in biotechnological production of fuel ethanol from different feedstocks
Vohra et al. Bioethanol production: Feedstock and current technologies
Pang et al. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4
Alfenore et al. Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria
JP5325793B2 (ja) リグニンを除去するために、アルカリ溶液で固体リグノセルロース材料を処理するステップを含む、固体リグノセルロース材料からのエタノールの発酵生産のための方法
US20090093027A1 (en) Process for producing sugars and ethanol using corn stillage
US9187770B2 (en) Process for the production of alcohols and/or solvents from lignocellulosic biomass with washing of the solid residue obtained after hydrolysis
WO2010077170A2 (fr) Procédé et système pour la production de solvants organiques
Taherzadeh et al. Bioethanol production processes
Jin et al. Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw
Bhutto et al. Strategies for the consolidation of biologically mediated events in the conversion of pre-treated lignocellulose into ethanol
CN113614239A (zh) 处理木质纤维素生物质的方法
US20160017380A1 (en) Method for producing alcohols and/or solvents from lignocellulosic biomass with washing of the solid residue obtained after fermentation
Wang et al. Pretreatment and conversion of distiller's dried grains with solubles for acetone-butanol-ethanol (ABE) production
US9758798B2 (en) Process for the production of ethanol and solvents from lignocellulosic biomass with recycling of an ethanolic liquor obtained from the fermentation of pentoses
Kassim et al. Biothanol production from enzymatically saccharified empty fruit bunches hydrolysate using Saccharomyces cerevisiae
US9611492B2 (en) Use of vinasse in the process of saccharification of lignocellulosic biomass
WO2010098694A2 (fr) Procédé de production de solvants organiques
JP6167758B2 (ja) エタノールの製造方法
Sudhakar et al. Pretreatment, Hydrolysis and Fermentation of Lignocellulosic Biomass for Bioethanol
WO2010087737A2 (fr) Procédé de fabrication de solvants organiques
Kandari et al. Production of bioethanol from enzymatic and dilute acid hydrolysate of Lantana camara in batch fermentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09796136

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09796136

Country of ref document: EP

Kind code of ref document: A2