[go: up one dir, main page]

WO2009005699A1 - Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants - Google Patents

Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants Download PDF

Info

Publication number
WO2009005699A1
WO2009005699A1 PCT/US2008/007985 US2008007985W WO2009005699A1 WO 2009005699 A1 WO2009005699 A1 WO 2009005699A1 US 2008007985 W US2008007985 W US 2008007985W WO 2009005699 A1 WO2009005699 A1 WO 2009005699A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
switching element
reversible resistance
memory cell
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2008/007985
Other languages
English (en)
Inventor
April Schricker
S. Brad Herner
Mark Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk 3D LLC
Original Assignee
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/772,082 external-priority patent/US7824956B2/en
Priority claimed from US11/772,088 external-priority patent/US7902537B2/en
Application filed by SanDisk 3D LLC filed Critical SanDisk 3D LLC
Priority to JP2010514823A priority Critical patent/JP2010532568A/ja
Priority to CN2008800226674A priority patent/CN101720508B/zh
Priority to EP08768806A priority patent/EP2162917A1/fr
Publication of WO2009005699A1 publication Critical patent/WO2009005699A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/201Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits
    • H10D84/204Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors
    • H10D84/206Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors of combinations of capacitors and resistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/201Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits
    • H10D84/204Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors
    • H10D84/221Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors of only diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/028Formation of switching materials, e.g. deposition of layers by conversion of electrode material, e.g. oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Definitions

  • Non-volatile memories formed from reversible resistance-switching elements are known.
  • U.S. Patent Application Serial No. 11/125,939 filed May 9, 2005 and titled “REWRITEABLE MEMORY CELL COMPRISING A DIODE AND A RESISTANCE-SWITCHING MATERIAL" (hereinafter "the ⁇ 939
  • a rewriteable non-volatile memory cell that includes a diode coupled in series with a reversible resistivity-switching material such as a metal oxide or metal nitride.
  • FIG. 2C is a simplified perspective view of a portion of a first exemplary three dimensional memory array provided in accordance with the present invention.
  • the titanium oxide layer 212 may include, for example, TiO, TiO 2 , TiO x , TiO x N y or the like. While the reversible resistance- switching element 202 is shown as being positioned below the diode 204 in FIG. 2A, it will be understood that in alternative embodiments, the reversible resistance-switching element 202 may be positioned above the diode 204. Additional details for the reversible resistance-switching element 202 are described below with reference to FIG. 3.
  • the diode 204 may include any suitable diode such as a vertical polycrystalline p-n or p-i-n diode, whether upward pointing with an n-region above a p-region of the diode or downward pointing with a p-region above an n-region of the diode. Exemplary embodiments of the diode 204 are described below with reference to FIG. 3.
  • reversible resistance-switching element 202 may be used to form the reversible resistance-switching element 202.
  • materials such as Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc., may be similarly deposited over (and/or patterned and etched with) the first conductor 206 and then oxidized to form the layer 212, which includes the reversible resistance-switching element 202.
  • FIG. 2B is a simplified perspective view of a portion of a first memory level 214 formed from a plurality of the memory cells 200 of FIG. 2A.
  • the memory array 214 is a "cross-point" array including a plurality of bit lines (second conductors 208) and word lines (first conductors 206) to which multiple memory cells are coupled (as shown) .
  • Other memory array configurations may be used, as may multiple levels of memory.
  • FIG. 2C is a simplified perspective view of a portion of a monolithic three dimensional array 216 that includes a first memory level 218 positioned below a second memory level 220.
  • each memory level 218, 220 includes a plurality of memory cells 200 in a cross-point array. It will be understood that one or more additional layers (e.g., an interlevel dielectric) may be present between the first and second memory levels 218 and 220, but are not shown in FIG. 2C for simplicity. Other memory array configurations may be used, as may additional levels of memory. In the embodiment of FIG. 2C, all diodes may be present.
  • the memory levels may be formed, as described, for example, in U.S. Patent No. 6,952,030, "High-density three-dimensional memory cell” which is hereby incorporated by reference herein in its entirety for all purposes.
  • the upper conductors of a first memory level may be used as the lower conductors of a second memory level that is positioned above the first memory level as shown in FIG. 2D.
  • the diodes on adjacent memory levels preferably point in opposite directions as described in U.S.
  • the diodes of the first memory level 218 may be upward pointing diodes as indicated by arrow Ai (e.g., with p regions at the bottom of the diodes), while the diodes of the second memory level 220 may be downward pointing diodes as indicated by arrow A 2 (e.g., with n regions at the bottom of the diodes), or vice versa.
  • a monolithic three dimensional memory array is one in which multiple memory levels are formed above a single substrate, such as a wafer, with no intervening substrates.
  • the layers forming one memory level are deposited or grown directly over the layers of an existing level or levels.
  • stacked memories have been constructed by forming memory levels on separate substrates and adhering the memory levels atop each other, as in Leedy, U.S. Patent No. 5,915,167, "Three dimensional structure memory.”
  • the substrates may be thinned or removed from the memory levels before bonding, but as the memory levels are initially formed over separate substrates, such memories are not true monolithic three dimensional memory arrays.
  • FIG. 3 is a cross-sectional view of an exemplary embodiment of the memory cell 200 of FIG. 2A.
  • the memory cell 200 includes the reversible resistance-switching element 202 (e.g., a portion of a layer of reversible resistivity-switching material, namely titanium oxide layer 212 in this embodiment) , the diode 204 and the first and second conductors 206, 208.
  • the reversible resistance-switching element 202 may be a portion of the titanium oxide layer 212 that vertically overlies and/or overlaps with the diode 204.
  • the reversible resistance- switching element 202 is formed by a selective growth process.
  • the titanium oxide layer 212 may be selectively formed on the titanium-containing layer 210 by oxidizing the titanium-containing layer 210. In this manner, only the titanium-containing layer 210, and not the titanium oxide layer 212, is etched, such as during the pattern and etch step(s) for the first conductor 206.
  • the titanium-containing layer 210 may be oxidized by any suitable process. For instance, the titanium-containing layer 210 may be oxidized using thermal oxidation in oxygen, ozone, a combination of the same or another oxygen source (e.g., using rapid thermal oxidation).
  • the titanium-containing layer 210 may be oxidized using oxygen diffusion in a CVD chamber with an ozone or other oxygen source, using gaseous or liquid ozone cleaning, or using any other suitable oxidation process to form titanium oxide.
  • other reversible resistance-switching materials may be similarly formed by oxidizing Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc.
  • rapid thermal oxidation may be performed at a temperature of about 300 0 C to about 800 0 C for about one second to about 5 minutes at an oxygen flow rate of about 2 seem to about 40 seem, depending on the desired oxide thickness and/or other properties.
  • Other oxidizing species, temperatures, times and/or flow rates may be used.
  • Oxidation by ozone diffusion in a CVD chamber may be performed at a temperature of about 300 0 C to about 800°C, more preferably at a temperature of about 350 0 C to about 450 0 C, for about 2 minutes to about 4 hours, more preferably for about 15 to 25 minutes, at a suitable ozone flow rate, such as between about 10 and 60 seem, depending on the desired oxide thickness and/or other properties.
  • Other oxidizing species, temperatures, times and/or flow rates may be used.
  • any desired thickness of titanium oxide may be formed.
  • the diode 204 may be a vertical p-n or p-i-n diode, which may either point upward or downward.
  • adjacent memory levels preferably have diodes that point in opposite directions such as downward-pointing p-i-n diodes for a first memory level and upward-pointing p- i-n diodes for an adjacent, second memory level (or vice versa) .
  • a suicide layer 310 may be formed on the diode 204 to place the deposited silicon in a low resistivity state, as fabricated.
  • a low resistivity state allows for easier programming of the memory cell 200 as a large voltage is not required to switch the deposited silicon to a low resistivity state.
  • a silicide-forming metal layer 312 such as titanium or cobalt, may be deposited on the p+ polysilicon region 306.
  • FIGS. 4A-D illustrate cross sectional views of a portion of a substrate 400 during fabrication of a first memory level in accordance with the present invention.
  • the single memory level includes a plurality of memory cells that each include a reversible resistance-switching element formed using a selective growth process. Additional memory levels may be fabricated above the first memory level (as described previously with reference to FIGS. 2C-2D) .
  • the substrate 400 is shown as having already undergone several processing steps.
  • the substrate 400 may be any suitable substrate such as a silicon, germanium, silicon-germanium, undoped, doped, bulk, silicon-on-insulator (SOI) or other substrate with or without additional circuitry.
  • the substrate 400 may include one or more n-well or p-well regions (not shown) .
  • a silicon nitride or similar protective layer may be formed over active regions (not shown) of the substrate 400 prior to isolation region formation (e.g., to protect the active regions).
  • a localized oxidation of silicon (LOCOS) process or any other suitable process may be employed to define the isolation layer 402.
  • the conductive layer 406 may include any suitable conductive material such as tungsten or another appropriate metal, heavily doped semiconductor material, a conductive suicide, a conductive silicide-germanide, a conductive germanide, or the like deposited by any suitable method (e.g., chemical vapor deposition, physical vapor deposition, etc.). In at least one embodiment, the conductive layer 406 may comprise about 200 to about 2500 angstroms of tungsten. Other conductive layer materials and/or thicknesses may be used.
  • a titanium-containing layer 407 such as titanium nitride, is formed over the conductive layer 406 (e.g., using physical vapor deposition or another method) .
  • the titanium-containing layer 407 includes about 20 to about 1200 angstroms of titanium nitride.
  • Other titanium- containing layer materials such as titanium, a titanium alloy, TiSi 2 , TiW, etc., and/or thicknesses may be used.
  • the adhesion layer 404, the conductive layer 406 and the titanium-containing layer 407 are patterned and etched.
  • the adhesion layer 404, the conductive layer 406 and the titanium-containing layer 407 may be patterned and etched using conventional lithography techniques, with a soft or hard mask, and wet or dry etch processing.
  • the adhesion layer 404, the conductive layer 406 and the titanium-containing layer 407 are patterned and etched so as to form substantially parallel, substantially co-planar conductors 408 (as shown in FIG. 4A) .
  • Exemplary widths for the conductors 408 and/or spacings between the conductors 408 range from about 200 to about 2500 angstroms, although other conductor widths and/or spacings may be used.
  • a dielectric layer 410 is deposited over the substrate 400 so as to fill the voids between the conductors 408.
  • a dielectric layer 410 is deposited over the substrate 400 so as to fill the voids between the conductors 408.
  • approximately 3000-7000 angstroms of silicon dioxide may be deposited on the substrate 400 and planarized using chemical mechanical polishing or an etchback process to form a planar surface 412.
  • the planar surface 412 includes exposed, discrete regions 407a-f of titanium-containing layer material 407 separated by dielectric material 410, as shown.
  • the discrete titanium-containing layer regions 407a-f may be used to selectively form a titanium oxide reversible resistance-switching element for each memory cell being formed above the substrate 400 (as described further below) .
  • dielectric materials such as silicon nitride, silicon oxynitride, low K dielectrics, etc., and/or other dielectric layer thicknesses may be used.
  • Exemplary low K dielectrics include carbon doped oxides, silicon carbon layers, or the like.
  • the titanium-containing layer 407 may be replaced with a layer of the material to be oxidized, such as Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc.
  • a reversible resistance-switching element 413a-f is formed over each titanium-containing layer region 407a-f.
  • a titanium oxide layer may be selectively formed over each titanium-containing layer region 407a-f by oxidizing the titanium-containing layer regions 407a-f. Some or all of each titanium-containing layer region 407a-f may be consumed during oxidation to create reversible resistance-switching elements 413a-f.
  • any suitable method may be employed to oxidize the titanium-containing layer regions 407a-f such as rapid thermal oxidation in an oxygen environment such as O 2 , ozone, a combination of the same, or using any other suitable oxidizing species.
  • a titanium- containing layer region may be oxidized using oxygen diffusion in a CVD chamber with an ozone or other oxygen source, using gaseous or liquid ozone cleaning, or using any other suitable oxidation process to form titanium oxide.
  • the diode structures of each memory cell are formed.
  • An optional thin conductive layer (not shown) , such as about 10 to about 300 angstroms of titanium, nickel, etc., may be formed over the titanium oxide layer regions (e.g., for work function tuning).
  • a barrier layer 414 such as titanium nitride, tantalum nitride, tungsten nitride, etc., may also be formed over the titanium oxide layer regions prior to diode formation (e.g., to prevent and/or reduce migration of metal atoms into the polysilicon regions) .
  • the barrier layer 414 may be on top of, in addition to or in place of the thin conductive layer and may be about 20 to about 500 angstroms, and preferably about 100 angstroms, of titanium nitride or another suitable barrier layer such as tantalum nitride, tungsten nitride, combinations of one or more barrier layers, barrier layers in combination with other layers such as titanium/titanium nitride, tantalum/tantalum nitride or tungsten/tungsten nitride stacks, or the like. Other barrier layer materials and/or thicknesses may be employed.
  • each diode may be a vertical p-n or p-i-n diode as previously described.
  • each diode is formed from a polycrystalline semiconductor material such as polysilicon, a polysilicon-germanium alloy, germanium or any other suitable material. For convenience, formation of a polysilicon, downward-pointing diode is described herein. It will be understood that other materials and/or diode configurations may be used.
  • n+ silicon layer 416 is deposited on the barrier layer 414.
  • the n+ silicon layer 416 is in an amorphous state as deposited.
  • the n+ silicon layer 416 is in a polycrystalline state as deposited.
  • Chemical vapor deposition or another suitable process may be employed to deposit the n+ silicon layer 416.
  • the n+ silicon layer 416 may be formed, for example, from about 100 to about 1000 angstroms, preferably about 100 angstroms, of phosphorus or arsenic doped silicon having a doping concentration of about 10 21 cm "3 .
  • n+ silicon layer 416 may be doped in situ, for example, by flowing a donor gas during deposition. Other doping methods may be used (e.g., implantation).
  • a lightly doped, intrinsic and/or unintentionally doped silicon layer 418 is formed over the n+ silicon layer 416.
  • the intrinsic silicon layer 418 is in an amorphous state as deposited. In other embodiments, the intrinsic silicon layer 418 is in a polycrystalline state as deposited. Chemical vapor deposition or another suitable deposition method may be employed to deposit the intrinsic silicon layer 418.
  • the intrinsic silicon layer 418 may be about 500 to about 4800 angstroms, preferably about 2500 angstroms, in thickness. Other intrinsic layer thicknesses may be used.
  • a thin (e.g., a few hundred angstroms or less) germanium and/or silicon-germanium alloy layer may be formed on the n+ silicon layer 416 prior to deposition of the intrinsic silicon layer 418 to prevent and/or reduce dopant migration from the n+ silicon layer 416 into the intrinsic silicon layer 418 (as described in the ⁇ 331 Application, previously incorporated) .
  • the n+ silicon layer 416, the intrinsic silicon layer 418, the barrier layer 414 and/or any conductive layer are patterned and etched so as to form silicon pillars 420 overlying the conductors 408 (as shown) .
  • Conventional lithography techniques, with a soft or hard mask, and wet or dry etch processing may be employed to form the silicon pillars 420.
  • a dielectric layer 422 is deposited to fill the voids between the silicon pillars 420.
  • a dielectric layer 422 is deposited to fill the voids between the silicon pillars 420.
  • approximately 200- 7000 angstroms of silicon dioxide may be deposited and planarized using chemical mechanical polishing or an etchback process to form a planar surface 424.
  • the planar surface 424 includes exposed top surfaces of the silicon pillars 420 separated by dielectric material 422, as shown.
  • dielectric materials such as silicon nitride, silicon oxynitride, low K dielectrics, etc., and/or other dielectric layer thicknesses may be used.
  • Exemplary low K dielectrics include carbon doped oxides, silicon carbon layers, or the like.
  • a p+ silicon region 426 is formed within each silicon pillar 420, near the upper surface of the silicon pillars 420.
  • a blanket p+ implant may be employed to implant boron a predetermined depth within the silicon pillars 420.
  • Exemplary implantable molecular ions include BF 2 , BF 3 , B and the like.
  • an implant dose of about 1- 5xlO 15 ions/cm 2 may be employed.
  • Other implant species and/or doses may be used.
  • a diffusion process may be employed to dope the upper portion of the silicon pillars 420.
  • the p+ silicon regions 426 have a depth of about 100-700 angstroms, although other p+ silicon region sizes may be used. (Note that if the diodes to be formed are upward pointing p-n or p-i-n diodes, the upper portion of the silicon pillars 420 will be doped n-type) . Each silicon pillar 420 thereby includes a downward-pointing, p-i-n diode 428. With reference to FIG. 4D, after completion of the p-i- n diodes 428, a silicide-forming metal layer 430 is deposited over the substrate 400. Exemplary silicide- forming metals include sputter or otherwise deposited titanium or cobalt.
  • the silicide- forming metal layer 430 has a thickness of about 10 to about 200 angstroms, preferably about 20 to about 50 angstroms and more preferably about 20 angstroms. Other silicide-forming metal layer materials and/or thicknesses may be used. As will be described further below, annealing of the structure causes metal from the silicide-forming metal layer 430 and silicon from the p+ silicon regions 426 to react to form a suicide region 432 adjacent each p+ silicon region 426.
  • a second set of conductors 436 may be formed above the diodes 428 in a manner similar to the formation of the bottom set of conductors 408.
  • one or more barrier layers and/or adhesion layers 438 may be placed over the silicide-forming metal layer 430 prior to deposition of a conductive layer 440 used to form the upper, second set of conductors 436.
  • the conductive layer 440 may be formed from any suitable conductive material such as tungsten, another suitable metal, heavily doped semiconductor material, a conductive suicide, a conductive silicide-germanide, a conductive germanide, or the like deposited by any suitable method (e.g., chemical vapor deposition, physical vapor deposition, etc.). Other conductive layer materials may be used.
  • Barrier layers and/or adhesion layers 438 may include titanium nitride or another suitable layer such as tantalum nitride, tungsten nitride, combinations of one or more layers, or any other suitable material (s).
  • the deposited conductive layer 440, barrier and/or adhesion layer 438, and/or silicide-forming metal layer 430 may be patterned and/or etched to form the second set of conductors 436.
  • the upper conductors 436 are substantially parallel, substantially coplanar conductors that extend in a different direction than the lower conductors 408.
  • the structure may be annealed to crystallize the deposited semiconductor material of the diodes 428 (and/or to form the suicide regions 432) .
  • the anneal may be performed for about 10 seconds to about 2 minutes in nitrogen at a temperature of about 600 to 800 0 C, and more preferably between about 650 and 750 0 C. Other annealing times, temperatures and/or environments may be used.
  • the suicide regions 432 may serve as
  • diodes 432 “crystallization templates” or “seeds” during annealing for underlying deposited semiconductor material that forms the diodes 432 (e.g., changing any amorphous semiconductor material to polycrystalline semiconductor material and/or improving overall crystalline properties of the diodes 432). Lower resistivity diode material thereby is provided.
  • FIG. 5 is a cross sectional view of an exemplary memory cell 500 provided in accordance with the present invention.
  • the memory cell 500 includes a thin film transistor (TFT) , such as a thin film, metal oxide semiconductor field effect transistor (MOSFET) 502 coupled to a reversible resistance- switching element 504 formed above a substrate 505.
  • TFT thin film transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • the MOSFET 502 may be an n-channel or a p-channel thin film MOSFET formed on any suitable substrate.
  • an insulating region 506 such as silicon dioxide, silicon nitride, oxynitride, etc., is formed above the substrate 505 and a deposited semiconductor region 507 such as deposited silicon, germanium, silicon-germanium, etc., is formed above the insulating region 506.
  • the thin film MOSFET 502 is formed within the deposited semiconductor region 507 and is insulated from the substrate 505 by the insulating region 506.
  • the titanium oxide layer 522 may be formed by oxidizing the titanium-containing layer 521 using oxygen diffusion in a chemical vapor deposition (CVD) chamber with an ozone or other oxygen source, using gaseous or liquid ozone cleaning, or using any other suitable oxidation process.
  • CVD chemical vapor deposition
  • the need for etching of titanium oxide layers may be eliminated and memory cell fabrication significantly simplified.
  • Other materials may be selectively oxidized in accordance with the present invention to form reversible resistivity-switching materials for use in memory cell 500 (e.g., Ta, TaN, Nb, NbN, Al, AlN, Hf, HfN, V, VN, etc.). As shown in FIG.
  • the dielectric layer 532 may include any suitable dielectric such as silicon dioxide, silicon nitride, silicon oxynitride, low K dielectrics, etc.
  • the reversible resistance- switching element 504 includes a titanium oxide layer having a thickness of about 500 angstroms or less, and more preferably a thickness of about 300 angstroms or less. Other titanium oxide thicknesses may be employed.

Landscapes

  • Semiconductor Memories (AREA)

Abstract

Dans certains de ces aspects, l'invention concerne un procédé de formation d'une cellule de mémoire qui consiste (1) à former un premier conducteur sur un substrat; (2) à former un élément de commutation de résistance réversible sur le premier conducteur au moyen d'un procédé de croissance sélectif; (3) à former une diode sur le premier conducteur; et (4) à former un second conducteur sur la diode et l'élément de commutation de résistance réversible. L'invention concerne de nombreux autres aspects.
PCT/US2008/007985 2007-06-29 2008-06-27 Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants Ceased WO2009005699A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010514823A JP2010532568A (ja) 2007-06-29 2008-06-27 選択成長による可逆的抵抗スイッチング素子を使用するメモリセルおよびその形成方法
CN2008800226674A CN101720508B (zh) 2007-06-29 2008-06-27 利用选择性生长的可逆电阻切换元件的存储器单元以及形成该存储器单元的方法
EP08768806A EP2162917A1 (fr) 2007-06-29 2008-06-27 Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/772,088 2007-06-29
US11/772,082 US7824956B2 (en) 2007-06-29 2007-06-29 Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US11/772,088 US7902537B2 (en) 2007-06-29 2007-06-29 Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US11/772,082 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009005699A1 true WO2009005699A1 (fr) 2009-01-08

Family

ID=39720213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/007985 Ceased WO2009005699A1 (fr) 2007-06-29 2008-06-27 Cellule de mémoire utilisant un élément de commutation de résistance réversible à croissance sélective et procédés de formation correspondants

Country Status (6)

Country Link
EP (1) EP2162917A1 (fr)
JP (1) JP2010532568A (fr)
KR (1) KR20100031698A (fr)
CN (2) CN102709471B (fr)
TW (1) TW200915543A (fr)
WO (1) WO2009005699A1 (fr)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165854A (ja) * 2010-02-09 2011-08-25 Toshiba Corp 記憶装置及びその製造方法
US8404553B2 (en) 2010-08-23 2013-03-26 Crossbar, Inc. Disturb-resistant non-volatile memory device and method
WO2012166945A3 (fr) * 2011-05-31 2013-04-11 Crossbar, Inc. Diodes verticales pour dispositif à mémoire non volatile
US8441835B2 (en) 2010-06-11 2013-05-14 Crossbar, Inc. Interface control for improved switching in RRAM
US8450209B2 (en) 2010-11-05 2013-05-28 Crossbar, Inc. p+ Polysilicon material on aluminum for non-volatile memory device and method
US8450710B2 (en) 2011-05-27 2013-05-28 Crossbar, Inc. Low temperature p+ silicon junction material for a non-volatile memory device
US8467227B1 (en) 2010-11-04 2013-06-18 Crossbar, Inc. Hetero resistive switching material layer in RRAM device and method
US8558212B2 (en) 2010-09-29 2013-10-15 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
US8659929B2 (en) 2011-06-30 2014-02-25 Crossbar, Inc. Amorphous silicon RRAM with non-linear device and operation
US8716098B1 (en) 2012-03-09 2014-05-06 Crossbar, Inc. Selective removal method and structure of silver in resistive switching device for a non-volatile memory device
US8750019B2 (en) 2010-07-09 2014-06-10 Crossbar, Inc. Resistive memory using SiGe material
US8765566B2 (en) 2012-05-10 2014-07-01 Crossbar, Inc. Line and space architecture for a non-volatile memory device
US8791010B1 (en) 2010-12-31 2014-07-29 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
US8796658B1 (en) 2012-05-07 2014-08-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US8809831B2 (en) 2010-07-13 2014-08-19 Crossbar, Inc. On/off ratio for non-volatile memory device and method
US8815696B1 (en) 2010-12-31 2014-08-26 Crossbar, Inc. Disturb-resistant non-volatile memory device using via-fill and etchback technique
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US8889521B1 (en) 2012-09-14 2014-11-18 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8930174B2 (en) 2010-12-28 2015-01-06 Crossbar, Inc. Modeling technique for resistive random access memory (RRAM) cells
US8934280B1 (en) 2013-02-06 2015-01-13 Crossbar, Inc. Capacitive discharge programming for two-terminal memory cells
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US8946673B1 (en) 2012-08-24 2015-02-03 Crossbar, Inc. Resistive switching device structure with improved data retention for non-volatile memory device and method
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US8947908B2 (en) 2010-11-04 2015-02-03 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8982647B2 (en) 2012-11-14 2015-03-17 Crossbar, Inc. Resistive random access memory equalization and sensing
US8993397B2 (en) 2010-06-11 2015-03-31 Crossbar, Inc. Pillar structure for memory device and method
US9012307B2 (en) 2010-07-13 2015-04-21 Crossbar, Inc. Two terminal resistive switching device structure and method of fabricating
US9035276B2 (en) 2010-08-23 2015-05-19 Crossbar, Inc. Stackable non-volatile resistive switching memory device
US9087576B1 (en) 2012-03-29 2015-07-21 Crossbar, Inc. Low temperature fabrication method for a three-dimensional memory device and structure
US9112145B1 (en) 2013-01-31 2015-08-18 Crossbar, Inc. Rectified switching of two-terminal memory via real time filament formation
US9129887B2 (en) 2010-09-29 2015-09-08 Crossbar, Inc. Resistor structure for a non-volatile memory device and method
US9153623B1 (en) 2010-12-31 2015-10-06 Crossbar, Inc. Thin film transistor steering element for a non-volatile memory device
US9191000B2 (en) 2011-07-29 2015-11-17 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9252191B2 (en) 2011-07-22 2016-02-02 Crossbar, Inc. Seed layer for a p+ silicon germanium material for a non-volatile memory device and method
US9312483B2 (en) 2012-09-24 2016-04-12 Crossbar, Inc. Electrode structure for a non-volatile memory device and method
US9324942B1 (en) 2013-01-31 2016-04-26 Crossbar, Inc. Resistive memory cell with solid state diode
US9401475B1 (en) 2010-08-23 2016-07-26 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US9406379B2 (en) 2013-01-03 2016-08-02 Crossbar, Inc. Resistive random access memory with non-linear current-voltage relationship
US9412790B1 (en) 2012-12-04 2016-08-09 Crossbar, Inc. Scalable RRAM device architecture for a non-volatile memory device and method
US9543359B2 (en) 2011-05-31 2017-01-10 Crossbar, Inc. Switching device having a non-linear element
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US9601690B1 (en) 2011-06-30 2017-03-21 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US9627057B2 (en) 2013-03-15 2017-04-18 Crossbar, Inc. Programming two-terminal memory cells with reduced program current
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US9633723B2 (en) 2011-06-23 2017-04-25 Crossbar, Inc. High operating speed resistive random access memory
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9735358B2 (en) 2012-08-14 2017-08-15 Crossbar, Inc. Noble metal / non-noble metal electrode for RRAM applications
US9741765B1 (en) 2012-08-14 2017-08-22 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9793474B2 (en) 2012-04-20 2017-10-17 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494335B1 (ko) * 2007-06-29 2015-02-23 쌘디스크 3디 엘엘씨 선택적으로 증착된 가역 저항-스위칭 소자를 사용하는 메모리 셀과 상기 메모리 셀을 형성하는 방법
KR101127236B1 (ko) 2008-12-29 2012-03-29 주식회사 하이닉스반도체 저항성 메모리 소자의 제조 방법
JP2011066313A (ja) * 2009-09-18 2011-03-31 Toshiba Corp 不揮発性半導体装置
JP5439147B2 (ja) * 2009-12-04 2014-03-12 株式会社東芝 抵抗変化メモリ
CN102693985B (zh) * 2011-03-25 2016-03-02 北京兆易创新科技股份有限公司 一种可编程存储器及其制造方法
CN102738390A (zh) * 2011-04-12 2012-10-17 北京大学 阻变存储器单元及其制造方法
US9299767B1 (en) * 2014-09-26 2016-03-29 Intel Corporation Source-channel interaction in 3D circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1284645A (en) * 1970-01-30 1972-08-09 Welwyn Electric Ltd Then film device
US3796926A (en) * 1971-03-29 1974-03-12 Ibm Bistable resistance device which does not require forming
WO2005024839A1 (fr) * 2003-09-11 2005-03-17 Infineon Technologies Ag Cellule de memoire pour mecanisme de stockage de conductivite ionique et procede de production correspondant
US20060250836A1 (en) * 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
WO2007004843A1 (fr) * 2005-07-04 2007-01-11 Industry-University Cooperation Foundation Hanyang University Procede de formation de film d'oxyde binaire multicouche pour memoire ram a resistance
WO2007018026A1 (fr) * 2005-08-05 2007-02-15 Sharp Kabushiki Kaisha Élément de résistance variable et procédé de fabrication idoine et dispositif de stockage pourvu dudit élément
WO2007062022A1 (fr) * 2005-11-23 2007-05-31 Sandisk 3D Llc Couche de nitrure ou d'oxyde a commutation de resistivite reversible contenant un metal ajoute

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20070132049A1 (en) * 2005-12-12 2007-06-14 Stipe Barry C Unipolar resistance random access memory (RRAM) device and vertically stacked architecture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1284645A (en) * 1970-01-30 1972-08-09 Welwyn Electric Ltd Then film device
US3796926A (en) * 1971-03-29 1974-03-12 Ibm Bistable resistance device which does not require forming
WO2005024839A1 (fr) * 2003-09-11 2005-03-17 Infineon Technologies Ag Cellule de memoire pour mecanisme de stockage de conductivite ionique et procede de production correspondant
US20060250836A1 (en) * 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
WO2007004843A1 (fr) * 2005-07-04 2007-01-11 Industry-University Cooperation Foundation Hanyang University Procede de formation de film d'oxyde binaire multicouche pour memoire ram a resistance
WO2007018026A1 (fr) * 2005-08-05 2007-02-15 Sharp Kabushiki Kaisha Élément de résistance variable et procédé de fabrication idoine et dispositif de stockage pourvu dudit élément
EP1914806A1 (fr) * 2005-08-05 2008-04-23 Sharp Kabushiki Kaisha Element de resistance variable et procede de fabrication idoine et dispositif de stockage pourvu dudit element
WO2007062022A1 (fr) * 2005-11-23 2007-05-31 Sandisk 3D Llc Couche de nitrure ou d'oxyde a commutation de resistivite reversible contenant un metal ajoute

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIATT W R ET AL: "BISTABLE SWITCHING IN NIOBIUM OXIDE DIODES", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, vol. 6, no. 6, 15 March 1965 (1965-03-15), pages 106 - 108, XP000861765, ISSN: 0003-6951 *

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436331B2 (en) 2010-02-09 2013-05-07 Kabushiki Kaisha Toshiba Memory device and method for manufacturing same
JP2011165854A (ja) * 2010-02-09 2011-08-25 Toshiba Corp 記憶装置及びその製造方法
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US8441835B2 (en) 2010-06-11 2013-05-14 Crossbar, Inc. Interface control for improved switching in RRAM
US8993397B2 (en) 2010-06-11 2015-03-31 Crossbar, Inc. Pillar structure for memory device and method
US8599601B2 (en) 2010-06-11 2013-12-03 Crossbar, Inc. Interface control for improved switching in RRAM
US8750019B2 (en) 2010-07-09 2014-06-10 Crossbar, Inc. Resistive memory using SiGe material
US9036400B2 (en) 2010-07-09 2015-05-19 Crossbar, Inc. Method and structure of monolithically integrated IC and resistive memory using IC foundry-compatible processes
US9012307B2 (en) 2010-07-13 2015-04-21 Crossbar, Inc. Two terminal resistive switching device structure and method of fabricating
US9755143B2 (en) 2010-07-13 2017-09-05 Crossbar, Inc. On/off ratio for nonvolatile memory device and method
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8809831B2 (en) 2010-07-13 2014-08-19 Crossbar, Inc. On/off ratio for non-volatile memory device and method
US9401475B1 (en) 2010-08-23 2016-07-26 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US10224370B2 (en) 2010-08-23 2019-03-05 Crossbar, Inc. Device switching using layered device structure
US9412789B1 (en) 2010-08-23 2016-08-09 Crossbar, Inc. Stackable non-volatile resistive switching memory device and method of fabricating the same
US9590013B2 (en) 2010-08-23 2017-03-07 Crossbar, Inc. Device switching using layered device structure
US9035276B2 (en) 2010-08-23 2015-05-19 Crossbar, Inc. Stackable non-volatile resistive switching memory device
US8404553B2 (en) 2010-08-23 2013-03-26 Crossbar, Inc. Disturb-resistant non-volatile memory device and method
US8558212B2 (en) 2010-09-29 2013-10-15 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
US8912523B2 (en) 2010-09-29 2014-12-16 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
US9129887B2 (en) 2010-09-29 2015-09-08 Crossbar, Inc. Resistor structure for a non-volatile memory device and method
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8947908B2 (en) 2010-11-04 2015-02-03 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8659933B2 (en) 2010-11-04 2014-02-25 Crossbar, Inc. Hereto resistive switching material layer in RRAM device and method
US8467227B1 (en) 2010-11-04 2013-06-18 Crossbar, Inc. Hetero resistive switching material layer in RRAM device and method
US8450209B2 (en) 2010-11-05 2013-05-28 Crossbar, Inc. p+ Polysilicon material on aluminum for non-volatile memory device and method
US8930174B2 (en) 2010-12-28 2015-01-06 Crossbar, Inc. Modeling technique for resistive random access memory (RRAM) cells
US8815696B1 (en) 2010-12-31 2014-08-26 Crossbar, Inc. Disturb-resistant non-volatile memory device using via-fill and etchback technique
US9153623B1 (en) 2010-12-31 2015-10-06 Crossbar, Inc. Thin film transistor steering element for a non-volatile memory device
US8791010B1 (en) 2010-12-31 2014-07-29 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
US9831289B2 (en) 2010-12-31 2017-11-28 Crossbar, Inc. Disturb-resistant non-volatile memory device using via-fill and etchback technique
US8450710B2 (en) 2011-05-27 2013-05-28 Crossbar, Inc. Low temperature p+ silicon junction material for a non-volatile memory device
US8513636B2 (en) 2011-05-31 2013-08-20 Crossbar, Inc. Vertical diodes for non-volatile memory device
US9543359B2 (en) 2011-05-31 2017-01-10 Crossbar, Inc. Switching device having a non-linear element
WO2012166945A3 (fr) * 2011-05-31 2013-04-11 Crossbar, Inc. Diodes verticales pour dispositif à mémoire non volatile
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US9633723B2 (en) 2011-06-23 2017-04-25 Crossbar, Inc. High operating speed resistive random access memory
US9601690B1 (en) 2011-06-30 2017-03-21 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US8659929B2 (en) 2011-06-30 2014-02-25 Crossbar, Inc. Amorphous silicon RRAM with non-linear device and operation
US9570683B1 (en) 2011-06-30 2017-02-14 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9252191B2 (en) 2011-07-22 2016-02-02 Crossbar, Inc. Seed layer for a p+ silicon germanium material for a non-volatile memory device and method
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US9191000B2 (en) 2011-07-29 2015-11-17 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8716098B1 (en) 2012-03-09 2014-05-06 Crossbar, Inc. Selective removal method and structure of silver in resistive switching device for a non-volatile memory device
US9087576B1 (en) 2012-03-29 2015-07-21 Crossbar, Inc. Low temperature fabrication method for a three-dimensional memory device and structure
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US9673255B2 (en) 2012-04-05 2017-06-06 Crossbar, Inc. Resistive memory device and fabrication methods
US10910561B1 (en) 2012-04-13 2021-02-02 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US9793474B2 (en) 2012-04-20 2017-10-17 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US9385319B1 (en) 2012-05-07 2016-07-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US8796658B1 (en) 2012-05-07 2014-08-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US8765566B2 (en) 2012-05-10 2014-07-01 Crossbar, Inc. Line and space architecture for a non-volatile memory device
US10096653B2 (en) 2012-08-14 2018-10-09 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9741765B1 (en) 2012-08-14 2017-08-22 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9735358B2 (en) 2012-08-14 2017-08-15 Crossbar, Inc. Noble metal / non-noble metal electrode for RRAM applications
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US8946673B1 (en) 2012-08-24 2015-02-03 Crossbar, Inc. Resistive switching device structure with improved data retention for non-volatile memory device and method
US8889521B1 (en) 2012-09-14 2014-11-18 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US9312483B2 (en) 2012-09-24 2016-04-12 Crossbar, Inc. Electrode structure for a non-volatile memory device and method
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US12254124B1 (en) 2012-11-09 2025-03-18 Crossbar, Inc. Secure circuit integrated with memory layer
US11836277B2 (en) 2012-11-09 2023-12-05 Crossbar, Inc. Secure circuit integrated with memory layer
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer
US8982647B2 (en) 2012-11-14 2015-03-17 Crossbar, Inc. Resistive random access memory equalization and sensing
US9412790B1 (en) 2012-12-04 2016-08-09 Crossbar, Inc. Scalable RRAM device architecture for a non-volatile memory device and method
US9406379B2 (en) 2013-01-03 2016-08-02 Crossbar, Inc. Resistive random access memory with non-linear current-voltage relationship
US9112145B1 (en) 2013-01-31 2015-08-18 Crossbar, Inc. Rectified switching of two-terminal memory via real time filament formation
US9324942B1 (en) 2013-01-31 2016-04-26 Crossbar, Inc. Resistive memory cell with solid state diode
US8934280B1 (en) 2013-02-06 2015-01-13 Crossbar, Inc. Capacitive discharge programming for two-terminal memory cells
US9627057B2 (en) 2013-03-15 2017-04-18 Crossbar, Inc. Programming two-terminal memory cells with reduced program current
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device

Also Published As

Publication number Publication date
CN102709471B (zh) 2014-12-24
CN102709471A (zh) 2012-10-03
CN101720508B (zh) 2012-05-23
CN101720508A (zh) 2010-06-02
EP2162917A1 (fr) 2010-03-17
KR20100031698A (ko) 2010-03-24
JP2010532568A (ja) 2010-10-07
TW200915543A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
US7824956B2 (en) Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
US7902537B2 (en) Memory cell that employs a selectively grown reversible resistance-switching element and methods of forming the same
CN101720508B (zh) 利用选择性生长的可逆电阻切换元件的存储器单元以及形成该存储器单元的方法
US8233308B2 (en) Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US7846785B2 (en) Memory cell that employs a selectively deposited reversible resistance-switching element and methods of forming the same
US8981347B2 (en) Memory cell that includes a sidewall collar for pillar isolation and methods of forming the same
KR101494335B1 (ko) 선택적으로 증착된 가역 저항-스위칭 소자를 사용하는 메모리 셀과 상기 메모리 셀을 형성하는 방법
US20130148404A1 (en) Antifuse-based memory cells having multiple memory states and methods of forming the same
WO2014163994A1 (fr) Procédés et appareils pour dispositifs de mémoire à commutation de résistance réversible à oxyde métallique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880022667.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08768806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008768806

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097027300

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE