WO2008016111A1 - Procédé permettant d'évaluer un cancer du poumon, dispositif d'évaluation d'un cancer du poumon, procédé d'évaluation d'un cancer du poumon, système d'évaluation d'un cancer du poumon, programme d'évaluation d' - Google Patents
Procédé permettant d'évaluer un cancer du poumon, dispositif d'évaluation d'un cancer du poumon, procédé d'évaluation d'un cancer du poumon, système d'évaluation d'un cancer du poumon, programme d'évaluation d' Download PDFInfo
- Publication number
- WO2008016111A1 WO2008016111A1 PCT/JP2007/065179 JP2007065179W WO2008016111A1 WO 2008016111 A1 WO2008016111 A1 WO 2008016111A1 JP 2007065179 W JP2007065179 W JP 2007065179W WO 2008016111 A1 WO2008016111 A1 WO 2008016111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lung cancer
- discriminant
- multivariate discriminant
- formula
- evaluation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57423—Specifically defined cancers of lung
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/20—Supervised data analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/30—Unsupervised data analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B15/00—ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
Definitions
- Lung cancer evaluation method lung cancer evaluation apparatus, lung cancer evaluation method, lung cancer evaluation system, lung cancer evaluation program, and recording medium
- the present invention relates to a lung cancer evaluation method using an amino acid concentration in blood (plasma), a lung cancer evaluation device, a lung cancer evaluation method, a lung cancer evaluation system, a lung cancer evaluation program, and a recording medium.
- Lung cancer is a cancer that is difficult to cure, and when it is discovered, more than half of the cancers have already progressed and cannot be operated on.
- the 5-year survival rate for early stage (stage IV to stage IV) lung cancer is more than 50%, especially for stage IV lung cancer (tumor is 3cm or less with no lymph node metastasis and no invasion of surrounding organs). The rate is about 90%, and early detection is important for lung cancer healing.
- Lung cancer diagnosis is based on images such as radiographs, CT, MRI, and PET, sputum cytology, lung biopsy with a bronchoscope, lung biopsy with a percutaneous needle, test thoracotomy or lung biopsy with a thoracoscope and so on.
- sputum cytology can only be confirmed in 20-30% of patients! /.
- Lung biopsy with bronchoscope, transcutaneous needle, test thoracotomy and thoracoscope is a definitive diagnosis, but it is a highly invasive examination, and lung biopsy is performed on all patients suspected of having lung cancer through imaging It is impractical to do.
- these invasive diagnoses are burdensome, including patient pain, and can also involve risks such as bleeding from the test. If possible, select subjects with a high likelihood of developing lung cancer by a less invasive method, obtain a definitive diagnosis of lung cancer by lung biopsy, and make it the target of treatment. Physical burden on patient and cost-effectiveness It is desirable from the aspect.
- Non-patent Document 1 glutamine is mainly used as a source of oxidation energy
- arginine is As precursors of nitrogen oxides and polyamines
- methionine has been reported to increase the consumption of cancer cells by the activation of methionine uptake by cancer cells.
- Ploenga et al. Non-patent document 2
- Caszino Non-patent document 3
- Rodrigues et al. Non-patent Document 4
- an increase in arginase I gene expression and enzyme activity was observed in bone marrow cells in contact with cancer cells, and as a result, the plasma arginine concentration decreased. There is a report.
- Non-Patent Document 1 Cynober, L. ed., Metabolic and therapeutic aspects of amino acids in clinical nutrition. 2nd ed., CRC Press.
- Non-Patent Document 2 Proenza, AM, J. Oliver, A. Palou and P. Roca, Breast and lung cancer are associated with a decrease in blood cell amino acid content.J Nutr Biochem, 2003. 14 (3): p. 133 8.
- Non-Patent Document 3 Cascino, A., M. Muscaritoli, C. Cangiano, L. Con versano, A. Laviano, S. Ariemma, MM Meguid and F. Ross i Fanelli, Plasma amino acid imbalance in patients with lung and breast Cancer. Anticancer Res, 1995. 15 (2): p. 507— 10.
- Non-Patent Document 4 Rodriguez, PC, CP Hernandez, D. Quiceno, S M. Dubinett, J. Zabaleta, JB Ochoa, J. Gilbert and AC Ochoa, Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med, 2005. 202 (7): p. 931— 9. Disclosure of the invention
- the present invention has been made in view of the above-mentioned problems, and it is possible to accurately evaluate the state of lung cancer using the amino acid concentration related to the state of lung cancer among the amino acid concentrations in blood.
- An object of the present invention is to provide a lung cancer evaluation method, a lung cancer evaluation device, a lung cancer evaluation method, a lung cancer evaluation system, a lung cancer evaluation program, and a recording medium.
- the present inventors have intensively studied to solve the above problems, and are useful for discriminating lung cancer based on the amino acid concentration in the blood. As a result, the present inventors have found that a correlation formula (index formula) using amino acid variables has a significant correlation with the progression of early lung cancer, and has completed the present invention.
- the present invention includes the following.
- the method for evaluating lung cancer according to 1, comprising: a measurement step of measuring amino acid concentration data relating to an amino acid concentration value from blood collected from an evaluation target; and the amino acid concentration data of the evaluation target measured in the measurement step Orn, Lys, ABA (ABA represents ⁇ -aminobutyric acid, the same shall apply hereinafter), Arg, Glu, His, Tau, Pro, Ala, Cit, lie And a concentration value reference evaluation step for evaluating the state of lung cancer.
- ABA represents ⁇ -aminobutyric acid, the same shall apply hereinafter
- Arg, Glu, His, Tau, Pro, Ala, Cit lie
- a concentration value reference evaluation step for evaluating the state of lung cancer.
- the lung cancer evaluation method according to claim 2 which is effective in the present invention, is different from the lung cancer evaluation method according to claim 1, wherein the concentration value reference evaluation step includes the measurement. Based on the concentration value of at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie included in the amino acid concentration data of the evaluation target measured in step The method further includes a concentration value reference determining step for determining whether the subject is the above-mentioned lung cancer or non-lung cancer.
- the method for evaluating lung cancer according to the present invention includes the method for evaluating lung cancer according to claim 1.
- the concentration value reference evaluation step includes Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie included in the amino acid concentration data of the evaluation object measured in the measurement step. Based on the concentration value of at least one of
- the method further comprises a concentration value reference determining step for determining whether the cancer is lung cancer and its stage, or whether it is non-lung cancer.
- the method for evaluating lung cancer according to the present invention includes the method for evaluating lung cancer according to claim 1.
- the concentration value reference evaluation step includes Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie included in the amino acid concentration data of the evaluation object measured in the measurement step.
- the lung cancer evaluation method according to claim 3 is more powerful than the lung cancer evaluation method according to claim 1, and the concentration value reference evaluation step includes the measurement.
- a discriminant value calculating step for calculating a discriminant value which is a value of the multivariate discriminant, and based on the discriminant value calculated in the discriminant value calculating step
- a discriminant value criterion evaluating step for evaluating the state of the lung cancer for the object to be evaluated, wherein the multivariate discriminant is Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, It includes at least one of Cit and lie as the variable.
- the lung cancer evaluation method according to claim 4 is characterized in that, in the lung cancer evaluation method according to claim 3, the multivariate discriminant further includes age as the variable. It is characterized by this.
- the method for evaluating lung cancer according to claim 5, which is effective in the present invention is described in claim 3 or 4.
- the discriminant value criterion evaluation step discriminates whether or not the evaluation object is the lung cancer or the non-lung cancer based on the discriminant value calculated in the discriminant value calculation step. Further comprising a value criterion discrimination step
- the lung cancer evaluation method according to claim 6 is the lung cancer evaluation method according to claim 5, wherein the multivariate discriminant includes one fractional expression or a plurality of fractional expressions. At least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie is represented in the numerator and / or denominator of the fractional expression that is expressed by the sum of the fractional expressions. The variable is included as the variable.
- the lung cancer evaluation method according to claim 7 is characterized in that, in the lung cancer evaluation method according to claim 6, the multivariate discriminant is represented by Equation 1, Equation 2, or Equation 3. It is characterized by that.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation method according to claim 8 is characterized in that, in the lung cancer evaluation method according to claim 5, the multivariate discriminant is a logistic regression equation or a linear discriminant. , Multiple regression equation, formula created by support vector machine, formula created by Mahalanobis distance method, formula created by canonical discriminant analysis, formula created by decision tree And
- the lung cancer evaluation method according to claim 9 is characterized in that, in the lung cancer evaluation method according to claim 8, the multivariate discriminant is Tau, Orn, Arg, Ser. , Glu, Pro, Asn as the variables, the logistic regression equation, or age, ABA, Arg, Gin, Hi
- the lung cancer evaluation method according to the present invention (corresponding to the lung cancer evaluation method according to claim 10) is characterized in that in the lung cancer evaluation method according to claim 3 or 4, the discriminant value criterion evaluation step Is based on the discriminant value calculated in the discriminant value calculating step, and discriminant value reference discriminating for discriminating whether or not the subject is the lung cancer and its stage, or non-lung cancer.
- the method further includes a step.
- the method for evaluating lung cancer according to the present invention is the same as the method for evaluating lung cancer described above!
- the multivariate discriminant is one fractional expression or a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression that is expressed as a sum and includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable It is characterized by this.
- the lung cancer evaluation method according to the present invention is the lung cancer evaluation method according to the above, wherein the multivariate discriminant is Formula 4, 5 or Formula 6
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation method according to the present invention is the same as the lung cancer evaluation method described above!
- the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation.
- the method for evaluating lung cancer according to the present invention is the same as the method for evaluating lung cancer described above!
- the multivariate discriminant is characterized in that Orn, Tau, Trp are the variables.
- the lung cancer evaluation method according to the present invention (corresponding to the lung cancer evaluation method according to claim 11) is characterized in that in the lung cancer evaluation method according to claim 3 or 4, the discriminant value criterion
- the evaluation step determines whether the lung cancer is an adenocarcinoma or non-lung cancer based on the discrimination value calculated in the discrimination value calculation step.
- the method further includes a reference discrimination step.
- the method for evaluating lung cancer according to the present invention is the same as the method for evaluating lung cancer described above!
- the multivariate discriminant is one fractional expression or a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression that is expressed as a sum and includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable It is characterized by this.
- the lung cancer evaluation method according to the present invention is the lung cancer evaluation method according to the above, wherein the multivariate discriminant is represented by Formula 7: Formula 8 or Formula 9
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the method for evaluating lung cancer according to the present invention is the above-described method for evaluating lung cancer.
- the multivariate discriminant is a logistic regression formula, linear discriminant formula, multiple regression formula, formula created with a support vector machine, formula created with Mahalanobis distance method, formula created with canonical discriminant analysis, It is one of the formulas created by the decision tree.
- the method for evaluating lung cancer according to the present invention is the same as the method for evaluating lung cancer described above!
- the multivariate discriminant has Orn, ABA, Tau, and Gly as the variables.
- the present invention relates to a lung cancer evaluation apparatus, and the lung cancer evaluation apparatus according to claim 12, which is effective for the present invention, includes a control means and a storage means, and evaluates the state of lung cancer for an evaluation object.
- the lung cancer evaluation apparatus wherein the control means includes Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, included in the evaluation target amino acid concentration data relating to the amino acid concentration value.
- the discriminant value that is the value of the multivariate discriminant Discriminant value calculating means for calculating the discriminant value, and discriminant value criterion evaluating means for evaluating the state of the lung cancer for the evaluation object based on the discriminant value calculated by the discriminant value calculating means, and the multivariate
- the discriminant is Orn, Lys, ABA, Ar g, Glu, His, Tau, Pro, Ala, Cit , lie are included as the variables.
- the lung cancer evaluation device according to claim 13 according to the present invention is the lung cancer evaluation device according to claim 12, wherein the multivariate discriminant further includes age as the variable. To do.
- the lung cancer evaluation apparatus is characterized in that, in the lung cancer evaluation apparatus according to claim 12 or 13, the discriminant value criterion evaluation means is the discriminant value calculating means. It is further characterized by further comprising discriminant value criterion discriminating means for discriminating whether or not the subject is the lung cancer or non-lung cancer based on the calculated discriminant value.
- the lung cancer evaluation device is the lung according to claim 14.
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of the fractional expressions, and the numerator and / or denominator of the fractional expression constituting the multivariate discriminant is Orn, Lys, ABA, Arg , Glu, His, Tau, Pro, Ala, Cit, and lie are included as the variables.
- the multivariate discriminant is represented by Equation 1, Equation 2, or Equation 3, according to Claim 16, wherein the multivariate discriminant is the lung cancer evaluation device according to Claim 15. It is characterized by that.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation device is the lung cancer evaluation device according to claim 14, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant, a multiple regression equation. It is one of an expression created by a support vector machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, and an expression created by a decision tree.
- the lung cancer evaluation apparatus according to claim 18, which is effective for the present invention is the lung cancer evaluation apparatus according to claim 17, wherein the multivariate discriminant is Tau, Orn, Arg, Ser, Glu. , Pro, As n as the variable, or the linear discriminant using age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as the variable, or The logistic regression equation with His, G1 u, Pro, lie, Gin, Lys as the variables, or the linear discriminant with His, Glu, Pro, lie, Tyr, Lys as the variables. .
- the multivariate discriminant is Tau, Orn, Arg, Ser, Glu. , Pro, As n as the variable, or the linear discriminant using age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as the variable, or The logistic regression equation with His, G1 u, Pro, lie, Gin, Lys as the variables, or the linear discriminant with His, Glu, Pro, lie,
- the lung cancer evaluation apparatus (corresponding to the lung cancer evaluation apparatus according to claim 19) is the lung cancer evaluation apparatus according to claim 12 or 13, wherein the discriminant value criterion evaluation means Is a discriminant value criterion discriminating unit for discriminating, based on the discriminant value calculated by the discriminant value calculating unit, whether the evaluation target is the lung cancer and its stage, or whether it is non-lung cancer. It is further provided with a feature.
- the lung cancer evaluation apparatus is the same as the lung cancer evaluation apparatus described above!
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression constituting it includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the lung cancer evaluation device according to the present invention is the lung cancer evaluation device according to the above, wherein the multivariate discriminant is Formula 4, Formula 5 or Formula 6. It is characterized by being.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant is a logistic regression equation, linear discriminant equation, multiple regression equation, support vector, It is characterized by being one of an expression created by one machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, or an expression created by a decision tree.
- the lung cancer evaluation apparatus is the same as the above-described lung cancer evaluation apparatus!
- the mouth joystick having Orn, Tau, and Trp as the variables.
- the lung cancer evaluation device (corresponding to the lung cancer evaluation device according to claim 20) is the lung cancer evaluation device according to claim 12 or 13, wherein the discriminant value criterion-evaluating means includes the discrimination Based on the discriminant value calculated by the value calculating unit, the evaluation object further includes a discriminant value criterion discriminating unit that discriminates whether the evaluation target is an adenocarcinoma of the lung cancer or a non-lung cancer. It is characterized by.
- the lung cancer evaluation apparatus is the same as the lung cancer evaluation apparatus described above!
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression constituting it includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the lung cancer evaluation device according to the present invention (corresponding to the lung cancer evaluation device according to claim 20) is the lung cancer evaluation device according to the above, wherein the multivariate discriminant is Equation 7, Equation 8, or Equation 9 It is characterized by being.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the multivariate discriminant is a logistic regression equation, linear discriminant equation, multiple regression equation, support vector, It is characterized by being one of an expression created by one machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, or an expression created by a decision tree.
- the lung cancer evaluation apparatus is the above-described lung cancer evaluation apparatus! /
- the logistic with the multivariate discriminant having Orn, ABA, Tau, and Gly as the variables is described above.
- the lung cancer evaluation apparatus which is effective in the present invention, is the lung cancer evaluation apparatus according to any one of claims 12 to 20, wherein the control means includes the amino acid concentration data.
- the multivariate discrimination formula stored in the storage means based on the lung cancer status information stored in the storage means including data and lung cancer status index data relating to an index representing the lung cancer status.
- Multivariate discriminant creation means is further provided, and the multivariate discriminant creation means creates candidate multivariate discriminants that are candidates for the multivariate discriminant based on the lung cancer state information based on a predetermined formula creation method.
- a candidate multivariate discriminant creating means a candidate multivariate discriminant validating means for verifying the candidate multivariate discriminant created by the candidate multivariate discriminant creating means based on a predetermined verification method; Verification by the candidate multivariate discriminant verification means
- Verification by the candidate multivariate discriminant verification means A combination of the amino acid concentration data included in the lung cancer state information used when creating the candidate multivariate discriminant is selected by selecting a variable of the candidate multivariate discriminant from a result based on a predetermined variable selection method.
- Variable selection means to select, based on the verification results accumulated by repeatedly executing the candidate multivariate discriminant creation means, the candidate multivariate discriminant verification means and the variable selection means! /, Then, the multivariate discriminant is created by selecting the candidate multivariate discriminant adopted as the multivariate discriminant from a plurality of the candidate multivariate discriminants.
- the present invention relates to a lung cancer evaluation method, and the lung cancer evaluation method according to claim 22 is executed by an information processing apparatus including a control unit and a storage unit.
- a lung cancer evaluation method for evaluating a state of lung cancer per evaluation object wherein the control means includes Orn, Lys, ABA, Arg, Glu, His included in the amino acid concentration data of the evaluation object acquired in advance regarding the amino acid concentration value.
- Tau, Pro, Ala, Cit, lie is a value of the multivariate discriminant based on the multivariate discriminant stored in the storage means using the concentration value and the amino acid concentration as variables.
- the multivariate discriminant includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the lung cancer evaluation method according to claim 23 according to the present invention is the lung cancer evaluation method according to claim 22, wherein the multivariate discriminant further includes age as the variable. To do.
- the lung cancer evaluation method according to claim 24, which is effective for the present invention is the lung cancer evaluation method according to claim 22 or 23, wherein the discriminant value criterion evaluation step is calculated in the discriminant value calculation step. And a discriminant value criterion discriminating step for discriminating whether the evaluation object is the lung cancer or the non-lung cancer based on the discriminant value.
- the lung cancer evaluation method according to claim 25 is the lung cancer evaluation method according to claim 24, wherein the multivariate discriminant is one fractional expression or a plurality of fractional expressions. At least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie is used as the variable in the numerator and / or denominator of the fractional expression that is expressed as a sum It is characterized by including as.
- the multivariate discriminant according to the present invention is the lung cancer evaluation method according to claim 25, the multivariate discriminant is Formula 1, Formula 2, or Formula 3. It is characterized by that.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation method according to claim 27 is the lung cancer evaluation method according to claim 24, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant, It is one of multiple regression equations, formulas created with support vector machines, formulas created with Mahalanobis distance method, formulas created with canonical discriminant analysis, and formulas created with decision trees. To do.
- the multivariate discriminant is a logistic regression equation, a linear discriminant, It is one of multiple regression equations, formulas created with support vector machines, formulas created with Mahalanobis distance method, formulas created with canonical discriminant analysis, and formulas created with decision trees.
- the lung cancer evaluation method according to claim 28 which is effective in the present invention, is the lung cancer evaluation method according to claim 27, wherein the multivariate discriminant is Tau, Orn, Arg, Ser, Glu. , Pro, As n as the variable, or the linear discriminant using age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as the variable, or The logistic regression equation with His, G1 u, Pro, lie, Gin, Lys as the variables, or the linear discriminant with His, Glu, Pro, lie, Tyr, Lys as the variables. .
- the multivariate discriminant is Tau, Orn, Arg, Ser, Glu. , Pro, As n as the variable, or the linear discriminant using age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as the variable, or The logistic regression equation with His, G1 u, Pro, lie, Gin, Lys as the variables, or the linear discriminant with His, Glu, Pro, lie
- the lung cancer evaluation method according to the present invention is the lung cancer evaluation method according to claim 22 or 23, wherein the discriminant value criterion evaluation step includes Based on the discriminant value calculated in the discriminant value calculating step, the method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation object is the lung cancer and its stage or non-lung cancer.
- the lung cancer evaluation method according to the present invention is the same as the lung cancer evaluation method described above!
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression constituting it includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the lung cancer evaluation method according to the present invention is the lung cancer evaluation method according to the above, wherein the multivariate discriminant is Formula 4, Formula 5 or Formula 6. It is characterized by being.
- Equation 6 (In Equation 4, a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation method according to the present invention is the lung cancer evaluation method described above, wherein the multivariate discriminant is created by a logistic regression equation, a linear discriminant equation, a multiple regression equation, and a support vector machine. It is one of the following formulas: Formula created by Mahalanobis distance method, Formula created by canonical discriminant analysis, Formula created by decision tree.
- the lung cancer evaluation method according to the present invention is the same as the above-described lung cancer evaluation method!
- the multivariate discriminant is characterized in that the oral dictation uses Orn, Tau, Trp as the variables.
- the linear discriminant is characterized in that Gin, Glu, Ala, His, Cys, and ABA are the variables.
- the lung cancer evaluation method according to the present invention is the lung cancer evaluation method according to claim 22 or 23, wherein the discriminant value criterion evaluation step includes Based on the discriminant value calculated in the discriminant value calculating step, the method further includes a discriminant value criterion discriminating step for discriminating whether the evaluation target is adenocarcinoma or non-lung cancer among the lung cancers. It is characterized by.
- the lung cancer evaluation method according to the present invention is the same as the lung cancer evaluation method described above! /, wherein the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression constituting it includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the lung cancer evaluation method according to the present invention is the lung cancer evaluation method according to the above, wherein the multivariate discriminant is Formula 7, Formula 8 or Formula 9 It is characterized by being.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the lung cancer evaluation method according to the present invention is the same as the lung cancer evaluation method described above!
- the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, a support vector, It is characterized by being one of an expression created by one machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, or an expression created by a decision tree.
- the lung cancer evaluation method according to the present invention is the same as the lung cancer evaluation method described above! /, And the multivariate discriminant is characterized in that the logistic using Orn, ABA, Tau, and Gly as the variables.
- a regression equation, or the linear discriminant with Orn, ABA, Tau, His, Arg, Gly as the variable, or the logistic regression equation with His, lie, Glu, Pro, Leu, Gin as the variable, or His , lie, Pro, Ala, Leu, Gin are the linear discriminants having the variables.
- the lung cancer evaluation method according to claim 31 which is particularly effective for the present invention, is the lung cancer evaluation method according to any one of claims 22 to 30, wherein the control means includes the amino acid concentration data.
- the multivariate discrimination formula stored in the storage means based on the lung cancer status information stored in the storage means including data and lung cancer status index data relating to an index representing the lung cancer status.
- a multivariate discriminant creation step is further executed, and the multivariate discriminant creation step is configured to obtain a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on a predetermined formula creation method from the lung cancer state information.
- the present invention relates to a lung cancer evaluation system, and the lung cancer evaluation system according to claim 32 according to the present invention includes a control unit and a storage unit, and evaluates the state of lung cancer for an evaluation target.
- a lung cancer evaluation system configured by connecting an evaluation device and an information communication terminal device that provides the amino acid concentration data of the evaluation target relating to the amino acid concentration value through a network, the information communication terminal The apparatus receives amino acid concentration data transmission means for transmitting the amino acid concentration data of the evaluation target to the lung cancer evaluation device, and the evaluation result of the evaluation target regarding the state of the lung cancer transmitted from the lung cancer evaluation device.
- Evaluation result receiving means, and the control means of the lung cancer evaluation apparatus is the evaluation target transmitted from the information communication terminal apparatus.
- Amino acid concentration data receiving means for receiving acid concentration data, and Orn, Lys, ABA, Arg, Glu, His, Tau, Pro included in the evaluation target amino acid concentration data received by the amino acid concentration data receiving means
- the discriminant is a value of the multivariate discriminant
- a discriminant value calculating unit that calculates a value
- a discriminant value criterion evaluating unit that evaluates the state of the lung cancer for the evaluation object based on the discriminant value calculated by the discriminant value calculating unit
- Evaluation result transmitting means for transmitting the evaluation result of the evaluation object to the information communication terminal device, wherein the multivariate discriminant is Orn, Lys, ABA, Arg, Glu, His, Tau, Pro , Ala, Cit, lie Characterized in that it comprises a.
- the lung cancer evaluation system according to the present invention is characterized in that in the lung cancer evaluation system described above, the multivariate discriminant further includes age as the variable.
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the discriminant value reference evaluation unit is based on the discriminant value calculated by the discriminant value calculation unit. It is further characterized by further comprising a discrimination value criterion discriminating unit for discriminating whether the evaluation target is the lung cancer or non-lung cancer.
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions
- the numerator and / or denominator of the fractional expression constituting the variable includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable. .
- a lung cancer evaluation system is characterized in that, in the lung cancer evaluation system described above, the multivariate discriminant is Formula 1, Formula 2, or Formula 3.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, a support vector machine. It is one of the following formulas: Formula created by Mahalanobis distance method, Formula created by canonical discriminant analysis, Formula created by decision tree.
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the multivariate discriminant includes Tau, Orn, Arg, Ser, Glu, Pro, Asn as the variable. Or the linear discriminant with age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as the variables, or His, Glu, Pro, lie, Gin , Lys as the variable, or the linear discriminant using His, Glu, Pro, lie, Tyr, and Lys as the variables.
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the discriminant value reference evaluation unit is based on the discriminant value calculated by the discriminant value calculator.
- the discriminant value reference evaluation unit is based on the discriminant value calculated by the discriminant value calculator.
- the lung cancer and its stage, or non-lung It is further characterized by further comprising a discriminant value criterion discriminating means for discriminating whether or not it is cancer.
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions
- the numerator and / or denominator of the fractional expression constituting the variable includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable. .
- a lung cancer evaluation system is characterized in that, in the lung cancer evaluation system described above, the multivariate discriminant is Formula 4, Formula 5 or Formula 6.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation system is the above-described lung cancer evaluation system, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, a support vector machine. It is one of the following formulas: Formula created by Mahalanobis distance method, Formula created by canonical discriminant analysis, Formula created by decision tree.
- the lung cancer evaluation system is the above-described lung cancer evaluation system, wherein the multivariate discriminant has the mouth dichroic regression with Orn, Tau, Trp as the variables. Or the linear discriminant with Orn, Arg, Tau, ABA, Gly, His as the variables, or the logistic regression equation with Gin, Glu, His, Lys, Cys, ABA as the variables, or Gin, Glu , Ala, His, Cys, and ABA as the variables.
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the discriminant value reference evaluation unit uses the discriminant value calculated by the discriminant value calculation unit.
- the apparatus further comprises discriminant value criterion discriminating means for discriminating whether or not the lung cancer is adenocarcinoma or non-pulmonary cancer among the lung cancers.
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions,
- the numerator and / or denominator of the fractional expression constituting the variable includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable. .
- a lung cancer evaluation system is characterized in that, in the lung cancer evaluation system described above, the multivariate discriminant is Equation 7, Equation 8, or Equation 9.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant, a multiple regression, a support vector machine. It is one of the following formulas: Formula created by Mahalanobis distance method, Formula created by canonical discriminant analysis, Formula created by decision tree.
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the multivariate discriminant is the mouth distick having Orn, ABA, Tau, Gly as the variables.
- the linear discriminant is characterized in that lie, Pro, Ala, Leu, and Gin are the variables.
- the lung cancer evaluation system is the lung cancer evaluation system described above, wherein the control means of the lung cancer evaluation apparatus includes the amino acid concentration data and the lung cancer evaluation system.
- Multivariate discriminant creating means for creating the multivariate discriminant stored in the storage means based on the lung cancer state information stored in the storage means including lung cancer state index data relating to an index representing a state.
- the multivariate discriminant creation means further comprises a candidate multivariate discriminant that creates a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on a predetermined formula creation method from the lung cancer state information!
- the lung cancer state information used when creating the candidate multivariate discriminant by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result in the candidate multivariate discriminant verification means The amino acid concentration contained in Variable selection means for selecting a combination of data, the candidate multivariate discriminant creation means, the candidate multivariate discriminant verification means, and the variable selection means are repeatedly executed and stored in the verification result.
- the multivariate discriminant is created by selecting the candidate multivariate discriminant to be adopted as the multivariate discriminant from among the plurality of candidate multivariate discriminants.
- the present invention relates to a lung cancer evaluation program, and the lung cancer evaluation program according to claim 33, which is effective for the present invention, is executed by an information processing apparatus including a control unit and a storage unit.
- a lung cancer evaluation program for evaluating the state of lung cancer per evaluation object wherein the control means includes Orn, Lys, ABA, Arg, Glu included in the amino acid concentration data of the evaluation object acquired in advance regarding the amino acid concentration value.
- the control means includes Orn, Lys, ABA, Arg, Glu included in the amino acid concentration data of the evaluation object acquired in advance regarding the amino acid concentration value.
- His, Tau, Pro, Ala, Cit lie, based on the multivariate discriminant stored in the memory means using the concentration value and the amino acid concentration as variables.
- the multivariate discriminant is Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, characterized in that it comprises at least one as the variable of the lie.
- the lung cancer evaluation program according to the present invention is characterized in that, in the lung cancer evaluation program described above, the multivariate discriminant further includes age as the variable.
- the lung cancer evaluation program according to the present invention includes the lung cancer evaluation program described above.
- the discriminant value criterion-evaluating step determines the discriminant value criterion discriminating whether or not the subject is the lung cancer or non-lung cancer based on the discriminant value calculated in the discriminant value calculating step.
- the method further includes a step.
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression constituting it includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the lung cancer evaluation program according to the present invention is characterized in that, in the lung cancer evaluation program described above, the multivariate discriminant is Formula 1, Formula 2, or Formula 3.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation program according to the present invention is the above-described lung cancer evaluation program, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, or a support vector. It is one of an expression created by a machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, or an expression created by a decision tree
- the lung cancer evaluation program according to the present invention is the lung cancer evaluation program described above, wherein the multivariate discriminant includes Tau, Orn, Arg, Ser, Glu, Pro, Asn as the variables. Or the linear discriminant with age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as the variables, or His, Glu, Pro, lie, Gin , Lys is the logistic regression equation, or His, Glu, Pro, lie, T The linear discriminant is characterized in that yr and Lys are the variables.
- the discriminant value criterion evaluation step is based on the discriminant value calculated in the discriminant value calculation step.
- the evaluation object further includes a discrimination value criterion discrimination step for discriminating whether the subject is the lung cancer and its stage or whether it is non-lung cancer.
- the multivariate discriminant is represented by one fractional expression or a sum of a plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression constituting it includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the multivariate discriminant according to the present invention is characterized in that the multivariate discriminant is Formula 4, Formula 5 or Formula 6.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the lung cancer evaluation program according to the present invention is the above-described lung cancer evaluation program, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, a support vector. It is one of an expression created by a machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, or an expression created by a decision tree
- the lung cancer evaluation program according to the present invention is the above-described lung cancer evaluation program, wherein the multivariate discriminant has the Orn, Tau, Trp as the variables.
- a regression equation, or the linear discriminant with Orn, Arg, Tau, ABA, Gly, His as the variables, or the logistic regression equation with Gin, Glu, His, Lys, Cys, ABA as the variables, or Gin , Glu, Ala, His, Cys, and ABA are the linear discriminants.
- the discriminant value reference evaluation step is based on the discriminant value calculated in the discriminant value calculation step.
- the evaluation object further includes a discrimination value criterion discrimination step for discriminating whether the lung cancer is adenocarcinoma or non-lung cancer among the lung cancers.
- the multivariate discriminant is represented by one fractional expression or a sum of the plurality of fractional expressions.
- the numerator and / or denominator of the fractional expression constituting it includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as the variable.
- the lung cancer evaluation program according to the present invention is characterized in that, in the lung cancer evaluation program described above, the multivariate discriminant is Formula 7, Formula 8, or Formula 9.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the lung cancer evaluation program according to the present invention is the lung cancer evaluation program described above, wherein the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, a support vector. It is one of an expression created by a machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, or an expression created by a decision tree [0103] Further, the lung cancer evaluation program according to the present invention is the above-described lung cancer evaluation program, wherein the multivariate discriminant includes the oral digi- ties having Orn, ABA, Tau, and Gly as the variables.
- the lung cancer evaluation program according to the present invention is the lung cancer evaluation program according to the above, wherein the control means includes the amino acid concentration data and the lung cancer state index data relating to the index representing the state of the lung cancer. And further executing a multivariate discriminant creating step for creating the multivariate discriminant stored in the storage unit based on the lung cancer state information stored in the storage unit including the multivariate discriminant.
- the creating step is a candidate multivariate discriminant creating step for creating a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on a predetermined formula creating method from the lung cancer state information!
- the candidate multivariate discriminant created in the candidate multivariate discriminant creation step is a candidate multivariate discriminant verification step that verifies the candidate multivariate discriminant based on a predetermined verification method and the candidate multivariate discriminant verification step. Inspection The combination of the amino acid concentration data included in the lung cancer state information used when creating the candidate multivariate discriminant by selecting the variable of the candidate multivariate discriminant based on a predetermined variable selection method from the result A variable selection step of selecting, based on the verification results accumulated by repeatedly executing the candidate multivariate discriminant creation step, the candidate multivariate discriminant verification step and the variable selection step! /, Then, the multivariate discriminant is created by selecting the candidate multivariate discriminant adopted as the multivariate discriminant from among the plurality of candidate multivariate discriminants.
- the present invention relates to a recording medium, and the recording medium according to claim 34 is characterized by the above-mentioned! /, Including the claim 33, and the lung cancer according to one.
- the evaluation program is recorded.
- amino acid concentration data relating to the concentration value of amino acid is measured from blood collected from the evaluation object, and the measured amino acid concentration of the evaluation object Since the lung cancer status is evaluated for each subject based on the concentration value of at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie contained in the data, blood Among the amino acid concentrations, the amino acid concentration associated with the lung cancer state can be used to accurately evaluate the lung cancer state.
- the lung cancer evaluation method of the present invention of the Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie included in the measured amino acid concentration data. Based on at least one concentration value, it is determined whether the subject is lung cancer or non-lung cancer. Therefore, amino acids that are useful for discriminating between two groups of blood amino acid concentrations, lung cancer and non-lung cancer, are useful. Using this concentration, the two-group discrimination between lung cancer and non-lung cancer can be accurately performed.
- Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit It is a preset multivariate discriminant that uses at least one concentration value and amino acid concentration as variables, and includes Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie.
- the discriminant value which is the value of the multivariate discriminant, is calculated based on the one that includes at least one as a variable, and the state of lung cancer is evaluated for the evaluation target based on the calculated discriminant value.
- the discriminant value obtained with a multivariate discriminant (a multivariate discriminant that has a significant correlation with the state of lung cancer) using the amino acid concentration in the blood as the variable, the concentration of amino acids related to the state of lung cancer. This produces an effect that the state of lung cancer can be accurately evaluated.
- the multivariate discriminant further includes age as a variable, and therefore the concentration of amino acids related to the state of lung cancer among the amino acid concentrations in blood.
- age as a variable
- the lung cancer evaluation method of the present invention determines whether or not the cancer is lung cancer or non-lung cancer for the evaluation object based on the calculated discrimination value. Using the discriminant value obtained by the multivariate discriminant that uses amino acid variables useful for the 2-group discrimination, there is an effect that the 2-group discrimination between lung cancer and non-lung cancer can be accurately performed.
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator of the fractional expression constituting the fractional expression and / or Or, the denominator contains at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as a variable.
- the multivariate discriminant is Formula 1, Formula 2 or Formula 3, and thus is particularly useful for 2-group discrimination between lung cancer and non-lung cancer.
- the discriminant values obtained by multivariate discriminants using various amino acid variables (Formula 1, Formula 2, Formula 3) Play.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant includes a logistic regression equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, and a Mahalanobis distance method. Because it is one of the formulas created in, formulas created by canonical discriminant analysis, and formulas created by decision trees, amino acid variables useful for two-group discrimination between lung cancer and non-lung cancer are used. Using the discriminant value obtained by the multivariate discriminant, it is possible to perform 2-group discrimination between lung cancer and non-lung cancer more accurately.
- the multivariate discriminant is a logistic regression equation using Tau, Orn, Arg, Ser, Glu, Pro, Asn as variables, or age, Linear discriminant with ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as variables, or logistic regression with His, Glu, Pro, lie, Gin, Lys as variables, or His, Since this is a linear discriminant with Glu, Pro, lie, Tyr, and Lys as variables, it uses the discriminant value obtained with a multivariate discriminant that uses amino acid variables that are particularly useful for 2-group discrimination between lung cancer and non-lung cancer. In addition, the two-group discrimination between lung cancer and non-lung cancer can be performed more accurately.
- the lung cancer evaluation method of the present invention based on the calculated discriminant value, it is discriminated whether it is lung cancer and its stage, or whether it is non-lung cancer, for the evaluation target. Therefore, using the discriminant value obtained by the multivariate discriminant that uses amino acid variables useful for discriminating between two groups of early lung cancer and non-lung cancer, it is possible to accurately discriminate between two groups of early lung cancer and non-lung cancer. If you can S!
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator of the fractional expression constituting the fractional expression and / or Or the denominator contains at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as a variable.
- the multivariate discriminant is Formula 4, Formula 5 or Formula 6, so that it is particularly suitable for 2-group discrimination between initial lung cancer and non-lung cancer.
- Useful amino acid variables By using the discriminant values obtained by the multivariate discriminant to be used (Equation 4, Equation 5, and Equation 6), there is an effect that 2-group discrimination between initial lung cancer and non-lung cancer can be performed with higher accuracy.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant includes a logistic regression equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, and a Mahalanobis distance method. Since it is one of the formulas created in, formulas created by canonical discriminant analysis, and formulas created by decision trees, amino acid variables useful for discriminating between two groups of early lung cancer and non-lung cancer are used. By using the discriminant value obtained by the multivariate discriminant, the two-group discrimination between initial lung cancer and non-lung cancer can be performed more accurately.
- the multivariate discriminant is a logistic regression equation with Orn, Tau, Tr P as variables, or Orn, Arg, Tau, ABA, Gly, Linear discriminant with His as a variable, or mouth-dystine regression equation with Gin, Glu, His, Lys, Cys, ABA as variables, or linear discriminant with Gin, Glu, Ala, His, Cys, ABA as variables Therefore, using the discriminant value obtained by the multivariate discriminant using amino acid variables, which is particularly useful for discriminating between two groups of early lung cancer and non-lung cancer, discrimination between two groups of early lung cancer and non-lung cancer can be performed. If you can do it more accurately, you can achieve the effect!
- the lung cancer evaluation method of the present invention based on the calculated discriminant value, it is discriminated whether the subject is an adenocarcinoma or a non-lung cancer among the lung cancers. Therefore, using the discriminant value obtained by the multivariate discrimination formula using amino acid variables useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers, The ability to perform 2-group discrimination with high accuracy S!
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator of the fractional expression constituting the fractional expression and / or Or because the denominator contains at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as a variable, two-group discrimination between adenocarcinoma and non-lung cancer of lung cancer Using the discriminant value obtained with a multivariate discriminant (fractional expression) that uses amino acid variables useful for the two-group discrimination between adenocarcinoma and non-lung cancer in lung cancer can be performed more accurately. Play.
- the multivariate discriminant is Formula 7, Formula 8 or Formula 9, 2 of the lung cancers, adenocarcinoma and non-lung cancer.
- the discriminant values obtained with multivariate discriminants amino acids 7, 8, and 9 that use amino acid variables that are particularly useful for group discrimination
- two-group discrimination between adenocarcinoma and non-lung cancer among lung cancers can be performed.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, or a Mahalanobis distance method. It is useful for two-group discrimination between adenocarcinoma and non-pulmonary cancer among lung cancers.
- the discriminant value obtained by the multivariate discriminant using the amino acid variable there is an effect that 2-group discrimination between adenocarcinoma and non-lung cancer among lung cancers can be performed more accurately.
- the multivariate discriminant is a logistic regression equation with Orn, ABA, Tau, Gly as variables, or Orn, ABA, Tau, His, Linear discriminant with Arg and Gly as variables, or logistic regression with His, lie, Glu, Pro, Leu, and Gin as variables, or linear with His, lie, Pro, Ala, Leu, and Gin as variables
- discriminant Therefore, using the discriminant value obtained with the multivariate discriminant using amino acid variables that are particularly useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers, adenocarcinoma and non-lung cancer among lung cancers The second group discrimination can be performed with higher accuracy.
- the discriminant value which is the value of the multivariate discriminant, is calculated based on the one that includes at least one of His, Tau, Pro, Ala, Cit, and lie as a variable, and based on the calculated discriminant value, Since the condition of lung cancer is evaluated for each evaluation target, a multivariate discriminant that uses the amino acid concentration in the blood as a variable among the amino acid concentrations in the blood is a variable (multivariate discriminant that has a significant correlation with the state of lung cancer) Use the discriminant value obtained by (Equation) to accurately determine the state of lung cancer. If it can be evaluated well, it will have
- the multivariate discriminant further includes age as a variable, so that it is related to the state of lung cancer among amino acid concentrations in blood.
- the multivariate discriminant that uses age as a variable is used to obtain more accurate lung cancer status. There is an effect that it can be evaluated well.
- the lung cancer evaluation device the lung cancer evaluation method, and the lung cancer evaluation program according to the present invention, based on the calculated discriminant value, it is determined whether the subject is an evaluation subject whether it is lung cancer or non-lung cancer.
- the discriminant value obtained with the multivariate discriminant that uses amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer it is possible to accurately determine 2-group discrimination between lung cancer and non-lung cancer. ! /
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the components constituting it. Since the numerator and / or denominator of the formula includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as variables, two-group discrimination between lung cancer and non-lung cancer Discriminant value obtained by multivariate discriminant (fractional expression) using useful amino acid variables Using this, the two-group discrimination between lung cancer and non-lung cancer can be performed more accurately.
- the multivariate discriminant is Formula 1, Formula 2, or Formula 3, so that two-group discrimination between lung cancer and non-lung cancer is performed.
- 2-group discrimination between lung cancer and non-lung cancer can be performed more accurately by using the discriminant values obtained by multivariate discriminants using amino acid variables that are particularly useful for There is an effect.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, or an expression created by a support vector machine.
- the multivariate discriminant is logistic regression with Tau, Orn, Arg, Ser, Glu, Pro, Asn as variables.
- the lung cancer evaluation apparatus the lung cancer evaluation method, and the lung cancer evaluation program according to the present invention, based on the calculated discriminant value, the evaluation target is lung cancer and its stage, or non-lung cancer. Therefore, using the discriminant value obtained by the multivariate discriminant that uses amino acid variables useful for 2-group discrimination between early lung cancer and non-lung cancer, 2-group discrimination between early lung cancer and non-lung cancer is used. There is an effect that can be performed accurately.
- the multivariate discriminant is expressed by a single fractional expression or a sum of a plurality of fractional expressions, and the components constituting it. Since the numerator and / or denominator of the formula includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as variables, 2 between early lung cancer and non-lung cancer Using the discriminant value obtained by the multivariate discriminant (fractional expression) using amino acid variables useful for group discrimination, the effect that two-group discrimination between early lung cancer and non-lung cancer can be performed with higher accuracy. Play.
- the multivariate discriminant is Formula 4, Formula 5 or Formula 6, so two groups of initial lung cancer and non-lung cancer Use the discriminant values obtained from multivariate discriminants (amino acids 4, 5, and 6) that use amino acid variables that are particularly useful for discrimination to perform 2-group discrimination between early lung cancer and non-lung cancer with higher accuracy. If you can use force S!
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant is a logistic regression equation, a linear discriminant, a multiple regression equation, a support Since it is one of an expression created by a vector machine, an expression created by the Mahalanobis distance method, an expression created by a canonical discriminant analysis, or an expression created by a decision tree, there is no difference between early lung cancer and non-lung cancer.
- the discriminant value obtained by the multivariate discriminant using amino acid variables useful for the 2-group discrimination there is an effect that the 2-group discrimination between the initial lung cancer and the non-lung cancer can be performed with higher accuracy.
- the multivariate discriminant is a logistic regression equation with Orn, Tau, Trp as variables, or Orn, Arg, Tau. , ABA, Gly, His variable fountain discriminant, or Gin, Glu, His, Lys, Cys, ABA variable variable regression equation, or Gin, Glu, Ala, His, Cys, ABA variable Therefore, using the discriminant value obtained by the multivariate discriminant that uses amino acid variables that are particularly useful for discriminating between two groups of early lung cancer and non-lung cancer, two groups of early lung cancer and non-lung cancer are used. There is an effect that the discrimination can be performed with higher accuracy.
- the evaluation target is an adenocarcinoma of lung cancer or non-lung cancer. Therefore, using the discriminant value obtained with the multivariate discriminant that uses amino acid variables useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers, There is an effect that two-group discrimination from non-lung cancer can be accurately performed.
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the components constituting it.
- the numerator and / or denominator of the formula includes at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as variables, adenocarcinoma and non-lung cancer of lung cancer Using the discriminant value obtained with a multivariate discriminant (fractional expression) that uses amino acid variables useful for discriminating between two groups, the two-group discrimination between adenocarcinoma and non-lung cancer among lung cancers is performed more accurately. When you can S!
- the multivariate discriminant is Equation 7, Equation 8 or Equation 9, and therefore adenocarcinoma and non-lung cancer among the lung cancers Using the discriminant values obtained with multivariate discriminants (amino acids 7, 8, and 9) that use amino acid variables that are particularly useful for discriminating between the two groups, two groups of adenocarcinoma and non-lung cancer among lung cancers Discrimination Furthermore, there is an effect that it can be performed with high accuracy.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the multivariate discriminant is a logistic regression equation, a linear discriminant, a multiple regression, or a formula created by a support vector machine.
- the multivariate discriminant is a logistic regression equation with Orn, ABA, Tau, and Gly as variables, or Orn, ABA, Linear discriminant with Tau, His, Arg, Gly as variables, or logistic regression with His, II e, Glu, Pro, Leu, Gin as variables, or His, lie, Pro, Ala, Leu, Gin Because it is a linear discriminant that is a variable, it uses the discriminant value obtained with a multivariate discriminant that uses amino acid variables that are particularly useful for discriminating between two groups of adenocarcinoma and non-lung cancer of lung cancer. The effect is that the two-group discrimination between adenocarcinoma and non-lung cancer can be performed more accurately.
- the lung cancer state information stored in the storage means including the amino acid concentration data and the lung cancer state index data regarding the index representing the state of the lung cancer
- create a multivariate discriminant to be stored in the storage means (1) a candidate multivariate discriminant that is a candidate for a multivariate discriminant is created from lung cancer status information based on a predetermined formula creation method, and (2) the created candidate The candidate is verified by verifying the multivariate discriminant based on the predetermined verification method, and selecting the candidate multivariate discriminant variable based on the predetermined variable selection method from the verification results in (3) and (2).
- Verification results accumulated by selecting (4) (1), (2), and (3) repeatedly by selecting a combination of amino acid concentration data included in lung cancer status information to be used when creating a multivariate discriminant Based on the above, a multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from among a plurality of candidate multivariate discriminants.
- the information communication terminal device first transmits the amino acid concentration data to be evaluated to the lung cancer evaluation device. Then, the lung cancer evaluation device receives the amino acid concentration data of the evaluation target transmitted from the information communication terminal device, and Orn, Lys, ABA, Arg, Glu, His, Tau included in the received amino acid concentration data of the evaluation target. Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, which is a multivariate discriminant stored in a memory means using at least one concentration value and amino acid concentration as variables.
- a discriminant value that is the value of the multivariate discriminant is calculated, and based on the calculated discriminant, the status of lung cancer is evaluated. Evaluate and send the evaluation result to the information communication terminal device. Then, the information communication terminal device receives the evaluation result of the evaluation object regarding the state of lung cancer transmitted from the lung cancer evaluation device.
- the multivariate discriminant further includes age as a variable, and therefore the concentration of amino acids related to the state of lung cancer among the amino acid concentrations in blood.
- the multivariate discriminant with age as a variable is used to evaluate the lung cancer state more accurately. If you can S!
- the lung cancer evaluation system which is effective in the present invention, whether or not a lung cancer or non-lung cancer is determined for an evaluation object is determined based on the calculated determination value.
- the discriminant value obtained by the multivariate discriminant that uses amino acid variables useful for the 2-group discrimination it is possible to accurately perform 2-group discrimination between lung cancer and non-lung cancer.
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator of the fractional expression constituting the fractional expression and / or Since the denominator contains at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as variables, amino acid variables useful for distinguishing between two groups of lung cancer and non-lung cancer Using the discriminant value obtained with the multivariate discriminant (fractional expression) to be used, it is possible to more accurately perform the 2-group discrimination between lung cancer and non-lung cancer.
- the multivariate discriminant is Formula 1, Formula 2 or Formula 3
- the amino acid variable is particularly useful for the 2-group discrimination between lung cancer and non-lung cancer.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, or a Mahalanobis distance method. Since it is one of the formula created, the formula created by canonical discriminant analysis, and the formula created by decision tree, there are many amino acid variables that are useful for 2-group discrimination between lung cancer and non-lung cancer. Using the discriminant value obtained with the variable discriminant, two-group discrimination between lung cancer and non-lung cancer is further refined. If you can do it well!
- the multivariate discriminant is a logistic regression equation using Tau, Orn, Arg, Ser, Glu, Pro, Asn as variables, or age, ABA, Linear discriminant with Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as variables, or logistic regression with His, Glu, Pro, lie, Gin, Lys as variables, or His, Glu, Since it is a linear discriminant with Pro, lie, Tyr, and Lys as variables, it uses the discriminant value obtained with a multivariate discriminant that uses amino acid variables that are particularly useful for 2-group discrimination between lung cancer and non-lung cancer. There is an effect that two-group discrimination between cancer and non-lung cancer can be performed with higher accuracy.
- the lung cancer evaluation system which is effective in the present invention, based on the calculated discriminant value, it is discriminated whether the subject is evaluated as having lung cancer and its stage, or whether it is non-lung cancer. Therefore, using the discriminant value obtained by the multivariate discriminant that uses amino acid variables useful for discriminating between two groups of early lung cancer and non-lung cancer, it is necessary to accurately discriminate between two groups of early lung cancer and non-lung cancer. If you can use force S!
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator and / or the fractional expression constituting it. Since the denominator contains at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as a variable, it is an amino acid variable that is useful for distinguishing two groups of early lung cancer and non-lung cancer By using the discriminant value obtained by the multivariate discriminant (fractional expression) using, it is possible to perform 2-group discrimination between early lung cancer and non-lung cancer more accurately.
- the multivariate discriminant is Formula 4, Formula 5 or Formula 6, amino acids that are particularly useful for discriminating between two groups of early lung cancer and non-lung cancer
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, or a Mahalanobis distance method. Since it is one of the formulas created, canonical discriminant analysis formulas, and decision tree formulas, it uses many amino acid variables that are useful for discriminating between two groups of early lung cancer and non-lung cancer. By using the discriminant value obtained by the variable discriminant, the effect is that two-group discrimination between initial lung cancer and non-lung cancer can be performed with higher accuracy.
- the multivariate discriminant is a logistic regression equation with Orn, Tau, T rp as variables, or Orn, Arg, Tau, ABA, Gly, His. Or a linear discriminant with Gin, Glu, Ala, His, Cys, ABA as a variable, or a linear discriminant with Gin, Glu, His, Lys, Cys, ABA as a variable Therefore, by using the discriminant value obtained by the multivariate discriminant formula that uses amino acid variables that are particularly useful for discriminating between two groups of early lung cancer and non-lung cancer, two-group discrimination between early lung cancer and non-lung cancer is further performed. The ability to do with accuracy S /!
- the lung cancer evaluation system which is effective in the present invention, based on the calculated discriminant value, it is discriminated whether the evaluation target is adenocarcinoma or non-lung cancer among the lung cancers. Therefore, using the discriminant value obtained by the multivariate discriminant using amino acid variables useful for discriminating between two groups of adenocarcinoma and non-lung cancer of lung cancer, adenocarcinoma and non-lung cancer of lung cancer The ability to perform the 2-group discrimination with high accuracy S /!
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the fractional numerator and / or constituents thereof Since the denominator contains at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as a variable, it can be used for 2-group discrimination between adenocarcinoma and non-lung cancer of lung cancer. Using the discriminant value obtained by the multivariate discriminant (fractional expression) using useful amino acid variables, there is an effect that 2-group discrimination between adenocarcinoma and non-lung cancer among lung cancers can be performed more accurately. .
- the multivariate discriminant is represented by Equations 7 and 8.
- Equation 9 the discriminant value obtained by the multivariate discriminant using the amino acid variable (Equation 7, Equation 8, Equation 9) that is particularly useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers is used.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- the multivariate discriminant is a logistic regression equation, a linear discriminant equation, a multiple regression equation, an equation created by a support vector machine, or a Mahalanobis distance method. Since it is one of the formula created, the formula created by canonical discriminant analysis, and the formula created by decision tree, it is useful for discriminating two groups of adenocarcinoma and non-lung cancer among lung cancer Using the discriminant value obtained by the multivariate discriminant using acid variables, the effect of making it possible to more accurately perform 2-group discrimination between adenocarcinoma and non-lung cancer among lung cancers is achieved.
- the multivariate discriminant is a logistic regression equation with Orn, ABA, Tau, Gly as variables, or Orn, ABA, Tau, His, Arg, Linear discriminant with Gly as a variable, or mouth dictic regression with His, lie, Glu, Pro, Leu, Gin as a variable, or linear discriminant with His, lie, Pro, Ala, Leu, Gin as variables Therefore, using the discriminant value obtained by the multivariate discriminant that uses amino acid variables that are particularly useful for discriminating between two groups of adenocarcinoma and non-lung cancer of lung cancer, adenocarcinoma and non-lung cancer of lung cancer It has the effect that the two-group discrimination can be performed with higher accuracy.
- the memory is stored.
- a multivariate discriminant stored by means is created. Specifically, (1) Candidates that are candidates for multivariate discriminants based on a predetermined formula creation method based on lung cancer status information! Create a multivariate discriminant, (2) verify the created candidate multivariate discriminant based on a predetermined verification method, and (3) based on a predetermined variable selection method based on the verification results in (2).
- variable of the candidate multivariate discriminant By selecting the variable of the candidate multivariate discriminant, select the combination of amino acid concentration data included in the lung cancer status information to be used when creating the candidate multivariate discriminant. (4) (1), (2) Multivariate discrimination by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from multiple candidate multivariate discriminants based on the verification results accumulated by repeatedly executing (3) and (3) Create an expression.
- the computer is caused to execute the lung cancer evaluation program by causing the computer to read and execute the lung cancer evaluation program recorded on the recording medium.
- the effect is that the same effect as the evaluation program can be obtained.
- the present invention when evaluating the state of lung cancer (specifically, when determining whether it is lung cancer or non-lung cancer, it is lung cancer and its stage, or non-lung cancer) When determining whether or not the lung cancer is adenocarcinoma or non-lung cancer), in addition to the amino acid concentration, the concentration of other metabolites (biological metabolites) Even further use of protein expression level, subject's age and sex, biometrics, etc. will not help. Further, the present invention provides a method for assessing the state of lung cancer (specifically, when determining whether or not it is lung cancer or non-lung cancer, whether it is lung cancer and its stage, or whether it is non-lung cancer).
- the lung cancer is adenocarcinoma or non-lung cancer
- a variable in the multivariate discriminant in addition to the amino acid concentration, other metabolites (living organisms) (Metabolite) concentration, protein expression level, subject's age and sex, and biomarker may be further used.
- FIG. 1 is a principle configuration diagram showing the basic principle of the present invention.
- FIG. 2 is a flowchart showing an example of a method for evaluating lung cancer according to the first embodiment.
- FIG. 3 is a principle configuration diagram showing the basic principle of the present invention.
- FIG. 4 is a diagram showing an example of the overall configuration of this system.
- FIG. 5 is a diagram showing another example of the overall configuration of the present system.
- FIG. 6 is a block diagram showing an example of the configuration of the lung cancer evaluation apparatus 100 of the present system. 7] FIG. 7 is a diagram showing an example of information stored in the user information file 106a.
- FIG. 8 is a diagram showing an example of information stored in an amino acid concentration data file 106b.
- FIG. 9 is a diagram showing an example of information stored in a lung cancer state information file 106c.
- FIG. 10 is a diagram showing an example of information stored in a designated lung cancer state information file 106d.
- FIG. 11 is a diagram showing an example of information stored in a candidate multivariate discriminant file 106el.
- FIG. 12 is a diagram showing an example of information stored in the verification result file 106e2.
- FIG. 13 is a diagram showing an example of information stored in a selected lung cancer state information file 106e3.
- FIG. 14 is a diagram showing an example of information stored in the multivariate discriminant file 106e4.
- FIG. 15 is a diagram showing an example of information stored in a discriminant value file 106f. 16]
- FIG. 16 is a diagram showing an example of information stored in the evaluation result file 106g.
- FIG. 17 is a block diagram showing a configuration of a multivariate discriminant-preparing part 102h.
- FIG. 18 is a block diagram showing a configuration of the discriminant value criterion-evaluating unit 103 ⁇ 4.
- FIG. 19 is a block diagram showing an example of the configuration of the client device 200 of the present system.
- FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system.
- FIG. 21 is a flowchart showing an example of lung cancer evaluation service processing performed by this system. Is.
- FIG. 22 is a flowchart showing an example of multivariate discriminant creation processing performed by the lung cancer evaluation apparatus 100 of the present system.
- Figure 23 is a box-and-whisker plot showing the distribution of amino acid variables between the two groups of non-lung cancer and lung cancer.
- Figure 24 shows non-lung cancer and lung cancer, non-lung cancer and early lung cancer, and non-lung cancer. It is a figure which shows AUC of the ROC curve of the amino acid variable of discrimination between two groups of adenocarcinoma among lung cancer.
- FIG. 25 is a diagram showing a list of formulas having diagnostic performance equivalent to that of index formula 1.
- Fig. 26 shows a list of formulas with diagnostic performance equivalent to index formula 1.
- FIG. 27 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 28 is a diagram showing a cut-off value, sensitivity, specificity, positive predictive value, negative predictive value, and correct answer rate for 2-group discrimination.
- FIG. 29 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 2.
- FIG. 30 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 2.
- FIG. 31 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 32 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 3.
- FIG. 33 is a diagram showing a list of expressions having diagnostic performance equivalent to that of index expression 3.
- FIG. 34 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- Fig. 35 is a diagram showing a list of formulas having diagnostic performance equivalent to that of index formula 4.
- FIG. 36 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 4.
- FIG. 37 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 4.
- FIG. 38 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 39 is a diagram showing a cut-off value, sensitivity, specificity, positive predictive value, negative predictive value, and correct answer rate for 2-group discrimination.
- FIG. 40 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 5.
- Fig. 41 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 5.
- FIG. 42 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 5.
- FIG. 43 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups. 44] FIG. 44 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 6.
- FIG. 45 is a diagram showing a list of formulas having diagnostic performance equivalent to that of index formula 6;
- FIG. 46 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 6.
- FIG. 47 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 48 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 7.
- FIG. 49 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 7.
- FIG. 50 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 7.
- FIG. 51 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 52 is a diagram showing a cut-off value, sensitivity, specificity, positive predictive value, negative predictive value, and correct answer rate for two-group discrimination.
- FIG. 53 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 8.
- FIG. 54 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 8.
- FIG. 55 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 8.
- FIG. 56 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- Fig. 57 is a diagram showing a list of formulas having diagnostic performance equivalent to that of index formula 9.
- FIG. 58 is a diagram showing a list of expressions having diagnostic performance equivalent to that of index expression 9.
- FIG. 59 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 9.
- FIG. 60 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 61 is a diagram showing a list of amino acids extracted based on the AUC of the ROC curve.
- FIG. 62 is a diagram showing an average value and a standard deviation of calculation results by index formula 7 for a healthy group, a lung cancer group, and other cancer groups.
- FIG. 63 is a diagram showing a box plot of a calculation result by the index formula 7 of a healthy group, a lung cancer group, and another cancer group.
- FIG. 64 is a diagram showing the distribution of amino acid variables between two groups of non-lung cancer and lung cancer using a scatter plot.
- FIG. 65 is a diagram showing AUCs of ROC curves of amino acid variables for discrimination between two groups of non-lung cancer and lung cancer, non-lung cancer and early lung cancer, and adenocarcinoma of non-lung cancer and lung cancer.
- FIG. 66 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 10.
- Fig. 67 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 10.
- FIG. 68 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 69 is a diagram showing a list of expressions having diagnostic performance equivalent to that of index expression 11.
- Fig. 70 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 11.
- FIG. 71 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 72 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 12;
- FIG. 73 is a diagram showing a list of formulas having diagnostic performance equivalent to that of the index formula 12;
- Fig. 74 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 12.
- FIG. 75 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- Fig. 76 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 13.
- FIG. 77 is a diagram showing a list of formulas having diagnostic performance equivalent to that of the index formula 13;
- FIG. 78 is a diagram showing a list of expressions having diagnostic performance equivalent to that of the index expression 13;
- FIG. 79 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- Fig. 80 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 14.
- Fig. 81 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 14.
- FIG. 82 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 83 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 15.
- Fig. 84 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 15.
- FIG. 85 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 86 is a diagram showing a list of formulas having diagnostic performance equivalent to that of index formula 16;
- FIG. 87 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 16.
- FIG. 88 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 16.
- FIG. 89 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- Fig. 90 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 17.
- Fig. 91 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 17.
- FIG. 92 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 17;
- FIG. 93 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 94 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 18.
- Fig. 95 is a diagram showing a list of formulas having diagnostic performance equivalent to index formula 18.
- FIG. 96 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- Fig. 97 is a diagram showing a list of formulas having diagnostic performance equivalent to that of index formula 19.
- Fig. 98 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 19.
- FIG. 99 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 100 is a diagram showing a list of expressions having diagnostic performance equivalent to index expression 20.
- Fig. 101 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 20.
- Fig. 102 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 20.
- FIG. 103 is a diagram showing an ROC curve for evaluating diagnostic performance between two groups.
- FIG. 104 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 21.
- Fig. 105 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 21.
- Fig. 106 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 21.
- FIG. 107 is a diagram showing a ROC curve for evaluating diagnostic performance between two groups.
- Fig. 108 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 22.
- FIG. 109 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 22.
- FIG. 110 is a diagram showing Spearman's rank correlation coefficient between the non-lung cancer group and groups 1 to 4 and the value of index formula 22.
- FIG. 111 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 23.
- FIG. 112 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 23.
- FIG. 113 is a diagram showing Spearman's rank correlation coefficient between the non-lung cancer group and groups 1 to 4 and the value of index formula 23.
- Fig. 114 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 24.
- FIG. 115 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 24.
- FIG. 116 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 24.
- FIG. 117 is a diagram showing Spearman's rank correlation coefficient between the non-lung cancer group and groups 1 to 4 and the value of index formula 24.
- FIG. 118 is a diagram showing a list of formulas having diagnostic performance equivalent to the index formula 25.
- FIG. 119 is a diagram showing a list of expressions having diagnostic performance equivalent to that of the index expression 25.
- FIG. 120 is a diagram showing Spearman's rank correlation coefficient between the first to fourth groups and the value of index formula 25.
- FIG. 121 is a diagram showing a list of expressions having diagnostic performance equivalent to that of the index expression 26.
- FIG. 122 is a diagram showing a list of expressions having diagnostic performance equivalent to that of index expression 26.
- FIG. 123 is a diagram showing Spearman's rank correlation coefficient between the first to fourth groups and the value of index formula 26.
- FIG. 124 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 27.
- FIG. 125 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 27.
- FIG. 126 is a diagram showing a list of expressions having diagnostic performance equivalent to the index expression 27.
- FIG. 127 is a diagram showing Spearman's rank correlation coefficient between the first to fourth groups and the value of index formula 27.
- FIG. 128 is a diagram showing a list of amino acids extracted based on the AUC of the ROC curve.
- Embodiments of a lung cancer evaluation method according to the present invention (first embodiment), a lung cancer evaluation apparatus, a lung cancer evaluation method, a lung cancer evaluation system, a lung cancer evaluation program, and a recording medium according to the present invention (first embodiment)
- the second embodiment will be described in detail with reference to the drawings. Na
- the present invention is not limited to the present embodiment.
- FIG. 1 is a principle configuration diagram showing the basic principle of the present invention.
- amino acid concentration data relating to the concentration value of amino acids is measured from blood sampled for evaluation (for example, individuals such as animals and humans) (step S-11).
- the blood amino acid concentration was analyzed as follows. The collected blood sample was collected in a heparinized tube, and plasma was separated from the blood by centrifuging the collected blood sample. All plasma samples were stored frozen at 70 ° C until the amino acid concentration was measured.
- sulfosalicylic acid was added to remove protein by adjusting the concentration to 3%, and an amino acid analyzer based on the principle of high-performance liquid chromatography (HPLC) using a ninhydrin reaction in a post column was used for the measurement.
- HPLC high-performance liquid chromatography
- the unit of amino acid concentration may be obtained by, for example, molar concentration, weight concentration, or by adding / subtracting / subtracting an arbitrary constant to / from these concentrations.
- step S-l 2 the state of lung cancer is evaluated for each evaluation target (step S-l 2).
- amino acid concentration data relating to amino acid concentration values from blood collected from an evaluation object is measured, and Orn, Lys, ABA, Arg, included in the measured amino acid concentration data of the evaluation object Based on the concentration value of at least one of Glu, His, Tau, Pro, Ala, Cit, and lie, the status of lung cancer is evaluated for each subject.
- the ability to accurately evaluate the state of lung cancer using the amino acid concentration related to the state of lung cancer out of the amino acid concentration in the blood is measured.
- Step S-12 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie, contained in the amino acid concentration data to be evaluated measured in Step S-11. Based on at least one concentration value, it may be determined whether the subject is a lung cancer or non-lung cancer. Specifically, at least one concentration value among Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie is compared with a preset threshold value (cutoff value).
- the subject of evaluation is lung cancer or non-lung cancer. This makes it possible to accurately perform 2-group discrimination between lung cancer and non-lung cancer using the amino acid concentration useful for 2-group discrimination between lung cancer and non-lung cancer among the amino acid concentrations in blood.
- Step S-12 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie, contained in the amino acid concentration data to be evaluated measured in Step S-11. Based on at least one concentration value, it may be determined whether the subject is lung cancer and its stage, or whether it is non-lung cancer. Specifically, at least one concentration value among Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie is compared with a preset threshold value (cutoff value). Thus, it may be determined whether the subject is a lung cancer and its stage, or whether it is non-lung cancer. This makes it possible to accurately perform 2-group discrimination between primary lung cancer and non-lung cancer using the amino acid concentration useful in 2-group discrimination between early lung cancer and non-lung cancer among amino acid concentrations in blood. .
- step S-12 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie, which are included in the amino acid concentration data to be evaluated measured in step S-11. Based on at least one of the concentration values, it may be determined whether the subject is an adenocarcinoma of lung cancer or a non-lung cancer. Specifically, at least one concentration value among Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie is compared with a preset threshold value (cut-off value). Thus, it may be determined whether the subject is an adenocarcinoma of lung cancer or non-lung cancer.
- a preset threshold value cut-off value
- Step S-12 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie, included in the amino acid concentration data to be evaluated measured in Step S-11.
- a discriminant value which is the value of the multivariate discriminant, may be calculated on the basis of a variable including one as a variable, and the state of lung cancer may be evaluated for each evaluation object based on the calculated discriminant value.
- the multivariate discriminant may further include age as a variable.
- age in addition to the amino acid concentration in the blood, the multivariate discriminant that has age as a variable in addition to the amino acid concentration related to the lung cancer state (a multivariate discriminant that has a particularly significant correlation with the state of lung cancer).
- the ability S to evaluate the state of lung cancer more accurately is used.
- step S-12 based on the calculated discriminant value, it may be discriminated whether the subject of evaluation is lung cancer or non-lung cancer. Specifically, it may be determined whether the evaluation target is lung cancer or non-lung cancer by comparing the determination value with a preset threshold value (cutoff value). This makes it possible to accurately discriminate between 2-group discrimination between lung cancer and non-lung cancer using the discriminant value obtained with a multivariate discriminant that uses amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer. .
- a preset threshold value cutoff value
- a multivariate discriminant is represented by the sum of one fractional expression or multiple fractional expressions, and the numerator and / or denominator of the fractional expression is Orn, Lys, ABA, Arg, Glu, His , T au, Pro, Ala, Cit, lie may be included as a variable.
- the multivariate discriminant may be Formula 1, Formula 2, or Formula 3. This makes it possible to more accurately perform 2-group discrimination between lung cancer and non-lung cancer using the discriminant value obtained by the multivariate discriminant (fractional expression) that uses amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer. It can be carried out.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- multivariate discriminants are created by logistic regression, linear discriminant, multiple regression, formulas created with a support vector machine, formulas created with Mahalanobis distance method, and canonical discriminant analysis. Or an expression created with a decision tree.
- the multivariate discriminant is a logistic regression equation with Tau, Orn, Arg, Ser, Glu, Pro, Asn as variables, or age, ABA, Arg, Gin, His, Leu, Orn, Pro, Linear discriminant with Tau, Trp, Val as variables, or logistic regression with His, Glu, Pro, lie, Gin, Lys as variables, or linear with His, Glu, Pro, lie, Tyr, Lys as variables A discriminant may be used.
- step S-12 based on the calculated discriminant value, it may be discriminated whether the subject is an evaluation subject and whether it is lung cancer or its stage, or non-lung cancer. Specifically, by comparing the discriminant value with a preset threshold value (cut-off value), it is possible to discriminate whether the subject is a lung cancer and its stage, or whether it is non-lung cancer. Also good. This makes it possible to accurately perform 2-group discrimination between early lung cancer and non-lung cancer using the discriminant value obtained by the multivariate discriminant using amino acid variables useful for 2-group discrimination between early lung cancer and non-lung cancer. it can.
- a preset threshold value cut-off value
- a multivariate discriminant is represented by the sum of a single fractional expression or multiple fractional expressions, and the numerator and / or denominator of the fractional expression is Orn, Lys, ABA, Arg, Glu, His , T It may contain at least one of au, Pro, Ala, Cit, and lie as a variable.
- the multivariate discriminant may be Equation 4, Equation 5, or Equation 6. This makes it possible to further distinguish 2-group discrimination between early-stage lung cancer and non-lung cancer using the discriminant value obtained by the multivariate discriminant (fractional expression) using amino acid variables useful for 2-group discrimination between early-stage lung cancer and non-lung cancer. It can be performed with high accuracy.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- multivariate discriminants are created by logistic regression, linear discriminant, multiple regression, formulas created with a support vector machine, formulas created with Mahalanobis distance method, and canonical discriminant analysis. Or an expression created with a decision tree.
- the multivariate discriminant is a logistic regression equation with Orn, Tau, Trp as variables, or a fountain discriminant with Orn, Arg, Tau, ABA, Gly, His as variables, or Gin, Glu. , His, Lys, Cys, ABA may be a logistic regression equation, or Gin, Glu, Ala, His, Cys, ABA may be a linear discriminant.
- 2-group discrimination between early lung cancer and non-lung cancer can be performed more accurately by using the discriminant value obtained by the multivariate discriminant using amino acid variables useful for 2-group discrimination between early lung cancer and non-lung cancer. be able to.
- 2-group discrimination between early-stage lung cancer and non-lung cancer is further performed. It can be performed with high accuracy.
- step S-12 based on the calculated discriminant value, it may be discriminated whether the subject is an adenocarcinoma of lung cancer or non-lung cancer. Specifically, discrimination By comparing the value with a preset threshold value (cut-off value), it may be determined whether the subject is an adenocarcinoma of lung cancer or non-lung cancer. By using the discriminant value obtained by the multivariate discriminant using amino acid variables useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers, 2 It is possible to perform group discrimination with high accuracy.
- a multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator and / or denominator of the fractional expression is Orn, Lys, ABA, Arg, Glu, His , T au, Pro, Ala, Cit, lie may be included as a variable.
- the multivariate discriminant may be Equation 7, Equation 8, or Equation 9.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- multivariate discriminants are created by logistic regression formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, canonical discriminant analysis. Or an expression created with a decision tree.
- the multivariate discriminant is a logistic regression equation with Orn, ABA, Tau, Gly as variables, a linear discriminant with Orn, ABA, Tau, His, Arg, Gly as variables, or His, A logistic regression equation using lie, Glu, Pro, Leu, and Gin as variables or a linear discriminant using His, lie, Pro, Ala, Leu, and Gln as variables may be used.
- Each multivariate discriminant described above can be obtained by the method described in the pamphlet of international publication WO 2004/052191, which is an international application filed by the present applicant, or by the international application number PCT / It can be created by the method described in JP2006 / 304398 (multivariate discriminant creation process described in the second embodiment to be described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant can be suitably used for evaluating the state of lung cancer regardless of the unit of amino acid concentration in the amino acid concentration data as input data. .
- the fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C, ... and / or the denominator of the fractional expression is the amino acid a, b, c, ... ⁇ It is expressed as the sum of
- the fractional expression includes a sum (for example, ⁇ + / 3) of fractional expressions ⁇ , ⁇ , y,.
- the fractional expression also includes a divided fractional expression. It should be noted that amino acids used in the numerator and denominator do not have any force even if appropriate coefficients are applied. Also, the amino acids used in the numerator and denominator cannot be duplicated. Each fractional expression may have an appropriate coefficient.
- the value of the coefficient of each variable and the value of the constant term may be real numbers.
- the combination of the numerator variable and the denominator variable in the fractional expression can be regarded as equivalent in discriminability because the sign of the correlation with the objective variable is generally the force to reverse the correlation. Therefore, it also includes combinations where the numerator variable and the denominator variable are interchanged.
- multivariate discriminant means a form of formula generally used in multivariate analysis, for example, multiple regression formula, multiple logistic regression formula, linear discriminant function, Mahalanobis distance, canonical discriminant function, Includes support vector machines, decision trees, etc. Also included are expressions such as the sum of different forms of multivariate discriminants. Also, multiple regression formulas, multiple mouth istics regression formulas, canonical discriminant functions,! /, And the power to add coefficients and constant terms to each variable. The coefficients and constant terms in this case are preferably real numbers.
- each coefficient and its confidence interval may be a constant term value obtained by multiplying it by a real number, and the confidence interval may be obtained by adding or subtracting any real constant to it.
- the present invention provides a method for assessing the state of lung cancer (specifically, when determining whether or not lung cancer or non-lung cancer, it is lung cancer and its stage, or non-lung cancer).
- determining whether or not there is an adenocarcinoma of lung cancer, or determining whether or not it is non-lung cancer in addition to the concentration of amino acids, the concentration of other metabolites (biological metabolites)
- the use of protein expression level, subject's age and sex, biometrics, etc. will not help.
- the present invention can be used to evaluate the status of lung cancer (specifically, whether it is lung cancer or non-lung cancer, whether it is lung cancer and its stage, or non-lung cancer) When determining whether or not it is adenocarcinoma of lung cancer or non-lung cancer), as a variable in the multivariate discriminant, in addition to the amino acid concentration, other metabolites
- concentration of (biological metabolites), protein expression level, subject's age 'gender, biological index, etc. may be further used.
- FIG. 2 is a flowchart showing an example of a method for evaluating lung cancer according to the first embodiment.
- amino acid concentration data relating to the amino acid concentration value is measured from blood collected from individuals such as animals and humans (step SA-11).
- the amino acid concentration is measured by the method described above.
- Step SA-12 data such as missing values and outliers are removed from the amino acid concentration data of the individual measured in Step SA-11 (Step SA-12).
- Step SA-12 Om, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala included in the amino acid concentration data of individuals from which data such as missing values and outliers were removed in Step SA-12. Compare at least one density value among C, Cit and lie with a preset threshold (cutoff value) Therefore, for each individual, it is determined whether it is lung cancer or non-lung cancer, whether it is lung cancer and its stage, whether it is non-lung cancer, whether it is adenocarcinoma of lung cancer, or non-lung cancer (Step SA-13).
- amino acid concentration data is measured from blood collected from an individual, and (2) missing values or outliers are determined from the measured amino acid concentration data of the individual. (3) Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, etc. included in the individual amino acid concentration data from which data such as missing values and outliers have been removed.
- a preset threshold value cut-off value
- the amino acid concentration in the blood that is useful for discriminating between two groups of lung cancer and non-lung cancer and the amino acid concentration in the blood that is useful for discriminating between the two groups of early lung cancer and non-lung cancer
- the amino acid concentration useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers is used to discriminate between two groups of lung cancer and non-lung cancer, early lung cancer and non-lung cancer It is possible to accurately perform the 2-group discrimination between adenocarcinoma and non-lung cancer among the lung cancers.
- Orn, Lys, ABA, Arg, Glu, and the like contained in the amino acid concentration data of individuals from which data such as missing values and outliers were removed in Step SA-12.
- a discriminant value is calculated based on a variable that includes at least one of Pro, Ala, Cit, and lie, and the calculated discriminant value is compared with a preset threshold value (cutoff value).
- Whether it is lung cancer or non-lung cancer, whether it is lung cancer and its stage, or whether it is non-lung cancer, whether it is adenocarcinoma of lung cancer, or whether it is non-lung cancer One of the determinations may be performed.
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator and / or denominator of the constituent fractional constituents is Orn, Lys. , ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie may be included as a variable.
- multivariate discriminant using amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer fractional expression
- multivariate discriminant using amino acid variables useful for 2-group discrimination between early lung cancer and non-lung cancer Fractional formula
- 2-group discrimination between early lung cancer and non-lung cancer, and 2-group discrimination between adenocarcinoma and non-lung cancer out of lung cancer can be performed with higher accuracy.
- the multivariate discriminant when determining whether or not the cancer is lung cancer or non-lung cancer in Step SA-13, the multivariate discriminant may be Formula 1, Formula 2, or Formula 3. This makes it possible to use lung cancer and non-lung cancer by using the discriminant values obtained by the multivariate discriminant (equation 1, equation 2, and equation 3) that use amino acid variables that are particularly useful for discrimination between two groups of lung cancer and non-lung cancer. This makes it possible to more accurately perform 2-group discrimination.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant when determining whether the cancer is lung cancer and its stage, or whether it is non-lung cancer in Step SA-13, the multivariate discriminant may be Equation 4, Equation 5, or Equation 6. .
- This enables multivariate use of amino acid variables that are particularly useful for discriminating between two groups of early lung cancer and non-lung cancer.
- the discriminant values obtained by the discriminants (Equation 4, Equation 5, and Equation 6), it is possible to perform 2-group discrimination between initial lung cancer and non-lung cancer with higher accuracy.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant may be Equation 7, Equation 8, or Equation 9. .
- the multivariate discriminant (Equation 7, Equation 8, Equation 9) that uses amino acid variables that are particularly useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- multivariate discriminants are logistic regression formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method. It can be either an expression created by canonical discriminant analysis or an expression created by a decision tree.
- the multivariate discriminant is expressed as Tau, Orn, Arg, Ser, Glu, Pro, Asn. Oral dysistic regression equation, or linear discriminant with age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as variables, or His, Glu, Pro, lie, Gin, It can be a mouth discrete regression equation with Lys as a variable, or a linear discriminant with His, Glu, Pro, lie, Tyr, and Lys as variables.
- the multivariate discriminant uses Orn, Tau, and Trp as variables. Oral dystic regression, linear discriminant with Orn, Arg, Tau, ABA, Gly, His as variables, or logistic regression with Gin, Glu, His, Lys, Cys, ABA as variables, or A linear discriminant using G1 n, Glu, Ala, His, Cys, and ABA as variables may be used. This makes it possible to more accurately perform 2-group discrimination between early-stage lung cancer and non-lung cancer using the discriminant value obtained with a multivariate discriminant using amino acid variables that are particularly useful for 2-group discrimination between early-stage lung cancer and non-lung cancer. It can be carried out.
- the multivariate discriminant uses Orn, ABA, Tau, and Gly as variables.
- Oral logistic regression equation with Orn, ABA, Tau, His, Arg, Gly as variables, or Logistic regression equation with His, lie, Glu, Pro, Leu, Gin as variables, or His , lie, Pro, Ala, Leu, Gin may be used as a linear discriminant.
- Each multivariate discriminant described above is an international publication WO filed by the present applicant.
- the method described in the pamphlet of 2004/052191 and the method described in international application number PCT / JP2006 / 304398, which is an international application by the applicant (multivariate discriminant creation process described in the second embodiment to be described later) Can be created. If the multivariate discriminant obtained by these methods is used, the multivariate discriminant can be suitably used for evaluating the state of lung cancer regardless of the unit of amino acid concentration in the amino acid concentration data as input data. .
- FIG. 3 is a principle configuration diagram showing the basic principle of the present invention.
- the control unit uses Orn, Lys, ABA, Arg, Glu, and the like included in the amino acid concentration data of an evaluation object (for example, an animal such as an animal) that has been acquired in advance with respect to the amino acid concentration value.
- Orn, Lys, ABA, Arg, Glu, His, Tau is a multivariate discriminant stored in a memory unit that changes the concentration value of at least one of His, Tau, Pro, Ala, Cit, and lie and the concentration of amino acids.
- the discriminant value which is the value of the multivariate discriminant, is calculated based on a variable including at least one of, Pro, Ala, Cit, and lie (step S-21).
- control unit evaluates the state of lung cancer per evaluation object based on the discriminant value calculated in step S-21 (step S-22).
- a discriminant value is calculated on the basis of at least one of them as a variable, and the state of lung cancer is evaluated for each evaluation object based on the calculated discriminant value.
- the multivariate discriminant further includes age as a variable. Also good.
- the multivariate discriminant that has age as a variable in addition to the concentration of amino acids related to the lung cancer state in the amino acid concentration in the blood (multivariate discriminant that has a particularly significant correlation with the state of lung cancer) Use the discriminant value obtained to evaluate the lung cancer status with greater accuracy.
- step S-22 based on the discriminant value calculated in step S-21, it may be discriminated whether or not the subject is the lung cancer or non-lung cancer. Specifically, by comparing a discriminant value with a preset threshold value (cut-off value), it is possible to discriminate whether or not the subject is a lung cancer or non-lung cancer. This makes it possible to accurately perform two-group discrimination between lung cancer and non-lung cancer using the discriminant value obtained by the multivariate discriminant that uses amino acid variables useful for two-group discrimination between lung cancer and non-lung cancer. it can.
- a preset threshold value cut-off value
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator and / or denominator of the constituent fractional expressions are Orn, Lys, A At least one of BA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie may be included as a variable.
- Formula 1, Formula 2, or Formula 3 may be used. This makes it possible to more accurately perform 2-group discrimination between lung cancer and non-lung cancer using the discriminant value obtained by the multivariate discriminant (fractional expression) that uses amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer. It can be carried out.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant is a logistic regression equation or linear discriminant. It can be any one of an expression, a multiple regression expression, an expression created by a support vector machine, an expression created by Mahalanobis distance method, an expression created by canonical discriminant analysis, or an expression created by a decision tree.
- the multivariate discriminant can be a logistic regression equation with Tau, Orn, Arg, Ser, Glu, Pro, Asn as variables, or age, ABA, Arg, Gin, His, Leu, Orn, Pro, Fountain discriminant with Tau, Trp, Val as variables, or logistic regression with His, Glu, Pro, lie, Gin, Lys as variables, or His, Glu, Pro, lie, Tyr, Lys as variables
- a linear discriminant may be used. This makes it possible to perform 2-group discrimination between lung cancer and non-lung cancer more accurately by using the discriminant value obtained with a multivariate discriminant that uses amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer. it can.
- 2-group discrimination between lung cancer and non-lung cancer can be made more accurately. It can be carried out.
- step S-22 based on the discriminant value calculated in step S-21, it is determined whether or not the subject is a lung cancer and its stage, or non-lung cancer. Also good. Specifically, by comparing the discriminant value with a preset threshold value (cut-off value), it is possible to discriminate whether the subject is evaluated as having lung cancer and its stage, or non-lung cancer. Also good. As a result, using the discriminant value obtained with the multivariate discriminant that uses amino acid variables useful for discriminating between two groups of early lung cancer and non-lung cancer, it is possible to accurately discriminate between two groups of early lung cancer and non-lung cancer. We will use the power S.
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator and / or denominator of the constituent fractional expressions are Orn, Lys, A At least one of BA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie may be included as a variable.
- the multivariate discriminant may be Equation 4, Equation 5, or Equation 6. This makes it possible to further distinguish 2-group discrimination between early-stage lung cancer and non-lung cancer using the discriminant value obtained by the multivariate discriminant (fractional expression) using amino acid variables useful for 2-group discrimination between early-stage lung cancer and non-lung cancer. The ability to do precisely.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- multivariate discriminants are logistic regression formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, canonical discriminant. It can be either an expression created by analysis or an expression created by a decision tree.
- the multivariate discriminant is a logistic regression equation with Orn, Tau, Trp as variables, or a linear discriminant with Orn, Arg, Tau, ABA, Gly, His as variables, or Gin, Glu, His. , Lys, Cys, ABA may be used as logistic regression equations, or Gin, G1u, Ala, His, Cys, ABA may be used as linear discriminants.
- the discriminant value obtained with the multivariate discriminant that uses amino acid variables useful for discriminating between two groups of early lung cancer and non-lung cancer it is possible to more accurately discriminate between two groups of early lung cancer and non-lung cancer. Can do. Specifically, by using the discriminant value obtained with the multivariate discriminant that uses amino acid variables that are particularly useful for discriminating between two groups of early lung cancer and non-lung cancer, the two-group discrimination between early lung cancer and non-lung cancer is further improved. A good S fiddling power S.
- step S-22 based on the discriminant value calculated in step S-21, it is determined whether the subject is an adenocarcinoma or non-lung cancer among the lung cancers. Also good. Specifically, by comparing the discriminant value with a preset threshold (cut-off value), it is determined whether the subject is an adenocarcinoma or non-lung cancer among lung cancers. Also good.
- a preset threshold cut-off value
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator and / or denominator of the constituent fractional constituents is Orn, Lys, A At least one of BA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie may be included as a variable.
- the multivariate discriminant may be Equation 7, Equation 8, or Equation 9. This makes it possible to use a discriminant value obtained with a multivariate discriminant (fractional expression) that uses amino acid variables useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers. Two-group discrimination from non-lung cancer can be performed with higher accuracy.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- multivariate discriminants are logistic regression, linear discriminant, multiple regression, formula created with support vector machine, formula created with Mahalanobis distance method, canonical discriminant. It can be either an expression created by analysis or an expression created by a decision tree.
- the multivariate discriminant is an oral dystic regression equation with Orn, ABA, Tau, Gly as variables, or a linear discriminant with Orn, ABA, Tau, His, Arg, Gly as variables.
- the discriminant value obtained by the multivariate discriminant that uses amino acid variables useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers This makes it possible to perform 2-group discrimination with higher accuracy.
- a discriminant value obtained with a multivariate discriminant using an amino acid variable which is particularly useful for discriminating between two groups of adenocarcinoma and non-lung cancer of lung cancer, adenocarcinoma and non Two-group discrimination from lung cancer can be performed with higher accuracy.
- Each multivariate discriminant described above is an international publication WO filed by the present applicant as an international application. It can be created by the method described in the 2004/052191 pamphlet or the method described in the international application number PCT / JP2006 / 304398 (multivariate discriminant creation processing described later) which is an international application filed by the present applicant. If the multivariate discriminant obtained by these methods is used, the multivariate discriminant can be suitably used for evaluating the state of lung cancer regardless of the unit of amino acid concentration in the amino acid concentration data as input data. .
- the fractional expression means that the numerator of the fractional expression is represented by the sum of amino acids A, B, C, ... and / or the denominator of the fractional expression is the amino acid a, b, c, ... ⁇ It is expressed as the sum of
- the fractional expression includes a sum (for example, ⁇ + / 3) of fractional expressions ⁇ , ⁇ , y,.
- the fractional expression also includes a divided fractional expression. It should be noted that amino acids used in the numerator and denominator do not have any force even if appropriate coefficients are applied. Also, the amino acids used in the numerator and denominator cannot be duplicated. Each fractional expression may have an appropriate coefficient.
- the value of the coefficient of each variable and the value of the constant term may be real numbers.
- the combination of the numerator variable and the denominator variable in the fractional expression can be regarded as equivalent in discriminability because the sign of the correlation with the objective variable is generally the force to reverse the correlation. Therefore, it also includes combinations where the numerator variable and the denominator variable are interchanged.
- the multivariate discriminant means a formula format generally used in multivariate analysis. For example, multiple regression, multiple logistic regression, linear discriminant function, Mahalanobis distance, canonical discriminant function, Includes support vector machines, decision trees, etc. Also included are expressions such as the sum of different forms of multivariate discriminants. Also, multiple regression formulas, multiple mouth istics regression formulas, canonical discriminant functions,! /, And the power to add coefficients and constant terms to each variable. The coefficients and constant terms in this case are preferably real numbers.
- a value belonging to the range of 99% confidence interval of the coefficient and constant term obtained to make a discrimination from the data more preferably a coefficient and constant term obtained to make the discrimination from the data Any value that falls within the range of the 95% confidence level is acceptable.
- the value of each coefficient and its confidence interval may be a constant term value obtained by multiplying it by a real number, and the confidence interval may be obtained by adding or subtracting any real constant to it.
- the present invention provides a method for evaluating the state of lung cancer (specifically, lung cancer or non-lung cancer). When determining whether or not it is lung cancer and its stage, or whether or not it is non-lung cancer, whether it is adenocarcinoma or non-lung cancer among lung cancer When determining, in addition to the amino acid concentration, the use of concentrations of other metabolites (biological metabolites), protein expression levels, subject's age and sex, biometric indicators, etc. will not help.
- the present invention can be used to evaluate the status of lung cancer (specifically, whether it is lung cancer or non-lung cancer, whether it is lung cancer and its stage, or non-lung cancer) When determining whether or not it is adenocarcinoma of lung cancer or non-lung cancer), as a variable in the multivariate discriminant, in addition to the amino acid concentration, other metabolites
- concentration of (biological metabolites), protein expression level, subject's age 'gender, biological index, etc. may be further used.
- step 1 to step 4 the outline of the multivariate discriminant creation process (step 1 to step 4) will be described in detail.
- the present invention is based on a predetermined formula creation method in which the control unit stores amino acid concentration data and lung cancer state information power stored in a storage unit including lung cancer state index data relating to an index representing the state of lung cancer.
- step 1 data with missing values, outliers, etc. may be removed from the lung cancer status information in advance.
- Step 1! From the lung cancer status information, several different formula creation methods (principal component analysis, discriminant analysis, support vector machine, multiple regression analysis, logistic regression analysis, k me ans method, Including cluster analysis, multivariate analysis such as decision trees)), multiple candidate multivariate discriminants may be created.
- lung cancer status information which is multivariate data composed of amino acid concentration data and lung cancer status index data obtained by analyzing blood obtained from a large number of non-lung cancer groups and lung cancer patient groups, Create multiple groups of candidate multivariate discriminants in parallel using different algorithms. For example, two different candidate multivariate discriminants may be created by simultaneously performing discriminant analysis and logistic regression analysis using different algorithms.
- the lung cancer state information is converted, and the converted lung cancer state information is converted.
- a candidate multivariate discriminant may be created by performing discriminant analysis on the information. As a result, an appropriate multivariate discriminant suitable for the diagnostic condition can be finally created.
- the candidate multivariate discriminant created using principal component analysis is a linear expression that also has the power of each amino acid variable to maximize the variance of all amino acid concentration data.
- the candidate multivariate discriminant created using discriminant analysis is a high-order expression (amino acid variable) that consists of amino acid variables that minimize the ratio of the sum of variances within each group to the variance of all amino acid concentration data ( Including exponents and logarithms).
- the candidate multivariate discriminant created using the support vector machine is a higher-order expression (including kernel functions) consisting of amino acid variables that maximize the boundary between groups.
- the candidate multivariate discriminant created using multiple regression analysis is a higher-order formula consisting of amino acid variables that minimizes the sum of distances from all amino acid concentration data.
- the candidate multivariate discriminant created using logistic regression analysis is a fractional expression with the natural logarithm as the exponent, which is a linear expression consisting of each amino acid variable that maximizes the likelihood.
- the k means method searches for k neighborhoods of each amino acid concentration data, defines the largest group of neighboring points as the group to which the data belongs, and belongs to the input amino acid concentration data. It is a method of selecting amino acid variables that best match a group with a defined group.
- Cluster analysis is a method of clustering (grouping) points at the closest distance in all amino acid concentration data.
- a decision tree is a technique that ranks amino acid variables and predicts a group of amino acid concentration data from possible patterns of amino acid variables with higher ranks.
- the present invention verifies (mutually verifies) the candidate multivariate discriminant created in step 1 based on a predetermined verification method in the control unit (step 2).
- the candidate multivariate discriminant is verified for each candidate multivariate discriminant created in step 1.
- step 2 the discrimination rate, sensitivity, specificity, information criterion, etc. of the candidate multivariate discriminant are based on at least one of the bootstrap method, holdout method, and leave one out method. You may verify at least one of them. This makes it possible to create a highly predictable or robust candidate multivariate discriminant that takes into account lung cancer status information and diagnostic conditions.
- the discrimination rate is the correct state of lung cancer evaluated by the present invention among all input data. It is a ratio. Sensitivity is the correct proportion of lung cancer states evaluated in the present invention among those suffering from lung cancer described in the input data. Specificity refers to the state of lung cancer evaluated in the present invention among non-lung cancers described in the input data! /, Those that become lung cancer! /, Na! /, Things. Is the correct ratio.
- the information criterion refers to the number of amino acid variables in the candidate multivariate discriminant prepared in Step 1 and the difference between the lung cancer status evaluated in the present invention and the lung cancer status described in the input data. It is an addition. Predictivity is the average of the discrimination rate, sensitivity, and specificity obtained by repeated verification of candidate multivariate discriminants. Robustness is the variance of discrimination rate, sensitivity, and specificity obtained by repeated verification of candidate multivariate discriminants.
- the present invention allows the control unit to select a candidate multivariate discriminant variable based on the verification result in step 2 and a predetermined variable selection method. Then, the combination of amino acid concentration data included in the lung cancer status information used when creating the candidate multivariate discriminant is selected (step 3). Amino acid variables are selected for each candidate multivariate discriminant created in Step 1. As a result, the amino acid variables of the candidate multivariate discriminant can be appropriately selected. Then, Step 1 is performed again using the lung cancer state information including the amino acid concentration data selected in Step 3.
- step 3 select the amino acid variable of the candidate multivariate discriminant based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm from the verification result in step 2. You can do it.
- the best path method is to reduce the amino acid variables included in the candidate multivariate discriminant one by one and optimize the evaluation index given by the candidate multivariate discriminant. It is a method of selecting.
- the present invention repeatedly executes the above-described Step 1, Step 2 and Step 3 in the control unit, and based on the verification results accumulated thereby, a plurality of A multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from the candidate multivariate discriminants (step 4).
- selecting candidate multivariate discriminants for example, selecting the most suitable candidate multivariate discriminant created using the same formula creation method, and selecting the most suitable from all candidate multivariate discriminants When choosing the right thing is there.
- the candidate multivariate discriminant is created, the candidate multivariate discriminant is verified, and the variables of the candidate multivariate discriminant are selected.
- Systematized (systematized) in a series of flows a multivariate discriminant that is optimal for evaluating the state of lung cancer can be created.
- the amino acid concentration is used for multivariate statistical analysis, and the variable selection method and cross-validation are combined to select the optimal robust set of variables. Extract high multivariate discriminants.
- oral dystic regression, linear discriminant, support vector machine, Mahalanobis distance method, multiple regression analysis, cluster analysis, etc. can be used.
- FIGS. the configuration of a lung cancer evaluation system (hereinafter sometimes referred to as the present system) which is particularly useful for the second embodiment will be described with reference to FIGS. Note that this system is merely an example, and the present invention is not limited to this.
- FIG. 5 is a diagram showing another example of the overall configuration of this system.
- this system includes a lung cancer evaluation device 100 that evaluates the state of lung cancer for each evaluation object, and a client device 200 that provides amino acid concentration data of the evaluation object related to amino acid concentration values (the information communication terminal of the present invention).
- a lung cancer evaluation device 100 that evaluates the state of lung cancer for each evaluation object
- a client device 200 that provides amino acid concentration data of the evaluation object related to amino acid concentration values (the information communication terminal of the present invention).
- a network 300 so that they can communicate with each other.
- this system uses the lung cancer state information and lung cancer state information used when creating a multivariate discriminant with the lung cancer evaluation device 100.
- a database apparatus 400 storing a multivariate discriminant used for evaluating the above may be configured to be communicably connected via the network 300.
- information on the state of lung cancer is provided from the lung cancer evaluation device 100 to the client device 200 or the database device 400, or from the client device 200 or database device 400 to the lung cancer evaluation device 100 via the network 300.
- information on lung cancer status refers to specific items related to lung cancer status in organisms including humans. It is information about the value that was set.
- Information about the state of lung cancer is generated by the lung cancer evaluation device 100, the client device 200, and other devices (for example, various measurement devices) and is mainly stored in the database device 400.
- FIG. 6 is a block diagram showing an example of the configuration of the lung cancer evaluation apparatus 100 of the present system, and conceptually shows only the portion related to the present invention.
- the lung cancer evaluation apparatus 100 includes a control unit 102 such as a CPU that comprehensively controls the lung cancer evaluation apparatus, a communication device such as a router, and a wired or wireless communication line such as a dedicated line.
- a communication interface unit 104 that connects the device to the network 300 so as to be communicable
- a storage unit 106 that stores various databases, tables, and files
- an input / output interface unit 108 that connects to the input device 112 and the output device 114.
- these parts are configured to be communicable via an arbitrary communication path.
- the lung cancer-evaluating apparatus 100 may be configured in the same casing as various analytical apparatuses (for example, an amino acid analyzer, etc.).
- the specific form of the dispersion / integration of the lung cancer evaluation apparatus 100 is not limited to the one shown in the figure, and all or a part thereof is functionally or physically distributed / integrated in arbitrary units according to various loads. You may comprise. For example, you can use a part of the processing using CGI (Common Gateway Interface).
- CGI Common Gateway Interface
- the storage unit 106 is storage means, and can use, for example, a memory device such as a RAM'ROM, a fixed disk device such as a node or a hard disk, a flexible disk, an optical disk, or the like.
- the storage unit 106 stores a computer program for giving instructions to the CPU and performing various processes in cooperation with an OS (Operating System).
- the storage unit 106 includes a user information file 106a, an amino acid concentration data file 106b, a lung cancer state information file 106c, a designated lung cancer state information file 106d, a multivariate discriminant-related information database 106e, a discriminant value, as shown in the figure.
- the file 106f and the evaluation result file 106g are stored.
- the user information file 106a stores user information related to users.
- FIG. 7 is a diagram showing an example of information stored in the user information file 106a.
- the information stored in the user information file 106a is used to uniquely identify the user as shown in FIG. User ID, user password for authenticating whether or not the user is valid, user name, and affiliation ID for uniquely identifying the affiliation to which the user belongs And the department ID that uniquely identifies the department to which the user belongs, the department name, and the e-mail address of the IJ user are associated with each other.
- the amino acid concentration data file 106b stores amino acid concentration data relating to amino acid concentration values.
- FIG. 8 is a diagram showing an example of information stored in the amino acid concentration data file 106b. As shown in FIG. 8, the information stored in the amino acid concentration data file 106b is configured by associating an individual number for uniquely identifying an individual (sample) to be evaluated with amino acid concentration data. ing.
- amino acid concentration data in which amino acid concentration data is treated as a numerical value, that is, a continuous scale may be a nominal scale or an order scale. In the case of nominal scale and ordinal scale, analysis may be performed by giving an arbitrary numerical value to each state.
- amino acid concentration data includes other biological information (sex difference, age, height, weight, BMI index, waist circumference, insulin resistance index, uric acid level, blood glucose level, neutral fat, body fat percentage, total cholesterol, HDL cholesterol. , LDL cholesterol, systolic blood pressure, diastolic blood pressure, hemoglobin Alc, arteriosclerosis index, presence or absence of smoking, smoking index, quantified ECG waveform, protein concentration, antibody concentration, tumor marker amount, enzyme concentration, gene expression Amount, concentration of metabolite other than amino acid, etc.) may be combined.
- biological information sex difference, age, height, weight, BMI index, waist circumference, insulin resistance index, uric acid level, blood glucose level, neutral fat, body fat percentage, total cholesterol, HDL cholesterol.
- LDL cholesterol systolic blood pressure, diastolic blood pressure, hemoglobin Alc, arteriosclerosis index, presence or absence of smoking, smoking index, quantified ECG waveform, protein concentration, antibody concentration, tumor marker amount, enzyme
- the lung cancer state information file 106c stores lung cancer state information used when creating a multivariate discriminant.
- FIG. 9 is a diagram showing an example of information stored in the lung cancer state information file 106c. As shown in Fig. 9, the information stored in the lung cancer status information file 106c is related to the individual number and the index (index T, index T, index T ⁇ ) indicating the status of lung cancer.
- Lung cancer state index data ( ⁇ ) and amino acid concentration data are associated with each other.
- lung cancer state index data and amino acid concentration data are treated as numerical values (that is, a continuous scale), but the lung cancer state index data and amino acid concentration data may be nominal scales or order scales. In the case of nominal scale and ordinal scale, analysis may be performed by giving an arbitrary numerical value to each state.
- the lung cancer status index data is a known single status index that serves as a marker for lung cancer status. May be.
- the designated lung cancer state information file 106d stores the lung cancer state information designated by the lung cancer state information designation unit 102g described later.
- FIG. 10 is a diagram showing an example of information stored in the designated lung cancer state information file 106d. As shown in FIG. 10, the information stored in the designated lung cancer state information file 106d is configured by associating an individual number, designated lung cancer state index data, and designated amino acid concentration data with each other! / RU
- the multivariate discriminant-related information database 106e includes a candidate multivariate discriminant file 106el for storing the candidate multivariate discriminant created by the candidate multivariate discriminant-preparing part 102M described later, and a later-described Candidate multivariate discriminant verification unit 102h2 Verification result file 106e2 that stores the results of verification and selected lung cancer status information finale 106e3 that stores lung cancer status information including combinations of amino acid concentration data selected by the variable selection unit 102h3 described later And a multivariate discriminant file 106e4 that stores the multivariate discriminant created by the multivariate discriminant creation unit 102h described later.
- the candidate multivariate discriminant file 106el stores the candidate multivariate discriminant created by the candidate multivariate discriminant-preparing part 102hl described later.
- FIG. 11 is a diagram illustrating an example of information stored in the candidate multivariate discriminant file 10 6el.
- the information stored in the candidate multivariate discriminant file 106el includes the rank, candidate multivariate discriminant (in Fig. 11, F (
- FIG. 12 is a diagram showing an example of information stored in the verification result file 106e2.
- the information stored in the verification result file 106e2 includes rank, candidate multivariate discriminant (in Fig. 12, F (Gly, Leu, Phe, ⁇ ) and F (Gly)
- each candidate multivariate discriminant for example, the evaluation value of each candidate multivariate discriminant
- the selected lung cancer state information file 106e3 contains lung cancer state information including a combination of amino acid concentration data corresponding to variables selected by the variable selection unit 102h3 described later.
- FIG. 13 is a diagram showing an example of information stored in the selected lung cancer state information file 106e3. As shown in FIG. 13, the information stored in the selected lung cancer state information file 106e3 is selected by an individual number, lung cancer state index data specified by a lung cancer state information specifying unit 102g described later, and a variable selection unit 102h3 described later. Amino acid concentration data is linked to each other.
- the multivariate discriminant file 106e4 stores the multivariate discriminant created by the multivariate discriminant-preparing part 102h described later.
- FIG. 14 is a diagram showing an example of information stored in the multivariate discriminant file 106e4. As shown in Fig. 14, the information stored in the multivariate discriminant file 106e4 includes the rank, multivariate discriminant (in Fig. 14, F (Phe, ⁇ ) and F (
- each multivariate discriminant for example, the evaluation value of each multivariate discriminant
- the discriminant value file 106f stores the discriminant value calculated by the discriminant value calculator 102i described later.
- FIG. 15 is a diagram showing an example of information stored in the discriminant value file 106f. As shown in Fig. 15, the information stored in the discriminant value file 106f includes the individual number for uniquely identifying the individual (sample) to be evaluated and the rank (for uniquely identifying the multivariate discriminant). Number) and the discrimination value are associated with each other.
- the evaluation result file 106g stores an evaluation result in a discriminant value criterion-evaluating unit 103 ⁇ 4 described later (specifically, a discrimination result in a discriminant value criterion-discriminating unit 103 ⁇ 41 described later).
- FIG. 16 is a diagram showing an example of information stored in the evaluation result file 106g. The information stored in the evaluation result file 106g is calculated by the individual number for uniquely identifying the individual (sample) to be evaluated, the amino acid concentration data of the evaluation target acquired in advance, and the multivariate discrimination formula.
- Discrimination value and evaluation results on lung cancer status (specifically, discrimination results on whether or not lung cancer or non-lung cancer, discrimination results on whether or not it is lung cancer, or its stage, or non-lung cancer) And a discrimination result regarding whether or not the lung cancer is an adenocarcinoma or a non-lung cancer).
- the storage unit 106 stores various types of Web data, CGI programs, and the like for providing the Web site to the client device 200 as other information. It's recorded!
- the Web data includes data for displaying various Web pages, which will be described later, and these data are formed as text files described in HTML or XML, for example.
- a part file, a work file, and other temporary files for creating Web data are also stored in the storage unit 106.
- the storage unit 106 stores the audio to be transmitted to the client device 200 as an audio file such as WAVE format or AIF F format, and stores still images or movies as image files such as JPEG format or MPEG2 format as necessary. Can be stored.
- the communication interface unit 104 mediates communication between the lung cancer evaluation device 100 and the network 300 (or a communication device such as a router). That is, the communication interface unit 104 has a function of communicating data with other terminals via a communication line.
- the input / output interface unit 108 is connected to the input device 112 and the output device 114.
- a monitor including a home television
- a speaker or a printer can be used as the output device 114 (hereinafter, the output device 114 may be described as the monitor 114).
- the input device 112 in addition to a keyboard, a mouse, and a microphone, a monitor that realizes a pointing device function in cooperation with the mouse can be used.
- the control unit 102 is a control program such as an OS (Operating System), a program that defines various processing procedures, etc., and has an internal memory for storing required data. Execute information processing. As shown in the figure, the control unit 102 is roughly divided into a request interpretation unit 102a, a browsing processing unit 102b, an authentication processing unit 102c, an email generation unit 102d, a Web page generation unit 102e, a reception unit 102f, and a lung cancer state information designation unit 102g.
- the control unit 102 removes data with missing values from the lung cancer status information transmitted from the database device 400 and the amino acid concentration data transmitted from the client device 200.Removes data with many outliers. Data processing such as removal of variables!
- the request interpretation unit 102a interprets the request contents from the client device 200 and the database device 400, and passes the processing to each unit of the control unit 102 according to the interpretation result.
- the browsing processing unit 102b Upon receiving browsing requests for various screens from the client device 200, the browsing processing unit 102b receives these images. Generate and transmit web data for the screen.
- the authentication processing unit 102c makes an authentication determination.
- the e-mail generating unit 102d generates an e-mail including various types of information.
- the web page generation unit 102 e generates a web page that the user browses with the client device 200.
- the receiving unit 102f receives information transmitted from the client device 200 or the database device 400.
- the lung cancer state information designation unit 102g designates target lung cancer state index data and amino acid concentration data when creating a multivariate discriminant.
- the multivariate discriminant creation unit 102h creates a multivariate discriminant based on the lung cancer state information received by the receiving unit 102f and the lung cancer state information specified by the lung cancer state information specifying unit 102g. Specifically, the multivariate discriminant-preparing part 102h repeatedly executes the candidate multivariate discriminant-preparing part 102h1, the candidate multivariate discriminant-verifying part 102h2, and the variable selector 102h3 from the lung cancer state information.
- a multivariate discriminant is created by selecting a candidate multivariate discriminant to be adopted as a multivariate discriminant from a plurality of candidate multivariate discriminants based on the accumulated verification results.
- the multivariate discriminant-preparing unit 102h receives the desired multivariate discriminant from the storage unit 106.
- a multivariate discriminant may be created by selecting.
- the multivariate discriminant creation unit 102h selects and downloads a desired multivariate discriminant from another computer device (for example, the database device 400) that stores the multivariate discriminant in advance. You can create
- FIG. 17 is a block diagram showing the configuration of the multivariate discriminant-preparing part 102h, and conceptually shows only the part related to the present invention in the configuration.
- the multivariate discriminant creation unit 102h further includes a candidate multivariate discriminant creation unit 102hl, a candidate multivariate discriminant verification unit 102h2, and a variable selection unit 102h3.
- the candidate multivariate discriminant creation unit 102M creates a candidate multivariate discriminant that is a candidate for the multivariate discriminant based on the lung cancer state information force and a predetermined formula creation method.
- the candidate multivariate discriminant-preparing part 102M uses the lung cancer state information to A plurality of candidate multivariate discriminants may be created using different formula creation methods.
- the candidate multivariate discriminant verification unit 102h2 verifies the candidate multivariate discriminant created by the candidate multivariate discriminant creation unit 102h1 based on a predetermined verification method. Note that the candidate multivariate discriminant verification unit 102h2 determines the discriminant rate, sensitivity, specificity, and information criterion of the candidate multivariate discriminant based on at least one of the bootstrap method, holdout method, and leave one out method. You may verify at least one of them.
- the variable selection unit 102h3 creates a candidate multivariate discriminant by selecting a variable of the candidate multivariate discriminant based on a predetermined variable selection method from the verification result of the candidate multivariate discriminant verification unit 102h2. Select the combination of amino acid concentration data included in the lung cancer status information used for the above. Note that the variable selection unit 102h3 may select a variable of the candidate multivariate discriminant based on at least one of the stepwise method, the best path method, the neighborhood search method, and the genetic algorithm from the verification result.
- the discriminant value calculation unit 102i receives Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit included in the evaluation target amino acid concentration data received by the receiving unit 102f. , lie, and at least one of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie created by the multivariate discriminant generator 102h as a variable. On the basis of the multivariate discriminant, a discriminant value that is the value of the multivariate discriminant is calculated.
- the multivariate discriminant is represented by the sum of one fractional expression or multiple fractional expressions, and the numerator and / or denominator of the constituent fractional expressions are Orn, Lys, ABA, Arg, Glu, At least one of His, Tau, Pro, Ala, Cit, and lie may be included as a variable.
- the multivariate discriminant may be Formula 1, Formula 2, or Formula 3.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- the multivariate discriminant may be Formula 4, Formula 5 or Formula 6.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant may be Formula 7, Formula 8, or Formula 9.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- Multivariate discriminants are created by logistic regression formula, linear discriminant formula, multiple regression formula, formula created by support vector machine, formula created by Mahalanobis distance method, canonical discriminant analysis. Formulas created with decision trees! /, Or just one! /
- the multivariate discriminant is a logistic regression equation with Tau, Orn, Arg, Ser, Glu, Pro, Asn as variables, or age, ABA, Arg, Gin, His, Leu, Orn. , Pro, Tau, Trp, Val as linear discriminants, or Logistic regression equation with His, Glu, Pro, lie, Gin, Lys as variables, or His, Glu, Pro, lie, Tyr, Lys as variables May be a linear discriminant.
- the multivariate discriminant is a logistic regression equation with Orn, Tau, Trp as variables, or a fountain discriminant with Orn, Arg, Tau, ABA, Gly, His as variables, or Gin, Glu, Logistic regression equation with variables His, Lys, Cvs, ABA, or Gin, Glu, Ala, His, It can be a linear discriminant with Cys and ABA as variables.
- the multivariate discriminant is a logistic regression equation with Orn, ABA, Tau, Gly as variables, or a linear discriminant with Orn, ABA, Tau, His, Arg, Gly as variables, or His, lie.
- Glu, Pro, Leu, Gin may be logistic regression equations, or His, lie, Pro, Ala, Leu, Gin may be linear discriminants.
- the discriminant value criterion-evaluating unit 103 ⁇ 4 evaluates the state of lung cancer for the evaluation object based on the discriminant value calculated by the discriminant value calculator 102i.
- the discriminant value criterion-evaluating unit 103 ⁇ 4 further includes a discriminant value criterion discriminator 103 ⁇ 41.
- FIG. 18 is a block diagram showing the configuration of the discriminant value criterion-evaluating unit 103 ⁇ 4, and conceptually shows only the portion related to the present invention.
- the discriminant value criterion discriminating unit 103 ⁇ 4 1 determines whether or not the subject is an evaluation subject based on the discriminant value, whether it is lung cancer or non-lung cancer, whether it is lung cancer and its stage, or whether it is non-lung cancer, Whether lung cancer is adenocarcinoma or non-lung cancer is determined. Specifically, the discriminant value criterion discriminating unit 103 ⁇ 4 1 discriminates whether the evaluation target is lung cancer or non-lung cancer by comparing the discriminant value with a preset threshold value (cut-off value). It is determined whether or not it is lung cancer and its stage, or whether it is non-lung cancer, whether it is adenocarcinoma or non-lung cancer among lung cancers.
- a preset threshold value cut-off value
- the result output unit 102k receives the processing results in the respective processing units of the control unit 102 (evaluation results in the discrimination value criterion evaluation unit 103 ⁇ 4 (specifically, the discrimination value criterion discrimination unit 103 ⁇ 4 1 And the like are output to the output device 114.
- the transmission unit 102m transmits the evaluation result to the client apparatus 200 that is the transmission source of the amino acid concentration data to be evaluated, or the multivariate discriminant created by the lung cancer evaluation apparatus 100 to the database apparatus 400. Or send evaluation results.
- FIG. 19 is a block diagram showing an example of the configuration of the client device 200 of the present system, and conceptually shows only the part related to the present invention in the configuration!
- the client device 200 includes a control unit 210, a ROM 220, an HD 230, a RAM 240, and an input device.
- the control unit 210 includes a Web browser 211, an electronic mailer 212, a receiving unit 213, and a transmitting unit 214.
- the web browser 211 performs browsing processing for interpreting the web data and displaying the interpreted web data on a monitor 261 described later.
- the Web browser 211 may be plugged in with various software such as a stream player having a function of performing reception / display / feedback of stream video.
- the electronic mailer 212 performs transmission / reception of electronic mail according to a predetermined communication protocol (for example, Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POP3), etc.).
- the receiving unit 213 receives various types of information such as evaluation results transmitted from the lung cancer evaluation device 100 via the communication IF 280.
- the transmission unit 214 transmits various types of information such as amino acid concentration data to be evaluated to the lung cancer evaluation apparatus 100 via the communication IF 280.
- the input device 250 is a keyboard, a mouse, a microphone, or the like.
- a monitor 261 described later also realizes a pointing device function in cooperation with the mouse.
- the output device 260 is an output means for outputting information received via the communication IF280, and includes a monitor (including a home TV) 2 61 and a printer 262. In addition, the output device 260 may be provided with a speaker or the like.
- the input / output IF is connected to the input device 250 and the output device 260.
- Communication IF 280 connects client device 200 and network 300 (or a communication device such as a router) in a communicable manner.
- the client device 200 is connected to the network 300 via a communication device such as a modem, TA, or router and a telephone line, or via a dedicated line.
- the client device 200 can access the lung cancer evaluation device 100 according to a predetermined communication protocol.
- an information processing device in which peripheral devices such as a printer 'monitor' image scanner or the like are connected as necessary (for example, a known personal computer 'workstation' home game device'Internet TV'PHS terminal ⁇ Mobile device ⁇ Mobile communication terminal 'Information processing terminal such as PDA etc.)
- peripheral devices such as a printer 'monitor' image scanner or the like
- a printer 'monitor' image scanner or the like for example, a known personal computer 'workstation' home game device'Internet TV'PHS terminal ⁇ Mobile device ⁇ Mobile communication terminal 'Information processing terminal such as PDA etc.
- control unit 210 of the client device 200 performs all or all of the processing performed by the control unit 210.
- An arbitrary part may be realized by a CPU and a program that is interpreted and executed by the CPU.
- ROM220 or HD230 stores computer programs for giving instructions to the CPU and performing various processes in cooperation with the OS (Operating System).
- the computer program is executed by being loaded into the RAM 240, and constitutes the control unit 210 in cooperation with the CPU.
- the computer program may be recorded in an application program server connected to the client device 200 via an arbitrary network, and the client device 200 may download all or a part thereof as necessary. .
- all or any part of the processing performed by the control unit 210 may be realized by hardware such as wire logic.
- the network 300 has a function of connecting the lung cancer evaluation apparatus 100, the client apparatus 200, and the database apparatus 400 so that they can communicate with each other, such as the Internet, an intranet, and a LAN (including both wired and wireless).
- the network 300 includes a VAN, a personal computer communication network, a public telephone network (including both analog and digital), a private line network (including both analog and digital), a CATV network, and a mobile line.
- Switching network or mobile packet switching network (including IMT2000 system, GSM system or PDC / PDC-P system), wireless paging network, local wireless network such as Bluetooth (registered trademark), PHS network, satellite It may be a communication network (including CS, BS or ISDB).
- FIG. 20 is a block diagram showing an example of the configuration of the database apparatus 400 of this system, and conceptually shows only the portion related to the present invention in the configuration.
- the database device 400 is the lung cancer evaluation device 100 or the lung cancer state information used when creating the multivariate discriminant with the database device, the multivariate discriminant created with the lung cancer evaluation device 100, and the lung cancer evaluation device 100. It has a function to store the evaluation results.
- the database device 400 includes a control unit 402 such as a CPU that comprehensively controls the database device, a communication device such as a router, and a wired or wireless communication circuit such as a dedicated line.
- a communication interface unit 404 for connecting the database device to the network 300 so as to be communicable and various databases, tables and files (for example, For example, a web page file) and an input / output interface unit 408 connected to the input device 412 and the output device 414. These units are connected via an arbitrary communication path. It is connected so that it can communicate.
- the storage unit 406 is a storage means and can use, for example, a memory device such as a RAM'ROM, a fixed disk device such as a node or a hard disk, a flexible disk, an optical disk, or the like.
- the storage unit 406 stores various programs used for various processes.
- the communication interface unit 404 mediates communication between the database device 400 and the network 300 (or a communication device such as a router). That is, the communication interface unit 404 has a function of communicating data with other terminals via a communication line.
- the input / output interface unit 408 is connected to the input device 412 and the output device 414.
- the output device 414 in addition to a monitor (including a home television), a speaker or a printer can be used as the output device 414 (hereinafter, the output device 414 may be described as the monitor 414).
- the input device 412 can be a monitor that realizes a pointing device function in cooperation with the mouse.
- the control unit 402 is a control program such as an OS (Operating System), a program that defines various processing procedures, etc., and has an internal memory for storing required data. Execute information processing.
- the control unit 402 includes a request interpretation unit 402a, a browsing processing unit 402b, an authentication processing unit 402c, an e-mail generation unit 402d, a Web page generation unit 402e, and a transmission unit 402f.
- the request interpretation unit 402a interprets the request content from the lung cancer evaluation device 100, and passes the processing to each unit of the control unit 402 according to the interpretation result.
- the browsing processing unit 402b Upon receiving browsing requests for various screens from the lung cancer evaluation apparatus 100, the browsing processing unit 402b generates and transmits Web data for these screens.
- the authentication processing unit 402c makes an authentication determination.
- the e-mail generation unit 402d generates an e-mail including various types of information.
- the web page generation unit 402e generates a web page that the user browses with the client device 200.
- the transmission unit 402f transmits various information such as lung cancer state information and multivariate discriminant to the lung cancer evaluation apparatus 100.
- FIG. 21 is a flowchart showing an example of the lung cancer evaluation service process.
- the amino acid concentration data used in this processing relates to the amino acid concentration value obtained by analyzing blood collected in advance from an individual.
- a method for analyzing amino acids in blood will be briefly described. First, a collected blood sample is collected in a heparinized tube, and then plasma is separated by centrifuging the tube. All separated plasma samples should be stored frozen at 70 ° C until the amino acid concentration is measured. Then, at the time of measuring the amino acid concentration, sulfosalicylic acid is added to the plasma sample, and protein removal treatment is performed by adjusting the concentration by 3%.
- the amino acid concentration was measured using an amino acid analyzer based on the principle of high performance liquid chromatography (HPLC) using a ninhydrin reaction on a boost column.
- HPLC high performance liquid chromatography
- the client device 200 causes the lung cancer evaluation device 100 to operate. To access. Specifically, when the user instructs to update the screen of the Web browser 211 of the client device 200, the Web browser 211 uses the predetermined communication protocol to specify the address of the Web site provided by the lung cancer evaluation device 100. To the lung cancer evaluation apparatus 100 through a routing based on the address.
- an address such as a URL
- the request interpretation unit 102a receives the transmission from the client apparatus 200, analyzes the content of the transmission, and moves the processing to each unit of the control unit 102 according to the analysis result. .
- the lung cancer evaluation apparatus 100 mainly stores the browsing processing unit 102b in a predetermined storage area of the storage unit 106. Web data for displaying the stored Web page is acquired, and the acquired Web data is transmitted to the client device 200.
- the lung cancer evaluation apparatus 100 when there is a web page transmission request corresponding to the amino acid concentration data transmission screen from the user, the lung cancer evaluation apparatus 100 first inputs a user ID and a user password at the control unit 102. Ask users. The user ID and password are entered. Then, in the lung cancer evaluation apparatus 100, the authentication processing unit 102c performs authentication judgment between the input user ID and password and the user ID and user password stored in the user information file 106a. Then, the lung cancer evaluation apparatus 100 transmits web data for displaying a Web page corresponding to the amino acid concentration data transmission screen to the client apparatus 200 by the browsing processing unit 102b only when authentication is possible.
- the client device 200 is specified by the IP address transmitted from the client device 200 together with the transmission request.
- the client device 200 receives the Web data (for displaying a Web page corresponding to the amino acid concentration data transmission screen) transmitted from the lung cancer evaluation device 100 by the receiving unit 213, and receives it.
- the web data is interpreted by the web browser 211, and the amino acid concentration data transmission screen is displayed on the monitor 261.
- step SA-21 when the user inputs / selects the amino acid concentration data of the individual via the input device 250 on the amino acid concentration data transmission screen displayed on the monitor 261, the client device 200 uses the transmission unit 214. Then, by transmitting the input information and the identifier for specifying the selection item to the lung cancer evaluation device 100, the amino acid concentration data of the individual to be evaluated is transmitted to the lung cancer evaluation device 100 (step SA-21).
- the transmission of amino acid concentration data in step SA-21 may be realized by an existing file transfer technology such as FTP.
- the lung cancer evaluation apparatus 100 interprets the request content of the client apparatus 200 by interpreting the identifier transmitted from the client apparatus 200 by the request interpreter 102a, and Orn, Lys, ABA, Arg, Glu , His, Tau, Pro, Ala, Cit, lie for lung cancer evaluation (specifically, for 2-group discrimination between lung cancer and non-lung cancer, early lung cancer and non-lung cancer
- the database device 400 is requested to transmit a multivariate discriminant for the two-group discrimination of the above, and for the two-group discrimination between adenocarcinoma and non-lung cancer of lung cancer.
- the request interpreting unit 402a interprets the transmission request from the lung cancer evaluating device 100, and stores it in a predetermined storage area of the storage unit 406. Orn, Lys, ABA, Arg, Glu , His, Tau, Pro, Ala, Cit, and lie, a multivariate discriminant including at least one as a variable (for example, the latest updated one) is transmitted to the lung cancer evaluation apparatus 100 (step SA-22).
- step SA-22 the multivariate discriminant transmitted to lung cancer evaluation apparatus 100 Is expressed as the sum of one fractional expression or multiple fractional expressions, and the numerator and / or denominator of the fractional expression consists of Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, It may contain at least one of lie as a variable.
- the multivariate discriminant when determining whether or not the cancer is lung cancer or non-lung cancer in Step SA-26, which will be described later, the multivariate discriminant may be Formula 1, Formula 2, or Formula 3.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- step SA-26 when it is determined whether or not it is a lung cancer and its stage, or whether it is non-lung cancer, the multivariate discriminant is expressed by Equation 4, Equation 5, or Equation 6. But it ’s okay.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- Equation 7 A X Orn / Trp + b XTau / Arg + c... (Formula 7) a X (Glu + Pro) / His + b X (ABA + Lys) / lie + c
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- step SA-22 the multivariate discriminant to be sent to the lung cancer evaluation apparatus 100 is created using the logistic regression equation, linear discriminant equation, multiple regression equation, formula created with support vector machine, Mahalanobis distance method Formulas created by canonical discriminant analysis, formulas created by decision trees, or just one of them.
- the multivariate discriminant is expressed as Tau, Orn, Arg, Ser, Glu, Pro, Asn. Oral dysistic regression equation, or linear discriminant with age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as variables, or His, Glu, Pro, lie, Gin, It can be a mouth discrete regression equation with Lys as a variable, or a linear discriminant with His, Glu, Pro, lie, Tyr, and Lys as variables.
- Step SA-26 when determining whether it is lung cancer and its stage, or whether it is non-lung cancer, the multivariate discriminant uses Orn, Tau, Trp as variables. Oral dystic regression, linear discriminant with Orn, Arg, Tau, ABA, Gly, His as variables, or logistic regression with Gin, Glu, His, Lys, Cys, ABA as variables, or A linear discriminant using G1 n, Glu, Ala, His, Cys, and ABA as variables may be used.
- the multivariate discriminant uses Orn, ABA, Tau, and Gly as variables.
- Oral logistic regression equation with Orn, ABA, Tau, His, Arg, Gly as variables, or Logistic regression equation with His, lie, Glu, Pro, Leu, Gin as variables, or His , lie, Pro, Ala, Leu, Gin may be used as a linear discriminant.
- the lung cancer-evaluating apparatus 100 receives the individual amino acid concentration data transmitted from the client apparatus 200 and the database apparatus 400 by the receiving unit 102f.
- the multivariate discriminant is received, the received amino acid concentration data is stored in a predetermined storage area of the amino acid concentration data file 106b, and the received multivariate discriminant is stored in a predetermined storage area of the multivariate discriminant file 106e4. (Step SA—23).
- control unit 102 removes data such as missing values and outliers from the individual amino acid concentration data received in step SA-23 (step SA-24).
- the lung cancer-evaluating apparatus 100 uses the discriminant value calculation unit 102i to detect Orn, Lys, ABA, and the like included in the amino acid concentration data of the individual from which data such as missing values and outliers have been removed in Step SA-24. Based on the concentration value of at least one of Arg, Glu, His, Tau, Pro, Ala, Cit, and lie and the multivariate discriminant received in Step SA-23, the discriminant value is calculated (Step SA— twenty five).
- the lung cancer-evaluating apparatus 100 uses the discriminant value criterion discriminating unit 103 ⁇ 4 1 to compare the discriminant value calculated in step SA-25 with a preset threshold value (cut-off value), and Whether it is lung cancer or non-lung cancer, whether it is lung cancer and its stage, or whether it is non-lung cancer, whether it is adenocarcinoma of lung cancer, or non-lung cancer Judgment of whether or not is made! / Is performed, and the result of the judgment is stored in a predetermined storage area of the evaluation result file 106g (step SA-26).
- a preset threshold value cut-off value
- the lung cancer evaluation apparatus 100 uses the transmitter 102m to determine the discrimination result obtained in Step SA-26 (the discrimination result regarding whether or not the cancer is lung cancer or non-lung cancer, whether it is lung cancer, its stage, Alternatively, the determination result regarding whether or not it is non-lung cancer, the determination result regarding whether it is adenocarcinoma among lung cancers, or whether or not it is non-lung cancer) is sent to the client device 200 and the database device that are the transmission sources of amino acid concentration data. To 400 (step SA—27).
- the lung cancer evaluation apparatus 100 creates a web page for displaying the discrimination result in the web page generation unit 102e, and stores web data corresponding to the created web page in a predetermined unit of the storage unit 106. Store in the storage area.
- the client device 200 sends a request for browsing the Web page to the lung cancer evaluation device 100. Send to.
- the lung cancer evaluation device 100 is sent from the client device 200 by the browsing processing unit 102b.
- the received browsing request is interpreted, and Web data corresponding to the Web page for displaying the determination result is read from a predetermined storage area of the storage unit 106.
- the lung cancer evaluation apparatus 100 transmits the read Web data to the client apparatus 200 and transmits the Web data or the determination result to the database apparatus 400 by the transmission unit 102m.
- the lung cancer-evaluating apparatus 100 may notify the user client apparatus 200 of the discrimination result by e-mail at the control unit 102.
- the lung cancer evaluation apparatus 100 first refers to the user information stored in the user information file 106a based on the user ID or the like in the email generation unit 102d according to the transmission timing. Get the user's email address.
- the lung cancer evaluation apparatus 100 uses the electronic mail generation unit 102d to generate data related to the electronic mail including the name of the user and the determination result with the acquired electronic mail address as the destination.
- the lung cancer evaluation apparatus 100 transmits the generated data to the user client apparatus 200 by the transmission unit 102m.
- the lung cancer-evaluating apparatus 100 may send the discrimination result to the user's client apparatus 200 using an existing file transfer technology such as FTP! /.
- the database device 400 receives the discrimination result or Web data transmitted from the lung cancer evaluation device 100 by the control unit 402, and stores the received discrimination result or Web data in the storage unit 406. Is stored (accumulated) in the storage area (step SA-28).
- the client device 200 receives the Web data transmitted from the lung cancer evaluation device 100 by the receiving unit 213, interprets the received Web data by the Web browser 211, and records the individual discrimination result. Display the web page screen on monitor 261 (step SA-29).
- the client apparatus 200 uses the known function of the e-mailer 212 to send the e-mail transmitted from the lung cancer evaluation apparatus 100 at an arbitrary timing.
- the received e-mail is displayed on monitor 261.
- the user can browse the Web page displayed on the monitor 261 to determine the individual discrimination results regarding the 2-group discrimination between lung cancer and non-lung cancer, and the 2-group discrimination between early lung cancer and non-lung cancer. As a result of the individual discrimination of the lung cancer, The discrimination result can be confirmed. Note that the user may print the display content of the Web page displayed on the monitor 261 with the printer 262.
- the discrimination result is transmitted from the lung cancer evaluation apparatus 100 by e-mail, the user can discriminate between two groups of lung cancer and non-lung cancer by viewing the e-mail displayed on the monitor 261.
- the user may print the display content of the e-mail displayed on the monitor 261 with the printer 262.
- the client device 200 transmits the amino acid concentration data of the individual to the lung cancer evaluation device 100, and the database device 400 receives the request from the lung cancer evaluation device 100.
- Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie are transmitted to the lung cancer evaluation apparatus 100 as a multivariate discriminant including at least one as a variable.
- the lung cancer evaluation apparatus 100 (1) receives the amino acid concentration data from the client apparatus 200 and also receives the multivariate discriminant from the database apparatus 400.
- adenocarcinoma of lung cancer, or non-lung cancer Perform one of whether the discrimination, (5) transmits this determination result to the client apparatus 200 or the database apparatus 400.
- the client device 200 receives and displays the determination result transmitted from the lung cancer evaluation device 100
- the database device 400 receives and stores the determination result transmitted from the lung cancer evaluation device 100. This is a multivariate using amino acid variables that are useful for distinguishing between two groups of lung cancer and non-lung cancer.
- Multivariate discriminant, multivariate discriminant using amino acid variables useful for discriminating between two groups of early lung cancer and non-lung cancer, multivariate using amino acid variables useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers Using the discriminant value obtained from the discriminant, two-group discrimination between lung cancer and non-lung cancer, two-group discrimination between early lung cancer and non-lung cancer, and two-group discrimination between adenocarcinoma and non-lung cancer among lung cancer Can be done well.
- the multivariate discriminant is represented by one fractional expression or the sum of a plurality of fractional expressions, and the numerator and / or denominator of the constituent fractional components is Orn, L It may include at least one of ys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, and lie as a variable.
- multivariate discriminant using amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer fractional expression
- multivariate discriminant using amino acid variables useful for 2-group discrimination between early lung cancer and non-lung cancer using the discriminant value obtained by the multivariate discriminant (amino acid) variable that uses amino acid variables useful for discriminating between adenocarcinoma and non-lung cancer among lung cancers, 2 group discrimination, early lung cancer and non-lung cancer 2 group discrimination, and lung cancer adenocarcinoma and non-lung cancer 2 group discrimination can be performed more accurately.
- the multivariate discriminant when determining whether or not the cancer is lung cancer or non-lung cancer in Step SA-26, the multivariate discriminant may be Formula 1, Formula 2, or Formula 3. This makes it possible to use lung cancer and non-lung cancer by using the discriminant values obtained by the multivariate discriminant (equation 1, equation 2, and equation 3) that use amino acid variables that are particularly useful for discrimination between two groups of lung cancer and non-lung cancer. This makes it possible to more accurately perform 2-group discrimination.
- Equation 1 a, b, c are arbitrary real numbers, and in Equation 2, a, b, c are arbitrary
- Equation 3 It is a real number 1 1 1 2 2 2, and in Equation 3, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant when determining whether the cancer is lung cancer and its stage, or whether it is non-lung cancer in Step SA-26, the multivariate discriminant may be Equation 4, Equation 5, or Equation 6. .
- the discriminant values obtained with multivariate discriminants amino acids 4, 5 and 6 using amino acid variables that are particularly useful for discriminating between two groups of early lung cancer and non-lung cancer, early lung cancer and non-lung cancer The two-group discrimination of and can be performed with higher accuracy.
- Equation 4 a, b, c are arbitrary real numbers, and in Equation 5, a, b, c are arbitrary
- Equation 6 It is a real number 4 4 4 5 5 5, and in Equation 6, a, b, c, d, and e are arbitrary real numbers. )
- the multivariate discriminant when determining whether the lung cancer is an adenocarcinoma or non-lung cancer, the multivariate discriminant may be Formula 7, Formula 8, or Formula 9. .
- the multivariate discriminant (Equation 7, Equation 8, Equation 9) that uses amino acid variables that are particularly useful for discriminating between two groups of adenocarcinoma and non-lung cancer among lung cancers.
- Equation 7 a, b, c are arbitrary real numbers, and in Equation 8, a, b, c are arbitrary
- multivariate discriminants include logistic regression formulas, linear discriminant formulas, multiple regression formulas, formulas created with support vector machines, formulas created with Mahalanobis distance method, It can be either an expression created by canonical discriminant analysis or an expression created by a decision tree. This allows multivariate discriminants that use amino acid variables useful for 2-group discrimination between lung cancer and non-lung cancer, and multivariate discriminants that use amino acid variables useful for 2-group discrimination between early lung cancer and non-lung cancer.
- Another formula, using multivariate discriminant values using amino acid variables useful for discriminating between 2-groups of adenocarcinoma and non-lung cancer among lung cancers, 2-group discrimination between lung cancer and non-lung cancer, early lung cancer And 2-group discrimination between non-lung cancer and 2-group discrimination between adenocarcinoma and non-lung cancer of lung cancer can be performed with higher accuracy.
- the multivariate discriminant is expressed as Tau, Orn, Arg, Ser, Glu, Pro, Asn. Oral dysistic regression equation, or linear discriminant with age, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Val as variables, or His, Glu, Pro, lie, Gin, It can be a mouth discrete regression equation with Lys as a variable, or a linear discriminant with His, Glu, Pro, lie, Tyr, and Lys as variables.
- step SA-26 when determining whether it is lung cancer and its stage, or whether it is non-lung cancer, the multivariate discriminant uses Orn, Tau, Trp as variables. Oral dystic regression, linear discriminant with Orn, Arg, Tau, ABA, Gly, His as variables, or logistic regression with Gin, Glu, His, Lys, Cys, ABA as variables, or A linear discriminant using G1 n, Glu, Ala, His, Cys, and ABA as variables may be used. This makes it possible to more accurately perform 2-group discrimination between early-stage lung cancer and non-lung cancer using the discriminant value obtained with a multivariate discriminant using amino acid variables that are particularly useful for 2-group discrimination between early-stage lung cancer and non-lung cancer. It can be carried out.
- the multivariate discriminant is a variable of Orn, ABA, Tau, Gly.
- Oral logistic regression equation with Orn, ABA, Tau, His, Arg, Gly as variables, or Logistic regression equation with His, lie, Glu, Pro, Leu, Gin as variables, or His , lie, Pro, Ala, Leu, Gin may be used as a linear discriminant.
- Each multivariate discriminant described above can be obtained by the method described in the pamphlet of international publication WO 2004/052191, which is an international application filed by the present applicant, or by the international application number PCT / It can be created by the method described in JP2006 / 304398 (multivariate discriminant creation process described later). If the multivariate discriminant obtained by these methods is used, the multivariate discriminant can be suitably used for evaluating the state of lung cancer regardless of the unit of amino acid concentration in the amino acid concentration data as input data. .
- the lung cancer evaluation device, the lung cancer evaluation method, the lung cancer evaluation system, the lung cancer evaluation program, and the recording medium according to the present invention are not limited to the second embodiment described above, and the technology described in the claims. It may be implemented in various different embodiments within the scope of the technical idea. For example, among the processes described in the second embodiment, all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually All or a part of the above can be automatically performed by a known method. In addition, the processing procedures, control procedures, specific names, information including parameters such as various registration data and search conditions, screen examples, and database configurations shown in the above documents and drawings, unless otherwise specified. It can be changed arbitrarily.
- the illustrated components are functionally conceptual and do not necessarily need to be physically configured as illustrated.
- the processing functions (particularly the processing functions performed by the control unit 102) of each part of the lung cancer evaluation apparatus 100 or each apparatus are determined by a CPU (Central Processing Unit) and a program interpreted and executed by the CPU. All or any part of it can be realized, and it can also be realized as wired software based on wired logic.
- CPU Central Processing Unit
- program is a data processing method described in an arbitrary language or description method, and may be in any form such as source code or binary code. Note that the “program” is not necessarily limited to a single configuration, but is distributed with multiple modules and libraries, or a separate program represented by an OS (Operating System). Including those that work to achieve that function.
- the program is recorded on a recording medium and mechanically read by the lung cancer evaluation apparatus 100 as necessary. Specific configuration for reading the program recorded on the recording medium with each device, reading procedure and after reading For the installation procedure or the like, a known configuration or procedure can be used.
- the "recording medium” includes any “portable physical medium”, any “fixed physical medium”, and “communication medium”.
- “portable physical media” includes flexible disks, magneto-optical disks, ROM, EPROM, EEPROM, CD-ROM, MO, DVD, and so on.
- “Fixed physical media” includes ROM, RAM, HD, etc. built into various computer systems.
- a “communication medium” is a program that holds a program in a short period of time, such as a communication line or a carrier wave when transmitting a program via a network such as a LAN, WAN, or the Internet.
- FIG. 22 is a flowchart showing an example of the multivariate discriminant creation process.
- the multivariate discriminant creation process may be performed by the database device 400 that manages lung cancer status information! / ⁇ .
- lung cancer evaluation apparatus 100 stores lung cancer state information acquired in advance from database apparatus 400 in a predetermined storage area of lung cancer state information file 106c.
- the lung cancer evaluation apparatus 100 stores lung cancer state information including lung cancer state index data and amino acid concentration data specified in advance by the lung cancer state information specifying unit 102g in a predetermined storage area of the specified lung cancer state information file 106d. It shall be.
- the multivariate discriminant-preparing part 102h is a candidate multivariate discriminant-preparing part 102hl, which uses a lung cancer state information stored in a predetermined storage area of the designated lung cancer state information file 106d as a predetermined formula creation method.
- a candidate multivariate discriminant is created based on the! /, And the created candidate multivariate discriminant is stored in a predetermined storage area of the candidate multivariate discriminant file 106el (step SB-21).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioethics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Genetics & Genomics (AREA)
Description
明 細 書
肺癌の評価方法、ならびに肺癌評価装置、肺癌評価方法、肺癌評価シス テム、肺癌評価プログラムおよび記録媒体
技術分野
[0001] 本発明は、血液(血漿)中のアミノ酸濃度を利用した肺癌の評価方法、ならびに肺 癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラムおよび記録媒 体に関するものである。
背景技術
[0002] 日本における月巿癌による死亡は 2003年で男 41634人、女 15086人で全ての癌に よる死亡の 18. 3%を占め、男では癌による死亡の第一位となっている。女性では癌 による死亡の第 3位である力 年々増加しつつあり、遠からず第一位になるのは確実 視されている現状である。
[0003] 肺癌は治癒の困難な癌であり、発見されたときにはすでに進行していて手術ができ ないものが半数以上あるのが現状である。一方、初期(Ι〜Π期)の肺癌の 5年生存率 は 50%以上、特に ΙΑ期の肺癌(腫瘍が 3cm以下でリンパ節転移、周りの臓器への 浸潤がないもの)では 5年生存率は約 90%であり、早期発見が肺癌治癒にとっては 重要である。
[0004] 肺癌の診断は、レントゲン写真、 CT、 MRI、 PETなど画像によるもの、喀痰細胞診 、気管支鏡による肺生検、経皮針による肺生検、試験開胸または胸腔鏡による肺生 検などがある。
[0005] しかし、画像による診断は確定診断とはならず、例えば胸部 X線検査(間接撮影)で の有所見率は 20%であるのに対して、特異度は 0. 1 %であり、有所見者のほとんど は偽陽性である。また、検出感度も低ぐ厚生労働省の検討結果では、間接撮影検 查の場合約 80%の肺癌発症者は胸部 X線検査では見落とされていたという報告もあ る。特に、初期の肺癌においてはこれらの方法では検出感度、検出特異度共に更に 低くなることが懸念される。一方、胸部 X線検査においては、被験者の放射線被爆の 問題もある。一方、 CT、 MRI、 PETなどは設備、コスト面で集団検診で実施するには
問題がある。
[0006] また、喀痰細胞診は 2〜3割の患者の確定診断しか可能ではな!/、。気管支鏡、経 皮針、試験開胸および胸腔鏡によるによる肺生検は確定診断になるが、侵襲度の高 い検査であり、画像診断により肺癌の疑いのある患者全員に肺生検を施行するのは 実際的でない。さらにこうした侵襲的診断は患者の苦痛を伴うなど負担があり、また 検査による出血などのリスクも起こりえる。望むべくは肺癌発症の可能性の高い被験 者を、侵襲の少ない方法で選択し、肺生検により肺癌の確定診断を得て治療の対象 とすること力 患者に対する身体的負担および費用対効果の面から望ましい。
[0007] 一方、血中アミノ酸の濃度が、癌発症により変化することについては知られており、 例えばシノベール(非特許文献 1)によれば、例えばグルタミンは主に酸化エネルギ 一源として、アルギニンは窒素酸化物やポリアミンの前駆体として、メチォニンは癌細 胞がメチォニン取り込み能の活性化により、それぞれ癌細胞での消費量が増加する という報告がある。また、プロェンッァら(非特許文献 2)やカスツィーノ (非特許文献 3 )によれば、肺癌患者の血漿中アミノ酸組成は健常者と異なっていることが報告され ている。更に、例えばロドリゲスら(非特許文献 4)によれば、癌細胞と接触した骨髄細 胞においてはアルギナーゼ Iの遺伝子発現、酵素活性の上昇が認められ、その結果 として血漿中のアルギニン濃度が低下するとの報告がある。
[0008] 非特許文献 1: Cynober, L. ed. , Metabolic and therapeutic aspects of amino acids in clinical nutrition. 2nd ed. , CRC Press.
非特許文献 2 : Proenza, A. M. , J. Oliver, A. Palou and P. Roca, Breast and lung cancer are associated with a decrease in blood cell amino acid content. J Nutr Biochem, 2003. 14 (3) : p. 133 8.
非特許文献 3 : Cascino, A. , M. Muscaritoli, C. Cangiano, L. Con versano, A. Laviano, S. Ariemma, M. M. Meguid and F. Ross i Fanelli, Plasma amino acid imbalance in patients with lung and breast cancer. Anticancer Res, 1995. 15 (2) : p. 507— 10.
非特許文献 4 : Rodriguez, P. C. , C. P. Hernandez, D. Quiceno, S
. M. Dubinett, J. Zabaleta, J. B. Ochoa, J. Gilbert and A. C. Ochoa, Arginase I in myeloid suppressor cells is induced by COX - 2 in lung carcinoma. J Exp Med, 2005. 202 (7): p. 931— 9. 発明の開示
発明が解決しょうとする課題
[0009] しかしながら、これまでに、複数のアミノ酸を変数として肺癌発症の有無を診断する 技術の開発は時間的および金銭的な観点から行われておらず、実用化されてレ、な いという問題点があった。
[0010] 本発明は、上記問題点に鑑みてなされたものであって、血液中のアミノ酸濃度のう ち肺癌の状態と関連するアミノ酸濃度を利用して肺癌の状態を精度よく評価すること ができる肺癌の評価方法、ならびに肺癌評価装置、肺癌評価方法、肺癌評価システ ム、肺癌評価プログラムおよび記録媒体を提供することを目的とする。
課題を解決するための手段
[0011] 本発明者らは、上記課題を解決するために鋭意検討し、血液中のアミノ酸濃度によ る肺癌の判別に有用な、 2群間で統計的有意差をもって変動するアミノ酸変数の同 定、ならびにアミノ酸変数を用いる相関式 (指標式)が初期肺癌の病態進行に有意な 相関があることを見出し、本発明を完成するに至った。本発明は、以下を包含する。
[0012] すなわち、上述した課題を解決し、 目的を達成するために、本発明にかかる請求項
1に記載の肺癌の評価方法は、評価対象から採取した血液から、アミノ酸の濃度値 に関するアミノ酸濃度データを測定する測定ステップと、前記測定ステップで測定し た前記評価対象の前記アミノ酸濃度データに含まれる Orn, Lys, ABA (ABAは α ーァミノ酪酸を表す。以下同様。 ) , Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち 少なくとも 1つの前記濃度値に基づいて、前記評価対象につき、肺癌の状態を評価 する濃度値基準評価ステップとを実行することを特徴とする。
[0013] また、本発明に力、かる請求項 2に記載の肺癌の評価方法は、請求項 1に記載の肺 癌の評価方法にぉレ、て、前記濃度値基準評価ステップは、前記測定ステップで測定 した前記評価対象の前記アミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Gl u, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの前記濃度値に基づいて、前
記評価対象につき、前記肺癌または非肺癌であるか否かを判別する濃度値基準判 別ステップをさらに含むことを特徴とする。
[0014] また、本発明に力、かる肺癌の評価方法は、請求項 1に記載の肺癌の評価方法にお
V、て、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象 の前記アミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro , Ala, Cit, lieのうち少なくとも 1つの前記濃度値に基づいて、前記評価対象につき
、前記肺癌であることおよびその病期、または非肺癌であるか否力、を判別する濃度値 基準判別ステップをさらに含むことを特徴とする。
[0015] また、本発明に力、かる肺癌の評価方法は、請求項 1に記載の肺癌の評価方法にお
V、て、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象 の前記アミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro , Ala, Cit, lieのうち少なくとも 1つの前記濃度値に基づいて、前記評価対象につき 、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する濃度値基準 判別ステップをさらに含むことを特徴とする。
[0016] また、本発明に力、かる請求項 3に記載の肺癌の評価方法は、請求項 1に記載の肺 癌の評価方法にぉレ、て、前記濃度値基準評価ステップは、前記測定ステップで測定 した前記評価対象の前記アミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Gl u, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの前記濃度値および前記アミ ノ酸の濃度を変数とする予め設定した多変量判別式に基づいて、当該多変量判別 式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで 算出した前記判別値に基づいて、前記評価対象につき、前記肺癌の状態を評価す る判別値基準評価ステップとをさらに含み、前記多変量判別式は、 Orn, Lys, ABA , Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含 むことを特徴とする。
[0017] また、本発明に力、かる請求項 4に記載の肺癌の評価方法は、請求項 3に記載の肺 癌の評価方法において、前記多変量判別式は、年齢を前記変数としてさらに含むこ とを特徴とする。
[0018] また、本発明に力、かる請求項 5に記載の肺癌の評価方法は、請求項 3または 4に記
載の肺癌の評価方法において、前記判別値基準評価ステップは、前記判別値算出 ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または 非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とす
[0019] また、本発明に力、かる請求項 6に記載の肺癌の評価方法は、請求項 5に記載の肺 癌の評価方法において、前記多変量判別式は、 1つの分数式または複数の前記分 数式の和で表され、それを構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変 数として含むことを特徴とする。
[0020] また、本発明に力、かる請求項 7に記載の肺癌の評価方法は、請求項 6に記載の肺 癌の評価方法において、前記多変量判別式は数式 1、数式 2または数式 3であること を特徴とする。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0021] また、本発明に力、かる請求項 8に記載の肺癌の評価方法は、請求項 5に記載の肺 癌の評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、 重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成され た式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つである ことを特徴とする。
[0022] また、本発明に力、かる請求項 9に記載の肺癌の評価方法は、請求項 8に記載の肺 癌の評価方法において、前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを前記変数とする前記ロジスティック回帰式、または年齢, ABA, Arg, Gin, Hi
s, Leu, Orn, Pro, Tau, Trp, Valを前記変数とする前記線形判別式、または His , Glu, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを前記変数とする前記線形判別式であることを特徴とする
〇
[0023] また、本発明にかかる肺癌の評価方法 (請求項 10に記載の肺癌の評価方法に対 応)は、請求項 3または 4に記載の肺癌の評価方法において、前記判別値基準評価 ステップは、前記判別値算出ステップで算出した前記判別値に基づレ、て、前記評価 対象につき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別 する判別値基準判別ステップをさらに含むことを特徴とする。
[0024] また、本発明に力、かる肺癌の評価方法は、前記に記載の肺癌の評価方法にお!/、て 、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それ を構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴 とする。
[0025] また、本発明にかかる肺癌の評価方法 (請求項 10に記載の肺癌の評価方法に対 応)は、前記に記載の肺癌の評価方法において、前記多変量判別式は数式 4、数式 5または数式 6であることを特徴とする。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0026] また、本発明に力、かる肺癌の評価方法は、前記に記載の肺癌の評価方法にお!/、て 、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で
作成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0027] また、本発明に力、かる肺癌の評価方法は、前記に記載の肺癌の評価方法にお!/、て 、前記多変量判別式は、 Orn, Tau, Trpを前記変数とする前記ロジスティック回帰式 、または Orn, Arg, Tau, ABA, Gly, Hisを前記変数とする前記線形判別式、また は Gin, Glu, His, Lys, Cys, ABAを前記変数とする前記ロジスティック回帰式、ま たは Gin, Glu, Ala, His, Cys, ABAを前記変数とする前記線形判別式であること を特徴とする。
[0028] また、本発明に力、かる肺癌の評価方法 (請求項 11に記載の肺癌の評価方法に対 応)は、請求項 3または 4に記載の肺癌の評価方法において、前記判別値基準評価 ステップは、前記判別値算出ステップで算出した前記判別値に基づレ、て、前記評価 対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する 判別値基準判別ステップをさらに含むことを特徴とする。
[0029] また、本発明に力、かる肺癌の評価方法は、前記に記載の肺癌の評価方法にお!/、て 、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それ を構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴 とする。
[0030] また、本発明に力、かる肺癌の評価方法 (請求項 11に記載の肺癌の評価方法に対 応)は、前記に記載の肺癌の評価方法において、前記多変量判別式は数式 7、数式 8または数式 9であることを特徴とする。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0031] また、本発明に力、かる肺癌の評価方法は、前記に記載の肺癌の評価方法において
、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0032] また、本発明に力、かる肺癌の評価方法は、前記に記載の肺癌の評価方法にお!/、て 、前記多変量判別式は、 Orn, ABA, Tau, Glyを前記変数とする前記ロジスティック 回帰式、または Orn, ABA, Tau, His, Arg, Glyを前記変数とする前記線形判別 式、または His, lie, Glu, Pro, Leu, Ginを前記変数とする前記ロジスティック回帰 式、または His, lie, Pro, Ala, Leu, Ginを前記変数とする前記線形判別式である ことを特徴とする。
[0033] また、本発明は肺癌評価装置に関するものであり、本発明に力、かる請求項 12に記 載の肺癌評価装置は、制御手段と記憶手段とを備え評価対象につき肺癌の状態を 評価する肺癌評価装置であって、前記制御手段は、アミノ酸の濃度値に関する予め 取得した前記評価対象のアミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Gl u, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの前記濃度値および前記アミ ノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づレ、て、当該 多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手 段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌の状態を評 価する判別値基準評価手段とを備え、前記多変量判別式は、 Orn, Lys, ABA, Ar g, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むこ とを特徴とする。
[0034] また、本発明にかかる請求項 13に記載の肺癌評価装置は、請求項 12に記載の肺 癌評価装置において、前記多変量判別式は、年齢を前記変数としてさらに含むこと を特徴とする。
[0035] また、本発明に力、かる請求項 14に記載の肺癌評価装置は、請求項 12または 13に 記載の肺癌評価装置において、前記判別値基準評価手段は、前記判別値算出手 段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または非肺 癌であるか否力、を判別する判別値基準判別手段をさらに備えたことを特徴とする。
[0036] また、本発明にかかる請求項 15に記載の肺癌評価装置は、請求項 14に記載の肺
癌評価装置において、前記多変量判別式は、 1つの分数式または複数の前記分数 式の和で表され、それを構成する前記分数式の分子および/または分母に Orn, L ys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変 数として含むことを特徴とする。
[0037] また、本発明に力、かる請求項 16に記載の肺癌評価装置は、請求項 15に記載の肺 癌評価装置において、前記多変量判別式は数式 1、数式 2または数式 3であることを 特徴とする。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (Ile + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0038] また、本発明にかかる請求項 17に記載の肺癌評価装置は、請求項 14に記載の肺 癌評価装置において、前記多変量判別式は、ロジスティック回帰式、線形判別式、 重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成され た式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つである ことを特徴とする。
[0039] また、本発明に力、かる請求項 18に記載の肺癌評価装置は、請求項 17に記載の肺 癌評価装置において、前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, As nを前記変数とする前記口ジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Valを前記変数とする前記線形判別式、または His, G1 u, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu , Pro, lie, Tyr, Lysを前記変数とする前記線形判別式であることを特徴とする。
[0040] また、本発明にかかる肺癌評価装置 (請求項 19に記載の肺癌評価装置に対応)は 、請求項 12または 13に記載の肺癌評価装置において、前記判別値基準評価手段
は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき 、前記肺癌であることおよびその病期、または非肺癌であるか否力、を判別する判別値 基準判別手段をさらに備えたことを特徴とする。
[0041] また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置にお!/、て、前 記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それを構 成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His , Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴とす
[0042] また、本発明にかかる肺癌評価装置 (請求項 19に記載の肺癌評価装置に対応)は 、前記に記載の肺癌評価装置において、前記多変量判別式は数式 4、数式 5または 数式 6であることを特徴とする。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c XABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0043] また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置にお!/、て、前 記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクタ 一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作 成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0044] また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置にお!/、て、前 記多変量判別式は、 Orn, Tau, Trpを前記変数とする前記口ジスティック回帰式、ま たは Orn, Arg, Tau, ABA, Gly, Hisを前記変数とする前記線形判別式、または G In, Glu, His, Lys, Cys, ABAを前記変数とする前記ロジスティック回帰式、または Gin, Glu, Ala, His, Cys, ABAを前記変数とする前記線形判別式であることを特
徴とする。
[0045] また、本発明にかかる肺癌評価装置 (請求項 20に記載の肺癌評価装置に対応)は 、請求項 12または 13に記載の肺癌評価装置において、前記判別値基準評価手段 は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき 、前記肺癌のうち腺癌であること、または非肺癌であるか否力、を判別する判別値基準 判別手段をさらに備えたことを特徴とする。
[0046] また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置にお!/、て、前 記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それを構 成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His , Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴とす
[0047] また、本発明にかかる肺癌評価装置 (請求項 20に記載の肺癌評価装置に対応)は 、前記に記載の肺癌評価装置において、前記多変量判別式は数式 7、数式 8または 数式 9であることを特徴とする。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0048] また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置にお!/、て、前 記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクタ 一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作 成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0049] また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置にお!/、て、前 記多変量判別式は、 Orn, ABA, Tau, Glyを前記変数とする前記ロジスティック回 帰式、または Orn, ABA, Tau, His, Arg, Glyを前記変数とする前記線形判別式、
または His, lie, Glu, Pro, Leu, Ginを前記変数とする前記ロジスティック回帰式、 または His, lie, Pro, Ala, Leu, Ginを前記変数とする前記線形判別式であることを 特徴とする。
[0050] また、本発明に力、かる請求項 21に記載の肺癌評価装置は、請求項 12から 20のい ずれか 1つに記載の肺癌評価装置において、前記制御手段は、前記アミノ酸濃度デ ータと前記肺癌の状態を表す指標に関する肺癌状態指標データとを含む前記記憶 手段で記憶した肺癌状態情報に基づ!/、て、前記記憶手段で記憶する前記多変量判 別式を作成する多変量判別式作成手段をさらに備え、前記多変量判別式作成手段 は、前記肺癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候 補である候補多変量判別式を作成する候補多変量判別式作成手段と、前記候補多 変量判別式作成手段で作成した前記候補多変量判別式を、所定の検証手法に基 づレ、て検証する候補多変量判別式検証手段と、前記候補多変量判別式検証手段で の検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を 選択することで、前記候補多変量判別式を作成する際に用いる前記肺癌状態情報 に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択手段と、をさら に備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手段および 前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づ!/、て、複数の 前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量 判別式を選出することで、前記多変量判別式を作成することを特徴とする。
[0051] また、本発明は肺癌評価方法に関するものであり、本発明に力、かる請求項 22に記 載の肺癌評価方法は、制御手段と記憶手段とを備えた情報処理装置で実行する、 評価対象につき肺癌の状態を評価する肺癌評価方法であって、前記制御手段で、 アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含ま れる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多 変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算 出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評 価対象につき、前記肺癌の状態を評価する判別値基準評価ステップとを実行し、前
記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie のうち少なくとも 1つを前記変数として含むことを特徴とする。
[0052] また、本発明にかかる請求項 23に記載の肺癌評価方法は、請求項 22に記載の肺 癌評価方法において、前記多変量判別式は、年齢を前記変数としてさらに含むこと を特徴とする。
[0053] また、本発明に力、かる請求項 24に記載の肺癌評価方法は、請求項 22または 23に 記載の肺癌評価方法において、前記判別値基準評価ステップは、前記判別値算出 ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または 非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とす
[0054] また、本発明にかかる請求項 25に記載の肺癌評価方法は、請求項 24に記載の肺 癌評価方法において、前記多変量判別式は、 1つの分数式または複数の前記分数 式の和で表され、それを構成する前記分数式の分子および/または分母に Orn, L ys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変 数として含むことを特徴とする。
[0055] また、本発明に力、かる請求項 26に記載の肺癌評価方法は、請求項 25に記載の肺 癌評価方法において、前記多変量判別式は数式 1、数式 2または数式 3であることを 特徴とする。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0056] また、本発明にかかる請求項 27に記載の肺癌評価方法は、請求項 24に記載の肺 癌評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、
重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成され た式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つである ことを特徴とする。
[0057] また、本発明に力、かる請求項 28に記載の肺癌評価方法は、請求項 27に記載の肺 癌評価方法において、前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, As nを前記変数とする前記口ジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Valを前記変数とする前記線形判別式、または His, G1 u, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu , Pro, lie, Tyr, Lysを前記変数とする前記線形判別式であることを特徴とする。
[0058] また、本発明にかかる肺癌評価方法 (請求項 29に記載の肺癌評価方法に対応)は 、請求項 22または 23に記載の肺癌評価方法において、前記判別値基準評価ステツ プは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象 にっき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別する 判別値基準判別ステップをさらに含むことを特徴とする。
[0059] また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法にお!/、て、前 記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それを構 成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His , Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴とす
[0060] また、本発明にかかる肺癌評価方法 (請求項 29に記載の肺癌評価方法に対応)は 、前記に記載の肺癌評価方法において、前記多変量判別式は数式 4、数式 5または 数式 6であることを特徴とする。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0061] また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前 記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクタ 一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作 成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0062] また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法にお!/、て、前 記多変量判別式は、 Orn, Tau, Trpを前記変数とする前記口ジスティック回帰式、ま たは Orn, Arg, Tau, ABA, Gly, Hisを前記変数とする前記線形判別式、または G In, Glu, His, Lys, Cys, ABAを前記変数とする前記ロジスティック回帰式、または Gin, Glu, Ala, His, Cys, ABAを前記変数とする前記線形判別式であることを特 徴とする。
[0063] また、本発明にかかる肺癌評価方法 (請求項 30に記載の肺癌評価方法に対応)は 、請求項 22または 23に記載の肺癌評価方法において、前記判別値基準評価ステツ プは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象 にっき、前記肺癌のうち腺癌であること、または非肺癌であるか否力、を判別する判別 値基準判別ステップをさらに含むことを特徴とする。
[0064] また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法にお!/、て、前 記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それを構 成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His , Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴とす
[0065] また、本発明にかかる肺癌評価方法 (請求項 30に記載の肺癌評価方法に対応)は 、前記に記載の肺癌評価方法において、前記多変量判別式は数式 7、数式 8または 数式 9であることを特徴とする。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0066] また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法にお!/、て、前 記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクタ 一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作 成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0067] また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法にお!/、て、前 記多変量判別式は、 Orn, ABA, Tau, Glyを前記変数とする前記ロジスティック回 帰式、または Orn, ABA, Tau, His, Arg, Glyを前記変数とする前記線形判別式、 または His, lie, Glu, Pro, Leu, Ginを前記変数とする前記ロジスティック回帰式、 または His, lie, Pro, Ala, Leu, Ginを前記変数とする前記線形判別式であることを 特徴とする。
[0068] また、本発明に力、かる請求項 31に記載の肺癌評価方法は、請求項 22から 30のい ずれか 1つに記載の肺癌評価方法において、前記制御手段で、前記アミノ酸濃度デ ータと前記肺癌の状態を表す指標に関する肺癌状態指標データとを含む前記記憶 手段で記憶した肺癌状態情報に基づ!/、て、前記記憶手段で記憶する前記多変量判 別式を作成する多変量判別式作成ステップをさらに実行し、前記多変量判別式作成 ステップは、前記肺癌状態情報から所定の式作成手法に基づいて、前記多変量判 別式の候補である候補多変量判別式を作成する候補多変量判別式作成ステップと 、前記候補多変量判別式作成ステップで作成した前記候補多変量判別式を、所定 の検証手法に基づ!/、て検証する候補多変量判別式検証ステップと、前記候補多変 量判別式検証ステップでの検証結果から所定の変数選択手法に基づいて前記候補 多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用 いる前記肺癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する 変数選択ステップと、をさらに含み、前記候補多変量判別式作成ステップ、前記候補 多変量判別式検証ステップおよび前記変数選択ステップを繰り返し実行して蓄積し
た前記検証結果に基づ!/、て、複数の前記候補多変量判別式の中から前記多変量 判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式 を作成することを特徴とする。
[0069] また、本発明は肺癌評価システムに関するものであり、本発明にかかる請求項 32に 記載の肺癌評価システムは、制御手段と記憶手段とを備え評価対象につき肺癌の状 態を評価する肺癌評価装置と、アミノ酸の濃度値に関する前記評価対象のアミノ酸 濃度データを提供する情報通信端末装置とを、ネットワークを介して通信可能に接続 して構成された肺癌評価システムであって、前記情報通信端末装置は、前記評価対 象の前記アミノ酸濃度データを前記肺癌評価装置へ送信するアミノ酸濃度データ送 信手段と、前記肺癌評価装置から送信された前記肺癌の状態に関する前記評価対 象の評価結果を受信する評価結果受信手段とを備え、前記肺癌評価装置の前記制 御手段は、前記情報通信端末装置から送信された前記評価対象の前記アミノ酸濃 度データを受信するアミノ酸濃度データ受信手段と、前記アミノ酸濃度データ受信手 段で受信した前記評価対象の前記アミノ酸濃度データに含まれる Orn, Lys, ABA , Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの前記濃度値およ び前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づ いて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判 別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌 の状態を評価する判別値基準評価手段と、前記判別値基準評価手段での前記評価 対象の前記評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、を 備え、前記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴とする。
[0070] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、年齢を前記変数としてさらに含むことを特徴とする。
[0071] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に 基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否力、を判別する判 別値基準判別手段をさらに備えたことを特徴とする。
[0072] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、 それを構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを 特徴とする。
[0073] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は数式 1、数式 2または数式 3であることを特徴とする。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0074] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポー トベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分 析で作成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0075] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを前記変数と する前記ロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pr o, Tau, Trp, Valを前記変数とする前記線形判別式、または His, Glu, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu, Pro, lie, T yr, Lysを前記変数とする前記線形判別式であることを特徴とする。
[0076] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に 基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺
癌であるか否力、を判別する判別値基準判別手段をさらに備えたことを特徴とする。
[0077] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、 それを構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを 特徴とする。
[0078] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は数式 4、数式 5または数式 6であることを特徴とする。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c XABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0079] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポー トベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分 析で作成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0080] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、 Orn, Tau, Trpを前記変数とする前記口ジスティック回 帰式、または Orn, Arg, Tau, ABA, Gly, Hisを前記変数とする前記線形判別式、 または Gin, Glu, His, Lys, Cys, ABAを前記変数とする前記ロジスティック回帰式 、または Gin, Glu, Ala, His, Cys, ABAを前記変数とする前記線形判別式である ことを特徴とする。
[0081] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に
基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であ るか否力、を判別する判別値基準判別手段をさらに備えたことを特徴とする。
[0082] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、 それを構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを 特徴とする。
[0083] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は数式 7、数式 8または数式 9であることを特徴とする。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0084] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポー トベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分 析で作成された式、決定木で作成された式のいずれか 1つであることを特徴とする。
[0085] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記多変量判別式は、 Orn, ABA, Tau, Glyを前記変数とする前記口ジステ イツク回帰式、または Orn, ABA, Tau, His, Arg, Glyを前記変数とする前記線形 判別式、または His, lie, Glu, Pro, Leu, Ginを前記変数とする前記ロジスティック 回帰式、または His, lie, Pro, Ala, Leu, Ginを前記変数とする前記線形判別式で あることを特徴とする。
[0086] また、本発明に力、かる肺癌評価システムは、前記に記載の肺癌評価システムにお いて、前記肺癌評価装置の前記制御手段は、前記アミノ酸濃度データと前記肺癌の
状態を表す指標に関する肺癌状態指標データとを含む前記記憶手段で記憶した肺 癌状態情報に基づレ、て、前記記憶手段で記憶する前記多変量判別式を作成する多 変量判別式作成手段をさらに備え、前記多変量判別式作成手段は、前記肺癌状態 情報から所定の式作成手法に基づ!/、て、前記多変量判別式の候補である候補多変 量判別式を作成する候補多変量判別式作成手段と、前記候補多変量判別式作成 手段で作成した前記候補多変量判別式を、所定の検証手法に基づ!/、て検証する候 補多変量判別式検証手段と、前記候補多変量判別式検証手段での検証結果から 所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、 前記候補多変量判別式を作成する際に用いる前記肺癌状態情報に含まれる前記ァ ミノ酸濃度データの組み合わせを選択する変数選択手段と、をさらに備え、前記候補 多変量判別式作成手段、前記候補多変量判別式検証手段および前記変数選択手 段を繰り返し実行して蓄積した前記検証結果に基づ!/、て、複数の前記候補多変量 判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出す ることで、前記多変量判別式を作成することを特徴とする。
[0087] また、本発明は肺癌評価プログラムに関するものであり、本発明に力、かる請求項 33 に記載の肺癌評価プログラムは、制御手段と記憶手段とを備えた情報処理装置に実 行させる、評価対象につき肺癌の状態を評価する肺癌評価プログラムであって、前 記制御手段に、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃 度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieの うち少なくとも 1つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手 段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算 出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基 づいて、前記評価対象につき、前記肺癌の状態を評価する判別値基準評価ステップ とを実行させ、前記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro , Ala, Cit, lieのうち少なくとも 1つを前記変数として含むことを特徴とする。
[0088] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、年齢を前記変数としてさらに含むことを特徴とする。
[0089] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに
おいて、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記 判別値に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否力、を判 別する判別値基準判別ステップをさらに含むことを特徴とする。
[0090] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表さ れ、それを構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Ar g, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むこ とを特徴とする。
[0091] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は数式 1、数式 2または数式 3であることを特徴とする。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0092] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポ ートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別 分析で作成された式、決定木で作成された式のいずれか 1つであることを特徴とする
[0093] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを前記変数 とする前記ロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, P ro, Tau, Trp, Valを前記変数とする前記線形判別式、または His, Glu, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu, Pro, lie, T
yr, Lysを前記変数とする前記線形判別式であることを特徴とする。
[0094] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記 判別値に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、ま たは非肺癌であるか否力、を判別する判別値基準判別ステップをさらに含むことを特 徴とする。
[0095] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表さ れ、それを構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Ar g, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むこ とを特徴とする。
[0096] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は数式 4、数式 5または数式 6であることを特徴とする。
a X Tau/Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0097] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポ ートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別 分析で作成された式、決定木で作成された式のいずれか 1つであることを特徴とする
[0098] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、 Orn, Tau, Trpを前記変数とする前記ロジスティック
回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを前記変数とする前記線形判別 式、または Gin, Glu, His, Lys, Cys, ABAを前記変数とする前記ロジスティック回 帰式、または Gin, Glu, Ala, His, Cys, ABAを前記変数とする前記線形判別式で あることを特徴とする。
[0099] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記 判別値に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非 肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする
[0100] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表さ れ、それを構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Ar g, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むこ とを特徴とする。
[0101] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は数式 7、数式 8または数式 9であることを特徴とする。
a X Orn/Trp + b XTau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d XTyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0102] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポ ートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別 分析で作成された式、決定木で作成された式のいずれか 1つであることを特徴とする
[0103] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記多変量判別式は、 Orn, ABA, Tau, Glyを前記変数とする前記口ジス ティック回帰式、または Orn, ABA, Tau, His, Arg, Glyを前記変数とする前記線 形判別式、または His, lie, Glu, Pro, Leu, Ginを前記変数とする前記口ジスティッ ク回帰式、または His, lie, Pro, Ala, Leu, Ginを前記変数とする前記線形判別式 であることを特徴とする。
[0104] また、本発明に力、かる肺癌評価プログラムは、前記に記載の肺癌評価プログラムに おいて、前記制御手段に、前記アミノ酸濃度データと前記肺癌の状態を表す指標に 関する肺癌状態指標データとを含む前記記憶手段で記憶した肺癌状態情報に基づ V、て、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成ス テツプをさらに実行させ、前記多変量判別式作成ステップは、前記肺癌状態情報か ら所定の式作成手法に基づ!/、て、前記多変量判別式の候補である候補多変量判別 式を作成する候補多変量判別式作成ステップと、前記候補多変量判別式作成ステツ プで作成した前記候補多変量判別式を、所定の検証手法に基づ!/、て検証する候補 多変量判別式検証ステップと、前記候補多変量判別式検証ステップでの検証結果 から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択すること で、前記候補多変量判別式を作成する際に用いる前記肺癌状態情報に含まれる前 記アミノ酸濃度データの組み合わせを選択する変数選択ステップと、をさらに含み、 前記候補多変量判別式作成ステップ、前記候補多変量判別式検証ステップおよび 前記変数選択ステップを繰り返し実行して蓄積した前記検証結果に基づ!/、て、複数 の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変 量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
[0105] また、本発明は記録媒体に関するものであり、本発明に力、かる請求項 34に記載の 記録媒体は、請求項 33を含む前記の!/、ずれ力、 1つに記載の肺癌評価プログラムを 記録したことを特徴とする。
発明の効果
[0106] 本発明に力、かる肺癌の評価方法によれば、評価対象から採取した血液から、ァミノ 酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度
データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのう ち少なくとも 1つの濃度値に基づいて、評価対象につき、肺癌の状態を評価するので 、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸濃度を利用して、肺癌 の状態を精度よく評価することができるという効果を奏する。
[0107] 本発明にかかる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度デー タに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少 なくとも 1つの濃度値に基づいて、評価対象につき、肺癌または非肺癌であるか否か を判別するので、血液中のアミノ酸濃度のうち肺癌と非肺癌との 2群判別に有用なァ ミノ酸の濃度を利用して、肺癌と非肺癌との 2群判別を精度よく行うことができるという 効果を奏する。
[0108] また、本発明に力、かる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度 データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのう ち少なくとも 1つの濃度値に基づいて、評価対象につき、肺癌であることおよびその 病期、または非肺癌であるか否力、を判別するので、血液中のアミノ酸濃度のうち初期 肺癌と非肺癌との 2群判別に有用なアミノ酸の濃度を利用して、初期肺癌と非肺癌と の 2群判別を精度よく行うことができるという効果を奏する。
[0109] また、本発明に力、かる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度 データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのう ち少なくとも 1つの濃度値に基づいて、評価対象につき、肺癌のうち腺癌であること、 または非肺癌であるか否かを判別するので、血液中のアミノ酸濃度のうち、肺癌のう ちの腺癌と非肺癌との 2群判別に有用なアミノ酸の濃度を利用して、肺癌のうちの腺 癌と非肺癌との 2群判別を精度よく行うことができるという効果を奏する。
[0110] また、本発明に力、かる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度 データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのう ち少なくとも 1つの濃度値およびアミノ酸の濃度を変数とする予め設定した多変量判 別式であって Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少 なくとも 1つを変数として含むものに基づいて、当該多変量判別式の値である判別値 を算出し、算出した判別値に基づいて、評価対象につき、肺癌の状態を評価するの
で、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする 多変量判別式 (肺癌の状態と有意な相関がある多変量判別式)で得られる判別値を 利用して、肺癌の状態を精度よく評価することができるという効果を奏する。
[0111] また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、年齢を変数と してさらに含むので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃 度に加えてさらに年齢を変数とする多変量判別式 (肺癌の状態と特に有意な相関が ある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価 すること力 Sできると!/、う効果を奏する。
[0112] また、本発明にかかる肺癌の評価方法によれば、算出した判別値に基づいて、評 価対象につき、肺癌または非肺癌であるか否かを判別するので、肺癌と非肺癌との 2 群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、 肺癌と非肺癌との 2群判別を精度よく行うことができるという効果を奏する。
[0113] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、 1つの分数式 または複数の分数式の和で表され、それを構成する分数式の分子および/または分 母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つを変数として含むので、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる 多変量判別式 (分数式)で得られる判別値を利用して、肺癌と非肺癌との 2群判別を さらに精度よく行うことができるという効果を奏する。
[0114] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は数式 1、数式 2ま たは数式 3であるので、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用い る多変量判別式 (数式 1、数式 2、数式 3)で得られる判別値を利用して、肺癌と非肺 癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0115] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、ロジスティック 回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノ ビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式 のいずれ力、 1つであるので、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用い る多変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精 度よく行うこと力 Sできると!/、う効果を奏する。
[0116] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、 Tau, Orn, Ar g, Ser, Glu, Pro, Asnを変数とするロジスティック回帰式、または年齢, ABA, Arg , Gin, His, Leu, Orn, Pro, Tau, Trp, Valを変数とする線形判別式、または His , Glu, Pro, lie, Gin, Lysを変数とするロジスティック回帰式、または His, Glu, Pro , lie, Tyr, Lysを変数とする線形判別式であるので、肺癌と非肺癌との 2群判別に 特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌 と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0117] また、本発明にかかる肺癌の評価方法によれば、算出した判別値に基づいて、評 価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別す るので、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別 式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別を精度よく行うこと 力 Sできると!/、う効果を奏する。
[0118] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、 1つの分数式 または複数の分数式の和で表され、それを構成する分数式の分子および/または分 母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つを変数として含むので、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用 いる多変量判別式 (分数式)で得られる判別値を利用して、初期肺癌と非肺癌との 2 群判別をさらに精度よく行うことができるという効果を奏する。
[0119] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は数式 4、数式 5ま たは数式 6であるので、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を
用いる多変量判別式 (数式 4、数式 5、数式 6)で得られる判別値を利用して、初期肺 癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
a X Tau/Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gln/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0120] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、ロジスティック 回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノ ビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式 のいずれ力、 1つであるので、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を 用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別 をさらに精度よく行うことができるという効果を奏する。
[0121] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、 Orn, Tau, Tr Pを変数とするロジスティック回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変 数とする線形判別式、または Gin, Glu, His, Lys, Cys, ABAを変数とする口ジステ イツク回帰式、または Gin, Glu, Ala, His, Cys, ABAを変数とする線形判別式であ るので、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判 別式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく 行うこと力 Sできると!/、う効果を奏する。
[0122] また、本発明にかかる肺癌の評価方法によれば、算出した判別値に基づいて、評 価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別するの で、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判 別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別を精度よ く行うこと力 Sできると!/、う効果を奏する。
[0123] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、 1つの分数式 または複数の分数式の和で表され、それを構成する分数式の分子および/または分 母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つを変数として含むので、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸 変数を用いる多変量判別式 (分数式)で得られる判別値を利用して、肺癌のうちの腺 癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0124] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は数式 7、数式 8ま たは数式 9であるので、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なァミノ 酸変数を用いる多変量判別式 (数式 7、数式 8、数式 9)で得られる判別値を利用して 、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果 を奏する。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0125] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、ロジスティック 回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノ ビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式 のいずれ力、 1つであるので、肺癌のうちの腺癌と非肺癌との 2群判別に有用なァミノ 酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非 肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0126] また、本発明に力、かる肺癌の評価方法によれば、多変量判別式は、 Orn, ABA, T au, Glyを変数とするロジスティック回帰式、または Orn, ABA, Tau, His, Arg, Gl yを変数とする線形判別式、または His, lie, Glu, Pro, Leu, Ginを変数とするロジ スティック回帰式、または His, lie, Pro, Ala, Leu, Ginを変数とする線形判別式で
あるので、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用い る多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判 別をさらに精度よく行うことができるという効果を奏する。
[0127] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、アミノ酸の濃度値に関する予め取得した評価対象のアミノ酸濃度データに含 まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃度値およびアミノ酸の濃度を変数とする記憶手段で記憶した多変量判別式 であって Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくと も 1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算 出し、算出した判別値に基づいて、評価対象につき、肺癌の状態を評価するので、 血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする多変 量判別式 (肺癌の状態と有意な相関がある多変量判別式)で得られる判別値を利用 して、肺癌の状態を精度よく評価することができるとレ、う効果を奏する。
[0128] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、年齢を変数としてさらに含むので、血液中のアミノ酸濃度 のうち肺癌の状態と関連するアミノ酸の濃度に加えてさらに年齢を変数とする多変量 判別式 (肺癌の状態と特に有意な相関がある多変量判別式)で得られる判別値を利 用して、肺癌の状態をさらに精度よく評価することができるという効果を奏する。
[0129] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、算出した判別値に基づいて、評価対象につき、肺癌または非肺癌であるか 否かを判別するので、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変 量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別を精度よく行うこ と力 Sできると!/、う効果を奏する。
[0130] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、 1つの分数式または複数の分数式の和で表され、それを 構成する分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, T au, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含むので、肺癌と非肺癌と の 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得られる判別値
を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を 奏する。
[0131] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は数式 1、数式 2または数式 3であるので、肺癌と非肺癌との 2 群判別に特に有用なアミノ酸変数を用いる多変量判別式 (数式 1、数式 2、数式 3)で 得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行うことがで きるという効果を奏する。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (Ile + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0132] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポート ベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析 で作成された式、決定木で作成された式のいずれか 1つであるので、肺癌と非肺癌と の 2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用し て、肺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0133] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変数とするロジ スティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp , Valを変数とする線形判別式、または His, Glu, Pro, lie, Gin, Lysを変数とする ロジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする線形判別 式であるので、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量 判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行
うこと力 Sできると!/、う効果を奏する。
[0134] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、算出した判別値に基づいて、評価対象につき、肺癌であることおよびその病 期、または非肺癌であるか否力、を判別するので、初期肺癌と非肺癌との 2群判別に 有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌 と非肺癌との 2群判別を精度よく行うことができるという効果を奏する。
[0135] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、 1つの分数式または複数の分数式の和で表され、それを 構成する分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, T au, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含むので、初期肺癌と非肺 癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得られる判 別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことができると いう効果を奏する。
[0136] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は数式 4、数式 5または数式 6であるので、初期肺癌と非肺癌 との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式 (数式 4、数式 5、数式 6)で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行 うこと力 Sできると!/、う効果を奏する。
a X Tau/Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0137] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポート
ベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析 で作成された式、決定木で作成された式のいずれか 1つであるので、初期肺癌と非 肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を 利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果 を奏する。
[0138] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、 Orn, Tau, Trpを変数とするロジスティック回帰式、また は Orn, Arg, Tau, ABA, Gly, Hisを変数とする泉形判別式、または Gin, Glu, H is, Lys, Cys, ABAを変数とするロジスティック回帰式、または Gin, Glu, Ala, His , Cys, ABAを変数とする線形判別式であるので、初期肺癌と非肺癌との 2群判別に 特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期 肺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0139] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、算出した判別値に基づいて、評価対象につき、肺癌のうち腺癌であること、 または非肺癌であるか否かを判別するので、肺癌のうちの腺癌と非肺癌との 2群判別 に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のう ちの腺癌と非肺癌との 2群判別を精度よく行うことができるという効果を奏する。
[0140] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、 1つの分数式または複数の分数式の和で表され、それを 構成する分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, T au, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含むので、肺癌のうちの腺 癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得 られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行 うこと力 Sできると!/、う効果を奏する。
[0141] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は数式 7、数式 8または数式 9であるので、肺癌のうちの腺癌と 非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式 (数式 7、数式 8、数式 9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別を
さらに精度よく行うことができるという効果を奏する。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0142] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポート ベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析 で作成された式、決定木で作成された式のいずれか 1つであるので、肺癌のうちの腺 癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判 別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことが できるという効果を奏する。
[0143] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、多変量判別式は、 Orn, ABA, Tau, Glyを変数とするロジスティック回帰式 、または Orn, ABA, Tau, His, Arg, Glyを変数とする線形判別式、または His, II e, Glu, Pro, Leu, Ginを変数とするロジスティック回帰式、または His, lie, Pro, Al a, Leu, Ginを変数とする線形判別式であるので、肺癌のうちの腺癌と非肺癌との 2 群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用し て、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効 果を奏する。
[0144] また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムに よれば、アミノ酸濃度データと肺癌の状態を表す指標に関する肺癌状態指標データ とを含む記憶手段で記憶した肺癌状態情報に基づ!/、て、記憶手段で記憶する多変 量判別式を作成する。具体的には、(1)肺癌状態情報から所定の式作成手法に基 づいて、多変量判別式の候補である候補多変量判別式を作成し、(2)作成した候補
多変量判別式を、所定の検証手法に基づいて検証し、 (3) (2)での検証結果から所 定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多 変量判別式を作成する際に用いる肺癌状態情報に含まれるアミノ酸濃度データの組 み合わせを選択し、(4) (1)、 (2)および(3)を繰り返し実行して蓄積した検証結果に 基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多 変量判別式を選出することで、多変量判別式を作成する。これにより、肺癌の状態の 評価に最適な多変量判別式 (具体的には肺癌の状態と有意な相関がある多変量判 別式 (より具体的には、肺癌と非肺癌との 2群判別に有用な多変量判別式、初期肺 癌と非肺癌との 2群判別に有用な多変量判別式、肺癌のうちの腺癌と非肺癌との 2群 判別に有用な多変量判別式))を作成することができるという効果を奏する。
[0145] また、本発明にかかる肺癌評価システムによれば、まず、情報通信端末装置は、評 価対象のアミノ酸濃度データを肺癌評価装置へ送信する。そして、肺癌評価装置は 、情報通信端末装置から送信された評価対象のアミノ酸濃度データを受信し、受信 した評価対象のアミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Glu, His, T au, Pro, Ala, Cit, lieのうち少なくとも 1つの濃度値およびアミノ酸の濃度を変数と する記憶手段で記憶した多変量判別式であって Orn, Lys, ABA, Arg, Glu, His , Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含むものに基づいて、当 該多変量判別式の値である判別値を算出し、算出した判別値に基づいて評価対象 にっき肺癌の状態を評価し、その評価対象の評価結果を情報通信端末装置へ送信 する。そして、情報通信端末装置は、肺癌評価装置から送信された肺癌の状態に関 する評価対象の評価結果を受信する。これにより、血液中のアミノ酸濃度のうち肺癌 の状態と関連するアミノ酸の濃度を変数とする多変量判別式 (肺癌の状態と有意な 相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態を精度よく評 価すること力 Sできると!/、う効果を奏する。
[0146] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、年齢を変数と してさらに含むので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃 度に加えてさらに年齢を変数とする多変量判別式 (肺癌の状態と特に有意な相関が ある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価
すること力 Sできると!/、う効果を奏する。
[0147] また、本発明に力、かる肺癌評価システムによれば、算出した判別値に基づいて、評 価対象につき、肺癌または非肺癌であるか否かを判別するので、肺癌と非肺癌との 2 群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、 肺癌と非肺癌との 2群判別を精度よく行うことができるという効果を奏する。
[0148] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、 1つの分数式 または複数の分数式の和で表され、それを構成する分数式の分子および/または分 母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つを変数として含むので、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる 多変量判別式 (分数式)で得られる判別値を利用して、肺癌と非肺癌との 2群判別を さらに精度よく行うことができるという効果を奏する。
[0149] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は数式 1、数式 2 または数式 3であるので、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用 いる多変量判別式 (数式 1、数式 2、数式 3)で得られる判別値を利用して、肺癌と非 肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0150] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、ロジスティック 回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノ ビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式 のいずれ力、 1つであるので、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用い る多変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精
度よく行うこと力 Sできると!/、う効果を奏する。
[0151] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変数とするロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Valを変数とする線形判別式、または His, Glu, Pro, lie, Gin, Lysを変数とするロジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする線形判別式であるので、肺癌と非肺癌との 2群判別 に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺 癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0152] また、本発明に力、かる肺癌評価システムによれば、算出した判別値に基づいて、評 価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別す るので、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別 式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別を精度よく行うこと 力 Sできると!/、う効果を奏する。
[0153] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、 1つの分数式 または複数の分数式の和で表され、それを構成する分数式の分子および/または分 母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つを変数として含むので、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用 いる多変量判別式 (分数式)で得られる判別値を利用して、初期肺癌と非肺癌との 2 群判別をさらに精度よく行うことができるという効果を奏する。
[0154] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は数式 4、数式 5 または数式 6であるので、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数 を用いる多変量判別式 (数式 4、数式 5、数式 6)で得られる判別値を利用して、初期 肺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c XABA/Cys + d X Lys/Val + e
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0155] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、ロジスティック 回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノ ビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式 のいずれ力、 1つであるので、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を 用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別 をさらに精度よく行うことができるという効果を奏する。
[0156] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、 Orn, Tau, T rpを変数とするロジスティック回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変 数とする線形判別式、または Gin, Glu, His, Lys, Cys, ABAを変数とする口ジステ イツク回帰式、または Gin, Glu, Ala, His, Cys, ABAを変数とする線形判別式であ るので、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判 別式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく 行うこと力 Sできると!/、う効果を奏する。
[0157] また、本発明に力、かる肺癌評価システムによれば、算出した判別値に基づいて、評 価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別するの で、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判 別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別を精度よ く行うこと力 Sできると!/、う効果を奏する。
[0158] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、 1つの分数式 または複数の分数式の和で表され、それを構成する分数式の分子および/または分 母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つを変数として含むので、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸 変数を用いる多変量判別式 (分数式)で得られる判別値を利用して、肺癌のうちの腺 癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0159] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は数式 7、数式 8
または数式 9であるので、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なァミノ 酸変数を用いる多変量判別式 (数式 7、数式 8、数式 9)で得られる判別値を利用して 、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことができるという効果 を奏する。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0160] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、ロジスティック 回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノ ビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式 のいずれ力、 1つであるので、肺癌のうちの腺癌と非肺癌との 2群判別に有用なァミノ 酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非 肺癌との 2群判別をさらに精度よく行うことができるという効果を奏する。
[0161] また、本発明に力、かる肺癌評価システムによれば、多変量判別式は、 Orn, ABA, Tau, Glyを変数とするロジスティック回帰式、または Orn, ABA, Tau, His, Arg, Glyを変数とする線形判別式、または His, lie, Glu, Pro, Leu, Ginを変数とする口 ジスティック回帰式、または His, lie, Pro, Ala, Leu, Ginを変数とする線形判別式 であるので、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用 いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群 判別をさらに精度よく行うことができるという効果を奏する。
[0162] また、本発明に力、かる肺癌評価システムによれば、アミノ酸濃度データと肺癌の状 態を表す指標に関する肺癌状態指標データとを含む記憶手段で記憶した肺癌状態 情報に基づいて、記憶手段で記憶する多変量判別式を作成する。具体的には、(1) 肺癌状態情報から所定の式作成手法に基づ!/、て、多変量判別式の候補である候補
多変量判別式を作成し、(2)作成した候補多変量判別式を、所定の検証手法に基 づいて検証し、 (3) (2)での検証結果から所定の変数選択手法に基づいて候補多変 量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肺癌 状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、(4) (1)、(2)およ び(3)を繰り返し実行して蓄積した検証結果に基づいて、複数の候補多変量判別式 の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量 判別式を作成する。これにより、肺癌の状態の評価に最適な多変量判別式 (具体的 には肺癌の状態と有意な相関がある多変量判別式はり具体的には、肺癌と非肺癌 との 2群判別に有用な多変量判別式、初期肺癌と非肺癌との 2群判別に有用な多変 量判別式、肺癌のうちの腺癌と非肺癌との 2群判別に有用な多変量判別式))を作成 すること力 Sできると!/、う効果を奏する。
[0163] また、本発明に力、かる記録媒体によれば、当該記録媒体に記録された肺癌評価プ ログラムをコンピュータに読み取らせて実行することでコンピュータに肺癌評価プログ ラムを実行させるので、肺癌評価プログラムと同様の効果を得ることができるという効 果を奏する。
[0164] なお、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌である か否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否かを 判別する際、肺癌のうち腺癌であること、または非肺癌であるか否力、を判別する際)、 アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発現 量、被験者の年齢'性別、生体指標などをさらに用いても力、まわない。また、本発明 は、肺癌の状態を評価する際 (具体的には、肺癌または非肺癌であるか否力、を判別 する際、肺癌であることおよびその病期、または非肺癌であるか否力、を判別する際、 肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、多変量判別 式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃 度や、タンパク質の発現量、被験者の年齢'性別、生体指標などをさらに用いてもか まわない。
図面の簡単な説明
[0165] [図 1]図 1は、本発明の基本原理を示す原理構成図である。
園 2]図 2は、第 1実施形態に力、かる肺癌の評価方法の一例を示すフローチャートで ある。
[図 3]図 3は、本発明の基本原理を示す原理構成図である。
[図 4]図 4は、本システムの全体構成の一例を示す図である。
[図 5]図 5は、本システムの全体構成の他の一例を示す図である。
[図 6]図 6は、本システムの肺癌評価装置 100の構成の一例を示すブロック図である。 園 7]図 7は、利用者情報ファイル 106aに格納される情報の一例を示す図である。
[図 8]図 8は、アミノ酸濃度データファイル 106bに格納される情報の一例を示す図で ある。
[図 9]図 9は、肺癌状態情報ファイル 106cに格納される情報の一例を示す図である。
[図 10]図 10は、指定肺癌状態情報ファイル 106dに格納される情報の一例を示す図 である。
[図 11]図 1 1は、候補多変量判別式ファイル 106e lに格納される情報の一例を示す 図である。
[図 12]図 12は、検証結果ファイル 106e2に格納される情報の一例を示す図である。
[図 13]図 13は、選択肺癌状態情報ファイル 106e3に格納される情報の一例を示す 図である。
[図 14]図 14は、多変量判別式ファイル 106e4に格納される情報の一例を示す図で ある。
[図 15]図 15は、判別値ファイル 106fに格納される情報の一例を示す図である。 園 16]図 16は、評価結果ファイル 106gに格納される情報の一例を示す図である。
[図 17]図 17は、多変量判別式作成部 102hの構成を示すブロック図である。
園 18]図 18は、判別値基準評価部 10¾の構成を示すブロック図である。
[図 19]図 19は、本システムのクライアント装置 200の構成の一例を示すブロック図で ある。
[図 20]図 20は、本システムのデータベース装置 400の構成の一例を示すブロック図 である。
[図 21]図 21は、本システムで行う肺癌評価サービス処理の一例を示すフローチヤ一
トである。
[図 22]図 22は、本システムの肺癌評価装置 100で行う多変量判別式作成処理の一 例を示すフローチャートである。
[図 23]図 23は、非肺癌と肺癌の 2群間のアミノ酸変数の分布を示す箱ひげ図である 園 24]図 24は、非肺癌と肺癌、非肺癌と初期肺癌、および非肺癌と肺癌のうち腺癌 の 2群間判別のアミノ酸変数の ROC曲線の AUCを示す図である。
園 25]図 25は、指標式 1と同等の診断性能を有する式の一覧を示す図である。 園 26]図 26は、指標式 1と同等の診断性能を有する式の一覧を示す図である。
[図 27]図 27は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 28]図 28は、 2群判別のカットオフ値、感度、特異度、陽性的中率、陰性的中率、 正答率を示す図である。
[図 29]図 29は、指標式 2と同等の診断性能を有する式の一覧を示す図である。 園 30]図 30は、指標式 2と同等の診断性能を有する式の一覧を示す図である。
[図 31]図 31は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 32]図 32は、指標式 3と同等の診断性能を有する式の一覧を示す図である。
[図 33]図 33は、指標式 3と同等の診断性能を有する式の一覧を示す図である。
[図 34]図 34は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 35]図 35は、指標式 4と同等の診断性能を有する式の一覧を示す図である。 園 36]図 36は、指標式 4と同等の診断性能を有する式の一覧を示す図である。
[図 37]図 37は、指標式 4と同等の診断性能を有する式の一覧を示す図である。
[図 38]図 38は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 39]図 39は、 2群判別のカットオフ値、感度、特異度、陽性的中率、陰性的中率、 正答率を示す図である。
園 40]図 40は、指標式 5と同等の診断性能を有する式の一覧を示す図である。 園 41]図 41は、指標式 5と同等の診断性能を有する式の一覧を示す図である。 園 42]図 42は、指標式 5と同等の診断性能を有する式の一覧を示す図である。
[図 43]図 43は、 2群間の診断性能を評価するための ROC曲線を示す図である。
園 44]図 44は、指標式 6と同等の診断性能を有する式の一覧を示す図である。
[図 45]図 45は、指標式 6と同等の診断性能を有する式の一覧を示す図である。
[図 46]図 46は、指標式 6と同等の診断性能を有する式の一覧を示す図である。
[図 47]図 47は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 48]図 48は、指標式 7と同等の診断性能を有する式の一覧を示す図である。
[図 49]図 49は、指標式 7と同等の診断性能を有する式の一覧を示す図である。 園 50]図 50は、指標式 7と同等の診断性能を有する式の一覧を示す図である。
[図 51]図 51は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 52]図 52は、 2群判別のカットオフ値、感度、特異度、陽性的中率、陰性的中率、 正答率を示す図である。
[図 53]図 53は、指標式 8と同等の診断性能を有する式の一覧を示す図である。 園 54]図 54は、指標式 8と同等の診断性能を有する式の一覧を示す図である。
[図 55]図 55は、指標式 8と同等の診断性能を有する式の一覧を示す図である。
[図 56]図 56は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 57]図 57は、指標式 9と同等の診断性能を有する式の一覧を示す図である。
[図 58]図 58は、指標式 9と同等の診断性能を有する式の一覧を示す図である。
[図 59]図 59は、指標式 9と同等の診断性能を有する式の一覧を示す図である。
[図 60]図 60は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 61]図 61は、 ROC曲線の AUCに基づいて抽出したアミノ酸の一覧を示す図であ
[図 62]図 62は、健常群、肺癌群、他癌群の指標式 7による計算結果の平均値、標準 偏差を示す図である。
[図 63]図 63は、健常群、肺癌群、他癌群の指標式 7による計算結果のボックスプロッ トを示す図である。
[図 64]図 64は、非肺癌と肺癌の 2群間のアミノ酸変数の分布をスキヤッタープロットに より示す図である。
[図 65]図 65は、非肺癌と肺癌、非肺癌と初期肺癌、および非肺癌と肺癌のうち腺癌 の 2群間判別のアミノ酸変数の ROC曲線の AUCを示す図である。
[図 66]図 66は、指標式 10と同等の診断性能を有する式の一覧を示す図である。 園 67]図 67は、指標式 10と同等の診断性能を有する式の一覧を示す図である。
[図 68]図 68は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 69]図 69は、指標式 11と同等の診断性能を有する式の一覧を示す図である。 園 70]図 70は、指標式 11と同等の診断性能を有する式の一覧を示す図である。
[図 71]図 71は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 72]図 72は、指標式 12と同等の診断性能を有する式の一覧を示す図である。
[図 73]図 73は、指標式 12と同等の診断性能を有する式の一覧を示す図である。 園 74]図 74は、指標式 12と同等の診断性能を有する式の一覧を示す図である。
[図 75]図 75は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 76]図 76は、指標式 13と同等の診断性能を有する式の一覧を示す図である。
[図 77]図 77は、指標式 13と同等の診断性能を有する式の一覧を示す図である。
[図 78]図 78は、指標式 13と同等の診断性能を有する式の一覧を示す図である。
[図 79]図 79は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 80]図 80は、指標式 14と同等の診断性能を有する式の一覧を示す図である。 園 81]図 81は、指標式 14と同等の診断性能を有する式の一覧を示す図である。
[図 82]図 82は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 83]図 83は、指標式 15と同等の診断性能を有する式の一覧を示す図である。 園 84]図 84は、指標式 15と同等の診断性能を有する式の一覧を示す図である。
[図 85]図 85は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 86]図 86は、指標式 16と同等の診断性能を有する式の一覧を示す図である。
[図 87]図 87は、指標式 16と同等の診断性能を有する式の一覧を示す図である。
[図 88]図 88は、指標式 16と同等の診断性能を有する式の一覧を示す図である。
[図 89]図 89は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 90]図 90は、指標式 17と同等の診断性能を有する式の一覧を示す図である。 園 91]図 91は、指標式 17と同等の診断性能を有する式の一覧を示す図である。
[図 92]図 92は、指標式 17と同等の診断性能を有する式の一覧を示す図である。
[図 93]図 93は、 2群間の診断性能を評価するための ROC曲線を示す図である。
園 94]図 94は、指標式 18と同等の診断性能を有する式の一覧を示す図である。 園 95]図 95は、指標式 18と同等の診断性能を有する式の一覧を示す図である。
[図 96]図 96は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 97]図 97は、指標式 19と同等の診断性能を有する式の一覧を示す図である。 園 98]図 98は、指標式 19と同等の診断性能を有する式の一覧を示す図である。
[図 99]図 99は、 2群間の診断性能を評価するための ROC曲線を示す図である。
[図 100]図 100は、指標式 20と同等の診断性能を有する式の一覧を示す図である。 園 101]図 101は、指標式 20と同等の診断性能を有する式の一覧を示す図である。 園 102]図 102は、指標式 20と同等の診断性能を有する式の一覧を示す図である。
[図 103]図 103は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 104]図 104は、指標式 21と同等の診断性能を有する式の一覧を示す図である。 園 105]図 105は、指標式 21と同等の診断性能を有する式の一覧を示す図である。 園 106]図 106は、指標式 21と同等の診断性能を有する式の一覧を示す図である。
[図 107]図 107は、 2群間の診断性能を評価するための ROC曲線を示す図である。 園 108]図 108は、指標式 22と同等の診断性能を有する式の一覧を示す図である。 園 109]図 109は、指標式 22と同等の診断性能を有する式の一覧を示す図である。
[図 110]図 110は、非肺癌群および第 1〜4群と指標式 22の値との間のスピアマンの 順位相関係数を示す図である。
園 111]図 111は、指標式 23と同等の診断性能を有する式の一覧を示す図である。 園 112]図 112は、指標式 23と同等の診断性能を有する式の一覧を示す図である。
[図 113]図 113は、非肺癌群および第 1〜4群と指標式 23の値との間のスピアマンの 順位相関係数を示す図である。
園 114]図 114は、指標式 24と同等の診断性能を有する式の一覧を示す図である。 園 115]図 115は、指標式 24と同等の診断性能を有する式の一覧を示す図である。 園 116]図 116は、指標式 24と同等の診断性能を有する式の一覧を示す図である。
[図 117]図 117は、非肺癌群および第 1〜4群と指標式 24の値との間のスピアマンの 順位相関係数を示す図である。
園 118]図 118は、指標式 25と同等の診断性能を有する式の一覧を示す図である。
[図 119]図 119は、指標式 25と同等の診断性能を有する式の一覧を示す図である。
[図 120]図 120は、第 1〜4群と指標式 25の値との間のスピアマンの順位相関係数を 示す図である。
[図 121]図 121は、指標式 26と同等の診断性能を有する式の一覧を示す図である。
[図 122]図 122は、指標式 26と同等の診断性能を有する式の一覧を示す図である。
[図 123]図 123は、第 1〜4群と指標式 26の値との間のスピアマンの順位相関係数を 示す図である。
[図 124]図 124は、指標式 27と同等の診断性能を有する式の一覧を示す図である。
[図 125]図 125は、指標式 27と同等の診断性能を有する式の一覧を示す図である。
[図 126]図 126は、指標式 27と同等の診断性能を有する式の一覧を示す図である。
[図 127]図 127は、第 1〜4群と指標式 27の値との間のスピアマンの順位相関係数を 示す図である。
[図 128]図 128は、 ROC曲線の AUCに基づいて抽出したアミノ酸の一覧を示す図で ある。
符号の説明
100 肺癌評価装置
102 制御部
102a 要求解釈部
102b 閲覧処理部
102c 認証処理部
102d 電子メール生成部
102e Webページ生成部
102f 受信部
102g 肺癌状態情報指定部
102h 多変量判別式作成部
102hl 候補多変量判別式作成部
102h2 候補多変量判別式検証部
102h3 変数選択部
102i 判別値算出部
102j 判別値基準評価部
10¾ 1 判別値基準判別部
102k 結果出力部
102m 送信部
104 通信インターフェースき
106 記憶部
106a 利用者情報ファイル
106b アミノ酸濃度データファイル
106c 肺癌状態情報ファイル
106d 指定肺癌状態情報ファイル
106e 多変量判別式関連情報データベース
106el 候補多変量判別式ファイル
106e2 検証結果ファイル
106e3 選択肺癌状態情報ファイル
106e4 多変量判別式ファイル
106f 判別値ファイル
106g 評価結果ファイル
108 入出力インターフェース部
112 入力装置
114 出力装置
200 クライアント装置 (情報通信端末装置)
300 ネットワーク
400 データベース装置
発明を実施するための最良の形態
以下に、本発明にかかる肺癌の評価方法の実施の形態(第 1実施形態)、本発明 にかかる肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラムお よび記録媒体の実施の形態(第 2実施形態)を、図面に基づいて詳細に説明する。な
お、本実施の形態により本発明が限定されるものではない。
[0168] [第 1実施形態]
[1 - 1.本発明の概要]
ここでは、本発明に力、かる肺癌の評価方法の概要について図 1を参照して説明す る。図 1は本発明の基本原理を示す原理構成図である。
[0169] まず、本発明では、評価対象 (例えば動物ゃヒトなどの個体)力 採取した血液から 、アミノ酸の濃度値に関するアミノ酸濃度データを測定する(ステップ S— 11)。ここで 、血中アミノ酸濃度の分析は次のように行った。採血した血液サンプルを、へパリン処 理したチューブに採取し、採取した血液サンプルを遠心することにより血液から血漿 を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで 70°Cで凍結保存 した。アミノ酸濃度測定時には、スルホサリチル酸を添加し 3%濃度調整により除蛋白 処理を行い、測定には、ポストカラムでニンヒドリン反応を用いた高速液体クロマトダラ フィー(HPLC)を原理としたアミノ酸分析機を使用した。なお、アミノ酸濃度の単位は 、例えばモル濃度や重量濃度、これらの濃度に任意の定数を加減乗除することで得 られるあのであよい。
[0170] つぎに、本発明では、ステップ S— 11で測定した評価対象のアミノ酸濃度データに 含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくと も 1つの濃度値に基づいて、評価対象につき肺癌の状態を評価する(ステップ S—l 2)。
[0171] 以上、本発明によれば、評価対象から採取した血液からアミノ酸の濃度値に関する アミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれる Or n, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃 度値に基づいて、評価対象につき肺癌の状態を評価する。これにより、血液中のアミ ノ酸濃度のうち肺癌の状態と関連するアミノ酸濃度を利用して、肺癌の状態を精度よ く評価すること力 Sでさる。
[0172] ここで、ステップ S— 12を実行する前に、ステップ S— 11で測定した評価対象のアミ ノ酸濃度データから欠損値や外れ値などのデータを除去してもよい。これにより、肺 癌の状態をさらに精度よく評価することができる。
[0173] また、ステップ S— 12では、ステップ S— 11で測定した評価対象のアミノ酸濃度デ ータに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち 少なくとも 1つの濃度値に基づいて、評価対象につき、肺癌または非肺癌であるか否 かを判別してもよい。具体的には、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, A la, Cit, lieのうち少なくとも 1つの濃度値と予め設定された閾値 (カットオフ値)とを比 較することで、評価対象につき肺癌または非肺癌であるか否かを判別してもよい。こ れにより、血液中のアミノ酸濃度のうち肺癌と非肺癌との 2群判別に有用なアミノ酸の 濃度を利用して、肺癌と非肺癌との 2群判別を精度よく行うことができる。
[0174] また、ステップ S— 12では、ステップ S— 11で測定した評価対象のアミノ酸濃度デ ータに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち 少なくとも 1つの濃度値に基づいて、評価対象につき、肺癌であることおよびその病 期、または非肺癌であるか否かを判別してもよい。具体的には、 Orn, Lys, ABA, A rg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃度値と予め設定さ れた閾値 (カットオフ値)とを比較することで、評価対象につき、肺癌であることおよび その病期、または非肺癌であるか否かを判別してもよい。これにより、血液中のアミノ 酸濃度のうち初期肺癌と非肺癌との 2群判別に有用なアミノ酸の濃度を利用して、初 期肺癌と非肺癌との 2群判別を精度よく行うことができる。
[0175] また、ステップ S— 12では、ステップ S— 11で測定した評価対象のアミノ酸濃度デ ータに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち 少なくとも 1つの濃度値に基づいて、評価対象につき、肺癌のうち腺癌であること、ま たは非肺癌であるか否かを判別してもよい。具体的には、 Orn, Lys, ABA, Arg, G lu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃度値と予め設定された閾 値 (カットオフ値)とを比較することで、評価対象につき、肺癌のうち腺癌であること、ま たは非肺癌であるか否かを判別してもよい。これにより、血液中のアミノ酸濃度のうち 、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸の濃度を利用して、肺癌 のうちの腺癌と非肺癌との 2群判別を精度よく行うことができる。
[0176] また、ステップ S— 12では、ステップ S— 11で測定した評価対象のアミノ酸濃度デ ータに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち
少なくとも 1つの濃度値およびアミノ酸の濃度を変数とする予め設定した多変量判別 式であって Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少な くとも 1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を 算出し、算出した判別値に基づいて、評価対象につき、肺癌の状態を評価してもよ い。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を 変数とする多変量判別式 (肺癌の状態と有意な相関がある多変量判別式)で得られ る判別値を利用して、肺癌の状態を精度よく評価することができる。
[0177] また、ステップ S— 12において、多変量判別式は、年齢を変数としてさらに含んでも よい。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度 に加えてさらに年齢を変数とする多変量判別式 (肺癌の状態と特に有意な相関があ る多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価す ること力 Sでさる。
[0178] また、ステップ S— 12では、算出した判別値に基づいて、評価対象につき、肺癌ま たは非肺癌であるか否かを判別してもよい。具体的には、判別値と予め設定された閾 値 (カットオフ値)とを比較することで、評価対象につき、肺癌または非肺癌であるか 否かを判別してもよい。これにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数 を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別を 精度よく fiうことカできる。
[0179] なお、多変量判別式は、 1つの分数式または複数の分数式の和で表され、それを 構成する分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, T au, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含んでもよい。具体的には、 多変量判別式は、数式 1、数式 2または数式 3でもよい。これにより、肺癌と非肺癌と の 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得られる判別値 を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行うことができる。具体的に は、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式 (数 式 1、数式 2、数式 3)で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさら に精度よく fiうことカできる。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0180] また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式のいずれか 1つでもよい。具体的には、多変 量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変数とするロジスティック回帰 式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Valを変数と する線形判別式、または His, Glu, Pro, lie, Gin, Lysを変数とするロジスティック 回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする線形判別式でもよい。こ れにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式で 得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行うことがで きる。具体的には、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多 変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精度よ く fiうこと力 Sでさる。
[0181] また、ステップ S— 12では、算出した判別値に基づいて、評価対象につき、肺癌で あることおよびその病期、または非肺癌であるか否かを判別してもよい。具体的には、 判別値と予め設定された閾値 (カットオフ値)とを比較することで、評価対象につき、 肺癌であることおよびその病期、または非肺癌であるか否かを判別してもよい。これ により、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式 で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別を精度よく行うことがで きる。
[0182] なお、多変量判別式は、 1つの分数式または複数の分数式の和で表され、それを 構成する分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, T
au, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含んでもよい。具体的には、 多変量判別式は数式 4、数式 5または数式 6でもよい。これにより、初期肺癌と非肺癌 との 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得られる判別 値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことができる。具 体的には、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変 量判別式 (数式 4、数式 5、数式 6)で得られる判別値を利用して、初期肺癌と非肺癌 との 2群判別をさらに精度よく行うことができる。
a XTau/Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c XABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0183] また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式のいずれか 1つでもよい。具体的には、多変 量判別式は、 Orn, Tau, Trpを変数とするロジスティック回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変数とする泉形判別式、または Gin, Glu, His, Lys, Cys , ABAを変数とするロジスティック回帰式、または Gin, Glu, Ala, His, Cys, ABA を変数とする線形判別式でもよい。これにより、初期肺癌と非肺癌との 2群判別に有 用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と 非肺癌との 2群判別をさらに精度よく行うことができる。具体的には、初期肺癌と非肺 癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値 を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことができる。
[0184] また、ステップ S— 12では、算出した判別値に基づいて、評価対象につき、肺癌の うち腺癌であること、または非肺癌であるか否かを判別してもよい。具体的には、判別
値と予め設定された閾値 (カットオフ値)とを比較することで、評価対象につき、肺癌 のうち腺癌であること、または非肺癌であるか否かを判別してもよい。これにより、肺癌 のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式で 得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別を精度よく行うこ と力 Sできる。
[0185] なお、多変量判別式は、 1つの分数式または複数の分数式の和で表され、それを 構成する分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, T au, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含んでもよい。具体的には、 多変量判別式は数式 7、数式 8または数式 9でもよい。これにより、肺癌のうちの腺癌 と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得ら れる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行う ことができる。具体的には、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なアミ ノ酸変数を用いる多変量判別式 (数式 7、数式 8、数式 9)で得られる判別値を利用し て、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことができる。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0186] また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式のいずれか 1つでもよい。具体的には、多変 量判別式は、 Orn, ABA, Tau, Glyを変数とするロジスティック回帰式、または Orn , ABA, Tau, His, Arg, Glyを変数とする線形判別式、または His, lie, Glu, Pro , Leu, Ginを変数とするロジスティック回帰式、または His, lie, Pro, Ala, Leu, Gl nを変数とする線形判別式でもよい。これにより、肺癌のうちの腺癌と非肺癌との 2群
判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺 癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことができる。具体的には、 肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量 判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさら に精度よく fiうことカできる。
[0187] なお、上記した各多変量判別式は、本出願人による国際出願である国際公開 WO 2004/052191号パンフレットに記載の方法や、本出願人による国際出願である国 際出願番号 PCT/JP2006/304398に記載の方法(後述する第 2実施形態に記 載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量 判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単 位に因らず、当該多変量判別式を肺癌の状態の評価に好適に用いることができる。
[0188] また、分数式とは、当該分数式の分子がアミノ酸 A, B, C, · · ·の和で表わされ及び /又は当該分数式の分母がアミノ酸 a, b, c, · · ·の和で表わされるものである。また、 分数式には、このような構成の分数式 α , β , y , . · ·の和(例えば α + /3のようなも の)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母 に用いられるアミノ酸にはそれぞれ適当な係数がついても力、まわない。また、分子や 分母に用いられるアミノ酸は重複しても力、まわない。また、各分数式に適当な係数が ついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかま わない。また、分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、 目 的変数との相関の正負の符号は概して逆転する力 それらの相関性は保たれるので 、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わ せも、包含するものである。
[0189] また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例え ば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判 別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変 量判別式の和で示されるような式も含まれる。また、重回帰式、多重口ジスティック回 帰式、正準判別関数にお!/、ては各変数に係数および定数項が付加される力 この 場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判
別を行うために得られた係数および定数項の 99%信頼区間の範囲に属する値、さら に好ましくはデータから判別を行うために得られた係数および定数項の 95%信頼区 間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は 、それを実数倍したものでもよぐ定数項の値、及びその信頼区間は、それに任意の 実定数を加減乗除したものでもよレ、。
[0190] そして、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であ るか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否か を判別する際、肺癌のうち腺癌であること、または非肺癌であるか否力、を判別する際) 、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発 現量、被験者の年齢'性別、生体指標などをさらに用いても力、まわない。また、本発 明は、肺癌の状態を評価する際 (具体的には、肺癌または非肺癌であるか否力、を判 別する際、肺癌であることおよびその病期、または非肺癌であるか否力、を判別する際 、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、多変量判別 式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃 度や、タンパク質の発現量、被験者の年齢'性別、生体指標などをさらに用いてもか まわない。
[0191] [1 - 2.第 1実施形態にかかる肺癌の評価方法]
ここでは、第 1実施形態に力、かる肺癌の評価方法について図 2を参照して説明する 。図 2は、第 1実施形態に力、かる肺癌の評価方法の一例を示すフローチャートである
[0192] まず、動物ゃヒトなどの個体力 採取した血液から、アミノ酸の濃度値に関するァミノ 酸濃度データを測定する(ステップ SA— 11)。なお、アミノ酸の濃度値の測定は、上 述した方法で行う。
[0193] つぎに、ステップ SA— 11で測定した個体のアミノ酸濃度データから欠損値や外れ 値などのデータを除去する(ステップ SA— 12)。
[0194] つぎに、ステップ SA— 12で欠損値や外れ値などのデータが除去された個体のアミ ノ酸濃度データに含まれる Om, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit , lieのうち少なくとも 1つの濃度値と予め設定された閾値 (カットオフ値)とを比較する
ことで、個体につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよび その病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非 肺癌であるか否かの判別のいずれかを行う(ステップ S A— 13)。
[0195] [1 - 3.第 1実施形態のまとめ、およびその他の実施形態]
以上、詳細に説明したように、肺癌の評価方法によれば、(1)個体から採取した血 液からアミノ酸濃度データを測定し、 (2)測定した個体のアミノ酸濃度データから欠損 値や外れ値などのデータを除去し、 (3)欠損値や外れ値などのデータが除去された 個体のアミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro , Ala, Cit, lieのうち少なくとも 1つの濃度値と予め設定された閾値 (カットオフ値)と を比較することで、個体につき、肺癌または非肺癌であるか否かの判別、肺癌である ことおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、 または非肺癌であるか否かの判別のいずれかを行う。これにより、血液中のアミノ酸 濃度のうち肺癌と非肺癌との 2群判別に有用なアミノ酸の濃度、血液中のアミノ酸濃 度のうち初期肺癌と非肺癌との 2群判別に有用なアミノ酸の濃度、血液中のアミノ酸 濃度のうち、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸の濃度を利用 して、肺癌と非肺癌との 2群判別、初期肺癌と非肺癌との 2群判別、肺癌のうちの腺 癌と非肺癌との 2群判別を精度よく行うことができる。
[0196] ここで、肺癌の評価方法によれば、ステップ SA— 12で欠損値や外れ値などのデー タが除去された個体のアミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃度値およびアミノ酸の濃度を 変数とする予め設定した多変量判別式であって Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含むものに基づいて判別 値を算出し、算出した判別値と予め設定された閾値 (カットオフ値)とを比較すること で、個体につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその 病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌 であるか否かの判別のいずれかを行ってもよい。これにより、肺癌と非肺癌との 2群判 別に有用なアミノ酸変数を用いる多変量判別式、初期肺癌と非肺癌との 2群判別に 有用なアミノ酸変数を用いる多変量判別式、肺癌のうちの腺癌と非肺癌との 2群判別
に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と 非肺癌との 2群判別、初期肺癌と非肺癌との 2群判別、肺癌のうちの腺癌と非肺癌と の 2群判別を精度よく行うことができる。
[0197] なお、肺癌の評価方法によれば、多変量判別式は、 1つの分数式または複数の分 数式の和で表され、それを構成する分数式の分子および/または分母に Orn, Lys , ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として 含んでもよい。これにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる 多変量判別式 (分数式)、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用 いる多変量判別式 (分数式)、肺癌のうちの腺癌と非肺癌との 2群判別に有用なァミノ 酸変数を用いる多変量判別式 (分数式)で得られる判別値を利用して、肺癌と非肺 癌との 2群判別、初期肺癌と非肺癌との 2群判別、肺癌のうちの腺癌と非肺癌との 2 群判別をさらに精度よく行うことができる。
[0198] 具体的には、ステップ SA— 13で肺癌または非肺癌であるか否かの判別を行う場合 には、多変量判別式は数式 1、数式 2または数式 3でもよい。これにより、肺癌と非肺 癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式 (数式 1、数式 2、数 式 3)で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行うこ と力 Sできる。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0199] また、ステップ SA— 13で肺癌であることおよびその病期、または非肺癌であるか否 かの判別を行う場合には、多変量判別式は数式 4、数式 5または数式 6でもよい。こ れにより、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量
判別式 (数式 4、数式 5、数式 6)で得られる判別値を利用して、初期肺癌と非肺癌と の 2群判別をさらに精度よく行うことができる。
a X Tau/Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gln/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0200] また、ステップ SA— 13で肺癌のうち腺癌であること、または非肺癌であるか否かの 判別を行う場合には、多変量判別式は数式 7、数式 8または数式 9でもよい。これによ り、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変 量判別式 (数式 7、数式 8、数式 9)で得られる判別値を利用して、肺癌のうちの腺癌 と非肺癌との 2群判別をさらに精度よく行うことができる。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0201] また、肺癌の評価方法によれば、多変量判別式は、ロジスティック回帰式、線形判 別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作 成された式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つ でもよい。これにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変 量判別式、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判 別式、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量
判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別、初期肺癌と非肺 癌との 2群判別、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことが できる。
[0202] 具体的には、ステップ SA— 13で肺癌または非肺癌であるか否かの判別を行う場合 には、多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変数とする口ジス ティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Valを変数とする線形判別式、または His, Glu, Pro, lie, Gin, Lysを変数とする口 ジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする線形判別式 でもよい。これにより、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる 多変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精 度よく fiうこと力 Sでさる。
[0203] また、ステップ SA— 13で肺癌であることおよびその病期、または非肺癌であるか否 かの判別を行う場合には、多変量判別式は、 Orn, Tau, Trpを変数とする口ジスティ ック回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変数とする線形判別式、ま たは Gin, Glu, His, Lys, Cys, ABAを変数とするロジスティック回帰式、または G1 n, Glu, Ala, His, Cys, ABAを変数とする線形判別式でもよい。これにより、初期 肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得ら れる判別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことがで きる。
[0204] また、ステップ SA— 13で肺癌のうち腺癌であること、または非肺癌であるか否かの 判別を行う場合には、多変量判別式は、 Orn, ABA, Tau, Glyを変数とする口ジス ティック回帰式、または Orn, ABA, Tau, His, Arg, Glyを変数とする線形判別式、 または His, lie, Glu, Pro, Leu, Ginを変数とするロジスティック回帰式、または His , lie, Pro, Ala, Leu, Ginを変数とする線形判別式でもよい。これにより、肺癌のう ちの腺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式で 得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく fiうこと力 Sでさる。
[0205] なお、上記した各多変量判別式は、本出願人による国際出願である国際公開 WO
2004/052191号パンフレットに記載の方法や、本出願人による国際出願である国 際出願番号 PCT/JP2006/304398に記載の方法(後述する第 2実施形態に記 載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量 判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単 位に因らず、当該多変量判別式を肺癌の状態の評価に好適に用いることができる。
[0206] [第 2実施形態]
[2- 1.本発明の概要]
ここでは、本発明にかかる肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌 評価プログラムおよび記録媒体の概要について、図 3を参照して説明する。図 3は本 発明の基本原理を示す原理構成図である。
[0207] まず、本発明は、制御部で、アミノ酸の濃度値に関する予め取得した評価対象 (例 えば動物ゃヒトなどの個体)のアミノ酸濃度データに含まれる Orn, Lys, ABA, Arg , Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃度値およびアミノ酸の 濃度を変数する記憶部で記憶した多変量判別式であって Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含むものに基 づいて、当該多変量判別式の値である判別値を算出する(ステップ S— 21)。
[0208] つぎに、本発明は、制御部で、ステップ S— 21で算出した判別値に基づいて、評価 対象につき肺癌の状態を評価する (ステップ S— 22)。
[0209] 以上、本発明によれば、アミノ酸の濃度値に関する予め取得した評価対象のァミノ 酸濃度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, I leのうち少なくとも 1つの濃度値およびアミノ酸の濃度を変数する記憶部で記憶した 多変量判別式であって Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, II eのうち少なくとも 1つを変数として含むものに基づいて判別値を算出し、算出した判 別値に基づいて評価対象につき肺癌の状態を評価する。これにより、血液中のアミノ 酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする多変量判別式 (肺癌 の状態と有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状 態を精度よく評価することができる。
[0210] ここで、ステップ S— 21において、多変量判別式は、年齢を変数としてさらに含んで
もよい。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃 度に加えてさらに年齢を変数とする多変量判別式 (肺癌の状態と特に有意な相関が ある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価 すること力 Sでさる。
[0211] また、ステップ S— 22では、ステップ S— 21で算出した判別値に基づいて、評価対 象につき、肺癌または非肺癌であるか否かを判別してもよい。具体的には、判別値と 予め設定された閾値 (カットオフ値)とを比較することで、評価対象につき、肺癌また は非肺癌であるか否力、を判別してもよい。これにより、肺癌と非肺癌との 2群判別に有 用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺 癌との 2群判別を精度よく行うことができる。
[0212] なお、ステップ S— 21において、多変量判別式は、 1つの分数式または複数の分数 式の和で表され、それを構成する分数式の分子および/または分母に Orn, Lys, A BA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含 んでもよい。具体的には、数式 1、数式 2または数式 3でもよい。これにより、肺癌と非 肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得られる 判別値を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行うことができる。具 体的には、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判 別式 (数式 1、数式 2、数式 3)で得られる判別値を利用して、肺癌と非肺癌との 2群判 另リをさらに精度よく fiうこと力 Sできる。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0213] また、ステップ S— 21において、多変量判別式は、ロジスティック回帰式、線形判別
式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成 された式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つで もよい。具体的には、多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変 数とするロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro , Tau, Trp, Valを変数とする泉形判別式、または His, Glu, Pro, lie, Gin, Lysを 変数とするロジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする 線形判別式でもよい。これにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を 用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさら に精度よく行うこと力できる。具体的には、肺癌と非肺癌との 2群判別に特に有用なァ ミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2 群判別をさらに精度よく行うことができる。
[0214] また、ステップ S— 22では、ステップ S— 21で算出した判別値に基づいて、評価対 象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別しても よい。具体的には、判別値と予め設定された閾値 (カットオフ値)とを比較することで、 評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別 してもよい。これにより、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用い る多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別を精 度よく fiうこと力 Sでさる。
[0215] なお、ステップ S— 21において、多変量判別式は、 1つの分数式または複数の分数 式の和で表され、それを構成する分数式の分子および/または分母に Orn, Lys, A BA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含 んでもよい。具体的には、多変量判別式は数式 4、数式 5または数式 6でもよい。これ により、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式 (分数式)で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精 度よく行うこと力 Sできる。具体的には、初期肺癌と非肺癌との 2群判別に特に有用なァ ミノ酸変数を用いる多変量判別式 (数式 4、数式 5、数式 6)で得られる判別値を利用 して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことができる。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
· · · (数式 4)
a X Gln/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c XABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0216] また、ステップ S— 21において、多変量判別式は、ロジスティック回帰式、線形判別 式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成 された式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つで もよい。具体的には、多変量判別式は、 Orn, Tau, Trpを変数とするロジスティック 回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変数とする線形判別式、または Gin, Glu, His, Lys, Cys, ABAを変数とするロジスティック回帰式、または Gin, G1 u, Ala, His, Cys, ABAを変数とする線形判別式でもよい。これにより、初期肺癌と 非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値 を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことができる。具体 的には、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量 判別式で得られる判別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よ く fiうこと力 Sでさる。
[0217] また、ステップ S— 22では、ステップ S— 21で算出した判別値に基づいて、評価対 象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい。 具体的には、判別値と予め設定された閾値 (カットオフ値)とを比較することで、評価 対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい 。これにより、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる 多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判 另リを精度よく fiうこと力でさる。
[0218] なお、ステップ S— 21において、多変量判別式は、 1つの分数式または複数の分数 式の和で表され、それを構成する分数式の分子および/または分母に Orn, Lys, A
BA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含 んでもよい。具体的には、多変量判別式は数式 7、数式 8または数式 9でもよい。これ により、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変 量判別式 (分数式)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2 群判別をさらに精度よく行うことができる。具体的には、肺癌のうちの腺癌と非肺癌と の 2群判別に特に有用なアミノ酸変数を用いる多変量判別式 (数式 7、数式 8、数式 9 )で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度 よく fiうこと力でさる。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0219] また、ステップ S— 21において、多変量判別式は、ロジスティック回帰式、線形判別 式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成 された式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つで もよい。具体的には、多変量判別式は、 Orn, ABA, Tau, Glyを変数とする口ジステ イツク回帰式、または Orn, ABA, Tau, His, Arg, Glyを変数とする線形判別式、ま たは His, lie, Glu, Pro, Leu, Ginを変数とするロジスティック回帰式、または His, I le, Pro, Ala, Leu, Ginを変数とする線形判別式でもよい。これにより、肺癌のうち の腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判別式で得られ る判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うこ と力できる。具体的には、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なァミノ 酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非 肺癌との 2群判別をさらに精度よく行うことができる。
[0220] なお、上記した各多変量判別式は、本出願人による国際出願である国際公開 WO
2004/052191号パンフレットに記載の方法や、本出願人による国際出願である国 際出願番号 PCT/JP2006/304398に記載の方法(後述する多変量判別式作成 処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力 データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変 量判別式を肺癌の状態の評価に好適に用いることができる。
[0221] また、分数式とは、当該分数式の分子がアミノ酸 A, B, C, · · ·の和で表わされ及び /又は当該分数式の分母がアミノ酸 a, b, c, · · ·の和で表わされるものである。また、 分数式には、このような構成の分数式 α , β , y , . · ·の和(例えば α + /3のようなも の)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母 に用いられるアミノ酸にはそれぞれ適当な係数がついても力、まわない。また、分子や 分母に用いられるアミノ酸は重複しても力、まわない。また、各分数式に適当な係数が ついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかま わない。また、分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、 目 的変数との相関の正負の符号は概して逆転する力 それらの相関性は保たれるので 、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わ せも、包含するものである。
[0222] また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例え ば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判 別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変 量判別式の和で示されるような式も含まれる。また、重回帰式、多重口ジスティック回 帰式、正準判別関数にお!/、ては各変数に係数および定数項が付加される力 この 場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判 別を行うために得られた係数および定数項の 99%信頼区間の範囲に属する値、さら に好ましくはデータから判別を行うために得られた係数および定数項の 95%信頼区 間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は 、それを実数倍したものでもよぐ定数項の値、及びその信頼区間は、それに任意の 実定数を加減乗除したものでもよレ、。
[0223] そして、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であ
るか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否か を判別する際、肺癌のうち腺癌であること、または非肺癌であるか否力、を判別する際) 、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発 現量、被験者の年齢'性別、生体指標などをさらに用いても力、まわない。また、本発 明は、肺癌の状態を評価する際 (具体的には、肺癌または非肺癌であるか否力、を判 別する際、肺癌であることおよびその病期、または非肺癌であるか否力、を判別する際 、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、多変量判別 式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃 度や、タンパク質の発現量、被験者の年齢'性別、生体指標などをさらに用いてもか まわない。
[0224] ここで、多変量判別式作成処理(工程 1〜工程 4)の概要について詳細に説明する
〇
[0225] まず、本発明は、制御部で、アミノ酸濃度データと肺癌の状態を表す指標に関する 肺癌状態指標データとを含む記憶部で記憶した肺癌状態情報力 所定の式作成手 法に基づいて、多変量判別式の候補である候補多変量判別式 (例えば、 y= a X + a
1 1 x + · · · + & x 、 y :肺癌状態指標データ、x :アミノ酸濃度データ、 a :定数、 i = l , 2
2 2 η η ι ι
, · · · , n)を作成する(工程 1)。なお、事前に、肺癌状態情報から欠損値や外れ値な どを持つデータを除去してもよレ、。
[0226] なお、工程 1にお!/、て、肺癌状態情報から、複数の異なる式作成手法(主成分分析 や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、 k me ans法、クラスター解析、決定木などの多変量解析に関するものを含む。)を併用して 複数の候補多変量判別式を作成してもよい。具体的には、多数の非肺癌群および肺 癌患者群から得た血液を分析して得たアミノ酸濃度データおよび肺癌状態指標デー タから構成される多変量データである肺癌状態情報に対して、複数の異なるアルゴリ ズムを利用して複数群の候補多変量判別式を同時並行的に作成してもょレ、。例えば 、異なるアルゴリズムを利用して判別分析およびロジスティック回帰分析を同時に行 い、 2つの異なる候補多変量判別式を作成してもよい。また、主成分分析を行って作 成した候補多変量判別式を利用して肺癌状態情報を変換し、変換した肺癌状態情
報に対して判別分析を行うことで候補多変量判別式を作成してもよい。これにより、 最終的に、診断条件に合った適切な多変量判別式を作成することができる。
[0227] ここで、主成分分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度デ ータの分散を最大にするような各アミノ酸変数力もなる一次式である。また、判別分析 を用いて作成した候補多変量判別式は、各群内の分散の和の全てのアミノ酸濃度デ ータの分散に対する比を最小にするような各アミノ酸変数からなる高次式 (指数や対 数を含む)である。また、サポートベクターマシンを用いて作成した候補多変量判別 式は、群間の境界を最大にするような各アミノ酸変数からなる高次式 (カーネル関数 を含む)である。また、重回帰分析を用いて作成した候補多変量判別式は、全てのァ ミノ酸濃度データからの距離の和を最小にするような各アミノ酸変数からなる高次式 である。ロジスティック回帰分析を用いて作成した候補多変量判別式は、尤度を最大 にするような各アミノ酸変数からなる一次式を指数とする自然対数を項に持つ分数式 である。また、 k means法とは、各アミノ酸濃度データの k個近傍を探索し、近傍点 の属する群の中で一番多いものをそのデータの所属群と定義し、入力されたアミノ酸 濃度データの属する群と定義された群とが最も合致するようなアミノ酸変数を選択す る手法である。また、クラスター解析とは、全てのアミノ酸濃度データの中で最も近い 距離にある点同士をクラスタリング (群化)する手法である。また、決定木とは、アミノ酸 変数に序列をつけて、序列が上位であるアミノ酸変数の取りうるパターンからアミノ酸 濃度データの群を予測する手法である。
[0228] 多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程 1で作成した候 補多変量判別式を、所定の検証手法に基づいて検証 (相互検証)する(工程 2)。候 補多変量判別式の検証は、工程 1で作成した各候補多変量判別式に対して行う。
[0229] なお、工程 2において、ブートストラップ法やホールドアウト法、リーブワンアウト法な どのうち少なくとも 1つに基づいて候補多変量判別式の判別率や感度、特異性、情 報量基準などのうち少なくとも 1つに関して検証してもよい。これにより、肺癌状態情 報や診断条件を考慮した予測性または堅牢性の高い候補多変量判別式を作成する こと力 Sでさる。
[0230] ここで、判別率とは、全入力データの中で、本発明で評価した肺癌の状態が正しい
割合である。また、感度とは、入力データに記載された肺癌に罹患しているものの中 で、本発明で評価した肺癌の状態が正しい割合である。また、特異性とは、入力デー タに記載された非肺癌になって!/、るもの(肺癌になって!/、な!/、もの)の中で、本発明 で評価した肺癌の状態が正しい割合である。また、情報量基準とは、工程 1で作成し た候補多変量判別式のアミノ酸変数の数と、本発明で評価した肺癌の状態および入 力データに記載された肺癌の状態の差異と、を足し合わせたものである。また、予測 性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性 を平均したものである。また、堅牢性とは、候補多変量判別式の検証を繰り返すこと で得られた判別率や感度、特異性の分散である。
[0231] 多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程 2での検証結果 力、ら所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、 候補多変量判別式を作成する際に用いる肺癌状態情報に含まれるアミノ酸濃度デ ータの組み合わせを選択する(工程 3)。アミノ酸変数の選択は、工程 1で作成した各 候補多変量判別式に対して行う。これにより、候補多変量判別式のアミノ酸変数を適 切に選択することができる。そして、工程 3で選択したアミノ酸濃度データを含む肺癌 状態情報を用いて再び工程 1を実行する。
[0232] なお、工程 3において、工程 2での検証結果からステップワイズ法、ベストパス法、近 傍探索法、遺伝的アルゴリズムのうち少なくとも 1つに基づいて候補多変量判別式の アミノ酸変数を選択してもよレ、。
[0233] ここで、ベストパス法とは、候補多変量判別式に含まれるアミノ酸変数を 1つずつ順 次減らしていき、候補多変量判別式が与える評価指標を最適化することでアミノ酸変 数を選択する方法である。
[0234] 多変量判別式作成処理の説明に戻り、本発明は、制御部で、上述した工程 1、ェ 程 2および工程 3を繰り返し実行し、これにより蓄積した検証結果に基づいて、複数の 候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出 することで、多変量判別式を作成する(工程 4)。なお、候補多変量判別式の選出に は、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選 出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とが
ある。
[0235] 以上、説明したように、多変量判別式作成処理では、肺癌状態情報に基づいて、 候補多変量判別式の作成、候補多変量判別式の検証および候補多変量判別式の 変数の選択に関する処理を一連の流れで体系化(システム化)して実行することによ り、肺癌の状態の評価に最適な多変量判別式を作成することができる。換言すると、 多変量判別式作成処理では、アミノ酸濃度を多変量の統計解析に用い、最適でロバ ストな変数の組を選択するために変数選択法とクロスバリデーシヨンとを組み合わせ て、診断性能の高い多変量判別式を抽出する。多変量判別式としては、口ジスティッ ク回帰、線形判別、サポートベクターマシン、マハラノビス距離法、重回帰分析、クラ スター解析などを用いることができる。
[0236] [2- 2.システム構成]
ここでは、第 2実施形態に力、かる肺癌評価システム(以下では本システムと記す場 合がある。)の構成について、図 4から図 20を参照して説明する。なお、本システムは あくまでも一例であり、本発明はこれに限定されない。
[0237] まず、本システムの全体構成について図 4および図 5を参照して説明する。図 4は 本システムの全体構成の一例を示す図である。また、図 5は本システムの全体構成の 他の一例を示す図である。本システムは、図 4に示すように、評価対象につき肺癌の 状態を評価する肺癌評価装置 100と、アミノ酸の濃度値に関する評価対象のアミノ酸 濃度データを提供するクライアント装置 200 (本発明の情報通信端末装置に相当)と を、ネットワーク 300を介して通信可能に接続して構成されている。
[0238] なお、本システムは、図 5に示すように、肺癌評価装置 100やクライアント装置 200 の他に、肺癌評価装置 100で多変量判別式を作成する際に用いる肺癌状態情報や 肺癌の状態を評価するために用いる多変量判別式などを格納したデータベース装 置 400を、ネットワーク 300を介して通信可能に接続して構成されてもよい。これによ り、ネットワーク 300を介して、肺癌評価装置 100からクライアント装置 200やデータ ベース装置 400へ、あるいはクライアント装置 200やデータベース装置 400から肺癌 評価装置 100へ、肺癌の状態に関する情報などが提供される。ここで、肺癌の状態 に関する情報とは、ヒトを含む生物の肺癌の状態に関する特定の項目について測定
した値に関する情報である。また、肺癌の状態に関する情報は、肺癌評価装置 100 やクライアント装置 200や他の装置 (例えば各種の計測装置等)で生成され、主にデ ータベース装置 400に蓄積される。
[0239] つぎに、本システムの肺癌評価装置 100の構成について図 6から図 18を参照して 説明する。図 6は、本システムの肺癌評価装置 100の構成の一例を示すブロック図で あり、該構成のうち本発明に関係する部分のみを概念的に示している。
[0240] 肺癌評価装置 100は、当該肺癌評価装置を統括的に制御する CPU等の制御部 1 02と、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して 当該肺癌評価装置をネットワーク 300に通信可能に接続する通信インターフェース 部 104と、各種のデータベースやテーブルやファイルなどを格納する記憶部 106と、 入力装置 112や出力装置 114に接続する入出力インターフェース部 108と、で構成 されており、これら各部は任意の通信路を介して通信可能に接続されている。ここで 、肺癌評価装置 100は、各種の分析装置 (例えばアミノ酸アナライザ一等)と同一筐 体で構成されてもよい。また、肺癌評価装置 100の分散'統合の具体的形態は図示 のものに限られず、その全部または一部を、各種の負荷等に応じた任意の単位で、 機能的または物理的に分散 ·統合して構成してもよい。例えば、処理の一部を CGI ( Common Gateway Interface)を用レヽ飞芙 してもよレヽ。
[0241] 記憶部 106は、ストレージ手段であり、例えば、 RAM 'ROM等のメモリ装置や、ノ、 ードディスクのような固定ディスク装置、フレキシブルディスク、光ディスク等を用いる こと力 Sできる。記憶部 106には、 OS (Operating System)と協働して CPUに命令 を与え各種処理を行うためのコンピュータプログラムが記録されている。記憶部 106 は、図示の如ぐ利用者情報ファイル 106aと、アミノ酸濃度データファイル 106bと、 肺癌状態情報ファイル 106cと、指定肺癌状態情報ファイル 106dと、多変量判別式 関連情報データベース 106eと、判別値ファイル 106fと、評価結果ファイル 106gと、 を格納する。
[0242] 利用者情報ファイル 106aは、利用者に関する利用者情報を格納する。図 7は、利 用者情報ファイル 106aに格納される情報の一例を示す図である。利用者情報フアイ ノレ 106aに格納される情報は、図 7に示すように、利用者を一意に識別するための利
用者 IDと、利用者が正当な者であるか否かの認証を行うための利用者パスワードと、 利用者の氏名と、利用者の所属する所属先を一意に識別するための所属先 IDと、 利用者の所属する所属先の部門を一意に識別するための部門 IDと、部門名と、禾 IJ 用者の電子メールアドレスと、を相互に関連付けて構成されている。
[0243] 図 6に戻り、アミノ酸濃度データファイル 106bは、アミノ酸の濃度値に関するァミノ 酸濃度データを格納する。図 8は、アミノ酸濃度データファイル 106bに格納される情 報の一例を示す図である。アミノ酸濃度データファイル 106bに格納される情報は、 図 8に示すように、評価対象である個体(サンプル)を一意に識別するための個体番 号と、アミノ酸濃度データとを相互に関連付けて構成されている。ここで、図 8では、ァ ミノ酸濃度データを数値、すなわち連続尺度として扱っている力 アミノ酸濃度データ は名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれ の状態に対して任意の数値を与えることで解析してもよい。また、アミノ酸濃度データ に、他の生体情報 (性差、年齢、身長、体重、 BMI指数、腹囲、インスリン抵抗性指 数、尿酸値、血糖値、中性脂肪、体脂肪率、総コレステロール、 HDLコレステロール 、 LDLコレステロール、収縮期血圧、拡張期血圧、ヘモグロビン Alc、動脈硬化指数 、喫煙の有無、喫煙指数、心電図の波形を数値化したもの、タンパク濃度、抗体濃度 、腫瘍マーカー量、酵素濃度、遺伝子発現量、アミノ酸以外の代謝物の濃度など)を 組み合わせてもよい。
[0244] 図 6に戻り、肺癌状態情報ファイル 106cは、多変量判別式を作成する際に用いる 肺癌状態情報を格納する。図 9は、肺癌状態情報ファイル 106cに格納される情報の 一例を示す図である。肺癌状態情報ファイル 106cに格納される情報は、図 9に示す ように、個体番号と、肺癌の状態を表す指標 (指標 T、指標 T、指標 T · · · )に関する
1 2 3
肺癌状態指標データ (τ)と、アミノ酸濃度データと、を相互に関連付けて構成されて いる。ここで、図 9では、肺癌状態指標データおよびアミノ酸濃度データを数値 (すな わち連続尺度)として扱っているが、肺癌状態指標データおよびアミノ酸濃度データ は名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれ の状態に対して任意の数値を与えることで解析してもよい。また、肺癌状態指標デー タは、肺癌の状態のマーカーとなる既知の単一の状態指標であり、数値データを用
いてもよい。
[0245] 図 6に戻り、指定肺癌状態情報ファイル 106dは、後述する肺癌状態情報指定部 1 02gで指定した肺癌状態情報を格納する。図 10は、指定肺癌状態情報ファイル 106 dに格納される情報の一例を示す図である。指定肺癌状態情報ファイル 106dに格納 される情報は、図 10に示すように、個体番号と、指定した肺癌状態指標データと、指 定したアミノ酸濃度データと、を相互に関連付けて構成されて!/、る。
[0246] 図 6に戻り、多変量判別式関連情報データベース 106eは、後述する候補多変量 判別式作成部 102Mで作成した候補多変量判別式を格納する候補多変量判別式 ファイル 106elと、後述する候補多変量判別式検証部 102h2での検証結果を格納 する検証結果ファイル 106e2と、後述する変数選択部 102h3で選択したアミノ酸濃 度データの組み合わせを含む肺癌状態情報を格納する選択肺癌状態情報フアイノレ 106e3と、後述する多変量判別式作成部 102hで作成した多変量判別式を格納する 多変量判別式ファイル 106e4と、で構成される。
[0247] 候補多変量判別式ファイル 106elは、後述する候補多変量判別式作成部 102hl で作成した候補多変量判別式を格納する。図 11は、候補多変量判別式ファイル 10 6e lに格納される情報の一例を示す図である。候補多変量判別式ファイル 106elに 格納される情報は、図 1 1に示すように、ランクと、候補多変量判別式(図 11では、 F (
1
Gly, Leu, Phe, · · · )や F (Gly, Leu, Phe, - - - ) ^ F (Gly, Leu, Phe, · · · )など)
2 3
とを相互に関連付けて構成されている。
[0248] 図 6に戻り、検証結果ファイル 106e2は、後述する候補多変量判別式検証部 102h 2での検証結果を格納する。図 12は、検証結果ファイル 106e2に格納される情報の 一例を示す図である。検証結果ファイル 106e2に格納される情報は、図 12に示すよ うに、ランクと、候補多変量判別式(図 12では、 F (Gly, Leu, Phe, · · · )や F (Gly
k m
, Leu, Phe, · · · )、 F (Gly, Leu, Phe, · · · )など)と、各候補多変量判別式の検証 結果 (例えば各候補多変量判別式の評価値)と、を相互に関連付けて構成されてい
[0249] 図 6に戻り、選択肺癌状態情報ファイル 106e3は、後述する変数選択部 102h3で 選択した変数に対応するアミノ酸濃度データの組み合わせを含む肺癌状態情報を
格納する。図 13は、選択肺癌状態情報ファイル 106e3に格納される情報の一例を 示す図である。選択肺癌状態情報ファイル 106e3に格納される情報は、図 13に示す ように、個体番号と、後述する肺癌状態情報指定部 102gで指定した肺癌状態指標 データと、後述する変数選択部 102h3で選択したアミノ酸濃度データと、を相互に関 連付けて構成されている。
[0250] 図 6に戻り、多変量判別式ファイル 106e4は、後述する多変量判別式作成部 102h で作成した多変量判別式を格納する。図 14は、多変量判別式ファイル 106e4に格 納される情報の一例を示す図である。多変量判別式ファイル 106e4に格納される情 報は、図 14に示すように、ランクと、多変量判別式(図 14では、 F (Phe, · · · )や F (
P P
Gly, Leu, Phe)、 F (Gly, Leu, Phe, · · · )など)と、各式作成手法に対応する閾値 k
と、各多変量判別式の検証結果 (例えば各多変量判別式の評価値)と、を相互に関 連付けて構成されている。
[0251] 図 6に戻り、判別値ファイル 106fは、後述する判別値算出部 102iで算出した判別 値を格納する。図 15は、判別値ファイル 106fに格納される情報の一例を示す図であ る。判別値ファイル 106fに格納される情報は、図 15に示すように、評価対象である 個体 (サンプル)を一意に識別するための個体番号と、ランク(多変量判別式を一意 に識別するための番号)と、判別値と、を相互に関連付けて構成されている。
[0252] 図 6に戻り、評価結果ファイル 106gは、後述する判別値基準評価部 10¾での評価 結果 (具体的には、後述する判別値基準判別部 10¾ 1での判別結果)を格納する。 図 16は、評価結果ファイル 106gに格納される情報の一例を示す図である。評価結 果ファイル 106gに格納される情報は、評価対象である個体(サンプル)を一意に識 別するための個体番号と、予め取得した評価対象のアミノ酸濃度データと、多変量判 別式で算出した判別値と、肺癌の状態に関する評価結果 (具体的には、肺癌または 非肺癌であるか否かに関する判別結果、肺癌であることおよびその病期、または非 肺癌であるか否かに関する判別結果、肺癌のうち腺癌であること、または非肺癌であ るか否かに関する判別結果)と、を相互に関連付けて構成されている。
[0253] 図 6に戻り、記憶部 106には、上述した情報以外にその他情報として、 Webサイトを クライアント装置 200に提供するための各種の Webデータや、 CGIプログラム等が記
録されて!/、る。 Webデータとしては後述する各種の Webページを表示するためのデ ータ等があり、これらデータは例えば HTMLや XMLで記述されたテキストファイルと して形成されている。また、 Webデータを作成するための部品用のファイルや作業用 のファイルやその他一時的なファイル等も記憶部 106に記憶される。記憶部 106に は、必要に応じて、クライアント装置 200に送信するための音声を WAVE形式や AIF F形式の如き音声ファイルで格納したり、静止画や動画を JPEG形式や MPEG2形式 の如き画像ファイルで格納したりすることができる。
[0254] 通信インターフェース部 104は、肺癌評価装置 100とネットワーク 300 (またはルー タ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース 部 104は、他の端末と通信回線を介してデータを通信する機能を有する。
[0255] 入出力インターフェース部 108は、入力装置 112や出力装置 114に接続する。ここ で、出力装置 114には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用 いることができる(なお、以下では、出力装置 114をモニタ 114として記載する場合が ある。)。入力装置 112には、キーボードやマウスやマイクの他、マウスと協働してボイ ンティングデバイス機能を実現するモニタを用いることができる。
[0256] 制御部 102は、 OS (Operating System)等の制御プログラム.各種の処理手順 等を規定したプログラム '所要データなどを格納するための内部メモリを有し、これら のプログラムに基づいて種々の情報処理を実行する。制御部 102は、図示の如ぐ 大別して、要求解釈部 102aと閲覧処理部 102bと認証処理部 102cと電子メール生 成部 102dと Webページ生成部 102eと受信部 102fと肺癌状態情報指定部 102gと 多変量判別式作成部 102hと判別値算出部 102iと判別値基準評価部 10¾と結果出 力部 102kと送信部 102mとを備えている。制御部 102は、データベース装置 400か ら送信された肺癌状態情報やクライアント装置 200から送信されたアミノ酸濃度デー タに対して、欠損値のあるデータの除去 ·外れ値の多いデータの除去 ·欠損値のある データの多!/、変数の除去などのデータ処理も行う。
[0257] 要求解釈部 102aは、クライアント装置 200やデータベース装置 400からの要求内 容を解釈し、その解釈結果に応じて制御部 102の各部に処理を受け渡す。閲覧処 理部 102bは、クライアント装置 200からの各種画面の閲覧要求を受けて、これら画
面の Webデータの生成や送信を行なう。認証処理部 102cは、クライアント装置 200 やデータベース装置 400からの認証要求を受けて、認証判断を行う。電子メール生 成部 102dは、各種の情報を含んだ電子メールを生成する。 Webページ生成部 102 eは、利用者がクライアント装置 200で閲覧する Webページを生成する。
[0258] 受信部 102fは、クライアント装置 200やデータベース装置 400から送信された情報
(具体的には、アミノ酸濃度データや肺癌状態情報、多変量判別式など)を、ネットヮ ーク 300を介して受信する。肺癌状態情報指定部 102gは、多変量判別式を作成す るにあたり、対象とする肺癌状態指標データおよびアミノ酸濃度データを指定する。
[0259] 多変量判別式作成部 102hは、受信部 102fで受信した肺癌状態情報や肺癌状態 情報指定部 102gで指定した肺癌状態情報に基づいて多変量判別式を作成する。 具体的には、多変量判別式作成部 102hは、肺癌状態情報から、候補多変量判別 式作成部 102h 1、候補多変量判別式検証部 102h2および変数選択部 102h3を繰 り返し実行させることにより蓄積された検証結果に基づいて、複数の候補多変量判別 式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変 量判別式を作成する。
[0260] なお、多変量判別式が予め記憶部 106の所定の記憶領域に格納されて!/、る場合 には、多変量判別式作成部 102hは、記憶部 106から所望の多変量判別式を選択 することで、多変量判別式を作成してもよい。また、多変量判別式作成部 102hは、 多変量判別式を予め格納した他のコンピュータ装置 (例えばデータベース装置 400) 力、ら所望の多変量判別式を選択しダウンロードすることで、多変量判別式を作成して あよい。
[0261] ここで、多変量判別式作成部 102hの構成について図 17を参照して説明する。図 1 7は、多変量判別式作成部 102hの構成を示すブロック図であり、該構成のうち本発 明に関係する部分のみを概念的に示している。多変量判別式作成部 102hは、候補 多変量判別式作成部 102hlと、候補多変量判別式検証部 102h2と、変数選択部 1 02h3と、をさらに備えている。候補多変量判別式作成部 102Mは、肺癌状態情報 力、ら所定の式作成手法に基づいて多変量判別式の候補である候補多変量判別式を 作成する。なお、候補多変量判別式作成部 102Mは、肺癌状態情報から、複数の
異なる式作成手法を併用して複数の候補多変量判別式を作成してもよい。候補多変 量判別式検証部 102h2は、候補多変量判別式作成部 102h 1で作成した候補多変 量判別式を所定の検証手法に基づいて検証する。なお、候補多変量判別式検証部 102h2は、ブートストラップ法、ホールドアウト法、リーブワンアウト法のうち少なくとも 1 つに基づいて候補多変量判別式の判別率、感度、特異性、情報量基準のうち少なく とも 1つに関して検証してもよい。変数選択部 102h3は、候補多変量判別式検証部 1 02h2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数 を選択することで、候補多変量判別式を作成する際に用いる肺癌状態情報に含まれ るアミノ酸濃度データの組み合わせを選択する。なお、変数選択部 102h3は、検証 結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少 なくとも 1つに基づいて候補多変量判別式の変数を選択してもよい。
[0262] 図 6に戻り、判別値算出部 102iは、受信部 102fで受信した評価対象のアミノ酸濃 度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieの うち少なくとも 1つの濃度値および多変量判別式作成部 102hで作成した Orn, Lys , ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含 む多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する。
[0263] ここで、多変量判別式は、 1つの分数式または複数の分数式の和で表され、それを 構成する分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, T au, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含んでもよい。
[0264] 具体的には、多変量判別式は数式 1、数式 2または数式 3でもよい。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
[0265] また、多変量判別式は数式 4、数式 5または数式 6でもよい。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
· · · (数式 4)
a X Gln/ (Cit + His) - b X (Glu + ABA) / (Cys2) +
(数式 5)
IS b X Glu c X ABA/Cys + d X Lys/Val + e
6 6 '
• (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0266] また、多変量判別式は数式 7、数式 8または数式 9でもよい。
b_ X Tau/Arg + c …(数式 7)
(Glu + Pro) /His b X (ABA+ Lys)
(数式 8)
b n c X Ile/Leu + d X Tyr/Ala e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0267] また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式の!/、ずれか 1つでもよ!/、。
[0268] 具体的には、多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変数とす るロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau , Trp, Valを変数とする線形判別式、または His, Glu, Pro, lie, Gin, Lysを変数と するロジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする線形 判別式でもよい。
[0269] また、多変量判別式は、 Orn, Tau, Trpを変数とするロジスティック回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変数とする泉形判別式、または Gin, Glu, His , Lys, Cvs, ABAを変数とするロジスティック回帰式、または Gin, Glu, Ala, His,
Cys, ABAを変数とする線形判別式でもよレ、。
[0270] また、多変量判別式は、 Orn, ABA, Tau, Glyを変数とするロジスティック回帰式、 または Orn, ABA, Tau, His, Arg, Glyを変数とする線形判別式、または His, lie , Glu, Pro, Leu, Ginを変数とするロジスティック回帰式、または His, lie, Pro, Ala , Leu, Ginを変数とする線形判別式でもよい。
[0271] 図 6の説明に戻り、判別値基準評価部 10¾は、判別値算出部 102iで算出した判 別値に基づいて評価対象につき肺癌の状態を評価する。判別値基準評価部 10¾は 、判別値基準判別部 10¾ 1をさらに備えている。ここで、判別値基準評価部 10¾の 構成について図 18を参照して説明する。図 18は、判別値基準評価部 10¾の構成を 示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示してい る。判別値基準判別部 10¾ 1は、判別値に基づいて評価対象につき、肺癌または非 肺癌であるか否かの判別、肺癌であることおよびその病期、または非肺癌であるか否 かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う。具 体的には、判別値基準判別部 10¾ 1は、判別値と予め設定された閾値 (カットオフ値 )とを比較することで、評価対象につき、肺癌または非肺癌であるか否かの判別、肺 癌であることおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌で あること、または非肺癌であるか否かの判別を行う。
[0272] 図 6に戻り、結果出力部 102kは、制御部 102の各処理部での処理結果(判別値基 準評価部 10¾での評価結果 (具体的には判別値基準判別部 10¾ 1での判別結果) を含む)等を出力装置 114に出力する。
[0273] 送信部 102mは、評価対象のアミノ酸濃度データの送信元のクライアント装置 200 に対して評価結果を送信したり、データベース装置 400に対して、肺癌評価装置 10 0で作成した多変量判別式や評価結果を送信したりする。
[0274] つぎに、本システムのクライアント装置 200の構成について図 19を参照して説明す る。図 19は、本システムのクライアント装置 200の構成の一例を示すブロック図であり 、該構成のうち本発明に関係する部分のみを概念的に示して!/、る。
[0275] クライアント装置 200は、制御部 210と ROM220と HD230と RAM240と入力装置
250と出力装置 260と入出力 IF270と通信 IF280とで構成されており、これら各部は
任意の通信路を介して通信可能に接続されている。
[0276] 制御部 210は、 Webブラウザ 211、電子メーラ 212、受信部 213、送信部 214を備 えている。 Webブラウザ 211は、 Webデータを解釈し、解釈した Webデータを後述す るモニタ 261に表示するブラウズ処理を行う。なお、 Webブラウザ 211には、ストリー ム映像の受信 ·表示'フィードバック等を行う機能を備えたストリームプレイヤ等の各種 のソフトウェアをプラグインしてもよい。電子メーラ 212は、所定の通信規約(例えば、 SMTP (Simple Mail Transfer Protocol)や POP3 (Post Office Protocol version 3)等)に従って電子メールの送受信を行う。受信部 213は、通信 IF280 を介して、肺癌評価装置 100から送信された評価結果などの各種情報を受信する。 送信部 214は、通信 IF280を介して、評価対象のアミノ酸濃度データなどの各種情 報を肺癌評価装置 100へ送信する。
[0277] 入力装置 250はキーボードやマウスやマイク等である。なお、後述するモニタ 261も マウスと協働してポインティングデバイス機能を実現する。出力装置 260は、通信 IF2 80を介して受信した情報を出力する出力手段であり、モニタ(家庭用テレビを含む) 2 61およびプリンタ 262を含む。この他、出力装置 260にスピーカ等を設けてもよい。 入出力 IFは入力装置 250や出力装置 260に接続する。
[0278] 通信 IF280は、クライアント装置 200とネットワーク 300 (またはルータ等の通信装 置)とを通信可能に接続する。換言すると、クライアント装置 200は、モデムや TAや ルータなどの通信装置および電話回線を介して、または専用線を介してネットワーク 300に接続される。これにより、クライアント装置 200は、所定の通信規約に従って肺 癌評価装置 100にアクセスすることができる。
[0279] ここで、プリンタ'モニタ'イメージスキャナ等の周辺装置を必要に応じて接続した情 報処理装置(例えば、既知のパーソナルコンピュータ 'ワークステーション '家庭用ゲ ーム装置'インターネット TV'PHS端末 ·携帯端末 ·移動体通信端末 'PDA等の情 報処理端末など)に、 Webデータのブラウジング機能や電子メール機能を実現させる ソフトウェア (プログラム、データ等を含む)を実装することにより、クライアント装置 200 を実現してもよい。
[0280] また、クライアント装置 200の制御部 210は、制御部 210で行う処理の全部または
任意の一部を、 CPUおよび当該 CPUにて解釈して実行するプログラムで実現しても よい。 ROM220または HD230には、 OS (Operating System)と協働して CPUに 命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。当該コ ンピュータプログラムは、 RAM240にロードされることで実行され、 CPUと協働して 制御部 210を構成する。また、当該コンピュータプログラムは、クライアント装置 200と 任意のネットワークを介して接続されるアプリケーションプログラムサーバに記録され てもよく、クライアント装置 200は、必要に応じてその全部または一部をダウンロードし てもよい。また、制御部 210で行う処理の全部または任意の一部を、ワイヤードロジッ ク等によるハードウェアで実現してもよい。
[0281] つぎに、本システムのネットワーク 300について図 4、図 5を参照して説明する。ネッ トワーク 300は、肺癌評価装置 100とクライアント装置 200とデータベース装置 400と を相互に通信可能に接続する機能を有し、例えばインターネットやイントラネットや L AN (有線/無線の双方を含む)等である。なお、ネットワーク 300は、 VANや、パソ コン通信網や、公衆電話網(アナログ/デジタルの双方を含む)や、専用回線網(ァ ナログ/デジタルの双方を含む)や、 CATV網や、携帯回線交換網または携帯パケ ット交換網(IMT2000方式、 GSM方式または PDC/PDC— P方式等を含む)や、 無線呼出網や、 Bluetooth (登録商標)等の局所無線網や、 PHS網や、衛星通信網 (CS、 BSまたは ISDB等を含む)等でもよい。
[0282] つぎに、本システムのデータベース装置 400の構成について図 20を参照して説明 する。図 20は、本システムのデータベース装置 400の構成の一例を示すブロック図 であり、該構成のうち本発明に関係する部分のみを概念的に示している。
[0283] データベース装置 400は、肺癌評価装置 100または当該データベース装置で多変 量判別式を作成する際に用いる肺癌状態情報や、肺癌評価装置 100で作成した多 変量判別式、肺癌評価装置 100での評価結果などを格納する機能を有する。図 20 に示すように、データベース装置 400は、当該データベース装置を統括的に制御す る CPU等の制御部 402と、ルータ等の通信装置および専用線等の有線または無線 の通信回路を介して当該データベース装置をネットワーク 300に通信可能に接続す る通信インターフェース部 404と、各種のデータベースやテーブルやファイル(例え
ば Webページ用ファイル)などを格納する記憶部 406と、入力装置 412や出力装置 4 14に接続する入出力インターフェース部 408と、で構成されており、これら各部は任 意の通信路を介して通信可能に接続されている。
[0284] 記憶部 406は、ストレージ手段であり、例えば、 RAM 'ROM等のメモリ装置や、ノ、 ードディスクのような固定ディスク装置や、フレキシブルディスクや、光ディスク等を用 いること力 Sできる。記憶部 406には、各種処理に用いる各種プログラム等を格納する 。通信インターフェース部 404は、データベース装置 400とネットワーク 300 (または ルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフエ ース部 404は、他の端末と通信回線を介してデータを通信する機能を有する。入出 力インターフェース部 408は、入力装置 412や出力装置 414に接続する。ここで、出 力装置 414には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いること ができる(なお、以下で、出力装置 414をモニタ 414として記載する場合がある。)。ま た、入力装置 412には、キーボードやマウスやマイクの他、マウスと協働してポインテ イングデバイス機能を実現するモニタを用いることができる。
[0285] 制御部 402は、 OS (Operating System)等の制御プログラム.各種の処理手順 等を規定したプログラム '所要データなどを格納するための内部メモリを有し、これら のプログラムに基づいて種々の情報処理を実行する。制御部 402は、図示の如ぐ 大別して、要求解釈部 402aと閲覧処理部 402bと認証処理部 402cと電子メール生 成咅 402dと Webページ生成き 402eと送信き 402fとを備えている。
[0286] 要求解釈部 402aは、肺癌評価装置 100からの要求内容を解釈し、その解釈結果 に応じて制御部 402の各部に処理を受け渡す。閲覧処理部 402bは、肺癌評価装置 100からの各種画面の閲覧要求を受けて、これら画面の Webデータの生成や送信を 行う。認証処理部 402cは、肺癌評価装置 100からの認証要求を受けて、認証判断 を行う。電子メール生成部 402dは、各種の情報を含んだ電子メールを生成する。 W ebページ生成部 402eは、利用者がクライアント装置 200で閲覧する Webページを 生成する。送信部 402fは、肺癌状態情報や多変量判別式などの各種情報を、肺癌 評価装置 100へ送信する。
[0287] [2 - 3.本システムの処理]
ここでは、以上のように構成された本システムで行われる肺癌評価サービス処理の 一例を、図 21を参照して説明する。図 21は、肺癌評価サービス処理の一例を示すフ ローチャートである。
[0288] なお、本処理で用いるアミノ酸濃度データは、個体から予め採取した血液を分析し て得たアミノ酸の濃度値に関するものである。ここで、血液中のアミノ酸の分析方法に ついて簡単に説明する。まず、採血した血液サンプルを、へパリン処理したチューブ に採取し、その後、当該チューブに対して遠心分離を行うことで血漿を分離する。な お、分離したすべての血漿サンプルは、アミノ酸濃度の測定時まで 70°Cで凍結保 存する。そして、アミノ酸濃度の測定時に、血漿サンプルに対してスルホサリチル酸を 添加し、 3%濃度調整により除蛋白処理を行う。なお、アミノ酸濃度の測定には、ボス トカラムでニンヒドリン反応を用いた高速液体クロマトグラフィー(HPLC)を原理とした アミノ酸分析機を使用した。
[0289] まず、 Webブラウザ 211を表示した画面上で利用者が入力装置 250を介して肺癌 評価装置 100が提供する Webサイトのアドレス(URLなど)を指定すると、クライアント 装置 200は肺癌評価装置 100へアクセスする。具体的には、利用者がクライアント装 置 200の Webブラウザ 211の画面更新を指示すると、 Webブラウザ 211は、肺癌評 価装置 100が提供する Webサイトのアドレスを所定の通信規約で肺癌評価装置 100 へ送信することで、アミノ酸濃度データ送信画面に対応する Webページの送信要求 を、当該アドレスに基づくルーティングで肺癌評価装置 100へ行う。
[0290] つぎに、肺癌評価装置 100は、要求解釈部 102aで、クライアント装置 200からの送 信を受け、当該送信の内容を解析し、解析結果に応じて制御部 102の各部に処理を 移す。具体的には、送信の内容がアミノ酸濃度データ送信画面に対応する Webぺー ジの送信要求であった場合、肺癌評価装置 100は、主として閲覧処理部 102bで、 記憶部 106の所定の記憶領域に格納されている当該 Webページを表示するための Webデータを取得し、取得した Webデータをクライアント装置 200へ送信する。より 具体的には、利用者からアミノ酸濃度データ送信画面に対応する Webページの送信 要求があった場合、肺癌評価装置 100は、まず、制御部 102で、利用者 IDや利用者 パスワードの入力を利用者に対して求める。そして、利用者 IDやパスワードが入力さ
れると、肺癌評価装置 100は、認証処理部 102cで、入力された利用者 IDやパスヮ ードと利用者情報ファイル 106aに格納されている利用者 IDや利用者パスワードとの 認証判断を行う。そして、肺癌評価装置 100は、認証可の場合にのみ、閲覧処理部 102bで、アミノ酸濃度データ送信画面に対応する Webページを表示するための We bデータをクライアント装置 200へ送信する。なお、クライアント装置 200の特定は、ク ライアント装置 200から送信要求と共に送信された IPアドレスで行う。
[0291] つぎに、クライアント装置 200は、肺癌評価装置 100から送信された Webデータ(ァ ミノ酸濃度データ送信画面に対応する Webページを表示するためのもの)を受信部 213で受信し、受信した Webデータを Webブラウザ 211で解釈し、モニタ 261にアミ ノ酸濃度データ送信画面を表示する。
[0292] つぎに、モニタ 261に表示されたアミノ酸濃度データ送信画面に対し利用者が入力 装置 250を介して個体のアミノ酸濃度データなどを入力 ·選択すると、クライアント装 置 200は、送信部 214で、入力情報や選択事項を特定するための識別子を肺癌評 価装置 100へ送信することで、評価対象の個体のアミノ酸濃度データを肺癌評価装 置 100へ送信する(ステップ SA— 21)。なお、ステップ SA— 21におけるアミノ酸濃 度データの送信は、 FTP等の既存のファイル転送技術等により実現してもよい。
[0293] つぎに、肺癌評価装置 100は、要求解釈部 102aで、クライアント装置 200から送信 された識別子を解釈することによりクライアント装置 200の要求内容を解釈し、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数と して含む肺癌評価用(具体的には、肺癌と非肺癌との 2群判別用、初期肺癌と非肺 癌との 2群判別用、肺癌のうちの腺癌と非肺癌との 2群判別用)の多変量判別式の送 信要求をデータベース装置 400へ行う。
[0294] つぎに、データベース装置 400は、要求解釈部 402aで、肺癌評価装置 100からの 送信要求を解釈し、記憶部 406の所定の記憶領域に格納した、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含む多変 量判別式 (例えばアップデートされた最新のもの)を肺癌評価装置 100へ送信する( ステップ SA— 22)。
[0295] ここで、ステップ SA— 22において、肺癌評価装置 100へ送信する多変量判別式
は、 1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子 および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lie のうち少なくとも 1つを変数として含んでもよい。
[0296] 具体的には、後述するステップ SA— 26で肺癌または非肺癌であるか否かの判別 を行う場合には、多変量判別式は数式 1、数式 2または数式 3でもよい。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
··· (数式 1)
a XGlu/Tyr + b X (Pro + Lys) /(lie + His) + c
2 2 2
··· (数式 2)
a X His/Lys + b X Glu/lle + c XTyr/Pro + d XVal/Leu +
3 3 3 3
e ··· (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0297] また、後述するステップ SA— 26で肺癌であることおよびその病期、または非肺癌で あるか否かの判別を行う場合には、多変量判別式は数式 4、数式 5または数式 6でも よい。
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
··· (数式 4)
a X Gin/ (Cit + His) + b X (Glu + ABA)/(Cys2) + c
5 5 5
··· (数式 5)
a X Gin/His + b XGlu + c XABA/Cys + d X Lys/Val + e
6 6 6 6 6
··· (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0298] また、後述するステップ SA— 26で肺癌のうち腺癌であること、または非肺癌である か否かの判別を行う場合には、多変量判別式は数式 7、数式 8または数式 9でもよい a X Orn/Trp + b XTau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lys) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0299] また、ステップ SA— 22において、肺癌評価装置 100へ送信する多変量判別式は、 ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された 式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で 作成された式のレ、ずれか 1つでもよレ、。
[0300] 具体的には、ステップ SA— 26で肺癌または非肺癌であるか否かの判別を行う場合 には、多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変数とする口ジス ティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Valを変数とする線形判別式、または His, Glu, Pro, lie, Gin, Lysを変数とする口 ジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする線形判別式 でもよい。
[0301] また、ステップ SA— 26で肺癌であることおよびその病期、または非肺癌であるか否 かの判別を行う場合には、多変量判別式は、 Orn, Tau, Trpを変数とする口ジスティ ック回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変数とする線形判別式、ま たは Gin, Glu, His, Lys, Cys, ABAを変数とするロジスティック回帰式、または G1 n, Glu, Ala, His, Cys, ABAを変数とする線形判別式でもよい。
[0302] また、ステップ SA— 26で肺癌のうち腺癌であること、または非肺癌であるか否かの 判別を行う場合には、多変量判別式は、 Orn, ABA, Tau, Glyを変数とする口ジス ティック回帰式、または Orn, ABA, Tau, His, Arg, Glyを変数とする線形判別式、 または His, lie, Glu, Pro, Leu, Ginを変数とするロジスティック回帰式、または His , lie, Pro, Ala, Leu, Ginを変数とする線形判別式でもよい。
[0303] 図 21の説明に戻り、肺癌評価装置 100は、受信部 102fで、クライアント装置 200か ら送信された個体のアミノ酸濃度データおよびデータベース装置 400から送信された
多変量判別式を受信し、受信したアミノ酸濃度データをアミノ酸濃度データファイル 1 06bの所定の記憶領域に格納すると共に、受信した多変量判別式を多変量判別式 ファイル 106e4の所定の記憶領域に格納する(ステップ SA— 23)。
[0304] つぎに、肺癌評価装置 100は、制御部 102で、ステップ SA— 23で受信した個体の アミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップ SA— 24)
〇
[0305] つぎに、肺癌評価装置 100は、判別値算出部 102iで、ステップ SA— 24で欠損値 や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれる Orn, Lys , ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃度値お よびステップ SA— 23で受信した多変量判別式に基づいて、判別値を算出する (ステ ップ SA—25)。
[0306] つぎに、肺癌評価装置 100は、判別値基準判別部 10¾ 1で、ステップ SA— 25で 算出した判別値と予め設定された閾値 (カットオフ値)とを比較することで、個体につ き、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその病期、または 非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否か の判別の!/、ずれかを行い、その判別結果を評価結果ファイル 106gの所定の記憶領 域に格納する(ステップ SA— 26)。
[0307] つぎに、肺癌評価装置 100は、送信部 102mで、ステップ SA— 26で得た判別結 果 (肺癌または非肺癌であるか否かに関する判別結果、肺癌であることおよびその病 期、または非肺癌であるか否かに関する判別結果、肺癌のうち腺癌であること、また は非肺癌であるか否かに関する判別結果)を、アミノ酸濃度データの送信元のクライ アント装置 200とデータベース装置 400とへ送信する(ステップ SA— 27)。具体的に は、まず、肺癌評価装置 100は、 Webページ生成部 102eで、判別結果を表示する ための Webページを作成し、作成した Webページに対応する Webデータを記憶部 1 06の所定の記憶領域に格納する。ついで、利用者がクライアント装置 200の Webブ ラウザ 211に入力装置 250を介して所定の URLを入力し上述した認証を経た後、ク ライアント装置 200は、当該 Webページの閲覧要求を肺癌評価装置 100へ送信する 。ついで、肺癌評価装置 100は、閲覧処理部 102bで、クライアント装置 200から送
信された閲覧要求を解釈し、判別結果を表示するための Webページに対応する We bデータを記憶部 106の所定の記憶領域から読み出す。そして、肺癌評価装置 100 は、送信部 102mで、読み出した Webデータをクライアント装置 200へ送信すると共 に、当該 Webデータ又は判別結果をデータベース装置 400へ送信する。
[0308] ここで、ステップ SA— 27において、肺癌評価装置 100は、制御部 102で、判別結 果を電子メールで利用者のクライアント装置 200へ通知してもよい。具体的には、ま ず、肺癌評価装置 100は、電子メール生成部 102dで、利用者 IDなどを基にして利 用者情報ファイル 106aに格納されている利用者情報を送信タイミングに従って参照 し、利用者の電子メールアドレスを取得する。ついで、肺癌評価装置 100は、電子メ ール生成部 102dで、取得した電子メールアドレスを宛て先とし利用者の氏名および 判別結果を含む電子メールに関するデータを生成する。ついで、肺癌評価装置 100 は、送信部 102mで、生成した当該データを利用者のクライアント装置 200へ送信す
[0309] また、ステップ SA— 27において、肺癌評価装置 100は、 FTP等の既存のファイル 転送技術等で、判別結果を利用者のクライアント装置 200へ送信してもよ!/、。
[0310] 図 21の説明に戻り、データベース装置 400は、制御部 402で、肺癌評価装置 100 から送信された判別結果または Webデータを受信し、受信した判別結果または Web データを記憶部 406の所定の記憶領域に保存(蓄積)する(ステップ SA— 28)。
[0311] また、クライアント装置 200は、受信部 213で、肺癌評価装置 100から送信された W ebデータを受信し、受信した Webデータを Webブラウザ 211で解釈し、個体の判別 結果が記された Webページの画面をモニタ 261に表示する(ステップ SA— 29)。な お、判別結果が肺癌評価装置 100から電子メールで送信された場合には、クライア ント装置 200は、電子メーラ 212の公知の機能で、肺癌評価装置 100から送信され た電子メールを任意のタイミングで受信し、受信した電子メールをモニタ 261に表示 する。
[0312] 以上により、利用者は、モニタ 261に表示された Webページを閲覧することで、肺 癌と非肺癌との 2群判別に関する個体の判別結果、初期肺癌と非肺癌との 2群判別 に関する個体の判別結果、肺癌のうちの腺癌と非肺癌との 2群判別に関する個体の
判別結果を確認することができる。なお、利用者は、モニタ 261に表示された Webぺ ージの表示内容をプリンタ 262で印刷してもよい。
[0313] また、判別結果が肺癌評価装置 100から電子メールで送信された場合には、利用 者は、モニタ 261に表示された電子メールを閲覧することで、肺癌と非肺癌との 2群 判別に関する個体の判別結果、初期肺癌と非肺癌との 2群判別に関する個体の判 別結果、肺癌のうちの腺癌と非肺癌との 2群判別に関する個体の判別結果を確認す ること力 Sできる。利用者は、モニタ 261に表示された電子メールの表示内容をプリンタ 262で印刷してもよい。
[0314] これにて、肺癌評価サービス処理の説明を終了する。
[0315] [2-4.第 2実施形態のまとめ、およびその他の実施形態]
以上、詳細に説明したように、肺癌評価システムによれば、クライアント装置 200は 個体のアミノ酸濃度データを肺癌評価装置 100へ送信し、データベース装置 400は 肺癌評価装置 100からの要求を受けて、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数として含む多変量判別式を肺癌評価 装置 100へ送信する。そして、肺癌評価装置 100は、(1)クライアント装置 200からァ ミノ酸濃度データを受信すると共にデータベース装置 400から多変量判別式を受信 し、 (2)受信した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去 し、(3)欠損値や外れ値などのデータが除去されたアミノ酸濃度データに含まれる Or n, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの濃 度値および受信した Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieの うち少なくとも 1つを変数として含む多変量判別式に基づいて判別値を算出し、(4) 算出した判別値と予め設定した閾値とを比較することで個体につき、肺癌または非肺 癌であるか否かの判別、肺癌およびその病期、または非肺癌であるか否かの判別、 肺癌のうち腺癌であること、または非肺癌であるか否かの判別のいずれかを行い、 (5 )この判別結果をクライアント装置 200やデータベース装置 400へ送信する。そして、 クライアント装置 200は肺癌評価装置 100から送信された判別結果を受信して表示 し、データベース装置 400は肺癌評価装置 100から送信された判別結果を受信して 格納する。これにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変
量判別式、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判 別式、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量 判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別、初期肺癌と非肺 癌との 2群判別、肺癌のうちの腺癌と非肺癌との 2群判別を精度よく行うことができる。
[0316] ここで、肺癌評価システムによれば、多変量判別式は、 1つの分数式または複数の 分数式の和で表され、それを構成する分数式の分子および/または分母に Orn, L ys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを変数とし て含んでもよい。これにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用い る多変量判別式 (分数式)、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を 用いる多変量判別式 (分数式)、肺癌のうちの腺癌と非肺癌との 2群判別に有用なァ ミノ酸変数を用いる多変量判別式 (分数式)で得られる判別値を利用して、肺癌と非 肺癌との 2群判別、初期肺癌と非肺癌との 2群判別、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことができる。
[0317] 具体的には、ステップ SA— 26で肺癌または非肺癌であるか否かの判別を行う場合 には、多変量判別式は数式 1、数式 2または数式 3でもよい。これにより、肺癌と非肺 癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式 (数式 1、数式 2、数 式 3)で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精度よく行うこ と力 Sできる。
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (Ile + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
[0318] また、ステップ SA— 26で肺癌であることおよびその病期、または非肺癌であるか否 かの判別を行う場合には、多変量判別式は数式 4、数式 5または数式 6でもよい。こ
れにより、初期肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量 判別式 (数式 4、数式 5、数式 6)で得られる判別値を利用して、初期肺癌と非肺癌と の 2群判別をさらに精度よく行うことができる。
a X Tau/Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gln/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
[0319] また、ステップ SA— 26で肺癌のうち腺癌であること、または非肺癌であるか否かの 判別を行う場合には、多変量判別式は数式 7、数式 8または数式 9でもよい。これによ り、肺癌のうちの腺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変 量判別式 (数式 7、数式 8、数式 9)で得られる判別値を利用して、肺癌のうちの腺癌 と非肺癌との 2群判別をさらに精度よく行うことができる。
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
[0320] また、肺癌評価システムによれば、多変量判別式は、ロジスティック回帰式、線形判 別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作 成された式、正準判別分析で作成された式、決定木で作成された式のいずれか 1つ でもよい。これにより、肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変 量判別式、初期肺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量判
別式、肺癌のうちの腺癌と非肺癌との 2群判別に有用なアミノ酸変数を用いる多変量 判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別、初期肺癌と非肺 癌との 2群判別、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく行うことが できる。
[0321] 具体的には、ステップ SA— 26で肺癌または非肺癌であるか否かの判別を行う場合 には、多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを変数とする口ジス ティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Valを変数とする線形判別式、または His, Glu, Pro, lie, Gin, Lysを変数とする口 ジスティック回帰式、または His, Glu, Pro, lie, Tyr, Lysを変数とする線形判別式 でもよい。これにより、肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる 多変量判別式で得られる判別値を利用して、肺癌と非肺癌との 2群判別をさらに精 度よく fiうこと力 Sでさる。
[0322] また、ステップ SA— 26で肺癌であることおよびその病期、または非肺癌であるか否 かの判別を行う場合には、多変量判別式は、 Orn, Tau, Trpを変数とする口ジスティ ック回帰式、または Orn, Arg, Tau, ABA, Gly, Hisを変数とする線形判別式、ま たは Gin, Glu, His, Lys, Cys, ABAを変数とするロジスティック回帰式、または G1 n, Glu, Ala, His, Cys, ABAを変数とする線形判別式でもよい。これにより、初期 肺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得ら れる判別値を利用して、初期肺癌と非肺癌との 2群判別をさらに精度よく行うことがで きる。
[0323] また、ステップ SA— 26で肺癌のうち腺癌であること、または非肺癌であるか否かの 判別を行う場合には、多変量判別式は、 Orn, ABA, Tau, Glyを変数とする口ジス ティック回帰式、または Orn, ABA, Tau, His, Arg, Glyを変数とする線形判別式、 または His, lie, Glu, Pro, Leu, Ginを変数とするロジスティック回帰式、または His , lie, Pro, Ala, Leu, Ginを変数とする線形判別式でもよい。これにより、肺癌のう ちの腺癌と非肺癌との 2群判別に特に有用なアミノ酸変数を用いる多変量判別式で 得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との 2群判別をさらに精度よく fiうこと力 Sでさる。
[0324] なお、上記した各多変量判別式は、本出願人による国際出願である国際公開 WO 2004/052191号パンフレットに記載の方法や、本出願人による国際出願である国 際出願番号 PCT/JP2006/304398に記載の方法(後述する多変量判別式作成 処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力 データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変 量判別式を肺癌の状態の評価に好適に用いることができる。
[0325] また、本発明にかかる肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評 価プログラムおよび記録媒体は、上述した第 2実施形態以外にも、特許請求の範囲 の書類に記載した技術的思想の範囲内において種々の異なる実施形態にて実施さ れてよいものである。例えば、上述した第 2実施形態で説明した各処理のうち、自動 的に行なわれるものとして説明した処理の全部または一部を手動的に行うこともでき 、手動的に行なわれるものとして説明した処理の全部または一部を公知の方法で自 動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順 、具体的名称、各種の登録データおよび検索条件等のパラメータを含む情報、画面 例、データベース構成については、特記する場合を除いて任意に変更することがで きる。例えば、肺癌評価装置 100に関して、図示の各構成要素は機能概念的なもの であり、必ずしも物理的に図示の如く構成されていることを要しない。また、肺癌評価 装置 100の各部または各装置が備える処理機能(特に制御部 102にて行なわれる各 処理機能)については、 CPU (Central Processing Unit)および当該 CPUにて 解釈実行されるプログラムにて、その全部または任意の一部を実現することができ、 ワイヤードロジックによるノヽードウエアとして実現することもできる。
[0326] ここで、「プログラム」とは任意の言語や記述方法にて記述されたデータ処理方法で あり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は、必ず しも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構 成されるものや、 OS (Operating System)に代表される別個のプログラムと協働し てその機能を達成するものを含む。なお、プログラムは、記録媒体に記録されており 、必要に応じて肺癌評価装置 100に機械的に読み取られる。記録媒体に記録された プログラムを各装置で読み取るための具体的な構成や読み取り手順や読み取り後の
インストール手順等については、周知の構成や手順を用いることができる。
[0327] また、「記録媒体」とは任意の「可搬用の物理媒体」や任意の「固定用の物理媒体」 や「通信媒体」を含むものとする。なお、「可搬用の物理媒体」とはフレキシブルデイス クゃ光磁気ディスクや ROMや EPROMや EEPROMや CD— ROMや MOや DVD 等である。「固定用の物理媒体」とは各種コンピュータシステムに内蔵される ROMや RAMや HD等である。「通信媒体」とは、 LANや WANやインターネット等のネットヮ ークを介してプログラムを送信する場合における通信回線や搬送波のように、短期に プログラムを保持するものである。
[0328] 最後に、肺癌評価装置 100で行う多変量判別式作成処理の一例について図 22を 参照して詳細に説明する。図 22は多変量判別式作成処理の一例を示すフローチヤ ートである。なお、当該多変量判別式作成処理は、肺癌状態情報を管理するデータ ベース装置 400で行ってもよ!/ヽ。
[0329] なお、本説明では、肺癌評価装置 100は、データベース装置 400から事前に取得 した肺癌状態情報を、肺癌状態情報ファイル 106cの所定の記憶領域に格納してい るものとする。また、肺癌評価装置 100は、肺癌状態情報指定部 102gで事前に指定 した肺癌状態指標データおよびアミノ酸濃度データを含む肺癌状態情報を、指定肺 癌状態情報ファイル 106dの所定の記憶領域に格納しているものとする。
[0330] まず、多変量判別式作成部 102hは、候補多変量判別式作成部 102hlで、指定 肺癌状態情報ファイル 106dの所定の記憶領域に格納されている肺癌状態情報から 所定の式作成手法に基づ!/、て候補多変量判別式を作成し、作成した候補多変量判 別式を候補多変量判別式ファイル 106elの所定の記憶領域に格納する(ステップ S B— 21)。具体的には、まず、多変量判別式作成部 102hは、候補多変量判別式作 成部 102hlで、複数の異なる式作成手法(主成分分析や判別分析、サポートベクタ 一マシン、重回帰分析、ロジスティック回帰分析、 k— means法、クラスター解析、決 定木などの多変量解析に関するものを含む。)の中から所望のものを 1つ選択し、選 択した式作成手法に基づ!/、て、作成する候補多変量判別式の形 (式の形)を決定す る。つぎに、多変量判別式作成部 102hは、候補多変量判別式作成部 102hlで、肺 癌状態情報に基づいて、選択した式選択手法に対応する種々(例えば平均や分散
など)の計算を実行する。つぎに、多変量判別式作成部 102hは、候補多変量判別 式作成部 102hlで、計算結果および決定した候補多変量判別式のパラメータを決 定する。これにより、選択した式作成手法に基づいて候補多変量判別式が作成され る。なお、複数の異なる式作成手法を併用して候補多変量判別式を同時並行 (並列 )的に作成する場合は、選択した式作成手法ごとに上記の処理を並行して実行すれ ばよい。また、複数の異なる式作成手法を併用して候補多変量判別式を直列的に作 成する場合は、例えば、主成分分析を行って作成した候補多変量判別式を利用して 肺癌状態情報を変換し、変換した肺癌状態情報に対して判別分析を行うことで候補 多変量判別式を作成してもよレ、。
[0331] つぎに、多変量判別式作成部 102hは、候補多変量判別式検証部 102h2で、ステ ップ SB— 21で作成した候補多変量判別式を所定の検証手法に基づいて検証 (相 互検証)し、検証結果を検証結果ファイル 106e2の所定の記憶領域に格納する(ス テツプ SB— 22)。具体的には、多変量判別式作成部 102hは、候補多変量判別式 検証部 102h2で、指定肺癌状態情報ファイル 106dの所定の記憶領域に格納され ている肺癌状態情報に基づいて候補多変量判別式を検証する際に用いる検証用デ ータを作成し、作成した検証用データに基づいて候補多変量判別式を検証する。な お、ステップ SB— 21で複数の異なる式作成手法を併用して候補多変量判別式を複 数作成した場合には、多変量判別式作成部 102hは、候補多変量判別式検証部 10 2h2で、各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づ いて検証する。ここで、ステップ SB— 22において、ブートストラップ法やホールドァゥ ト法、リーブワンアウト法などのうち少なくとも 1つに基づいて候補多変量判別式の判 別率や感度、特異性、情報量基準などのうち少なくとも 1つに関して検証してもよい。 これにより、肺癌状態情報や診断条件を考慮した予測性または堅牢性の高い候補指 標式を選択することができる。
[0332] つぎに、多変量判別式作成部 102hは、変数選択部 102h3で、ステップ SB— 22 での検証結果から所定の変数選択手法に基づいて、候補多変量判別式の変数を選 択することで、候補多変量判別式を作成する際に用いる肺癌状態情報に含まれるァ ミノ酸濃度データの組み合わせを選択し、選択したアミノ酸濃度データの組み合わせ
を含む肺癌状態情報を選択肺癌状態情報ファイル 106e3の所定の記憶領域に格納 する(ステップ SB— 23)。なお、ステップ SB— 21で複数の異なる式作成手法を併用 して候補多変量判別式を複数作成し、ステップ SB— 22で各式作成手法に対応する 候補多変量判別式ごとに所定の検証手法に基づレ、て検証した場合には、ステップ S B— 23において、多変量判別式作成部 102hは、変数選択部 102h3で、ステップ S B— 22での検証結果に対応する候補多変量判別式ごとに所定の変数選択手法に 基づいて候補多変量判別式の変数を選択する。ここで、ステップ SB— 23において、 検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのう ち少なくとも 1つに基づいて候補多変量判別式の変数を選択してもよい。なお、ベスト パス法とは、候補多変量判別式に含まれる変数を 1つずつ順次減らしていき、候補 多変量判別式が与える評価指標を最適化することで変数を選択する方法である。ま た、ステップ SB— 23において、多変量判別式作成部 102hは、変数選択部 102h3 で、指定肺癌状態情報ファイル 106dの所定の記憶領域に格納されて!/、る肺癌状態 情報に基づ!/、てアミノ酸濃度データの組み合わせを選択してもよレ、。
つぎに、多変量判別式作成部 102hは、指定肺癌状態情報ファイル 106dの所定 の記憶領域に格納されている肺癌状態情報に含まれるアミノ酸濃度データの全ての 組み合わせが終了したか否かを判定し、判定結果が「終了」であった場合 (ステップ S B— 24: Yes)には次のステップ (ステップ SB— 25)へ進み、判定結果が「終了」でな 力、つた場合(ステップ SB— 24 : No)にはステップ SB— 21へ戻る。なお、多変量判別 式作成部 102hは、予め設定した回数が終了したか否かを判定し、判定結果が「終 了」であった場合には(ステップ SB— 24: Yes)次のステップ(ステップ SB— 25)へ進 み、判定結果力 ^終了」でなかった場合(ステップ SB— 24 : No)にはステップ SB— 2 1へ戻ってもよい。また、多変量判別式作成部 102hは、ステップ SB— 23で選択した アミノ酸濃度データの組み合わせが、指定肺癌状態情報ファイル 106dの所定の記 憶領域に格納されている肺癌状態情報に含まれるアミノ酸濃度データの組み合わせ または前回のステップ SB— 23で選択したアミノ酸濃度データの組み合わせと同じで あるか否かを判定し、判定結果が「同じ」であった場合 (ステップ SB— 24 :Yes)には 次のステップ (ステップ SB— 25)へ進み、判定結果が「同じ」でなかった場合 (ステツ
プ SB— 24 : No)にはステップ SB— 21へ戻ってもよい。また、多変量判別式作成部 1 02hは、検証結果が具体的には各候補多変量判別式に関する評価値である場合に は、当該評価値と各式作成手法に対応する所定の閾値との比較結果に基づいて、 ステップ SB— 25へ進むかステップ SB— 21へ戻るかを判定してもよい。
[0334] ついで、多変量判別式作成部 102hは、検証結果に基づいて、複数の候補多変量 判別式の中から多変量判別式として採用する候補多変量判別式を選出することで多 変量判別式を決定し、決定した多変量判別式 (選出した候補多変量判別式)を多変 量判別式ファイル 106e4の所定の記憶領域に格納する(ステップ SB— 25)。ここで、 ステップ SB— 25において、例えば、同じ式作成手法で作成した候補多変量判別式 の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適な ものを選出する場合とがある。
[0335] これにて、多変量判別式作成処理の説明を終了する。
実施例 1
[0336] 肺生検による肺癌の診断が行われた肺癌患者の血液サンプル、および非肺癌患 者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。ァ ミノ酸濃度の単位は nmol/mlである。図 23に、肺癌患者および非肺癌患者のァミノ 酸変数の分布を (横軸は、非肺がん群、肺癌群、図中の ABAは α— ABAを、また C ysは Cystineを表す)箱ひげ図を示す。肺癌群と非肺癌群の判別を目的に 2群間の t 検定を実施した。
[0337] 非肺癌群に比べて肺癌群では、 Tau, Glu, ABA, Val, Leu, Orn, Lys, Hisが 有意に増加し(有意差確率 P< 0. 05)、また Argが有意に減少し、アミノ酸変数 Tau , Glu, ABA, Val, Leu, Orn, Lys, His, Argが肺癌群と非肺癌群の 2群間の判別 能を持つことが判明した。
実施例 2
[0338] 肺生検による肺癌の診断が行われた肺癌患者の血液サンプル、および非肺癌患 者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。 図 24に、肺癌患者および非肺癌患者のアミノ酸変数を用いて肺癌群と非肺癌群、初 期肺癌群と非肺癌群、肺癌群のうち腺癌群と非肺癌群の 2群判別に関して、 ROC曲
線(図 24)の AUCによる評価を行った。
[0339] 肺癌群と非肺癌群の判別においては Orn, Tau, ABA, Asn, Lys, Cit, Arg, Se r, Thr, Gly, Glu, His, Pro力 初期肺癌群と非肺癌群の判別においては Orn, Ar g, Tau, ABA, Gly, Asn, Cit, Lys , Ser, His, Proが、肺癌群のうち腺癌群と非 肺癌群の判別においては Orn, Tau, ABA, Asn, Lys, Cit, His, Arg, Thr, Glu , Gly, Cysがそれぞれ 0. 65以上の値が得られ、これらのアミノ酸が上記対象の 2群 間の判別能を持つことが判明した。
実施例 3
[0340] 実施例 1で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開第 2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して肺 癌群と非肺癌群の 2群判別性能を最大化する指標を鋭意探索し、同等の性能を持 つ複数の指標の中に指標式 1が得られた。なお、このほかに指標式 1と同等の判別 性能を有するロジスティック回帰式は複数得られた。それらを図 25、図 26に示す。 指標式 1 : (Orn) / (Trp) + (Tau + ABA) / (Arg)
[0341] 指標式 1による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC曲 泉(図 27)の AUC iこよる評価を fiレヽ、 0. 973 ± 0. 020 (950/0信頼区曰 ま 0. 936— 0. 986)が得られた。また、指標式 1による肺癌群と非肺癌群の 2群判別のカットオフ 値について、肺癌群の有症率を 0. 038として最適なカットオフ値を求めると、カットォ フ値が 2. 64となり、感度 93%、特異度 91 %、陽性適中率 29%、陰性適中率 99%、 正診率 96 %が得られ(図 28)、診断性能が高く有用な指標であることが判明した。 実施例 4
[0342] 実施例 1で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開 WO2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して 初期肺癌群 (病理病期 Iおよび II期)及び非肺癌群の 2群判別性能を最大化する指 標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式 2が得られた。なお、 このほかに指標式 2と同等の判別性能を有するロジスティック回帰式は複数得られた 。それらを図 29、図 30に示す。
指標式 2 : (Tau) / (Arg) + (Orn + ABA) / (Trp)
[0343] 指標式 2による肺癌のうち腺癌の診断性能を初期肺癌群 (病理病期 Iおよび II期)と 非肺癌群の 2群判別に関して、 ROC曲線(図 31)の AUCによる評価を行い、 0.966 ±0.008(95%信頼区間は 0.960-0.991)カ得られた。また、 旨標式 2による月巿 癌群と非肺癌群の 2群判別のカットオフ値について、肺癌群の有症率を.028として 最適なカットオフ値を求めると、カットオフ値が 2.40となり、感度 91%、特異度 92% 、陽性適中率 28%、陰性適中率 99%、正診率 92%が得られ(図 31)、診断性能が 高く有用な指標であることが判明した。
実施例 5
[0344] 実施例 1で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開 WO2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して 腺癌群と非肺癌群の 2群判別性能を最大化する指標を鋭意探索し、同等の性能を 持つ複数の指標の中に指標式 3が得られた。なお、このほかに指標式 3と同等の判 別性能を有するロジスティック回帰式は複数得られた。それらを図 32、図 33に示す。 指標式 3: (Orn)/(Trp) + (Tau) /(Arg)
[0345] 指標式 3による肺癌のうち腺癌の診断性能を腺癌群と非肺癌群の 2群判別に関し て、 ROC曲泉(図 34)の AUCiこよる評価を ί亍レヽ、 0.966±0.017 (950/0信頼区 は 0.924-0.989)が得られた。また、指標式 3による肺癌群と非肺癌群の 2群判別 のカットオフ値について、肺癌群の有症率を 0.032として最適なカットオフ値を求め ると、カットオフ値が 2.40となり、感度 91%、特異度 92%、陽性適中率 28%、陰性 適中率 99%、正診率 92%が得られ(図 34)、診断性能が高く有用な指標であること が判明した。
実施例 6
[0346] 実施例 1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の 2群 判別性能を最大化する指標をロジスティック解析 (BIC最小基準による変数網羅法) により探索し、指標式 4として Tau, Orn, Arg, Ser, Glu, Pro, Asnから構成される ロジスティック回帰式(アミノ酸変数 Tau, Orn, Arg, Ser, Glu, Pro, Asnの数係数 と定数項は J噴に、 0.086±0.020 0.124±0.020 0.046±0.018 0.02 3±0.018 -0.016±0.019 0.013±0.006 0.003±0.054 17.61
± 3. 437)力 S得られた。なお、このほかに指標式 4と同等の判別性能を有する口ジス ティック回帰式は複数得られた。それらを図 35、図 36、図 37に示す。また、図 35、図 36、図 37に示す式における各係数の値や定数項の値、及びその 95%信頼区間は 、それを実数倍したものでもよい。
[0347] 指標式 4による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC曲 泉(図 38)の AUCiこよる評価を fiレヽ、 0. 967 ± 0. 014 (950/0信頼区曰 ま 0. 923— 0. 988)が得られ診断性能が高く有用な指標であることが判明した。また指標式 4に よる肺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌群の有症率を 0. 03 8として最適なカットオフ値を求めると、カットオフ値が 0. 019となり、感度 90%、特異 度 88%、陽性適中率 24%、陰性適中率 99%、正診率 88%が得られ(図 39)、診断 性能が高く有用な指標であることが判明した。
実施例 7
[0348] 実施例 1で用いたサンプルデータを用いた。肺癌に関して初期肺癌群と非肺癌群 の 2群判別性能を最大化する指標をロジスティック解析 (BIC最小基準による変数網 羅法)により探索し、指標式 5として Orn, Tau, Trpから構成されるロジスティック回帰 式(アミノ酸変数 Orn, Tau, Trpの数係数と定数項は順に、 0. 178 ± 0. 032 0. 0 780 ± 0. 0197 -0. 201 ± 0. 0510 12. 367 ± 2. 316)カ得られた。なお、こ のほかに指標式 5と同等の判別性能を有するロジスティック回帰式は複数得られた。 それらを図 40、図 41、図 42に示す。なお、図 40、図 41、図 42に示す式における各 係数の値や定数項の値、及びその 95%信頼区間は、それを実数倍したものでもよい
[0349] 指標式 5による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC曲 泉(図 43)の AUCiこよる評価を fiレヽ、 0. 981 ± 0. 008 (950/0信頼区曰 ま 0. 960— 0. 990)が得られ診断性能が高く有用な指標であることが判明した。また指標式 5に よる肺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌群の有症率を 0. 02 8として最適なカットオフ値を求めると、カットオフ値が 0. 019となり、感度 100%、特 異度 90%、陽性適中率 22%、陰性適中率 100%、正診率 90%が得られ(図 43)、 診断性能が高く有用な指標であることが判明した。
実施例 8
[0350] 実施例 1で用いたサンプルデータを用いた。肺癌に関して腺癌群と非肺癌群の 2群 判別性能を最大化する指標をロジスティック解析 (BIC最小基準による変数網羅法) により探索し、指標式 6として Orn, ABA, Tau, Glyから構成されるロジスティック回 帰式(アミノ酸変数 Orn, ABA, Tau, Glyの数係数と定数項は順に、 0. 114±0.0 20 0.120±0.051 0.0654±0.0161 0.00702±0.00469 20.62土 2.90)が得られた。なお、このほかに指標式 6と同等の判別性能を有する口ジスティ ック回帰式は複数得られた。それらを図 44、図 45、図 46に示す。なお、図 44、図 45 、図 46に示す式における各係数の値や定数項の値、及びその 95%信頼区間は、そ れを実数倍したものでもよレ、。
[0351] 指標式 6による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC曲 泉(図 47)の AUCiこよる評価を fiレヽ、 0.968±0.012 (950/0信頼区曰 ま 0.937— 0.989)が得られ診断性能が高く有用な指標であることが判明した。また指標式 6に よる肺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌群の有症率を 0.03 2として最適なカットオフ値を求めると、カットオフ値が 0.029となり、感度 87%、特異 度 91%、陽性適中率 25%、陰性適中率 99%、正診率 91%が得られ(図 47)、診断 性能が高く有用な指標であることが判明した。
実施例 9
[0352] 実施例 1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の 2群 判別性能を最大化する指標を線形判別分析 (変数網羅法)により探索し、指標式 7と して年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, Tau, Trp, Va 、ら構成される 線形判別関数(年齢及びアミノ酸変数 ABA, Arg, Gin, His, Leu, Orn, Pro, Ta u, Trp, Valの数係数 (ま J噴 ίこ、 0.0338±0.0177 0.0332±0.0227 0.01 80±0.0073 -0.0030±0.0020 0.0233±0.0151 0.0136±0.0124 0.0617±0.0092 0.0031±0.0031 0.0475±0.0099 0.0268±0 .0150 -0.0134±0.0072)カ得られた。なお、このほ力、に旨標式 7と同等の半 IJ 別性能を有する線形判別関数は複数得られた。それらを図 48、図 49、図 50に示す 。なお、図 48、図 49、図 50に示す式における各係数の値や定数項の値、及びその 9
5%信頼区間は、それを実数倍したものでもよい。
[0353] 指標式 7による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC曲 泉(図 51)の AUCiこよる評価を fiレヽ、 0. 984 ± 0. 008 (950/0信頼区曰 ま 0. 962— 0. 995)が得られ診断性能が高く有用な指標であることが判明した。また指標式 7に よる肺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌群の有症率を 0. 03 8として最適なカットオフ値を求めると、カットオフ値が 1. 863となり、感度 90%、特異 度 97%、陽性適中率 56%、陰性適中率 99%、正診率 97%が得られ(図 52)、診断 性能が高く有用な指標であることが判明した。
実施例 10
[0354] 実施例 1で用いたサンプルデータを用いた。肺癌に関して初期肺癌群と非肺癌群 の 2群判別性能を最大化する指標を線形判別分析 (変数網羅法)により探索し、指標 式 8として Orn, Arg, Tau, ABA, Gly, Hisから構成される線形判別関数(アミノ酸 変数 Orn, Arg, Tau, ABA, Gly, Hisの数係数と定数項は順に、 0. 00412 ± 0. 0 0080、 -0. 00212 ± 0. 00063、 0. 00316 ± 0. 00097、 0. 00223 ± 0. 00202 、 0. 00020 ± 0. 00018、 0. 00088 ± 0. 00123、 0. 634 ± 0. 123)力 S得られた。 なお、このほかに指標式 8と同等の判別性能を有する線形判別関数は複数得られた 。それらを図 53、図 54、図 55に示す。なお、図 53、図 54、図 55に示す式における 各係数の値や定数項の値、及びその 95%信頼区間は、それを実数倍したものでもよ い。
[0355] 指標式 8による肺癌の診断性能を肺癌のうち初期肺癌群と非肺癌群の 2群判別に 関して、 ROC曲泉(図 56)の AUCiこよる評価を ί亍レヽ、 0. 953 ± 0. 023 (950/0信頼 区間は 0. 877〜0. 979)が得られ診断性能が高く有用な指標であることが判明した 。また指標式 8による初期肺癌群と非肺癌群の 2群判別のカットオフ値について、初 期肺癌群の有症率を 0. 028として最適なカットオフ値を求めると、カットオフ値が 1. 137となり、感度 85%、特異度 94%、陽性適中率 29%、陰性適中率 99%、正診率 94%が得られ (図 56)、診断性能が高く有用な指標であることが判明した。
実施例 11
[0356] 実施例 1で用いたサンプルデータを用いた。肺癌のうち腺癌群と非肺癌群の 2群判
別性能を最大化する指標を線形判別分析 (変数網羅法)により探索し、指標式 9とし て Orn, ABA, Tau, His, Arg, Glyから構成される線形判別関数(アミノ酸変数 Or n, ABA, Tau, His, Arg, Glyの数係数と定数項は J噴に、 0. 00464 ± 0. 00080 0. 00222 ± 0. 0021 0. 00428 ± 0. 00091 0. 00065 ± 0. 00127 0. 001 59 ± 0. 00065 0. 00012 ± 0. 00019 0. 534 ± 0. 124)カ得られた。なお、こ のほかに指標式 9と同等の判別性能を有する線形判別関数は複数得られた。それら を図 57、図 58、図 59に示す。なお、図 57、図 58、図 59に示す式における各係数の 値や定数項の値、及びその 95%信頼区間は、それを実数倍したものでもよい。
[0357] 指標式 9による肺癌の診断性能を肺癌のうち腺癌群と非肺癌群の 2群判別に関し て、 ROC曲泉(図 60)の AUCiこよる評価を ί亍レヽ、 0. 961 ± 0. 015 (950/0信頼区 は 0. 894-0. 984)が得られ診断性能が高く有用な指標であることが判明した。ま た指標式 9による肺癌のうち腺癌群と非肺癌群の 2群判別のカットオフ値について、 腺癌群の有症率を 0. 032として最適なカットオフ値を求めると、カットオフ値が 1. 14 3となり、感度 87%、特異度 93%、陽性適中率 29%、陰性適中率 99%、正診率 93 %が得られ (図 60)、診断性能が高く有用な指標であることが判明した。
実施例 12
[0358] 実施例 1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の 2群 判別を行う線形判別式を変数網羅法により全ての式を抽出した。このとき、各式に出 現するアミノ酸変数の最大値は 6として、この条件を満たす全ての式の ROC曲線下 面積を計算した。このとき、 ROC曲線下面積がある閾値以上の式中で、各アミノ酸が 出現する頻度を測定した結果、 Arg, Lys, Orn, ABA, His, Gly, Glu, Tau, Ser , Cit力 ^ROC曲泉下面積 0. 7 0. 75 0. 8 0. 85をそれぞれ閾ィ直としたときに、常 に高頻度で抽出されるアミノ酸の上位 10位以内となることが確認され、これらのァミノ 酸を変数として用いた多変量判別式が肺癌群と非肺癌群の 2群間の判別能を持つこ とが判明した(図 61)。
実施例 13
[0359] 実施例 1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の 2群 判別を行う上記の指標式 7を用いて、健常群、肺癌群、及び他癌群のそれぞれの群
の分布を計算した。このとき、図 62、図 63に示すように、肺癌群と他癌群は分布が異 なり、肺癌群と他癌群との間の t検定による p値は 0であり、両群の間には有意な差が あることが明らかとなった。このことから、指標式 7は、肺癌と非肺癌群を肺癌に対して 特異的に判別する関数であることが示された。
実施例 14
[0360] 肺生検による肺癌の診断が行われた肺癌患者の血液サンプル、および非肺癌患 者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。ァ ミノ酸濃度の単位は nmol/mlである。図 64に、肺癌患者および非肺癌患者のァミノ 酸変数の分布を (横軸は、非肺がん群、肺癌群、図中の ABAは α— ABAを、また C ysは Cystineを表す)スキヤッタープロットにより示す。肺癌群と非肺癌群の判別を目 的に 2群間の t検定を実施した。
[0361] 非肺癌群に比べて肺癌群では、 Glu, Pro, Ala, Lysが有意に増加し(有意差確率 P< 0. 05)、また Cit, Met, lie, Hisが有意に減少し、アミノ酸変数 Glu, Pro, Ala, Lys, Cit, Met, lie, Hisが肺癌群と非肺癌群の 2群間の判別能を持つことが判明し た。
実施例 15
[0362] 実施例 14で用いたサンプルデータを用いた。図 65に、肺癌患者および非肺癌患 者のアミノ酸変数を用いて肺癌群と非肺癌群、初期肺癌群と非肺癌群、肺癌群のう ち腺癌群と非肺癌群の 2群判別に関して、 ROC曲線の曲線下面積 (AUC)による評 価を行った。
[0363] 肺癌群と非肺癌群の判別においては Glu, Pro, Cit, lie, His力 S、初期肺癌群と非 肺癌群の判別においては Glu, Gin, Ala, His, Trp, Lysが、肺癌群のうち腺癌群と 非肺癌群の判別においては Glu, Cit, Met, lie, Tyr, Hisがそれぞれ 0· 625以上 の値が得られ、これらのアミノ酸が上記対象の 2群間の判別能を持つことが判明した( 図 65)。
実施例 16
[0364] 実施例 14で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開第 2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して肺
癌群と非肺癌群の 2群判別性能を最大化する指標を鋭意探索し、同等の性能を持 つ複数の指標の中に指標式 10が得られた。なお、このほかに指標式 10と同等の判 別性能を有する多変量判別式は複数得られた。それらを図 66、図 67に示す。
指標式 10 : (Glu) / (Tyr) + (Pro + Lys) / (Ile + His)
[0365] 指標式 10による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC 曲線(図 68)の曲線下面積(AUC)による評価を行い、 0· 888 ± 0. 029 (95%信頼 区間は 0. 831-0. 945)が得られた。また、指標式 10による肺癌群と非肺癌群の 2 群判別のカットオフ値について、肺癌群の有症率を 0. 106%として最適なカットオフ 値を求めると、カットオフ値が 2. 891となり、感度 88. 1 %、特異度 76. 3%、陽性適 中率 0. 37%、陰性適中率 99. 98%、正診率 76. 28%が得られ(図 68)、診断性能 が高く有用な指標であることが判明した。
実施例 17
[0366] 実施例 14で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開第 2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して肺 癌群と非肺癌群の 2群判別性能を最大化する指標を鋭意探索し、同等の性能を持 つ複数の指標の中に指標式 11が得られた。なお、このほかに指標式 11と同等の判 別性能を有する多変量判別式は複数得られた。それらを図 69、図 70に示す。また、 図 69、図 70に示す式における各係数の値は、それを実数倍したもの、あるいは任意 の定数項を付加したものでもよレ、。
指標式 11 : (His) / CLys) - 0. 22205 X (Glu) / (lle) + 0. 38171 X (Tyr ) / (Pro) + 0. 16513 X (Val) / (Leu)
[0367] 指標式 11による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC 曲線(図 71)の曲線下面積(AUC)による評価を行い、 0· 906 ± 0. 028 (95%信頼 区間は 0. 851-0. 962)が得られた。また、指標式 11による肺癌群と非肺癌群の 2 群判別のカットオフ値について、肺癌群の有症率を 0. 106%として最適なカットオフ ィ直を求めると、カット才フィ直力 0. 767となり、感度 89. 8%、特異度 79. 7%、陽十生適 中率 0. 44%、陰性適中率 99. 99%、正診率 79. 68%が得られ(図 71)、診断性能 が高く有用な指標であることが判明した。
実施例 18
[0368] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の 2 群判別性能を最大化する指標をロジスティック解析 (BIC最小基準による変数網羅法 )により探索し、指標式 12として His, Glu, Pro, lie, Gin, Lysから構成される口ジス ティック回帰式(アミノ酸変数 His, Glu, Pro, lie, Gin, Lysの数係数と定数項は順 に、 1.289±0.027 0.070±0.014 0.018±0.004 0.092±0.018 0.009±0.002 0.031 ±0.006 0.926±0.185)カ得られた。なお、この ほかに指標式 12と同等の判別性能を有するロジスティック回帰式は複数得られた。 それらを図 72、図 73、図 74に示す。また図 72、図 73、図 74に示す式における各係 数の値は、それを実数倍したものでもよい。
[0369] 指標式 12による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC 曲線(図 75)の曲線下面積(AUC)による評価を行い、 0· 908±0.026(95%信頼 区間は 0.856 0.960)が得られ診断性能が高く有用な指標であることが判明した 。また指標式 12による肺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌群 の有症率を 0.106%として最適なカットオフ値を求めると、カットオフ値が 0.505とな り、感度 83.1%、特異度 84.7%、陽性適中率 0.54%、陰性適中率 99.98%、正 診率 84.74%が得られ(図 75)、診断性能が高く有用な指標であることが判明した。 実施例 19
[0370] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌に関して肺癌群と 非肺癌群の 2群判別性能を最大化する指標を線形判別分析 (変数網羅法)により探 索し、指標式 13として His, Glu, Pro, lie, Tyr, Lysから構成される線形判別関数( アミノ酸変数 His, Glu, Pro, lie, Tyr, Lysの数係数は順に、 1.000 ±0. 197 0.566±0.11 -0.253±0.076 0.628±0.189 0.437±0.130 —0. 368±0.110)が得られた。なお、このほかに指標式 13と同等の判別性能を有する 線形判別関数は複数得られた。それらを図 76、図 77、図 78に示す。なお、図 76、図 77、図 78に示す式における各係数の値は、それを実数倍したもの、あるいは任意の 定数項を付加したものでもよレ、。
[0371] 指標式 13による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC
曲泉(図 79)の曲泉下面積(AUC) iこよる評価を ί亍レ、、 0· 901 ± 0. 0267 (95%ff 頼区間は 0. 849〜0. 954)が得られ診断性能が高く有用な指標であることが判明し た。また指標式 13による肺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌 群の有症率を 0. 106%として最適なカットオフ値を求めると、カットオフ値が 17. 65 となり、感度 84. 8%、特異度 81. 4%、陽性適中率 0. 45%、陰性適中率 99. 98% 、正診率 81. 36%が得られ (図 79)、診断性能が高く有用な指標であることが判明し た。
実施例 20
[0372] 実施例 14で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開第 2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して初 期肺癌群 (病理病期 Iおよび II期)と非肺癌群の 2群判別性能を最大化する指標を鋭 意探索し、同等の性能を持つ複数の指標の中に指標式 14が得られた。なお、このほ 力、に指標式 14と同等の判別性能を有する多変量判別式は複数得られた。それらを 図 80、図 81に示す。
指標式 14 : (Gln) / (Cit + His) + (Glu + ABA) / (Cys2)
[0373] 指標式 14による肺癌の診断性能を初期肺癌群と非肺癌群の 2群判別に関して、 R OC曲泉(図 82)の曲泉下面積(AUC) iこよる評価を ί亍レ、、 0· 881 ± 0. 030 (95% 信頼区間は 0. 822〜0. 940)が得られた。また、指標式 14による初期肺癌群と非肺 癌群の 2群判別のカットオフ値について、肺癌群の有症率を 0. 106%として最適な カット才フィ直を求めると、カット才フィ直力 8. 58となり、感度 87. 5%、特異度 80. 6%、 陽性適中率 0. 45%、陰性適中率 99. 98%、正診率 80. 58%が得られ(図 82)、診 断性能が高く有用な指標であることが判明した。
実施例 21
[0374] 実施例 14で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開第 2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して初 期肺癌群と非肺癌群の 2群判別性能を最大化する指標を鋭意探索し、同等の性能 を持つ複数の指標の中に指標式 15が得られた。なお、このほかに指標式 15と同等 の判別性能を有する多変量判別式は複数得られた。それらを図 83、図 84に示す。
また、図 83、図 84に示す式における各係数の値は、それを実数倍したもの、あるい は任意の定数項を付加したものでもよレ、。
指標式 15: (Gin) /(His) + 0.091931 X (Glu) + 3.9043 X (a— ABA) /(Cys2) + 4.3541 X (Lys)/ (Val)
[0375] 指標式 15による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC 曲線(図 85)の曲線下面積(AUC)による評価を行い、 0· 936±0.026(95%信頼 区間は 0.884 0.987)が得られた。また、指標式 15による初期肺癌群と非肺癌群 の 2群判別のカットオフ値について、肺癌群の有症率を 0.106%として最適なカット オフ値を求めると、カットオフ値が 18.55となり、感度 87.5%、特異度 87.5%、陽 性適中率 0.70%、陰性適中率 99.99%、正診率 87.50%が得られ(図 85)、診断 性能が高く有用な指標であることが判明した。
実施例 22
[0376] 実施例 14で用いたサンプルデータを用いた。肺癌に関して初期肺癌群と非肺癌群 の 2群判別性能を最大化する指標をロジスティック解析 (BIC最小基準による変数網 羅法)により探索し、指標式 16として Gin, Glu, His, Lys, Cys, ABAから構成され るロジスティック回帰式(アミノ酸変数 Gin, Glu, His, Lys, Cys, ABAの数係数と定 数項は J噴に、 0.016±0.004 0.0101±0.003 0.141±0.428 0.025 ±0.008 -0.168±0.050 0.173±0.050 6.125±1.840)カ得られ た。なお、このほかに指標式 16と同等の判別性能を有するロジスティック回帰式は複 数得られた。それらを図 86、図 87、図 88に示す。また、図 86、図 87、図 88に示す式 における各係数の値は、それを実数倍したものでもよレ、。
[0377] 指標式 16による肺癌の診断性能を初期肺癌群と非肺癌群の 2群判別に関して、 R OC曲泉(図 89)の曲泉下面積(AUC)iこよる評価を ί亍レ、、 0· 913±0.037(95% 信頼区間は 0.841 0.985)が得られ診断性能が高く有用な指標であることが判 明した。また指標式 16による初期肺癌群と非肺癌群の 2群判別のカットオフ値につい て、肺癌群の有症率を 0.106%として最適なカットオフ値を求めると、カットオフ値が 0.387となり、感度 83.3%、特異度 91.7%、陽性適中率 0.99%、陰性適中率 99 .98%、正診率 91.65%が得られ(図 89)、診断性能が高く有用な指標であることが
判明した。
実施例 23
[0378] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌に関して初期肺癌 群と非肺癌群の 2群判別性能を最大化する指標を線形判別分析 (変数網羅法)によ り探索し、指標式 17として Gin, Glu, Ala, His, Cys, ABAから構成される線形判 別関数(アミノ酸変数 Gin, Glu, Ala, His, Cys, ABAの数係数は順に、 1. 000土 0. 201 7. 251 ± 1. 450 0. 495 ± 0. 091 9. 07 ± 1. 82 - 11. 10 ± 2. 2 4 12. 63 ± 2. 58)が得られた。なお、このほかに指標式 17と同等の判別性能を有 する線形判別関数は複数得られた。それらを図 90、図 91、図 92に示す。なお、図 9 0、図 91、図 92に示す式における各係数の値は、それを実数倍したもの、あるいは 任意の定数項を付加したものでもよレ、。
[0379] 指標式 17による肺癌の診断性能を初期肺癌群と非肺癌群の 2群判別に関して、 R OC曲泉(図 93)の曲泉下面積(AUC) iこよる評価を ί亍レ、、 0· 923 ± 0. 027 (95% 信頼区間は 0. 869 0. 976)が得られ診断性能が高く有用な指標であることが判 明した。また指標式 17による初期肺癌群と非肺癌群の 2群判別のカットオフ値につい て、肺癌群の有症率を 0. 106%として最適なカットオフ値を求めると、カットオフ値が 346. 8となり、感度 87. 5%、特異度 84. 7%、陽性適中率 0. 57%、陰性適中率 99 . 99%、正診率 84. 73%が得られ(図 93)、診断性能が高く有用な指標であることが 判明した。
実施例 24
[0380] 実施例 14で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開第 2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して腺 癌群 (病理病期 Iおよび II期)と非肺癌群の 2群判別性能を最大化する指標を鋭意探 索し、同等の性能を持つ複数の指標の中に指標式 18が得られた。なお、このほかに 指標式 18と同等の判別性能を有する多変量判別式は複数得られた。それらを図 94 、図 95に示す。
指標式 18 : (Glu + Pro) / (His) + (ABA + Lys) / (lie)
[0381] 指標式 18による肺癌の診断性能を腺癌群と非肺癌群の 2群判別に関して、 ROC
曲線(図 96)の曲線下面積(AUC)による評価を行い、 0· 872 ± 0. 034 (95%信頼 区間は 0. 804-0. 939)が得られた。また、指標式 18による腺癌群と非肺癌群の 2 群判別のカットオフ値について、肺癌群の有症率を 0. 106%として最適なカットオフ 値を求めると、カットオフ値が 5. 745となり、感度 82. 1 %、特異度 78. 0%、陽性適 中率 0. 37%、陰性適中率 99. 98%、正診率 77. 97%が得られ(図 96)、診断性能 が高く有用な指標であることが判明した。
実施例 25
[0382] 実施例 14で用いたサンプルデータを用いた。本出願人による国際出願である国際 公開第 2004/052191号パンフレットに記載の方法を用いて、肺癌判別に関して腺 癌群と非肺癌群の 2群判別性能を最大化する指標を鋭意探索し、同等の性能を持 つ複数の指標の中に指標式 19が得られた。なお、このほかに指標式 19と同等の判 別性能を有する多変量判別式は複数得られた。それらを図 97、図 98に示す。また、 図 97、図 98に示す式における各係数の値は、それを実数倍したもの、あるいは任意 の定数項を付加したものでもよレ、。
指標式 19 : (Glu) / (Cit) - 31. 7927 X (His) / (Gln) - 11. 3577 X (lie) / (Leu) 9. 975 X (Tyr) / (Ala)
[0383] 指標式 19による肺癌の診断性能を肺癌群と非肺癌群の 2群判別に関して、 ROC 曲泉(図 99)の曲泉下面積(AUC) iこよる評価を ί亍レ、、 0· 895 ± 0. 028 (950/0信頼 区間は 0. 841-0. 950)が得られた。また、指標式 19による腺癌群と非肺癌群の 2 群判別のカットオフ値について、肺癌群の有症率を 0. 106%として最適なカットオフ 値を求めると、カットオフ値が 11. 04となり、感度 92. 3%、特異度 78. 2%、陽性 適中率 0. 42%、陰性適中率 99. 99%、正診率 78. 22%が得られ(図 99)、診断性 能が高く有用な指標であることが判明した。
実施例 26
[0384] 実施例 14で用いたサンプルデータを用いた。肺癌に関して腺癌群と非肺癌群の 2 群判別性能を最大化する指標をロジスティック解析 (BIC最小基準による変数網羅法 )により探索し、指標式 20として His, lie, Glu, Pro, Leu, Ginから構成される口ジス ティック回帰式(アミノ酸変数 His, lie, Glu, Pro, Leu, Ginの数係数と定数項は順
に、 0.150±0.044 0-0.210±0.041 0.054±0.011 0.025±0.00 8 0.092±0.018 0.008±0.002 3.577±0.714)カ得られた。なお、この ほかに指標式 20と同等の判別性能を有するロジスティック回帰式は複数得られた。 それらを図 100、図 101、図 102に示す。また、図 100、図 101、図 102に示す式に おける各係数の値は、それを実数倍したものでもよレ、。
[0385] 指標式 20による肺癌の診断性能を腺癌群と非肺癌群の 2群判別に関して、 ROC 曲泉(図 103)の曲泉下面積(AUC)iこよる評価を ί亍レ、、 0· 909±0.028(95%ff 頼区間は 0.855 0.964)が得られ診断性能が高く有用な指標であることが判明し た。また指標式 20による腺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌 群の有症率を 0.106%として最適なカットオフ値を求めると、カットオフ値が 0.329 となり、感度 89.7%、特異度 83.1%、陽性適中率 0.53%、陰性適中率 99.99% 、正診率 83.06%が得られ(図 103)、診断性能が高く有用な指標であることが判明 した。
実施例 27
[0386] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌に関して腺癌群と 非肺癌群の 2群判別性能を最大化する指標を線形判別分析 (変数網羅法)により探 索し、指標式 21として His, lie, Pro, Ala, Leu, Ginから構成される線形判別関数( アミノ酸変数 His, lie, Pro, Ala, Leu, Ginの数係数は J噴に、 1.000 ±0.198 1. 402±0.28 -0.157±0.035 0.053±0.011 0.744±0. 151 0 .050±0.013)が得られた。なお、このほかに指標式 21と同等の判別性能を有す る線形判別関数は複数得られた。それらを図 104、図 105、図 106に示す。なお、図 104、図 105、図 106に示す式における各係数の値は、それを実数倍したもの、ある いは任意の定数項を付加したものでもよレ、。
[0387] 指標式 21による肺癌の診断性能を腺癌群と非肺癌群の 2群判別に関して、 ROC 曲泉(図 107)の曲泉下面積(AUC)iこよる評価を ί亍レ、、 0· 923±0.026(95%ff 頼区間は 0.87;! 0.974)が得られ診断性能が高く有用な指標であることが判明し た。また指標式 21による腺癌群と非肺癌群の 2群判別のカットオフ値について、肺癌 群の有症率を 0.106%として最適なカットオフ値を求めると、カットオフ値が 7.91と
なり、感度 84. 6%、特異度 81. 4%、陽性適中率 0. 45%、陰性適中率 99. 98%、 正診率 81. 36%が得られ (図 107)、診断性能が高く有用な指標であることが判明し た。
実施例 28
[0388] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、 I b、 IIa、 IIb、 Ilia, IIIb、 IV)を、それぞれ第 1群(la)、第 2群(lb)、第 3群(IIa、 lib)、 第 4群 (IIIa、 IIIb、 IV)に分けた。本出願人による国際出願である国際公開第 2004 /052191号パンフレットに記載の方法を用いて、肺癌病期判別に関して非肺癌群 と第 1〜4群と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標 の中に指標式 22が得られた。なお、このほかに指標式 22と同等の判別性能を有す る多変量判別式は複数得られた。それらを図 108、図 109に示す。
指標式 22: (Glu + Pro + Lys + Leu) / (Val + His)
[0389] このとき、非肺癌群および第 1〜4群と指標式 22の値との間のスピアマンの順位相 関係数は 0. 654 (95%信頼区間は 0. 513〜0. 758)となり、診断性能が高く有用 な指標であることが判明した(図 110)。
実施例 29
[0390] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、 I b、 IIa、 IIb、 Ilia, IIIb、 IV)を、それぞれ第 1群(la)、第 2群(lb)、第 3群(IIa、 lib)、 第 4群 (IIIa、 IIIb、 IV)に分けた。本出願人による国際出願である国際公開第 2004 /052191号パンフレットに記載の方法を用いて、肺癌病期判別に関して非肺癌群 と第 1〜4群と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標 の中に指標式 23が得られた。なお、このほかに指標式 23と同等の判別性能を有す る多変量判別式は複数得られた。それらを図 111、図 112に示す。
指標式 23 : (Ala) / (His) + 33. 5806 X (Leu) / (Val) - 7. 2184 X (Cys 2) / (Orn) - 13. 3068 X (lie) / (Lys)
[0391] このとき、非肺癌群および第 1〜4群と指標式 23の値との間のスピアマンの順位相 関係数は 0. 648 (95%信頼区間は 0. 515〜0. 751)となり、診断性能が高く有用 な指標であることが判明した(図 113)。
実施例 30
[0392] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia I b IIa IIb Ilia, IIIb IV)を、それぞれ第 1群(la)、第 2群(lb)、第 3群(IIa lib) 第 4群 (IIIa IIIb IV)に分けた。肺癌病期判別に関して非肺癌群と第 1 4群と最も 相関性の高い指標を重回帰分析 (AIC最小基準による変数選択法)鋭意探索し、指 標式 24として Pro, His, Gly, Val, lie, Leuから構成される重回帰式(アミノ酸変数 Pro, His, Gly, Val, lie,: Leuの数係数は J噴に、 1. 000 ± 0. 200 2. 735 ± 0. 55 -0. 129 ± 0. 025 0. 948 ± 0. 195 2. 710 ± 0. 584 3. 113 ± 0. 6 59)が得られた。なお、このほかに指標式 24と同等の相関性を有する重回帰式は複 数得られた。それらを図 114、図 115、図 116に示す。なお、図 114、図 115、図 116 に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を 付加したものでもよい。
[0393] このとき、非肺癌群および第 1 4群と指標式 24の値との間のスピアマンの順位相 関係数は 0. 634 (95%信頼区間は 0. 490-0. 745)となり、診断性能が高く有用 な指標であることが判明した(図 117)
実施例 31
[0394] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia I b IIa IIb Ilia, IIIb IV)を、それぞれ第 1群(la)、第 2群(lb)、第 3群(IIa lib) 第 4群 (IIIa IIIb IV)に分けた。本出願人による国際出願である国際公開第 2004 /052191号パンフレットに記載の方法を用いて、肺癌病期判別に関して第 1 4群 と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標 式 25が得られた。なお、このほかに指標式 25と同等の判別性能を有する多変量判 別式は複数得られた。それらを図 118、図 119に示す。
指標式 25 : (Pro) / (Gin) + (Tyr+ Leu + Cys2) / (Val)
[0395] このとき、第 1 4群と指標式 25の値との間のスピアマンの順位相関係数は 0. 619
(95%信頼区間は 0. 346 0. 794)となり、診断性能が高く有用な指標であることが 判明した(図 120)。
実施例 32
[0396] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、 I b、 IIa、 IIb、 Ilia, IIIb、 IV)を、それぞれ第 1群(la)、第 2群(lb)、第 3群(IIa、 lib)、 第 4群 (IIIa、 IIIb、 IV)に分けた。本出願人による国際出願である国際公開第 2004 /052191号パンフレットに記載の方法を用いて、肺癌病期判別に関して第 1〜4群 と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標 式 26が得られた。なお、このほかに指標式 26と同等の判別性能を有する多変量判 別式は複数得られた。それらを図 121、図 122に示す。
指標式 26 : (Tyr) / (Trp) - 0. 012943 X (Ser) - 0. 080336 X (Ala) / ( Asn)
[0397] このとき、第 1〜4群と指標式 26の値との間のスピアマンの順位相関係数は 0. 706
(95%信頼区間は 0. 475〜0. 846)となり、診断性能が高く有用な指標であることが 判明した(図 123)。
実施例 33
[0398] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、 I b、 IIa、 IIb、 Ilia, IIIb、 IV)を、それぞれ第 1群(la)、第 2群(lb)、第 3群(IIa、 lib)、 第 4群 (IIIa、 IIIb、 IV)に分けた。肺癌病期判別に関して第 1〜4群と最も相関性の 高い指標を重回帰分析 (AIC最小基準による変数選択法)鋭意探索し、指標式 27と して Gin, Ser, Pro, Tyr, Cys, Tauから構成される重回帰式(アミノ酸変数 Gin, Se r, Pro, Tyr, Cys, Tauの数係数 (ま J噴 ίこ、 1. 000 ± 0. 304、 3. 875 ± 1. 289、 - 1. 106 ± 0. 321、 - 5. 227 ± 1. 583、—8. 412 ± 2. 523、 5. 097 ± 1. 529)力 S 得られた。なお、このほかに指標式 27と同等の相関性を有する重回帰式は複数得ら れた。それらを図 124、図 125、図 126に示す。なお、図 124、図 125、図 126に示 す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加 したものでもよい。
[0399] このとき、数値化を行った第 1〜4群と指標式 27の値との間のスピアマンの順位相 関係数は— 0. 730 (95%信頼区間は— 0. 512〜― 0. 859)となり、診断性能が高 く有用な指標であることが判明した(図 127)。
実施例 34
[0400] 実施例 14で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の 2 群判別を行う線形判別式を変数網羅法により全ての式を抽出した。このとき、各式に 出現するアミノ酸変数の最大値は 5として、この条件を満たす全ての式の ROC曲線 下面積を計算した。このとき、 ROC曲線下面積がある閾値以上の式中で、各アミノ酸 が出現する頻度を測定した結果、 Ala, Glu, His, lie, Lys, Proが ROC曲線下面 積 0. 7、 0. 75、 0. 8、 0. 85をそれぞれ閾値としたときに、常に高頻度で抽出される アミノ酸の上位 10位以内となることが確認され、これらのアミノ酸を変数として用いた 多変量判別式が肺癌群と非肺癌群の 2群間の判別能を持つことが判明した(図 128 )。
産業上の利用可能性
[0401] 以上のように、本発明にかかる肺癌の評価方法、ならびに肺癌評価装置、肺癌評 価方法、肺癌評価システム、肺癌評価プログラムおよび記録媒体は、産業上の多く の分野、特に医薬品や食品、医療などの分野で広く実施することができ、特に、病態 予測や疾病リスク予測やプロテオームやメタボローム解析などを行うバイオインフォマ テイクス分野において極めて有用である。
Claims
[1] 評価対象から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを 測定する測定ステップと、
前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれる
Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの 前記濃度値に基づいて、前記評価対象につき、肺癌の状態を評価する濃度値基準 評価ステップと
を実行することを特徴とする肺癌の評価方法。
[2] 前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前 記アミノ酸濃度データに含まれる Om, Lys, ABA, Arg, Glu, His, Tau, Pro, Al a, Cit, lieのうち少なくとも 1つの前記濃度値に基づいて、前記評価対象につき、前 記肺癌または非肺癌であるか否力、を判別する濃度値基準判別ステップをさらに含む こと
を特徴とする請求項 1に記載の肺癌の評価方法。
[3] 前記濃度値基準評価ステップは、
前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つの 前記濃度値および前記アミノ酸の濃度を変数とする予め設定した多変量判別式に基 づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、 前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき 、前記肺癌の状態を評価する判別値基準評価ステップと
をさらに含み、
前記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, I leのうち少なくとも 1つを前記変数として含むこと
を特徴とする請求項 1に記載の肺癌の評価方法。
[4] 前記多変量判別式は、年齢を前記変数としてさらに含むこと
を特徴とする請求項 3に記載の肺癌の評価方法。
[5] 前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値
に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否力、を判別する 判別値基準判別ステップをさらに含むこと
を特徴とする請求項 3または 4に記載の肺癌の評価方法。
[6] 前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それ を構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むこと を特徴とする請求項 5に記載の肺癌の評価方法。
[7] 前記多変量判別式は数式 1、数式 2または数式 3であること
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
を特徴とする請求項 6に記載の肺癌の評価方法。
[8] 前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式のいずれか 1つであること
を特徴とする請求項 5に記載の肺癌の評価方法。
[9] 前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを前記変数とする 前記ロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, T au, Trp, Valを前記変数とする前記線形判別式、または His, Glu, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu, Pro, lie, Tyr, L ysを前記変数とする前記線形判別式であること
を特徴とする請求項 8に記載の肺癌の評価方法。
[10] 前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値
に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非 肺癌であるか否かを判別する判別値基準判別ステップをさらに含み、
前記多変量判別式は数式 4、数式 5または数式 6であること
a XTau/Arg + b X (Orn + ABA) /Trp + c
4 4 4
··· (数式 4)
a XGln/(Cit + His) + b X (Glu + ABA)/(Cys2) + c
5 5 5
··· (数式 5)
a X Gin/His + b XGlu + c XABA/Cys + d X Lys/Val + e
6 6 6 6 6
··· (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
を特徴とする請求項 3または 4に記載の肺癌の評価方法。
[11] 前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値 に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌で あるか否かを判別する判別値基準判別ステップをさらに含み、
前記多変量判別式は数式 7、数式 8または数式 9であること
a X Orn/Trp + b XTau/Arg + c …(数式 7)
a X (Glu + Pro)/His + b X (ABA+Lvs) /lie + c
8 8 8
··· (数式 8)
a X Glu/Cit + b X His/Gin + c XIle/Leu + d XTyr/Ala +
9 9 9 9
e ··· (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
を特徴とする請求項 3または 4に記載の肺癌の評価方法。
[12] 制御手段と記憶手段とを備え評価対象につき肺癌の状態を評価する肺癌評価装 置であって、
前記制御手段は、
アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含ま
れる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多 変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算 出手段と、
前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、 前記肺癌の状態を評価する判別値基準評価手段と
を備え、
前記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, I leのうち少なくとも 1つを前記変数として含むこと
を特徴とする肺癌評価装置。
[13] 前記多変量判別式は、年齢を前記変数としてさらに含むこと
を特徴とする請求項 12に記載の肺癌評価装置。
[14] 前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づ いて、前記評価対象につき、前記肺癌または非肺癌であるか否力、を判別する判別値 基準判別手段をさらに備えたこと
を特徴とする請求項 12または 13に記載の肺癌評価装置。
[15] 前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それ を構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むこと
を特徴とする請求項 14に記載の肺癌評価装置。
[16] 前記多変量判別式は数式 1、数式 2または数式 3であること
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
2 2 2
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
を特徴とする請求項 15に記載の肺癌評価装置。
[17] 前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式のいずれか 1つであること
を特徴とする請求項 14に記載の肺癌評価装置。
[18] 前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを前記変数とする 前記ロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, T au, Trp, Valを前記変数とする前記線形判別式、または His, Glu, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu, Pro, lie, Tyr, L ysを前記変数とする前記線形判別式であること
を特徴とする請求項 17に記載の肺癌評価装置。
[19] 前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づ いて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺癌であ るか否力、を判別する判別値基準判別手段をさらに備え、
前記多変量判別式は数式 4、数式 5または数式 6であること
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gln/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
6 6 6
を特徴とする請求項 12または 13に記載の肺癌評価装置。
[20] 前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づ いて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか 否かを判別する判別値基準判別手段をさらに備え、
前記多変量判別式は数式 7、数式 8または数式 9であること
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
を特徴とする請求項 12または 13に記載の肺癌評価装置。
[21] 前記制御手段は、
前記アミノ酸濃度データと前記肺癌の状態を表す指標に関する肺癌状態指標デー タとを含む前記記憶手段で記憶した肺癌状態情報に基づ!/、て、前記記憶手段で記 憶する前記多変量判別式を作成する多変量判別式作成手段
をさらに備え、
前記多変量判別式作成手段は、
前記肺癌状態情報から所定の式作成手法に基づ!/、て、前記多変量判別式の候補 である候補多変量判別式を作成する候補多変量判別式作成手段と、
前記候補多変量判別式作成手段で作成した前記候補多変量判別式を、所定の検 証手法に基づいて検証する候補多変量判別式検証手段と、
前記候補多変量判別式検証手段での検証結果から所定の変数選択手法に基づ V、て前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作 成する際に用いる前記肺癌状態情報に含まれる前記アミノ酸濃度データの組み合わ せを選択する変数選択手段と、
をさらに備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手 段および前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づいて、 複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補 多変量判別式を選出することで、前記多変量判別式を作成すること
を特徴とする請求項 12から 20のいずれ力、 1つに記載の肺癌評価装置。
[22] 制御手段と記憶手段とを備えた情報処理装置で実行する、評価対象につき肺癌の 状態を評価する肺癌評価方法であって、
前記制御手段で、
アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含ま れる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多 変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算 前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき 、前記肺癌の状態を評価する判別値基準評価ステップと
を実行し、
前記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, I leのうち少なくとも 1つを前記変数として含むこと
を特徴とする肺癌評価方法。
[23] 前記多変量判別式は、年齢を前記変数としてさらに含むこと
を特徴とする請求項 22に記載の肺癌評価方法。
[24] 前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値 に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否力、を判別する 判別値基準判別ステップをさらに含むこと
を特徴とする請求項 22または 23に記載の肺癌評価方法。
[25] 前記多変量判別式は、 1つの分数式または複数の前記分数式の和で表され、それ を構成する前記分数式の分子および/または分母に Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1つを前記変数として含むこと
を特徴とする請求項 24に記載の肺癌評価方法。
[26] 前記多変量判別式は数式 1、数式 2または数式 3であること
a X Orn/Trp + b X (Tau + ABA) /Arg + c
· · · (数式 1)
a X Glu/Tyr + b X (Pro + Lys) / (lie + His) + c
· · · (数式 2)
a X His/Lys + b X Glu/lle + c X Tyr/Pro + d X Val/Leu +
3 3 3 3
e · · · (数式 3)
3
(数式 1において、 a , b , cは任意の実数であり、数式 2において、 a , b , cは任意
1 1 1 2 2 2 の実数であり、数式 3において、 a , b , c , d , eは任意の実数である。 )
3 3 3 3 3
を特徴とする請求項 25に記載の肺癌評価方法。
[27] 前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートべ クタ一マシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で 作成された式、決定木で作成された式のいずれか 1つであること
を特徴とする請求項 24に記載の肺癌評価方法。
[28] 前記多変量判別式は、 Tau, Orn, Arg, Ser, Glu, Pro, Asnを前記変数とする 前記ロジスティック回帰式、または年齢, ABA, Arg, Gin, His, Leu, Orn, Pro, T au, Trp, Valを前記変数とする前記線形判別式、または His, Glu, Pro, lie, Gin, Lysを前記変数とする前記ロジスティック回帰式、または His, Glu, Pro, lie, Tyr, L ysを前記変数とする前記線形判別式であること
を特徴とする請求項 27に記載の肺癌評価方法。
[29] 前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値 に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非 肺癌であるか否かを判別する判別値基準判別ステップをさらに含み、
前記多変量判別式は数式 4、数式 5または数式 6であること
a X Tau/ Arg + b X (Orn + ABA) /Trp + c
4 4 4
· · · (数式 4)
a X Gln/ (Cit + His) + b X (Glu + ABA) / (Cys2) + c
5 5 5
· · · (数式 5)
a X Gin/His + b X Glu + c X ABA/Cys + d X Lys/Val + e
6 6 6 6 6
· · · (数式 6)
(数式 4において、 a , b , cは任意の実数であり、数式 5において、 a , b , cは任意
4 4 4 5 5 5 の実数であり、数式 6において、 a , b , c , d , eは任意の実数である。 )
を特徴とする請求項 22または 23に記載の肺癌評価方法。
[30] 前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値 に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌で あるか否かを判別する判別値基準判別ステップをさらに含み、
前記多変量判別式は数式 7、数式 8または数式 9であること
a X Orn/Trp + b X Tau/Arg + c …(数式 7)
a X (Glu + Pro) /His + b X (ABA+ Lvs) /lie + c
8 8 8
· · · (数式 8)
a X Glu/Cit + b X His/Gin + c X Ile/Leu + d X Tyr/Ala +
9 9 9 9
e · · · (数式 9)
9
(数式 7において、 a , b , cは任意の実数であり、数式 8において、 a , b , cは任意
7 7 7 8 8 8 の実数であり、数式 9において、 a , b , c , d , eは任意の実数である。 )
9 9 9 9 9
を特徴とする請求項 22または 23に記載の肺癌評価方法。
[31] 前記制御手段で、
前記アミノ酸濃度データと前記肺癌の状態を表す指標に関する肺癌状態指標デー タとを含む前記記憶手段で記憶した肺癌状態情報に基づ!/、て、前記記憶手段で記 憶する前記多変量判別式を作成する多変量判別式作成ステップ
をさらに実行し、
前記多変量判別式作成ステップは、
前記肺癌状態情報から所定の式作成手法に基づ!/、て、前記多変量判別式の候補 である候補多変量判別式を作成する候補多変量判別式作成ステップと、
前記候補多変量判別式作成ステップで作成した前記候補多変量判別式を、所定 の検証手法に基づいて検証する候補多変量判別式検証ステップと、
前記候補多変量判別式検証ステップでの検証結果から所定の変数選択手法に基 づレ、て前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を 作成する際に用いる前記肺癌状態情報に含まれる前記アミノ酸濃度データの組み 合わせを選択する変数選択ステップと、
をさらに含み、前記候補多変量判別式作成ステップ、前記候補多変量判別式検証
ステップおよび前記変数選択ステップを繰り返し実行して蓄積した前記検証結果に 基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用す る前記候補多変量判別式を選出することで、前記多変量判別式を作成すること を特徴とする請求項 22から 30のいずれ力、 1つに記載の肺癌評価方法。
[32] 制御手段と記憶手段とを備え評価対象につき肺癌の状態を評価する肺癌評価装 置と、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報 通信端末装置とを、ネットワークを介して通信可能に接続して構成された肺癌評価シ ステムであって、
前記情報通信端末装置は、
前記評価対象の前記アミノ酸濃度データを前記肺癌評価装置へ送信するアミノ酸 濃度データ送信手段と、
前記肺癌評価装置から送信された前記肺癌の状態に関する前記評価対象の評価 結果を受信する評価結果受信手段と
を備え、
前記肺癌評価装置の前記制御手段は、
前記情報通信端末装置から送信された前記評価対象の前記アミノ酸濃度データを 受信するアミノ酸濃度データ受信手段と、
前記アミノ酸濃度データ受信手段で受信した前記評価対象の前記アミノ酸濃度デ ータに含まれる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち 少なくとも 1つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で 記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出す る判別値算出手段と、
前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、 前記肺癌の状態を評価する判別値基準評価手段と、
前記判別値基準評価手段での前記評価対象の前記評価結果を前記情報通信端 末装置へ送信する評価結果送信手段と、
を備え、
前記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, I
leのうち少なくとも 1つを前記変数として含むこと
を特徴とする肺癌評価システム。
[33] 制御手段と記憶手段とを備えた情報処理装置に実行させる、評価対象につき肺癌 の状態を評価する肺癌評価プログラムであって、
前記制御手段に、
アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含ま れる Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, lieのうち少なくとも 1 つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多 変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算 前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき 、前記肺癌の状態を評価する判別値基準評価ステップと
を実行させ、
前記多変量判別式は、 Orn, Lys, ABA, Arg, Glu, His, Tau, Pro, Ala, Cit, I leのうち少なくとも 1つを前記変数として含むこと
を特徴とする肺癌評価プログラム。
[34] 請求項 33に記載の肺癌評価プログラムを記録したこと
を特徴とするコンピュータ読み取り可能な記録媒体。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008527789A JP5470848B2 (ja) | 2006-08-04 | 2007-08-02 | 肺癌の評価方法、肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラム、記録媒体、および、情報通信端末装置 |
| EP07791853A EP2081027A4 (en) | 2006-08-04 | 2007-08-02 | METHOD FOR EVALUATING LUNG CANCER, LUNG CANCER EVALUATION DEVICE, LUNG CANCER EVALUATION METHOD, LUNG CANCER EVALUATION SYSTEM, EVALUATION PROGRAM FOR A LUNG CANCER LUNG CANCER AND RECORDING MEDIUM |
| US12/365,272 US9664681B2 (en) | 2006-08-04 | 2009-02-04 | Lung cancer evaluating apparatus, method, system, and program and recording medium therefor |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006-213919 | 2006-08-04 | ||
| JP2006213919 | 2006-08-04 | ||
| JP2006-265973 | 2006-09-28 | ||
| JP2006265973 | 2006-09-28 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/365,272 Continuation US9664681B2 (en) | 2006-08-04 | 2009-02-04 | Lung cancer evaluating apparatus, method, system, and program and recording medium therefor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2008016111A1 true WO2008016111A1 (fr) | 2008-02-07 |
Family
ID=38997285
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2007/065179 Ceased WO2008016111A1 (fr) | 2006-08-04 | 2007-08-02 | Procédé permettant d'évaluer un cancer du poumon, dispositif d'évaluation d'un cancer du poumon, procédé d'évaluation d'un cancer du poumon, système d'évaluation d'un cancer du poumon, programme d'évaluation d' |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US9664681B2 (ja) |
| EP (1) | EP2081027A4 (ja) |
| JP (2) | JP5470848B2 (ja) |
| WO (1) | WO2008016111A1 (ja) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009110517A1 (ja) * | 2008-03-04 | 2009-09-11 | 味の素株式会社 | 癌種の評価方法 |
| WO2009154296A1 (ja) * | 2008-06-20 | 2009-12-23 | 味の素株式会社 | 女性生殖器癌の評価方法 |
| WO2009154297A1 (ja) * | 2008-06-20 | 2009-12-23 | 味の素株式会社 | 前立腺疾患の評価方法 |
| WO2014084290A1 (ja) * | 2012-11-27 | 2014-06-05 | 味の素株式会社 | 膵臓癌の評価方法、膵臓癌評価装置、膵臓癌評価方法、膵臓癌評価プログラム、膵臓癌評価システムおよび情報通信端末装置 |
| US9459255B2 (en) | 2006-12-21 | 2016-10-04 | Ajinomoto Co., Inc. | Method of evaluating breast cancer, breast cancer-evaluating apparatus, breast cancer-evaluating method, breast cancer-evaluating system, breast cancer-evaluating program and recording medium |
| WO2016159191A1 (ja) * | 2015-03-31 | 2016-10-06 | 味の素株式会社 | 評価方法、評価装置、評価プログラム、評価システム、及び端末装置 |
| US9599618B2 (en) | 2006-12-21 | 2017-03-21 | Ajinomoto Co., Inc. | Method, apparatus, system, program, and computer-readable recording medium for evaluating colorectal cancer |
| US9664681B2 (en) | 2006-08-04 | 2017-05-30 | Ajinomoto Co., Inc. | Lung cancer evaluating apparatus, method, system, and program and recording medium therefor |
| WO2018021153A1 (ja) * | 2016-07-25 | 2018-02-01 | 国立大学法人信州大学 | 肺がんリスク状態の評価方法,肺がんリスク状態評価装置,肺がんリスク状態評価プログラム,肺がんリスク状態評価システム及び情報通信端末装置 |
| WO2018066620A1 (ja) * | 2016-10-04 | 2018-04-12 | 味の素株式会社 | 膵臓癌の評価方法、評価装置、評価プログラム、評価システム、及び端末装置 |
| WO2018079029A1 (ja) * | 2016-10-26 | 2018-05-03 | 国立大学法人信州大学 | 肺がん進行度合いの評価方法,肺がん進行度合い評価装置,肺がん進行度合い評価プログラム,肺がん進行度合い評価システム及び情報通信端末装置 |
| WO2018101450A1 (ja) * | 2016-12-01 | 2018-06-07 | 味の素株式会社 | 癌モニタリングの方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、評価システム、及び端末装置 |
| KR20190065263A (ko) | 2016-10-04 | 2019-06-11 | 아지노모토 가부시키가이샤 | 대장암의 평가 방법, 평가 장치, 평가 프로그램, 평가 시스템, 및 단말 장치 |
| CN110208238A (zh) * | 2019-03-27 | 2019-09-06 | 天津理工大学 | 一种基于svm模型结合图像对肺癌组织的精确定位方法 |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101542037B1 (ko) * | 2006-12-21 | 2015-08-05 | 아지노모토 가부시키가이샤 | 암 상태의 평가 방법, 및 암 평가 장치, 암 평가 방법, 암 평가 시스템, 암 평가 프로그램 및 기록 매체 |
| WO2009099005A1 (ja) * | 2008-02-06 | 2009-08-13 | Ajinomoto Co., Inc. | 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体 |
| SG11201702076WA (en) | 2014-09-15 | 2017-06-29 | Renatech Co Ltd | Cancer evaluation method and cancer evaluation system |
| JP6336881B2 (ja) * | 2014-10-20 | 2018-06-06 | 日本電子株式会社 | 散布図表示装置、散布図表示方法、および表面分析装置 |
| JP6946133B2 (ja) | 2017-09-27 | 2021-10-06 | 株式会社レナテック | がんリスク評価方法及びがんリスク評価システム |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004052191A1 (ja) | 2002-12-09 | 2004-06-24 | Ajinomoto Co., Inc. | 生体状態情報処理装置、生体状態情報処理方法、生体状態情報管理システム、プログラム、および、記録媒体 |
| WO2006098192A1 (ja) | 2005-03-16 | 2006-09-21 | Ajinomoto Co., Inc. | 生体状態評価装置、生体状態評価方法、生体状態評価システム、生体状態評価プログラム、評価関数作成装置、評価関数作成方法、評価関数作成プログラムおよび記録媒体 |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61126472A (ja) | 1984-11-24 | 1986-06-13 | Advance Res & Dev Co Ltd | 診断方法 |
| US5858681A (en) | 1996-06-17 | 1999-01-12 | Children's Medical Center | Method for prognosis of prostate cancer |
| US6059724A (en) * | 1997-02-14 | 2000-05-09 | Biosignal, Inc. | System for predicting future health |
| US6300136B1 (en) * | 1997-09-03 | 2001-10-09 | The Trustees Of The University Of Pennsylvania | Methods for diagnosis and treatment of tumors in humans |
| AU762812B2 (en) | 1998-07-14 | 2003-07-03 | Corixa Corporation | Compositions and methods for therapy and diagnosis of prostate cancer |
| KR20010083890A (ko) | 1998-10-05 | 2001-09-03 | 에드워드 에이. 맥더모트, 주니어 | 암 관련 항원 및 그의 용도 |
| MXPA01010970A (es) * | 1999-04-26 | 2003-03-27 | Surromed Inc | Sistema de identificacion de marcadores biologicos y fenotipo. |
| CN100416273C (zh) | 2000-08-21 | 2008-09-03 | 法国公立援助医院 | 采用生物化学标记物诊断纤维化疾病的方法 |
| US6631330B1 (en) | 2000-08-21 | 2003-10-07 | Assistance Publique-Hopitaux De Paris (Ap-Hp) | Diagnosis method of inflammatory, fibrotic or cancerous disease using biochemical markers |
| JP5236856B2 (ja) * | 2001-11-09 | 2013-07-17 | ライフ テクノロジーズ コーポレーション | 遺伝子発現プロファイルを用いる病気の同定、観測及び治療及び生物学的状態の同定 |
| WO2006129513A1 (ja) | 2005-05-30 | 2006-12-07 | Ajinomoto Co., Inc. | 肝疾患評価装置、肝疾患評価方法、肝疾患評価システム、肝疾患評価プログラムおよび記録媒体 |
| US20060170928A1 (en) * | 2003-12-24 | 2006-08-03 | Vadivel Masilamani | Masila's cancer detector based on optical analysis of body fluids |
| GB0326197D0 (en) | 2003-11-10 | 2003-12-17 | Randox Lab Ltd | Molecular marker |
| WO2006098182A1 (ja) | 2005-03-16 | 2006-09-21 | Sharp Kabushiki Kaisha | 基板、表示パネル、表示装置、ならびに上記基板の製造方法 |
| US20080305962A1 (en) | 2005-07-29 | 2008-12-11 | Ralph Markus Wirtz | Methods and Kits for the Prediction of Therapeutic Success, Recurrence Free and Overall Survival in Cancer Therapies |
| US20100004871A1 (en) | 2005-12-27 | 2010-01-07 | Power3 Medical Products, Inc. | Identities, specificities, and use of twenty two (22) differentially expressed protein biomarkers for blood based diagnosis of breast cancer |
| EP2081027A4 (en) | 2006-08-04 | 2009-09-23 | Ajinomoto Kk | METHOD FOR EVALUATING LUNG CANCER, LUNG CANCER EVALUATION DEVICE, LUNG CANCER EVALUATION METHOD, LUNG CANCER EVALUATION SYSTEM, EVALUATION PROGRAM FOR A LUNG CANCER LUNG CANCER AND RECORDING MEDIUM |
| JPWO2008015929A1 (ja) | 2006-08-04 | 2009-12-24 | 味の素株式会社 | メタボリック・シンドロームの評価方法、メタボリック・シンドローム評価装置、メタボリック・シンドローム評価方法、メタボリック・シンドローム評価システム、メタボリック・シンドローム評価プログラムおよび記録媒体、ならびにメタボリック・シンドロームの予防・改善物質の探索方法 |
| EP2657705A3 (en) | 2006-09-19 | 2013-12-25 | Metabolon Inc. | Biomarkers for prostate cancer and methods using the same |
| EP2103940A4 (en) | 2006-12-21 | 2013-04-24 | Ajinomoto Kk | METHOD, APPARATUS, METHOD, SYSTEM AND SOFTWARE FOR ASSESSING BREAST CANCER, AND RECORDING MEDIUM |
| KR101542037B1 (ko) | 2006-12-21 | 2015-08-05 | 아지노모토 가부시키가이샤 | 암 상태의 평가 방법, 및 암 평가 장치, 암 평가 방법, 암 평가 시스템, 암 평가 프로그램 및 기록 매체 |
| EP2096439A4 (en) | 2006-12-21 | 2011-01-05 | Ajinomoto Kk | METHOD, APPARATUS, METHOD, SYSTEM AND SOFTWARE FOR EVALUATING COLORECTAL CANCER, AND RECORDING MEDIUM |
| WO2009099005A1 (ja) | 2008-02-06 | 2009-08-13 | Ajinomoto Co., Inc. | 胃癌の評価方法、ならびに胃癌評価装置、胃癌評価方法、胃癌評価システム、胃癌評価プログラムおよび記録媒体 |
| CN101960310A (zh) | 2008-03-04 | 2011-01-26 | 味之素株式会社 | 癌症种类的评价方法 |
| JP5754137B2 (ja) | 2008-06-20 | 2015-07-29 | 味の素株式会社 | 前立腺癌の評価方法、前立腺癌評価装置、前立腺癌評価方法、前立腺癌評価プログラム、記録媒体、前立腺癌評価システム、および情報通信端末装置 |
| WO2009154296A1 (ja) | 2008-06-20 | 2009-12-23 | 味の素株式会社 | 女性生殖器癌の評価方法 |
-
2007
- 2007-08-02 EP EP07791853A patent/EP2081027A4/en not_active Withdrawn
- 2007-08-02 WO PCT/JP2007/065179 patent/WO2008016111A1/ja not_active Ceased
- 2007-08-02 JP JP2008527789A patent/JP5470848B2/ja active Active
-
2009
- 2009-02-04 US US12/365,272 patent/US9664681B2/en not_active Expired - Fee Related
-
2013
- 2013-11-27 JP JP2013245487A patent/JP2014038114A/ja active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004052191A1 (ja) | 2002-12-09 | 2004-06-24 | Ajinomoto Co., Inc. | 生体状態情報処理装置、生体状態情報処理方法、生体状態情報管理システム、プログラム、および、記録媒体 |
| WO2006098192A1 (ja) | 2005-03-16 | 2006-09-21 | Ajinomoto Co., Inc. | 生体状態評価装置、生体状態評価方法、生体状態評価システム、生体状態評価プログラム、評価関数作成装置、評価関数作成方法、評価関数作成プログラムおよび記録媒体 |
Non-Patent Citations (7)
| Title |
|---|
| CASCINO A. ET AL.: "Plasma amino acid imbalance in patients with lung and breast cancer", ANTICANCER RESEARCH, vol. 15, no. 2, 1995, pages 507 - 510, XP003021048 * |
| CASCINO, A. ET AL.: "Plasma amino acid imbalance in patients with lung and breast cancer", ANTICANCER RES, vol. 15, no. 2, 1995, pages 507 - 10, XP003021048 |
| EVANS W.K. ET AL.: "Perturbations in plasma amino acid profiles in small cell lung cancer (SCLC) and their response to treatment", PROC. AM. ASSOCIATION CANCER RES. ANN. MEET., vol. 29, 1988, pages 18 + ABSTR. NR. 69, XP008103478 * |
| PROENZA A.M. ET AL.: "Breast and lung cancer are associated with a decrease in blood cell amino acid content", J. NUTR. BIOCHEM., vol. 14, no. 3, 2003, pages 133 - 138, XP003021047 * |
| PROENZA; A.M. ET AL.: "Breast and lung cancer are associated with a decrease in blood cell amino acid content", J NUTR BIOCHEM, vol. 14, no. 3, 2003, pages 133 - 8, XP003021047, DOI: doi:10.1016/S0955-2863(02)00225-5 |
| RODRIGUEZ, P.C. ET AL.: "Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma", J EXP MED, vol. 202, no. 7, 2005, pages 931 - 9 |
| See also references of EP2081027A4 |
Cited By (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9664681B2 (en) | 2006-08-04 | 2017-05-30 | Ajinomoto Co., Inc. | Lung cancer evaluating apparatus, method, system, and program and recording medium therefor |
| US9599618B2 (en) | 2006-12-21 | 2017-03-21 | Ajinomoto Co., Inc. | Method, apparatus, system, program, and computer-readable recording medium for evaluating colorectal cancer |
| US9459255B2 (en) | 2006-12-21 | 2016-10-04 | Ajinomoto Co., Inc. | Method of evaluating breast cancer, breast cancer-evaluating apparatus, breast cancer-evaluating method, breast cancer-evaluating system, breast cancer-evaluating program and recording medium |
| KR101361601B1 (ko) * | 2008-03-04 | 2014-02-12 | 아지노모토 가부시키가이샤 | 암종의 평가 방법 |
| WO2009110517A1 (ja) * | 2008-03-04 | 2009-09-11 | 味の素株式会社 | 癌種の評価方法 |
| JPWO2009110517A1 (ja) * | 2008-03-04 | 2011-07-14 | 味の素株式会社 | 癌種の評価方法 |
| CN104330571B (zh) * | 2008-06-20 | 2017-09-08 | 味之素株式会社 | 前列腺疾病的评价方法 |
| JPWO2009154297A1 (ja) * | 2008-06-20 | 2011-12-01 | 味の素株式会社 | 前立腺疾患の評価方法 |
| JPWO2009154296A1 (ja) * | 2008-06-20 | 2011-12-01 | 味の素株式会社 | 女性生殖器癌の評価方法 |
| KR101821551B1 (ko) * | 2008-06-20 | 2018-01-25 | 아지노모토 가부시키가이샤 | 전립선 질환의 평가 방법 |
| CN104330571A (zh) * | 2008-06-20 | 2015-02-04 | 味之素株式会社 | 前列腺疾病的评价方法 |
| JP2015148633A (ja) * | 2008-06-20 | 2015-08-20 | 味の素株式会社 | 前立腺疾患の評価方法 |
| JP2015148632A (ja) * | 2008-06-20 | 2015-08-20 | 味の素株式会社 | 女性生殖器癌の評価方法 |
| CN102066946B (zh) * | 2008-06-20 | 2016-08-31 | 味之素株式会社 | 前列腺疾病的评价方法 |
| CN102066946A (zh) * | 2008-06-20 | 2011-05-18 | 味之素株式会社 | 前列腺疾病的评价方法 |
| JP2018025561A (ja) * | 2008-06-20 | 2018-02-15 | 味の素株式会社 | 取得方法、前立腺疾患評価装置、前立腺疾患評価プログラム及び前立腺疾患評価システム |
| US9465031B2 (en) | 2008-06-20 | 2016-10-11 | Ajinomoto Co., Inc. | Method of evaluating prostatic disease |
| JP2018013494A (ja) * | 2008-06-20 | 2018-01-25 | 味の素株式会社 | 取得方法、女性生殖器癌評価装置、女性生殖器癌評価プログラム及び女性生殖器癌評価システム |
| CN102057276A (zh) * | 2008-06-20 | 2011-05-11 | 味之素株式会社 | 女性生殖器癌症的评价方法 |
| WO2009154297A1 (ja) * | 2008-06-20 | 2009-12-23 | 味の素株式会社 | 前立腺疾患の評価方法 |
| WO2009154296A1 (ja) * | 2008-06-20 | 2009-12-23 | 味の素株式会社 | 女性生殖器癌の評価方法 |
| KR101817058B1 (ko) * | 2008-06-20 | 2018-01-11 | 아지노모토 가부시키가이샤 | 여성 생식기암의 평가 방법 |
| US12159718B2 (en) | 2012-11-27 | 2024-12-03 | Ajinomoto Co., Inc. | Method for evaluating pancreatic cancer, pancreatic cancer evaluating apparatus, pancreatic cancer evaluating method, pancreatic cancer evaluating program product, pancreatic cancer evaluating system and information communication terminal apparatus |
| JPWO2014084290A1 (ja) * | 2012-11-27 | 2017-01-05 | 味の素株式会社 | 膵臓癌の評価方法、膵臓癌評価装置、膵臓癌評価方法、膵臓癌評価プログラム、膵臓癌評価システムおよび情報通信端末装置 |
| WO2014084290A1 (ja) * | 2012-11-27 | 2014-06-05 | 味の素株式会社 | 膵臓癌の評価方法、膵臓癌評価装置、膵臓癌評価方法、膵臓癌評価プログラム、膵臓癌評価システムおよび情報通信端末装置 |
| WO2016159191A1 (ja) * | 2015-03-31 | 2016-10-06 | 味の素株式会社 | 評価方法、評価装置、評価プログラム、評価システム、及び端末装置 |
| JP2020101571A (ja) * | 2015-03-31 | 2020-07-02 | 味の素株式会社 | 評価方法、評価装置、評価プログラム、評価システム、及び端末装置 |
| JPWO2016159191A1 (ja) * | 2015-03-31 | 2018-02-01 | 味の素株式会社 | 評価方法、評価装置、評価プログラム、評価システム、及び端末装置 |
| KR20170132303A (ko) * | 2015-03-31 | 2017-12-01 | 아지노모토 가부시키가이샤 | 평가 방법, 평가 장치, 평가 프로그램 제품, 평가 시스템, 및 단말 장치 |
| KR102564592B1 (ko) * | 2015-03-31 | 2023-08-09 | 아지노모토 가부시키가이샤 | 평가 방법, 평가 장치, 평가 프로그램 제품, 평가 시스템, 및 단말 장치 |
| KR20230051606A (ko) * | 2015-03-31 | 2023-04-18 | 아지노모토 가부시키가이샤 | 평가 방법, 평가 장치, 평가 프로그램 제품, 평가 시스템, 및 단말 장치 |
| KR102519764B1 (ko) * | 2015-03-31 | 2023-04-10 | 아지노모토 가부시키가이샤 | 평가 방법, 평가 장치, 평가 프로그램 제품, 평가 시스템, 및 단말 장치 |
| JP2022066387A (ja) * | 2015-03-31 | 2022-04-28 | 味の素株式会社 | 取得方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、評価システム |
| WO2018021153A1 (ja) * | 2016-07-25 | 2018-02-01 | 国立大学法人信州大学 | 肺がんリスク状態の評価方法,肺がんリスク状態評価装置,肺がんリスク状態評価プログラム,肺がんリスク状態評価システム及び情報通信端末装置 |
| KR20190065263A (ko) | 2016-10-04 | 2019-06-11 | 아지노모토 가부시키가이샤 | 대장암의 평가 방법, 평가 장치, 평가 프로그램, 평가 시스템, 및 단말 장치 |
| WO2018066620A1 (ja) * | 2016-10-04 | 2018-04-12 | 味の素株式会社 | 膵臓癌の評価方法、評価装置、評価プログラム、評価システム、及び端末装置 |
| JP2018072074A (ja) * | 2016-10-26 | 2018-05-10 | 国立大学法人信州大学 | 肺がん進行度合いの評価方法,肺がん進行度合い評価装置,肺がん進行度合い評価プログラム,肺がん進行度合い評価システム及び情報通信端末装置 |
| WO2018079029A1 (ja) * | 2016-10-26 | 2018-05-03 | 国立大学法人信州大学 | 肺がん進行度合いの評価方法,肺がん進行度合い評価装置,肺がん進行度合い評価プログラム,肺がん進行度合い評価システム及び情報通信端末装置 |
| KR20190089895A (ko) | 2016-12-01 | 2019-07-31 | 아지노모토 가부시키가이샤 | 암 모니터링의 방법, 산출 방법, 평가 장치, 산출 장치, 평가 프로그램, 산출 프로그램, 평가 시스템, 및 단말 장치 |
| WO2018101450A1 (ja) * | 2016-12-01 | 2018-06-07 | 味の素株式会社 | 癌モニタリングの方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、評価システム、及び端末装置 |
| CN110208238A (zh) * | 2019-03-27 | 2019-09-06 | 天津理工大学 | 一种基于svm模型结合图像对肺癌组织的精确定位方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2014038114A (ja) | 2014-02-27 |
| US9664681B2 (en) | 2017-05-30 |
| JPWO2008016111A1 (ja) | 2009-12-24 |
| US20100017144A1 (en) | 2010-01-21 |
| EP2081027A4 (en) | 2009-09-23 |
| EP2081027A1 (en) | 2009-07-22 |
| JP5470848B2 (ja) | 2014-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7193020B2 (ja) | 取得方法、算出方法、胃癌評価装置、算出装置、胃癌評価プログラム、算出プログラムおよび胃癌評価システム | |
| JP5470848B2 (ja) | 肺癌の評価方法、肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラム、記録媒体、および、情報通信端末装置 | |
| JP5746811B2 (ja) | 大腸癌の評価方法、ならびに大腸癌評価装置、大腸癌評価方法、大腸癌評価システム、大腸癌評価プログラムおよび記録媒体 | |
| JP6586980B2 (ja) | 取得方法、算出方法、女性生殖器癌評価装置、算出装置、女性生殖器癌評価プログラム、算出プログラム及び女性生殖器癌評価システム | |
| JP6269578B2 (ja) | 取得方法、前立腺疾患評価装置、前立腺疾患評価プログラム及び前立腺疾患評価システム | |
| WO2008075664A1 (ja) | 癌の評価方法、ならびに癌評価装置、癌評価方法、癌評価システム、癌評価プログラムおよび記録媒体 | |
| JP5746810B2 (ja) | 乳癌の評価方法、ならびに乳癌評価装置、乳癌評価方法、乳癌評価システム、乳癌評価プログラムおよび記録媒体 | |
| JPWO2009110517A1 (ja) | 癌種の評価方法 | |
| JP2022066387A (ja) | 取得方法、算出方法、評価装置、算出装置、評価プログラム、算出プログラム、評価システム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07791853 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008527789 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007791853 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |