[go: up one dir, main page]

US9481564B2 - Method of sealing and shielding for dual pressure MEMs devices - Google Patents

Method of sealing and shielding for dual pressure MEMs devices Download PDF

Info

Publication number
US9481564B2
US9481564B2 US14/698,985 US201514698985A US9481564B2 US 9481564 B2 US9481564 B2 US 9481564B2 US 201514698985 A US201514698985 A US 201514698985A US 9481564 B2 US9481564 B2 US 9481564B2
Authority
US
United States
Prior art keywords
substrate
sealant
cap substrate
mems
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US14/698,985
Other versions
US20150232326A1 (en
Inventor
Kuei-Sung CHANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/013,155 external-priority patent/US9029961B2/en
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US14/698,985 priority Critical patent/US9481564B2/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. reassignment TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, KUEI-SUNG
Publication of US20150232326A1 publication Critical patent/US20150232326A1/en
Priority to CN201510800507.XA priority patent/CN106082104B/en
Application granted granted Critical
Publication of US9481564B2 publication Critical patent/US9481564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0035Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS
    • B81B7/0041Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS maintaining a controlled atmosphere with techniques not provided for in B81B7/0038
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00333Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0109Bonding an individual cap on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid

Definitions

  • MEMs micro-electromechanical system
  • accelerometers such as accelerometers, pressure sensors, gyroscopes, etc.
  • pressure sensors such as pressure sensors
  • gyroscopes such as pressure sensors
  • gyroscopes such as pressure sensors
  • gyroscopes such as pressure sensors
  • gyroscopes such as pressure sensors
  • gyroscopes such as pressure sensors
  • gyroscopes gyroscopes
  • MEMs accelerometers are commonly found in automobiles (e.g., in airbag deployment systems), tablet computers, cell phones, etc.
  • MEMs micro-electromechanical system
  • CMOS complementary metal-oxide-semiconductor
  • FIGS. 1A-1B illustrate some embodiments of a substrate comprising MEMs (micro-electromechanical system) devices abutting chambers held at different pressures.
  • MEMs micro-electromechanical system
  • FIGS. 2A-2B illustrate some additional embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
  • FIGS. 3A-3B illustrate some alternative embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
  • FIGS. 4A-4B illustrate some alternative embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
  • FIGS. 5A-5B illustrate some embodiments of a MEMs substrate having a multi-layer sealant.
  • FIGS. 6A-7B illustrate some embodiments of a MEMs substrate having a shielding layer overlying a sealant layer.
  • FIGS. 8A-8B illustrate some embodiments of a MEMs substrate having an additional capping structure disposed within one or more vent holes.
  • FIG. 9 illustrates a flow diagram of some embodiments of a method of forming a plurality of MEMs devices abutting chambers held at different pressures on a substrate.
  • FIGS. 10-19 illustrate some embodiments of a substrate upon which a method forming a plurality of MEMs devices abutting chambers held at different pressures is performed
  • MEMs devices often operate in a manner that is dependent on an environment surrounding the device. For example, to measure an angular momentum, a MEMs vibrational gyroscope may measure an angular rate by utilizing the Coriolis effect. To improve operation of a MEMs device, it may be desirable to operate the MEMs device within a surrounding environment that has a specific pressure that enables improved measurement of a desired parameter. For example, in the case of a MEMs vibrational gyroscope, a surrounding environment having a relatively low pressure (i.e., a higher vacuum) is desirable since it provides for a better measurement since it enhances displacement that is converted to a signal. Conversely, in the case of a MEMs accelerometer, a surrounding environment having a relatively high pressure is desirable since it mitigates displacement due to background disturbances that are converted to noise.
  • a MEMs vibrational gyroscope may measure an angular rate by utilizing the Coriolis effect.
  • MEMs devices typically abut a hermetically-sealed chamber that is held at a controlled pressure level that enables optimized operation of the device.
  • the pressure level can range from a vacuum (e.g., 1 mtorr) to a few atmosphere (e.g., 2 atm) depending on a device type.
  • MEMs device e.g., an accelerometer
  • a wafer level method can be used to form the cavity under a pressure.
  • the wafer level method is unable to package the MEMs devices to abut chambers held at separate pressures.
  • the present disclosure relates to a method of forming a plurality of MEMs devices respectively abutting chambers held at different pressures on a same substrate, and an associated apparatus.
  • the method comprises providing a device substrate having a plurality of micro-electromechanical system (MEMs) devices.
  • a cap substrate is bonded onto the device substrate in a first ambient environment having a first pressure.
  • the bonding forms a plurality of chambers abutting the plurality of MEMs devices.
  • One or more pressure tuning channels are formed in a sidewall of one of the plurality of chambers. Vent holes in communication with the one or more pressure tuning channels can be formed through the cap substrate within a second ambient environment having a different, second pressure.
  • the one or more vent holes expose the one of the plurality of chambers to the second pressure.
  • the one or more pressure tuning channels are then sealed, so that the second chamber is held at the second pressure.
  • the resulting substrate comprises a first chamber held at a first pressure and a second chamber held at a different, second pressure.
  • FIGS. 1A-1B illustrates some embodiments of a substrate comprising two MEMs (micro-electromechanical system) devices abutting chambers held at different pressures.
  • MEMs micro-electromechanical system
  • FIG. 1A illustrates a block diagram of a cross-sectional view 100 a of some embodiments of a substrate (along cross-sectional line 100 a ′ of FIG. 1B ) comprising a plurality of MEMs devices abutting chambers held at different pressures.
  • the substrate comprises a device substrate 102 having a plurality of MEMs (micro-electromechanical systems) devices, 104 a and 104 b , embedded therein.
  • MEMs micro-electromechanical systems
  • one or more of the MEMs devices, 104 a and 104 b may comprise a MEMs gyroscope (e.g., a vibrating gyroscope or a piezoelectric plate gyroscope), a MEMs accelerometer, or a MEMs pressure sensor, for example.
  • a cap substrate 108 is disposed at a position overlaying the device substrate 102 .
  • the cap substrate 108 is affixed to the device substrate 102 by way of a bonding material 106 .
  • the cap substrate 108 comprises a plurality of depressions 111 that are positioned at locations that correspond to locations of the MEMs devices, 104 a and 104 b , so as to form chambers, 112 a and 112 b .
  • substrate refers in general to any sized or shaped substrates.
  • the cap substrate 108 may comprise a wafer or a section or subset of a wafer (e.g., a die).
  • the chambers, 112 a and 112 b abut the MEMs devices, 104 a and 104 b (e.g., the first MEMs device 104 a abuts a first chamber 112 a and the second MEMs device 104 b abuts a second chamber 112 b ).
  • the first chamber 112 a may comprise a top surface comprising the cap substrate 108 and sidewalls comprising the cap substrate 108 and the bonding material 106 .
  • a sealant 110 is disposed to overlay the cap substrate 108 and extend from a top of the cap substrate 108 to a position that forms an interior surface of the second chamber 112 b .
  • the MEMs devices, 104 a and 104 b may have a movable component in contact with the chambers, 112 a and 112 b.
  • the first chamber 112 a is held at a first pressure
  • the second chamber 112 b is held at a second pressure that may be different than the first pressure.
  • One or more pressure tuning channels 114 are vertically disposed between the device substrate 102 and the cap substrate 108 and laterally extend outward from a sidewall of the second chamber 112 b .
  • the sealant 110 extends into the pressure tuning channels 114 to hermetically seal the second chamber 112 b from an ambient environment.
  • the substrate of FIG. 1A is illustrated as having two chambers, 112 a and 112 b , that are held at different pressures that the disclosed substrate is not limited to such a configuration.
  • a disclosed substrate may comprise more than two chambers, wherein two or more of the chambers may be held at a same pressure.
  • the substrate is illustrated as having 2 MEMs devices, it will be appreciated that the substrate may be diced to provide for two separate MEMs substrates respectively having one or more MEMs devices.
  • the substrate may be diced to provide a substrate having a single MEMs device (e.g., second MEMs device 104 b ) abutting the second chamber 112 b , as shown by box 116 .
  • FIG. 1B illustrates a block diagram of a top-view 100 b of some embodiments of a substrate comprising a plurality of MEMs devices abutting chambers held at different pressures.
  • the second chamber 112 b comprises one or more pressure tuning channels 114 that extend outward from a sidewall of the second chamber 112 b .
  • the one or more pressure tuning channels 114 may be defined by the bonding material 106 (e.g., by a patterned bonding material formed on a substantially flat section of the cap substrate), such that the one or more pressure tuning channels 114 have a height that is equal to a thickness of the bonding material 106 (e.g., so that the one or more pressure tuning channels 114 have a height that is less than a height of the chambers 112 ).
  • the one or more pressure tuning channels 114 may comprise depressions within the device substrate 102 and/or the cap substrate 108 , such that the one or more pressure tuning channels 114 have a height that depends upon a depth of the depressions.
  • FIGS. 2A-2B illustrate some more detailed embodiments of a substrate comprising a plurality of MEMs devices having cavities held at different pressures.
  • FIG. 2A illustrates a cross-sectional view 200 a of some embodiments of a substrate (along cross-sectional line 200 a ′ of FIG. 2B ) comprising a plurality of MEMs devices abutting chambers held at different pressures.
  • the substrate comprises a device substrate 102 having a plurality of MEMs devices, 104 a and 104 b .
  • the MEMs devices, 104 a and 104 b are laterally positioned between sections of a first layer of bonding material 202 disposed on an upper surface 201 of the device substrate 102 .
  • one or more of the plurality of MEMs devices, 104 a and 104 b may comprise a MEMs gyroscope such as a vibrating gyroscope or a piezoelectric plate gyroscope.
  • one or more of the plurality of MEMs devices, 104 a and 104 b may comprise a MEMs accelerometer.
  • the first layer of bonding material 202 may comprise aluminum or germanium (for a eutectic bond), oxide (for a fusion bond), or a metal or a polymer (for a thermal compression bond).
  • the device substrate 102 may comprise electrical interconnections (not shown) configured to couple the MEMs devices, 104 a and 104 b , to one or more logic devices (e.g., CMOS transistors) that make the MEMs devices, 104 a and 104 b , function.
  • the device substrate 102 might be a CMOS substrate comprising one or more CMOS devices (e.g., MOSFET devices).
  • the MEMS devices, 104 a and 104 b may be built along an upper surface of the device substrate 102 (e.g., within the semiconductor material or within an inter-level dielectric layer overlying the CMOS devices).
  • the device substrate 102 comprising MEMS devices, 104 a and 104 b , may be bonded to an underlying CMOS substrate comprising one or more CMOS devices.
  • the device substrate 102 may comprise one or more stacked substrates (e.g., a 2.5D integrated chip), wherein one or more of the stacked substrates comprise one or more logic devices that make the MEMs devices, 104 a and 104 b , function.
  • a cap substrate 206 is located over the device substrate 102 .
  • the cap substrate 206 comprises a lower surface 205 that faces the upper surface 201 of the device substrate 102 .
  • the lower surface 205 comprises a plurality of depressions 111 that extend into the lower surface 205 of the cap substrate 206 as negative reliefs.
  • the plurality of depressions 111 may comprise a plurality of device cavities.
  • the plurality of depressions 111 may further comprise one or more pressure tuning cavities that extend outward from one or more of the plurality of device cavities.
  • the plurality of depressions 111 are laterally positioned between a second layer of bonding material 204 disposed on the surface 205 of the cap substrate 206 .
  • the second layer of bonding material 204 may comprise aluminum or germanium (for a eutectic bond), oxide (for a fusion bond), or a metal or a polymer (for a thermal compression bond).
  • the lower surface 205 of the cap substrate 206 may be substantially planar.
  • the cap substrate 206 extends over a portion of the device substrate 102 .
  • the cap substrate 206 is set back from an edge of the device substrate 102 (e.g., by a distance 210 ) due to dicing the cap substrate 206 at an angle during fabrication.
  • the cap substrate 206 has an angled sidewall 206 s .
  • the angled sidewall 206 s has an angle ⁇ that is in a range of between approximately 45° and approximately 90°.
  • One or more pressure tuning channels 114 are located at a position(s) underlying the angled sidewall of the cap substrate 206 .
  • One or more vent holes 212 extend through the cap substrate 206 to a position in communication with the one or more pressure tuning channels 114 .
  • a sealant 208 is disposed over the cap substrate 206 and extends to positions within the one or more vent holes 212 .
  • the sealant 208 may comprise a metal and/or a dielectric material (e.g., a metal layer, a dielectric layer, a metal/dielectric stack, a dielectric/metal/dielectric stack, etc.).
  • the first and second layers of bonding material, 202 and 204 are positioned to contact one another so as to form a first chamber 112 a and a second chamber 112 b .
  • the second chamber 112 b is connected to one or more pressure tuning channels 114 .
  • the chambers 112 and/or the pressure tuning channels 114 may comprise the plurality of depressions 111 (i.e., so that the chambers 112 and/or the pressure tuning channels 114 extend into the cap substrate 205 ).
  • the chambers 112 and/or the pressure tuning channels 114 are formed by patterning the first layer of bonding material 202 and/or the second layer of bonding material 204 .
  • the first MEMs device 104 a abuts the first chamber 112 a , which is held at a first pressure.
  • the second MEMs device 104 b abuts the second chamber 112 b , which is held at a second pressure.
  • the first pressure is different than the second pressure.
  • the different pressures of the first and second chambers, 112 a and 112 b allow for MEMs devices, 104 a and 104 b , to comprise different types of MEMs devices.
  • the first MEMs device 104 a comprises an accelerometer abutting the first chamber 112 a held at the first pressure
  • the second MEMs device 104 b comprises a gyroscope abutting the second chamber 112 b held at the second pressure
  • FIG. 2B illustrates a top-view 200 b of some embodiments of the substrate illustrated in the cross-sectional view 200 a of FIG. 2A (wherein FIG. 2A is illustrated along cross-sectional line 200 a ′).
  • the substrate comprises a first chamber 112 a and a second chamber 112 b .
  • the first chamber 112 a is surrounded by the second layer of bonding material 204 .
  • the first chamber 112 a is surrounded by the second layer of bonding material 204 , which is disposed in a substantially rectangular pattern.
  • the second chamber 112 b is surrounded by the second layer of bonding material 204 .
  • the second chamber 112 b is surrounded by second layer of bonding material 204 , which is disposed in a substantially rectangular pattern with pressure tuning channels 114 extending as conduits outward from the rectangular pattern (e.g., as finger-like conduits).
  • the rectangular pattern of the second layer of bonding material 204 is a non-limiting embodiment, and that in other embodiments, the second layer of bonding material 204 may be dispensed in another, non-rectangular pattern.
  • the one or more vent holes 212 may comprise a trench that extends past multiple pressure tuning channels 114 .
  • the trench is positioned so that the cap substrate 206 is configured to overlay the first chamber 112 a and the second chamber 112 b , but to expose a portion of the pressure tuning channels 114 .
  • the sealant 208 is disposed within the trench so that the second chamber 112 b is separated from an ambient environment by the sealant 208 .
  • FIGS. 3A-3B illustrates some alternative embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
  • FIG. 3A illustrates a cross-sectional view 300 a of some embodiments of a substrate (along cross-sectional line 300 a ′ of FIG. 3B ) comprising a plurality of MEMs devices abutting chambers held at different pressures.
  • the substrate comprises a cap substrate 302 disposed over a device substrate 102 .
  • the cap substrate 302 has a vertical sidewall that is aligned with an edge of the device substrate 102 .
  • One or more vent holes 304 vertically extend through the cap substrate 302 to a pressure tuning channel 114 .
  • the one or more vent holes 304 have a first opening with a width w b that is substantially equal to a width of a wafer saw blade (e.g., between approximately 5 um and approximately 100 um).
  • the one or more vent holes 304 have a first opening 304 a and a second opening 304 b underlying the first opening 304 a .
  • the first opening 304 a has a first width w b and the second opening 304 b has a second width w e that is less than the first width w b , so as to give the one or more vent holes 304 a stepped sidewall.
  • a sealant 306 extends into the one or more vent holes 304 to fill the one or more vent holes 304 and to thereby hermetically seal the second chamber 112 b.
  • FIG. 3B illustrates a top-view 300 b of some embodiments of the substrate illustrated in the cross-sectional view 300 a of FIG. 3A .
  • FIGS. 4A-4B illustrates some alternative embodiments of a substrate comprising a MEMs devices having a opening formed by an etching process.
  • FIG. 4A illustrates a cross-sectional view 400 a of some embodiments of a substrate (along cross-sectional line 400 a ′ of FIG. 4B ) comprising a plurality of MEMs devices abutting chambers held at different pressures.
  • the substrate comprises a cap substrate 402 disposed over a device substrate 102 .
  • One or more vent holes 404 vertically extend through the cap substrate 402 to a pressure tuning channel 114 .
  • the one or more vent holes 404 have substantially vertical sidewalls that extend through the cap substrate 402 .
  • the one or more vent holes 404 may have a width w e that is less than a width of a wafer saw blade w b .
  • FIG. 4B illustrates a top-view 400 b of some embodiments of the substrate illustrated in the cross-sectional view 400 a FIG. 4A .
  • the one or more vent holes 404 are respectively located over a pressure tuning channel 114 .
  • the one or more vent holes 404 are separated from one another.
  • the one or more vent holes may comprise a trench that extends over a plurality of pressure tuning channels 114 .
  • FIGS. 5A-5B illustrate cross-sectional views of MEMs devices comprising a multi-layered sealant configured to seal one or more pressure tuning channels.
  • the multi-layered sealant improves the ability of the sealant to fill openings having a high aspect ratio (e.g., a depth/width ratio of greater than or equal to approximately 1).
  • a multi-layered sealant having a metal layer and a dielectric layer provides for better sealing and for higher reliability.
  • FIG. 5A illustrates a MEMs substrate 500 comprising a multi-layered sealant 504 configured to seal one or more vent holes 506 within a cap substrate 502 .
  • the multi-layered sealant 504 comprises a metal layer 504 a and a dielectric layer 504 b .
  • the metal layer 504 a may overlie the dielectric layer 504 b
  • the dielectric layer 504 b may overlie the metal layer 504 a .
  • the metal layer 504 a may comprise aluminum and/or copper and the dielectric layer 504 b may comprise an oxide and/or nitride.
  • FIG. 5B illustrates a MEMs substrate 508 comprising a multi-layered sealant 510 configured to seal one or more vent holes 506 within a cap substrate 502 .
  • the multi-layered sealant 510 comprises a sandwich structure comprising a metal layer 510 b disposed between a first dielectric layer 510 a and a second dielectric layer 510 c .
  • the first and second dielectric layers, 510 a and 510 b may comprise an oxide or a nitride
  • the metal layer 510 b may comprise aluminum and/or copper.
  • FIGS. 6A-6B illustrates cross-sectional views, 600 a and 600 b , of some embodiments of a MEMs substrate comprising a shielding layer.
  • the MEMs substrate comprises a shielding layer 606 disposed over a sealant 602 extending into one or more vent holes in a cap substrate 206 .
  • the shielding layer 606 comprises a conductive material that laterally extends over the MEMs devices, 104 a and 104 b .
  • the shielding layer may comprise a metal such as aluminum and/or copper, for example.
  • the shielding layer 606 may abut the cap substrate 206 and the sealant 602 . By abutting the cap substrate 206 , the shielding layer 606 forms an electrical connection with the cap substrate 206 , thereby allowing for the shielding layer 606 to be grounded.
  • the shielding layer 606 is able to perform electromagnetic shielding by dissipating energy from electro-magnetic fields.
  • the electromagnetic shielding allows for the shielding layer to provide shielding from interference caused by the interaction of electromagnetic radiation between the MEMs devices 104 and an external circuit.
  • the MEMs substrate may be integrated within an electronic device (e.g., a cell phone, a computer, etc.) having other electronic components.
  • the other electronic components may generate electromagnetic radiation that interferes with operation of the MEMs devices 104 and/or may have their operation interfered with by electromagnetic radiation generated by the MEMs devices 104 .
  • the shielding layer 606 dissipates electric currents generated from external or internal electromagnetic fields, and thus mitigating electromagnetic interference.
  • the shielding layer 606 a vertically extends through an opening 604 in the sealant 602 a to abut an upper surface of the cap substrate 206 .
  • the opening 604 is laterally offset from a vent hole 212 .
  • the opening 604 may extend a distance d into an upper surface 207 of the cap substrate 206 so as to form a depression within the top surface of the cap substrate 206 .
  • the opening 604 may comprise a trench having a width w of between 5 um and 100 um. In other embodiments, the opening 604 may comprise a smaller width w.
  • the upper surface 207 of the cap substrate 206 is exposed along a substantially planar surface that is shared with an upper surface of the sealant 602 b .
  • the shielding layer 606 b is disposed along the planar surface so that the shielding layer 606 b abuts upper surfaces of the cap substrate 206 and the sealant 602 b , and one or more sidewalls of the cap substrate 206 .
  • FIGS. 7A-7B illustrates cross-sectional views, 700 a and 700 b , of some alternative embodiments of a MEMs substrate comprising a shielding layer.
  • a shielding layer 706 abuts an upper surface of a cap substrate 302 and extends into a vent hole 304 having stepped sidewalls.
  • the shielding layer 706 may extend through an opening 704 in a sealant 702 a (shown in cross-sectional view 700 a of FIG. 7A ), while in other embodiments, the shielding layer may abut upper surfaces of the cap substrate 302 and the sealant 702 b (shown cross-sectional view 700 b of in FIG. 7B ).
  • FIGS. 6A-6B and 7A-7B are non-limiting examples of shielding layer configurations.
  • FIGS. 8A-8B illustrate some embodiments of cross-sectional views, 800 a and 800 b , of a MEMs substrate having an additional capping structure disposed within one or more vent holes.
  • the additional capping structure 804 is formed within one or more vent holes 404 at a position overlying a sealant 802 .
  • a shielding layer 806 is formed over the sealant 802 and the additional capping structure 804 .
  • a cavity 808 may be arranged within the one or more vent holes 404 at a position that is laterally between sidewalls of the sealant 802 and vertically between the sealant 802 and the additional capping structure 804 .
  • the additional capping structure 804 prevents debris from subsequent processing steps from accumulating within the one or more vent holes 404 .
  • the additional capping structure 804 may comprise a polymer material.
  • the additional capping structure 804 a extends outward from within the one or more vent holes 404 to a location that overlies an upper surface of the sealant 802 a .
  • the additional capping structure 804 b has an upper surface that is substantially aligned with an upper surface of the cap substrate 402 and the sealant 802 b .
  • the shielding layer 806 b is substantially flat.
  • FIG. 9 illustrates a flow diagram of some embodiments of a method 900 for forming a plurality of MEMs device having chambers with different pressures on a substrate.
  • a first layer of bonding material is selectively patterned on a device substrate having plurality of MEMs devices.
  • the plurality of MEMs devices are disposed between the selectively patterned first layer of bonding material.
  • a cap substrate is provided having a patterned second layer of bonding material.
  • the cap substrate is selectively patterned to form a plurality of device cavities at positions located between the patterned second layer of bonding material.
  • the cap substrate may be patterned to also form one or more pressure tuning cavities.
  • the cap substrate is bonded to the device substrate at a first pressure. Bonding the cap substrate to the device substrate forms a plurality of chambers and one or more pressure tuning channels. The cap substrate is bonded to the device substrate by bringing the first layer of bonding material into contact with the second layer of bonding material at a first ambient environment having the first pressure.
  • one or more vent holes are formed within the cap substrate.
  • the one or more vent holes are in communication with one or more of the pressure tuning channels and expose the one or more of the plurality of chambers to a second ambient environment having a second pressure.
  • the one or more vent holes are formed by removing a portion of the cap substrate by dicing the bonded structure (i.e., the cap substrate and the device substrate), at 912 .
  • the diced bonded structure is then etched to form the one or more vent holes that expose the one or more of the plurality of chambers to the second ambient environment having a second pressure, at 914 .
  • the one or more vent holes may be formed by selectively etching the cap substrate according to a masking layer.
  • the one or more vent holes are sealed at a third pressure.
  • the one or more chambers are sealed by depositing a sealant into the one or more vent holes within a third ambient environment having the third pressure.
  • the second pressure i.e., the pressure of the second ambient environment during the opening process at 910
  • the third pressure i.e., the pressure of the ambient environment during the sealing process at 916 .
  • the second pressure and the third pressure may be different.
  • an additional capping structure may be formed within the one or more vent holes, in some embodiments.
  • a portion of the sealant is removed to expose an upper surface of the cap substrate.
  • a conductive shielding layer is formed onto and in direct contact with an upper surface of the cap substrate and an upper surface of the sealant.
  • the bonded structure may be diced. In some embodiments, the bonded structure is diced to form a first MEMs device on a first die and a second MEMs device on a second die. In other embodiments, the bonded structure is diced to form the first and second MEMs device on a same die.
  • FIGS. 10-19 illustrate some embodiments of a substrate upon which a method 900 forming a plurality of MEMs device having chambers with different pressures on a substrate, is performed.
  • FIGS. 10-19 are described in relation to method 900 , it will be appreciated that the structures disclosed in FIGS. 10-19 are not limited to such a method, but instead may stand alone as a structure.
  • FIG. 10 illustrates some embodiments of a cross-sectional view 1000 (along cross-sectional line 1000 a ) and a top-view 1002 corresponding to act 902 .
  • a device substrate 102 is provided having a plurality of MEMs devices, 104 a and 104 b .
  • the device substrate 102 may comprise a silicon wafer.
  • device substrate 102 may comprise CMOS substrate having CMOS devices (e.g., MOSFET devices).
  • the plurality of MEMs devices, 104 a and 104 b may comprise a MEMs gyroscope (e.g., a vibrating gyroscope) or a MEMs accelerometer.
  • the plurality of MEMs devices, 104 a and 104 b may comprise a MEMs accelerometer or a MEMs pressure sensor.
  • the MEMs devices, 104 a and 104 b are laterally positioned between a first layer of bonding material 202 disposed on a top surface of the device substrate 102 .
  • the first layer of bonding material 202 can be aluminum or germanium for a eutectic bond, oxide for a fusion bond, or a metal or a polymer for a thermal compression bond.
  • the first layer of bonding material 202 may be omitted (e.g., for fusion bonding between a second layer of bonding material comprising an oxide and silicon)
  • FIG. 11 illustrates some embodiments of a cross-sectional view 1100 (along cross-sectional line 1100 a ) and a top-view 1104 corresponding to act 904 .
  • a second layer of bonding material 204 is selectively formed over a cap substrate 1102 .
  • the cap substrate 1102 may comprise a silicon wafer.
  • the second layer of bonding material 204 may comprise aluminum or germanium for a eutectic bond, oxide for a fusion bond, or a metal or a polymer for a thermal compression bond.
  • the second layer of bonding material 204 may be omitted (e.g., for fusion bonding between a first layer of bonding material comprising an oxide and silicon).
  • the second layer of bonding material 204 is disposed over the cap substrate 1102 in a first pattern comprising substantially rectangular pattern, and in a second pattern comprising a substantially rectangular pattern with finger-like conduits (corresponding to pressure tuning channels formed at 908 ) extending outward from the rectangular pattern.
  • the second layer of bonding material 204 may be disposed in first and second patterns that are non-rectangular.
  • FIG. 12 illustrates some embodiments of a cross-sectional view 1200 (along cross-sectional line 1200 a ) and a top-view 1208 corresponding to act 906 .
  • the cap substrate 1102 is selectively pattered to form a plurality of depressions within the surface of the cap substrate 1102 .
  • the cap substrate 1102 may be selectively patterned using a dry reactive ion etching (DRIE) process.
  • DRIE dry reactive ion etching
  • a masking layer (not shown) may be formed on to the cap substrate 1102 and then the cap substrate 1102 may be exposed to the dry etchant 1202 that selectively removes parts of the cap substrate 1102 in areas not masked by the masking layer.
  • the plurality of depressions may comprise a plurality of device cavities 1204 .
  • the plurality of depressions may further comprise one or more pressure tuning cavities 1206 that extend outward from one or more of the plurality of device cavities 1204 .
  • the one or more pressure tuning cavities 1206 may comprise finger-like cavities.
  • the one or more pressure tuning cavities 1206 may comprise other shapes (e.g., non-finger-like cavities).
  • FIG. 13 illustrates some embodiments of a cross-sectional view 1300 (along cross-sectional line 1300 a ) and a top-view 1302 corresponding to act 908 .
  • the cap substrate 1102 is bonded to the device substrate 102 within a first ambient environment having a first pressure to form a bonded structure.
  • the bonded structure comprises a first chamber 112 a , a second chamber 112 b , and one or more pressure tuning channels 114 , held at the first pressure.
  • the cap substrate 1102 is bonded to the device substrate 102 by bringing the first layer of bonding material 202 into contact with the second layer of bonding material 204 .
  • the first pressure may be in a range of between approximately 1 milli-torr (mtorr) approximately 2 atmosphere.
  • the cap substrate 1102 may be bonded to the device substrate 102 by way of a fusion bonding process, an eutectic bonding process, or a thermal compression bonding process.
  • the one or more pressure tuning channels 114 may comprise the pressure tuning cavities. In other embodiments, the one or more pressure tuning channels 114 may be formed by a patterned bonding material (e.g., first and second layers of bonding material, 202 and 204 ) that forms the one or more pressure tuning channels 114 disposed between the cap substrate 1102 and the device substrate 102 .
  • a patterned bonding material e.g., first and second layers of bonding material, 202 and 204
  • FIGS. 14A-14C illustrate various embodiments of a process of forming one or more vent holes corresponding to act 910 .
  • FIG. 14A illustrates some embodiments of a process of forming one or more vent holes using a dicing process performed with a tilt dicer and a subsequent etching process.
  • the cap substrate 1402 is diced along scribe line 1404 (note that the flat part of cap substrate 1402 between angled sidewalls corresponds to vertical part of cross-sectional line 1400 ′) by a tilt dicer having a spindle that is tiled to an angle ⁇ (corresponding to a sidewall angle of cap substrate 108 ).
  • the angle ⁇ is in a range of between approximately 45° and 90°.
  • the dicing process removes a portion of the cap substrate 108 , providing the cap substrate 108 with an angled sidewall overlying the one or more pressure tuning channels 114 .
  • the dicing process removes a portion of the cap substrate 1402 so that an angled sidewall of the cap substrate 1402 is set back from an edge of the device substrate 102 .
  • the cap substrate 206 is exposed to a blanket (i.e., unmasked) etching process.
  • the blanket etching process exposes an upper surface of the cap substrate 1402 to an etchant 1410 that removes a portion of the cap substrate 206 to form one or more vent holes 212 that connect the one or more pressure tuning channels 114 to a second ambient environment held at a second pressure.
  • the pressure tuning cavities 114 cause a portion of the cap substrate 206 to remain to the right of the vent hole 212 as shown in cross-sectional view 1408 .
  • the cap substrate 206 may be removed to the right of the vent holes 212 .
  • the one or more vent holes 212 may comprise a trench extending over multiple pressure tuning channels 114 .
  • the etchant 1410 may comprise a dry etchant.
  • the dry etchant may use an etching chemistry comprising chlorine (Cl 2 ) or Sulfur hexafluoride (SF 6 ), for example. Since the blanket etching process exposes the cap substrate 1402 to etchant 1410 , the thickness of the cap substrate is reduced from a first thickness t 1 to a second thickness t 2 (where t 2 ⁇ t 1 ).
  • the second chamber 112 b may be brought to the second pressure that is different than the first pressure.
  • FIG. 14B illustrates some alternative embodiments of a process that forms one or more vent holes using a dicing process performed with a non-tilt dicer and a subsequent etching process.
  • the cap substrate 1418 is diced by a non-tilted dicing blade 1420 .
  • the non-tilted dicing blade 1420 makes a cut into the cap substrate 1418 that is substantially perpendicular to the upper surface of the cap substrate 1418 .
  • the dicing process removes a portion of the cap substrate 1418 to from a depression 1422 within the cap substrate 1418 overlying the one or more pressure tuning channels 114 .
  • the portion of the cap substrate 1418 removed by the non-tilted dicing blade 1420 forms a trench that extends between a plurality of pressure tuning channels 414 .
  • the cap substrate 302 is exposed to a blanket (i.e., unmasked) etching process.
  • the blanket etching process exposes an upper surface of the cap substrate 302 to an etchant 1428 that removes a portion of the cap substrate 302 to form one or more vent holes 304 that connect the one or more pressure tuning channels 114 to a second ambient environment held at a second pressure.
  • the pressure tuning cavities 1206 cause a portion of the cap substrate 302 to remain to the right of the vent hole 304 as shown in cross-sectional view 1426 .
  • the cap substrate 302 may be removed to the right of the vent holes 304 .
  • the second chamber 112 b may be brought to the second pressure that is different than the first pressure.
  • FIG. 14C illustrates some alternative embodiments of a process that forms one or more vent holes using an etching process.
  • a masking layer 1434 is selectively formed onto an upper surface of the cap substrate 1102 .
  • the masking layer 1434 comprises one or more openings 1436 that defines locations of one or more vent holes. As shown in top-view 1438 , separate openings may be formed over each of the pressure tuning channels 114 .
  • the cap substrate 402 is selectively exposed to an etchant 1442 in areas that are not masked by the masking layer 1434 .
  • the etchant 1442 is configured to remove a portion of the cap substrate 402 to form one or more vent holes 404 that connect the one or more pressure tuning channels 114 to a second ambient environment held at a second pressure.
  • the second chamber 112 b is exposed the second pressure.
  • FIG. 15A-15C illustrates some embodiments of cross-sectional views 1500 a - 1500 c corresponding to act 916 .
  • a sealant 208 is formed within one or more vent holes 212 formed by a tilt dicing process (as shown in FIG. 14A ) within a third ambient environment having a third pressure.
  • the sealant 208 may comprise a metal or a dielectric material.
  • the sealant 208 may comprise a metal layer stacked onto a dielectric layer.
  • the sealant 208 may comprise a sandwich structure having a metal layer disposed between two dielectric layers.
  • the layers of the sealant 208 may be deposited by way of a deposition technique (e.g., chemical vapor deposition, physical vapor deposition, etc.).
  • the second pressure and the third pressure may be the same or the second pressure and the third pressure may be different.
  • a sealant 306 is formed within one or more vent holes 304 formed by a non-tilted dicing process (as shown in FIG. 14B ) within a third ambient environment having a third pressure.
  • the sealant 208 may comprise a metal and/or a dielectric material.
  • a sealant 406 is formed within one or more vent holes 404 formed by an etching process (as shown in FIG. 14C ) within a third ambient environment having a third pressure.
  • the sealant 406 may comprise a metal and/or a dielectric material.
  • FIG. 16 illustrates some embodiments of a cross-sectional view 1600 corresponding to act 918 .
  • an additional capping structure 1602 is formed within one or more vent holes 404 .
  • the additional capping structure 1602 may comprise a polymer material (e.g., an epoxy) that is formed within the one or more vent holes 404 .
  • the additional capping structure 1602 prevents debris from subsequent processing steps from accumulating within the one or more vent holes 404 .
  • the additional capping structure 1602 may comprise a polymer based film formed by a screen printing process, for example.
  • the additional capping structure 1602 may be formed subsequent to the acts of FIGS. 17A-17C .
  • FIG. 17A-17C illustrates some embodiments of cross-sectional view 1700 a - 1700 c corresponding to act 920 .
  • a portion of the sealant is removed to expose an upper surface of the cap substrate.
  • the removal of the sealant can be selective or nonselective.
  • the sealant is shown as being removed by dicing ( FIG. 17A ), etching ( FIG. 17B ), or grinding ( FIG. 17C ), however, one of ordinary skill in the art will appreciate that other methods may be used to remove the sealant.
  • a portion of the sealant 1706 is removed by a dicing process (e.g., using dicing blade 1702 ) to form an opening 1704 extending through the sealant 1706 to expose a portion of an upper surface of the cap substrate 402 .
  • the opening 1704 has a width that is substantially equal to a width of the dicing blade (e.g., between approximately 5 um and approximately 100 um).
  • a portion of the sealant 1712 is removed by an etching process to expose a portion of an upper surface of the cap substrate 402 .
  • the etching process is performed by forming a masking layer 1714 over the sealant 1712 .
  • the masking layer 1714 may comprise a photoresist layer patterned according to a photolithography process.
  • the sealant 1712 is subsequently exposed to an etchant 1710 according to the masking layer 1714 .
  • the etchant 1710 removes exposed portions of the sealant 1712 to form an opening 1708 extending through the sealant 1712 to the underlying cap substrate 402 .
  • a portion of the sealant 1718 is removed by a grinding process to expose a portion of an upper surface of the cap substrate 402 .
  • the grinding process may comprise a chemical mechanical polishing (CMP) process.
  • the grinding process may comprise a mechanical grinding process that removes polymer material and silicon at the same time with sealant.
  • the CMP process or mechanical grinding process forms a substantially planar surface 1716 that extends along an upper surface of the cap substrate 402 and along an upper surface of the sealant 1718 .
  • FIG. 18 illustrates some embodiments of a cross-sectional view 1000 corresponding to act 922 .
  • a conductive shielding layer 806 a is formed onto and in direct contact with the upper surface of cap substrate 402 and an upper surface of the sealant 802 a .
  • the conductive shielding layer 806 a may be deposited by way of a vapor deposition technique (e.g., chemical vapor deposition, physical vapor deposition, etc.).
  • the conductive shielding layer 806 a may comprise a metal such as aluminum or copper, for example.
  • FIG. 19 illustrates some embodiments of cross-sectional views, 1900 and 1904 , corresponding to act 924 .
  • the substrate may be diced along one or more of scribe lines 1902 , using a non-tiled dicing saw, to form a single die 1906 comprising one or more of the plurality of MEMs devices, 104 a and 104 b , respectively abutting chambers having different pressures.
  • the substrate may be diced to form a first die 1906 a comprising a first MEMs device 104 a abutting a first chamber 112 a held at the first pressure and a second die 1906 b comprising a second MEMs device 104 b abutting a second chamber 112 b held at the second pressure.
  • the present disclosure relates to a MEMs (micro-electromechanical system) substrate having an electromagnetic shielding layer overlying a plurality of MEMs devices that respectively abut chambers held at different pressures, and an associated method of formation.
  • MEMs micro-electromechanical system
  • the present disclosure relates to a MEMs (micro-electromechanical system) substrate.
  • the MEMs substrate comprises a device substrate having a micro-electromechanical system (MEMs) device, and a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device.
  • the MEMs substrate further comprises a cap substrate comprising a depression disposed within a surface abutting the layer of bonding material, which forms a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device.
  • One or more pressure tuning channels vertically disposed between the device substrate and the cap substrate laterally extend outward from a sidewall of the chamber.
  • the present disclosure relates to a MEMs (micro-electromechanical system) substrate.
  • the MEMs substrate comprises a device substrate having a micro-electromechanical system (MEMs) device, and a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device.
  • a cap substrate comprising a depression disposed within a surface abuts the layer of bonding material, to form a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device.
  • a sealant is disposed between the chamber and an ambient environment, and a conductive shielding layer extends from an upper surface of the sealant to an upper surface of the cap substrate.
  • the present disclosure relates to a method of forming a plurality of MEMs devices on a shared substrate.
  • the method comprises providing a device substrate comprising a plurality of micro-electromechanical system (MEMs) devices.
  • the method further comprises bonding a cap substrate onto the device substrate in a first ambient environment having a first pressure, wherein the bonding forms a plurality of chambers abutting the plurality of MEMs devices.
  • the method further comprises forming one or more vent holes extending through the cap substrate to locations in communication with the plurality of chambers.
  • the method further comprises forming a sealant within the one or more vent holes in a second ambient environment having a second pressure.
  • the method further comprises selectively removing the sealant to expose a portion of an upper surface of the cap substrate, and forming a conductive shielding layer extending from an upper surface of the sealant to the upper surface of the cap substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

The present disclosure relates to a MEMs substrate. In some embodiments, the MEMs substrate has a device substrate having a micro-electromechanical system (MEMs) device, and a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device. A cap substrate has a depression is disposed within a surface abutting the layer of bonding material. The depression within the cap substrate forms a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device. One or more pressure tuning channels are vertically disposed between the device substrate and the cap substrate and laterally extend outward from a sidewall of the chamber.

Description

REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of U.S. application Ser. No. 14/013,155 filed on Aug. 29, 2013.
BACKGROUND
MEMs (micro-electromechanical system) devices, such as accelerometers, pressure sensors, gyroscopes, etc., have found widespread using in many modern day electronic devices. For example, MEMs accelerometers are commonly found in automobiles (e.g., in airbag deployment systems), tablet computers, cell phones, etc.
In recent years, it is increasingly common for micro-electromechanical system (MEMs) devices to be incorporated into integrated chips formed by a complementary metal-oxide-semiconductor (CMOS) process. The incorporation of MEMs devices (e.g., sensors, integrated optics, bio-chips, etc.) into a CMOS process allows for widespread use of MEM devices fabricated with a high throughput.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A-1B illustrate some embodiments of a substrate comprising MEMs (micro-electromechanical system) devices abutting chambers held at different pressures.
FIGS. 2A-2B illustrate some additional embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
FIGS. 3A-3B illustrate some alternative embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
FIGS. 4A-4B illustrate some alternative embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
FIGS. 5A-5B illustrate some embodiments of a MEMs substrate having a multi-layer sealant.
FIGS. 6A-7B illustrate some embodiments of a MEMs substrate having a shielding layer overlying a sealant layer.
FIGS. 8A-8B illustrate some embodiments of a MEMs substrate having an additional capping structure disposed within one or more vent holes.
FIG. 9 illustrates a flow diagram of some embodiments of a method of forming a plurality of MEMs devices abutting chambers held at different pressures on a substrate.
FIGS. 10-19 illustrate some embodiments of a substrate upon which a method forming a plurality of MEMs devices abutting chambers held at different pressures is performed
DETAILED DESCRIPTION
The description herein is made with reference to the drawings, wherein like reference numerals are generally utilized to refer to like elements throughout, and wherein the various structures are not necessarily drawn to scale. In the following description, for purposes of explanation, numerous specific details are set forth in order to facilitate understanding. It may be evident, however, to one skilled in the art, that one or more aspects described herein may be practiced with a lesser degree of these specific details. In other instances, known structures and devices are shown in block diagram form to facilitate understanding.
MEMs devices often operate in a manner that is dependent on an environment surrounding the device. For example, to measure an angular momentum, a MEMs vibrational gyroscope may measure an angular rate by utilizing the Coriolis effect. To improve operation of a MEMs device, it may be desirable to operate the MEMs device within a surrounding environment that has a specific pressure that enables improved measurement of a desired parameter. For example, in the case of a MEMs vibrational gyroscope, a surrounding environment having a relatively low pressure (i.e., a higher vacuum) is desirable since it provides for a better measurement since it enhances displacement that is converted to a signal. Conversely, in the case of a MEMs accelerometer, a surrounding environment having a relatively high pressure is desirable since it mitigates displacement due to background disturbances that are converted to noise.
Therefore, MEMs devices typically abut a hermetically-sealed chamber that is held at a controlled pressure level that enables optimized operation of the device. The pressure level can range from a vacuum (e.g., 1 mtorr) to a few atmosphere (e.g., 2 atm) depending on a device type. When there is one MEMs device (e.g., an accelerometer) on a wafer, a wafer level method can be used to form the cavity under a pressure. However, when there are a plurality of different types of MEMs devices on a same wafer (e.g., an accelerometer and gyroscope) the wafer level method is unable to package the MEMs devices to abut chambers held at separate pressures.
Accordingly, the present disclosure relates to a method of forming a plurality of MEMs devices respectively abutting chambers held at different pressures on a same substrate, and an associated apparatus. In some embodiments, the method comprises providing a device substrate having a plurality of micro-electromechanical system (MEMs) devices. A cap substrate is bonded onto the device substrate in a first ambient environment having a first pressure. The bonding forms a plurality of chambers abutting the plurality of MEMs devices. One or more pressure tuning channels are formed in a sidewall of one of the plurality of chambers. Vent holes in communication with the one or more pressure tuning channels can be formed through the cap substrate within a second ambient environment having a different, second pressure. The one or more vent holes expose the one of the plurality of chambers to the second pressure. The one or more pressure tuning channels are then sealed, so that the second chamber is held at the second pressure. The resulting substrate comprises a first chamber held at a first pressure and a second chamber held at a different, second pressure.
FIGS. 1A-1B illustrates some embodiments of a substrate comprising two MEMs (micro-electromechanical system) devices abutting chambers held at different pressures.
FIG. 1A illustrates a block diagram of a cross-sectional view 100 a of some embodiments of a substrate (along cross-sectional line 100 a′ of FIG. 1B) comprising a plurality of MEMs devices abutting chambers held at different pressures.
The substrate comprises a device substrate 102 having a plurality of MEMs (micro-electromechanical systems) devices, 104 a and 104 b, embedded therein. In some embodiments, one or more of the MEMs devices, 104 a and 104 b, may comprise a MEMs gyroscope (e.g., a vibrating gyroscope or a piezoelectric plate gyroscope), a MEMs accelerometer, or a MEMs pressure sensor, for example.
A cap substrate 108 is disposed at a position overlaying the device substrate 102. The cap substrate 108 is affixed to the device substrate 102 by way of a bonding material 106. The cap substrate 108 comprises a plurality of depressions 111 that are positioned at locations that correspond to locations of the MEMs devices, 104 a and 104 b, so as to form chambers, 112 a and 112 b. It will be appreciated the term ‘substrate’, as used herein, refers in general to any sized or shaped substrates. For example, the cap substrate 108 may comprise a wafer or a section or subset of a wafer (e.g., a die).
The chambers, 112 a and 112 b, abut the MEMs devices, 104 a and 104 b (e.g., the first MEMs device 104 a abuts a first chamber 112 a and the second MEMs device 104 b abuts a second chamber 112 b). In some embodiments, the first chamber 112 a may comprise a top surface comprising the cap substrate 108 and sidewalls comprising the cap substrate 108 and the bonding material 106. In some embodiments, a sealant 110 is disposed to overlay the cap substrate 108 and extend from a top of the cap substrate 108 to a position that forms an interior surface of the second chamber 112 b. In some embodiments, the MEMs devices, 104 a and 104 b, may have a movable component in contact with the chambers, 112 a and 112 b.
The first chamber 112 a is held at a first pressure, and the second chamber 112 b is held at a second pressure that may be different than the first pressure. One or more pressure tuning channels 114 are vertically disposed between the device substrate 102 and the cap substrate 108 and laterally extend outward from a sidewall of the second chamber 112 b. The sealant 110 extends into the pressure tuning channels 114 to hermetically seal the second chamber 112 b from an ambient environment.
It will be appreciated that although the substrate of FIG. 1A is illustrated as having two chambers, 112 a and 112 b, that are held at different pressures that the disclosed substrate is not limited to such a configuration. For example, in other embodiments, a disclosed substrate may comprise more than two chambers, wherein two or more of the chambers may be held at a same pressure. Furthermore, although the substrate is illustrated as having 2 MEMs devices, it will be appreciated that the substrate may be diced to provide for two separate MEMs substrates respectively having one or more MEMs devices. For example, the substrate may be diced to provide a substrate having a single MEMs device (e.g., second MEMs device 104 b) abutting the second chamber 112 b, as shown by box 116.
FIG. 1B illustrates a block diagram of a top-view 100 b of some embodiments of a substrate comprising a plurality of MEMs devices abutting chambers held at different pressures.
As shown in top-view 100 b, the first chamber 112 a and the second chamber 112 b are laterally separated by the bonding material 106. The second chamber 112 b comprises one or more pressure tuning channels 114 that extend outward from a sidewall of the second chamber 112 b. In some embodiments, the one or more pressure tuning channels 114 may be defined by the bonding material 106 (e.g., by a patterned bonding material formed on a substantially flat section of the cap substrate), such that the one or more pressure tuning channels 114 have a height that is equal to a thickness of the bonding material 106 (e.g., so that the one or more pressure tuning channels 114 have a height that is less than a height of the chambers 112). In other embodiments, the one or more pressure tuning channels 114 may comprise depressions within the device substrate 102 and/or the cap substrate 108, such that the one or more pressure tuning channels 114 have a height that depends upon a depth of the depressions.
FIGS. 2A-2B illustrate some more detailed embodiments of a substrate comprising a plurality of MEMs devices having cavities held at different pressures.
FIG. 2A illustrates a cross-sectional view 200 a of some embodiments of a substrate (along cross-sectional line 200 a′ of FIG. 2B) comprising a plurality of MEMs devices abutting chambers held at different pressures.
The substrate comprises a device substrate 102 having a plurality of MEMs devices, 104 a and 104 b. The MEMs devices, 104 a and 104 b, are laterally positioned between sections of a first layer of bonding material 202 disposed on an upper surface 201 of the device substrate 102. In some embodiments, one or more of the plurality of MEMs devices, 104 a and 104 b, may comprise a MEMs gyroscope such as a vibrating gyroscope or a piezoelectric plate gyroscope. In other embodiments, one or more of the plurality of MEMs devices, 104 a and 104 b, may comprise a MEMs accelerometer. In some embodiments, the first layer of bonding material 202 may comprise aluminum or germanium (for a eutectic bond), oxide (for a fusion bond), or a metal or a polymer (for a thermal compression bond).
In some embodiments, the device substrate 102 may comprise electrical interconnections (not shown) configured to couple the MEMs devices, 104 a and 104 b, to one or more logic devices (e.g., CMOS transistors) that make the MEMs devices, 104 a and 104 b, function. For example, in some embodiments, the device substrate 102 might be a CMOS substrate comprising one or more CMOS devices (e.g., MOSFET devices). In such embodiments, the MEMS devices, 104 a and 104 b, may be built along an upper surface of the device substrate 102 (e.g., within the semiconductor material or within an inter-level dielectric layer overlying the CMOS devices). In other embodiments, the device substrate 102, comprising MEMS devices, 104 a and 104 b, may be bonded to an underlying CMOS substrate comprising one or more CMOS devices. In yet embodiments, the device substrate 102 may comprise one or more stacked substrates (e.g., a 2.5D integrated chip), wherein one or more of the stacked substrates comprise one or more logic devices that make the MEMs devices, 104 a and 104 b, function.
A cap substrate 206 is located over the device substrate 102. The cap substrate 206 comprises a lower surface 205 that faces the upper surface 201 of the device substrate 102. In some embodiments, the lower surface 205 comprises a plurality of depressions 111 that extend into the lower surface 205 of the cap substrate 206 as negative reliefs. In such embodiments, the plurality of depressions 111 may comprise a plurality of device cavities. In some embodiments, the plurality of depressions 111 may further comprise one or more pressure tuning cavities that extend outward from one or more of the plurality of device cavities. The plurality of depressions 111 are laterally positioned between a second layer of bonding material 204 disposed on the surface 205 of the cap substrate 206. In some embodiments, the second layer of bonding material 204 may comprise aluminum or germanium (for a eutectic bond), oxide (for a fusion bond), or a metal or a polymer (for a thermal compression bond). In other embodiments, the lower surface 205 of the cap substrate 206 may be substantially planar.
The cap substrate 206 extends over a portion of the device substrate 102. In some embodiments, the cap substrate 206 is set back from an edge of the device substrate 102 (e.g., by a distance 210) due to dicing the cap substrate 206 at an angle during fabrication. In some embodiments, the cap substrate 206 has an angled sidewall 206 s. In some embodiments, the angled sidewall 206 s has an angle φ that is in a range of between approximately 45° and approximately 90°. One or more pressure tuning channels 114 are located at a position(s) underlying the angled sidewall of the cap substrate 206. One or more vent holes 212 extend through the cap substrate 206 to a position in communication with the one or more pressure tuning channels 114. A sealant 208 is disposed over the cap substrate 206 and extends to positions within the one or more vent holes 212. In some embodiments, the sealant 208 may comprise a metal and/or a dielectric material (e.g., a metal layer, a dielectric layer, a metal/dielectric stack, a dielectric/metal/dielectric stack, etc.).
The first and second layers of bonding material, 202 and 204, are positioned to contact one another so as to form a first chamber 112 a and a second chamber 112 b. The second chamber 112 b is connected to one or more pressure tuning channels 114. In embodiments in which the lower surface 205 of the cap substrate 205 comprises a plurality of depressions 111, the chambers 112 and/or the pressure tuning channels 114 may comprise the plurality of depressions 111 (i.e., so that the chambers 112 and/or the pressure tuning channels 114 extend into the cap substrate 205). In embodiments in which the lower surface of the cap substrate 205 is planar, the chambers 112 and/or the pressure tuning channels 114 are formed by patterning the first layer of bonding material 202 and/or the second layer of bonding material 204.
The first MEMs device 104 a abuts the first chamber 112 a, which is held at a first pressure. The second MEMs device 104 b abuts the second chamber 112 b, which is held at a second pressure. In some embodiments, the first pressure is different than the second pressure. The different pressures of the first and second chambers, 112 a and 112 b, allow for MEMs devices, 104 a and 104 b, to comprise different types of MEMs devices. For example, in some embodiments, the first MEMs device 104 a comprises an accelerometer abutting the first chamber 112 a held at the first pressure, while the second MEMs device 104 b comprises a gyroscope abutting the second chamber 112 b held at the second pressure.
FIG. 2B illustrates a top-view 200 b of some embodiments of the substrate illustrated in the cross-sectional view 200 a of FIG. 2A (wherein FIG. 2A is illustrated along cross-sectional line 200 a′).
The substrate comprises a first chamber 112 a and a second chamber 112 b. The first chamber 112 a is surrounded by the second layer of bonding material 204. In some embodiments, the first chamber 112 a is surrounded by the second layer of bonding material 204, which is disposed in a substantially rectangular pattern. The second chamber 112 b is surrounded by the second layer of bonding material 204. In some embodiments, the second chamber 112 b is surrounded by second layer of bonding material 204, which is disposed in a substantially rectangular pattern with pressure tuning channels 114 extending as conduits outward from the rectangular pattern (e.g., as finger-like conduits). It will be appreciated that the rectangular pattern of the second layer of bonding material 204 is a non-limiting embodiment, and that in other embodiments, the second layer of bonding material 204 may be dispensed in another, non-rectangular pattern.
In some embodiments, the one or more vent holes 212 may comprise a trench that extends past multiple pressure tuning channels 114. The trench is positioned so that the cap substrate 206 is configured to overlay the first chamber 112 a and the second chamber 112 b, but to expose a portion of the pressure tuning channels 114. The sealant 208 is disposed within the trench so that the second chamber 112 b is separated from an ambient environment by the sealant 208.
FIGS. 3A-3B illustrates some alternative embodiments of a substrate comprising MEMs devices abutting chambers held at different pressures.
FIG. 3A illustrates a cross-sectional view 300 a of some embodiments of a substrate (along cross-sectional line 300 a′ of FIG. 3B) comprising a plurality of MEMs devices abutting chambers held at different pressures.
The substrate comprises a cap substrate 302 disposed over a device substrate 102. The cap substrate 302 has a vertical sidewall that is aligned with an edge of the device substrate 102. One or more vent holes 304 vertically extend through the cap substrate 302 to a pressure tuning channel 114. In some embodiments, the one or more vent holes 304 have a first opening with a width wb that is substantially equal to a width of a wafer saw blade (e.g., between approximately 5 um and approximately 100 um). In other embodiments, the one or more vent holes 304 have a first opening 304 a and a second opening 304 b underlying the first opening 304 a. The first opening 304 a has a first width wb and the second opening 304 b has a second width we that is less than the first width wb, so as to give the one or more vent holes 304 a stepped sidewall. A sealant 306 extends into the one or more vent holes 304 to fill the one or more vent holes 304 and to thereby hermetically seal the second chamber 112 b.
FIG. 3B illustrates a top-view 300 b of some embodiments of the substrate illustrated in the cross-sectional view 300 a of FIG. 3A.
FIGS. 4A-4B illustrates some alternative embodiments of a substrate comprising a MEMs devices having a opening formed by an etching process.
FIG. 4A illustrates a cross-sectional view 400 a of some embodiments of a substrate (along cross-sectional line 400 a′ of FIG. 4B) comprising a plurality of MEMs devices abutting chambers held at different pressures.
As shown in cross-sectional view 400 a, the substrate comprises a cap substrate 402 disposed over a device substrate 102. One or more vent holes 404 vertically extend through the cap substrate 402 to a pressure tuning channel 114. The one or more vent holes 404 have substantially vertical sidewalls that extend through the cap substrate 402. In some embodiments, the one or more vent holes 404 may have a width we that is less than a width of a wafer saw blade wb.
FIG. 4B illustrates a top-view 400 b of some embodiments of the substrate illustrated in the cross-sectional view 400 a FIG. 4A. As shown in top-view 400 b, the one or more vent holes 404 are respectively located over a pressure tuning channel 114. In some embodiments, the one or more vent holes 404 are separated from one another. In other embodiments, the one or more vent holes may comprise a trench that extends over a plurality of pressure tuning channels 114.
FIGS. 5A-5B illustrate cross-sectional views of MEMs devices comprising a multi-layered sealant configured to seal one or more pressure tuning channels. The multi-layered sealant improves the ability of the sealant to fill openings having a high aspect ratio (e.g., a depth/width ratio of greater than or equal to approximately 1). For example, a multi-layered sealant having a metal layer and a dielectric layer provides for better sealing and for higher reliability.
FIG. 5A illustrates a MEMs substrate 500 comprising a multi-layered sealant 504 configured to seal one or more vent holes 506 within a cap substrate 502. The multi-layered sealant 504 comprises a metal layer 504 a and a dielectric layer 504 b. In some embodiments, the metal layer 504 a may overlie the dielectric layer 504 b, while in other embodiments the dielectric layer 504 b may overlie the metal layer 504 a. In various embodiments, the metal layer 504 a may comprise aluminum and/or copper and the dielectric layer 504 b may comprise an oxide and/or nitride.
FIG. 5B illustrates a MEMs substrate 508 comprising a multi-layered sealant 510 configured to seal one or more vent holes 506 within a cap substrate 502. The multi-layered sealant 510 comprises a sandwich structure comprising a metal layer 510 b disposed between a first dielectric layer 510 a and a second dielectric layer 510 c. In various embodiments, the first and second dielectric layers, 510 a and 510 b, may comprise an oxide or a nitride, and the metal layer 510 b may comprise aluminum and/or copper.
FIGS. 6A-6B illustrates cross-sectional views, 600 a and 600 b, of some embodiments of a MEMs substrate comprising a shielding layer.
The MEMs substrate comprises a shielding layer 606 disposed over a sealant 602 extending into one or more vent holes in a cap substrate 206. The shielding layer 606 comprises a conductive material that laterally extends over the MEMs devices, 104 a and 104 b. In some embodiments, the shielding layer may comprise a metal such as aluminum and/or copper, for example. The shielding layer 606 may abut the cap substrate 206 and the sealant 602. By abutting the cap substrate 206, the shielding layer 606 forms an electrical connection with the cap substrate 206, thereby allowing for the shielding layer 606 to be grounded.
By grounding the shielding layer 606, the shielding layer 606 is able to perform electromagnetic shielding by dissipating energy from electro-magnetic fields. The electromagnetic shielding allows for the shielding layer to provide shielding from interference caused by the interaction of electromagnetic radiation between the MEMs devices 104 and an external circuit. For example, in some embodiments, the MEMs substrate may be integrated within an electronic device (e.g., a cell phone, a computer, etc.) having other electronic components. The other electronic components may generate electromagnetic radiation that interferes with operation of the MEMs devices 104 and/or may have their operation interfered with by electromagnetic radiation generated by the MEMs devices 104. The shielding layer 606 dissipates electric currents generated from external or internal electromagnetic fields, and thus mitigating electromagnetic interference.
In some embodiments, shown in cross-sectional view 600 a of FIG. 6A, the shielding layer 606 a vertically extends through an opening 604 in the sealant 602 a to abut an upper surface of the cap substrate 206. The opening 604 is laterally offset from a vent hole 212. In some embodiments, the opening 604 may extend a distance d into an upper surface 207 of the cap substrate 206 so as to form a depression within the top surface of the cap substrate 206. In some embodiments, the opening 604 may comprise a trench having a width w of between 5 um and 100 um. In other embodiments, the opening 604 may comprise a smaller width w.
In other embodiments, shown in cross-sectional view 600 b of FIG. 6B, the upper surface 207 of the cap substrate 206 is exposed along a substantially planar surface that is shared with an upper surface of the sealant 602 b. The shielding layer 606 b is disposed along the planar surface so that the shielding layer 606 b abuts upper surfaces of the cap substrate 206 and the sealant 602 b, and one or more sidewalls of the cap substrate 206.
FIGS. 7A-7B illustrates cross-sectional views, 700 a and 700 b, of some alternative embodiments of a MEMs substrate comprising a shielding layer. As shown in FIGS. 7A-7B, a shielding layer 706 abuts an upper surface of a cap substrate 302 and extends into a vent hole 304 having stepped sidewalls. In some embodiments, the shielding layer 706 may extend through an opening 704 in a sealant 702 a (shown in cross-sectional view 700 a of FIG. 7A), while in other embodiments, the shielding layer may abut upper surfaces of the cap substrate 302 and the sealant 702 b (shown cross-sectional view 700 b of in FIG. 7B). It will be appreciated that the cross-sectional views of FIGS. 6A-6B and 7A-7B are non-limiting examples of shielding layer configurations.
FIGS. 8A-8B illustrate some embodiments of cross-sectional views, 800 a and 800 b, of a MEMs substrate having an additional capping structure disposed within one or more vent holes.
The additional capping structure 804 is formed within one or more vent holes 404 at a position overlying a sealant 802. A shielding layer 806 is formed over the sealant 802 and the additional capping structure 804. In some embodiments, a cavity 808 may be arranged within the one or more vent holes 404 at a position that is laterally between sidewalls of the sealant 802 and vertically between the sealant 802 and the additional capping structure 804. The additional capping structure 804 prevents debris from subsequent processing steps from accumulating within the one or more vent holes 404. In some embodiments, the additional capping structure 804 may comprise a polymer material.
In some embodiments, shown in cross-sectional view 800 a of FIG. 8A, the additional capping structure 804 a extends outward from within the one or more vent holes 404 to a location that overlies an upper surface of the sealant 802 a. In other embodiments, shown in cross-sectional view 800 b of FIG. 8B, the additional capping structure 804 b has an upper surface that is substantially aligned with an upper surface of the cap substrate 402 and the sealant 802 b. In such embodiments, the shielding layer 806 b is substantially flat.
FIG. 9 illustrates a flow diagram of some embodiments of a method 900 for forming a plurality of MEMs device having chambers with different pressures on a substrate.
While disclosed method 900 is illustrated and described below as a series of acts or events, it will be appreciated that the illustrated ordering of such acts or events are not to be interpreted in a limiting sense. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein. In addition, not all illustrated acts may be required to implement one or more aspects or embodiments of the description herein. Further, one or more of the acts depicted herein may be carried out in one or more separate acts and/or phases.
At 902, a first layer of bonding material is selectively patterned on a device substrate having plurality of MEMs devices. The plurality of MEMs devices are disposed between the selectively patterned first layer of bonding material.
At 904, a cap substrate is provided having a patterned second layer of bonding material.
At 906, the cap substrate is selectively patterned to form a plurality of device cavities at positions located between the patterned second layer of bonding material. In some embodiments, the cap substrate may be patterned to also form one or more pressure tuning cavities.
At 908, the cap substrate is bonded to the device substrate at a first pressure. Bonding the cap substrate to the device substrate forms a plurality of chambers and one or more pressure tuning channels. The cap substrate is bonded to the device substrate by bringing the first layer of bonding material into contact with the second layer of bonding material at a first ambient environment having the first pressure.
At 910, one or more vent holes are formed within the cap substrate. The one or more vent holes are in communication with one or more of the pressure tuning channels and expose the one or more of the plurality of chambers to a second ambient environment having a second pressure.
In some embodiments, the one or more vent holes are formed by removing a portion of the cap substrate by dicing the bonded structure (i.e., the cap substrate and the device substrate), at 912. The diced bonded structure is then etched to form the one or more vent holes that expose the one or more of the plurality of chambers to the second ambient environment having a second pressure, at 914. In other embodiments, the one or more vent holes may be formed by selectively etching the cap substrate according to a masking layer.
At 916, the one or more vent holes are sealed at a third pressure. In some embodiments the one or more chambers are sealed by depositing a sealant into the one or more vent holes within a third ambient environment having the third pressure. In some embodiments, the second pressure (i.e., the pressure of the second ambient environment during the opening process at 910) may be the same as the third pressure (i.e., the pressure of the ambient environment during the sealing process at 916). In other embodiments, the second pressure and the third pressure may be different.
At 918, an additional capping structure may be formed within the one or more vent holes, in some embodiments.
At 920, a portion of the sealant is removed to expose an upper surface of the cap substrate.
At 922, a conductive shielding layer is formed onto and in direct contact with an upper surface of the cap substrate and an upper surface of the sealant.
At 924, the bonded structure may be diced. In some embodiments, the bonded structure is diced to form a first MEMs device on a first die and a second MEMs device on a second die. In other embodiments, the bonded structure is diced to form the first and second MEMs device on a same die.
FIGS. 10-19 illustrate some embodiments of a substrate upon which a method 900 forming a plurality of MEMs device having chambers with different pressures on a substrate, is performed. Although FIGS. 10-19 are described in relation to method 900, it will be appreciated that the structures disclosed in FIGS. 10-19 are not limited to such a method, but instead may stand alone as a structure.
FIG. 10 illustrates some embodiments of a cross-sectional view 1000 (along cross-sectional line 1000 a) and a top-view 1002 corresponding to act 902. As shown, a device substrate 102 is provided having a plurality of MEMs devices, 104 a and 104 b. In some embodiments, the device substrate 102 may comprise a silicon wafer. In some embodiment, device substrate 102 may comprise CMOS substrate having CMOS devices (e.g., MOSFET devices). In some embodiments, the plurality of MEMs devices, 104 a and 104 b, may comprise a MEMs gyroscope (e.g., a vibrating gyroscope) or a MEMs accelerometer. In other embodiments, the plurality of MEMs devices, 104 a and 104 b, may comprise a MEMs accelerometer or a MEMs pressure sensor.
The MEMs devices, 104 a and 104 b, are laterally positioned between a first layer of bonding material 202 disposed on a top surface of the device substrate 102. In some embodiments, the first layer of bonding material 202 can be aluminum or germanium for a eutectic bond, oxide for a fusion bond, or a metal or a polymer for a thermal compression bond. In other embodiments, the first layer of bonding material 202 may be omitted (e.g., for fusion bonding between a second layer of bonding material comprising an oxide and silicon)
FIG. 11 illustrates some embodiments of a cross-sectional view 1100 (along cross-sectional line 1100 a) and a top-view 1104 corresponding to act 904. As shown in cross-sectional view 1100, a second layer of bonding material 204 is selectively formed over a cap substrate 1102. In some embodiments, the cap substrate 1102 may comprise a silicon wafer. In some embodiments, the second layer of bonding material 204 may comprise aluminum or germanium for a eutectic bond, oxide for a fusion bond, or a metal or a polymer for a thermal compression bond. In other embodiments, the second layer of bonding material 204 may be omitted (e.g., for fusion bonding between a first layer of bonding material comprising an oxide and silicon).
As shown in top-view 1104, the second layer of bonding material 204 is disposed over the cap substrate 1102 in a first pattern comprising substantially rectangular pattern, and in a second pattern comprising a substantially rectangular pattern with finger-like conduits (corresponding to pressure tuning channels formed at 908) extending outward from the rectangular pattern. In other embodiments, the second layer of bonding material 204 may be disposed in first and second patterns that are non-rectangular.
FIG. 12 illustrates some embodiments of a cross-sectional view 1200 (along cross-sectional line 1200 a) and a top-view 1208 corresponding to act 906.
As shown in cross-sectional view 1200, the cap substrate 1102 is selectively pattered to form a plurality of depressions within the surface of the cap substrate 1102. In some embodiments, the cap substrate 1102 may be selectively patterned using a dry reactive ion etching (DRIE) process. For example, a masking layer (not shown) may be formed on to the cap substrate 1102 and then the cap substrate 1102 may be exposed to the dry etchant 1202 that selectively removes parts of the cap substrate 1102 in areas not masked by the masking layer.
In some embodiments, the plurality of depressions may comprise a plurality of device cavities 1204. In some additional embodiments, the plurality of depressions may further comprise one or more pressure tuning cavities 1206 that extend outward from one or more of the plurality of device cavities 1204. In some embodiments, the one or more pressure tuning cavities 1206 may comprise finger-like cavities. In other embodiments, the one or more pressure tuning cavities 1206 may comprise other shapes (e.g., non-finger-like cavities).
FIG. 13 illustrates some embodiments of a cross-sectional view 1300 (along cross-sectional line 1300 a) and a top-view 1302 corresponding to act 908.
As shown in cross-sectional view 1300, the cap substrate 1102 is bonded to the device substrate 102 within a first ambient environment having a first pressure to form a bonded structure. The bonded structure comprises a first chamber 112 a, a second chamber 112 b, and one or more pressure tuning channels 114, held at the first pressure. The cap substrate 1102 is bonded to the device substrate 102 by bringing the first layer of bonding material 202 into contact with the second layer of bonding material 204. In some embodiments, the first pressure may be in a range of between approximately 1 milli-torr (mtorr) approximately 2 atmosphere. In various embodiments, the cap substrate 1102 may be bonded to the device substrate 102 by way of a fusion bonding process, an eutectic bonding process, or a thermal compression bonding process.
In some embodiments, the one or more pressure tuning channels 114 may comprise the pressure tuning cavities. In other embodiments, the one or more pressure tuning channels 114 may be formed by a patterned bonding material (e.g., first and second layers of bonding material, 202 and 204) that forms the one or more pressure tuning channels 114 disposed between the cap substrate 1102 and the device substrate 102.
FIGS. 14A-14C illustrate various embodiments of a process of forming one or more vent holes corresponding to act 910.
FIG. 14A illustrates some embodiments of a process of forming one or more vent holes using a dicing process performed with a tilt dicer and a subsequent etching process.
As shown in cross-sectional view 1400, the cap substrate 1402 is diced along scribe line 1404 (note that the flat part of cap substrate 1402 between angled sidewalls corresponds to vertical part of cross-sectional line 1400′) by a tilt dicer having a spindle that is tiled to an angle φ (corresponding to a sidewall angle of cap substrate 108). In some embodiments, the angle φ is in a range of between approximately 45° and 90°. The dicing process removes a portion of the cap substrate 108, providing the cap substrate 108 with an angled sidewall overlying the one or more pressure tuning channels 114. In some embodiments, shown in top-view 1406, the dicing process removes a portion of the cap substrate 1402 so that an angled sidewall of the cap substrate 1402 is set back from an edge of the device substrate 102.
As shown in cross-sectional view 1408, after dicing the cap substrate 206 is exposed to a blanket (i.e., unmasked) etching process. The blanket etching process exposes an upper surface of the cap substrate 1402 to an etchant 1410 that removes a portion of the cap substrate 206 to form one or more vent holes 212 that connect the one or more pressure tuning channels 114 to a second ambient environment held at a second pressure. In some embodiments, the pressure tuning cavities 114 cause a portion of the cap substrate 206 to remain to the right of the vent hole 212 as shown in cross-sectional view 1408. In other embodiments, the cap substrate 206 may be removed to the right of the vent holes 212. As shown in top-view 1412, the one or more vent holes 212 may comprise a trench extending over multiple pressure tuning channels 114.
In some embodiments, the etchant 1410 may comprise a dry etchant. In some embodiments, the dry etchant may use an etching chemistry comprising chlorine (Cl2) or Sulfur hexafluoride (SF6), for example. Since the blanket etching process exposes the cap substrate 1402 to etchant 1410, the thickness of the cap substrate is reduced from a first thickness t1 to a second thickness t2 (where t2<t1).
By forming one or more vent holes 212 that connect the one or more pressure tuning channels 114 to the second ambient environment, the second chamber 112 b may be brought to the second pressure that is different than the first pressure.
FIG. 14B illustrates some alternative embodiments of a process that forms one or more vent holes using a dicing process performed with a non-tilt dicer and a subsequent etching process.
As shown in cross-sectional view 1416, the cap substrate 1418 is diced by a non-tilted dicing blade 1420. The non-tilted dicing blade 1420 makes a cut into the cap substrate 1418 that is substantially perpendicular to the upper surface of the cap substrate 1418. The dicing process removes a portion of the cap substrate 1418 to from a depression 1422 within the cap substrate 1418 overlying the one or more pressure tuning channels 114.
As shown in top-view 1424, the portion of the cap substrate 1418 removed by the non-tilted dicing blade 1420 forms a trench that extends between a plurality of pressure tuning channels 414.
As shown in cross-sectional view 1426, after dicing the cap substrate 302 is exposed to a blanket (i.e., unmasked) etching process. The blanket etching process exposes an upper surface of the cap substrate 302 to an etchant 1428 that removes a portion of the cap substrate 302 to form one or more vent holes 304 that connect the one or more pressure tuning channels 114 to a second ambient environment held at a second pressure. In some embodiments, the pressure tuning cavities 1206 cause a portion of the cap substrate 302 to remain to the right of the vent hole 304 as shown in cross-sectional view 1426. In other embodiments, the cap substrate 302 may be removed to the right of the vent holes 304. By forming one or more vent holes 304 that connect the one or more pressure tuning channels 114 to the second ambient environment, the second chamber 112 b may be brought to the second pressure that is different than the first pressure.
FIG. 14C illustrates some alternative embodiments of a process that forms one or more vent holes using an etching process.
As shown in cross-sectional view 1432, a masking layer 1434 is selectively formed onto an upper surface of the cap substrate 1102. The masking layer 1434 comprises one or more openings 1436 that defines locations of one or more vent holes. As shown in top-view 1438, separate openings may be formed over each of the pressure tuning channels 114.
As shown in cross-sectional view 1440, the cap substrate 402 is selectively exposed to an etchant 1442 in areas that are not masked by the masking layer 1434. The etchant 1442 is configured to remove a portion of the cap substrate 402 to form one or more vent holes 404 that connect the one or more pressure tuning channels 114 to a second ambient environment held at a second pressure. By forming one or more vent holes 404 that connect the one or more pressure tuning channels 114 to the second ambient environment, the second chamber 112 b is exposed the second pressure.
FIG. 15A-15C illustrates some embodiments of cross-sectional views 1500 a-1500 c corresponding to act 916.
As shown in cross-sectional view 1500 a, a sealant 208 is formed within one or more vent holes 212 formed by a tilt dicing process (as shown in FIG. 14A) within a third ambient environment having a third pressure. In some embodiments, the sealant 208 may comprise a metal or a dielectric material. In some embodiments, the sealant 208 may comprise a metal layer stacked onto a dielectric layer. In other embodiments, the sealant 208 may comprise a sandwich structure having a metal layer disposed between two dielectric layers. In some embodiments, the layers of the sealant 208 may be deposited by way of a deposition technique (e.g., chemical vapor deposition, physical vapor deposition, etc.). In various embodiments, the second pressure and the third pressure may be the same or the second pressure and the third pressure may be different.
As shown in cross-sectional view 1500 b, a sealant 306 is formed within one or more vent holes 304 formed by a non-tilted dicing process (as shown in FIG. 14B) within a third ambient environment having a third pressure. In various embodiments, the sealant 208 may comprise a metal and/or a dielectric material.
As shown in cross-sectional view 1500 c, a sealant 406 is formed within one or more vent holes 404 formed by an etching process (as shown in FIG. 14C) within a third ambient environment having a third pressure. In various embodiments, the sealant 406 may comprise a metal and/or a dielectric material.
FIG. 16 illustrates some embodiments of a cross-sectional view 1600 corresponding to act 918.
As shown in cross-sectional view 1600, an additional capping structure 1602 is formed within one or more vent holes 404. The additional capping structure 1602 may comprise a polymer material (e.g., an epoxy) that is formed within the one or more vent holes 404. The additional capping structure 1602 prevents debris from subsequent processing steps from accumulating within the one or more vent holes 404. In some embodiments, the additional capping structure 1602 may comprise a polymer based film formed by a screen printing process, for example. In some alternative embodiments, the additional capping structure 1602 may be formed subsequent to the acts of FIGS. 17A-17C.
FIG. 17A-17C illustrates some embodiments of cross-sectional view 1700 a-1700 c corresponding to act 920. As shown in FIGS. 17A-17C, a portion of the sealant is removed to expose an upper surface of the cap substrate. The removal of the sealant can be selective or nonselective. In the various embodiments shown in FIG. 17A-17C, the sealant is shown as being removed by dicing (FIG. 17A), etching (FIG. 17B), or grinding (FIG. 17C), however, one of ordinary skill in the art will appreciate that other methods may be used to remove the sealant.
As shown in cross-sectional view 1700 a, a portion of the sealant 1706 is removed by a dicing process (e.g., using dicing blade 1702) to form an opening 1704 extending through the sealant 1706 to expose a portion of an upper surface of the cap substrate 402. The opening 1704 has a width that is substantially equal to a width of the dicing blade (e.g., between approximately 5 um and approximately 100 um).
As shown in cross-sectional view 1700 b, a portion of the sealant 1712 is removed by an etching process to expose a portion of an upper surface of the cap substrate 402. The etching process is performed by forming a masking layer 1714 over the sealant 1712. In some embodiments, the masking layer 1714 may comprise a photoresist layer patterned according to a photolithography process. The sealant 1712 is subsequently exposed to an etchant 1710 according to the masking layer 1714. The etchant 1710 removes exposed portions of the sealant 1712 to form an opening 1708 extending through the sealant 1712 to the underlying cap substrate 402.
As shown in cross-sectional view 1700 c, a portion of the sealant 1718 is removed by a grinding process to expose a portion of an upper surface of the cap substrate 402. In some embodiments, the grinding process may comprise a chemical mechanical polishing (CMP) process. In other embodiments, the grinding process may comprise a mechanical grinding process that removes polymer material and silicon at the same time with sealant. The CMP process or mechanical grinding process forms a substantially planar surface 1716 that extends along an upper surface of the cap substrate 402 and along an upper surface of the sealant 1718.
FIG. 18 illustrates some embodiments of a cross-sectional view 1000 corresponding to act 922.
As shown in cross-sectional view 1800, a conductive shielding layer 806 a is formed onto and in direct contact with the upper surface of cap substrate 402 and an upper surface of the sealant 802 a. In some embodiments, the conductive shielding layer 806 a may be deposited by way of a vapor deposition technique (e.g., chemical vapor deposition, physical vapor deposition, etc.). In various embodiments, the conductive shielding layer 806 a may comprise a metal such as aluminum or copper, for example.
FIG. 19 illustrates some embodiments of cross-sectional views, 1900 and 1904, corresponding to act 924. As shown, the substrate may be diced along one or more of scribe lines 1902, using a non-tiled dicing saw, to form a single die 1906 comprising one or more of the plurality of MEMs devices, 104 a and 104 b, respectively abutting chambers having different pressures. For example, the substrate may be diced to form a first die 1906 a comprising a first MEMs device 104 a abutting a first chamber 112 a held at the first pressure and a second die 1906 b comprising a second MEMs device 104 b abutting a second chamber 112 b held at the second pressure.
It will be appreciated that while reference is made throughout this document to exemplary structures in discussing aspects of methodologies described herein (e.g., the structure presented in FIGS. 10-19, while discussing the methodology set forth in FIG. 9), that those methodologies are not to be limited by the corresponding structures presented. Rather, the methodologies (and structures) are to be considered independent of one another and able to stand alone and be practiced without regard to any of the particular aspects depicted in the FIGS. Additionally, layers described herein, can be formed in any suitable manner, such as with spin on, sputtering, growth and/or deposition techniques, etc.
Also, equivalent alterations and/or modifications may occur to those skilled in the art based upon a reading and/or understanding of the specification and annexed drawings. The disclosure herein includes all such modifications and alterations and is generally not intended to be limited thereby. For example, although the figures provided herein, are illustrated and described to have a particular doping type, it will be appreciated that alternative doping types may be utilized as will be appreciated by one of ordinary skill in the art.
In addition, while a particular feature or aspect may have been disclosed with respect to only one of several implementations, such feature or aspect may be combined with one or more other features and/or aspects of other implementations as may be desired. Furthermore, to the extent that the terms “includes”, “having”, “has”, “with”, and/or variants thereof are used herein, such terms are intended to be inclusive in meaning—like “comprising.” Also, “exemplary” is merely meant to mean an example, rather than the best. It is also to be appreciated that features, layers and/or elements depicted herein are illustrated with particular dimensions and/or orientations relative to one another for purposes of simplicity and ease of understanding, and that the actual dimensions and/or orientations may differ substantially from that illustrated herein
The present disclosure relates to a MEMs (micro-electromechanical system) substrate having an electromagnetic shielding layer overlying a plurality of MEMs devices that respectively abut chambers held at different pressures, and an associated method of formation.
In some embodiments, the present disclosure relates to a MEMs (micro-electromechanical system) substrate. The MEMs substrate comprises a device substrate having a micro-electromechanical system (MEMs) device, and a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device. The MEMs substrate further comprises a cap substrate comprising a depression disposed within a surface abutting the layer of bonding material, which forms a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device. One or more pressure tuning channels vertically disposed between the device substrate and the cap substrate laterally extend outward from a sidewall of the chamber.
In other embodiments, the present disclosure relates to a MEMs (micro-electromechanical system) substrate. The MEMs substrate comprises a device substrate having a micro-electromechanical system (MEMs) device, and a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device. A cap substrate comprising a depression disposed within a surface abuts the layer of bonding material, to form a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device. A sealant is disposed between the chamber and an ambient environment, and a conductive shielding layer extends from an upper surface of the sealant to an upper surface of the cap substrate.
In yet other embodiments, the present disclosure relates to a method of forming a plurality of MEMs devices on a shared substrate. The method comprises providing a device substrate comprising a plurality of micro-electromechanical system (MEMs) devices. The method further comprises bonding a cap substrate onto the device substrate in a first ambient environment having a first pressure, wherein the bonding forms a plurality of chambers abutting the plurality of MEMs devices. The method further comprises forming one or more vent holes extending through the cap substrate to locations in communication with the plurality of chambers. The method further comprises forming a sealant within the one or more vent holes in a second ambient environment having a second pressure. The method further comprises selectively removing the sealant to expose a portion of an upper surface of the cap substrate, and forming a conductive shielding layer extending from an upper surface of the sealant to the upper surface of the cap substrate.

Claims (20)

What is claimed is:
1. A MEMs (micro-electromechanical system) substrate, comprising:
a device substrate having a micro-electromechanical system (MEMs) device;
a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device;
a cap substrate comprising a depression disposed within a surface abutting the layer of bonding material, which forms a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device; and
one or more pressure tuning channels vertically disposed between the device substrate and the cap substrate and laterally extending outward from a sidewall of the chamber, wherein the one or more pressure tuning channels comprise one or more openings arranged within upper horizontal surfaces of the one or more pressure tuning channels.
2. The substrate of claim 1, further comprising:
one or more vent holes vertically extending through the cap substrate to the one or more openings; and
a sealant that extends from over the cap substrate to within the one or more vent holes.
3. The substrate of claim 2, wherein the sealant contacts a sidewall of the layer of bonding material that faces the chamber.
4. The substrate of claim 2, further comprising:
a conductive shielding layer extending from an upper surface of the sealant to an upper surface of the cap substrate.
5. The substrate of claim 4, further comprising:
a first opening extending though the sealant from the upper surface of the sealant to the cap substrate, wherein the conductive shielding layer extends through the first opening to abut the cap substrate.
6. The substrate of claim 4,
wherein the upper surface of the cap substrate is substantially co-planar with the upper surface of the sealant; and
wherein the conductive shielding layer abuts the upper surface of the cap substrate and the upper surface of the sealant.
7. The substrate of claim 2, further comprising:
an additional capping structure disposed within the one or more vent holes.
8. The substrate of claim 1, wherein a height of the pressure tuning channels is greater than or substantially equal to a height of the layer of bonding material.
9. The substrate of claim 1, wherein sidewalls of the one or more pressure tuning channels comprise the cap substrate and a bonding layer vertically disposed between the cap substrate and the device substrate.
10. A MEMs (micro-electromechanical system) substrate, comprising:
a device substrate having a micro-electromechanical system (MEMs) device;
a layer of bonding material positioned over the device substrate at positions adjacent to the MEMs device;
a cap substrate comprising a depression disposed within a surface abutting the layer of bonding material, which forms a chamber vertically disposed between the device substrate and the cap substrate and abutting the MEMs device;
a sealant disposed between the chamber and an ambient environment; and
a conductive shielding layer extending from an upper surface of the sealant to an upper surface of the cap substrate.
11. The substrate of claim 10, further comprising:
one or more pressure tuning channels laterally extending outward from a sidewall of the chamber.
12. The substrate of claim 11, further comprising:
one or more vent holes extending through the cap substrate to locations in communication with the one or more pressure tuning channels.
13. The substrate of claim 10, wherein the sealant comprises a dielectric material abutting a metal layer.
14. The substrate of claim 10, wherein the sealant comprises a metal layer disposed between a first dielectric material and a second dielectric material.
15. The substrate of claim 10, further comprising:
a first opening extending though the sealant from the upper surface of the sealant to the cap substrate, wherein the conductive shielding layer extends through the first opening to abut the cap substrate.
16. A method of forming a plurality of MEMs devices on a shared substrate, comprising:
providing a device substrate comprising a plurality of micro-electromechanical system (MEMs) devices;
bonding a cap substrate onto the device substrate in a first ambient environment having a first pressure, wherein the bonding forms a plurality of chambers abutting the plurality of MEMs devices;
forming one or more vent holes extending through the cap substrate to locations in communication with the plurality of chambers;
forming a sealant within the one or more vent holes in a second ambient environment having a second pressure;
selectively removing the sealant to expose a portion of an upper surface of the cap substrate; and
forming a conductive shielding layer extending from an upper surface of the sealant to the upper surface of the cap substrate.
17. The method of claim 16, wherein bonding the cap substrate onto the device substrate results in one or more pressure tuning channels that extend outward from the one or more of the plurality of chambers.
18. The method of claim 16, wherein the upper surface of the sealant is substantially co-planar with the upper surface of the cap substrate after removal of the portion of the sealant.
19. The method of claim 16,
wherein selectively removing the sealant forms a first opening extending though the sealant from the upper surface of the sealant to the cap substrate; and
wherein the conductive shielding layer extends through the first opening to abut the cap substrate.
20. The method of claim 16, wherein forming one or more vent holes comprises:
forming a masking layer over the cap substrate; and
etching the cap substrate according to the masking layer to form the one or more vent holes.
US14/698,985 2013-08-29 2015-04-29 Method of sealing and shielding for dual pressure MEMs devices Expired - Fee Related US9481564B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/698,985 US9481564B2 (en) 2013-08-29 2015-04-29 Method of sealing and shielding for dual pressure MEMs devices
CN201510800507.XA CN106082104B (en) 2015-04-29 2015-11-19 Method for sealing and the shielding of double pressure MEMS device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/013,155 US9029961B2 (en) 2013-08-29 2013-08-29 Wafer level method of sealing different pressure levels for MEMS sensors
US14/698,985 US9481564B2 (en) 2013-08-29 2015-04-29 Method of sealing and shielding for dual pressure MEMs devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/013,155 Continuation-In-Part US9029961B2 (en) 2013-08-29 2013-08-29 Wafer level method of sealing different pressure levels for MEMS sensors

Publications (2)

Publication Number Publication Date
US20150232326A1 US20150232326A1 (en) 2015-08-20
US9481564B2 true US9481564B2 (en) 2016-11-01

Family

ID=53797476

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/698,985 Expired - Fee Related US9481564B2 (en) 2013-08-29 2015-04-29 Method of sealing and shielding for dual pressure MEMs devices

Country Status (1)

Country Link
US (1) US9481564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160229687A1 (en) * 2015-02-09 2016-08-11 Xintec Inc. Chip package and fabrication method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659150B1 (en) 2007-03-09 2010-02-09 Silicon Clocks, Inc. Microshells for multi-level vacuum cavities
CN101643193A (en) 2008-08-04 2010-02-10 罗伯特.博世有限公司 Micromechanical device which has cavities having different internal atmospheric pressures
US20110215435A1 (en) 2010-03-02 2011-09-08 Fuji Electric Holdings Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US20120043627A1 (en) 2010-08-23 2012-02-23 Freescale Semiconductor, Inc. MEMS Sensor Device With Multi-Stimulus Sensing and Method of Fabricating Same
US20120326248A1 (en) * 2011-06-27 2012-12-27 Invensense, Inc. Methods for cmos-mems integrated devices with multiple sealed cavities maintained at various pressures
US20130001710A1 (en) 2011-06-29 2013-01-03 Invensense, Inc. Process for a sealed mems device with a portion exposed to the environment
US20130037891A1 (en) 2011-08-09 2013-02-14 Taiwan Semiconductor Manufacturing Company, Ltd., ("Tsmc") Mems device and method of formation thereof
US20130099355A1 (en) 2011-10-24 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Structures and Methods for Forming the Same
WO2013064632A1 (en) 2011-11-03 2013-05-10 Continental Teves Ag & Co. Ohg Component and method for producing a component
US20130265701A1 (en) 2012-04-04 2013-10-10 Seiko Epson Corporation Electronic device and manufacturing method thereof, electronic apparatus, and moving body
US20130277770A1 (en) 2012-04-19 2013-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Devices and Methods of Forming the Same
US20140103461A1 (en) 2012-06-15 2014-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Devices and Fabrication Methods Thereof
US20140225206A1 (en) 2013-02-11 2014-08-14 Yizhen Lin Pressure level adjustment in a cavity of a semiconductor die

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659150B1 (en) 2007-03-09 2010-02-09 Silicon Clocks, Inc. Microshells for multi-level vacuum cavities
CN101643193A (en) 2008-08-04 2010-02-10 罗伯特.博世有限公司 Micromechanical device which has cavities having different internal atmospheric pressures
US20110215435A1 (en) 2010-03-02 2011-09-08 Fuji Electric Holdings Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US20120043627A1 (en) 2010-08-23 2012-02-23 Freescale Semiconductor, Inc. MEMS Sensor Device With Multi-Stimulus Sensing and Method of Fabricating Same
US20120326248A1 (en) * 2011-06-27 2012-12-27 Invensense, Inc. Methods for cmos-mems integrated devices with multiple sealed cavities maintained at various pressures
US20130001710A1 (en) 2011-06-29 2013-01-03 Invensense, Inc. Process for a sealed mems device with a portion exposed to the environment
US20130037891A1 (en) 2011-08-09 2013-02-14 Taiwan Semiconductor Manufacturing Company, Ltd., ("Tsmc") Mems device and method of formation thereof
US8580594B2 (en) 2011-08-09 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a semiconductor device having recessed bonding site
US20140248730A1 (en) 2011-08-09 2014-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Device and Method of Formation Thereof
US20130099355A1 (en) 2011-10-24 2013-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Structures and Methods for Forming the Same
WO2013064632A1 (en) 2011-11-03 2013-05-10 Continental Teves Ag & Co. Ohg Component and method for producing a component
US20130265701A1 (en) 2012-04-04 2013-10-10 Seiko Epson Corporation Electronic device and manufacturing method thereof, electronic apparatus, and moving body
US20130277770A1 (en) 2012-04-19 2013-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Devices and Methods of Forming the Same
US20140103461A1 (en) 2012-06-15 2014-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS Devices and Fabrication Methods Thereof
US20140225206A1 (en) 2013-02-11 2014-08-14 Yizhen Lin Pressure level adjustment in a cavity of a semiconductor die

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
Martin Tarr, "Hermatic Encapsulation," Website, 2009, Figure 1, http://www.mtarr.co.uk/courses/topics/0261-herm/index.html#top.
Non Final Office Action Dated Jul. 5, 2016 U.S. Appl. No. 14/557,513.
Non-Final Office Action dated Apr. 8, 2016 for U.S. Appl. No. 14/629,738.
Non-Final Office Action dated Aug. 13, 2014 for U.S. Appl. No. 14/013,155.
Non-Final Office Action dated Oct. 6, 2014 for U.S. Appl. No. 14/041,298.
Notice of Allowance dated Jan. 13, 2015 for U.S. Appl. No. 14/013,155.
Notice of Allowance dated Jan. 22, 2015 for U.S. Appl. No. 14/041,298.
U.S. Appl. No. 14/013,155, filed Aug. 29, 2013.
U.S. Appl. No. 14/041,298, filed Sep. 30, 2013.
U.S. Appl. No. 14/557,513, filed Dec. 2, 2014.
U.S. Appl. No. 14/629,738, filed Feb. 24, 2015.

Also Published As

Publication number Publication date
US20150232326A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
US10961118B2 (en) Wafer level integrated MEMS device enabled by silicon pillar and smart cap
US9029961B2 (en) Wafer level method of sealing different pressure levels for MEMS sensors
US9567210B2 (en) Multi-pressure MEMS package
US8368152B2 (en) MEMS device etch stop
US9550666B2 (en) MEMS device with release aperture
US9617150B2 (en) Micro-electro mechanical system (MEMS) device having a blocking layer formed between closed chamber and a dielectric layer of a CMOS substrate
US11667522B2 (en) MEMS package comprising multi-depth trenches
US8980698B2 (en) MEMS devices
US9975757B2 (en) Wafer Level Hermetic Seal Process for microelectromechanical systems (MEMS) devices
US20150137283A1 (en) MEMS Devices, Packaged MEMS Devices, and Methods of Manufacture Thereof
US10160640B2 (en) Mechanisms for forming micro-electro mechanical system device
US11174158B2 (en) MEMS device with dummy-area utilization for pressure enhancement
CN105023909A (en) Structure and method of providing a re-distribution layer (RDL) and a through-silicon via (TSV)
US8193640B2 (en) MEMS and a protection structure thereof
CN106082104B (en) Method for sealing and the shielding of double pressure MEMS device
US20070224832A1 (en) Method for forming and sealing a cavity for an integrated MEMS device
US9481564B2 (en) Method of sealing and shielding for dual pressure MEMs devices
TWI876889B (en) Micro-electro-mechanical system package and fabrication method thereof
US20250230038A1 (en) Micro-electro-mechanical system package and fabrication method thereof
CN120534922A (en) Micro-electromechanical package and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TAIW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHANG, KUEI-SUNG;REEL/FRAME:035707/0262

Effective date: 20150519

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20241101