US5800817A - Plant extracts and therapy for insulin deficiencies - Google Patents
Plant extracts and therapy for insulin deficiencies Download PDFInfo
- Publication number
- US5800817A US5800817A US08/613,620 US61362096A US5800817A US 5800817 A US5800817 A US 5800817A US 61362096 A US61362096 A US 61362096A US 5800817 A US5800817 A US 5800817A
- Authority
- US
- United States
- Prior art keywords
- taxus
- extract
- plant
- therapeutic
- agents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 102000004877 Insulin Human genes 0.000 title claims abstract description 11
- 108090001061 Insulin Proteins 0.000 title claims abstract description 11
- 229940125396 insulin Drugs 0.000 title claims abstract description 11
- 230000007812 deficiency Effects 0.000 title claims description 4
- 239000000419 plant extract Substances 0.000 title abstract description 3
- 238000002560 therapeutic procedure Methods 0.000 title description 13
- 241000196324 Embryophyta Species 0.000 claims abstract description 55
- 241001116500 Taxus Species 0.000 claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 238000000605 extraction Methods 0.000 claims abstract description 32
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 25
- 239000000654 additive Substances 0.000 claims abstract description 16
- 241001465754 Metazoa Species 0.000 claims abstract description 13
- 230000000975 bioactive effect Effects 0.000 claims abstract description 10
- 230000000996 additive effect Effects 0.000 claims abstract 2
- 239000000284 extract Substances 0.000 claims description 65
- 239000012530 fluid Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 10
- 238000005520 cutting process Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 241000015728 Taxus canadensis Species 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 241000894007 species Species 0.000 claims description 6
- 238000003306 harvesting Methods 0.000 claims description 5
- 244000162450 Taxus cuspidata Species 0.000 claims description 4
- 239000003755 preservative agent Substances 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 231100000252 nontoxic Toxicity 0.000 claims description 3
- 230000003000 nontoxic effect Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- 241000202349 Taxus brevifolia Species 0.000 claims description 2
- 239000000796 flavoring agent Substances 0.000 claims description 2
- 235000019629 palatability Nutrition 0.000 claims description 2
- 239000003765 sweetening agent Substances 0.000 claims description 2
- 238000000108 ultra-filtration Methods 0.000 claims description 2
- 230000037406 food intake Effects 0.000 claims 2
- 235000006679 Mentha X verticillata Nutrition 0.000 claims 1
- 235000002899 Mentha suaveolens Nutrition 0.000 claims 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 claims 1
- 241000013869 Taxus floridana Species 0.000 claims 1
- 238000005119 centrifugation Methods 0.000 claims 1
- 238000005352 clarification Methods 0.000 claims 1
- 239000000084 colloidal system Substances 0.000 claims 1
- 239000003086 colorant Substances 0.000 claims 1
- 239000003623 enhancer Substances 0.000 claims 1
- 235000013355 food flavoring agent Nutrition 0.000 claims 1
- 235000003599 food sweetener Nutrition 0.000 claims 1
- 238000005374 membrane filtration Methods 0.000 claims 1
- 239000008017 pharmaceutical colorant Substances 0.000 claims 1
- 230000001932 seasonal effect Effects 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 11
- 238000011282 treatment Methods 0.000 abstract description 5
- 238000004321 preservation Methods 0.000 abstract description 3
- 238000004040 coloring Methods 0.000 abstract description 2
- 208000031295 Animal disease Diseases 0.000 abstract 1
- 208000027219 Deficiency disease Diseases 0.000 abstract 1
- 238000009472 formulation Methods 0.000 description 15
- 239000012867 bioactive agent Substances 0.000 description 14
- 238000012545 processing Methods 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000002502 liposome Substances 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- -1 poly(orthoesters) Polymers 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 239000003570 air Substances 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 208000002705 Glucose Intolerance Diseases 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 101710184309 Probable sucrose-6-phosphate hydrolase Proteins 0.000 description 3
- 102400000472 Sucrase Human genes 0.000 description 3
- 101710112652 Sucrose-6-phosphate hydrolase Proteins 0.000 description 3
- 229940123237 Taxane Drugs 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 235000011073 invertase Nutrition 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 201000009104 prediabetes syndrome Diseases 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- HIMXGTXNXJYFGB-UHFFFAOYSA-N alloxan Chemical compound O=C1NC(=O)C(=O)C(=O)N1 HIMXGTXNXJYFGB-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 2
- 229960001052 streptozocin Drugs 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000003809 water extraction Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000602850 Cinclidae Species 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 102400000471 Isomaltase Human genes 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000710185 Mengo virus Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 108010026867 Oligo-1,6-Glucosidase Proteins 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 244000134552 Plantago ovata Species 0.000 description 1
- 235000003421 Plantago ovata Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000009223 Psyllium Substances 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 241001330449 Taxus wallichiana Species 0.000 description 1
- 244000208778 Thrinax radiata Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002927 anti-mitotic effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 230000001055 chewing effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011118 depth filtration Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 239000000469 ethanolic extract Substances 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 238000003810 ethyl acetate extraction Methods 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000006362 insulin response pathway Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000002879 macerating effect Effects 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000000668 oral spray Substances 0.000 description 1
- 229940041678 oral spray Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000000063 preceeding effect Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 229940070687 psyllium Drugs 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000009288 screen filtration Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 210000005239 tubule Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/13—Coniferophyta (gymnosperms)
Definitions
- the present invention is a product-by-process wherein the product is a liquid extract from Taxus plant tissue and the process for preparing the product includes a defined sequence of extraction, separation and dispersion steps to encompass selected bioactive materials and blend them into therapeutic formulations.
- One utility of the resulting bioactive therapeutic Taxus compositions is for treatment of insulin deficiency.
- US5279949, Nair-949, issued Jan. 18, 1994 which describes a low-cost ethanol-water extraction method for ground, fresh needles and clippings from ornamental yew.
- This patent teaches solvent extraction of Taxus hicksii wherein the green color bodies are removed from the resulting ethanol extract by treatment with activated carbon; isolation of taxol and taxanes is accomplished using additional steps, i.e., ethyl acetate extraction and silica-gel chromatography. The latter procedure is designed to sequester immiscible plant lipids and to recover water-insoluble taxol and taxanes in ethyl acetate solvent.
- the present invention is a product-by-process, i.e., a therapeutic composition prepared by direct aqueous extraction of plant parts of Taxus canadensis.
- the present water-extraction process produces preparations containing Taxus bioactive components which benefit a variety of human conditions, particularly those related to: (a) inadequate amounts of secreted insulin, (b) secretion of insulin variants or molecular forms which are functionally defective or inefficient or (c) secretion of insulin which reacts with or binds with other serum components.
- the process of the present invention includes the following stages: (a) selection of Taxus plant species for extraction, (b) propagation of selected varieties, (c) production of plant tissue for extraction, (d) harvesting of selected plant tissue, (e) processing of harvested plant parts, (f) extraction(s) of processed plant parts, and (g) post-extraction processing, blending of resulting extracts.
- step (e) includes the following:
- 2,3 Fluid-mechanical processing such as equilibrating plant tissue, prior to extraction, under specific fluid pressure, vacuum, or flow conditions, e.g., ultrasonic/vibration agitation in a vessel;
- 2,4 Thermal/vacuum processing such as cooling, freezing, heating, plant tissue prior to extraction, in a chamber or vessel.
- step (f) includes the following important features and control parameters:
- step g includes:
- Examples of processing and extract blending are given as examples P1 to P7.
- Examples of various Taxus extract therapeutic methods are given in Examples T1-T5.
- Taxus canadensis Plant parts from other Taxus sub-species including, but not limited to: T. brevifolia, T. baccata, T. wallichiana, T. canadensis, T. chinesis, T. cuspidata, and T. floridana are being extracted using the present process on an exploratory basis. Also, plant parts from these and any other Taxus wild-type species or Taxus cultivars may be mixed together with T. canadensis as described below for the preparation of extracts for the treatment of insulin deficiency and other diseases or conditions.
- Taxus plants for extraction are cultivated in sandy-loam soil in marshy areas. The growth conditions are shaded. No special fertilizer, soil conditioning or protective plant sprays are used. Plants are spaced apart for controlled dissemination of the pollen and protected from injury due to browsing-animal species such as deer. Similarly, the plants must be protected from attack by browsing/chewing animal species. Although the plants exhibit a winter dormant period in the nothern latitudes, plant parts for extraction can be harvested any time of year. Plant-tissue cuttings are obtained by cutting the new-growth branches of diameter 3-10 mm into segments of approx. 70-150 mm length with pruning shears. The best time for harvesting plant cuttings is during the active-growth season when the foliage is green and pliable. The severed plant parts are lightly compressed together into small bundles, approx. 100-200 mm diam, and immediately placed into closed plastic bags for temporary storage. No cuttings are stored in such bags for more than 6 hours prior to extraction.
- Processing of plant parts consists of: (a) washing to remove dirt and foreign matter and (b) chipping the branches, stems and needles into small segments which expose large interfacial area for diffusional transfer of bioactive species into the extract fluid.
- the cuttings are rinsed with a gentle water spray at approx 15-35 deg C., this step, which is done manually under continuous, careful visual inspection, removes environmental contaminants such as atmospheric dust/yeast/spores which settle upon the surface of the plant parts.
- the usual moisture level of living needles, stems and other plant parts is in the range of 10 wt. percent during the growth season; in the winter dormant season or under conditions of hot, dry ambient air, as-harvested plant tissue and whole parts may show moisture levels as low as 4-8 wt. %. Evaporation during handling or processing of harvested plant parts can further reduce their moisture level to 2-6 wt. %. Preservation of as-harvested plant parts by refrigeration or freeze-drying can result in moisture levels of 1-2 wt. %
- a variety of types of treated and untreated water are used for extraction of Taxus plant parts including: chlorinated city water, filtered well water and unfiltered water drawn from a deep aquifer or artesian well. Simple screen and depth filtration procedures are used to remove dispersed and suspended solids from water. Aeration by bubbling air through a holding vessel may be used, if desired, to remove a portion of the chlorine. To reduce the bioburden of viable bacteria in the starting extract water, reverse osmosis or membrane ultrafiltration can also be used on at least a portion of the water used for extraction. Sensitive analysis methods for dissolved gases, metal ions and compounds may be used on a monthly or quarterly basis. Particular attention is paid to the presence of dissolved compounds of transition and heavy-metal elements.
- additives to the extract solution A variety of additives can be useful to increase recovery of bioactive agents from the plant parts into the fluid extracts. These agents include: (a) buffers for control of pH to the range 6-8, (b) antifoaming agents, (c) dissolved solutes which show a chemical affinity for, or a tendancy for forming complexes with, the bioactive agents, and (d) dissolved or dispersed additives such as cyclodextrin, which are capable of structurally encompassing bioactive species in the manner of chelates or clathrates.
- biochemical constituents may be added to the extract solution. It is thought that the function of at least some biochemical additives in the extract solution is: to precipitate color bodies, to neutralize undesired agents, and enhance the therapeutic properties of the bioactive species in the resulting extract.
- the following additives may be used with the extract fluid: (a) dissolved reactive gases such as oxygen, (b) floculating agents (c) trace minerals, such as iron, nickel, manganese, zinc or selenium, (d) plant fiber such as psyllium or cellulose and (e) vitamins or vitamin precursors such as vitamins A, B, or C as well as precursors such as beta carotene.
- Certain known physiologically-acceptable, compatible additives such as brighteners, clarifiers, soluble coloring, flavoring, aroma-taste additives may also be added to the extract fluid for the purpose of enhancing the appearance and palatability of the extract for oral formulations.
- P6,1,2 Extractant liquid water at room temp: approx 700 grams (container size/form selected such that all 45 grams of plant parts are completely immersed into and wet by extracting fluid).
- a deep, cylinder-form vessel of approx. 150 mm ID and 300 mm depth is used for a charge of 700 g fluid.
- the uncovered extraction vessel is brought quickly to a temperature of approx. 100 deg C. by application of high heat to the sides and bottom of the vessel; the liquid and plant parts reach a vigorous boiling action within approx. 5-10 minutes.
- the heat input is then controlled at a level to sustain an active rolling/boiling circulation pattern in the vessel for a time interval of approx. 10 minutes. Under these conditions of gentle boiling, the maximum temperature reached in water-vapor bubbles generated at the vessel heated surfaces should be below approx. 102 deg C.
- the vessel When the extraction-contact time has elapsed, the vessel is: (a) immediately covered with a close-fitting lid and removed from the source of heat and (b) allowed to cool in room air under quiescent conditions, i.e., no fans, air jets, or stirring/vibration of the vessel contents.
- quiescent conditions i.e., no fans, air jets, or stirring/vibration of the vessel contents.
- the forces of free convection prior to a vigorous boil will produce fluid velocities in the range of 1-100 mm/sec. Under average boiling conditions, the velocities will fall in the range 2-200 mm/sec.
- a normative cool-down time falls in the range of 30-300 minutes depending upon the placement of the vessel.
- there is a loss of extractant fluid vapor in the range of 10-200 g.
- the plant cuttings are fed into a hopper at a rate large enough to maintain a reserve level.
- the input plant parts are cut to the optimal ratio of exposed cut area to mass of the smallest plant portion; this ratio is in the range 0.1 to 50 mm 2 per 10 grams of as-harvested plant parts.
- the extraction vessel is sized to provide a retention time in the range of 10-1000 minutes and its heating means is thermostatically controlled to provide temperatures in the range 80-100 deg C.
- Make-up extract fluid and comminuted plant parts are fed into the extraction chamber in appropriate ratios to match the rates of removal of plant residues and extract. Continuous screen and depth filtering by known processes is used to separate suspended plant matter from the resulting extract
- the fluid and plant parts are allowed to cool by natural convection against room air for a time of approx. 30-200 minutes. After the fluid has reached a temperature of approx. 25-35 deg C., fluid is filtered to remove dispersed solids larger than approx. 0.1 mm diam. The supernatant can be held in sealed containers at room temperature for testing of bioactivity and for further testing of parameters such as color, pH, density, surface tension, etc. When all testing steps are complete the approved extract fluid is repackaged and labeled with lot-number identification and held for blending into therapeutic formulations.
- the present invention also provides therapeutic formulations which comprise compounds of the present invention formulated together with one or more non-toxic physiologically-acceptable carriers.
- the therapeutic formulations may be specially prepared for oral administration in solid or liquid form, for parenteral injection, or for rectal administration.
- the therapeutic formulations of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, or as an oral or nasal spray. Further, therapeutic formulations of this invention may be prepared in transdermal and iontophoretic dosage forms.
- parenteral administration as used here denotes the following modes of administration: intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
- compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use.
- aqueous and nonaqueous carriers, diluents, solvents or vehicles examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained by one or more of the following technics: (a) use of coating materials such as lecithin, (b) maintenance of the required particle size in the case of dispersions, and (c) surfactants.
- Therapeutic formulations of this invention may also contain one or more adjuvants such as the following: preservatives, wetting agents, emulsifying agents, and dispersing agents. Prevention of the growth and action of adventitious microorganisms in formulations such as drops, syrups, elixirs, creams and ointments may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable therapeutic form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- adjuvants such as the following: preservatives, wetting agents, emulsifying agents, and dispersing agents.
- Injectable depot forms are made by forming microencapsulated matrices of the active agent in biodegradable polymers such as polylactide-polyglycolide.
- the rate of delivery of the bioactive agent can be controlled.
- biodegradable polymers include poly(orthoesters) and poly(anhydrides) depot injectable formulations are also prepared by entrapping the bioactive agents in liposomes or microemulsions which are compatible with body tissues.
- the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- Solid dosage forms for oral administration including capsules, tablets, pills, powders, and granules can be prepared from the extracts of this invention.
- the bioactive agent is mixed with at least one inert, physiologically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, (c) humectants such as glycerol, (d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (e) solution retarding agents such as paraffin, (f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as,
- the dosage form may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art.
- they may contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain zone of the intestinal tract, optionally, in a delayed manner.
- embedding compositions which can be used include polymeric substances and waxes.
- the bioactive agents can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
- Liquid dosage forms for oral administration include physiologically acceptable emulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- the liquid oral formulations can also include adjuvants such as wetting agents, emulsifying and suspend
- Liquid-solid suspensions in addition to the bioactive agents, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, and, tragacanth, and mixtures thereof.
- suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, and, tragacanth, and mixtures thereof.
- compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the bioactive agents of this invention with suitable nonirritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- suitable nonirritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lameliar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used.
- the present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like.
- the preferred lipids are the phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art.
- Dosage forms for topical administration of a the bioactive agents of this invention include powders, sprays, ointments and inhalants.
- the active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers, or propellants which may be required.
- Opthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
- Actual dosage levels of active ingredients in the therapeutic formulations of this invention may be varied so as to obtain an amount of the bioactive agent(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions, and mode of administration.
- the selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required for to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- Usual adult human dosage levels are in the range of about 10 to about 200 ml of filtered extract fluid per day. This dosage of extract amounts to approx. 20 to 200 mg of bioactive agent per kilogram of body weight per day and is administered in various forms. If desired, the effective daily dose may be divided into multiple doses for purposes of administration, e.g. two to four separate doses per day.
- Typical adult subject background Medical diagnosis of hyperglycemia or high blood sugar level at age 40 or later and no prior evidence of diabetes symptoms or complications.
- Taxus oral extract administration Undiluted liquid extract, 0.1 ml per day per kg of body weight divided into 3 portions, each portion taken immediately before meals.
- Typical outcomes of Taxus extract therapy Extract therapy must be carefully followed for at least 20 days to allow active agents to be reach an equilibrium level in blood, body tissues and organs. By day 20, a trend of lowering of blood glucose should be easily and repeatably detected by standard blood glucose self-testing devices.
- Typical Subject Murine animal model treated with chemical agent for inducing IDDM diabetes.
- Typical oral Taxus extract outcomes At a daily dosage level of 0.1 ml of extract per kg body weight, animals will be showing increased activity of sucrase alpha dextrinase and sucrose isomaltase as evidenced by enzymatic cleavage of the alpha 1-4 sucrose bond.
- Taxus extract therapy on abnormal structure induced in sucrase alpha dextrinase by foreign insulin.
- Typical Subject Murine animal model with inherent susceptibility for diabetes and impaired glucose tolerance treated with both foreign insulin and Taxus extract.
- Typical oral Taxus extract therapy outcomes At a daily dosage level of 0.1 ml of extract per kg body weight in addition to a controlled insulin dose, animals will be showing: (a) normal levels of sucrase alpha dextrinase and (b) normative activity of the enzyme for cleavage of sucrose.
- Typical Subject Murine animal model with inherent susceptibility for diabetes and impaired glucose tolerance treated with Taxus extract at a daily dosage level of 0.1 ml of extract per kg of body weight.
- Typical oral Taxus extract therapy outcomes By day 20 of the treatment regimen, the animals will be showing a measurable shortening of microtubles. It is believed that the mode of anti-mitotic action of the Taxus extract is to decrease the concentration of tubulin required for assembly of the tubules.
- Taxus extract therapy effects on mammal infected with Mengo or other picornavirus.
- Typical Subject Murine animal model with diabetes and impaired glucose tolerance resulting from infection with Mengo virus and treated with Taxus extract at a daily dosage level of 0.1 ml of extract per kg of body weight.
- Typical oral Taxus extract therapy outcomes By day 20 of the treatment regimen, the test animals will be showing a measurable improvement in insulin response.
Landscapes
- Health & Medical Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Alternative & Traditional Medicine (AREA)
- Biotechnology (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
Animal therapeutic compositions containing aqueous Taxus plant extracts for treatment of animal diseases including insulin deficiency diseases are disclosed. Bioactive Taxus-derived agents are recovered from plant parts by the extraction process disclosed. The therapeutic compositions and forms for administration provided may also include additive agents for flavoring, coloring, and preservation.
Description
1. Field of the Invention
The present invention is a product-by-process wherein the product is a liquid extract from Taxus plant tissue and the process for preparing the product includes a defined sequence of extraction, separation and dispersion steps to encompass selected bioactive materials and blend them into therapeutic formulations. One utility of the resulting bioactive therapeutic Taxus compositions is for treatment of insulin deficiency.
2. Description of Related Taxus-Extraction Publications
Many publications report that taxanes and other bioactive compounds produced in Taxus plant parts, because of their insolubility in water, must be extracted by organic solvents.
One example of such teaching is US5279949, Nair-949, issued Jan. 18, 1994, which describes a low-cost ethanol-water extraction method for ground, fresh needles and clippings from ornamental yew. This patent teaches solvent extraction of Taxus hicksii wherein the green color bodies are removed from the resulting ethanol extract by treatment with activated carbon; isolation of taxol and taxanes is accomplished using additional steps, i.e., ethyl acetate extraction and silica-gel chromatography. The latter procedure is designed to sequester immiscible plant lipids and to recover water-insoluble taxol and taxanes in ethyl acetate solvent.
It is also well known that animals such as deer and cattle can be killed by eating Taxus plant tissue. Presumably the only reason the bitter Taxus needles and branches would be consumed is that the animal was not able to find any other food and was starving. These animal experiences present clear teaching against the medicinal or therapeutic use of oral, water-base Taxus extracts by animals or humans.
No patent or publication can be found which teaches preparation of therapeutic extracts or prodrugs of Taxus canadensis plant parts by direct, single-stage extraction of plant elements in an aqueous fluid.
As is shown in the following description and examples, the present invention is a product-by-process, i.e., a therapeutic composition prepared by direct aqueous extraction of plant parts of Taxus canadensis. The present water-extraction process produces preparations containing Taxus bioactive components which benefit a variety of human conditions, particularly those related to: (a) inadequate amounts of secreted insulin, (b) secretion of insulin variants or molecular forms which are functionally defective or inefficient or (c) secretion of insulin which reacts with or binds with other serum components.
The process of the present invention includes the following stages: (a) selection of Taxus plant species for extraction, (b) propagation of selected varieties, (c) production of plant tissue for extraction, (d) harvesting of selected plant tissue, (e) processing of harvested plant parts, (f) extraction(s) of processed plant parts, and (g) post-extraction processing, blending of resulting extracts.
1,0 The Horticultural Processes, steps (a) through (d), for selection, propagation and production of selected Taxus plant tissue include the following stages:
1,1 Identification/propagation of root stock and/or plant cuttings for cultivation;
1,2 Selection of optimal soil and growth conditions including porosity, pH, degree-days to maturity, etc.;
1,3 Validation of preferred plant-protective measures such as sprays, soil treatments, etc.;
1,4 Confirmation of timing priorities for harvesting of specific plant parts such as specific time period, stage of maturity, leaf size parameters, plant-tissue coloration, hue, etc.;
1,5 Selecting the best techniques for harvesting from alternatives such as manual dippers, mowing, etc..
2,0 The Pre-Extraction Processing of plant parts and tissues prior to extraction, step (e), includes the following:
2,1 Mechanical processing such as cleaning, sizing, rolling, stressing, punching, cutting, macerating, etc;
2,2 Chemical processing such as spraying or dipping plant parts prior to mechanical processing with surfactants, acid, alkali, or other agents/environments which interact chemically;
2,3 Fluid-mechanical processing such as equilibrating plant tissue, prior to extraction, under specific fluid pressure, vacuum, or flow conditions, e.g., ultrasonic/vibration agitation in a vessel; and
2,4 Thermal/vacuum processing such as cooling, freezing, heating, plant tissue prior to extraction, in a chamber or vessel.
3,0 The Extraction Process, step (f), includes the following important features and control parameters:
3,1 Extract solutions, stages, sequential compositions, weight ratio fluid/plant tissue for each stage;
3,2 Extraction chamber: equipment design, vessel size, height/diameter ratio, materials, linings, coatings;
3,3 Extraction process controls, stages, time durations, temperatures, flow velocities;
3,4 End points, final stage determinations;
3,5 Separation of liquid extracts and bioactive components from plant residues.
4,0 Post-extraction preparation of therapeutic formulations from the resulting extract, step g, includes:
4,1 Therapeutic-extract concentrate blends for oral administration;
4,1,1 Blending selected additives for taste, color, preservation, degradation prevention, delayed-release, controlled-release, delayed-pulse-release, etc;
4,1,2 Selection of vehicles, excipients, fillers, viscosity control/gelling agents, etch
4,2 Extract concentrate(s) for topical, ophthalmic, mucosal, dermal/transdermal admin., drug-delivery devices/implants;
4,2,1 Blending selected additives for viscosity, porosity, resorption rate, coagulation prevention, film formation, controlled release, etc;
4,2,2 Selection of vehicles, excipients, fillers, surfactants, viscosity control/gelling agents, aerosol dispersants/stabilizers, liposome-formation agents, etc.
Examples of processing and extract blending are given as examples P1 to P7. Examples of various Taxus extract therapeutic methods are given in Examples T1-T5.
P1. Identification of Plants
Many reference books were used to collect plant identification data on various Taxus sub-species, including Conifers; Rushforth, KD; Facts On File, 1987 Flora von Nord- und Mitteleuropa; Hermann, F; G. Fischer, Stuttgart, 1956, and Plant Anatomy; Mauseth, J D; Cummings Press, Menlo Pk., Calif., 1988.
Typical plant parts were also examined by a specialist consultant to confirm correct identification. After careful examination of many plant characteristics, the plant used for the present extracts is confirmed to be Taxus canadensis. Plant parts from other Taxus sub-species including, but not limited to: T. brevifolia, T. baccata, T. wallichiana, T. canadensis, T. chinesis, T. cuspidata, and T. floridana are being extracted using the present process on an exploratory basis. Also, plant parts from these and any other Taxus wild-type species or Taxus cultivars may be mixed together with T. canadensis as described below for the preparation of extracts for the treatment of insulin deficiency and other diseases or conditions.
P2. Propagation of Plants
Taxus plants for extraction are cultivated in sandy-loam soil in marshy areas. The growth conditions are shaded. No special fertilizer, soil conditioning or protective plant sprays are used. Plants are spaced apart for controlled dissemination of the pollen and protected from injury due to browsing-animal species such as deer. Similarly, the plants must be protected from attack by browsing/chewing animal species. Although the plants exhibit a winter dormant period in the nothern latitudes, plant parts for extraction can be harvested any time of year. Plant-tissue cuttings are obtained by cutting the new-growth branches of diameter 3-10 mm into segments of approx. 70-150 mm length with pruning shears. The best time for harvesting plant cuttings is during the active-growth season when the foliage is green and pliable. The severed plant parts are lightly compressed together into small bundles, approx. 100-200 mm diam, and immediately placed into closed plastic bags for temporary storage. No cuttings are stored in such bags for more than 6 hours prior to extraction.
P3. Processing of Plant Parts
Processing of plant parts consists of: (a) washing to remove dirt and foreign matter and (b) chipping the branches, stems and needles into small segments which expose large interfacial area for diffusional transfer of bioactive species into the extract fluid. First, the cuttings are rinsed with a gentle water spray at approx 15-35 deg C., this step, which is done manually under continuous, careful visual inspection, removes environmental contaminants such as atmospheric dust/yeast/spores which settle upon the surface of the plant parts. The usual moisture level of living needles, stems and other plant parts is in the range of 10 wt. percent during the growth season; in the winter dormant season or under conditions of hot, dry ambient air, as-harvested plant tissue and whole parts may show moisture levels as low as 4-8 wt. %. Evaporation during handling or processing of harvested plant parts can further reduce their moisture level to 2-6 wt. %. Preservation of as-harvested plant parts by refrigeration or freeze-drying can result in moisture levels of 1-2 wt. %.
P4. Extractant Fluids
P4.1 A variety of types of treated and untreated water are used for extraction of Taxus plant parts including: chlorinated city water, filtered well water and unfiltered water drawn from a deep aquifer or artesian well. Simple screen and depth filtration procedures are used to remove dispersed and suspended solids from water. Aeration by bubbling air through a holding vessel may be used, if desired, to remove a portion of the chlorine. To reduce the bioburden of viable bacteria in the starting extract water, reverse osmosis or membrane ultrafiltration can also be used on at least a portion of the water used for extraction. Sensitive analysis methods for dissolved gases, metal ions and compounds may be used on a monthly or quarterly basis. Particular attention is paid to the presence of dissolved compounds of transition and heavy-metal elements.
P5. Additives to Extractant Fluid
P5.1 Chemical additives to the extract solution A variety of additives can be useful to increase recovery of bioactive agents from the plant parts into the fluid extracts. These agents include: (a) buffers for control of pH to the range 6-8, (b) antifoaming agents, (c) dissolved solutes which show a chemical affinity for, or a tendancy for forming complexes with, the bioactive agents, and (d) dissolved or dispersed additives such as cyclodextrin, which are capable of structurally encompassing bioactive species in the manner of chelates or clathrates.
P5.2 Biochemical Additives to the Extract Solution
In order to prepare a more concentrated or more stable extract, selected biochemical constituents may be added to the extract solution. It is thought that the function of at least some biochemical additives in the extract solution is: to precipitate color bodies, to neutralize undesired agents, and enhance the therapeutic properties of the bioactive species in the resulting extract. The following additives may be used with the extract fluid: (a) dissolved reactive gases such as oxygen, (b) floculating agents (c) trace minerals, such as iron, nickel, manganese, zinc or selenium, (d) plant fiber such as psyllium or cellulose and (e) vitamins or vitamin precursors such as vitamins A, B, or C as well as precursors such as beta carotene.
P5.3 Other Additives to the Extract Solution
Certain known physiologically-acceptable, compatible additives such as brighteners, clarifiers, soluble coloring, flavoring, aroma-taste additives may also be added to the extract fluid for the purpose of enhancing the appearance and palatability of the extract for oral formulations.
P6,0. Extraction Process
P6,1 Starting Materials/Batch Procedure
P6,1,1 Taxus plant parts, as-harvested moisture level, at room temp (18-28 deg. C.): approx 45 grams;
P6,1,2 Extractant, liquid water at room temp: approx 700 grams (container size/form selected such that all 45 grams of plant parts are completely immersed into and wet by extracting fluid). Generally, a deep, cylinder-form vessel of approx. 150 mm ID and 300 mm depth is used for a charge of 700 g fluid.
P6,2 Batch Extraction Process Parameters
The uncovered extraction vessel is brought quickly to a temperature of approx. 100 deg C. by application of high heat to the sides and bottom of the vessel; the liquid and plant parts reach a vigorous boiling action within approx. 5-10 minutes. The heat input is then controlled at a level to sustain an active rolling/boiling circulation pattern in the vessel for a time interval of approx. 10 minutes. Under these conditions of gentle boiling, the maximum temperature reached in water-vapor bubbles generated at the vessel heated surfaces should be below approx. 102 deg C. When the extraction-contact time has elapsed, the vessel is: (a) immediately covered with a close-fitting lid and removed from the source of heat and (b) allowed to cool in room air under quiescent conditions, i.e., no fans, air jets, or stirring/vibration of the vessel contents. Generally, the forces of free convection prior to a vigorous boil will produce fluid velocities in the range of 1-100 mm/sec. Under average boiling conditions, the velocities will fall in the range 2-200 mm/sec. A normative cool-down time falls in the range of 30-300 minutes depending upon the placement of the vessel. During boiling, there is a loss of extractant fluid vapor in the range of 10-200 g.
P6,3 Continuous Extraction Process Parameters
For high-volume production of the plant extracts of this invention, it is also possible to accomplish the extraction processes in a continuous-flow mode. For such an embodiment of the process, the plant cuttings are fed into a hopper at a rate large enough to maintain a reserve level. By means of reciprocating, rotary or combination-reciprocating-rotary comminution processes, the input plant parts are cut to the optimal ratio of exposed cut area to mass of the smallest plant portion; this ratio is in the range 0.1 to 50 mm 2 per 10 grams of as-harvested plant parts. The extraction vessel is sized to provide a retention time in the range of 10-1000 minutes and its heating means is thermostatically controlled to provide temperatures in the range 80-100 deg C. Make-up extract fluid and comminuted plant parts are fed into the extraction chamber in appropriate ratios to match the rates of removal of plant residues and extract. Continuous screen and depth filtering by known processes is used to separate suspended plant matter from the resulting extract
P7,0 Post-Extraction Processing and Packaging
P7,1 Separation of Plant Residues/Bulk-Storage Procedures
After batch-type extraction, the fluid and plant parts are allowed to cool by natural convection against room air for a time of approx. 30-200 minutes. After the fluid has reached a temperature of approx. 25-35 deg C., fluid is filtered to remove dispersed solids larger than approx. 0.1 mm diam. The supernatant can be held in sealed containers at room temperature for testing of bioactivity and for further testing of parameters such as color, pH, density, surface tension, etc. When all testing steps are complete the approved extract fluid is repackaged and labeled with lot-number identification and held for blending into therapeutic formulations.
P7,2 End-Use Preparation and Packaging of Therapeutic Compositions
The present invention also provides therapeutic formulations which comprise compounds of the present invention formulated together with one or more non-toxic physiologically-acceptable carriers. The therapeutic formulations may be specially prepared for oral administration in solid or liquid form, for parenteral injection, or for rectal administration.
The therapeutic formulations of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, or as an oral or nasal spray. Further, therapeutic formulations of this invention may be prepared in transdermal and iontophoretic dosage forms. The nomenclature parenteral administration as used here denotes the following modes of administration: intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
Pharmaceutical compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use.
Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained by one or more of the following technics: (a) use of coating materials such as lecithin, (b) maintenance of the required particle size in the case of dispersions, and (c) surfactants.
Therapeutic formulations of this invention may also contain one or more adjuvants such as the following: preservatives, wetting agents, emulsifying agents, and dispersing agents. Prevention of the growth and action of adventitious microorganisms in formulations such as drops, syrups, elixirs, creams and ointments may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable therapeutic form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin. In some cases, in order to prolong the effect of the bioactive agents, it is desirable to slow the absorption of the active agent from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the active agents then depends upon their rates of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered therapeutic form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsulated matrices of the active agent in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of bioactive agent to polymer and the nature of the particular polymer employed, the rate of delivery of the bioactive agent can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides) depot injectable formulations are also prepared by entrapping the bioactive agents in liposomes or microemulsions which are compatible with body tissues. The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
Solid dosage forms for oral administration including capsules, tablets, pills, powders, and granules can be prepared from the extracts of this invention. In such solid dosage forms, the bioactive agent is mixed with at least one inert, physiologically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, (c) humectants such as glycerol, (d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (e) solution retarding agents such as paraffin, (f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, (h) absorbents such as kaolin and bentonite clay, and (i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof.
In the case of capsules, tablets and pills, prepared from extracts of this invention, the dosage form may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. Optionally they may contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain zone of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The bioactive agents can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
Liquid dosage forms for oral administration include physiologically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the liquid oral formulations can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
Liquid-solid suspensions, in addition to the bioactive agents, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, and, tragacanth, and mixtures thereof.
Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the bioactive agents of this invention with suitable nonirritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
Therapeutic formulations of the bioactive agents of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lameliar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients, and the like. The preferred lipids are the phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art.
Dosage forms for topical administration of a the bioactive agents of this invention include powders, sprays, ointments and inhalants. The active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers, or propellants which may be required.
Opthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
Actual dosage levels of active ingredients in the therapeutic formulations of this invention may be varied so as to obtain an amount of the bioactive agent(s) that is effective to achieve the desired therapeutic response for a particular patient, compositions, and mode of administration. The selected dosage level will depend upon the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required for to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
Usual adult human dosage levels are in the range of about 10 to about 200 ml of filtered extract fluid per day. This dosage of extract amounts to approx. 20 to 200 mg of bioactive agent per kilogram of body weight per day and is administered in various forms. If desired, the effective daily dose may be divided into multiple doses for purposes of administration, e.g. two to four separate doses per day.
Aqueous Taxus Extracts Therapy
Typical adult subject background: Medical diagnosis of hyperglycemia or high blood sugar level at age 40 or later and no prior evidence of diabetes symptoms or complications.
Typical Taxus oral extract administration: Undiluted liquid extract, 0.1 ml per day per kg of body weight divided into 3 portions, each portion taken immediately before meals. Typical outcomes of Taxus extract therapy: Extract therapy must be carefully followed for at least 20 days to allow active agents to be reach an equilibrium level in blood, body tissues and organs. By day 20, a trend of lowering of blood glucose should be easily and repeatably detected by standard blood glucose self-testing devices.
Remission/restoration of beta-cell damage due to chemical agents such as STZ (streptozotocin) or alloxan by Taxus Extract Therapy.
Typical Subject: Murine animal model treated with chemical agent for inducing IDDM diabetes.
Typical oral Taxus extract outcomes: At a daily dosage level of 0.1 ml of extract per kg body weight, animals will be showing increased activity of sucrase alpha dextrinase and sucrose isomaltase as evidenced by enzymatic cleavage of the alpha 1-4 sucrose bond.
Effect of Taxus extract therapy on abnormal structure induced in sucrase alpha dextrinase by foreign insulin.
Typical Subject: Murine animal model with inherent susceptibility for diabetes and impaired glucose tolerance treated with both foreign insulin and Taxus extract.
Typical oral Taxus extract therapy outcomes: At a daily dosage level of 0.1 ml of extract per kg body weight in addition to a controlled insulin dose, animals will be showing: (a) normal levels of sucrase alpha dextrinase and (b) normative activity of the enzyme for cleavage of sucrose.
Effect of Taxus extract therapy on microtubule growth and development.
Typical Subject: Murine animal model with inherent susceptibility for diabetes and impaired glucose tolerance treated with Taxus extract at a daily dosage level of 0.1 ml of extract per kg of body weight.
Typical oral Taxus extract therapy outcomes: By day 20 of the treatment regimen, the animals will be showing a measurable shortening of microtubles. It is believed that the mode of anti-mitotic action of the Taxus extract is to decrease the concentration of tubulin required for assembly of the tubules.
Effect of Taxus extract therapy on mammal infected with Mengo or other picornavirus.
Typical Subject: Murine animal model with diabetes and impaired glucose tolerance resulting from infection with Mengo virus and treated with Taxus extract at a daily dosage level of 0.1 ml of extract per kg of body weight.
Typical oral Taxus extract therapy outcomes: By day 20 of the treatment regimen, the test animals will be showing a measurable improvement in insulin response.
The preceeding examples of this invention can be repeated with similar success by substituting generic or specifically-described agents or additives for those used in the examples. From the examples presented and previous descriptions one skilled in the art can easily ascertain the essential characteristics of the invention, and, wothout departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various starting materials, animal class, healing usages and forms of adminstration.
Claims (6)
1. A non-toxic, bioactive, mammal-therapeutic composition which comprises a liquid extract of Taxus plant parts which is produced by the steps of:
(a) cultivating plants of one or more selected Taxus species, including: T. canadensis, T. baccata, and T. brevifolia, T.T. chinesis, T. cuspidata, T. floridana;
(b) harvesting tissue of parts of said cultivated Taxus plants including roots, stems, needles, blooms, seeds;
(c) cutting said freshly-harvested plant tissue of said cultivated Taxus species into lengths of 5-400 mm length;
(d) extracting said cut Taxus plant tissue and parts in a liquid-fluid solution containing at least 51% water for a time period of about 10 minutes at a temperature of about 98-102 deg C. wherein the ratio of freshly-harvested Taxus plant parts is about 20-400 grams per liter of water-base solution or about 20-350 grams of low-moisture Taxus plant parts per liter of water; and
(e) separating solid plant residues of particle size greater than 0.05-0.2 mm diameter from the resulting liquid extract fluids by mechanical filtration,
thereby yielding said extract.
2. A therapeutic Taxus extract composition as set forth in claim 1 wherein:
(a) Taxus canadensis is the selected species; and
(b) said selected Taxus plants are timely harvested at a predetermined peak stage in their seasonal growth cycle immediately prior to said extraction step.
3. A therapeutic Taxus extract composition as set forth in claim 2 wherein compatible, physiologically-acceptable additives consisting of one or more of: clarifiers, preservatives, stabilizers, colorants, flavoring agents, surfactants and absorption enhancers are added to the extract in amounts sufficient to accomplish their intended purpose.
4. A method of treating animal conditions of insulin deficiency comprising daily oral ingestion of an effective amount of the composition of claim 3.
5. A therapeutic composition for oral ingestion comprising the Taxus extract of claim 3 wherein a physiologically-acceptable, compatible, palatability additive selected from the group consisting of: mint flavoring, sweeteners, pharmaceutical coloring agents and mixtures thereof is added to said extract in an amount of 0.1 to 5.0 wt. percent of said extract.
6. The therapeutic extract of claim 3 wherein step (e) of the process is followed by an additional clarification step (f) consisting of: ultrafiltration, centrifugation, floculation, membrane filtration and combinations thereof, to remove fine-disperse particles, colloids, vesicles and color bodies.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/613,620 US5800817A (en) | 1996-03-11 | 1996-03-11 | Plant extracts and therapy for insulin deficiencies |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/613,620 US5800817A (en) | 1996-03-11 | 1996-03-11 | Plant extracts and therapy for insulin deficiencies |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5800817A true US5800817A (en) | 1998-09-01 |
Family
ID=24458033
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/613,620 Expired - Fee Related US5800817A (en) | 1996-03-11 | 1996-03-11 | Plant extracts and therapy for insulin deficiencies |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US5800817A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6406722B1 (en) * | 1999-02-18 | 2002-06-18 | Robert G. Gallaher | Method of treating viral infections and lesions with taxane compounds |
| EP1174145A3 (en) * | 2000-07-21 | 2002-10-30 | Bioforce AG | Extraction of active agents from plants |
| US20030049312A1 (en) * | 2000-03-15 | 2003-03-13 | Frauke Gaedcke | Hard gelatine capsules containing sustained-release plant extracts and method for production thereof |
| US20060003026A1 (en) * | 2002-03-08 | 2006-01-05 | Bihui Wang | Chinese preparation for treating enteritis ulcer colitis and preparation method thereof |
| US20060127510A1 (en) * | 2003-12-30 | 2006-06-15 | Natural Pharmaceuticals, Inc. | Harvesting and pelletizing yew biomass for extraction of taxanes and other natural products |
| WO2011043590A3 (en) * | 2009-10-08 | 2011-08-18 | Oh Dong Suk | Pharmaceutical composition for treating diabetes or hypertension using taxus cuspidata and mulberry tree extracts, and method for preparing same |
| CN102247304A (en) * | 2010-05-18 | 2011-11-23 | 粟时献 | Health care cosmetics in nano Chinese yew series and production method thereof |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5279949A (en) * | 1992-12-07 | 1994-01-18 | Board Of Trustees Operating Michigan State University | Process for the isolation and purification of taxol and taxanes from Taxus spp |
-
1996
- 1996-03-11 US US08/613,620 patent/US5800817A/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5279949A (en) * | 1992-12-07 | 1994-01-18 | Board Of Trustees Operating Michigan State University | Process for the isolation and purification of taxol and taxanes from Taxus spp |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6406722B1 (en) * | 1999-02-18 | 2002-06-18 | Robert G. Gallaher | Method of treating viral infections and lesions with taxane compounds |
| US20030049312A1 (en) * | 2000-03-15 | 2003-03-13 | Frauke Gaedcke | Hard gelatine capsules containing sustained-release plant extracts and method for production thereof |
| EP1174145A3 (en) * | 2000-07-21 | 2002-10-30 | Bioforce AG | Extraction of active agents from plants |
| US20060003026A1 (en) * | 2002-03-08 | 2006-01-05 | Bihui Wang | Chinese preparation for treating enteritis ulcer colitis and preparation method thereof |
| US7354570B2 (en) * | 2002-03-08 | 2008-04-08 | Tianjin Kinsly Pharmaceutical R&D Co., Ltd. | Chinese preparation for treating enteritis ulcer colitis and preparation method thereof |
| US20060127510A1 (en) * | 2003-12-30 | 2006-06-15 | Natural Pharmaceuticals, Inc. | Harvesting and pelletizing yew biomass for extraction of taxanes and other natural products |
| WO2011043590A3 (en) * | 2009-10-08 | 2011-08-18 | Oh Dong Suk | Pharmaceutical composition for treating diabetes or hypertension using taxus cuspidata and mulberry tree extracts, and method for preparing same |
| CN102247304A (en) * | 2010-05-18 | 2011-11-23 | 粟时献 | Health care cosmetics in nano Chinese yew series and production method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3593429B2 (en) | Artificial culture method of Cordyceps | |
| KR100946592B1 (en) | Bee feed composition containing vinegar and its manufacturing method | |
| KR20190009884A (en) | Manufacturing method of fermented health food using slugs | |
| JP6534443B2 (en) | Method for producing bamboo fermented extract and method for producing immunostimulatory food composition or immunostimulant | |
| WO2021159213A1 (en) | Method for producing an extract of mushroom and mushroom extract made therefrom | |
| US5800817A (en) | Plant extracts and therapy for insulin deficiencies | |
| KR100889927B1 (en) | Double or single culture method of chaga mycelium and green mushroom mushroom mycelium using silkworm, food comprising at least one of chaga mycelium and green mushroom mushroom mycelium cultured thereby, and method for producing same | |
| KR101333007B1 (en) | Extracting Method of Dendropanax Morbifera Leveille extract | |
| KR101817704B1 (en) | eco-friendly composition for controlling plant viruses | |
| EP1931360A2 (en) | Carbohydrate compositions from basidiomycete fungi as biocidal agents active against pathogens | |
| KR20030069500A (en) | The preparation of fermentation Fig-vinegar using korean drug agent and fig fruit | |
| JP2001017158A (en) | Culture medium composition for culturing phellinus linteus mycelium and culture of phellinus linteus mycelium using the same composition | |
| US7538071B2 (en) | Methods of reducing the nicotine content of tobacco plants and tobacco plants obtained thereby | |
| JP3858054B2 (en) | Foods with olive utilization and anti-H. Pylori activity | |
| CN118021844A (en) | Pig liver extract with liver protecting and anti-alcohol functions and application thereof | |
| KR100448253B1 (en) | Method of producing fermented beverage containing pine extracts and liquid fermented by lactic acid bacteria and the beverage produced thereby | |
| KR100361165B1 (en) | New Cordyceps sp. using Xylotrupes dichotomus larva as host and production thereof | |
| GB2359562A (en) | T cell immunoactivity potentiators containing shiit ake mushroom hypha extract | |
| CN107646899A (en) | A kind of green high-efficient rice seed dressing agent and its preparation method and application | |
| JP3650940B2 (en) | AIDS virus growth inhibitor | |
| CN105853787A (en) | Alkaline plant salt capable of decreasing blood sugar and preparation method thereof | |
| JP2000041623A (en) | Production of mycelium essence of pleurotus eryngii | |
| KR20160073659A (en) | manufacturing method of a dust tea in using a ginseng leaf | |
| KR100523800B1 (en) | Manufacturing method for sang hwang mushroom-barley corn | |
| KR101653708B1 (en) | Method for cultivating Poria cocos Wolf in open field |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| REMI | Maintenance fee reminder mailed | ||
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| SULP | Surcharge for late payment | ||
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Expired due to failure to pay maintenance fee |
Effective date: 20060901 |