US5616684A - Cyclic peptides and use thereof - Google Patents
Cyclic peptides and use thereof Download PDFInfo
- Publication number
- US5616684A US5616684A US08/231,449 US23144994A US5616684A US 5616684 A US5616684 A US 5616684A US 23144994 A US23144994 A US 23144994A US 5616684 A US5616684 A US 5616684A
- Authority
- US
- United States
- Prior art keywords
- asp
- added
- leu
- obzl
- filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 102000001189 Cyclic Peptides Human genes 0.000 title claims abstract description 28
- 108010069514 Cyclic Peptides Proteins 0.000 title claims abstract description 28
- 150000003839 salts Chemical class 0.000 claims abstract description 26
- 230000003042 antagnostic effect Effects 0.000 claims abstract description 16
- 102000010180 Endothelin receptor Human genes 0.000 claims abstract description 12
- 108050001739 Endothelin receptor Proteins 0.000 claims abstract description 12
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 40
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 39
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 claims description 35
- 235000003704 aspartic acid Nutrition 0.000 claims description 30
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 30
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 9
- 229930182827 D-tryptophan Natural products 0.000 claims description 6
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 claims description 6
- XLMSKXASROPJNG-RXMQYKEDSA-N (2s)-2-amino-2-thiophen-2-ylacetic acid Chemical group OC(=O)[C@H](N)C1=CC=CS1 XLMSKXASROPJNG-RXMQYKEDSA-N 0.000 claims description 4
- -1 amino, imino Chemical group 0.000 abstract description 151
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 28
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 19
- 125000003118 aryl group Chemical group 0.000 abstract description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 abstract description 13
- 108010040722 Neurokinin-2 Receptors Proteins 0.000 abstract description 10
- 102100037342 Substance-K receptor Human genes 0.000 abstract description 10
- 150000007649 L alpha amino acids Chemical group 0.000 abstract description 8
- 150000007650 D alpha amino acids Chemical group 0.000 abstract description 5
- 125000003275 alpha amino acid group Chemical group 0.000 abstract description 5
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 2
- 150000003573 thiols Chemical class 0.000 abstract description 2
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 abstract 1
- 230000007935 neutral effect Effects 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 577
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical class CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 505
- 238000001914 filtration Methods 0.000 description 424
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 413
- 239000000243 solution Substances 0.000 description 406
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 354
- 239000002244 precipitate Substances 0.000 description 286
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 226
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 216
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 207
- 238000003756 stirring Methods 0.000 description 196
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 181
- 238000004519 manufacturing process Methods 0.000 description 173
- 229910004809 Na2 SO4 Inorganic materials 0.000 description 137
- 239000013078 crystal Substances 0.000 description 118
- 238000000921 elemental analysis Methods 0.000 description 116
- 238000002844 melting Methods 0.000 description 116
- 230000008018 melting Effects 0.000 description 116
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 112
- 238000005406 washing Methods 0.000 description 112
- ZUSSTQCWRDLYJA-UHFFFAOYSA-N n-hydroxy-5-norbornene-2,3-dicarboximide Chemical compound C1=CC2CC1C1C2C(=O)N(O)C1=O ZUSSTQCWRDLYJA-UHFFFAOYSA-N 0.000 description 110
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 108
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 102
- 238000001816 cooling Methods 0.000 description 99
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 99
- 239000002198 insoluble material Substances 0.000 description 82
- 239000000047 product Substances 0.000 description 78
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 72
- OKKJLVBELUTLKV-UHFFFAOYSA-N methyl alcohol Substances OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 70
- 239000000706 filtrate Substances 0.000 description 67
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 66
- 239000003054 catalyst Substances 0.000 description 60
- 239000002904 solvent Substances 0.000 description 51
- 239000000843 powder Substances 0.000 description 49
- 239000011701 zinc Substances 0.000 description 48
- 239000003208 petroleum Substances 0.000 description 43
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 42
- 229910052739 hydrogen Inorganic materials 0.000 description 37
- 239000001257 hydrogen Substances 0.000 description 37
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 36
- 229940024606 amino acid Drugs 0.000 description 36
- 235000001014 amino acid Nutrition 0.000 description 36
- 150000001413 amino acids Chemical class 0.000 description 36
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 33
- 125000001841 imino group Chemical group [H]N=* 0.000 description 33
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 31
- 238000000034 method Methods 0.000 description 31
- 229960005261 aspartic acid Drugs 0.000 description 30
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 29
- 239000007864 aqueous solution Substances 0.000 description 29
- 238000004821 distillation Methods 0.000 description 28
- FYYSQDHBALBGHX-YFKPBYRVSA-N N(alpha)-t-butoxycarbonyl-L-asparagine Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC(N)=O FYYSQDHBALBGHX-YFKPBYRVSA-N 0.000 description 27
- 230000007062 hydrolysis Effects 0.000 description 25
- 238000006460 hydrolysis reaction Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 25
- 239000000203 mixture Substances 0.000 description 25
- 229920006395 saturated elastomer Polymers 0.000 description 25
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 24
- 238000004108 freeze drying Methods 0.000 description 24
- 238000004811 liquid chromatography Methods 0.000 description 23
- 239000011780 sodium chloride Substances 0.000 description 21
- SOHLZANWVLCPHK-GFCCVEGCSA-N (2r)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxo-4-phenylmethoxybutanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](C(O)=O)CC(=O)OCC1=CC=CC=C1 SOHLZANWVLCPHK-GFCCVEGCSA-N 0.000 description 20
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 20
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 20
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 20
- 229960003104 ornithine Drugs 0.000 description 20
- NFVNYBJCJGKVQK-CYBMUJFWSA-N (2r)-3-(1h-indol-3-yl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound C1=CC=C2C(C[C@@H](NC(=O)OC(C)(C)C)C(O)=O)=CNC2=C1 NFVNYBJCJGKVQK-CYBMUJFWSA-N 0.000 description 19
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 18
- 125000006355 carbonyl methylene group Chemical group [H]C([H])([*:2])C([*:1])=O 0.000 description 18
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 16
- 238000001035 drying Methods 0.000 description 16
- 238000001704 evaporation Methods 0.000 description 16
- 230000008020 evaporation Effects 0.000 description 16
- 125000006239 protecting group Chemical group 0.000 description 16
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 13
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 13
- 235000008206 alpha-amino acids Nutrition 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 229960003136 leucine Drugs 0.000 description 13
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 12
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 12
- 239000004472 Lysine Substances 0.000 description 11
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 11
- 235000018977 lysine Nutrition 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 10
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 150000001371 alpha-amino acids Chemical class 0.000 description 10
- 150000002148 esters Chemical group 0.000 description 10
- 238000000605 extraction Methods 0.000 description 10
- 229960004799 tryptophan Drugs 0.000 description 10
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 9
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 9
- 102000002045 Endothelin Human genes 0.000 description 9
- 108050009340 Endothelin Proteins 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 9
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 9
- 229960002989 glutamic acid Drugs 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 8
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 8
- 235000013922 glutamic acid Nutrition 0.000 description 8
- 239000004220 glutamic acid Substances 0.000 description 8
- 238000010898 silica gel chromatography Methods 0.000 description 8
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 7
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 7
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 7
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 7
- 125000003368 amide group Chemical group 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- XVOYSCVBGLVSOL-UHFFFAOYSA-N cysteic acid Chemical group OC(=O)C(N)CS(O)(=O)=O XVOYSCVBGLVSOL-UHFFFAOYSA-N 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 6
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 6
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- IADUEWIQBXOCDZ-UHFFFAOYSA-N azetidine-2-carboxylic acid Chemical compound OC(=O)C1CCN1 IADUEWIQBXOCDZ-UHFFFAOYSA-N 0.000 description 6
- 230000000747 cardiac effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000006482 condensation reaction Methods 0.000 description 6
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 6
- 229960001153 serine Drugs 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 229940126585 therapeutic drug Drugs 0.000 description 6
- SOHLZANWVLCPHK-LBPRGKRZSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxo-4-phenylmethoxybutanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC(=O)OCC1=CC=CC=C1 SOHLZANWVLCPHK-LBPRGKRZSA-N 0.000 description 5
- QVHJQCGUWFKTSE-YFKPBYRVSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound OC(=O)[C@H](C)NC(=O)OC(C)(C)C QVHJQCGUWFKTSE-YFKPBYRVSA-N 0.000 description 5
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 5
- 102100033902 Endothelin-1 Human genes 0.000 description 5
- 101800004490 Endothelin-1 Proteins 0.000 description 5
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 5
- 206010020772 Hypertension Diseases 0.000 description 5
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 5
- 239000004395 L-leucine Substances 0.000 description 5
- 235000019454 L-leucine Nutrition 0.000 description 5
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 5
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 5
- MDXGYYOJGPFFJL-QMMMGPOBSA-N N(alpha)-t-butoxycarbonyl-L-leucine Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)OC(C)(C)C MDXGYYOJGPFFJL-QMMMGPOBSA-N 0.000 description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 5
- GANYMSDHMBJFIL-UHFFFAOYSA-N acetonitrile;ethoxyethane Chemical compound CC#N.CCOCC GANYMSDHMBJFIL-UHFFFAOYSA-N 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 229960000310 isoleucine Drugs 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 229960002429 proline Drugs 0.000 description 5
- 229940043274 prophylactic drug Drugs 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 229960004441 tyrosine Drugs 0.000 description 5
- XJODGRWDFZVTKW-LURJTMIESA-N (2s)-4-methyl-2-(methylamino)pentanoic acid Chemical compound CN[C@H](C(O)=O)CC(C)C XJODGRWDFZVTKW-LURJTMIESA-N 0.000 description 4
- AMPVNPYPOOQUJF-ZETCQYMHSA-N (2s)-5-azaniumyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanoate Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCCN AMPVNPYPOOQUJF-ZETCQYMHSA-N 0.000 description 4
- LDRWTKQWSXGSTM-LBPRGKRZSA-N (3s)-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxo-4-phenylmethoxybutanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](CC(O)=O)C(=O)OCC1=CC=CC=C1 LDRWTKQWSXGSTM-LBPRGKRZSA-N 0.000 description 4
- FVTVMQPGKVHSEY-UHFFFAOYSA-N 1-AMINOCYCLOBUTANE CARBOXYLIC ACID Chemical compound OC(=O)C1(N)CCC1 FVTVMQPGKVHSEY-UHFFFAOYSA-N 0.000 description 4
- WOXWUZCRWJWTRT-UHFFFAOYSA-N 1-amino-1-cyclohexanecarboxylic acid Chemical compound OC(=O)C1(N)CCCCC1 WOXWUZCRWJWTRT-UHFFFAOYSA-N 0.000 description 4
- IINRZEIPFQHEAP-UHFFFAOYSA-N 1-aminocycloheptane-1-carboxylic acid Chemical compound OC(=O)C1(N)CCCCCC1 IINRZEIPFQHEAP-UHFFFAOYSA-N 0.000 description 4
- NILQLFBWTXNUOE-UHFFFAOYSA-N 1-aminocyclopentanecarboxylic acid Chemical compound OC(=O)C1(N)CCCC1 NILQLFBWTXNUOE-UHFFFAOYSA-N 0.000 description 4
- PAJPWUMXBYXFCZ-UHFFFAOYSA-N 1-aminocyclopropanecarboxylic acid Chemical compound OC(=O)C1(N)CC1 PAJPWUMXBYXFCZ-UHFFFAOYSA-N 0.000 description 4
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical class CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 4
- 102000003965 Endothelin-2 Human genes 0.000 description 4
- 108090000387 Endothelin-2 Proteins 0.000 description 4
- 102100029109 Endothelin-3 Human genes 0.000 description 4
- 108010072844 Endothelin-3 Proteins 0.000 description 4
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 150000008065 acid anhydrides Chemical class 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 229960003767 alanine Drugs 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 208000006673 asthma Diseases 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 4
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 4
- 230000002490 cerebral effect Effects 0.000 description 4
- 239000003610 charcoal Substances 0.000 description 4
- ZGOVYTPSWMLYOF-QEADGSHQSA-N chembl1790180 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CC=3C=CC=CC=3)C(=O)N[C@H](C(=O)N[C@H](CCC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)[C@H](C)O)=O)NC(=O)[C@@H]([C@@H](C)O)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZGOVYTPSWMLYOF-QEADGSHQSA-N 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- MLFJHYIHIKEBTQ-IYRKOGFYSA-N endothelin 2 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]2CSSC[C@@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=3C4=CC=CC=C4NC=3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CSSC1)C1=CNC=N1 MLFJHYIHIKEBTQ-IYRKOGFYSA-N 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 229960002885 histidine Drugs 0.000 description 4
- 125000001041 indolyl group Chemical group 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 4
- 208000017169 kidney disease Diseases 0.000 description 4
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 229960004452 methionine Drugs 0.000 description 4
- LIGACIXOYTUXAW-UHFFFAOYSA-N phenacyl bromide Chemical compound BrCC(=O)C1=CC=CC=C1 LIGACIXOYTUXAW-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 229960005190 phenylalanine Drugs 0.000 description 4
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- 229960004295 valine Drugs 0.000 description 4
- IYKLZBIWFXPUCS-VIFPVBQESA-N (2s)-2-(naphthalen-1-ylamino)propanoic acid Chemical group C1=CC=C2C(N[C@@H](C)C(O)=O)=CC=CC2=C1 IYKLZBIWFXPUCS-VIFPVBQESA-N 0.000 description 3
- RWLSBXBFZHDHHX-VIFPVBQESA-N (2s)-2-(naphthalen-2-ylamino)propanoic acid Chemical group C1=CC=CC2=CC(N[C@@H](C)C(O)=O)=CC=C21 RWLSBXBFZHDHHX-VIFPVBQESA-N 0.000 description 3
- XVOYSCVBGLVSOL-UWTATZPHSA-N (2s)-2-amino-3-sulfopropanoic acid Chemical compound OC(=O)[C@H](N)CS(O)(=O)=O XVOYSCVBGLVSOL-UWTATZPHSA-N 0.000 description 3
- LPBSHGLDBQBSPI-YFKPBYRVSA-N (2s)-2-amino-4,4-dimethylpentanoic acid Chemical group CC(C)(C)C[C@H](N)C(O)=O LPBSHGLDBQBSPI-YFKPBYRVSA-N 0.000 description 3
- ONOURAAVVKGJNM-SCZZXKLOSA-N (2s,3r)-2-azaniumyl-3-phenylmethoxybutanoate Chemical compound [O-]C(=O)[C@@H]([NH3+])[C@@H](C)OCC1=CC=CC=C1 ONOURAAVVKGJNM-SCZZXKLOSA-N 0.000 description 3
- OOFAEFCMEHZNGP-UHFFFAOYSA-N 1-n',1-n'-dimethylpropane-1,1-diamine Chemical compound CCC(N)N(C)C OOFAEFCMEHZNGP-UHFFFAOYSA-N 0.000 description 3
- UNQHGXLQKSZYQU-UHFFFAOYSA-N 2-(thiophen-2-ylamino)acetic acid Chemical group OC(=O)CNC1=CC=CS1 UNQHGXLQKSZYQU-UHFFFAOYSA-N 0.000 description 3
- VJQOUHZVZWHSNW-UHFFFAOYSA-N 2-(thiophen-3-ylamino)acetic acid Chemical group OC(=O)CNC=1C=CSC=1 VJQOUHZVZWHSNW-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- IADUEWIQBXOCDZ-VKHMYHEASA-N Azetidine-2-carboxylic acid Natural products OC(=O)[C@@H]1CCN1 IADUEWIQBXOCDZ-VKHMYHEASA-N 0.000 description 3
- WHUUTDBJXJRKMK-GSVOUGTGSA-N D-glutamic acid Chemical compound OC(=O)[C@H](N)CCC(O)=O WHUUTDBJXJRKMK-GSVOUGTGSA-N 0.000 description 3
- 229930182847 D-glutamic acid Natural products 0.000 description 3
- 229930182819 D-leucine Natural products 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- AGPKZVBTJJNPAG-UHNVWZDZSA-N L-allo-Isoleucine Chemical compound CC[C@@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-UHNVWZDZSA-N 0.000 description 3
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical group OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 3
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 3
- IDGQXGPQOGUGIX-VIFPVBQESA-N O-BENZYL-l-SERINE Chemical compound OC(=O)[C@@H](N)COCC1=CC=CC=C1 IDGQXGPQOGUGIX-VIFPVBQESA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 229940124599 anti-inflammatory drug Drugs 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000009697 arginine Nutrition 0.000 description 3
- 229960003121 arginine Drugs 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- SRCZQMGIVIYBBJ-UHFFFAOYSA-N ethoxyethane;ethyl acetate Chemical compound CCOCC.CCOC(C)=O SRCZQMGIVIYBBJ-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 235000004554 glutamine Nutrition 0.000 description 3
- 229960002591 hydroxyproline Drugs 0.000 description 3
- 125000002883 imidazolyl group Chemical group 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- HXEACLLIILLPRG-UHFFFAOYSA-N pipecolic acid Chemical compound OC(=O)C1CCCCN1 HXEACLLIILLPRG-UHFFFAOYSA-N 0.000 description 3
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 3
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 3
- 150000007970 thio esters Chemical class 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- 229960002898 threonine Drugs 0.000 description 3
- UHDMAEPGMOIEHH-UWTATZPHSA-N (2r)-2-amino-3-(2h-tetrazol-5-yl)propanoic acid Chemical compound OC(=O)[C@H](N)CC1=NN=NN1 UHDMAEPGMOIEHH-UWTATZPHSA-N 0.000 description 2
- XBPKRVHTESHFAA-ZCFIWIBFSA-N (2r)-2-azaniumyl-2-cyclopentylacetate Chemical compound OC(=O)[C@H](N)C1CCCC1 XBPKRVHTESHFAA-ZCFIWIBFSA-N 0.000 description 2
- OFYAYGJCPXRNBL-GFCCVEGCSA-N (2r)-2-azaniumyl-3-naphthalen-1-ylpropanoate Chemical compound C1=CC=C2C(C[C@@H]([NH3+])C([O-])=O)=CC=CC2=C1 OFYAYGJCPXRNBL-GFCCVEGCSA-N 0.000 description 2
- MDXGYYOJGPFFJL-MRVPVSSYSA-N (2r)-4-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanoic acid Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)OC(C)(C)C MDXGYYOJGPFFJL-MRVPVSSYSA-N 0.000 description 2
- AJDUMMXHVCMISJ-ZDUSSCGKSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-5-oxo-5-phenylmethoxypentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCC(=O)OCC1=CC=CC=C1 AJDUMMXHVCMISJ-ZDUSSCGKSA-N 0.000 description 2
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 description 2
- RJFJRYVMVNICCP-DTIOYNMSSA-N (2s)-4-phenylmethoxypyrrolidine-2-carboxylic acid Chemical compound C1N[C@H](C(=O)O)CC1OCC1=CC=CC=C1 RJFJRYVMVNICCP-DTIOYNMSSA-N 0.000 description 2
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 2
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 2
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 2
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 2
- WTOFYLAWDLQMBZ-UHFFFAOYSA-N 2-azaniumyl-3-thiophen-2-ylpropanoate Chemical group OC(=O)C(N)CC1=CC=CS1 WTOFYLAWDLQMBZ-UHFFFAOYSA-N 0.000 description 2
- JPZXHKDZASGCLU-GFCCVEGCSA-N 3-(2-Naphthyl)-D-Alanine Chemical compound C1=CC=CC2=CC(C[C@@H](N)C(O)=O)=CC=C21 JPZXHKDZASGCLU-GFCCVEGCSA-N 0.000 description 2
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical class OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 2
- HUNCSWANZMJLPM-SNVBAGLBSA-N 5-methyl-D-tryptophan Chemical compound CC1=CC=C2NC=C(C[C@@H](N)C(O)=O)C2=C1 HUNCSWANZMJLPM-SNVBAGLBSA-N 0.000 description 2
- HUNCSWANZMJLPM-UHFFFAOYSA-N 5-methyltryptophan Chemical compound CC1=CC=C2NC=C(CC(N)C(O)=O)C2=C1 HUNCSWANZMJLPM-UHFFFAOYSA-N 0.000 description 2
- 208000009304 Acute Kidney Injury Diseases 0.000 description 2
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 2
- AGPKZVBTJJNPAG-CRCLSJGQSA-N D-allo-isoleucine Chemical compound CC[C@H](C)[C@@H](N)C(O)=O AGPKZVBTJJNPAG-CRCLSJGQSA-N 0.000 description 2
- ZGUNAGUHMKGQNY-SSDOTTSWSA-N D-alpha-phenylglycine Chemical compound OC(=O)[C@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-SSDOTTSWSA-N 0.000 description 2
- ROHFNLRQFUQHCH-RXMQYKEDSA-N D-leucine Chemical compound CC(C)C[C@@H](N)C(O)=O ROHFNLRQFUQHCH-RXMQYKEDSA-N 0.000 description 2
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 description 2
- 229930182832 D-phenylalanine Natural products 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910003556 H2 SO4 Inorganic materials 0.000 description 2
- 206010061216 Infarction Diseases 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 229930182844 L-isoleucine Natural products 0.000 description 2
- 125000003440 L-leucyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 2
- DZLNHFMRPBPULJ-VKHMYHEASA-N L-thioproline Chemical compound OC(=O)[C@@H]1CSCN1 DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 2
- SCIFESDRCALIIM-UHFFFAOYSA-N N-Me-Phenylalanine Natural products CNC(C(O)=O)CC1=CC=CC=C1 SCIFESDRCALIIM-UHFFFAOYSA-N 0.000 description 2
- NFVNYBJCJGKVQK-ZDUSSCGKSA-N N-[(Tert-butoxy)carbonyl]-L-tryptophan Chemical compound C1=CC=C2C(C[C@H](NC(=O)OC(C)(C)C)C(O)=O)=CNC2=C1 NFVNYBJCJGKVQK-ZDUSSCGKSA-N 0.000 description 2
- SCIFESDRCALIIM-VIFPVBQESA-N N-methyl-L-phenylalanine Chemical compound C[NH2+][C@H](C([O-])=O)CC1=CC=CC=C1 SCIFESDRCALIIM-VIFPVBQESA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 208000033626 Renal failure acute Diseases 0.000 description 2
- 108010077895 Sarcosine Proteins 0.000 description 2
- XQJCEKXQUJQNNK-ZLUOBGJFSA-N Ser-Ser-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O XQJCEKXQUJQNNK-ZLUOBGJFSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 102000003141 Tachykinin Human genes 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 101100020289 Xenopus laevis koza gene Proteins 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 2
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical group CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229940124572 antihypotensive agent Drugs 0.000 description 2
- 125000005251 aryl acyl group Chemical group 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 150000007514 bases Chemical class 0.000 description 2
- MBRRYUQWSOODEO-LBPRGKRZSA-N benzyl (2s)-2-amino-4-methylpentanoate Chemical compound CC(C)C[C@H](N)C(=O)OCC1=CC=CC=C1 MBRRYUQWSOODEO-LBPRGKRZSA-N 0.000 description 2
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 2
- WTOFYLAWDLQMBZ-ZCFIWIBFSA-N beta-(2-thienyl)-D-alanine Chemical compound [O-]C(=O)[C@H]([NH3+])CC1=CC=CS1 WTOFYLAWDLQMBZ-ZCFIWIBFSA-N 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- SMTOKHQOVJRXLK-UHFFFAOYSA-N butane-1,4-dithiol Chemical compound SCCCCS SMTOKHQOVJRXLK-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical class OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- JBDSSBMEKXHSJF-UHFFFAOYSA-N cyclopentanecarboxylic acid Chemical class OC(=O)C1CCCC1 JBDSSBMEKXHSJF-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- PYHXGXCGESYPCW-UHFFFAOYSA-N diphenylacetic acid Chemical class C=1C=CC=CC=1C(C(=O)O)C1=CC=CC=C1 PYHXGXCGESYPCW-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000006266 etherification reaction Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229960002743 glutamine Drugs 0.000 description 2
- 229960002449 glycine Drugs 0.000 description 2
- KDFBGNBTTMPNIG-UHFFFAOYSA-N hydron;2-(1h-indol-3-yl)ethanamine;chloride Chemical compound Cl.C1=CC=C2C(CCN)=CNC2=C1 KDFBGNBTTMPNIG-UHFFFAOYSA-N 0.000 description 2
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 2
- 125000000814 indol-3-yl group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C([*])C2=C1[H] 0.000 description 2
- 230000007574 infarction Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical class CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachlorophenol Chemical compound OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical class OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 108060008037 tachykinin Proteins 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 239000005526 vasoconstrictor agent Substances 0.000 description 2
- KSPIYJQBLVDRRI-RITPCOANSA-N (2S,3R)-3-methyl-2-(methylamino)pentanoic acid Chemical compound CC[C@@H](C)[C@H]([NH2+]C)C([O-])=O KSPIYJQBLVDRRI-RITPCOANSA-N 0.000 description 1
- SCIFESDRCALIIM-SECBINFHSA-N (2r)-2-(methylazaniumyl)-3-phenylpropanoate Chemical compound CN[C@@H](C(O)=O)CC1=CC=CC=C1 SCIFESDRCALIIM-SECBINFHSA-N 0.000 description 1
- AJDUMMXHVCMISJ-CYBMUJFWSA-N (2r)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-5-oxo-5-phenylmethoxypentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](C(O)=O)CCC(=O)OCC1=CC=CC=C1 AJDUMMXHVCMISJ-CYBMUJFWSA-N 0.000 description 1
- OSNLXNFVQXESML-VIFPVBQESA-N (2r)-2-amino-3-(2-phenylacetyl)sulfanylpropanoic acid Chemical compound OC(=O)[C@@H](N)CSC(=O)CC1=CC=CC=C1 OSNLXNFVQXESML-VIFPVBQESA-N 0.000 description 1
- DXFDIQNGJWQJGA-GSVOUGTGSA-N (2r)-2-amino-4-(2h-tetrazol-5-yl)butanoic acid Chemical compound OC(=O)[C@H](N)CCC1=NN=NN1 DXFDIQNGJWQJGA-GSVOUGTGSA-N 0.000 description 1
- NPDBDJFLKKQMCM-BYPYZUCNSA-N (2r)-2-azaniumyl-3,3-dimethylbutanoate Chemical compound CC(C)(C)[C@@H]([NH3+])C([O-])=O NPDBDJFLKKQMCM-BYPYZUCNSA-N 0.000 description 1
- HZRJJYWSHBGPDW-QMMMGPOBSA-N (2r)-2-azaniumyl-3-cyclohexylsulfanylpropanoate Chemical compound OC(=O)[C@@H](N)CSC1CCCCC1 HZRJJYWSHBGPDW-QMMMGPOBSA-N 0.000 description 1
- CZCIKBSVHDNIDH-LLVKDONJSA-N (2r)-3-(1h-indol-3-yl)-2-(methylamino)propanoic acid Chemical compound C1=CC=C2C(C[C@@H](NC)C(O)=O)=CNC2=C1 CZCIKBSVHDNIDH-LLVKDONJSA-N 0.000 description 1
- XCIRMLHOFVDUDP-BYPYZUCNSA-N (2r)-3-acetylsulfanyl-2-aminopropanoic acid Chemical compound CC(=O)SC[C@H](N)C(O)=O XCIRMLHOFVDUDP-BYPYZUCNSA-N 0.000 description 1
- ZQEBQGAAWMOMAI-ZETCQYMHSA-N (2s)-1-[(2-methylpropan-2-yl)oxycarbonyl]pyrrolidine-2-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCC[C@H]1C(O)=O ZQEBQGAAWMOMAI-ZETCQYMHSA-N 0.000 description 1
- LQDKTURLCNSVQB-CQSZACIVSA-N (2s)-2,3,3-trimethyl-2-(n-methylanilino)butanoic acid Chemical compound OC(=O)[C@](C)(C(C)(C)C)N(C)C1=CC=CC=C1 LQDKTURLCNSVQB-CQSZACIVSA-N 0.000 description 1
- YPJJGMCMOHDOFZ-ZETCQYMHSA-N (2s)-2-(1-benzothiophen-3-ylamino)propanoic acid Chemical group C1=CC=C2C(N[C@@H](C)C(O)=O)=CSC2=C1 YPJJGMCMOHDOFZ-ZETCQYMHSA-N 0.000 description 1
- ZHLKFJCNKZEBNG-JTQLQIEISA-N (2s)-2-(ethylamino)-3-phenylpropanoic acid Chemical compound CCN[C@H](C(O)=O)CC1=CC=CC=C1 ZHLKFJCNKZEBNG-JTQLQIEISA-N 0.000 description 1
- OLTRFLJKPXPCCI-ZETCQYMHSA-N (2s)-2-(ethylamino)-4-methylpentanoic acid Chemical compound CCN[C@H](C(O)=O)CC(C)C OLTRFLJKPXPCCI-ZETCQYMHSA-N 0.000 description 1
- FPDYKABXINADKS-LURJTMIESA-N (2s)-2-(methylazaniumyl)hexanoate Chemical compound CCCC[C@H](NC)C(O)=O FPDYKABXINADKS-LURJTMIESA-N 0.000 description 1
- QYYCZJUFHDLLOJ-AWEZNQCLSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-5-(phenylmethoxycarbonylamino)pentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCCNC(=O)OCC1=CC=CC=C1 QYYCZJUFHDLLOJ-AWEZNQCLSA-N 0.000 description 1
- GAUUPDQWKHTCAX-VIFPVBQESA-N (2s)-2-amino-3-(1-benzothiophen-3-yl)propanoic acid Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CSC2=C1 GAUUPDQWKHTCAX-VIFPVBQESA-N 0.000 description 1
- GJLLIMNDNGODLZ-VIFPVBQESA-N (2s)-2-amino-3-(2-phenylacetyl)oxypropanoic acid Chemical compound OC(=O)[C@@H](N)COC(=O)CC1=CC=CC=C1 GJLLIMNDNGODLZ-VIFPVBQESA-N 0.000 description 1
- JHXUJHXPJSUZEF-AWEZNQCLSA-N (2s)-2-amino-3-benzhydryloxypropanoic acid Chemical compound C=1C=CC=CC=1C(OC[C@H](N)C(O)=O)C1=CC=CC=C1 JHXUJHXPJSUZEF-AWEZNQCLSA-N 0.000 description 1
- VCCHBJSBZQMJEF-QMMMGPOBSA-N (2s)-2-amino-3-cyclohexyloxypropanoic acid Chemical compound OC(=O)[C@@H](N)COC1CCCCC1 VCCHBJSBZQMJEF-QMMMGPOBSA-N 0.000 description 1
- JQBDLDSXPJLCFK-QMMMGPOBSA-N (2s)-2-amino-3-phenoxypropanoic acid Chemical compound OC(=O)[C@@H](N)COC1=CC=CC=C1 JQBDLDSXPJLCFK-QMMMGPOBSA-N 0.000 description 1
- HVGCTVSSWYTXLT-VIFPVBQESA-N (2s)-2-amino-4-(benzylamino)-4-oxobutanoic acid Chemical compound OC(=O)[C@@H](N)CC(=O)NCC1=CC=CC=C1 HVGCTVSSWYTXLT-VIFPVBQESA-N 0.000 description 1
- ATZJWRIQNGUXSC-NSHDSACASA-N (2s)-2-amino-4-[2-(1h-indol-3-yl)ethylamino]-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)C[C@H](N)C(O)=O)=CNC2=C1 ATZJWRIQNGUXSC-NSHDSACASA-N 0.000 description 1
- SBRYFUVVWOMLLP-VKHMYHEASA-N (2s)-2-amino-4-methoxy-4-oxobutanoic acid Chemical compound COC(=O)C[C@H](N)C(O)=O SBRYFUVVWOMLLP-VKHMYHEASA-N 0.000 description 1
- DKXPRFBOXWZGHD-JTQLQIEISA-N (2s)-2-amino-4-oxo-4-(2-phenylethylamino)butanoic acid Chemical compound OC(=O)[C@@H](N)CC(=O)NCCC1=CC=CC=C1 DKXPRFBOXWZGHD-JTQLQIEISA-N 0.000 description 1
- SCUJQBGQMWBTIG-JTQLQIEISA-N (2s)-2-amino-5-(benzylamino)-5-oxopentanoic acid Chemical compound OC(=O)[C@@H](N)CCC(=O)NCC1=CC=CC=C1 SCUJQBGQMWBTIG-JTQLQIEISA-N 0.000 description 1
- RZCNVARPCWHVMS-LBPRGKRZSA-N (2s)-2-amino-5-[2-(1h-indol-3-yl)ethylamino]-5-oxopentanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CC[C@H](N)C(O)=O)=CNC2=C1 RZCNVARPCWHVMS-LBPRGKRZSA-N 0.000 description 1
- MWUNDCCUMICSNT-NSHDSACASA-N (2s)-2-amino-5-oxo-5-(2-phenylethylamino)pentanoic acid Chemical compound OC(=O)[C@@H](N)CCC(=O)NCCC1=CC=CC=C1 MWUNDCCUMICSNT-NSHDSACASA-N 0.000 description 1
- AFGCRUGTZPDWSF-BYPYZUCNSA-N (2s)-2-azaniumyl-3-ethoxypropanoate Chemical compound CCOC[C@H](N)C(O)=O AFGCRUGTZPDWSF-BYPYZUCNSA-N 0.000 description 1
- OIXLLKLZKCBCPS-RZVRUWJTSA-N (2s)-2-azanyl-5-[bis(azanyl)methylideneamino]pentanoic acid Chemical compound OC(=O)[C@@H](N)CCCNC(N)=N.OC(=O)[C@@H](N)CCCNC(N)=N OIXLLKLZKCBCPS-RZVRUWJTSA-N 0.000 description 1
- AXDLCFOOGCNDST-VIFPVBQESA-N (2s)-3-(4-hydroxyphenyl)-2-(methylamino)propanoic acid Chemical compound CN[C@H](C(O)=O)CC1=CC=C(O)C=C1 AXDLCFOOGCNDST-VIFPVBQESA-N 0.000 description 1
- CLMPSKMNJGTRNC-DTIOYNMSSA-N (2s)-4-(2-phenylacetyl)oxypyrrolidine-2-carboxylic acid Chemical compound C1N[C@H](C(=O)O)CC1OC(=O)CC1=CC=CC=C1 CLMPSKMNJGTRNC-DTIOYNMSSA-N 0.000 description 1
- OQWHXHYZFMIILA-GDVGLLTNSA-N (2s)-4-acetyloxypyrrolidine-2-carboxylic acid Chemical compound CC(=O)OC1CN[C@H](C(O)=O)C1 OQWHXHYZFMIILA-GDVGLLTNSA-N 0.000 description 1
- YMKBNZTXMTYTLN-LYKKTTPLSA-N (2s)-4-benzhydryloxypyrrolidine-2-carboxylic acid Chemical compound C1N[C@H](C(=O)O)CC1OC(C=1C=CC=CC=1)C1=CC=CC=C1 YMKBNZTXMTYTLN-LYKKTTPLSA-N 0.000 description 1
- SNGFONXAAYKVPO-AXDSSHIGSA-N (2s)-4-benzoyloxypyrrolidine-2-carboxylic acid Chemical compound C1N[C@H](C(=O)O)CC1OC(=O)C1=CC=CC=C1 SNGFONXAAYKVPO-AXDSSHIGSA-N 0.000 description 1
- ABHXQYBHDDVLPC-AXDSSHIGSA-N (2s)-4-cyclohexyloxypyrrolidine-2-carboxylic acid Chemical compound C1N[C@H](C(=O)O)CC1OC1CCCCC1 ABHXQYBHDDVLPC-AXDSSHIGSA-N 0.000 description 1
- UGNGLHKEESUVLW-GDVGLLTNSA-N (2s)-4-ethoxypyrrolidine-2-carboxylic acid Chemical compound CCOC1CN[C@H](C(O)=O)C1 UGNGLHKEESUVLW-GDVGLLTNSA-N 0.000 description 1
- RWSHAZYNUOFZMI-AXDSSHIGSA-N (2s)-4-phenoxypyrrolidine-2-carboxylic acid Chemical compound C1N[C@H](C(=O)O)CC1OC1=CC=CC=C1 RWSHAZYNUOFZMI-AXDSSHIGSA-N 0.000 description 1
- OAAOHMOCXBESTJ-KCJUWKMLSA-N (2s,3r)-2-amino-3-(2-phenylacetyl)oxybutanoic acid Chemical compound OC(=O)[C@@H](N)[C@@H](C)OC(=O)CC1=CC=CC=C1 OAAOHMOCXBESTJ-KCJUWKMLSA-N 0.000 description 1
- FVJZUZYOCREALP-DOMZBBRYSA-N (2s,3r)-2-amino-3-benzhydryloxybutanoic acid Chemical compound C=1C=CC=CC=1C(O[C@H](C)[C@H](N)C(O)=O)C1=CC=CC=C1 FVJZUZYOCREALP-DOMZBBRYSA-N 0.000 description 1
- OJQZDRKCYXUPDH-APPZFPTMSA-N (2s,3r)-2-amino-3-benzoyloxybutanoic acid Chemical compound OC(=O)[C@@H](N)[C@@H](C)OC(=O)C1=CC=CC=C1 OJQZDRKCYXUPDH-APPZFPTMSA-N 0.000 description 1
- DJMZQIXIKLNUEY-APPZFPTMSA-N (2s,3r)-2-amino-3-cyclohexyloxybutanoic acid Chemical compound OC(=O)[C@@H](N)[C@@H](C)OC1CCCCC1 DJMZQIXIKLNUEY-APPZFPTMSA-N 0.000 description 1
- LULHTUNPBBMNSJ-UHNVWZDZSA-N (2s,3r)-2-amino-3-ethoxybutanoic acid Chemical compound CCO[C@H](C)[C@H](N)C(O)=O LULHTUNPBBMNSJ-UHNVWZDZSA-N 0.000 description 1
- UYJIDGCMMLRNQL-APPZFPTMSA-N (2s,3r)-2-amino-3-phenoxybutanoic acid Chemical compound OC(=O)[C@@H](N)[C@@H](C)OC1=CC=CC=C1 UYJIDGCMMLRNQL-APPZFPTMSA-N 0.000 description 1
- GOVSRIMJZNIFHS-WUJLRWPWSA-N (2s,3r)-3-acetyloxy-2-aminobutanoic acid Chemical compound CC(=O)O[C@H](C)[C@H](N)C(O)=O GOVSRIMJZNIFHS-WUJLRWPWSA-N 0.000 description 1
- DGIGGVANZFKXLS-KGLIPLIRSA-N (2s,4r)-1-[(2-methylpropan-2-yl)oxycarbonyl]-4-phenylmethoxypyrrolidine-2-carboxylic acid Chemical compound C1[C@@H](C(O)=O)N(C(=O)OC(C)(C)C)C[C@@H]1OCC1=CC=CC=C1 DGIGGVANZFKXLS-KGLIPLIRSA-N 0.000 description 1
- CVZUKWBYQQYBTF-ZDUSSCGKSA-N (4s)-4-[(2-methylpropan-2-yl)oxycarbonylamino]-5-oxo-5-phenylmethoxypentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](CCC(O)=O)C(=O)OCC1=CC=CC=C1 CVZUKWBYQQYBTF-ZDUSSCGKSA-N 0.000 description 1
- 125000004454 (C1-C6) alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- BWKMGYQJPOAASG-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Chemical compound C1=CC=C2CNC(C(=O)O)CC2=C1 BWKMGYQJPOAASG-UHFFFAOYSA-N 0.000 description 1
- ADFXKUOMJKEIND-UHFFFAOYSA-N 1,3-dicyclohexylurea Chemical compound C1CCCCC1NC(=O)NC1CCCCC1 ADFXKUOMJKEIND-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- DFPYXQYWILNVAU-UHFFFAOYSA-N 1-hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1.C1=CC=C2N(O)N=NC2=C1 DFPYXQYWILNVAU-UHFFFAOYSA-N 0.000 description 1
- YWYHGNUFMPSTTR-UHFFFAOYSA-N 1-methyl-4-(4-methylphenoxy)benzene Chemical class C1=CC(C)=CC=C1OC1=CC=C(C)C=C1 YWYHGNUFMPSTTR-UHFFFAOYSA-N 0.000 description 1
- NRXWFTYEJYEOGW-UHFFFAOYSA-N 1-methyl-4-(4-methylphenyl)sulfanylbenzene Chemical class C1=CC(C)=CC=C1SC1=CC=C(C)C=C1 NRXWFTYEJYEOGW-UHFFFAOYSA-N 0.000 description 1
- 125000004343 1-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C([H])([H])[H] 0.000 description 1
- LHJGJYXLEPZJPM-UHFFFAOYSA-N 2,4,5-trichlorophenol Chemical compound OC1=CC(Cl)=C(Cl)C=C1Cl LHJGJYXLEPZJPM-UHFFFAOYSA-N 0.000 description 1
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical compound NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- QOPBEBWGSGFROG-UHFFFAOYSA-N 2-(1h-indol-2-yl)acetic acid Chemical class C1=CC=C2NC(CC(=O)O)=CC2=C1 QOPBEBWGSGFROG-UHFFFAOYSA-N 0.000 description 1
- KGSVNOLLROCJQM-UHFFFAOYSA-N 2-(benzylamino)acetic acid Chemical compound OC(=O)CNCC1=CC=CC=C1 KGSVNOLLROCJQM-UHFFFAOYSA-N 0.000 description 1
- ZJOWTIPPMQBTTA-UHFFFAOYSA-N 2-(benzylazaniumyl)-4-methylpentanoate Chemical compound CC(C)CC(C(O)=O)NCC1=CC=CC=C1 ZJOWTIPPMQBTTA-UHFFFAOYSA-N 0.000 description 1
- OQMYZVWIXPPDDE-UHFFFAOYSA-N 2-(cyclohexylazaniumyl)acetate Chemical compound OC(=O)CNC1CCCCC1 OQMYZVWIXPPDDE-UHFFFAOYSA-N 0.000 description 1
- LRHRHAWNXCGABU-UHFFFAOYSA-N 2-(cyclopentylazaniumyl)acetate Chemical compound OC(=O)CNC1CCCC1 LRHRHAWNXCGABU-UHFFFAOYSA-N 0.000 description 1
- FRYOUKNFWFXASU-UHFFFAOYSA-N 2-(methylamino)acetic acid Chemical compound CNCC(O)=O.CNCC(O)=O FRYOUKNFWFXASU-UHFFFAOYSA-N 0.000 description 1
- HGIPIEYZJPULIQ-UHFFFAOYSA-N 2-(methylazaniumyl)-2-phenylacetate Chemical compound CNC(C(O)=O)C1=CC=CC=C1 HGIPIEYZJPULIQ-UHFFFAOYSA-N 0.000 description 1
- VRPJIFMKZZEXLR-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxycarbonylamino]acetic acid Chemical compound CC(C)(C)OC(=O)NCC(O)=O VRPJIFMKZZEXLR-UHFFFAOYSA-N 0.000 description 1
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 1
- ZQXBXSLGROYFDW-UHFFFAOYSA-N 2-amino-3-benzoyloxypropanoic acid Chemical compound OC(=O)C(N)COC(=O)C1=CC=CC=C1 ZQXBXSLGROYFDW-UHFFFAOYSA-N 0.000 description 1
- CFRMVEKWKKDNAH-UHFFFAOYSA-N 2-amino-4-(methylamino)-4-oxobutanoic acid Chemical compound CNC(=O)CC(N)C(O)=O CFRMVEKWKKDNAH-UHFFFAOYSA-N 0.000 description 1
- WAMWSIDTKSNDCU-UHFFFAOYSA-N 2-azaniumyl-2-cyclohexylacetate Chemical group OC(=O)C(N)C1CCCCC1 WAMWSIDTKSNDCU-UHFFFAOYSA-N 0.000 description 1
- XBPKRVHTESHFAA-UHFFFAOYSA-N 2-azaniumyl-2-cyclopentylacetate Chemical group OC(=O)C(N)C1CCCC1 XBPKRVHTESHFAA-UHFFFAOYSA-N 0.000 description 1
- OWZIPHGMKGSDNS-UHFFFAOYSA-N 2-azaniumyl-3-benzoylsulfanylpropanoate Chemical compound OC(=O)C(N)CSC(=O)C1=CC=CC=C1 OWZIPHGMKGSDNS-UHFFFAOYSA-N 0.000 description 1
- XYUBQWNJDIAEES-UHFFFAOYSA-N 2-azaniumyl-3-phenylsulfanylpropanoate Chemical compound OC(=O)C(N)CSC1=CC=CC=C1 XYUBQWNJDIAEES-UHFFFAOYSA-N 0.000 description 1
- YVOOPGWEIRIUOX-UHFFFAOYSA-N 2-azanyl-3-sulfanyl-propanoic acid Chemical compound SCC(N)C(O)=O.SCC(N)C(O)=O YVOOPGWEIRIUOX-UHFFFAOYSA-N 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- CFMZSMGAMPBRBE-UHFFFAOYSA-N 2-hydroxyisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(O)C(=O)C2=C1 CFMZSMGAMPBRBE-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- LNMBCRKRCIMQLW-UHFFFAOYSA-N 2-tert-butylsulfanyl-2-methylpropane Chemical class CC(C)(C)SC(C)(C)C LNMBCRKRCIMQLW-UHFFFAOYSA-N 0.000 description 1
- CQASWQMEHDUZSJ-UHFFFAOYSA-N 3,4,4a,5-tetrahydro-1h-isoquinoline-2-carboxylic acid Chemical compound C1C=CC=C2CN(C(=O)O)CCC21 CQASWQMEHDUZSJ-UHFFFAOYSA-N 0.000 description 1
- QYLAPMVLKPZVMS-UHFFFAOYSA-N 4-(2,3-dimethylphenyl)piperazine-1-carboxamide Chemical compound CC1=CC=CC(N2CCN(CC2)C(N)=O)=C1C QYLAPMVLKPZVMS-UHFFFAOYSA-N 0.000 description 1
- RUALGAYGCNCJRR-UHFFFAOYSA-N 4-(2-chlorophenyl)piperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=CC=C1Cl RUALGAYGCNCJRR-UHFFFAOYSA-N 0.000 description 1
- HJCNPNMQIIZEHD-UHFFFAOYSA-N 4-(2-methoxyphenyl)piperazine-1-carboxamide Chemical compound COC1=CC=CC=C1N1CCN(C(N)=O)CC1 HJCNPNMQIIZEHD-UHFFFAOYSA-N 0.000 description 1
- BVJZTWCARSUEKU-UHFFFAOYSA-N 4-(2-methylphenyl)piperazine-1-carboxamide Chemical compound CC1=CC=CC=C1N1CCN(C(N)=O)CC1 BVJZTWCARSUEKU-UHFFFAOYSA-N 0.000 description 1
- DDHRRRBBKQJRMS-UHFFFAOYSA-N 4-(3-chlorophenyl)piperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=CC(Cl)=C1 DDHRRRBBKQJRMS-UHFFFAOYSA-N 0.000 description 1
- QBEAXMVRUUJBFD-UHFFFAOYSA-N 4-(3-methoxyphenyl)piperazine-1-carboxamide Chemical compound COC1=CC=CC(N2CCN(CC2)C(N)=O)=C1 QBEAXMVRUUJBFD-UHFFFAOYSA-N 0.000 description 1
- FNHQGHHQQAKSQM-UHFFFAOYSA-N 4-(3-methylphenyl)piperazine-1-carboxamide Chemical compound CC1=CC=CC(N2CCN(CC2)C(N)=O)=C1 FNHQGHHQQAKSQM-UHFFFAOYSA-N 0.000 description 1
- APBDKYHKEZOVSE-UHFFFAOYSA-N 4-(4-chlorophenyl)piperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=C(Cl)C=C1 APBDKYHKEZOVSE-UHFFFAOYSA-N 0.000 description 1
- XARVCWHXIZRCGB-UHFFFAOYSA-N 4-(4-fluorophenyl)piperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=C(F)C=C1 XARVCWHXIZRCGB-UHFFFAOYSA-N 0.000 description 1
- LPCCVVIZOOFKJX-UHFFFAOYSA-N 4-(4-methoxyphenyl)piperazine-1-carboxamide Chemical compound C1=CC(OC)=CC=C1N1CCN(C(N)=O)CC1 LPCCVVIZOOFKJX-UHFFFAOYSA-N 0.000 description 1
- RPGNTUSRXJXNEC-UHFFFAOYSA-N 4-(4-methylphenyl)piperazine-1-carboxamide Chemical compound C1=CC(C)=CC=C1N1CCN(C(N)=O)CC1 RPGNTUSRXJXNEC-UHFFFAOYSA-N 0.000 description 1
- QTYRAOOHLZVFGP-UHFFFAOYSA-N 4-(4-nitrophenyl)piperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=C([N+]([O-])=O)C=C1 QTYRAOOHLZVFGP-UHFFFAOYSA-N 0.000 description 1
- SJDOZAUNXKSBKA-UHFFFAOYSA-N 4-[3-(trifluoromethyl)phenyl]piperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=CC(C(F)(F)F)=C1 SJDOZAUNXKSBKA-UHFFFAOYSA-N 0.000 description 1
- MPAUCEQZKGWZGT-UHFFFAOYSA-N 4-anilino-2-azaniumyl-4-oxobutanoate Chemical compound OC(=O)C(N)CC(=O)NC1=CC=CC=C1 MPAUCEQZKGWZGT-UHFFFAOYSA-N 0.000 description 1
- 125000006283 4-chlorobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1Cl)C([H])([H])* 0.000 description 1
- 125000004217 4-methoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1OC([H])([H])[H])C([H])([H])* 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- YIXRJXPKZRHXKM-UHFFFAOYSA-N 4-phenylpiperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=CC=C1 YIXRJXPKZRHXKM-UHFFFAOYSA-N 0.000 description 1
- XYIDWLYTWKIZQC-UHFFFAOYSA-N 4-pyridin-2-ylpiperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=CC=CC=N1 XYIDWLYTWKIZQC-UHFFFAOYSA-N 0.000 description 1
- OXGVBTTYVGLVAQ-UHFFFAOYSA-N 4-pyrimidin-2-ylpiperazine-1-carboxamide Chemical compound C1CN(C(=O)N)CCN1C1=NC=CC=N1 OXGVBTTYVGLVAQ-UHFFFAOYSA-N 0.000 description 1
- 244000186140 Asperula odorata Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 125000002237 D-aspartyl group Chemical group [H]OC(=O)[C@]([H])(N([H])[H])C([H])([H])C(*)=O 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- VBOQYPQEPHKASR-GSVOUGTGSA-N D-homocysteic acid Chemical compound OC(=O)[C@H](N)CCS(O)(=O)=O VBOQYPQEPHKASR-GSVOUGTGSA-N 0.000 description 1
- 125000003301 D-leucyl group Chemical group N[C@@H](C(=O)*)CC(C)C 0.000 description 1
- 125000003941 D-tryptophan group Chemical group [H]C1=C([H])C([H])=C2C(C([C@@](N([H])[H])(C(=O)[*])[H])([H])[H])=C([H])N([H])C2=C1[H] 0.000 description 1
- OUYCCCASQSFEME-MRVPVSSYSA-N D-tyrosine Chemical compound OC(=O)[C@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-MRVPVSSYSA-N 0.000 description 1
- 229930195709 D-tyrosine Natural products 0.000 description 1
- KZSNJWFQEVHDMF-SCSAIBSYSA-N D-valine Chemical compound CC(C)[C@@H](N)C(O)=O KZSNJWFQEVHDMF-SCSAIBSYSA-N 0.000 description 1
- 229930182831 D-valine Natural products 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- ZERULLAPCVRMCO-UHFFFAOYSA-N Dipropyl sulfide Chemical class CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 1
- 102000030168 Endothelin A Receptor Human genes 0.000 description 1
- 229940118365 Endothelin receptor antagonist Drugs 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 235000008526 Galium odoratum Nutrition 0.000 description 1
- 101000946053 Homo sapiens Lysosomal-associated transmembrane protein 4A Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-VKHMYHEASA-N L-alpha-aminobutyric acid Chemical compound CC[C@H](N)C(O)=O QWCKQJZIFLGMSD-VKHMYHEASA-N 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- ZGEYCCHDTIDZAE-BYPYZUCNSA-N L-glutamic acid 5-methyl ester Chemical compound COC(=O)CC[C@H](N)C(O)=O ZGEYCCHDTIDZAE-BYPYZUCNSA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- VBOQYPQEPHKASR-VKHMYHEASA-N L-homocysteic acid Chemical group OC(=O)[C@@H](N)CCS(O)(=O)=O VBOQYPQEPHKASR-VKHMYHEASA-N 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- MJTOYIHCKVQICL-ULQDDVLXSA-N Leu-Met-Phe Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N MJTOYIHCKVQICL-ULQDDVLXSA-N 0.000 description 1
- 102100034728 Lysosomal-associated transmembrane protein 4A Human genes 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- ONXPDKGXOOORHB-BYPYZUCNSA-N N(5)-methyl-L-glutamine Chemical compound CNC(=O)CC[C@H](N)C(O)=O ONXPDKGXOOORHB-BYPYZUCNSA-N 0.000 description 1
- VMNRUJGOLBSEPK-VIFPVBQESA-N N(5)-phenyl-L-glutamine zwitterion Chemical compound OC(=O)[C@@H](N)CCC(=O)NC1=CC=CC=C1 VMNRUJGOLBSEPK-VIFPVBQESA-N 0.000 description 1
- CZCIKBSVHDNIDH-NSHDSACASA-N N(alpha)-methyl-L-tryptophan Chemical compound C1=CC=C2C(C[C@H]([NH2+]C)C([O-])=O)=CNC2=C1 CZCIKBSVHDNIDH-NSHDSACASA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- YPIGGYHFMKJNKV-UHFFFAOYSA-N N-ethylglycine Chemical compound CC[NH2+]CC([O-])=O YPIGGYHFMKJNKV-UHFFFAOYSA-N 0.000 description 1
- 108010065338 N-ethylglycine Proteins 0.000 description 1
- NPKSPKHJBVJUKB-UHFFFAOYSA-N N-phenylglycine Chemical compound OC(=O)CNC1=CC=CC=C1 NPKSPKHJBVJUKB-UHFFFAOYSA-N 0.000 description 1
- 101800000399 Neurokinin A Proteins 0.000 description 1
- HEAUFJZALFKPBA-YRVBCFNBSA-N Neurokinin A Chemical compound C([C@@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)C(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)O)C1=CC=CC=C1 HEAUFJZALFKPBA-YRVBCFNBSA-N 0.000 description 1
- 102400000097 Neurokinin A Human genes 0.000 description 1
- 102000046798 Neurokinin B Human genes 0.000 description 1
- NHXYSAFTNPANFK-HDMCBQFHSA-N Neurokinin B Chemical compound C([C@@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCSC)NC(=O)[C@@H](N)CC(O)=O)C1=CC=CC=C1 NHXYSAFTNPANFK-HDMCBQFHSA-N 0.000 description 1
- 101800002813 Neurokinin-B Proteins 0.000 description 1
- VZXPDPZARILFQX-BYPYZUCNSA-N O-acetyl-L-serine Chemical compound CC(=O)OC[C@H]([NH3+])C([O-])=O VZXPDPZARILFQX-BYPYZUCNSA-N 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 1
- GUKOKXKMWGOHJJ-NSHDSACASA-N Phenyl-Leucine Chemical compound CC(C)C[C@@H](C(O)=O)NC1=CC=CC=C1 GUKOKXKMWGOHJJ-NSHDSACASA-N 0.000 description 1
- GHBAYRBVXCRIHT-VIFPVBQESA-N S-benzyl-L-cysteine zwitterion Chemical compound OC(=O)[C@@H](N)CSCC1=CC=CC=C1 GHBAYRBVXCRIHT-VIFPVBQESA-N 0.000 description 1
- ULXKXLZEOGLCRJ-BYPYZUCNSA-N S-ethyl-L-cysteine zwitterion Chemical compound CCSC[C@H](N)C(O)=O ULXKXLZEOGLCRJ-BYPYZUCNSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- MXNAOGFNFNKUPD-JHYOHUSXSA-N Thr-Phe-Thr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MXNAOGFNFNKUPD-JHYOHUSXSA-N 0.000 description 1
- WLQRIHCMPFHGKP-PMVMPFDFSA-N Trp-Leu-Phe Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)CC(C)C)C(O)=O)C1=CC=CC=C1 WLQRIHCMPFHGKP-PMVMPFDFSA-N 0.000 description 1
- CNNVVEPJTFOGHI-ACRUOGEOSA-N Tyr-Lys-Tyr Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CNNVVEPJTFOGHI-ACRUOGEOSA-N 0.000 description 1
- PVQATPQSBYNMGE-UHFFFAOYSA-N [benzhydryloxy(phenyl)methyl]benzene Chemical class C=1C=CC=CC=1C(C=1C=CC=CC=1)OC(C=1C=CC=CC=1)C1=CC=CC=C1 PVQATPQSBYNMGE-UHFFFAOYSA-N 0.000 description 1
- QQNGNUIKCJKKLB-UHFFFAOYSA-N [benzhydrylsulfanyl(phenyl)methyl]benzene Chemical class C=1C=CC=CC=1C(C=1C=CC=CC=1)SC(C=1C=CC=CC=1)C1=CC=CC=C1 QQNGNUIKCJKKLB-UHFFFAOYSA-N 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- VXDSLUMUNWTSDB-UHFFFAOYSA-N acetic acid;chloroform;methanol Chemical compound OC.CC(O)=O.ClC(Cl)Cl VXDSLUMUNWTSDB-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000003670 adamantan-2-yl group Chemical group [H]C1([H])C(C2([H])[H])([H])C([H])([H])C3([H])C([*])([H])C1([H])C([H])([H])C2([H])C3([H])[H] 0.000 description 1
- 125000005076 adamantyloxycarbonyl group Chemical group C12(CC3CC(CC(C1)C3)C2)OC(=O)* 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- JINBYESILADKFW-UHFFFAOYSA-N aminomalonic acid Chemical compound OC(=O)C(N)C(O)=O JINBYESILADKFW-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 125000001691 aryl alkyl amino group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 150000004832 aryl thioethers Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000000043 benzamido group Chemical group [H]N([*])C(=O)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- RXUBZLMIGSAPEJ-UHFFFAOYSA-N benzyl n-aminocarbamate Chemical compound NNC(=O)OCC1=CC=CC=C1 RXUBZLMIGSAPEJ-UHFFFAOYSA-N 0.000 description 1
- LUFPJJNWMYZRQE-UHFFFAOYSA-N benzylsulfanylmethylbenzene Chemical class C=1C=CC=CC=1CSCC1=CC=CC=C1 LUFPJJNWMYZRQE-UHFFFAOYSA-N 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000006310 cycloalkyl amino group Chemical group 0.000 description 1
- VZFUCHSFHOYXIS-UHFFFAOYSA-N cycloheptane carboxylic acid Natural products OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- NKLCHDQGUHMCGL-UHFFFAOYSA-N cyclohexylidenemethanone Chemical group O=C=C1CCCCC1 NKLCHDQGUHMCGL-UHFFFAOYSA-N 0.000 description 1
- OCDXZFSOHJRGIL-UHFFFAOYSA-N cyclohexyloxycyclohexane Chemical class C1CCCCC1OC1CCCCC1 OCDXZFSOHJRGIL-UHFFFAOYSA-N 0.000 description 1
- FTAORUVBXKFVDA-UHFFFAOYSA-N cyclohexylsulfanylcyclohexane Chemical class C1CCCCC1SC1CCCCC1 FTAORUVBXKFVDA-UHFFFAOYSA-N 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- BOTLEXFFFSMRLQ-UHFFFAOYSA-N cyclopentyloxycyclopentane Chemical class C1CCCC1OC1CCCC1 BOTLEXFFFSMRLQ-UHFFFAOYSA-N 0.000 description 1
- MSXKFSFICXVOAJ-UHFFFAOYSA-N cyclopentylsulfanylcyclopentane Chemical class C1CCCC1SC1CCCC1 MSXKFSFICXVOAJ-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical class CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 1
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical class C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 1
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical class CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical class CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 239000002308 endothelin receptor antagonist Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- MDKXBBPLEGPIRI-UHFFFAOYSA-N ethoxyethane;methanol Chemical compound OC.CCOCC MDKXBBPLEGPIRI-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- AEHWKBXBXYNPCX-UHFFFAOYSA-N ethylsulfanylbenzene Chemical class CCSC1=CC=CC=C1 AEHWKBXBXYNPCX-UHFFFAOYSA-N 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- YPGCWEMNNLXISK-UHFFFAOYSA-N hydratropic acid Chemical class OC(=O)C(C)C1=CC=CC=C1 YPGCWEMNNLXISK-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical class C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 1
- QNRXNRGSOJZINA-UHFFFAOYSA-N indoline-2-carboxylic acid Chemical compound C1=CC=C2NC(C(=O)O)CC2=C1 QNRXNRGSOJZINA-UHFFFAOYSA-N 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 150000004701 malic acid derivatives Chemical class 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 150000005217 methyl ethers Chemical class 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- DLRJIFUOBPOJNS-UHFFFAOYSA-N phenetole Chemical class CCOC1=CC=CC=C1 DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003012 phosphoric acid amides Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical group 0.000 description 1
- HHLJUSLZGFYWKW-UHFFFAOYSA-N triethanolamine hydrochloride Chemical compound Cl.OCCN(CCO)CCO HHLJUSLZGFYWKW-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 230000003639 vasoconstrictive effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/57536—Endothelin, vasoactive intestinal contractor [VIC]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to novel cyclic peptides having antagonistic activity on endothelin receptors and antagonistic activity on NK2 receptors. These cyclic peptides are useful as prophylactic and therapeutic drugs for hypertension, cardiac or cerebral circulatory diseases, renal diseases and asthma, anti-inflammatory drugs, antarthritics and the like.
- the present invention further relates to the use thereof.
- Endothelin is a vasoconstrictive peptide composed of 21 amino acid residues. Endothelin was isolated from the culture supernatant of the endothelial cells of porcine aortas. Its structure was determined by M. Yanagisawa et al. in 1988 [M. Yanagisawa et al., Nature 332, 411-412 (1988)]. More recently, the research on genes coding for endothelin revealed the presence of peptides similar to endothelin in structure. These peptides are named endothelin-1 (ET-1), endothelin-2 (ET-2) and endothelin-3 (ET-3), respectively. Their structures are as follows:
- peptides of the endothelin family exist in vivo and have vasopressor activity. For this reason, these peptides are anticipated to be intrinsic factors responsible for the control of circulatory systems, and deduced to be related to hypertension, cardiac or cerebral circulatory diseases such as cardiac infarction and renal diseases such as acute renal insufficiency. In addition, these peptides also have bronchial smooth muscle constrictor activity, and therefore deduced to be related to asthma.
- the present inventors prepared novel cyclic peptides having the antagonistic activity on the endothelin receptors, and further discovered that a certain group of the peptides thus obtained had the antagonistic activity on the NK2 receptors, completing the present invention by further studies.
- the present invention provides
- a pharmaceutical composition comprising the peptide represented by formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient, in for example, an endothelin receptor antagonist effective amount or an NK2 receptor antagonist effective amount.
- the hexapeptide represented by formula [I] has 6 amide bonds including a bond between A and D, thereby showing that the molecule forms a ring as a whole.
- this hexapeptide is sometimes referred to as cyclo[-A-X-Y-B-C-D-].
- an amino acid which forms the ⁇ -amino acid residue represented by X or Y may be any amino acid as long as it is an ⁇ -amino acid.
- Examples thereof include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, 2-aminomalonic acid, 2-aminoadipic acid, glycine, histidine, isoleucine, leucine, lysine, ornithine, 2,4-diaminobutyric acid, methionine, phenylalanine, proline, 4-hydroxyproline, thioproline, azetidine-2-carboxylic acid, pipecolic acid (piperidine-2-carboxylic acid), indoline-2-carboxylic acid, tetrahydroisoquinoline-3-carboxylic acid, serine, threonine, tryptophan, 5-methyltryptophan, tyrosine, valine, all
- the substituted hydroxyl groups include esters such as C 1-6 fatty acid esters (for example, formates, acetates and propionates), C 4-9 alicyclic carboxylic acid esters (for example, cyclopentanecarboxylates and cyclohexanecarboxylates), C 7-15 arylcarboxylic acid esters (for example, benzoates and 4-methylbenzoates), C 8-16 aralkylcarboxylic acid esters (for example, phenylacetates, 2-phenylpropionates, 3-phenylpropionates and diphenylacetates) and aromatic heterocycle-alkylcarboxylic acid esters (for example, indole-2-ylacetates and indole-3-ylacetates); and ethers such as C 1-6 alkyl ethers (for example, methyl ethers, ethyl ethers, n-propyl ethers and t-butyl ethers), C 3
- Examples of the ⁇ -amino acids whose hydroxyl groups are substituted include O-acetylserine, O-acetylthreonine, 4-acetoxyproline, O-benzoylserine, O-benzoylthreonine, 4-benzoyloxyproline, O-phenylacetylserine, O-phenylacetylthreonine, 4-phenylacetoxyproline, O-ethylserine, O-ethylthreonine, 4-ethoxyproline, O-cyclohexylserine, O-cyclohexylthreonine, 4-cyclohexyloxyproline, O-phenylserine, O-phenylthreonine, 4-phenoxyproline, O-benzylserine, O-benzylthreonine, 4-benzyloxyproline, O-diphenylmethylserine, O-diphenylmethylthreonine and 4-diphen
- the substituted thiol groups include thiol esters such as C 1-6 fatty acid thiol esters (for example, formic acid thiol esters, acetic acid thiol esters and propionic acid thiol esters), C 4-9 alicyclic carboxylic acid thiol esters (for example, cyclopentanecarboxylic acid thiol esters and cyclohexanecarboxylic acid thiol esters), C 7-15 arylcarboxylic acid thiol esters (for example, benzoic acid thiol esters and 4-methylbenzoic acid thiol esters) and C 8-16 aralkylcarboxylic acid thiol esters (for example, phenylacetic acid thiol ester, 2-phenylpropionic acid thiol esters, 3-phenylpropionic acid thiol esters and diphenylacetic acid thiol esters); and thioether forms
- Examples of the ⁇ -amino acids whose thiol groups are substituted include S-acetyl-cysteine, S-benzoylcysteine, S-phenylacetylcysteine, S-ethylcysteine, S-cyclohexylcysteine, S-phenylcysteine and S-benzylcysteine.
- the substituted amino groups (or imino groups) include substituted amino or imino groups such as C 1-6 alkylamino (or imino) [for example, N-methylamino (or imino), N-ethylamino (or imino) and N-t-butylamino (or imino)], C 3-8 cycloalkyl-amino (or imino) [for example, N-cyclopentylamino (or imino) and N-cyclohexylamino (or imino)], C 6-12 arylamino (or imino) [for example, N-phenylamino (or imino) and N- ⁇ 4-methylphenyl ⁇ amino (or imino)], C 7-15 aralkylamino (or imino) [for example, N-benzylamino (or imino), N-phenethyl-amino (or imino), N- ⁇ 2-chlorobenzyl ⁇ a
- Examples of the ⁇ -amino acids whose amino (or imino) groups are substituted include N-methylglycine (sarcosine), N-ethylglycine, N-methylleucine, N-ethylleucine, N-methylphenylalanine, N-ethylphenylalanine, N( ⁇ )-methyltryptophan, N( ⁇ )-ethyltryptophan, N-cyclopentylglycine, N-cyclohexylglycine, N-phenylglycine, N-phenylleucine, N-benzylglycine, N-benzylleucine, N( ⁇ )-benzylhistidine, N( ⁇ )-benzylhistidine, N( ⁇ )-phenacylhistidine, N( ⁇ )-benzyloxymethylhistidine, N g -benzenesulfonylarginine, N g -p-toluenesulfony
- the substituted carboxyl groups include amido groups such as carboxylic acid amido (--CONH 2 ), N--C 1-6 alkylamido (for example, N-methylamido, N-ethylamido, N- ⁇ n-propyl ⁇ amido and N-t-butylamido), N--C 3-8 cycloalkylamido (for example, N-cyclopentylamido and N-cyclohexylamido), N--C 6-12 arylamido (for example, N-phenylamido and N- ⁇ 4-methylphenyl ⁇ amido), N--C 7-15 aralkylamido (for example, N-benzylamido, N-phenethylamido, N- ⁇ 1,2-diphenylethyl ⁇ amido), N- ⁇ aromatic heterocycle-C 1-6 alkyl ⁇ amido (for example, N-[2- ⁇ indole-2-yl ⁇ ethyl]amido
- amido forms also include amido groups with ⁇ -amino acids and amido groups with oligopeptides (for example, dipeptides, tripeptides and tetrapeptides).
- the ⁇ -amino acids whose carboxyl groups are substituted include, for example, N 4 -methylasparagine, N 4 -phenylasparagine, N 4 -benzylasparagine, N 4 -phenethylasparagine, N 4 -(2- ⁇ indole-3-yl ⁇ ethyl)asparagine, N 5 -methylglutamine, N 5 -phenylglutamine, N 5 -benzylglutamine, N 5 -phenethylglutamine, N 5 -(2- ⁇ indole-3-yl ⁇ ethyl)glutamine, aspartic acid ⁇ -methyl ester, aspartic acid ⁇ -cyclopropyl ester, aspartic acid ⁇
- the ⁇ -amino acid which forms the amino acid residue represented by X or Y in formula [I] may be any of the L-, D- and DL-forms.
- the L-form is, however, more preferred in each case.
- An amino acid which forms the D-acidic- ⁇ -amino acid residue represented by A in formula [I] is, for example, an amino acid with an acidic group such as carboxyl, sulfonyl or tetrazolyl as a side chain.
- amino acids include D-glutamic acid, D-aspartic acid, D-cysteic acid, D-homocysteic acid, D- ⁇ -(5-tetrazolyl)alanine and D-2-amino-4-(5-tetrazolyl)butyric acid.
- D-glutamic acid, D-aspartic acid and D-cysteic acid are preferred.
- An amino acid which forms the neutral- ⁇ -amino acid residue represented by B in formula [I] is an ⁇ -amino acid.
- ⁇ -amino acids include alanine, valine, norvaline, leucine, isoleucine, alloisoleucine, norleucine, tertiary leucine, ⁇ -methylleucine, phenylglycine, phenylalanine, 1-naphthylalanine, 2-naphthylalanine, proline, 4-hydroxyproline, azetidine-2-carboxylic acid, pipecolic acid (piperidine-2-carboxylic acid), 2-thienylalanine, 2-thienylglycine, 3-thienylglycine, 1-aminocyclopropane-1-carboxylic acid, 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, 1-aminocyclohexan
- D-form When the above-mentioned neutral- ⁇ -amino acid exists in the L- and D-forms, the D-form is preferred.
- D-Leucine, D-alloisoleucine, D-tertiary leucine, D- ⁇ -methylleucine, D-phenylglycine, D-2-thienylalanine, D-2-thienylglycine, D-3-thienylglycine and D-2-cyclopentylglycine are preferred among others.
- ⁇ -Imino groups of these neutral- ⁇ -amino acids may be substituted by C 1-6 alkyl groups (for example, methyl, ethyl, n-propyl and t-butyl).
- ⁇ -amino acids examples include N-methylleucine, N-methylalloisoleucine, N-methyl tertiary leucine, N-methyl ⁇ -methylleucine and N-methylphenyl-glycine. Also for these ⁇ -amino acids, the D-form is preferred.
- L- ⁇ -amino acid As an amino acid which forms the L- ⁇ -amino acid residue represented by C in formula [I], used is an L- ⁇ -amino acid usually known in the art.
- L- ⁇ -amino acids include glycine, L-alanine, L-valine, L-norvaline, L-leucine, L-isoleucine, L-tertiary leucine, L-norleucine, L-methionine, L-2-aminobutyric acid, L-serine, L-threonine, L-phenylalanine, L-aspartic acid, L-glutamic acid, L-asparagine, L-glutamine, L-lysine, L-tryptophan, L-arginine, L-tyrosine and L-proline.
- L-leucine, L-norleucine and L-tryptophan are preferred.
- ⁇ -Imino groups of these L- ⁇ -amino acids may be substituted by C 1-6 alkyl groups (for example, methyl, ethyl, n-propyl and t-butyl).
- Examples of such L- ⁇ -amino acids include L-N-methylleucine, L-N-methylnorleucine and L-N( ⁇ )-methyltryptophan.
- an amino acid which forms the D- ⁇ -amino acid residue with the aromatic ring group represented by D in formula [I] used is a D- ⁇ -amino acid having an aromatic ring group as a side chain.
- Preferred examples thereof include D-tryptophan, D-5-methyltryptophan, D-phenylalanine, D-tyrosine, D-1-naphthylalanine, D-2-naphthylalanine, D-3-benzothienylalanine, D-4-biphenylalanine and D-pentamethylphenylalanine.
- D-Tryptophan and D-5-methyltryptophan are preferred, and particularly, D-tryptophan is more preferred.
- the ⁇ -imino groups of the D- ⁇ -amino acids having the aromatic rings may be substituted by C 1-6 alkyl groups (for example, methyl, ethyl, n-propyl and t-butyl).
- the imino group of the indole ring of D-tryptophan may be substituted by a hydrocarbon group such as a C 1-6 alkyl group (for example, methyl, ethyl, n-propyl or t-butyl), a C 3-8 cycloalkyl group (for example, cyclopentyl or cyclohexyl), a C 6-12 aryl group (for example, phenyl, or 4-methylphenyl) or C 7-15 aralkyl (for example, benzyl or phenethyl), or an acyl group such as a C 1-6 aliphatic acyl group (for example, formyl, acetyl or propionyl), a
- Examples of such ⁇ -amino acids include D-N( ⁇ )-methyltryptophan, D-N-methylphenylalanine, D-N-methyltyrosine, D-N in -methyltryptophan, D-N in -ethyltryptophan, D-N in -formyltryptophan and D-N in -acetyltryptophan.
- D-N in -methyltryptophan, D-N in -formyltryptophan and D-N in -acetyltryptophan are preferred among others.
- X has L-configuration.
- Y has L-configuration.
- A is selected from the group consisting of D-glutamic acid, D-aspartic acid, D-cysteic acid and D- ⁇ -(5-tetrazolyl)alanine residue.
- B is selected from the group consisting of 1-aminocyclopropane-1-carboxylic acid, 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, 1-aminocyclohexane-1-carboxylic acid and 1-aminocycloheptane-1-carboxylic acid residue.
- B is selected from the group consisting of D-leucine, D-alloisoleucine, D-tertiaryleucine, D-gammamethylleucine, D-phenylglycine, D-2-thienylglycine, D-3-thienylglycine, D-cyclopentylglycine, D-phenylalanine, D-2-thienylalanine, D-valine, D-2-furylhglycine and D-3-furylglycine residue.
- C is selected from the group consisting of L-leucine, L-isoleucine, L-valine, L-norleucine and L- ⁇ -amino acid residue having aromatic moiety.
- C is selected from the group consisting of L-leucine, L-phenylalanine and L-tryptophan.
- D is D-tryptophan, or a derivative thereof, D-1-naphthylalanine, D-2-naphthylalanine, D-benzothienylalanine, D-4-bisphenylalanine and D-pentamethylphenylalanine residue.
- the derivative of tryptophan is selected from the group consisiting of D-N in -methyltryptophan, D-N in -formyltryptophan and D-N in -acetyltryptophan residue.
- each parameter include such as those in which A is D-aspartic acid residue;
- X is tryptophan, L-( ⁇ -4-phenylpiperazine amide)aspartic acid, L-(N.sup. ⁇ -phenylacetyl)ornithine, L-(N 4 -[indol-3-yl]ethyl)ornithine, L-(4-benzyloxy)proline, L-(N 5 -benzyl)glutamine or L-(N.sup. ⁇ -[indol-3-yl]acetyl)asparagine residue;
- Y is L-leucine, L-aspartic acid, L-O-benzylserine, tryptophan, serine or proline residue;
- B is D-leucine, D-2-thienylglycine or D-3-thienylglycine residue;
- cyclic peptides represented by formula [I] of the present invention have the antagonistic activity on endothelin receptors.
- the peptides having amino acid residues such as aspartic acid and tryptophan as X and amino acid residues such as leucine, tryptophan and O-benzylserine as Y further also have the antagonistic activity on NK2 receptors.
- the salts of the cyclic peptides [I] include metal salts (for example, sodium salts, potassium salts, calcium salts and magnesium salts), salts of bases or basic compounds (for example, ammonium salts and arginine salts), addition salts of inorganic acids (for example, hydrochlorides, sulfates and phosphates), and salts of organic acids (for example, acetates, propionates, citrates, tartarates, malates and oxalates).
- metal salts for example, sodium salts, potassium salts, calcium salts and magnesium salts
- salts of bases or basic compounds for example, ammonium salts and arginine salts
- addition salts of inorganic acids for example, hydrochlorides, sulfates and phosphates
- salts of organic acids for example, acetates, propionates, citrates, tartarates, malates and oxalates.
- the cyclic peptides [I] of the present invention can be produced by methods for peptide synthesis known in the art, which may be either solid phase synthesis methods or liquid phase synthesis methods. In some cases, the liquid phase synthesis methods are preferred. Examples of such methods for peptide synthesis include methods described in M. Bodansky and M. A. Ondetti, Peptide Synthesis., Interscience, New York (1966); F. M. Finn and K. Hofmann, The Proteins, Vol. 2, edited by H. Nenrath and R. L. Hill, Academic Press, New York, (1976); N.
- the cyclic peptide [I] of the present invention can be produced by condensing a first starting material having a reactive carboxyl group corresponding to one of two kinds of fragments which are separated at any position of its peptide bond with a second starting material having a reactive amino group corresponding to the other fragment, subsequently eliminating protective groups of the C-terminal ⁇ -carboxyl group and the N-terminal ⁇ -amino group of the resulting compound concurrently or stepwise, thereafter conducting intramolecular condensation of both by methods known in the art to obtain a cyclic compound, and then, eliminating protective groups by methods known in the art, if the resulting condensed product has any protective groups.
- the above starting materials are usually amino acid and/or peptide fragments which, taken together, form the cyclic hexapeptide of the desired formula [I] or a salt thereof. They are usually linear or branched.
- the reactive carboxyl group means carboxyl group itself or an activated carboxyl group.
- the reactive amino group means amino group itself or an activated amino group.
- One of the two functional groups taking part in the condensation reaction is usually activated.
- the carboxyl group and the amino group which do not take part in the condensation reaction are usually protected before the condensation reaction.
- Protection of functional groups which should not affect the reaction of the starting materials, the protective groups and elimination of the protective groups, and activation of functional groups related to the reaction can also be suitably selected from groups or methods known in the art.
- Examples of the protective groups for the amino groups of the starting materials include benzyloxycarbonyl, t-butyloxy-carbonyl, t-amyloxycarbonyl, isobornyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-chlorobenzyloxycarbonyl, adamantyloxycarbonyl, trifluoroacetyl, phthalyl, formyl, 2-nitrophenylsulfenyl, diphenylphosphinothioyl and 9-fluorenylmethyloxycarbonyl.
- the protective groups for the carboxyl groups include, for example, alkyl esters (such as esters of methyl, ethyl, propyl, butyl, t-butyl, cyclo-pentyl, cyclohexyl, cycloheptyl, cyclooctyl and 2-adamantyl), benzyl esters, 4-nitrobenzyl esters, 4-methoxybenzyl esters, 4-chlorobenzyl esters, benzhydryl esters, phenacyl esters, benzyloxycarbonylhydrazide, t-butyloxycarbonylhydrazide and tritylhydrazide.
- alkyl esters such as esters of methyl, ethyl, propyl, butyl, t-butyl, cyclo-pentyl, cyclohexyl, cycloheptyl, cyclooctyl and 2-adamantyl
- the hydroxyl group of serine can be protected, for example, by esterification or etherification.
- groups suitable for this esterification include lower aliphatic acyl groups such as acetyl, arylacyl groups such as benzoyl, and carbonic acid-derived groups such as benzyloxycarbonyl and ethyloxycarbonyl.
- groups suitable for the etherification include benzyl, tetrahydropyranyl and t-butyl.
- the hydroxyl group of serine is not always required to be protected.
- Examples of the protective groups for the phenolic hydroxyl group of tyrosine include benzyl, 2,6-dichlorobenzyl, 2-nitrobenzyl, 2-bromobenzyloxycarbonyl and t-butyl.
- the phenolic hydroxyl group of tyrosine is not always required to be protected.
- Methionine may be protected in the form of sulfoxides.
- the protective groups for the imidazole ring of histidine include p-toluenesulfonyl, 4-methoxy-2,3,6-trimethylbenzenesulfonyl, 2,4-dinitrophenyl, benzyloxymethyl, t-butoxymethyl, t-butoxycarbonyl, trityl and 9-fluorenylmethyloxycarbonyl.
- the imidazole ring is not always required to be protected.
- the protective groups for the indole ring of tryptophan include formyl, 2,4,6-trimethylbenzensulfonyl, 2,4,6-trimethoxybenzenesulfonyl, 4-methoxy-2,3,6-trimethylbenzenesulfonyl, 2,2,2-trichloroethyloxycarbonyl and diphenylphosphinothioyl.
- the indole ring is not always required to be protected.
- Examples of the activated carboxyl groups of the starting materials include the corresponding acid anhydrides, azides and active esters (esters of alcohols such as pentachloro-phenol, 2,4,5-trichlorophenol, 2,4-dinitrophenol, cyano-methyl alcohol, p-nitrophenol, N-hydroxy-5-norbornene-2,3-dicarboxyimide, N-hydroxysuccinimide, N-hydroxyphthalimide and N-hydroxybenzotriazole.
- Examples of the activated amino acid groups of the raw materials include the corresponding phosphoric acid amides.
- Condensation reaction can be conducted in the presence of a solvent(s).
- the solvent(s) can be appropriately selected from the solvents commonly used in peptide condensation reactions.
- the solvents include anhydrous or hydrous dimethylformamide, dimethyl sulfoxide, pyridine, chloroform, dioxane, dichloromethane, tetrahydrofuran, acetonitrile, ethyl acetate, N-methylpyrrolidone and appropriate mixtures thereof.
- the reaction temperature is appropriately selected from the temperature range commonly used in peptide bond-forming reactions, usually from the range of about -20° to about 30° C.
- Intramolecular cyclization reaction can be conducted at any position of the peptide by methods known in the art.
- the protective group of the C-terminal ⁇ -carboxyl group of the protected peptide is first eliminated by methods known in the art, and then, the carboxyl group is activated by methods known in the art, followed by elimination of the protective group of the N-terminal ⁇ -amino group by methods known in the art and intramolecular cyclization.
- the protective groups of the C-terminal ⁇ -carboxyl group and the N-terminal ⁇ -amino group of the protected peptide may be concurrently eliminated, followed by intramolecular cyclization according to known condensation reaction.
- intramolecular cyclization reaction is preferably conducted in a highly diluted state.
- Examples of methods for eliminating the protective groups include catalytic reduction in the presence of a catalyst such as palladium black or Pd-carbon in a stream of hydrogen, acid treatment with anhydrous hydrogen fluoride, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid or mixtures thereof, and reduction with sodium in liquid ammonia.
- a catalyst such as palladium black or Pd-carbon in a stream of hydrogen
- acid treatment with anhydrous hydrogen fluoride, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid or mixtures thereof and reduction with sodium in liquid ammonia.
- the elimination reaction by the above-mentioned acid treatment is generally conducted at a temperature between -20° and 40° C.
- a cation trapping agent such as anisole, phenol, thioanisole, m-cresol, p-cresol, dimethylsulfide, 1,4-butanedithiol or 1,2-ethanedithiol.
- a cation trapping agent such as anisole, phenol, thioanisole, m-cresol, p-cresol, dimethylsulfide, 1,4-butanedithiol or 1,2-ethanedithiol.
- the formyl group used as the protective group for the indole ring of tryptophan may be eliminated by either (i) alkali treatment using dilute sodium hydroxide, dilute ammonia or the like, or (ii) the above-mentioned elimination by the acid treatment in the presence of 1,2-ethanedithiol, 1,4-butanedithiol or the like.
- the cyclic peptide [I] thus obtained is collected by conventional separation and purification methods of peptides such as extraction, distribution, reprecipitation, recrystallization, column chromatography and high performance liquid chromatography.
- the cyclic peptides [I] of the present invention can be obtained by methods known in the art as the metal salts, the salts of bases or basic compounds, the inorganic acid addition salts, the organic acid salts and the like, and particularly as pharmaceutically acceptable acid addition salts such as the salts of inorganic acids (for example, hydrochloric acid, sulfuric acid and phosphoric acid) or organic acids (for example, acetic acid, propionic acid, citric acid, tartaric acid, malic acid, oxalic acid and methanesulfonic acid).
- inorganic acids for example, hydrochloric acid, sulfuric acid and phosphoric acid
- organic acids for example, acetic acid, propionic acid, citric acid, tartaric acid, malic acid, oxalic acid and methanesulfonic acid.
- the cyclic peptides of the present invention have the following pharmacological activity. Namely, the novel cyclic peptides [I] of the present invention or the pharmaceutically acceptable salts thereof have the antagonistic activity on endothelin receptors as shown in the experimental examples described below. Further, the certain group of cyclic peptides [I] or pharmaceutically acceptable salt thereof also have the antagonistic activity on NK2 receptors.
- the cyclic peptides [I] or pharmaceutically acceptable salt thereof can be used as prophylactic and therapeutic drugs for hypertension, cardiac or cerebral circulatory diseases, renal diseases, asthma and the like, because they have the antagonistic activity on endothelin receptors. Further, the cyclic peptides [I] or pharmaceutically acceptable salt thereof having the antagonistic activity on NK2 receptors in addition can also be used as anti-inflammatory drugs and antarthritics.
- Preferred novel cyclic peptides [I] of the present invention strongly bind not only to ET A , but also to ET B to act as the antagonists on endothelin receptors, as shown in the experimental examples described below. Further, the certain group of the novel cyclic peptides [I] of the present invention have the antagonistic activity on NK2 receptors, one of tachykinin peptide receptors, in addition.
- substance P, neurokinin A and neurokinin B are known [Y. Yokoto et al., J. Biol. Chem., 264, 17649 (1989); A. D. Hershey et al., Science, 247, 958 (1990); Y.
- NK1, NK2 and NK3 are known respectively, as receptors corresponding to ligands thereof.
- Antagonists on NK receptors are described in Japanese Patent Unexamined Publication Nos. 2197/1991, 17098/1991 and 141295/1991.
- the compounds disclosed therein are different from the cyclic hexapeptides [I] of the present invention in structure.
- novel cyclic peptides [I] of the present invention have the remarkable effect of suppressing the vasopressor activity of endothelin as the antagonists on endothelin receptors, and some of them also have the strong activity as the antagonists on NK2 receptors.
- the novel cyclic peptides of the present invention or the salts thereof can be used as prophylactic and therapeutic drugs for hypertension, cardiac or cerebral circulatory diseases (for example, cardiac infarction), renal diseases for example, acute renal insufficiency), asthma and the like.
- the cyclic peptides having the antagonistic activity on NK2 receptors in addition can also be used as the anti-inflammatory drugs and the antarthritics.
- the cyclic peptides of the present invention when used as the above-mentioned prophylactic and therapeutic drugs, can be safely administered orally or parenterally in the form of powders, granules, tablets, capsules, injections, suppositories, ointments or sustained release preparations, alone or in combination with pharmaceutically acceptable carriers, excipients or diluents.
- the peptides of the present invention are typically administered parenterally, for example, by intravenous or subcutaneous injection, intraventricular or intraspinal administration, nasotracheal administration or intrarectal administration. In some cases, however, they are administered orally.
- the cyclic peptides of the present invention are generally stable substances, and therefore, can be stored as physiological saline solutions. It is also possible to lyophilize the peptides, store them in ampules with mannitol or sorbitol, and dissolve them in a suitable carrier at the time of use.
- the cyclic peptides of the present invention can be given in their free forms, or in the form of base salts or acid addition salts thereof. All of the free cyclic peptides, the base salts and the acid addition salts thereof are generally given in a proper dose within the range of 1 ⁇ g to 100 mg of free peptide per kg of weight.
- the dosage varies depending on the type of disease to be treated, the symptom of the disease, the object to which the drugs are given and the route of administration, when given by injection to adult patients of hypertension, for example, it is advantageous that the active ingredients (the peptides [I] or pharmaceutically acceptable salt thereof) are normally given in one dose of about 1 ⁇ g to 100 mg/kg of weight, more preferably about 100 ⁇ g to 20 mg/kg of weight, most preferably 1 mg to 20 mg/kg of weight, about once to 3 times a day.
- the peptides [I] are usually given intravenously. Drip infusion is also effective. In this case, the total dosage is the same as with injection.
- cyclic peptides of the present invention or the pharmaceutically acceptable salts thereof are used as the prophylactic or therapeutic drugs, they must be carefully purified so as to contain no bacteria and no pyrogens.
- SILICAGEL 60F-254 (Merck) was used as the plates of thin layer chromatography, and chloroform-methanol (19:1) and chloroform-methanol-acetic acid (9:1:0.5) were used as the developing solvents for Rf 1 and Rf 2 , respectively.
- H-Leu-OBzl.pTos (21.6 g) was dissolved in DMF (100 ml), and the solution was cooled with ice.
- TEA (7.7 ml) and Boc-D-Leu-ONB [prepared from Boc-D-Leu-OH.H 2 O (12.5 g), HONB (9.86 g) and DCC (11.4 g) were added thereto, followed by stirring overnight.
- the resulting DCU was separated by filtration, and the filtrate was concentrated to obtain a residue.
- the residue was dissolved in AcOEt, and the resulting solution was washed with 4% aqueous NaHCO 3 and 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Leu-Leu-OBzl (6.0 g) was dissolved in methanol (20 ml) and catalytically reduced in a stream of hydrogen using 10% Pd-carbon as a catalyst. After the catalyst was separated by filtration, the solution was concentrated to obtain a residue. The residue and Cs 2 CO 3 (2.1 g) were dissolved in 90% aqueous methanol, and the solution was concentrated. The resulting residue was dissolved in DMF (60 ml), and phenacyl bromide (2.8 g) was added thereto, followed by stirring overnight. The resulting TEA hydrochloride was separated by filtration, and the filtrate was concentrated to obtain a residue.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-Ala-Asp(OBzl)-D-Leu-Leu-OPac (1.77 g) to dissolve it, followed by concentration. 8-N HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OPac (1.60 g) to dissolve it, followed by concentration. 8-N HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml), and cooled with ice. Then, TEA (0.48 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OPac (1.47 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Ethanedithiol (0.09 ml) and 8-N HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate.
- TFA (20 ml) was added to Boc-D-Leu-Leu-OPac (1.85 g) prepared in EXAMPLE 1 (2) to dissolve it, followed by concentration. 4% aqueous NaHCO 3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na 2 SO 4 and concentrated. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.42 g), HONB (0.86 g) and DCC (0.99 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-Ala-D-Asp(OBzl)-D-Leu-Leu-OPac (1.77 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-D-Asp(OBzl)-D-Leu-Leu-OPac (1.60 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.48 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-D-Asp(BOzl)-D-Leu-Leu-OPac (1.47 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-D-Asp(BOzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in ACOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-Ala-Glu(OBzl)-D-Leu-Leu-OPac (1.81 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-Glu(OBzl)-D-Leu-Leu-OPac (1.63 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.48 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-Glu(BOzl)-D-Leu-Leu-OPac (1.49 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-Glu(BOzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-Ala-D-Glu(OBzl)-D-Leu-Leu-OPac (1.81 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-D-Glu(OBzl)-D-Leu-Leu-OPac (1.63 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.48 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-D-Glu(BOzl)-D-Leu-Leu-OPac (1.49 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Ala-D-Glu(BOzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Ethanedithiol (0.09 ml) and 8-N HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-Gly-Ala-D-Leu-Leu-OPac (2.23 g) to dissolve it, followed by concentration. 8-N HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.55 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.22 g), HONB (0.71 g) and DCC (0.82 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-D-Asp(OBzl)-Gly-Ala-D-Leu-Leu-OPac (2.51 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.46 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.96 g), HONB (0.59 g) and DCC (0.68 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Gly-Ala-D-Leu-Leu-OPac (0.50 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.66 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D/Asp(OBzl)-Gly-Ala-D-Leu-Leu-OH (0.51 g) was dissolved in acetonitrile (20 ml), and the solution was cooled with ice.
- HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate.
- TFA (20 ml) was added to Boc-Ala-D-Leu-Leu-OPac (2.20 g) prepared in example 5 (1) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.61 ml) was added thereto.
- Boc-Asp(OBzl)-ONB [prepared from Boc-Asp(OBzl)-OH (1.33 g), HONB (0.78 g) and DCC (0.89 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-Asp(OBzl)-Ala-D-Leu-Leu-OPac (2.77 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.55 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.21 g), HONB (0.71 g) and DCC (0.81 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OPac (2.94 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.46 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.96 g), HONB (0.59 g) and DCC (0.68 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OPac (0.50 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.66 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OH (0.51 g) was dissolved in acetonitrile (20 ml), and the solution was cooled with ice.
- HONB (0.16 g) and DCC (0.18 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-Glu(OBzl)-Ala-D-Leu-Leu-OPac (2.76 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.54 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.19 g), HONB (0.69 g) and DCC (0.80 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- TFA (20 ml) was added to Boc-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OPac (2.95 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.46 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.94 g), HONB (0.58 g) and DCC (0.67 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OPac (0.50 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.66 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OH (0.51 g) was dissolved in acetonitrile (20 ml), and the solution was cooled with ice.
- HONB (0.16 g) and DCC (0.18 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate.
- Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.14 g) prepared in example 1 (3) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Trp-ONB [prepared from Boc-Trp-OH (1.17 g), HONB (0.69 g) and DCC (0.79 g)] was added thereto, followed by stirring overnight.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Trp-Asp(OBzl)-D-Leu-Leu-OPac (2.31 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.75 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.96 g), HONB (0.58 g) and DCC (0.67 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OPac (2.12 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto.
- Boc-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OPac (1.49 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (3.92 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OH (0.56 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.14 g) prepared in example 1 (3) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Pro-ONB [prepared from Boc-Pro-OH (0.76 g), HONB (0.69 g) and DCC (0.79 g)] was added thereto, followed by stirring overnight.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Pro-Asp(OBzl)-D-Leu-Leu-OPac (2.07 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.75 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.96 g), HONB (0.58 g) and DCC (0.67 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Asp(OBzl)-Pro-Asp(0Bzl)-D-Leu-Leu-OPac (1.94 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.49 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Pro-Asp(OBzl)-D-Leu-Leu-OPac (1.39 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (3.92 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Pro-Asp(OBzl)-D-Leu-Leu-OH (0.53 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Asp-OBzl (1.61 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.98 g) and DCC (1.13 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and benzylamine (1.09 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.44 ml) was added thereto.
- Boc-Asn(CH 2 Ph)-ONB [prepared by catalytically reducing Boc-Asn(CH 2 Ph)-OBzl (1.23 g) synthesized in (1), in methanol (20 ml) in the presence of 10% Pd-carbon (20 mg) in a stream of hydrogen at ordinary temperature and pressure, separating the catalyst by filtration, followed by concentration, dissolving the residue in acetonitrile, and then adding HONB (0.56 g) and DCC (0.65 g) thereto under ice cooling] was added, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration.
- Boc-Asn(CH 2 ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.92 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.32 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.71 g), HONB (0.41 g) and DCC (0.46 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Asp(OBzl)-Asn(CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.93 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.27 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.55 g), HONB (0.34 g) and DCC (0.39 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asn(CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac 500 mg was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.30 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asn(CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-OH (396 mg) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.14 g) and DCC (0.16 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Asp-OBzl (1.61 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.98 g) and DCC (1.13 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and ⁇ -phenethylamine (0.79 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.44 ml) was added thereto.
- Boc-Asn(CH 2 CH 2 Ph)-ONB [prepared by catalytically reducing Boc-Asn(CH 2 CH 2 Ph)-OBzl (1.28 g) synthesized in (1), in methanol (20 ml) in the presence of 10% Pd-carbon (20 mg) in a stream of hydrogen at ordinary temperature and pressure, separating the catalyst by filtration, followed by concentration, dissolving the residue in acetonitrile, and then adding HONB (0.56 g) and DCC (0.65 g) thereto under ice cooling] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration.
- Boc-Asn(CH 2 CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.95 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.32 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.71 g), HONB (0.41 g) and DCC (0.46 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Asp(OBzl)-Asn(CH 2 CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.95 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.27 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.55 g), HONB (0.34 g) and DCC (0.39 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asn(CH 2 CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac 500 mg was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.28 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asn(CH 2 CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-OH (401 mg) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.14 g) and DCC (0.16 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Asp-OBzl (1.61 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.98 g) and DCC (1.13 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and DMF (20 ml) containing tryptamine hydrochloride (0.98 ml) and TEA (1.04 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to obtain a desired product as a light yellow glassy material.
- Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.44 ml) was added thereto.
- Boc-Asn(CH 2 CH 2 -Ind)-ONB [prepared by catalytically reducing Boc-Asn(CH 2 CH 2 -Ind)-OBzl (1.35 g) synthesized in (1), in methanol (20 ml) in the presence of 10% Pd-carbon (20 mg) in a stream of hydrogen at ordinary temperature and pressure, separating the catalyst by filtration, followed by concentration, dissolving the residue in acetonitrile, and then adding HONB (0.56 g) and DCC (0.65 g) thereto under ice cooling] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration.
- Boc-Asn(CH 2 CH 2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.32 ml) was added thereto.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.71 g), HONB (0.41 g) and DCC (0.46 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Asp(OBzl)-Asn(CH 2 CH 2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.27 ml) was added thereto.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.55 g), HONB (0.34 g) and DCC (0.39 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asn(CH 2 CH 2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac 500 mg was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Asn(CH 2 CH 2 -Ind)-Asp(OBzl)-D-Leu-Leu-OH (386 mg) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.14 g) and DCC (0.16 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.34 g) was dissolved in dioxane (1.0 ml), and the solution was cooled with ice. 10N-HCl/dioxane (5.0 ml) was added thereto, followed by stirring for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The resulting product was dissolved in DMF (15 ml), and neutralized with TEA with stirring under ice cooling.
- Boc-Hys(Bzl)-ONB prepared from Boc-Hyp(Bzl)-OH (1.57 g), HONB (1.16 g) and DCC (1.55 g) was added thereto and stirred overnight at room temperature. The resulting insoluble material was removed by filtration, and the filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid, 4% aqueous NaHCO 3 and a saturated aqueous solution of sodium chloride. After drying with Na 2 SO 4 , the solvent was removed by distillation, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The precipitate was recrystallized from AcOEt-petroleum.
- Boc-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac (3.49 g) was dissolved in dioxane (1.0 ml), and the solution was cooled with ice. 10-N HCl/dioxane (5.0 ml) was added thereto, followed by stirring for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The resulting product was dissolved in DMF (15 ml), and neutralized with TEA with stirring under ice cooling.
- Boc-D-Asp(OBzl)-ONB prepared from Boc-D-Asp(OBzl)-OH (1.55 g), HONB (1.08 g) and DCC (1.44 g) was added thereto and stirred overnight at room temperature. The resulting insoluble material was removed by filtration, and the filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid, 4% aqueous NaHCO 3 and a saturated aqueous solution of sodium chloride. After drying with Na 2 SO 4 , the solvent was removed by distillation, and the residue was purified by silica gel chromatography (Merck Kiesel Gel 60. 2% methanol/chloroform) to obtain an oily product.
- Boc-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac (3.77 g) was dissolved in dioxane (1.0 ml), and the solution was cooled with ice. 10-N HCl/dioxane (5.0 ml) was added thereto, followed by stirring for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The resulting product was dissolved in DMF (15 ml), and neutralized with TEA with stirring under ice cooling.
- Boc-D-Trp-ONB prepared from Boc-D-Trp-OH (1.17 g), HONB (752 mg) and DCC (939 mg) was added thereto and stirred overnight at room temperature. The resulting insoluble material was removed by filtration, and the filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid, 4% aqueous NaHCO 3 and a saturated aqueous solution of sodium chloride. After drying with Na 2 SO 4 , the solvent was removed by distillation, and the residue was purified by silica gel chromatography (Merck Kiesel Gel 60. 2% methanol/chloroform). Then, ether-petroleum ether was added thereto to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac (2.52 g) was dissolved in 90% aqueous AcOH (50 ml), and Zn powder (6.54 g) was added thereto with stirring under ice cooling, further followed by stirring at room temperature. The Zn powder was removed by filtration, and filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid and a saturated aqueous solution of sodium chloride. After drying with Na 2 SO 4 , the solvent was removed by distillation, and ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure.
- Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OH (1.14 g) was dissolved in dichloromethane (10 ml), and HONB (358 mg) and DCC (413 mg) were successively added thereto with stirring under ice cooling, further followed by stirring under ice cooling for 3 hours.
- the resulting insoluble material was removed by filtration, and the solvent was removed by distillation. The residue was dissolved in acetonitrile (20 ml), and the insoluble material was removed by filtration.
- Boc-Asp(OBzl)-OH (32.3 g) and Cs 2 CO 3 (16.3 g) were dissolved in 90% aqueous methanol, and the solution was concentrated.
- the residue was dissolved in DMF (300 ml), and phenacyl bromide (21.9 g) was added thereto, followed by stirring overnight.
- the resulting CsBr was separated by filtration, and the filtrate was concentrated.
- the residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO 3 and 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, the residue was recrystallized from ethyl acetate-petroleum ether.
- Boc-Trp-OH (12.2 g) was dissolved in THF, and the solution was cooled to -15° C. with stirring. Then, N-methylmorpholine (4.4 ml) was added thereto, and subsequently, IBCF (5.4 ml) was added. After 2 minutes, a DMF solution of HCl.H-Asp(OBzl)-OPac and N-methylmorpholine was added.
- HCl.H-Asp(OBzl)-OPac was obtained by dissolving Boc-Asp(OBzl)-OPac (17.7 g) in 8N-HCl/dioxane (100 ml), stirring the solution under ice cooling for 30 minutes, followed by concentration, and adding ether to precipitate crystals, which were collected by filtration and dried. After stirring at -15° C. for 30 minutes, the solution was brought to room temperature. After 30 minutes, the resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Trp-Asp(OBzl)-OPac 50.2 g
- ether was added thereto to precipitate crystals, which were collected by filtration and dried.
- the crystals were dissolved in DMF (80 ml), and the solution was cooled with ice, followed by addition of TEA (22.3 ml).
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (28.5 g), HONB (17.2 g) and DCC (19.8 g)] was added thereto, and the mixture was stirred overnight.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (23.8 g), HONB (15.3 g) and DCC (17.6 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Leu-ONB [prepared from Boc-Leu-OH.H 2 O (5.48 g), HONB (4.30 g) and DCC (4.95 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. The resulting residue was recrystallized from ethyl acetate-petroleum ether.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-tLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.75 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-tLeu-Leu-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.34 g) was dissolved in DCM (10 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D- ⁇ MeLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.76 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D- ⁇ MeLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.34 g) was dissolved in DCM (10 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.76 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (10 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Acbu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.74 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Acbu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.33 g) was dissolved in DCM (10 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated.
- Boc-D-Asp(OBzl)-OH (25.0 g) was dissolved in methanol (50 ml), and Cs 2 CO 3 (12.6 g) was added thereto little by little with stirring at room temperature. After Cs 2 CO 3 was dissolved, the solvent was removed by distillation, and the residue was dissolved in DMF (500 ml). A DMF solution (50 ml) of phenacyl bromide (15.4 g) was added thereto dropwise with stirring under ice cooling, further followed by stirring at room temperature for 1 hour. Precipitated CsBr was removed by filtration,and the solvent was removed by distillation.
- Boc-D-Asp(OBzl)-OPac (26.5 g) was dissolved in dioxane (50 ml), and 10N-HCl/dioxane (28.6 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to form a precipitate, which was collected by filtration, thereby obtaining H-D-Asp(OBzl)-OPac hydrochloride.
- Boc-D-Trp-OH (18.3 g) was dissolved in distilled THF (150 ml), and N-methylmorpholine was added thereto with stirring at room temperature. After the atmosphere was replaced with nitrogen, isobutyl chloroformate (7.88 ml) was slowly added dropwise thereto with stirring at -15° C., and stirring was further continued at -15° C. for 15 minutes, thereby obtaining mixed acid anhydrides.
- An amine component prepared by dissolving H-D-Asp(OBzl)-OPac hydrochloride in DMF (100 ml) and adding N-methylmorpholine (6.62 ml) thereto with stirring at -15° C.
- Boc-D-Trp-D-Asp(OBzl)-OPac (34.5 g) was dissolved in dioxane (50 ml), and 10N-HCl/dioxane (100 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The resulting precipitate was dissolved in DMF (350 ml), and TEA was added thereto with stirring under ice cooling to neutralize it.
- Boc-Leu-D-Trp-D-Asp(OBzl)-OPac (29.6 g) was dissolved in dioxane (40 ml), and 10N-HCl/dioxane (100 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The resulting precipitate was dissolved in DMF (300 ml), and TEA was added thereto with stirring under ice cooling to neutralize it.
- Boc-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (17.1 g) was dissolved in dioxane (10 ml), and 10-N HCl/dioxane (50 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The resulting precipitate was dissolved in DMF (100 ml), and TEA was added thereto with stirring under ice cooling to neutralize it.
- Boc-Orn-OH (0.51 g) [obtained by catalytically reducing Boc-Orn(Z)-OH in methanol in a stream of hydrogen using 10% Pd-carbon as a catalyst] was dissolved in DMF, and the solution was cooled with ice.
- TEA (0.61 ml) and PhCOONB [prepared from PhCOOH (0.30 g), HONB (0.47 g) and DCC (0.54 g)] were added thereto, followed by stirring overnight.
- the reaction solution was concentrated, and the residue was dissolved in AcOEt.
- the resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether and dicyclohexylamine (438 ⁇ l) were added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) obtained in (5) described above was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml).
- Boc-Orn(COPh)-ONB [prepared from Boc-Orn(COPh)-OH (0.30 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COPh)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.77 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COPh)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours, Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Orn-OH (0.51 g) was dissolved in DMF, and the solution was cooled with ice. TEA (1.53 ml) and PhCH 2 COCl (367 ⁇ l) was added thereto, and stirred for 2 hours. The reaction solution was concentrated, and the residue was dissolved in AcOEt. The resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether and cyclohexylamine (254 ⁇ l) were added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) prepared in EXAMPLE 79 (5) was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml).
- Boc-Orn(COCH 2 Ph)-ONB [prepared from Boc-Orn(COCH 2 Ph)-OH (0.32 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COCH 2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.65 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.63 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COCH 2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Orn-OH (0.51 g) was dissolved in DMF, and the solution was cooled with ice.
- TEA (0.61 ml) and PhCH 2 CH 2 COONB [prepared from PhCH 2 CH 2 COOH (0.36 g), HONB (0.47 g) and DCC (0.54 g)] was added thereto, and stirred overnight.
- the reaction solution was concentrated, and the residue was dissolved in AcOEt.
- the resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether and dicyclohexylamine (438 ⁇ l) were added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) prepared in EXAMPLE 79 (5) was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml).
- Boc-Orn(COCH 2 CH 2 Ph)-ONB [prepared from Boc-Orn(COCH 2 CH 2 Ph)-OH (0.33 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COCH 2 CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.78 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COCH 2 CH 2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.36 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Orn-OH (0.51 g) was dissolved in DMF, and the solution was cooled with ice.
- TEA (0.61 ml) and Ind-CH 2 COONB [prepared from Ind-CH 2 COOH (0.42 g), HONB (0.47 g) and DCC (0.54 g)] was added thereto, and stirred overnight.
- the reaction solution was concentrated, and the residue was dissolved in AcOEt.
- the resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether and cyclohexylamine (254 ⁇ l) were added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) prepared in EXAMPLE 79 (5) was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml).
- Boc-Orn(COCH 2 -Ind)-ONB [prepared from Boc-Orn(COCH 2 -Ind)-OH (0.35 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COCH 2 -Ind)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.80 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Orn(COCH 2 -Ind)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.36 g) was dissolved in DCM (20 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (2.16 g), HONB (1.31 g) and DCC (1.51 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. The residue was purified using silica gel chromatography (1% methanol/DCM) and subsequently concentrated. The yield was 2.22 g (57.4%).
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.50 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Leu-ONB [prepared from Boc-Leu-OH.H 2 O (0.27 g), HONB (0.22 g) and DCC (0.25 g)] was added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-OH (0.23 g), HONB (0.13 g) and DCC (0.20 g) were added thereto, followed by stirring for 3 hours.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac (0.77 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (10 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Glu-OBzl (1.17 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.68 g) and DCC (0.79 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and benzylamine (0.76 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Gln(Bzl)-OH (3.36 g) [prepared by catalytically reducing Boc-Gln(Bzl)-OBzl (4.26 g) in methanol (20 ml) in a stream of hydrogen at ordinary temperature and pressure in the presence of 10% Pd-carbon (20 mg)] was dissolved in THF, and the solution was cooled to -15° C. with stirring. Then, N-methylmorpholine (1.1 ml) was added thereto, and subsequently, IBCF (1.3 ml) was added. After 2 minutes, a DMF solution of HCl.Asp(OBzl)-OPac and N-methylmorpholine (1.1 ml) was added.
- HCl.Asp(OBzl)-OPac was obtained by dissolving Boc-Asp(OBzl)-OPac (4.41 g) in 8-N HCl/dioxane (50 ml), stirring the solution under ice cooling for 30 minutes, followed by concentration, and adding ether to precipitate crystals, which were collected by filtration and dried. After stirring at -15° C. for 30 minutes, the solution was brought to room temperature. After 30 minutes, the resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (2.16 g), HONB (1.31 g) and DCC (1.51 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.50 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ethyl acetate was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-Leu-ONB [prepared from Boc-Leu-OH.H 2 O (0.27 g), HONB (0.22 g) and DCC (0.25 g)] was added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-OH (0.23 g), HONB (0.13 g) and DCC (0.20 g) were added thereto, followed by stirring for 3 hours.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac (0.78 g) was dissolved in 90% aqueous AcOH (15 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OH (0.36 g) was dissolved in DCM (10 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated.
- Boc-Asp(ONB)-OBzl [prepared from Boc-Asp-OBzl (14.23 g), HONB (8.68 g) and DCC (9.99 g)] was added to tryptamine hydrochloride (7.87 g) together with TEA (8.4 ml) in DMF (150 ml) under ice-cooling, and the mixture was stirred overnight. The reaction solution was concentrated, and the residue was dissolved in AcOEt. The resulting solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to give crystals, which were collected by filtration.
- Boc-Asn(CH 2 CH 2 -Ind)-OBzl (4.6 g) was dissolved in methanol (100 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in ether-AcOEt (1:1), and CHA (1.1 ml) was added thereto to precipitate crystals, which were collected by filtration. The crystals were recrystallized from methanol-ether to obtain a desired material.
- Boc-Asn(CH 2 CH 2 -Ind)-OH [prepared from Boc-Asn(CH 2 CH 2 -Ind)-OH.CHA (3.7 g)] was dissolved in THF, and the solution was cooled to -15° C. with stirring. Then, N-methylmorpholine (0.9 ml) was added thereto, and subsequently, IBCF (1.1 ml) was added. After 2 minutes, a DMF solution of HCl.Asp(OBzl)-OPac and N-methylmorpholine was added.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (2.16 g), HONB (1.31 g) and DCC (1.51 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.50 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with NagSO 4 and concentrated. Then, the residue was purified using silica gel chromatography (2% methanol/DCM). Subsequently, petroleum ether was added thereto to separate out a precipitate, which was collected by filtration.
- Boc-Leu-ONB [prepared from Boc-Leu-OH.H 2 O (0.27 g), HONB (0.22 g) and DCC (0.25 g)] was added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-OH (0.23 g), HONB (0.13 g) and DCC (0.20 g) were added thereto, followed by stirring for 3 hours.
- the resulting insoluble material was separated by filtration, followed by concentration.
- the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO 3 . After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Asn(CH 2 CH 2 -Ind)-Asp(OBzl)-OPac (0.81 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na 2 SO 4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
- Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Asn(CH 2 CH 2 -Ind)-Asp(OBzl)-OH (0.37 g) was dissolved in DCM (10 ml), and the solution was cooled with ice.
- HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours.
- the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration.
- 8-N HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate.
- Boc-Thg(2)-OH.CHA (17.8 g, 50 mmoles) was suspended in a mixed solvent of ethyl acetate (250 ml) and water (250 ml), followed by vigorous stirring. Then, 1N aqueous H 2 SO 4 (50 ml) was added thereto to dissolve it completely. The ethyl acetate layer was separated and dried with Na 2 SO 4 . The solvent was thereafter removed by evaporation under reduced pressure. DMF (90 ml) was added to the residue to prepare solution (I).
- Tos.H-Leu-OBzl (39.4 g, 100 mmoles) was added to a mixed solvent of ethyl acetate (250 ml) and 10% aqueous NaHCO 3 (250 ml), followed by vigorous stirring to dissolve it completely. The ethyl acetate layer was separated and dried with Na 2 SO 4 . The solvent was thereafter removed by evaporation under reduced pressure. DMF (90 ml) was added to the residue to prepare solution (II).
- DMF (100 ml) was added to the residue, and the solvent was removed by evaporation under reduced pressure. This operation was repeated twice. DMF (100 ml) was added to the residue to dissolve it, and 50 ml of a solution of phenacyl bromide (7.18 g, 35.0 mmoles) in DMF was added dropwise thereto under ice cooling for 10 minutes. The resulting mixture was brought to room temperature and then stirred overnight. The solvent was removed by distillation, and ethyl acetate was added to the residue, followed by extraction with ethyl acetate.
- the ethyl acetate layer was separated and washed successively with 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO 3 and the saturated aqueous solution of NaCl. After drying with Na 2 SO 4 , the solvent was removed. Colorless crystals were obtained by crystallization from an ether-petroleum ether.
- Boc-Asp(OBzl)-ONB [prepared from Boc-Asp(OBzl)-OH (9.68 g, 30 mmoles), HONB (5.91 g, 33.0 mmoles) and DCC (6.81 g, 33.0 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in ethyl acetate, and the solution was washed with water, 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO 3 and the saturated aqueous solution of NaCl. After drying with Na 2 SO 4 , the solvent was removed by evaporation. Ether-petroleum ether was added to the residue to obtain a precipitate.
- Boc-Asn(CH 2 CH 2 -Ind)-ONB [prepared from Boc-Asn(NHCH 2 CH 2 ind)-OH ⁇ prepared from Boc-Asn(NHCH 2 CH 2 Ind)-OH.CHA (14.5 g, 30.45 mmoles) ⁇ , HONB (5.72 g, 31.9 mmoles) and DCC (6.58 g, 31.9 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration of the filtrate to obtain the residue. Ethyl acetate-ether (1:1) was added to the residue to obtain a precipitate.
- Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (8.82 g, 27.3 mmoles), HONB (5.12 g, 28.6 mmoles) and DCC (5.90 g, 28.6 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration of the filtrate to obtain the residue. The residue was dissolved in ethyl acetate, and the solution was washed with water, 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO 3 and the saturated aqueous solution of NaCl. After drying with Na 2 SO 4 , the solvent was removed by evaporation. Ethyl acetate-ether was added to the residue to obtain a precipitate.
- Boc-D-Trp-ONB prepared from Boc-D-Trp-OH (6.70 g, 22.0 mmoles), HONB (4.34 g, 24.2 mmoles) and DCC (5.00 g, 24.2 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration of the filtrate to obtain the residue.
- the residue was dissolved in chloroform, and the solution was washed with water, 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO 3 and the saturated aqueous solution of NaCl. After drying with Na 2 SO 4 , the solvent was removed by evaporation. The residue was purified by silica gel column chromatography (9.5 cm ⁇ 50 cm, 0.5% methanol-chloroform). Ether-petroleum ether was added to the purified product to obtain a precipitate.
- a membrane fraction prepared from the porcine heart was diluted to 0.15 mg/ml by using a buffer solution for assay, and 100 ⁇ l of the resulting suspension of the membrane fraction was poured into each assay tube to use for assay.
- To this suspension of the membrane fraction was added 2 ⁇ l of 5 nM 125 I-labeled endothelin-1 solution. Further, 3 ⁇ l of a test peptide solution was added thereto, followed by incubation at a temperature of 25° C. for 1 hour. Then, the resulting suspension was diluted with 900 ⁇ l of the buffer solution for assay cooled with ice, and thereafter separated into a supernatant and a precipitate by centrifugation at 12,000 ⁇ g for 10 minutes.
- the numerical value of ET A shown in Table 1 is the value of specific activity, taking the binding activity of this cyclic pentapeptide on the receptor A as 1.0.
- the binding activity (IC 50 ) of this cyclic pentapeptide on the ET A receptor is 2 ⁇ 10 -6 M.
- a membrane fraction prepared from the bovine brain was diluted to 0.15 mg/ml by using a buffer solution for assay, and 100 ⁇ l of the resulting suspension of the membrane fraction was poured into each assay tube to use for assay.
- To this suspension of the membrane fraction was added 2 ⁇ l of 5 nM 125 I labeled endothelin-1 solution. Further, 3 ⁇ l of a test peptide solution was added thereto, followed by incubation at a temperature of 25° C. for 1 hour. Then, the resulting suspension was diluted with 900 ⁇ l of the buffer solution for assay cooled with ice, and thereafter separated into a supernatant and a precipitate by centrifugation at 12,000 ⁇ g for 10 minutes.
- the binding activity (IC 50 ) of the compound of Example 8 on the ET B receptor is 3 ⁇ 10 -6 M.
- guinea pigs' kidneys were used.
- Guinea pigs (Std Hartrey, male 250 g, Japan SLC Ltd.) were made to have a cerebral concussion and sacrificed by bleeding from carotid arteries to pick up the kidneys and removed fat therefrom to prepare the kidneys.
- the obtained kidneys were sliced and homogenized by politron homogenizer in 20 ml of 50 mM Tris-HCl buffer [pH 7.4; 20 mM NaHCO 3 , 0.1 mM PMSF (Phenylmethylsulfonyl Fluoride), 1 mM EDTA (Ethylenediaminetetraacetic acid)] per one kidney.
- Tris-HCl buffer pH 7.4; 20 mM NaHCO 3 , 0.1 mM PMSF (Phenylmethylsulfonyl Fluoride), 1 mM EDTA (Ethylenediaminetetraacetic acid)
- the homogenized kidney was applied to a centrifugation at 1,000 ⁇ g for 15 minutes and the supernatant was further applied to a centrifugation for 20 minutes at 30,000 ⁇ g.
- the resulting precipitate was twice washed with 50 mM Tris-HCl buffer (pH 7.4) containing 0.1 mM PMSF, 1 mM EDTA.
- the resultant was stored at -80 ° C. as a crude receptor membrane fraction and was used as the suspension in the following buffer when necessary.
- the reaction was stopped by fast filtration on a glass filter (GF/B, Wattman, USA) by Cell Harvestor (290 PHD, Cambridge-Technology, Great Britain), and the filter was three times washed with 50 mM Tris-HCl buffer (pH 7.4). Radio activity remained on the filter was assayed by a gamma counter.
- the inner wall of the bovine third stomach stored at -80° C. was cut to 1 cm ⁇ 1 cm or less, and disrupted in 3 liters/kg of 50 mM Tris-HCl buffer (pH 7.4) supplemented with 120 mM sodium chloride, 5 mM potassium chloride, 0.02% BSA and 5% sucrose, using a polytron homogenizer (Kinematika, Germany). Then, the disrupted product was centrifuged at 1,000 ⁇ g for 10 minutes. The supernatant was further centrifuged at 45,000 ⁇ g for 20 minutes.
- the precipitate was suspended in 200 ml of 50 mM Tris-HCl buffer (pH 7.4) supplemented with 300 mM potassium chloride, 10 mM ethylenediaminetetraacetic acid, 0.1 mM phenylmethylsulfonium fluoride and 0.02% BSA, and gently stirred under ice cooling for 60 minutes. The suspension was centrifuged at 45,000 ⁇ g for 20 minutes. The precipitate was washed with 200 ml of 50 mM Tris-HCl buffer (pH 7.4), and stored in the frozen state at -40° C. as a receptor sample.
- reaction buffer solution [50 mM Tris-HCl buffer (pH 7.4), 0.02% bovine serum albumin and 4 mM manganese chloride] so as to give a protein concentration of 0.7 mg/ml, and 100 ⁇ l thereof was used for reaction.
- a test sample and 125 I-NKA (0.61 KBq, 125 I-neurokinin A, 81.4 TBq/mmol, Du Pont/NEN Research Products, U.S.A.) were also added, and reacted in 0.2 ml of the reaction buffer solution at 25° C. for 3 hours.
- the reaction mixture was rapidly filtered through a glass filter (GF/B, Whatman, U.S.A.) using a cell harvester (Type 290PHD, Cambridge Technology Inc.) to terminate the reaction, and washed 3 times with 250 ⁇ l of 50 mM Tris-HCl buffer (pH 7.4) supplemented with 0.02% bovine serum albumin.
- the radioactivity left on the filter was measured with a gamma-ray counter. Results are shown in Table 1 as the binding inhibiting activity (IC 50 , unit: ⁇ M) on the NK2 receptor.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Endocrinology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Cardiology (AREA)
- Pain & Pain Management (AREA)
- Diabetes (AREA)
- Rheumatology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Urology & Nephrology (AREA)
- Pulmonology (AREA)
- Reproductive Health (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Cyclic peptides and their salts have antagonistic activity on endothelin receptors and antagonistic activity on NK2 receptors. The peptides have the formula ##STR1## wherein X and Y each represent α-amino acid residues, A represents a D-acidic-α-amino acid residue, B represents a neutral α-amino acid residue, C represents an L-α-amino acid residue and D represents a D-α-amino acid residue having an aromatic ring group; wherein hydroxy, thiol, amino, imino and carboxyl groups can be substituted or unsubstituted. Pharmaceutical compositions containing such peptides are also described.
Description
This is a continuation of application Ser. No. 07/927,205 filed on Aug. 7, 1992, now abandoned.
The present invention relates to novel cyclic peptides having antagonistic activity on endothelin receptors and antagonistic activity on NK2 receptors. These cyclic peptides are useful as prophylactic and therapeutic drugs for hypertension, cardiac or cerebral circulatory diseases, renal diseases and asthma, anti-inflammatory drugs, antarthritics and the like. The present invention further relates to the use thereof.
Endothelin (ET) is a vasoconstrictive peptide composed of 21 amino acid residues. Endothelin was isolated from the culture supernatant of the endothelial cells of porcine aortas. Its structure was determined by M. Yanagisawa et al. in 1988 [M. Yanagisawa et al., Nature 332, 411-412 (1988)]. More recently, the research on genes coding for endothelin revealed the presence of peptides similar to endothelin in structure. These peptides are named endothelin-1 (ET-1), endothelin-2 (ET-2) and endothelin-3 (ET-3), respectively. Their structures are as follows:
______________________________________
H--Cys--Al--Cys-A2-A3-A4-A5-
Asp--Lys--Glu--Cys--Val--Tyr-A6-
Cys--His--Leu--Asp--Ile--Ile--Trp--OH
A1 A2 A3 A4 A5 A6
______________________________________
ET-1 SEQ ID NO 1 Ser Ser Ser Leu Met Phe
ET-2 SEQ ID NO 2 Ser Ser Ser Trp Leu Phe
ET-3 SEQ ID NO 3 Thr Phe Thr Tyr Lys Tyr
______________________________________
All of the amino acids constituting ET-1, ET-2 and ET-3 take the L-form [Inoue et al., Proc. Natl. Acad. Sci. U.S.A. 86, 2863-2867 (1989)].
The above-mentioned peptides of the endothelin family exist in vivo and have vasopressor activity. For this reason, these peptides are anticipated to be intrinsic factors responsible for the control of circulatory systems, and deduced to be related to hypertension, cardiac or cerebral circulatory diseases such as cardiac infarction and renal diseases such as acute renal insufficiency. In addition, these peptides also have bronchial smooth muscle constrictor activity, and therefore deduced to be related to asthma.
If antagonists to the receptors of the above-mentioned peptides of the endothelin family are obtained, they are not only considered to be useful for elucidation of the functional mechanism of these peptides, but also likely to be used as effective therapeutic drugs for the above-mentioned diseases. We already filed applications for patents with respect to fermentation product-derived cyclic pentapeptides having the antagonistic activity on the endothelin receptors (Japanese Patent Application Nos. 2-413828/1990 and 3-126160/1991). It is therefore an object of the present invention to provide novel peptides which are effective similarly or more than the peptides previously filed.
The present inventors prepared novel cyclic peptides having the antagonistic activity on the endothelin receptors, and further discovered that a certain group of the peptides thus obtained had the antagonistic activity on the NK2 receptors, completing the present invention by further studies.
Namely, the present invention provides
(1) a cyclic hexapeptide represented by formula [I] or a salt thereof: ##STR2## wherein X and Y each represents α-amino acid residues, A represents a D-acidic-α-amino acid residue, B represents a neutral-α-amino acid residue, C represents an L-α-amino acid residue and D represents a D-α-amino acid residue having an aromatic ring group; and
(2) a pharmaceutical composition comprising the peptide represented by formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient, in for example, an endothelin receptor antagonist effective amount or an NK2 receptor antagonist effective amount.
The hexapeptide represented by formula [I] has 6 amide bonds including a bond between A and D, thereby showing that the molecule forms a ring as a whole. In this specification, this hexapeptide is sometimes referred to as cyclo[-A-X-Y-B-C-D-].
In formula [I], an amino acid which forms the α-amino acid residue represented by X or Y may be any amino acid as long as it is an α-amino acid. Examples thereof include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, 2-aminomalonic acid, 2-aminoadipic acid, glycine, histidine, isoleucine, leucine, lysine, ornithine, 2,4-diaminobutyric acid, methionine, phenylalanine, proline, 4-hydroxyproline, thioproline, azetidine-2-carboxylic acid, pipecolic acid (piperidine-2-carboxylic acid), indoline-2-carboxylic acid, tetrahydroisoquinoline-3-carboxylic acid, serine, threonine, tryptophan, 5-methyltryptophan, tyrosine, valine, alloisoleucine, norvaline, norleucine, tertiary leucine, γ-methylleucine, phenylglycine, 2-aminobutyric acid, cysteic acid, homocysteic acid, 1-naphthylalanine, 2-naphthylalanine, 2-thienylglycine, 3-thienylglycine, 3-benzothienyl-alanine, 4-biphenylalanine, pentamethylphenylalanine, 1-aminocyclopropane-1-carboxylic acid, 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, 1-aminocyclohexane-1-carboxylic acid and 1-aminocycloheptane-1-carboxylic acid. When these α-amino acids have functional groups such as hydroxyl, thiol, amino, imino and carboxyl, these functional groups may be substituted.
The substituted hydroxyl groups include esters such as C1-6 fatty acid esters (for example, formates, acetates and propionates), C4-9 alicyclic carboxylic acid esters (for example, cyclopentanecarboxylates and cyclohexanecarboxylates), C7-15 arylcarboxylic acid esters (for example, benzoates and 4-methylbenzoates), C8-16 aralkylcarboxylic acid esters (for example, phenylacetates, 2-phenylpropionates, 3-phenylpropionates and diphenylacetates) and aromatic heterocycle-alkylcarboxylic acid esters (for example, indole-2-ylacetates and indole-3-ylacetates); and ethers such as C1-6 alkyl ethers (for example, methyl ethers, ethyl ethers, n-propyl ethers and t-butyl ethers), C3-8 cycloalkyl ethers (for example, cyclopentyl ethers and cyclohexyl ethers), C6-12 aryl ethers (for example, phenyl ethers and 4-methylphenyl ethers) and C7-15 aralkyl ethers (for example, benzyl ethers, phenethyl ethers and diphenylmethyl ethers). Examples of the α-amino acids whose hydroxyl groups are substituted include O-acetylserine, O-acetylthreonine, 4-acetoxyproline, O-benzoylserine, O-benzoylthreonine, 4-benzoyloxyproline, O-phenylacetylserine, O-phenylacetylthreonine, 4-phenylacetoxyproline, O-ethylserine, O-ethylthreonine, 4-ethoxyproline, O-cyclohexylserine, O-cyclohexylthreonine, 4-cyclohexyloxyproline, O-phenylserine, O-phenylthreonine, 4-phenoxyproline, O-benzylserine, O-benzylthreonine, 4-benzyloxyproline, O-diphenylmethylserine, O-diphenylmethylthreonine and 4-diphenylmethoxyproline.
The substituted thiol groups include thiol esters such as C1-6 fatty acid thiol esters (for example, formic acid thiol esters, acetic acid thiol esters and propionic acid thiol esters), C4-9 alicyclic carboxylic acid thiol esters (for example, cyclopentanecarboxylic acid thiol esters and cyclohexanecarboxylic acid thiol esters), C7-15 arylcarboxylic acid thiol esters (for example, benzoic acid thiol esters and 4-methylbenzoic acid thiol esters) and C8-16 aralkylcarboxylic acid thiol esters (for example, phenylacetic acid thiol ester, 2-phenylpropionic acid thiol esters, 3-phenylpropionic acid thiol esters and diphenylacetic acid thiol esters); and thioether forms such as C1-6 alkyl thioethers (for example, methyl thioethers, ethyl thioethers, n-propyl thioethers and t-butyl thioethers), C3-8 cycloalkyl thioethers (for example, cyclopentyl thioethers and cyclohexyl thioethers), C6-12 aryl thioethers (for example, phenyl thioethers and 4-methylphenyl thioethers) and C7-15 aralkyl thioethers (for example, benzyl thioethers, phenethyl thioethers and diphenylmethyl thioethers). Examples of the α-amino acids whose thiol groups are substituted include S-acetyl-cysteine, S-benzoylcysteine, S-phenylacetylcysteine, S-ethylcysteine, S-cyclohexylcysteine, S-phenylcysteine and S-benzylcysteine.
The substituted amino groups (or imino groups) include substituted amino or imino groups such as C1-6 alkylamino (or imino) [for example, N-methylamino (or imino), N-ethylamino (or imino) and N-t-butylamino (or imino)], C3-8 cycloalkyl-amino (or imino) [for example, N-cyclopentylamino (or imino) and N-cyclohexylamino (or imino)], C6-12 arylamino (or imino) [for example, N-phenylamino (or imino) and N-{4-methylphenyl}amino (or imino)], C7-15 aralkylamino (or imino) [for example, N-benzylamino (or imino), N-phenethyl-amino (or imino), N-{2-chlorobenzyl}amino (or imino), N-{3-chlorobenzyl}amino (or imino), N-{4-chlorobenzyl}amino (or imino), N-{2-methylbenzyl}amino (or imino), N-{3-methyl-benzyl}amino (or imino), N-{4-methylbenzyl}amino (or imino), N-{2-methoxybenzyl}amino (or imino), N-{3-methoxy-benzyl}amino (or imino) and N-{4-methexybenzyl}amino (or imino)] and aromatic heterocycle-C1-5 alkylamino (or imino) [for example, 2-furylmethylamino (or imino), 3-furyl-methylamino (or imino), 2-thienylmethylamino (or imino), 3-thienylmethylamino (or imino), indole-2-ylmethylamino (or imino) and indole-3-ylmethylamino (or imino)]; and substituted amido (or imido) groups such as C1-6 aliphatic acylamido (or imido) [for example, formamido (or imido), acetamido (or imido) and propionamido (or imido)], C4-9 alicyclic acylamido (or imido) [for example, cyclopentanecarbonylamido (or imido) and cyclohexanecarbonylamido (or imido)], C7-15 arylacylamido (or imido) [for example, benzamido (or imido) and 4-methylbenzamido (or imido)], C8-16 aralkylacylamido (or imido) [for example, phenylacetamido (or imido), 2-phenylpropionamido (or imido), 3-phenylpropionamido (or imido), diphenylacetamido (or imido), 1-naphthylacetamido (or imido) and 2-naphthylacetamido (or imido)], aromatic heterocycle-carbonylamido (or imido) [for example, indole-2-ylcarbonylamido (or imido) and indole-3-ylcarbonylamido (or imido)], aromatic heterocycle-alkylcarbonylamido (or imido) [for example, indole-2-ylacetamido (or imido) and indole-3-ylacetamido (or imido)], and sulfonylamido (or imido) [for example, benzenesulfonylamido (or imido), p-toluenesulfonylamido (or imido) and 4-methoxy-2,3,6-trimethylbenzenesulfonylamido (or imido)]. Examples of the α-amino acids whose amino (or imino) groups are substituted include N-methylglycine (sarcosine), N-ethylglycine, N-methylleucine, N-ethylleucine, N-methylphenylalanine, N-ethylphenylalanine, N(α)-methyltryptophan, N(α)-ethyltryptophan, N-cyclopentylglycine, N-cyclohexylglycine, N-phenylglycine, N-phenylleucine, N-benzylglycine, N-benzylleucine, N(π)-benzylhistidine, N(τ)-benzylhistidine, N(π)-phenacylhistidine, N(π)-benzyloxymethylhistidine, Ng -benzenesulfonylarginine, Ng -p-toluenesulfonylarginine, Ng -(4-methoxy-2,3,6-trimethylbenzenesulfonyl)arginine, N(.di-elect cons.)-benzenesulfonyllysine, N(.di-elect cons.)-p-toluenesulfonyllysine, N(.di-elect cons.)-(4-methoxy-2,3,6-trimethylbenzenesulfonyl)lysine, Nin -methyltryptophan, Nin -ethyltryptophan, Nin -formyltryptophan, Nin -acetyltryptophan, N(.di-elect cons.)-benzyllysine, N(.di-elect cons.)-(2-furylmethyl)lysine, N(.di-elect cons.)-(2-thienylmethyl)lysine, N(.di-elect cons.)-(indole-3-ylmethyl)lysine, N(.di-elect cons.)-phenylacetyllysine, N(.di-elect cons.)-({2-furyl}acetyl)lysine, N(.di-elect cons.)-({2-thienyl}acetyl)lysine, N(.di-elect cons.)-({indole-3-yl}acetyl)lysine, N(.di-elect cons.)-benzoyllysine, N(.di-elect cons.)-(3-phenylpropionyl)lysine, N(δ)-benzylornithine, N(δ)-(2-furylmethyl)ornithine, N(δ)-(2-thienylmethyl)ornithine, N(δ)-(indole-3-ylmethyl)ornithine, N(δ)-benzoylornithine, N(δ)-phenylacetylornithine, N(δ)-(3-phenylpropionyl)ornithine, N(δ)-({2-methylphenyl}acetyl)ornithine, N(δ)-({3-methylphenyl}acetyl)ornithine, N(δ)-({4-methylphenyl}acetyl)ornithine, N(δ)-({2-chlorophenyl}acetyl)ornithine, N(δ)-({3-chlorophenyl}acetyl)ornithine, N(δ)-({4-chlorophenyl}acetyl)ornithine, N(δ)-({2-methoxyphenyl}acetyl)ornithine, N(δ)-({3-methoxyphenyl}acetyl)ornithine, N(δ)-({4-methoxyphenyl}acetyl)ornithine, N(δ)-(4-biphenylacetyl)ornithine, N(γ)-benzyl-2,4-diaminobutyric acid, N(γ)-(2-furylmethyl)-2,4-diaminobutyric acid, N(γ)-(2-thienylmethyl)-2,4-diaminobutyric acid, N(γ)-(indole-3-ylmethyl)-2,4-diaminobutyric acid, N(γ)-benzoyl-2,4-diaminobutyric acid, N(γ)-phenylacetyl-2,4-diaminobutyric acid, N(γ)-(3-phenylpropionyl-2,4-diaminobutyric acid, N(γ)-(2-furylacetyl)-2,4-diaminobutyric acid, N(γ)-(2-thienylacetyl)-2,4-diaminobutyric acid and N(γ)-({inole-3-yl}acetyl)-2,4-diaminobutyric acid.
The substituted carboxyl groups include amido groups such as carboxylic acid amido (--CONH2), N--C1-6 alkylamido (for example, N-methylamido, N-ethylamido, N-{n-propyl}amido and N-t-butylamido), N--C3-8 cycloalkylamido (for example, N-cyclopentylamido and N-cyclohexylamido), N--C6-12 arylamido (for example, N-phenylamido and N-{4-methylphenyl}amido), N--C7-15 aralkylamido (for example, N-benzylamido, N-phenethylamido, N-{1,2-diphenylethyl}amido), N-{aromatic heterocycle-C1-6 alkyl}amido (for example, N-[2-{indole-2-yl}ethyl]amido and N-[2-{indole-3-yl}ethyl]amido), piperidineamido, piperazineamido, N4 --C1-6 alkylpiperazineamido (for example, N4 -methylpiperazineamido and N4 -ethylpiperazineamido), N4 --C3-8 cycloalkylpiperazineamido (for example, N4 -cyclopentylpiperazineamido and N4 -cyclohexylpiperazineamido), N4 -(5 to 7 membered heterocyclicpiperazineamido (for example N4 -pyridylpiperazineamido, N4 -furylpiperazineamido, N4 -thienylpiperazineamido), N4 --C6-12 arylpiperazineamido (for example, N4 -phenylpiperazineamido and N4 -{4-methylphenyl}piperazineamido), N4 --C7-15 aralkylpiperazineamido (for example, N4 -benzylpiperazineamido, N4 -phenetylpiperazineamido, N4 -{1,2-diphenylethyl}piperazineamido), N4 -{aromatic heterocycle-C1-6 alkyl}piperazineamido (for example, N4 -[2-{indole-2-yl}ethyl]piperazineamido and N4 -[2-{indole-3-yl}ethyl]piperazineamido), N4 --C1-6 aliphatic acylpiperazineamido (for example, N4 -acetylpiperazineamido and N4 -propionylpiperazineamido), N4 --C4-9 alicyclic acylpiperazineamido (for example, N4 -cyclopentanecarbonylpiperazineamido and N4 -cyclohexanecarbonylpiperazineamido), N4 --C7-15 arylacylpiperazineamido (for example, N4 -benzoylpiperazineamido and N4 -{4-methylbenzoyl}piperazineamido), N4 --C8-16 aralkylacylpiperazineamido (for example, N4 -phenylacetylpiperazineamido N4 -{2-phenylpropion}piperazineamido, N4 -{3-phenylpropionyl}piperazineamido, N4 -diphenylacetylpiperazineamido), N4 -{1-naphthylacetyl}piperazineamido and N4 -{2-naphthylacetyl}piperazineamido), N4 -{aromatic heterocycle-carbonyl}piperazineamido (for example, N4 -{indole-2-ylcarbonyl}piperazineamido and N4 -{indole-3-ylcarbonyl}piperazineamido), and N4 -{aromatic heterocyclicalkylcarbonyl}piperazineamido (for example, N4 -{indole-2-ylacetyl}piperazineamido and N4 -{indole-3-ylacetyl}piperazineamido); and esters such as C1-6 alkyl esters (for example, methyl esters, ethyl esters and n-propyl esters), C3-8 cycloalkyl esters (for example, cyclopentyl esters and cyclohexyl esters) and C7-15 aralkyl esters (for example, benzyl esters, phenetyl esters, 1-phenylethyl esters and diphenylmethyl esters). The above-mentioned amido forms also include amido groups with α-amino acids and amido groups with oligopeptides (for example, dipeptides, tripeptides and tetrapeptides). The α-amino acids whose carboxyl groups are substituted include, for example, N4 -methylasparagine, N4 -phenylasparagine, N4 -benzylasparagine, N4 -phenethylasparagine, N4 -(2-{indole-3-yl}ethyl)asparagine, N5 -methylglutamine, N5 -phenylglutamine, N5 -benzylglutamine, N5 -phenethylglutamine, N5 -(2-{indole-3-yl}ethyl)glutamine, aspartic acid β-methyl ester, aspartic acid β-cyclopropyl ester, aspartic acid β-benzyl ester, aspartic acid β-phenethyl ester, aspattic acid β-N4 -phenylpiperazineamide, aspartic acid β-N4 -(2-methylphenyl)piperazineamide, aspartic acid β-N4 -(3-methylphenyl)piperazineamide, aspartic acid β-N4 -(4-methylphenyl)piperazineamide, aspartic acid β-N4 -(2-methoxyphenyl)piperazineamide, aspartic acid β-N4 -(3-methoxyphenyl)piperazineamide, aspartic acid β-N4 -(4-methoxyphenyl)piperazineamide, aspartic acid β-N4 -(2-chlorophenyl)piperazineamide, aspartic acid β-N4 -(3-chlorophenyl)piperazineamide, aspartic acid β-N4 -(4-chlorophenyl)piperazineamide, aspartic acid β-N4 -(4-nitrophenyl)piperazineamide, aspartic acid β-N4 -(4-fluorophenyl)piperazineamide, aspartic acid β-N4 -(3-trifluoromethylphenyl)piperazineamide, aspartic acid β-N4 -(2,3-dimethylphenyl)piperazineamide, aspartic acid β-N4 -(2-pyridyl)piperazineamide, aspartic acid β-N4 -(2-pyrimidyl)piperazineamide, glutamic acid γ-methyl ester, glutamic acid γ-cyclopropyl ester, glutamic acid γ-benzyl ester and glutamic acid γ-phenethyl ester.
The α-amino acid which forms the amino acid residue represented by X or Y in formula [I] may be any of the L-, D- and DL-forms. The L-form is, however, more preferred in each case.
An amino acid which forms the D-acidic-α-amino acid residue represented by A in formula [I] is, for example, an amino acid with an acidic group such as carboxyl, sulfonyl or tetrazolyl as a side chain. Examples of such amino acids include D-glutamic acid, D-aspartic acid, D-cysteic acid, D-homocysteic acid, D-β-(5-tetrazolyl)alanine and D-2-amino-4-(5-tetrazolyl)butyric acid. In particular, D-glutamic acid, D-aspartic acid and D-cysteic acid are preferred.
An amino acid which forms the neutral-α-amino acid residue represented by B in formula [I] is an α-amino acid. Examples of such α-amino acids include alanine, valine, norvaline, leucine, isoleucine, alloisoleucine, norleucine, tertiary leucine, γ-methylleucine, phenylglycine, phenylalanine, 1-naphthylalanine, 2-naphthylalanine, proline, 4-hydroxyproline, azetidine-2-carboxylic acid, pipecolic acid (piperidine-2-carboxylic acid), 2-thienylalanine, 2-thienylglycine, 3-thienylglycine, 1-aminocyclopropane-1-carboxylic acid, 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, 1-aminocyclohexane-1-carboxylic acid, 1-aminocycloheptane-1-carboxylic acid, 2-cyclopentylglycine and 2-cyclohexylglycine. When the above-mentioned neutral-α-amino acid exists in the L- and D-forms, the D-form is preferred. D-Leucine, D-alloisoleucine, D-tertiary leucine, D-γ-methylleucine, D-phenylglycine, D-2-thienylalanine, D-2-thienylglycine, D-3-thienylglycine and D-2-cyclopentylglycine are preferred among others. α-Imino groups of these neutral-α-amino acids may be substituted by C1-6 alkyl groups (for example, methyl, ethyl, n-propyl and t-butyl). Examples of such α-amino acids include N-methylleucine, N-methylalloisoleucine, N-methyl tertiary leucine, N-methyl γ-methylleucine and N-methylphenyl-glycine. Also for these α-amino acids, the D-form is preferred.
As an amino acid which forms the L-α-amino acid residue represented by C in formula [I], used is an L-α-amino acid usually known in the art. Examples of such L-α-amino acids include glycine, L-alanine, L-valine, L-norvaline, L-leucine, L-isoleucine, L-tertiary leucine, L-norleucine, L-methionine, L-2-aminobutyric acid, L-serine, L-threonine, L-phenylalanine, L-aspartic acid, L-glutamic acid, L-asparagine, L-glutamine, L-lysine, L-tryptophan, L-arginine, L-tyrosine and L-proline. In particular, L-leucine, L-norleucine and L-tryptophan are preferred. α-Imino groups of these L-α-amino acids may be substituted by C1-6 alkyl groups (for example, methyl, ethyl, n-propyl and t-butyl). Examples of such L-α-amino acids include L-N-methylleucine, L-N-methylnorleucine and L-N(α)-methyltryptophan.
As an amino acid which forms the D-α-amino acid residue with the aromatic ring group represented by D in formula [I], used is a D-α-amino acid having an aromatic ring group as a side chain. Preferred examples thereof include D-tryptophan, D-5-methyltryptophan, D-phenylalanine, D-tyrosine, D-1-naphthylalanine, D-2-naphthylalanine, D-3-benzothienylalanine, D-4-biphenylalanine and D-pentamethylphenylalanine. D-Tryptophan and D-5-methyltryptophan are preferred, and particularly, D-tryptophan is more preferred. The α-imino groups of the D-α-amino acids having the aromatic rings may be substituted by C1-6 alkyl groups (for example, methyl, ethyl, n-propyl and t-butyl). Further, the imino group of the indole ring of D-tryptophan may be substituted by a hydrocarbon group such as a C1-6 alkyl group (for example, methyl, ethyl, n-propyl or t-butyl), a C3-8 cycloalkyl group (for example, cyclopentyl or cyclohexyl), a C6-12 aryl group (for example, phenyl, or 4-methylphenyl) or C7-15 aralkyl (for example, benzyl or phenethyl), or an acyl group such as a C1-6 aliphatic acyl group (for example, formyl, acetyl or propionyl), a C4-9 alicyclic acyl group (for example, cyclopentanecarbonyl or cyclohexanecarbonyl), a C7-15 arylacyl group (for example, benzoyl or 4-methylbenzoyl), a C8-16 aralkylacyl group (for example, phenylacetyl, 2-phenylpropionyl, 3-phenylpropionyl or diphenylacetyl) or a C1-6 alkoxycarbonyl group (for example, methoxycarbonyl or ethoxycarbonyl). Examples of such α-amino acids include D-N(α)-methyltryptophan, D-N-methylphenylalanine, D-N-methyltyrosine, D-Nin -methyltryptophan, D-Nin -ethyltryptophan, D-Nin -formyltryptophan and D-Nin -acetyltryptophan. D-Nin -methyltryptophan, D-Nin -formyltryptophan and D-Nin -acetyltryptophan are preferred among others.
In the hexapeptide represented by formula [I], the preferable embodiments of each parameter are as follows:
X has L-configuration.
Y has L-configuration.
A is selected from the group consisting of D-glutamic acid, D-aspartic acid, D-cysteic acid and D-β-(5-tetrazolyl)alanine residue.
B has D-configuration.
B is selected from the group consisting of 1-aminocyclopropane-1-carboxylic acid, 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, 1-aminocyclohexane-1-carboxylic acid and 1-aminocycloheptane-1-carboxylic acid residue.
B is selected from the group consisting of D-leucine, D-alloisoleucine, D-tertiaryleucine, D-gammamethylleucine, D-phenylglycine, D-2-thienylglycine, D-3-thienylglycine, D-cyclopentylglycine, D-phenylalanine, D-2-thienylalanine, D-valine, D-2-furylhglycine and D-3-furylglycine residue.
C is selected from the group consisting of L-leucine, L-isoleucine, L-valine, L-norleucine and L-α-amino acid residue having aromatic moiety.
C is selected from the group consisting of L-leucine, L-phenylalanine and L-tryptophan.
D is D-tryptophan, or a derivative thereof, D-1-naphthylalanine, D-2-naphthylalanine, D-benzothienylalanine, D-4-bisphenylalanine and D-pentamethylphenylalanine residue.
The derivative of tryptophan is selected from the group consisiting of D-Nin -methyltryptophan, D-Nin -formyltryptophan and D-Nin -acetyltryptophan residue.
Preferable combinations of each parameter include such as those in which A is D-aspartic acid residue; X is tryptophan, L-(β-4-phenylpiperazine amide)aspartic acid, L-(N.sup.δ -phenylacetyl)ornithine, L-(N4 -[indol-3-yl]ethyl)ornithine, L-(4-benzyloxy)proline, L-(N5 -benzyl)glutamine or L-(N.sup.δ -[indol-3-yl]acetyl)asparagine residue; Y is L-leucine, L-aspartic acid, L-O-benzylserine, tryptophan, serine or proline residue; B is D-leucine, D-2-thienylglycine or D-3-thienylglycine residue; C is L-leucine residue; and D is D-tryptophan residue.
All the cyclic peptides represented by formula [I] of the present invention (hereinafter referred to as the cyclic peptides [I]) have the antagonistic activity on endothelin receptors. In addition, the peptides having amino acid residues such as aspartic acid and tryptophan as X and amino acid residues such as leucine, tryptophan and O-benzylserine as Y further also have the antagonistic activity on NK2 receptors.
The salts of the cyclic peptides [I] include metal salts (for example, sodium salts, potassium salts, calcium salts and magnesium salts), salts of bases or basic compounds (for example, ammonium salts and arginine salts), addition salts of inorganic acids (for example, hydrochlorides, sulfates and phosphates), and salts of organic acids (for example, acetates, propionates, citrates, tartarates, malates and oxalates).
As described in the working examples of the specification, the cyclic peptides [I] of the present invention can be produced by methods for peptide synthesis known in the art, which may be either solid phase synthesis methods or liquid phase synthesis methods. In some cases, the liquid phase synthesis methods are preferred. Examples of such methods for peptide synthesis include methods described in M. Bodansky and M. A. Ondetti, Peptide Synthesis., Interscience, New York (1966); F. M. Finn and K. Hofmann, The Proteins, Vol. 2, edited by H. Nenrath and R. L. Hill, Academic Press, New York, (1976); N. Izumiya et al., Peptide Gosei no Kiso to Jikken (Fundamentals and Experiments of Peptide Synthesis), Maruzen (1985); H. Yazima, S. Sakakibara et al., Seikagaku Jikken Koza (Course of Biochemical Experiments), 1, edited by Biochemical Society of Japan, Tokyo Kagaku Dojin (1977); H. Kimura et al., Zoku Seikagaku Jikken Koza (Course of Biochemical Experiments, second series), 2, edited by Biochemical Society of Japan, Tokyo Kagaku Dojin (1987); and J. M. Stewart and J. D. Young, Solid Phase Peptide Synthesis, Pierce Chemical Company, Illinois (1984), which describe azide methods, chloride methods, acid anhydride methods, mixed acid anhydride methods, DCC methods, active ester methods, methods using Woodward reagent K, carbodiimidazole methods, oxidation-reduction methods, DCC/HONB methods and methods using BOP reagents.
The cyclic peptide [I] of the present invention can be produced by condensing a first starting material having a reactive carboxyl group corresponding to one of two kinds of fragments which are separated at any position of its peptide bond with a second starting material having a reactive amino group corresponding to the other fragment, subsequently eliminating protective groups of the C-terminal α-carboxyl group and the N-terminal α-amino group of the resulting compound concurrently or stepwise, thereafter conducting intramolecular condensation of both by methods known in the art to obtain a cyclic compound, and then, eliminating protective groups by methods known in the art, if the resulting condensed product has any protective groups.
The above starting materials are usually amino acid and/or peptide fragments which, taken together, form the cyclic hexapeptide of the desired formula [I] or a salt thereof. They are usually linear or branched. The reactive carboxyl group means carboxyl group itself or an activated carboxyl group. The reactive amino group means amino group itself or an activated amino group. One of the two functional groups taking part in the condensation reaction is usually activated.
The carboxyl group and the amino group which do not take part in the condensation reaction are usually protected before the condensation reaction.
Protection of functional groups which should not affect the reaction of the starting materials, the protective groups and elimination of the protective groups, and activation of functional groups related to the reaction can also be suitably selected from groups or methods known in the art.
Examples of the protective groups for the amino groups of the starting materials include benzyloxycarbonyl, t-butyloxy-carbonyl, t-amyloxycarbonyl, isobornyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-chlorobenzyloxycarbonyl, adamantyloxycarbonyl, trifluoroacetyl, phthalyl, formyl, 2-nitrophenylsulfenyl, diphenylphosphinothioyl and 9-fluorenylmethyloxycarbonyl. The protective groups for the carboxyl groups include, for example, alkyl esters (such as esters of methyl, ethyl, propyl, butyl, t-butyl, cyclo-pentyl, cyclohexyl, cycloheptyl, cyclooctyl and 2-adamantyl), benzyl esters, 4-nitrobenzyl esters, 4-methoxybenzyl esters, 4-chlorobenzyl esters, benzhydryl esters, phenacyl esters, benzyloxycarbonylhydrazide, t-butyloxycarbonylhydrazide and tritylhydrazide.
The hydroxyl group of serine can be protected, for example, by esterification or etherification. Examples of groups suitable for this esterification include lower aliphatic acyl groups such as acetyl, arylacyl groups such as benzoyl, and carbonic acid-derived groups such as benzyloxycarbonyl and ethyloxycarbonyl. Examples of groups suitable for the etherification include benzyl, tetrahydropyranyl and t-butyl. However, the hydroxyl group of serine is not always required to be protected.
Examples of the protective groups for the phenolic hydroxyl group of tyrosine include benzyl, 2,6-dichlorobenzyl, 2-nitrobenzyl, 2-bromobenzyloxycarbonyl and t-butyl. However, the phenolic hydroxyl group of tyrosine is not always required to be protected.
Methionine may be protected in the form of sulfoxides.
The protective groups for the imidazole ring of histidine include p-toluenesulfonyl, 4-methoxy-2,3,6-trimethylbenzenesulfonyl, 2,4-dinitrophenyl, benzyloxymethyl, t-butoxymethyl, t-butoxycarbonyl, trityl and 9-fluorenylmethyloxycarbonyl. However, the imidazole ring is not always required to be protected.
The protective groups for the indole ring of tryptophan include formyl, 2,4,6-trimethylbenzensulfonyl, 2,4,6-trimethoxybenzenesulfonyl, 4-methoxy-2,3,6-trimethylbenzenesulfonyl, 2,2,2-trichloroethyloxycarbonyl and diphenylphosphinothioyl. However, the indole ring is not always required to be protected.
Examples of the activated carboxyl groups of the starting materials include the corresponding acid anhydrides, azides and active esters (esters of alcohols such as pentachloro-phenol, 2,4,5-trichlorophenol, 2,4-dinitrophenol, cyano-methyl alcohol, p-nitrophenol, N-hydroxy-5-norbornene-2,3-dicarboxyimide, N-hydroxysuccinimide, N-hydroxyphthalimide and N-hydroxybenzotriazole. Examples of the activated amino acid groups of the raw materials include the corresponding phosphoric acid amides.
Condensation reaction can be conducted in the presence of a solvent(s). The solvent(s) can be appropriately selected from the solvents commonly used in peptide condensation reactions. Examples of the solvents include anhydrous or hydrous dimethylformamide, dimethyl sulfoxide, pyridine, chloroform, dioxane, dichloromethane, tetrahydrofuran, acetonitrile, ethyl acetate, N-methylpyrrolidone and appropriate mixtures thereof.
The reaction temperature is appropriately selected from the temperature range commonly used in peptide bond-forming reactions, usually from the range of about -20° to about 30° C.
Intramolecular cyclization reaction can be conducted at any position of the peptide by methods known in the art. For example, the protective group of the C-terminal α-carboxyl group of the protected peptide is first eliminated by methods known in the art, and then, the carboxyl group is activated by methods known in the art, followed by elimination of the protective group of the N-terminal α-amino group by methods known in the art and intramolecular cyclization. The protective groups of the C-terminal α-carboxyl group and the N-terminal α-amino group of the protected peptide may be concurrently eliminated, followed by intramolecular cyclization according to known condensation reaction. In some cases, intramolecular cyclization reaction is preferably conducted in a highly diluted state.
Examples of methods for eliminating the protective groups include catalytic reduction in the presence of a catalyst such as palladium black or Pd-carbon in a stream of hydrogen, acid treatment with anhydrous hydrogen fluoride, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid or mixtures thereof, and reduction with sodium in liquid ammonia. The elimination reaction by the above-mentioned acid treatment is generally conducted at a temperature between -20° and 40° C. In the acid treatment, it is effective to add a cation trapping agent such as anisole, phenol, thioanisole, m-cresol, p-cresol, dimethylsulfide, 1,4-butanedithiol or 1,2-ethanedithiol. The 2,4-dinitrophenyl group used as the protective group for the imidazole ring of histidine is eliminated by thiophenol treatment. The formyl group used as the protective group for the indole ring of tryptophan may be eliminated by either (i) alkali treatment using dilute sodium hydroxide, dilute ammonia or the like, or (ii) the above-mentioned elimination by the acid treatment in the presence of 1,2-ethanedithiol, 1,4-butanedithiol or the like.
After completion of the reaction, the cyclic peptide [I] thus obtained is collected by conventional separation and purification methods of peptides such as extraction, distribution, reprecipitation, recrystallization, column chromatography and high performance liquid chromatography.
The cyclic peptides [I] of the present invention can be obtained by methods known in the art as the metal salts, the salts of bases or basic compounds, the inorganic acid addition salts, the organic acid salts and the like, and particularly as pharmaceutically acceptable acid addition salts such as the salts of inorganic acids (for example, hydrochloric acid, sulfuric acid and phosphoric acid) or organic acids (for example, acetic acid, propionic acid, citric acid, tartaric acid, malic acid, oxalic acid and methanesulfonic acid).
In this specification, amino acids and peptides are indicated by the abbreviations commonly used in the art or adopted by the IUPAC-IUB Commission on Biochemical Nomenclature. For example, the following abbreviations are used:
______________________________________
Gly Glycine
Sar Sarcosine (N-methylglycine)
Ala Alanine
Val Valine
Nva Norvaline
Ile Isoleucine
aIle Alloisoleucine
Nle Norleucine
Leu Leucine
N-MeLeu N-Methylleucine
tLeu t-Leucine
γMeLeu γ-Methylleucine
Met Methionine
Arg Arginine
Arg(Tos) N.sup.g -p-Toluenesulfonylarginine
Lys Lysine
Lys(Mtr) N(ε)-(4-Methoxy-2,3,6-trimethyl-
benzenesulfonyl)lysine
Orn Ornithine
Orn(COPh) N(δ)-Benzoylornithine
Orn(COCH.sub.2 Ph)
N(δ)-Phenylacetylornitine
Orn(COCH.sub.2 CH.sub.2 Ph)
N(δ)-(3-Phenylpropionyl)ornithine
Orn(COCH.sub.2 --Ind)
N(δ)-({Indole-3-yl}acetyl)ornithine
His Histidine
His(Bom) N(π)-Benzyloxymethylhistidine
His(Bzl) N(τ)-Benzylhistidine
Asp Aspartic acid
Asn(CH.sub.2 Ph)
N.sup.4 -Benzylasparagine
Asn(CH.sub.2 CH.sub.2 Ph)
N.sup.4 -Phenethylasparagine
Asn(CH.sub.2 CH.sub.2 --Ind)
N.sup.4 -(2-{Indole-3-yl}ethyl)asparagine
Asn(Me.CH.sub.2 CH.sub.2 Ph)
N.sup.4 -Methyl-N.sup.4 -phenethylasparagine
Asn(CH.sub.2 CHMePh)
N.sup.4 -({2-phenyl}propyl)asparagine
Asp(R1) Aspartic acid β-4-phenylpiperazine-
amide
Asp(R2) Aspartic acid β-4-phenylpiperidine-
amide
Asp(R3) Aspartic acid β-indolineamide
Asp(R4) Aspartic acid β-1-aminoindanamide
Asp(R5) Aspartic acid β-1-aminotetrahydro-
naphthaleneamide
Asp(R6) Aspartic acid β-4-acetylpiperazine-
amide
Glu Glutamic acid
Gln(CH.sub.2 Ph)
N.sup.5 -Benzylglutamine
Gln(CH.sub.2 CH.sub.2 Ph)
N.sup.5 -Phenethylglutamine
Gln(CH.sub.2 CH.sub.2 --Ind)
N.sup.5 -(2-{Indole-3-yl}ethyl)glutamine
Glu(R3) Glutamic acid γ-indolineamide
Glu(R4) Glutamic acid γ-1-aminoindanamide
Glu(R5) Glutamic acid γ-1-aminotetrahydro-
naphthaleneamide
Cys Cysteine
Cta Cysteic acid
Ser Serine
Ser(Bzl) O-Benzylserine
Thr Threonine
Thr(Bzl) O-Benzylthreonine
Pro Proline
Tpr Thioproline
Hys 4-Hydroxyproline
Hys(Bzl) 4-Benzyloxyproline
Azc Azetidine-2-carboxylic acid
Pip Pipecolic acid (piperidine-2-
carboxylic acid)
Phe Phenylalanine
N-MePhe N-Methylphenylalanine
Tyr Tyrosine
Trp Tryptophan
mTrp 5-Methyltryptophan
N-MeTrp N(α)-Methyltryptophan
Trp(Me) N.sup.in -Methyltryptophan
Trp(For) N.sup.in -Formyltryptophan
Trp(Ac) N.sup.in -Acethyltryptophan
Phg Phenylglycine
Nal(1) 1-Naphthylalanine
Nal(2) 2-Naphthylalanine
Thi 2-Thienylalanine
Thg(2) 2-Thienylglycine
Thg(3) 3-Thienylglycine
Acpr 1-Aminocyclopropane-1-carboxylic acid
Acbu 1-Aminocyclobutane-1-carboxylic acid
Acpe 1-Aminocyclopentane-1-carboxylic acid
Achx 1-Aminocyclohexane-1-carboxylic acid
Achp 1-Aminocycloheptane-1-carboxylic acid
Tic Tetrahydroisoquinoline-2-carboxylic
acid
______________________________________
______________________________________ AcOEt Ethyl acetate Boc t-Butoxycarbonyl Bzl Benzyl BrZ 2-Bromobenzyloxycarbonyl Clz 2-Chlorobenzyloxycarbonyl Tos p-Toluenesulfonyl For Formyl OBzl Benzyl ester 0Pac Phenacyl ester ONB HONB ester TFA Trifluoroacetic acid TEA Triethylamine IBCF Isobutyl chloroformate DMF N,N-Dimethylformamide DCC N,N'-Dicyclohexylcarbodiimide DCU N,N'-Dicyclohexylurea HONB N-Hydroxy-5-norbornene-2,3-dicarboxy-imide HOBt 1-Hydroxybenzotriazole DCM Dichloromethane THF Tetrahydrofuran ______________________________________
The cyclic peptides of the present invention have the following pharmacological activity. Namely, the novel cyclic peptides [I] of the present invention or the pharmaceutically acceptable salts thereof have the antagonistic activity on endothelin receptors as shown in the experimental examples described below. Further, the certain group of cyclic peptides [I] or pharmaceutically acceptable salt thereof also have the antagonistic activity on NK2 receptors. The cyclic peptides [I] or pharmaceutically acceptable salt thereof can be used as prophylactic and therapeutic drugs for hypertension, cardiac or cerebral circulatory diseases, renal diseases, asthma and the like, because they have the antagonistic activity on endothelin receptors. Further, the cyclic peptides [I] or pharmaceutically acceptable salt thereof having the antagonistic activity on NK2 receptors in addition can also be used as anti-inflammatory drugs and antarthritics.
Recent investigations on the endothelin receptors revealed that the endothelin receptors have two subtypes (ETA and ETB) [for example, the Twelfth Medicinal Chemistry Symposium-the First Annual Meeting of the Medical Chemistry Section, Okayama, Dec. 4 to 6, 1991, Summaries of Lectures, page 82 (Lecture No. P-20); the Third Endothelin Symposium, Tsukuba, Dec. 13 and 14, 1991, Summaries of Lectures, (Lecture No. P-05); and Nature, 348, 730-735 (1990)]. Preferred novel cyclic peptides [I] of the present invention strongly bind not only to ETA, but also to ETB to act as the antagonists on endothelin receptors, as shown in the experimental examples described below. Further, the certain group of the novel cyclic peptides [I] of the present invention have the antagonistic activity on NK2 receptors, one of tachykinin peptide receptors, in addition. As the tachykinin family, substance P, neurokinin A and neurokinin B are known [Y. Yokoto et al., J. Biol. Chem., 264, 17649 (1989); A. D. Hershey et al., Science, 247, 958 (1990); Y. Sasai et al., Biochem. Biophys. Res. Commun., 165, 695 (1989); R. Shigemoto et al., J. Biol. Chem., 265, 623 (1990); and A. Graham et al., Biochem. Biophys. Res. Commun., 177, 8 (1991)], and NK1, NK2 and NK3 are known respectively, as receptors corresponding to ligands thereof. Antagonists on NK receptors are described in Japanese Patent Unexamined Publication Nos. 2197/1991, 17098/1991 and 141295/1991. However, the compounds disclosed therein are different from the cyclic hexapeptides [I] of the present invention in structure.
The novel cyclic peptides [I] of the present invention have the remarkable effect of suppressing the vasopressor activity of endothelin as the antagonists on endothelin receptors, and some of them also have the strong activity as the antagonists on NK2 receptors. For this reason, the novel cyclic peptides of the present invention or the salts thereof can be used as prophylactic and therapeutic drugs for hypertension, cardiac or cerebral circulatory diseases (for example, cardiac infarction), renal diseases for example, acute renal insufficiency), asthma and the like. Further, the cyclic peptides having the antagonistic activity on NK2 receptors in addition can also be used as the anti-inflammatory drugs and the antarthritics.
The cyclic peptides of the present invention, when used as the above-mentioned prophylactic and therapeutic drugs, can be safely administered orally or parenterally in the form of powders, granules, tablets, capsules, injections, suppositories, ointments or sustained release preparations, alone or in combination with pharmaceutically acceptable carriers, excipients or diluents. The peptides of the present invention are typically administered parenterally, for example, by intravenous or subcutaneous injection, intraventricular or intraspinal administration, nasotracheal administration or intrarectal administration. In some cases, however, they are administered orally.
The cyclic peptides of the present invention are generally stable substances, and therefore, can be stored as physiological saline solutions. It is also possible to lyophilize the peptides, store them in ampules with mannitol or sorbitol, and dissolve them in a suitable carrier at the time of use. The cyclic peptides of the present invention can be given in their free forms, or in the form of base salts or acid addition salts thereof. All of the free cyclic peptides, the base salts and the acid addition salts thereof are generally given in a proper dose within the range of 1 μg to 100 mg of free peptide per kg of weight. More specifically, although the dosage varies depending on the type of disease to be treated, the symptom of the disease, the object to which the drugs are given and the route of administration, when given by injection to adult patients of hypertension, for example, it is advantageous that the active ingredients (the peptides [I] or pharmaceutically acceptable salt thereof) are normally given in one dose of about 1 μg to 100 mg/kg of weight, more preferably about 100 μg to 20 mg/kg of weight, most preferably 1 mg to 20 mg/kg of weight, about once to 3 times a day. In injection, the peptides [I] are usually given intravenously. Drip infusion is also effective. In this case, the total dosage is the same as with injection.
When the cyclic peptides of the present invention or the pharmaceutically acceptable salts thereof are used as the prophylactic or therapeutic drugs, they must be carefully purified so as to contain no bacteria and no pyrogens.
The present invention will be described in more detail with the following examples and experimental examples, in which all amino acid residues take the L-form unless otherwise specified, when they have the D- and L-forms.
In the following examples, SILICAGEL 60F-254 (Merck) was used as the plates of thin layer chromatography, and chloroform-methanol (19:1) and chloroform-methanol-acetic acid (9:1:0.5) were used as the developing solvents for Rf1 and Rf2, respectively.
Production of cyclo[-D-Asp-Ala-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-D-Leu-Leu-OBzl
H-Leu-OBzl.pTos (21.6 g) was dissolved in DMF (100 ml), and the solution was cooled with ice. TEA (7.7 ml) and Boc-D-Leu-ONB [prepared from Boc-D-Leu-OH.H2 O (12.5 g), HONB (9.86 g) and DCC (11.4 g) were added thereto, followed by stirring overnight. The resulting DCU was separated by filtration, and the filtrate was concentrated to obtain a residue. The residue was dissolved in AcOEt, and the resulting solution was washed with 4% aqueous NaHCO3 and 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 19.8 g (91.3%), Melting point: 94°-95° C., Rf2 : 0.76 [α]D 25 +3.6° (c=1.06, in DMF)
Elemental analysis: As C24 H38 N2 O5 Calculated: C, 66.33; H, 8.81; N, 6.45 Found: C, 66.38; H, 8.87; N, 6.53
(2) Production of Boc-D-Leu-Leu-OPac
Boc-D-Leu-Leu-OBzl (6.0 g) was dissolved in methanol (20 ml) and catalytically reduced in a stream of hydrogen using 10% Pd-carbon as a catalyst. After the catalyst was separated by filtration, the solution was concentrated to obtain a residue. The residue and Cs2 CO3 (2.1 g) were dissolved in 90% aqueous methanol, and the solution was concentrated. The resulting residue was dissolved in DMF (60 ml), and phenacyl bromide (2.8 g) was added thereto, followed by stirring overnight. The resulting TEA hydrochloride was separated by filtration, and the filtrate was concentrated to obtain a residue. The residue was dissolved in AcOEt, and the resulting solution was washed with 4% aqueous NaHCO3 and 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 5.48 g (85.8%), Melting point: 98°-99° C., Rf2 : 0.66 [α]D 25 -3.9° (c=1.09, in DMF)
Elemental analysis: As C25 H38 N2 O6 Calculated: C, 64.91; H, 8.28; N, 6.06 Found: C, 65.21; H, 8.54; N, 6.24
(3) Production of Boc-Asp(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Leu-Leu-OPac (1.85 g) to dissolve it, followed by concentration. 4% aqueous NaHCO3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na2 SO4, concentrated and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-Asp(OBzl)-ONB [prepared from Boc-Asp(OBzl)-OH (1.42 g), HONB (0.86 g) and DCC (0.99 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.31 g (86.5%), Melting point: 119°-121° C., Rf1 : 0.57, Rf2 : 0.79 [α]D 28 -40.8° (c=0.93, in DMF)
Elemental analysis: As C36 H49 N3 O9 Calculated: C, 64.75; H, 7.40; N, 6.29 Found: C, 64.73; H, 7.41; N, 6.45
(4) Production of Boc-Ala-Asp(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.14 g) to dissolve it, followed by concentration. 8-N HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Ala-ONB [prepared from Boc-Ala-OH (0.61 g), HONB (0.63 g) and DCC (0.73 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2 28 g (96 4%), Melting point: 132°-133° C., Rf1 : 0.34, Rf2 : 0.66 [α]D 28 -46.6° (c=0.76, in DMF)
Elemental analysis: As C39 H54 N4 O10 Calculated: C, 63.40; H, 7.37; N, 7.58 Found: C, 63.15; H, 7.44; N, 7.66
(5) Production of Boc-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Ala-Asp(OBzl)-D-Leu-Leu-OPac (1.77 g) to dissolve it, followed by concentration. 8-N HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.08 g (91.8%), Melting point: 92°-94° C., Rf1 : 0.38, Rf2 : 0.70 [α]D 28 -21.0° (c=0.64, in DMF)
Elemental analysis: As C50 H65 N5 O13 Calculated: C, 63.61; H, 6.94; N, 7.42 Found: C, 63.33; H, 6.98; N, 7.52
(6) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OPac (1.60 g) to dissolve it, followed by concentration. 8-N HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml), and cooled with ice. Then, TEA (0.48 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.61 g (83.8%), Melting point: 160°-162° C., Rf1 : 0.35, Rf2 : 0.68 [α]D 28 +17.5° (c=0.71, in DMF)
Elemental analysis: As C61 H75 N7 O14 Calculated: C, 64.82; H, 6.69; N, 8.67 Found: C, 64.70; H, 6.72; N, 8.81
(7) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-Asp(BOzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OPac (1.47 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.23 g (93.5%), Melting point: 195°-196° C., Rf1 : 0.14, Rf2 : 0.67 [α]D 28 +27.1° (c=0.65, in DMF)
Elemental analysis: As C53 H69 N7 O13 Calculated: C, 62.89; H, 6.87; N, 9.69 Found: C, 63.02; H, 6.57; N, 9.68
(8) Production of cyclo[-D-Asp-Ala-Asp-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Ala-Asp(OBzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. Ethanedithiol (0.09 ml) and 8-N HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.7 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 89 mg was dissolved in DMF (15 ml), and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 13.6 mg (18.2%).
Anal. for amino acids [6-N HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Ala 1.06(1); Leu 2.11(2) LSIMS (M+H+)=714, (theoretical value)=714
Production of cyclo[-D-Asp-Ala-D-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-D-Asp(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Leu-Leu-OPac (1.85 g) prepared in EXAMPLE 1 (2) to dissolve it, followed by concentration. 4% aqueous NaHCO3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na2 SO4 and concentrated. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.42 g), HONB (0.86 g) and DCC (0.99 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.58 g (96.4%), Melting point: 113°-114° C., Rf1 : 0.51, Rf2 : 0.75 [α]D 28 +14.2° (c=1.23, in DMF)
Elemental analysis: As C36 H49 N3 O9 Calculated: C, 64.75; H, 7.40; N, 6.29 Found: C, 64.78; H, 7.50; N, 6.47
(2) Production of Boc-Ala-D-Asp(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-D-Leu-Leu-OPac (2.14 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Ala-ONB [prepared from Boc-Ala-OH (0.61 g), HONB (0.63 g) and DCC (0.73 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.08 g (88.0%), Melting point: 167°-168° C., Rf1 : 0.36, Rf2 : 0.67 [α]D 28 +5.99° (c=0.94, in DMF)
Elemental analysis: As C39 H54 N4 O10 Calculated: C, 63.40; H, 7.37; N, 7.58 Found: C, 63.32; H, 7.47; N, 7.74
(3) Production of Boc-D-Asp(OBzl)-Ala-D-Asp(BOzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Ala-D-Asp(OBzl)-D-Leu-Leu-OPac (1.77 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.79 g (79 0%), Melting point: 120°-121° C., Rf1 : 0.37, Rf2 : 0.70 [α]D 28 +34.2° (c=0.85, in DMF)
Elemental analysis: As C50 H65 N5 O13 Calculated: C, 63.61; H, 6.94; N, 7.42 Found: C, 63.70; H, 6.89; N, 7.63
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-D-Asp(BOzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-D-Asp(OBzl)-D-Leu-Leu-OPac (1.60 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.48 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1 62 g (84 3%), Melting point: 178°-179° C., Rf1 : 0.37, Rf2 : 0.69 [α]D 28 +41.1° (c=0.84, in DMF)
Elemental analysis: As C61 H75 N7 O14 Calculated: C, 64.82; H, 6.69; N, 8.67 Found: C, 64.69; H, 6.74; N, 8.88
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-D-Asp(BOzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Ala-D-Asp(BOzl)-D-Leu-Leu-OPac (1.47 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.23 g (93.5%), Melting point: 165°-166° C., Rf1 : 0.17, Rf2 : 0.67 [α]D 28 +54.5° (c=1.05, in DMF)
Elemental analysis: As C53 H69 N7 O13 Calculated: C, 62.89; H, 6.87; N, 9.69 Found: C, 62.59; H, 7.05; N, 9.63
(6) Production of cyclo[-D-Asp-Ala-D-Asp-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Ala-D-Asp(BOzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.7 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 89 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 23.4 mg (15.3%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Ala 1.04(1); Leu 2.07(2) LSIMS (M+H+)=714, (theoretical value)=714
Production of cyclo[-D-Asp-Ala-Glu-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Glu(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Leu-Leu-OPac (1.85 g) prepared in example 1 (2) to dissolve it, followed by concentration. 4% aqueous NaHCO3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na2 SO4 and concentrated. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-Glu(OBzl)-ONB [prepared from Boc-Glu(OBzl)-OH (1.48 g), HONB (0.86 g) and DCC (0.99 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.04 g (74.5%), Melting point: 118°-120° C., Rf1 : 0.41, Rf2 : 0.71 [α]D 28 -23.8° (c=0.84, in DMF)
Elemental analysis: As C37 H51 N3 O9 Calculated: C, 65.18; H, 7.54; N, 6.16 Found: C, 65.20; H, 7.73; N, 6.34
(2) Production of Boc-Ala-Glu(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Glu(OBzl)-D-Leu-Leu-OPac (1.91 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.88 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Ala-ONB [prepared from Boc-Ala-OH (0.53 g), HONB (0.55 g) and DCC (0.64 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in ACOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.00 g (94.9%), Melting point: 129°-130° C., Rf1 : 0.36, Rf2 : 0.67 [α]D 28 -32.9° (c=1.03, in DMF)
Elemental analysis: As C40 H56 N4 O10 Calculated: C, 63.81; H, 7.50; N, 7.44 Found: C, 63.70; H, 7.55; N, 7.62
(3) Production of Boc-D-Asp(OBzl)-Ala-Glu(BOzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Ala-Glu(OBzl)-D-Leu-Leu-OPac (1.81 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2 07 g (90 0%), Melting point: 149°-151° C., Rf1 : 0.34, Rf2 : 0.69 [α]D 28 +3.00° (c=1.14, in DMF)
Elemental analysis: As C51 H67 N5 O13 Calculated: C, 63.93; H, 7.05; N, 7.31 Found: C, 64.01; H, 7.11; N, 7.48
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-Glu(BOzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-Glu(OBzl)-D-Leu-Leu-OPac (1.63 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.48 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1 91 g (98 2%), Melting point: 172°-174° C., Rf1 : 0.37, Rf2 : 0.69 [α]D 28 +28.8° (c=0.68, in DMF)
Elemental analysis: As C62 H77 N7 O14 Calculated: C, 65.08; H, 6.78; N, 8.57 Found: C, 64.84; H, 6.83; N, 8.80
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-Glu(BOzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Ala-Glu(BOzl)-D-Leu-Leu-OPac (1.49 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.30 g (97.5%), Melting point: 192°-194° C., Rf1 : 0.12, Rf2 : 0.66 [α]D 28 +37.7° (c=0.92, in DMF)
Elemental analysis: As C54 H71 N7 O13 Calculated: C, 63.20; H, 6.97; N, 9.55 Found: C, 63.02; H, 6.96; N, 9.63
(6) Production of cyclo[-D-Asp-Ala-Glu-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Ala-Glu(BOzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.7 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 91 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 17.7 mg (24.1%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 1.00(1); Glu 1.04(1); Ala 1.05 (1); Leu 2.07(2) LSIMS (M+H+)=728, (theoretical value)=728
Production of cyclo[-D-Asp-Ala-D-Glu-D-Leu-Leu-D-Trp-]
(1) Production of Boc-D-Glu(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Leu-Leu-OPac (1.85 g) prepared in example 1 (2) to dissolve it, followed by concentration. 4% aqueous NaHCO3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na2 SO4 and concentrated. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-D-Glu(OBzl)-ONB [prepared from Boc-D-Glu(OBzl)-OH (1.48 g), HONB (0.86 g) and DCC (0.99 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.21 g (81.0%), Melting point: 136°-137° C., Rf1 : 0.40, Rf2 : 0.68 [α]D 28 -3.33° (c=1.02, in DMF)
Elemental analysis: As C37 H51 N3 O9 Calculated: C, 65.18; H, 7.54; N, 6.16 Found: C, 65.23; H, 7.65; N, 6.10
(2) Production of Boc-Ala-D-Glu(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Glu(OBzl)-D-Leu-Leu-OPac (1.91 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.88 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Ala-ONB [prepared from Boc-Ala-OH (0.53 g), HONB (0.55 g) and DCC (0.64 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.92 g (91.1%), Melting point: 187°-188° C., Rf1 : 0.36, Rf2 : 0.68 [α]D 28 -15.2° (c=0.94, in DMF)
Elemental analysis: As C40 H56 N4 O10 Calculated: C, 63.81; H, 7.50; N, 7.44 Found: C, 63.91; H, 7.59; N, 7.74
(3) Production of Boc-D-Asp(OBzl)-Ala-D-Glu(BOzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Ala-D-Glu(OBzl)-D-Leu-Leu-OPac (1.81 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.75 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.67 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.85 g), HONB (0.51 g) and DCC (0.60 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.83 g (79.6%), Melting point: 116°-117° C., Rf1 : 0.35, Rf2 : 0.69 [α]D 28 +17.40 (c=0.80, in DMF)
Elemental analysis: As C51 H67 N5 O13 Calculated: C, 63.93; H, 7.05; N, 7.31 Found: C, 63.77; H, 7.01; N, 7.44
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-D-Glu(OBzl)-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-Ala-D-Glu(OBzl)-D-Leu-Leu-OPac (1.63 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (0.53 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.48 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.57 g), HONB (0.37 g) and DCC (0.42 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.64 g (84.3%), Melting point: 149°-150° C., Rf1 : 0.38, Rf2 : 0.70 [α]D 28 +24.2° (c=0.66, in DMF)
Elemental analysis: As C62 H77 N7 O14 Calculated: C, 65.08; H, 6.78; N, 8.57 Found: C, 64.91; H, 6.86; N, 8.67
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-D-Glu(BOzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Ala-D-Glu(BOzl)-D-Leu-Leu-OPac (1.49 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (4.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.24 g (93.0%), Melting point: 147°-149° C., Rf1 : 0.18, Rf2 : 0.67 [α]D 28 +44.1° (c=0.86, in DMF)
Elemental analysis: As C54 H71 N7 O13 Calculated: C, 63.20; H, 6.97; N, 9.55 Found: C, 62.90; H, 7.10; N, 9.48
(6) Production of cyclo[-D-Asp-Ala-D-Glu-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Ala-D-Glu(BOzl)-D-Leu-Leu-OH (0.51 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. Ethanedithiol (0.09 ml) and 8-N HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.7 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 91 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 14.3 mg (10.8%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 1.00(1); Glu 1.04(1); Ala 1.05(1); Leu 2.09(2) LSIMS (M+H+)=728, (theoretical value)=728
Production of cyclo[-D-Asp-Gly-Ala-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Leu-Leu-OPac (6.50 g) prepared in example 1 (2) to dissolve it, followed by concentration. 4% aqueous NaHCO3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na2 SO4 and concentrated. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (2.07 ml) was added thereto. Boc-Ala-ONB [prepared from Boc-Ala-OH (2.67 g), HONB (2.65 g) and DCC (3.05 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 6 70 g (90 0%), Melting point: 121.0°-122.0° C., Rf1 : 0.56, Rf2 : 0.71 [α]D 25 -12.0° (c=1.01, in DMF)
Elemental analysis: As C28 H43 N3 O7 Calculated: C, 63.02; H, 8.12; N, 7.87 Found: C, 63.07; H, 7.90; N, 7.92
(2) Production of Boc-Gly-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Ala-D-Leu-Leu-OPac (2.20 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.61 ml) was added thereto. Boc-Gly-ONB [prepared from Boc-Gly-OH (0.72 g), HONB (0.78 g) and DCC (0.89 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2 26 g (93 2%), Melting point: 158.5°-160.0° C., Rf1 : 0.30, Rf2 : 0.54 [α]D 25 -4.8° (c=1.02, in DMF)
Elemental analysis: As C30 H46 N4 O8 Calculated: C, 61.00; H, 7.85; N, 9.48 Found: C, 60.92; H, 7.91; N, 9.66
(3) Production of Boc-D-Asp(OBzl)-Gly-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Gly-Ala-D-Leu-Leu-OPac (2.23 g) to dissolve it, followed by concentration. 8-N HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.55 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.22 g), HONB (0.71 g) and DCC (0.82 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.62 g (87.3%), Melting point: 68.0°-69.5° C., Rf1 : 0.25, Rf2 : 0.53 [α]D 25 +5.4° (c=1.03, in DMF)
Elemental analysis: As C41 H57 N5 O11 Calculated: C, 61.87; H, 7.22; N, 8.80 Found: C, 61.78; H, 7.34; N, 8.62
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Gly-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-Gly-Ala-D-Leu-Leu-OPac (2.51 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.46 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.96 g), HONB (0.59 g) and DCC (0.68 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.52 g (49.1%), Melting point: 109.5°-110.0° C., Rf1 : 0.27, Rf2 : 0.54 [α]D 25 +9.0° (c=1.04, in DMF)
Elemental analysis: As C52 H67 N7 O12 Calculated: C, 63.59; H, 6.88; N, 9.98 Found: C, 63.72; H, 6.96; N, 10.17
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Gly-Ala-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Gly-Ala-D-Leu-Leu-OPac (0.50 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.66 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 385 mg (87 5%), Melting point: 120.0°-122.0° C., Rf1 : 0.02, Rf2 : 0.40 [α]D 25 +23.0° (c=1.01, in DMF)
Elemental analysis: As C44 H61 N7 O11 Calculated: C, 61.17; H, 7.12; N, 11.35 Found: C, 61.28; H, 7.08; N, 11.11
(6) Production of cyclo[-D-Asp-Gly-Ala-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D/Asp(OBzl)-Gly-Ala-D-Leu-Leu-OH (0.51 g) was dissolved in acetonitrile (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.7 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 51 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 28.5 mg (19.2%).
Anal. for amino acids [6-N HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 1.00(1); Gly 1.03(1); Ala 1.04(1); Leu 2.09(2) LSIMS (M+H+)=656, (theoretical value)=656
Production of cyclo[-D-Asp-Asp-Ala-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Asp(OBzl)-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Ala-D-Leu-Leu-OPac (2.20 g) prepared in example 5 (1) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.61 ml) was added thereto. Boc-Asp(OBzl)-ONB [prepared from Boc-Asp(OBzl)-OH (1.33 g), HONB (0.78 g) and DCC (0.89 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.87 g (94.2%), Melting point: 149.5°-150.5° C., Rf1 : 0.58, Rf2 : 0.68 [α]D 25 -15.2° (c=1.02, in DMF)
Elemental analysis: As C39 H54 N4 O10 Calculated: C, 63.40; H, 7.37; N, 7.58 Found: C, 63.55; H, 7.42; N, 7.68
(2) Production of Boc-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Asp(OBzl)-Ala-D-Leu-Leu-OPac (2.77 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.55 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.21 g), HONB (0.71 g) and DCC (0.81 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 3.08 g (87.0%), Melting point: 72.0°-74.0° C., Rf1 : 0.56, Rf2 : 0.64 [α]D 25 -7.0° (c=1.02, in DMF)
Elemental analysis: As C50 H65 N5 O13 Calculated: C, 63.61; H, 6.94; N, 7.42 Found: C, 63.38; H, 6.88; N, 7.42
(3) Production of Boc-D-Trp-D-Asp(OBzl)-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OPac (2.94 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.46 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.96 g), HONB (0.59 g) and DCC (0.68 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.61 g (77.0%), Melting point: 190.0°-192.5° C., Rf1 : 0.49, Rf2 : 0.60 [α]D 25 +4.9° (c=1.03, in DMF)
Elemental analysis: As C61 H75 N7 O14 Calculated: C, 64.82; H, 6.69; N, 8.67 Found: C, 65.01; H, 6.78; N, 8.87
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OPac (0.50 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.66 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 363 mg (81.0%), Melting point: 174.0°-175.0° C., Rf1 : 0.04, Rf2 : 0.50 [α]D 25 +12.1° (c=1.03, in DMF)
Elemental analysis: As C53 H69 N7 O13 Calculated: C, 62.89; H, 6.87; N, 9.69 Found: C, 62.92; H, 6.89; N, 9.78
(5) Production of cyclo[-D-Asp-Asp-Ala-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Asp(OBzl)-Ala-D-Leu-Leu-OH (0.51 g) was dissolved in acetonitrile (20 ml), and the solution was cooled with ice. HONB (0.16 g) and DCC (0.18 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.62 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 51 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 28.5 mg (17.8%).
Anal for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Ala 1.04(1); Leu 2.10(2) LSIMS (M+H+)=714, (theoretical value)=714
Production of cyclo[-D-Asp-Glu-Ala-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Glu(OBzl)-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Ala-D-Leu-Leu-OPac (2.20 g) prepared in example 5 (1) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.61 ml) was added thereto. Boc-Glu(OBzl)-ONB [prepared from Boc-Glu(OBzl)-OH (1.39 g), HONB (0.78 g) and DCC (0.89 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.86 g (92.4%), Melting point: 152.5°-153.5° C., Rf1 : 0.36, Rf2 : 0.67 [α]D 25 +0.8° (c=1.04, in DMF)
Elemental analysis: As C40 H56 N4 O10 Calculated: C, 63.81; H, 7.50; N, 7.44 Found: C, 63.86; H, 7.53; N, 7.65
(2) Production of Boc-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-Glu(OBzl)-Ala-D-Leu-Leu-OPac (2.76 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.54 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (1.19 g), HONB (0.69 g) and DCC (0.80 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 3.08 g (87.6%), Melting point: 127.0°-127.5° C., Rf1 : 0.51, Rf2 : 0.60 [α]D 25 +4.5° (c=1.01, in DMF)
Elemental analysis: As C51 H67 N5 O13 Calculated: C, 63.93; H, 7.05; N, 7.31 Found: C, 64.05; H, 7.08; N, 7.42
(3) Production of Boc-D-Trp-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OPac
TFA (20 ml) was added to Boc-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OPac (2.95 g) to dissolve it, followed by concentration. 8N-HCl/dioxane (1.00 ml) was added thereto, and ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.46 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.94 g), HONB (0.58 g) and DCC (0.67 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.59 g (75.4%), Melting point: 182.0°-183.5° C., Rf1 : 0.51, Rf2 : 0.62 [α]D 25 +12.1° (c=1.03, in DMF)
Elemental analysis: As C62 H77 N7 O14 Calculated: C, 65.08; H, 6.78; N, 8.57 Found: C, 65.11; H, 6.76; N, 8.76
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OPac (0.50 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.66 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 410 mg (91.4%), Melting point: 179.5°-180.5° C., Rf1 : 0.03, Rf2 : 0.53 [α]D 25 +16.1° (c=1.02, in DMF)
Elemental analysis: As C54 H71 N7 O13 Calculated: C, 63.20; H, 6.97; N, 9.55 Found: C, 63.45; H, 7.00; N, 9.67
(5) Production of cyclo[-D-Asp-Glu-Ala-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Glu(OBzl)-Ala-D-Leu-Leu-OH (0.51 g) was dissolved in acetonitrile (20 ml), and the solution was cooled with ice. HONB (0.16 g) and DCC (0.18 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. Ethanedithiol (0.09 ml) and 8N-HCl/dioxane (20 ml) were added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.62 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 51 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 28.5 mg (20.6%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 1.00(1); Glu 1.02(1); Ala 1.05(1); Leu 2.06(2) LSIMS (M+H+)=728, (theoretical value)=728
Production of cyclo[-D-Asp-Trp-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Trp-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.14 g) prepared in example 1 (3) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Trp-ONB [prepared from Boc-Trp-OH (1.17 g), HONB (0.69 g) and DCC (0.79 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.48 g (90.7%), Melting point: 143°-144° C., Rf1 : 0.43, Rf2 : 0.74 [α]D 28 -25.8° (c=0.98, in DMF)
Elemental analysis: As C47 H59 N5 O10 Calculated: C, 66.10; H, 6.96; N, 8.20 Found: C, 66.22; H, 7.01; N, 8.49
(2) Production of Boc-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Trp-Asp(OBzl)-D-Leu-Leu-OPac (2.31 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.75 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.96 g), HONB (0.58 g) and DCC (0.67 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.48 g (86.7%), Melting point: 171°-172° C., Rf1 : 0.41, Rf2 : 0.72 [α]D 28 -16.0° (c=1.31, in DMF)
Elemental analysis: As C58 H70 N6 O13 Calculated: C, 65.77; H, 6.66; N, 7.93 Found: C, 65.82; H, 6.91; N, 8.10
(3) Production of Boc-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OPac
Boc-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OPac (2.12 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.49 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration. Yield: 2.10 g (93.1%), Melting point: 180°-181° C., Rf1 : 0.33, Rf2 : 0.69 [α]D 28 -4.4° (c=1.11, in DMF)
Elemental analysis: As C69 H80 N8 O14 Calculated: C, 66.54; H, 6.47; N, 9.00 Found: C, 66.45; H, 6.76; N, 9.10
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OPac (1.49 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (3.92 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.30 g (96.1%), Melting point: 114°-115° C., Rf1 : 0.10, Rf2 : 0.65 [α]D 28 +1.6° (c=0.87, in DMF)
Elemental analysis: As C61 H74 N8 O13 Calculated: C, 64.99; H, 6.62; N, 9.94 Found: C, 65.01; H, 6.88; N, 10.02
(5) Production of cyclo[-D-Asp-Trp-Asp-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-D-Leu-Leu-OH (0.56 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.7 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile-ether was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 101 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 12.4 mg (52.9%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 2.15(2) LSIMS (M+H+)=829, (theoretical value)=829
Production of cyclo[-D-Asp-Pro-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Pro-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.14 g) prepared in example 1 (3) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.90 ml) was added thereto. Boc-Pro-ONB [prepared from Boc-Pro-OH (0.76 g), HONB (0.69 g) and DCC (0.79 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.19 g (89.5%), Melting point: 135°-136° C., Rf1 : 0.44, Rf2 : 0.74 [α]D 28 -40.0° (c=1.02, in DMF)
Elemental analysis: As C41 H56 N4 O10 Calculated: C, 64.38; H, 7.38; N, 7.32 Found: C, 64.40; H, 7.53; N, 7.37
(2) Production of Boc-D-Asp(OBzl)-Pro-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Pro-Asp(OBzl)-D-Leu-Leu-OPac (2.07 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.75 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.96 g), HONB (0.58 g) and DCC (0.67 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.39 g (91.2%), Melting point: 59°-61° C., Rf1 : 0.48, Rf2 : 0.74 [α]D 28 -14.3° (c=1.07, in DMF)
Elemental analysis: As C52 H67 N6 O13 Calculated: C, 64.38; H, 6.96; N, 7.22 Found: C, 64.17; H, 7.18; N, 7.39
(3) Production of Boc-D-Trp-D-Asp(OBzl)-Pro-Asp(OBzl)-D-Leu-Leu-OPac
Boc-D-Asp(OBzl)-Pro-Asp(0Bzl)-D-Leu-Leu-OPac (1.94 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.49 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.82 g (78.7%), Melting point: 102°-104° C., Rf1 : 0.34, Rf2 : 0.70 [α]D 28 +8.3° (c=1.22, in DMF)
Elemental analysis: As C63 H77 N7 O14 Calculated: C, 65.44; H, 6.71; N, 8.48 Found: C, 65.32; H, 6.86; N, 8.53
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Pro-Asp(OBzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Pro-Asp(OBzl)-D-Leu-Leu-OPac (1.39 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (3.92 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.22 g (97.9%), Melting point: 110°-112° C., Rf1 : 0.13, Rf2 : 0.65 [α]D 28 +14.6° (c=1.07, in DMF)
Elemental analysis: As C55 H71 N7 O13 Calculated: C, 63.63; H, 6.89; N, 9.44 Found: C, 63.62; H, 7.17; N, 9.25
(5) Production of cyclo[-D-Asp-Pro-Asp-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Pro-Asp(OBzl)-D-Leu-Leu-OH (0.53 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.18 g) and DCC (0.21 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.7 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile-ether was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 92 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 15.2 mg (47.4%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Pro 1.03(1); Leu 2.11(2) LSIMS (M+H+)=740, (theoretical value)=740
Production of cyclo[-D-Asp-Asn(CH2Ph)-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Asn(CH2 Ph)-OBzl
Boc-Asp-OBzl (1.61 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.98 g) and DCC (1.13 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and benzylamine (1.09 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.90 g (92.5%), Melting point: 116.5°-117.0° C., Rf1 : 0.56, Rf2 : 0.69 [α]D 25 -11.3° (c=1.05, in DMF)
Elemental analysis: As C23 H28 N2 O5 Calculated: C, 66.97; H, 6.84; N, 6.79 Found: C, 67.25; H, 6.95; N, 7.07
(2) Production of Boc-Asn(CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.44 ml) was added thereto. Boc-Asn(CH2 Ph)-ONB [prepared by catalytically reducing Boc-Asn(CH2 Ph)-OBzl (1.23 g) synthesized in (1), in methanol (20 ml) in the presence of 10% Pd-carbon (20 mg) in a stream of hydrogen at ordinary temperature and pressure, separating the catalyst by filtration, followed by concentration, dissolving the residue in acetonitrile, and then adding HONB (0.56 g) and DCC (0.65 g) thereto under ice cooling] was added, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washings-with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.26 g (86.7%), Melting point: 155.0°-157.0° C., Rf1 : 0.49, Rf2 : 0.70 [α]D 25 -37.1° (c=1.05, in DMF)
Elemental analysis: As C47 H61 N5 O11 Calculated: C, 64.74; H, 7.05; N, 8.03 Found: C, 64.80; H, 7.19; N, 8.25
(3) Production of Boc-D-Asp(OBzl)-Asn(CH2Ph)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asn(CH2 ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.92 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.32 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.71 g), HONB (0.41 g) and DCC (0.46 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.22 g (93.9%), Melting point: 141.5°-143.0° C., Rf1 : 0.57, Rf2 : 0.75 [α]D 25 -22.7° (c=1.01, in DMF)
Elemental analysis: As C58 H72 N6 O14 Calculated: C, 64.67; H, 6.74; N, 7.80 Found: C, 64.46; H, 6.86; N, 7.91
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-D-Asp(OBzl)-Asn(CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.93 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.27 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.55 g), HONB (0.34 g) and DCC (0.39 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.85 g (81.6%), Melting point: 149.0°-151.0° C., Rf1 : 0.47, Rf2 : 0.71 [α]D 25 -9.8° (c=1.03, in DMF)
Elemental analysis: As C69 H82 N8 O15 Calculated: C, 65.59; H, 6.54; N, 8.87 Found: C, 65.36; H, 6.70; N, 8.89
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (500 mg) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.30 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 436 mg (96.1%), Melting point: 153.0°-155.0° C., Rf1 : 0.02, Rf2 : 0.67 [α]D 25 -3.2° (c=1.02, in DMF)
Elemental analysis: As C61 H76 N8 O14 Calculated: C, 63.97; H, 6.69; N, 9.78 Found: C, 63.85; H, 6.74; N, 9.51
(6) Production of cyclo[-D-Asp-Asn(CH2 Ph)-Asp-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OH (396 mg) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.14 g) and DCC (0.16 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.55 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile-ether was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 50 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 19.5 mg (23.8%).
Anal for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 3.00(3); Leu 2.00(2) LSIMS (M+H+)=847, (theoretical value)=847
Production of cyclo[-D-Asp-Asn(CH2 CH2 Ph)-AsP-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Asn(CH2 CH2 Ph)-OBzl
Boc-Asp-OBzl (1.61 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.98 g) and DCC (1.13 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and β-phenethylamine (0.79 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.96 g (92.3%), Melting point: 117.0°-118.5° C., Rf1 : 0.53, Rf2 : 0.68 [α]D 25 -7.3° (c=1.00, in DMF)
Elemental analysis: As C24 H30 N2 O5 Calculated: C, 67.59; H, 7.09; N, 6.57 Found: C, 67.68; H, 7.15; N, 6.75
(2) Production of Boc-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.44 ml) was added thereto. Boc-Asn(CH2 CH2 Ph)-ONB [prepared by catalytically reducing Boc-Asn(CH2 CH2 Ph)-OBzl (1.28 g) synthesized in (1), in methanol (20 ml) in the presence of 10% Pd-carbon (20 mg) in a stream of hydrogen at ordinary temperature and pressure, separating the catalyst by filtration, followed by concentration, dissolving the residue in acetonitrile, and then adding HONB (0.56 g) and DCC (0.65 g) thereto under ice cooling] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.35 g (88.7%), Melting point: 162.0°-164.0° C., Rf1 : 0.59, Rf2 : 0.65 [α]D 25 -36.7° (c=1.03, in DMF)
Elemental analysis: As C48 H63 N5 O11 Calculated: C, 65.07; H, 7.17; N, 7.90 Found: C, 65.15; H, 7.20; N, 8.08
(3) Production of Boc-D-Asp(OBzl)-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.95 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.32 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.71 g), HONB (0.41 g) and DCC (0.46 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.24 g (93.5%), Melting point: 173.0°-175.0° C., Rf1 : 0.39, Rf2 : 0.66 [α]D 25 -21.6° (c=1.02, in DMF)
Elemental analysis: As C59 H74 N6 O14 Calculated: C, 64.94; H, 6.83; N, 7.70 Found: C, 64.82; H, 6.93; N, 7.85
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-D-Asp(OBzl)-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (1.95 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.27 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.55 g), HONB (0.34 g) and DCC (0.39 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.07 g (90.5%), Melting point: 139.5°-141.0° C., Rf1 : 0.24, Rf2 : 0.65 [α]D 25 -7.6° (c=1.00, in DMF)
Elemental analysis: As C70 H84 N8 O15 Calculated: C, 65.81; H, 6.63; N, 8.77 Found: C, 65.58; H, 6.71; N, 8.94
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OPac (500 mg) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.28 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 441 mg (97.3%), Melting point: 170.0°-172.0° C., Rf1 : 0.03, Rf2 : 0.67 [α]D 25 -1.8° (c=1.03, in DMF)
Elemental analysis: As C62 H78 N8 O14 Calculated: C, 64.23; H, 6.78; N, 9.67 Found: C, 64.08; H, 6.86; N, 9.55
(6) Production of cyclo[-D-Asp-Asn(CH2 CH2 Ph)-Asp-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-OH (401 mg) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.14 g) and DCC (0.16 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.55 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile-ether was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 50 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and then, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 20.5 mg (24.1%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 3.00(3); Leu 2.04(2) LSIMS (M+H+)=861, (theoretical value)=861
Production of cyclo[-D-Asp-Asn(CH2 CH2 -Ind)-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Asn(CH2 CH2 -Ind)-OBzl
Boc-Asp-OBzl (1.61 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.98 g) and DCC (1.13 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and DMF (20 ml) containing tryptamine hydrochloride (0.98 ml) and TEA (1.04 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to obtain a desired product as a light yellow glassy material.
Yield: 1.95 g (84.1%), Rf1 : 0.42, Rf2 : 0.67 LSIMS (M+H+)=466, (theoretical value)=466
(2) Production of Boc-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.44 ml) was added thereto. Boc-Asn(CH2 CH2 -Ind)-ONB [prepared by catalytically reducing Boc-Asn(CH2 CH2 -Ind)-OBzl (1.35 g) synthesized in (1), in methanol (20 ml) in the presence of 10% Pd-carbon (20 mg) in a stream of hydrogen at ordinary temperature and pressure, separating the catalyst by filtration, followed by concentration, dissolving the residue in acetonitrile, and then adding HONB (0.56 g) and DCC (0.65 g) thereto under ice cooling] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.16 g (78.1%), Melting point: 141.0°-143.0° C., Rf1 : 0.46, Rf2 : 0.73 [α]D 25 -35.8° (c=1.06, in DMF)
Elemental analysis: As C50 H64 N6 O11 Calculated: C, 64.92; H, 6.97; N, 9.08 Found: C, 64.63; H, 7.11; N, 8.96
(3) Production of Boc-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8N-HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.32 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (0.71 g), HONB (0.41 g) and DCC (0.46 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.12 g (85.4%), Melting point: 112.5°-114.0° C., Rf1 : 0.50, Rf2 : 0.70 [α]D 25 -22.0° (c=1.02, in DMF)
Elemental analysis: As C61 H75 N7 O14 Calculated: C, 64.82; H, 6.69; N, 8.67 Found: C, 64.66; H, 6.86; N, 8.55
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac (2.00 g) was dissolved in 8-N HCl/dioxane (10 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to precipitate crystals. The crystals were separated by filtration and then dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.27 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.55 g), HONB (0.34 g) and DCC (0.39 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 2.11 g (89.5%), Melting point: 113.0°-115.0° C., Rf1 : 0.42, Rf2 : 0.68 [α]D 25 -9.2° (c=1.04, in DMF)
Elemental analysis: As C72 H85 N9 O15 Calculated: C, 65.69; H, 6.51; N, 9.58 Found: C, 65.60; H, 6.60; N, 9.49
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OPac (500 mg) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.26 g) was added thereto, followed by stirring for 3 hours. The Zn powder was separated by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 426 mg (92.5%), Melting point: 115.0°-117.5° C., Rf1 : 0.01, Rf2 : 0.65 [α]D 25 -1.4° (c=1.06, in DMF)
Elemental analysis: As C64 H79 N9 O14 Calculated: C, 64.15; H, 6.64; N, 10.52 Found: C, 64.07; H, 6.74; N, 10.38
(6) Production of cyclo[-D-Asp-Asn(CH2 CH2 -Ind)-Asp-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Leu-Leu-OH (386 mg) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.14 g) and DCC (0.16 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (90 ml) containing TEA (0.54 ml) for 30 minutes, followed by stirring overnight and concentration. Acetonitrile-ether was added to the resulting residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 40 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 19.6 mg (19.4%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 3.00(3); Leu 2.35(2) LSIMS (M+H+)=900, (theoretical value)=900
Production of cyclo[-D-Asp-Hyp(Bzl)-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Asp(OBzl)-D-Leu-Leu-OPac (2.34 g) was dissolved in dioxane (1.0 ml), and the solution was cooled with ice. 10N-HCl/dioxane (5.0 ml) was added thereto, followed by stirring for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The resulting product was dissolved in DMF (15 ml), and neutralized with TEA with stirring under ice cooling. Boc-Hys(Bzl)-ONB prepared from Boc-Hyp(Bzl)-OH (1.57 g), HONB (1.16 g) and DCC (1.55 g) was added thereto and stirred overnight at room temperature. The resulting insoluble material was removed by filtration, and the filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid, 4% aqueous NaHCO3 and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The precipitate was recrystallized from AcOEt-petroleum.
Yield: 4.01 g (92.0%), Melting point: 73.0°-74.0° C., Rf1 : 0.44, Rf2 : 0.72 [α]D 25 -33.3° (c=1.00, in DMF)
Elemental analysis: As C48 H62 N4 O11 Calculated: C, 66.19; H, 7.17; N, 6.43 Found: C, 66.19; H, 7.33; N, 6.68
(2) Production of Boc-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac (3.49 g) was dissolved in dioxane (1.0 ml), and the solution was cooled with ice. 10-N HCl/dioxane (5.0 ml) was added thereto, followed by stirring for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The resulting product was dissolved in DMF (15 ml), and neutralized with TEA with stirring under ice cooling. Boc-D-Asp(OBzl)-ONB prepared from Boc-D-Asp(OBzl)-OH (1.55 g), HONB (1.08 g) and DCC (1.44 g) was added thereto and stirred overnight at room temperature. The resulting insoluble material was removed by filtration, and the filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid, 4% aqueous NaHCO3 and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and the residue was purified by silica gel chromatography (Merck Kiesel Gel 60. 2% methanol/chloroform) to obtain an oily product.
Yield: 3.63 g (84.3%), Rf1 : 0.42, Rf2 : 0.74 LSIMS (M+H+)=1077, (theoretical value)=1077
(3) Production of Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac
Boc-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac (3.77 g) was dissolved in dioxane (1.0 ml), and the solution was cooled with ice. 10-N HCl/dioxane (5.0 ml) was added thereto, followed by stirring for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The resulting product was dissolved in DMF (15 ml), and neutralized with TEA with stirring under ice cooling. Boc-D-Trp-ONB prepared from Boc-D-Trp-OH (1.17 g), HONB (752 mg) and DCC (939 mg) was added thereto and stirred overnight at room temperature. The resulting insoluble material was removed by filtration, and the filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid, 4% aqueous NaHCO3 and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and the residue was purified by silica gel chromatography (Merck Kiesel Gel 60. 2% methanol/chloroform). Then, ether-petroleum ether was added thereto to separate out a precipitate, which was collected by filtration.
Yield: 3.44 g (91.4%), Melting point: 84.0°-85.0° C., Rf1 : 0.37, Rf2 : 0.72 [α]D 25 12.8° (c=1.00, in DMF)
Elemental analysis: As C70 H83 N7 O15 Calculated: C, 66.60; H, 6.63; N, 7.77 Found: C, 66.65; H, 6.68; N, 7.76
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OH
Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OPac (2.52 g) was dissolved in 90% aqueous AcOH (50 ml), and Zn powder (6.54 g) was added thereto with stirring under ice cooling, further followed by stirring at room temperature. The Zn powder was removed by filtration, and filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed successively with 10% aqueous citric acid and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure.
Yield: 2.29 g (quantitative), Melting point: 94.0°-96.0° C., Rf1 : 0.17, Rf2 : 0.70 [α]D 25 19.2° (c=1.00, in DMF)
Elemental analysis: As C62 H77 N7 O14 Calculated: C, 65.07; H, 6.78; N, 8.57 Found: C, 65.05; H, 6.86; N, 8.39
(5) Production of cyclo[-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-D-Trp-]
Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-OH (1.14 g) was dissolved in dichloromethane (10 ml), and HONB (358 mg) and DCC (413 mg) were successively added thereto with stirring under ice cooling, further followed by stirring under ice cooling for 3 hours. The resulting insoluble material was removed by filtration, and the solvent was removed by distillation. The residue was dissolved in acetonitrile (20 ml), and the insoluble material was removed by filtration. The solvent was removed by distillation, and ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The resulting product was dissolved in dioxane (2 ml), and 10N-HCl/dioxane (10 ml) was added thereto with stirring under ice cooling, further followed by stirring for 10 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. This was dissolved in DMF (5 ml), and the resulting solution was added dropwise to DMF (100 ml) containing TEA (6.96 ml), followed by stirring overnight. The solvent was removed by distillation, and the residue was dissolved in AcOEt. The solution was washed successively with 10% aqueous citric acid, 5% aqueous NaHCO3 and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and the residue was purified by silica gel chromatography (Merck Kiesel Gel 60. 1% methanol/chloroform). Then, ether-petroleum ether was added thereto to separate out a precipitate, which was collected by filtration and dried under reduced pressure.
Yield: 847 mg (82.6%), Rf1 : 0.40, Rf2 : 0.74
(6) Production of cyclo[-D-Asp-Hyp(Bzl)-Asp-D-Leu-Leu-D-Trp-]
Cyclo[-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-D-Trp-] (103 mg) was dissolved in DMF (10 ml), and palladium black (100 mg) was added thereto. The mixture was vigorously stirred in a stream of hydrogen at room temperature for 1 hour. The catalyst was removed by filtration, and the filtrate was concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The yield was 64 mg (82.6%). Of this precipitate, 30.0 mg was purified by reversed phase liquid chromatography [column: YMC-D-ODS-5 (2 cm×25 cm)]. The yield was 23.7 mg (79.0%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 1.97(2); Hyp 0.84 (1) LSIMS (M+H+)=846, (theoretical value)=846
Production of cyclo[-D-Asp-Hyp-Asp-D-Leu-Leu-D-Trp-]
Cyclo[-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-D-Leu-Leu-D-Trp-] (103 mg) was dissolved in DMF (10 ml), and palladium black (100 mg) was added thereto. The mixture was vigorously stirred in a stream of hydrogen at room temperature for 1 hour. The catalyst was removed by filtration, and the filtrate was concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried Under reduced pressure. The resulting product was dissolved in methanol (10 ml), and palladium black (100 mg) was added thereto. The mixture was vigorously stirred overnight in a stream of hydrogen at room temperature. The catalyst was removed by filtration, and the filtrate was concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried under reduced pressure. The yield was 65 mg (85.7%). Of this precipitate, 25.0 mg was purified by reversed phase liquid chromatography [column: YMC-D-ODS-5 (2 cm×25 cm)]. The yield was 19.7 mg (78.8%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 2.00(2); Hyp 0.97 (1) LSIMS (M+H+)=756, (theoretical value)=756
Production of cyclo[-D-Asp-Trp-Asp-D-tLeu-Leu-D-Trp-]
(1) Production of Boc-Asp(OBzl)-OPac
Boc-Asp(OBzl)-OH (32.3 g) and Cs2 CO3 (16.3 g) were dissolved in 90% aqueous methanol, and the solution was concentrated. The residue was dissolved in DMF (300 ml), and phenacyl bromide (21.9 g) was added thereto, followed by stirring overnight. The resulting CsBr was separated by filtration, and the filtrate was concentrated. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3 and 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, the residue was recrystallized from ethyl acetate-petroleum ether.
Yield: 42.9 g (97.1%), Melting point: 73°-74° C., Rf1 : 0.69, Rf2 : 0.82 [α]D 28 -21.8° (c=0.99, in DMF)
Elemental analysis: As C24 H27 NO7 Calculated: C, 65.29; H, 6.16; N, 3.17 Found: C, 65.42; H, 6.25; N, 3.32
(2) Production of Boc-Trp-Asp(OBzl)-OPac
Boc-Trp-OH (12.2 g) was dissolved in THF, and the solution was cooled to -15° C. with stirring. Then, N-methylmorpholine (4.4 ml) was added thereto, and subsequently, IBCF (5.4 ml) was added. After 2 minutes, a DMF solution of HCl.H-Asp(OBzl)-OPac and N-methylmorpholine was added. HCl.H-Asp(OBzl)-OPac was obtained by dissolving Boc-Asp(OBzl)-OPac (17.7 g) in 8N-HCl/dioxane (100 ml), stirring the solution under ice cooling for 30 minutes, followed by concentration, and adding ether to precipitate crystals, which were collected by filtration and dried. After stirring at -15° C. for 30 minutes, the solution was brought to room temperature. After 30 minutes, the resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 23.9 g (95.2%), Melting point: 73°-74° C., Rf1 : 0.40, Rf2 : 0.69 [α]D 28 -20.6° (c=1.05, in DMF)
Elemental analysis: As C35 H37 N3 O8 Calculated: C, 66.97; H, 5.94; N, 6.69 Found: C, 67.21; H, 6.13; N, 6.71
(3) Production of Boc-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Trp-Asp(OBzl)-OPac (50.2 g) to dissolve it, and the solution was stirred under ice cooling for 30 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (80 ml), and the solution was cooled with ice, followed by addition of TEA (22.3 ml). Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (28.5 g), HONB (17.2 g) and DCC (19.8 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 60.3 g (90.5%), Melting point: 95°-97° C., Rf1 : 0.40, Rf2 : 0.70 [α]D 28 -5.2° (c=1.14, in DMF)
Elemental analysis: As C46 H48 N4 O11 Calculated: C, 66.33; H, 5.81; N, 6.73 Found: C, 66.40; H, 5.93; N, 6.84
(4) Production of Boc-D-Trp-Asp(OBzl)-Trp-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (59.1 g) to dissolve it, and the solution was stirred under ice cooling for 40 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (70 ml), and the solution was cooled with ice, followed by addition of TEA (19.8 ml). Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (23.8 g), HONB (15.3 g) and DCC (17.6 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 58.1 g (80.3%), Melting point: 139°-140° C., Rf1 : 0.38, Rf2 : 0.70 [α]D 28 -3.0° (c=1.29, in DMF)
Elemental analysis: As C57 H58 N6 O12 Calculated: C, 67.18; H, 5.74; N, 8.25 Found: C, 67.28; H, 5.87; N, 8.34
(5) Production of Boc-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (20.4 g) to dissolve it, and the solution was stirred under ice cooling for 30 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (20 ml), and the solution was cooled with ice, followed by addition of TEA (5.6 ml). Boc-Leu-ONB [prepared from Boc-Leu-OH.H2 O (5.48 g), HONB (4.30 g) and DCC (4.95 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. The resulting residue was recrystallized from ethyl acetate-petroleum ether.
Yield: 18.6 g (82.2%), Melting point: 119°-120° C., Rf1 : 0.39, Rf2 : 0.70 [α]D 28 -9.1° (c=0.98, in DMF)
Elemental analysis: As C63 H69 N7 O13 Calculated: C, 66.83; H, 6.14; N, 8.66 Found: C, 66.80; H, 6.38; N, 8.75
(6) Production of Boc-D-tLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (1.02 g) to dissolve it, and the solution was stirred under ice cooling for 15 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (5 ml), and the solution was cooled with ice, followed by addition of TEA (0.25 ml). Boc-D-tLeu-OH (0.23 g), HONB (0.15 g) and DCC (0.22 g)] were added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.08 g (96.4%), Melting point: 124°-126° C., Rf1 : 0.34, Rf2 : 0.71 [α]D 28 -6.1° (c=1.27, in DMF)
Elemental analysis: As C69 H80 N8 O14 Calculated: C, 66.54; H, 6.47; N, 9.00 Found: C, 66.67; H, 6.60; N, 9.21
(7) Production of Boc-D-tLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH
Boc-D-tLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.75 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.66 g (97.6%), Melting point: 125°-127° C., Rf1 : 0.03, Rf2 : 0.67 [α]D 25 -5.5° (c=1.19, in DMF)
Elemental analysis: As C61 H74 N8 O13 Calculated: C, 64.99; H, 6.62; N, 9.94 Found: C, 65.11; H, 6.78; N, 10.01
(8) Production of cyclo[-D-Asp-Trp-Asp-D-tLeu-Leu-D-Trp-]
Boc-D-tLeu-Leu-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.34 g) was dissolved in DCM (10 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 101 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 12.4 mg (42.8%).
Anal. for amino acids [110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 1.29(1) LSIMS (M+H+)=829, (theoretical value)=829
Production of cyclo[-D-Asp-Trp-Asp-D-γMeLeu-Leu-D-Trp-]
(1) Production of Boc-D-γMeLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (1.02 g) to dissolve it, and the solution was stirred under ice cooling for 15 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (5 ml), and the solution was cooled with ice, followed by addition of TEA (0.25 ml). Boc-D-γMeLeu-OH (0.24 g), HONB (0.15 g) and DCC (0.22 g)] were added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.11 g (98.0%), Melting point: 171°-172° C., Rf1 : 0.32, Rf2 : 0.70 [α]D 28 -5.4° (c=1.12, in DMF)
Elemental analysis: As C70 H82 N8 O14 Calculated: C, 66.76; H, 6.56; N, 8.90 Found: C, 66.88; H, 6.69; N, 9.09
(2) Production of Boc-D-γMeLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH
Boc-D-γMeLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.76 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.67 g (97.8%), Melting point: 115°-117° C., Rf1 : 0.03, Rf2 : 0.67 [α]D 28 +6.3° (c=1.24, in DMF)
Elemental analysis: As C62 H76 N8 O13 Calculated: C, 65.25; H, 6.71; N, 9.82 Found: C, 65.18; H, 6.87; N, 9.85
(3) Production of cyclo[-D-Asp-Trp-Asp-D-γMeLeu-Leu-D-Trp-]
Boc-D-γMeLeu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.34 g) was dissolved in DCM (10 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 102 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was separated by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 16.1 mg (51.5%).
Anal. for amino acids [110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 1.25(1) LSIMS (M+H+)=843, (theoretical value)=843
Production of cyclo[-D-Asp-Trp-Asp-D-Thg(2)-Leu-D-Trp-]
(1) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (1.02 g) to dissolve it, and the solution was stirred under ice cooling for 15 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (5 ml), and the solution was cooled with ice, followed by addition of TEA (0.25 ml). Boc-D-Thg(2)-OH (0.19 g), HONB (0.15 g) and DCC (0.22 g)] were added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.04 g (90.9%), Melting point: 130°-132° C., Rf1 : 0.32, Rf2 : 0.68 [α]D 28 -5.9° (c=0.95, in DMF)
Elemental analysis: As C69 H74 N8 O14 S Calculated: C, 65.18; H, 5.87; N, 8.81; S, 2.52 Found: C, 65.39; H, 5.99; N, 8.94; S, 2.46
(2) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.76 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.68 g (98.3%), Melting point: 167°-169° C., Rf1 : 0.03, Rf2 : 0.68 [α]D 28 -5.3° (c=0.99, in DMF)
Elemental analysis: As C61 H68 N8 O13 S Calculated: C, 63.53; H, 5.94; N, 9.72; S, 2.78 Found: C, 63.42; H, 6.04; N, 9.90; S, 2.82
(3) Production of cyclo[-D-Asp-Trp-Asp-D-Thg(2)-Leu-D-Trp-]
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (10 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. The residue was purified using silica gel chromatography (1.5% methanol/DCM), and subsequently, ether was added thereto to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 104 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) to obtain a desired material. The yield was 11.7 mg (4.6%).
Anal. for amino acids [110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 1.30(1) LSIMS (M+H+)=855, (theoretical value)=855
Production of cyclo[-D-Asp-Trp-Asp-Acbu-Leu-D-Trp-]
(1) Production of Boc-Acbu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (1.02 g) to dissolve it, and the solution was stirred under ice cooling for 15 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (5 ml), and the solution was cooled with ice, followed by addition of TEA (0.25 ml). Boc-Acbu-OH (0.20 g), HONB (0.15 g) and DCC (0.22 g) were added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 1.06 g (94.0%), Melting point: 141°-143° C., Rf1 : 0.27, Rf2 : 0.67 [α]D 28 -10.6° (c=1.27, in DMF)
Elemental analysis: As C68 H76 N8 O14 Calculated: C, 66.43; H, 6.23; N, 9.11 Found: C, 66.42; H, 6.33; N, 9.30
(2) Production of Boc-Acbu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH
Boc-Acbu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OPac (0.74 g) was dissolved in 90% aqueous AcOH (10 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.65 g (97.5%), Melting point: 114°-116° C., Rf1 : 0.03, Rf2 : 0.67 [α]D 28 -12.50 (c=1.02, in DMF)
Elemental analysis: As C60 H70 N8 O13 Calculated: C, 64.85; H, 6.35; N, 10.08 Found: C, 64.92; H, 6.42; N, 10.01
(3) Production of cyclo[-D-Asp-Trp-Asp-Acbu-Leu-D-Trp-]
Boc-Acbu-Leu-D-Trp-D-Asp(OBzl)-Trp-Asp(OBzl)-OH (0.33 g) was dissolved in DCM (10 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 15 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 99 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) to obtain a desired material. The yield was 2.2 mg (10.4%).
Anal. for amino acids [110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 1.23(1) LSIMS (M+H+)=813, (theoretical value)=813
Production of cyclo[-D-Asp-Orn(COPh)-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-D-Asp(OBzl)-OPac
Boc-D-Asp(OBzl)-OH (25.0 g) was dissolved in methanol (50 ml), and Cs2 CO3 (12.6 g) was added thereto little by little with stirring at room temperature. After Cs2 CO3 was dissolved, the solvent was removed by distillation, and the residue was dissolved in DMF (500 ml). A DMF solution (50 ml) of phenacyl bromide (15.4 g) was added thereto dropwise with stirring under ice cooling, further followed by stirring at room temperature for 1 hour. Precipitated CsBr was removed by filtration,and the solvent was removed by distillation. The residue was dissolved in AcOEt, and the solution was washed successively with 5% aqueous NaHCO3, 10% aqueous citric acid and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and the residue was recrystallized from ethyl acetate-petroleum ether.
Yield: 31.8 g (93.2%), Melting point: 74.0°-75.0° C., Rf1 : 0.73, Rf2 : 0.86 [α]D 25 21.9° (c=1.00, in DMF)
Elemental analysis: As C24 H27 NO7 Calculated: C, 65.29; H, 6.16; N, 3.17 Found: C, 65.03; H, 6.19; N, 3.14
(2) Production of Boc-D-Trp-D-Asp(OBzl)-OPac
Boc-D-Asp(OBzl)-OPac (26.5 g) was dissolved in dioxane (50 ml), and 10N-HCl/dioxane (28.6 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to form a precipitate, which was collected by filtration, thereby obtaining H-D-Asp(OBzl)-OPac hydrochloride.
Boc-D-Trp-OH (18.3 g) was dissolved in distilled THF (150 ml), and N-methylmorpholine was added thereto with stirring at room temperature. After the atmosphere was replaced with nitrogen, isobutyl chloroformate (7.88 ml) was slowly added dropwise thereto with stirring at -15° C., and stirring was further continued at -15° C. for 15 minutes, thereby obtaining mixed acid anhydrides. An amine component [prepared by dissolving H-D-Asp(OBzl)-OPac hydrochloride in DMF (100 ml) and adding N-methylmorpholine (6.62 ml) thereto with stirring at -15° C. for neutralization] was added thereto little by little with stirring at -15° C., and the mixture was further stirred at room temperature for 1 hour. The solvent was removed by distillation, and the residue was dissolved in AcOEt. The solution was washed successively with 5% aqueous NaHCO3, 10% aqueous citric acid and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and the residue was recrystallized from ethyl acetate-petroleum ether.
Yield: 36.1 g (96.0%), Melting point: 75.0°-76.0° C., Rf1 : 0.34, Rf2 : 0.73 [α]D 25 19.1° (c=1.00, in DMF)
Elemental analysis: As C35 H37 N3 O8 Calculated: C, 66.97; H, 5.94; N, 6.69 Found: C, 67.19; H, 6.20; N, 6.44
(3) Production of Boc-Leu-D-Trp-D-Asp(OBzl)-OPac
Boc-D-Trp-D-Asp(OBzl)-OPac (34.5 g) was dissolved in dioxane (50 ml), and 10N-HCl/dioxane (100 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The resulting precipitate was dissolved in DMF (350 ml), and TEA was added thereto with stirring under ice cooling to neutralize it. A DMF solution (50 ml) of Boc-Leu-ONB prepared from Boc-Leu-OH (15.3 g), HONB (13.8 g) and DCC (17.0 g) was further added thereto, followed by stirring overnight at room temperature. The solvent was removed by distillation, and the residue was dissolved in AcOEt. N,N-Dimethylpropanediamine (2.5 ml) was added thereto, followed by stirring at room temperature for 30 minutes. The mixture was washed successively with 5% aqueous NaHCO3, 10% aqueous citric acid and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 37.49 g (92.0%), Melting point: 72°-74° C., Rf1 : 0.28, Rf2 : 0.71 [α]D 25 28.3° (c=1.00, in DMF)
Elemental analysis: As C41 H48 N4 O9 Calculated: C, 66.47; H, 6.53; N, 7.56 Found: C, 66.25; H, 6.68; N, 7.56
(4) Production of Boc-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac
Boc-Leu-D-Trp-D-Asp(OBzl)-OPac (29.6 g) was dissolved in dioxane (40 ml), and 10N-HCl/dioxane (100 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The resulting precipitate was dissolved in DMF (300 ml), and TEA was added thereto with stirring under ice cooling to neutralize it. A DMF solution (40 ml) of Boc-D-Leu-ONB prepared from Boc-D-Leu-OH.H2 O (11.0 g), HONB (8.60 g) and DCC (10.7 g) was further added thereto, followed by stirring overnight at room temperature. The solvent was removed by distillation, and the residue was dissolved in AcOEt. N,N-Dimethylpropanediamine (1.26 ml) was added thereto, followed by stirring at room temperature for 30 minutes. The mixture was washed successively with 5% aqueous NaHCO3, 10% aqueous citric acid and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 30.9 g (90.5%), Melting point: 79°-80° C., Rf1 : 0.26, Rf2 : 0.73 [α]D 25 27.4° (c=1.00, in DMF)
Elemental analysis: As C47 H59 N5 O10 Calculated: C, 66.10; H, 6.96; N, 8.20 Found: C, 66.11; H, 7.05; N, 8.05
(5) Production of Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac
Boc-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (17.1 g) was dissolved in dioxane (10 ml), and 10-N HCl/dioxane (50 ml) was added thereto under ice cooling, followed by stirring under ice cooling for 30 minutes. The solvent was removed by distillation at room temperature, and ether was added to the residue to separate out a precipitate, which was collected by filtration. The resulting precipitate was dissolved in DMF (100 ml), and TEA was added thereto with stirring under ice cooling to neutralize it. A DMF solution (20 ml) of Boc-Asp(OBzl)-ONB prepared from Boc-Asp(OBzl)-OH (7.76 g), HONB (5.02 g) and DCC (6.19 g) was further added thereto, followed by stirring overnight at room temperature. The solvent was removed by distillation, and the residue was dissolved in AcOEt. N,N-Dimethylpropanediamine (0.63 ml) was added thereto, followed by stirring at room temperature for 30 minutes. The mixture was washed successively with 5% aqueous NaHCO3, 10% aqueous citric acid and a saturated aqueous solution of sodium chloride. After drying with Na2 SO4, the solvent was removed by distillation, and then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration. The precipitate was recrystallized from ethyl acetate-petroleum ether.
Yield: 16.5 g (82.5%), Melting point: 178°-179° C., Rf1 : 0.28, Rf2 : 0.76 [α]D 25 13.0° (c=1.00, in DMF)
Elemental analysis: As C58 H70 N6 O13 Calculated: C, 65.77; H, 6.66; N, 7.93 Found: C, 65.49; H, 6.69; N, 8.02
(6) Production of Boc-Orn(COPh)-OH.DCHA
Boc-Orn-OH (0.51 g) [obtained by catalytically reducing Boc-Orn(Z)-OH in methanol in a stream of hydrogen using 10% Pd-carbon as a catalyst] was dissolved in DMF, and the solution was cooled with ice. TEA (0.61 ml) and PhCOONB [prepared from PhCOOH (0.30 g), HONB (0.47 g) and DCC (0.54 g)] were added thereto, followed by stirring overnight. The reaction solution was concentrated, and the residue was dissolved in AcOEt. The resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether and dicyclohexylamine (438 μl) were added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.01 g (97.6%), Melting point: 148°-150° C. [α]D 28 +9.6° (c=0.90, in methanol)
Elemental analysis: As C29 H47 N3 O5 Calculated: C, 67.28; H, 9.15; N, 8.12 Found: C, 67.35; H, 8.99; N, 8.03
(7) Production of Boc-Orn(COPh)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac
Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) obtained in (5) described above was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml). Boc-Orn(COPh)-ONB [prepared from Boc-Orn(COPh)-OH (0.30 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 0.97 g (94.9%), Melting point: 107°-109° C., Rf1 : 0.28, Rf2 : 0.64 [α]D 28 +8.2° (c=1.23, in DMF)
Elemental analysis: As C70 H84 N8 O15 Calculated: C, 65.81; H, 6.63; N, 8.77 Found: C, 65.76; H, 6.76; N, 8.93
(8) Production of Boc-Orn(COPh)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH
Boc-Orn(COPh)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.77 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.68 g (97.8%), Melting point: 113°-115° C., Rf1 : 0.02, Rf2 : 0.63 [α]D 28 +9.8° (c=1.10, in DMF)
Elemental analysis: As C62 H78 N8 O14 Calculated: C, 64.23; H, 6.78; N, 9.67 Found: C, 64.11; H, 6.90; N, 9.52
(9) Production of cyclo[-D-Asp-Orn(COPh)-Asp-D-Leu-Leu-D-Trp-]
Boc-Orn(COPh)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours, Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 104 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 11.1 mg (48.1%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 2.19(2); Orn 1.09(1) LSIMS (M+H+)=861, (theoretical value)=861
Production of cyclo[-D-Asp-Orn(COCH2 Ph)-AsP-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Orn(COCH2 Ph)-OH.CHA
Boc-Orn-OH (0.51 g) was dissolved in DMF, and the solution was cooled with ice. TEA (1.53 ml) and PhCH2 COCl (367 μl) was added thereto, and stirred for 2 hours. The reaction solution was concentrated, and the residue was dissolved in AcOEt. The resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether and cyclohexylamine (254 μl) were added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.52 g (57.9%), Melting point: 137°-139° C. [α]D 28 +2.4° (c=0.50, in methanol)
Elemental analysis: As C24 H39 N3 O5 Calculated: C, 64.12; H, 8.74; N, 9.35 Found: C, 64.05; H, 8.92; N, 9.39
(2) Production of Boc-Orn(COCH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac
Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) prepared in EXAMPLE 79 (5) was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml). Boc-Orn(COCH2 Ph)-ONB [prepared from Boc-Orn(COCH2 Ph)-OH (0.32 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 0.81 g (78.4%), Melting point: 148°-150° C., Rf1 : 0.34, Rf2 : 0.65 [α]D 28 14.1° (c=1.13, in DMF)
Elemental analysis: As C71 H86 N8 O15 Calculated: C, 66.03; H, 6.71; N, 8.68 Found: C, 66.14; H, 6.67; N, 8.51
(3) Production of Boc-Orn(COCH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH
Boc-Orn(COCH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.65 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.63 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.57 g (97.2%), Melting point: 120°-122° C., Rf1 : 0.03, Rf2 : 0.64 [α]D 28 +16.9° (c=0.91, in DMF)
Elemental analysis: As C63 H80 N8 O14 Calculated: C, 64.49; H, 6.87; N, 9.55 Found: C, 64.60; H, 6.79; N, 9.36
(4) Production of cyclo[-D-Asp-Orn(COCH2 Ph)-Asp-D-Leu-Leu-D-Trp-]
Boc-Orn(COCH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (10 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 106 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 2.3 mg (2.9%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 2.29(2); Orn 1.10(1) LSIMS (M+H+)=876, (theoretical value)=876
Production of cyclo[-D-Asp-Orn(COCH2 CH2 Ph)-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Orn(COCH2 CH2 Ph)-OH.DCHA
Boc-Orn-OH (0.51 g) was dissolved in DMF, and the solution was cooled with ice. TEA (0.61 ml) and PhCH2 CH2 COONB [prepared from PhCH2 CH2 COOH (0.36 g), HONB (0.47 g) and DCC (0.54 g)] was added thereto, and stirred overnight. The reaction solution was concentrated, and the residue was dissolved in AcOEt. The resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether and dicyclohexylamine (438 μl) were added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.72 g (66.1%), Melting point: 131°-133° C. [α]D 28 +6.9° (c=0.86, in methanol)
Elemental analysis: As C31 H51 N3 O5 Calculated: C, 68.22; H, 9.42; N, 7.70 Found: C, 68.29; H, 9.22; N, 7.62
(2) Production of Boc-Orn(COCH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac
Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) prepared in EXAMPLE 79 (5) was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml). Boc-Orn(COCH2 CH2 Ph)-ONB [prepared from Boc-Orn(COCH2 CH2 Ph)-OH (0.33 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 0.95 g (91.0%), Melting point: 110°-112° C., Rf1 : 0.23, Rf2 : 0.65 [α]D 28 +9.0° (c=0.98, in DMF)
Elemental analysis: As C72 H88 N8 O15 Calculated: C, 66.24; H, 6.79; N, 8.58 Found: C, 66.07; H, 6.90; N, 8.75
(3) Production of Boc-Orn(COCH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH
Boc-Orn(COCH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.78 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.70 g (98.3%), Melting point: 105°-108° C., Rf1 : 0.02, Rf2 : 0.64 [α]D 28 +10.4° (c=1.20, in DMF)
Elemental analysis: As C64 H82 N8 O14 Calculated: C, 64.74; H, 6.96; N, 9.44 Found: C, 64.60; H, 7.07; N, 9.64
(4) Production of cyclo[-D-Asp-Orn(COCH2 CH2 Ph)-Asp-D-Leu-Leu-D-Trp-]
Boc-Orn(COCH2 CH2 Ph)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.36 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 107 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 9.1 mg (40.9%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 2.22(2); Orn 1.10(1) LSIMS (M+H+)=889, (theoretical value)=889
Production of cyclo[-D-Asp-Orn(COCH2 -Ind)-Asp-D-Leu-Leu-D-Trp-]
(1) Production of Boc-Orn(COCH2 -Ind)-OH.DCHA
Boc-Orn-OH (0.51 g) was dissolved in DMF, and the solution was cooled with ice. TEA (0.61 ml) and Ind-CH2 COONB [prepared from Ind-CH2 COOH (0.42 g), HONB (0.47 g) and DCC (0.54 g)] was added thereto, and stirred overnight. The reaction solution was concentrated, and the residue was dissolved in AcOEt. The resulting solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether and cyclohexylamine (254 μl) were added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.10 g (96.5%), Melting point: 95°-98° C. [α]D 28 +5.3° (c=0.92, in methanol)
Elemental analysis: As C32 H50 N4 O5 Calculated: C, 67.34; H, 8.83; N, 9.82 Found: C, 67.25; H, 9.00; N, 9.93
(2) Production of Boc-Orn(COCH2 -Ind)-AsP(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac
Boc-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.85 g) prepared in EXAMPLE 79 (5) was dissolved in 8N-HCl/dioxane (15 ml), and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added thereto to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml), and the solution was cooled with ice, followed by addition of TEA (0.22 ml). Boc-Orn(COCH2 -Ind)-ONB [prepared from Boc-Orn(COCH2 -Ind)-OH (0.35 g), HONB (0.18 g) and DCC (0.21 g)] was added thereto, and the mixture was stirred overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 0.93 g (87.4%), Melting point: 109°-111° C., Rf1 : 0.16, Rf2 : 0.64 [α]D 28 +9.7° (c=1.01, in DMF)
Elemental analysis: As C73 H87 N8 O15 Calculated: C, 65.90; H, 6.59; N, 9.47 Found: C, 65.69; H, 6.89; N, 9.47
(3) Production of Boc-Orn(COCH2 -Ind)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH
Boc-Orn(COCH2 -Ind)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OPac (0.80 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.71 g (97.6%), Melting point: 96°-98° C., Rf1 : 0.02, Rf2 : 0.62 [α]D 28 +9.4° (c=1.01, in DMF)
Elemental analysis: As C65 H81 N9 O14 Calculated: C, 64.39; H, 6.73; N, 10.40 Found: C, 64.51; H, 6.86; N, 10.36
(4) Production of cyclo[-D-Asp-Orn(COCH2 -Ind)-Asp-D-Leu-Leu-D-Trp-]
Boc-Orn(COCH2 -Ind)-Asp(OBzl)-D-Leu-Leu-D-Trp-D-Asp(OBzl)-OH (0.36 g) was dissolved in DCM (20 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (20 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 109 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) to obtain a desired material. The yield was 4.1 mg (12.5%).
Anal. for amino acids [6N-HCl, 110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 2.25(2); Orn 1.08(1) LSIMS (M+H+)=915, (theoretical value)=915
Production of cyclo[-D-Asp-Hyp(Bzl)-Asp-D-Thg(2)-Leu-D-Trp-]
(1) Production of Boc-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Hyp(Bzl)-Asp(OBzl)-OPac (3.77 g) prepared in accordance with the processes described in EXAMPLE 53 (1) and (2) to dissolve it, and the solution was stirred under ice cooling for 30 minutes, followed by concentration. 4% aqueous NaHCO3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na2 SO4, concentrated and dried. The resulting product was dissolved in DMF (40 ml) and cooled with ice. Then, TEA (0.84 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (2.16 g), HONB (1.31 g) and DCC (1.51 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. The residue was purified using silica gel chromatography (1% methanol/DCM) and subsequently concentrated. The yield was 2.22 g (57.4%).
(2) Production of Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac (1.67 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. 4% aqueous NaHCO3 was added thereto to adjust the pH to 9-10, and then, extraction was conducted using AcOEt. The extract was dried with Na2 SO4, concentrated and dried. The resulting product was dissolved in DMF (20 ml) and cooled with ice. Then, TEA (0.28 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.50 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 2.05 g (98.9%), Melting point: 76°-78° C., Rf1 : 0.48, Rf2 : 0.72 [α]D 28 +9.2° (c=1.13, in DMF)
Elemental analysis: As C58 H61 N5 O13 Calculated: C, 67.23; H, 5.93; N, 6.76 Found: C, 67.04; H, 6.14; N, 6.79
(3) Production of Boc-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac
8-N HCl/dioxane was added to Boc-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac (1.04 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The resulting product was dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.28 ml) was added thereto. Boc-Leu-ONB [prepared from Boc-Leu-OH.H2 O (0.27 g), HONB (0.22 g) and DCC (0.25 g)] was added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.09 g (94.8%), Melting point: 88°-90° C., Rf1 : 0.50, Rf2 : 0.71 [α]D 28 +0.6° (c=0.88, in DMF)
Elemental analysis: As C64 H72 N6 O14 Calculated: C, 66.88; H, 6.31; N, 7.31 Found: C, 66.91; H, 6.61; N, 7.51
(4) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac (0.92 g) to dissolve it, and the solution was stirred under ice cooling for 15 minutes, followed by concentration. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The resulting product was dissolved in DMF (10 ml) and cooled with ice. Then, TEA (0.22 ml) was added thereto. Boc-D-Thg(2)-OH (0.23 g), HONB (0.13 g) and DCC (0.20 g) were added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.01 g (98.0%), Melting point: 94°-97° C., Rf1 : 0.41, Rf2 : 0.70 [α]D 28 -0.1° (c=0.78, in DMF)
Elemental analysis: As C70 H77 N7 O15 S Calculated: C, 65.25; H, 6.02; N, 7.61; S, 2.49 Found: C, 65.40; H, 6.13; N, 7.75; S, 2.30
(5) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OH
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OPac (0.77 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.70 g (99.7%), Melting point: 108°-110° C., Rf1 : 0.33, Rf2 : 0.65 [α]D 28 +4.6° (c=1.15, in DMF)
Elemental analysis: As C62 H71 N7 O14 S Calculated: C, 63.63; H, 6.11; N, 8.38; S, 2.74 Found: C, 63.83; H, 6.23; N, 8.49; S, 2.45
(6) Production of cyclo[-D-Asp-Hyp(Bzl)-Asp-D-Thg(2)-Leu-D-Trp-]
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Hyp(Bzl)-Asp(OBzl)-OH (0.35 g) was dissolved in DCM (10 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 74 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 4.7 mg (5.7%).
Anal. for amino acids [110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Leu 1.18(1) LSIMS (M+H+)=872, (theoretical value)=872
Production of cyclo[-D-Asp-Glu(Bzl)-Asp-D-Thg(2)-Leu-D-Trp-]
(1) Production of Boc-Glu(Bzl)-OBzl
Boc-Glu-OBzl (1.17 g, purchased from Watanabe Kagaku) was dissolved in acetonitrile (50 ml), and HONB (0.68 g) and DCC (0.79 g) were added thereto, followed by stirring for 2 hours under ice cooling. The resulting insoluble material was separated by filtration, and benzylamine (0.76 ml) was added thereto, followed by stirring overnight. After concentration of the reaction solution, the residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.37 g (92.6%), Melting point: 91.5°-92.5° C., Rf1 : 0.36, Rf2 : 0.69 [α]D 25 -16.5° (c=1.02, in DMF)
Elemental analysis: As C24 H30 N2 O5 Calculated: C, 67.59; H, 7.09; N, 6.57 Found: C, 67.44; H, 7.20; N, 6.68
(2) Production of Boc-Gln(Bzl)-Asp(OBzl)-OPac
Boc-Gln(Bzl)-OH (3.36 g) [prepared by catalytically reducing Boc-Gln(Bzl)-OBzl (4.26 g) in methanol (20 ml) in a stream of hydrogen at ordinary temperature and pressure in the presence of 10% Pd-carbon (20 mg)] was dissolved in THF, and the solution was cooled to -15° C. with stirring. Then, N-methylmorpholine (1.1 ml) was added thereto, and subsequently, IBCF (1.3 ml) was added. After 2 minutes, a DMF solution of HCl.Asp(OBzl)-OPac and N-methylmorpholine (1.1 ml) was added. HCl.Asp(OBzl)-OPac was obtained by dissolving Boc-Asp(OBzl)-OPac (4.41 g) in 8-N HCl/dioxane (50 ml), stirring the solution under ice cooling for 30 minutes, followed by concentration, and adding ether to precipitate crystals, which were collected by filtration and dried. After stirring at -15° C. for 30 minutes, the solution was brought to room temperature. After 30 minutes, the resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 5.11 g (77.5%), Melting point: 148.5°-150.0° C., Rf1 : 0.41, Rf2 : 0.64 [α]D 28 -13.4° (c=1.00, in DMF)
Elemental analysis: As C36 H41 N3 O9 Calculated: C, 65.54; H, 6.26; N, 6.37 Found: C, 65.38; H, 6.25; N, 6.34
(3) Production of Boc-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Gln(Bzl)-Asp(OBzl)-OPac (3.96 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (40 ml) and cooled with ice. Then, TEA (1.67 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (2.16 g), HONB (1.31 g) and DCC (1.51 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 4.56 g (87.9%), Melting point: 140°-141° C., Rf1 : 0.42, Rf2 : 0.69 [α]D 28 -2.0° (c=1.02, in DMF)
Elemental analysis: As C47 H52 N4 O12 Calculated: C, 65.27; H, 6.06; N, 6.48 Found: C, 65.05; H, 6.13; N, 6.67
(4) Production of Boc-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac (1.73 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (20 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.50 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ethyl acetate was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.98 g (94.2%), Melting point: 194°-196° C., Rf1 : 0.36, Rf2 : 0.67 [α]D 28 +1.6° (c=0.93, in DMF)
Elemental analysis: As C58 H62 N6 O13 Calculated: C, 66.27; H, 5.95; N, 7.99 Found: C, 66.14; H, 6.03; N, 8.07
(5) Production of Boc-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac (1.05 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.28 ml) was added thereto. Boc-Leu-ONB [prepared from Boc-Leu-OH.H2 O (0.27 g), HONB (0.22 g) and DCC (0.25 g)] was added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.04 g (89.3%), Melting point: 175°-177° C., Rf1 : 0.38, Rf2 : 0.68 [α]D 28 +0.35° (c=0.85, in DMF)
Elemental analysis: As C64 H73 N7 O14 Calculated: C, 66.02; H, 6.32; N, 8.42 Found: C, 65.94; H, 6.43; N, 8.48
(6) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac (0.93 g) to dissolve it, and the solution was stirred under ice cooling for 15 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (5 ml) and cooled with ice. Then, TEA (0.22 ml) was added thereto. Boc-D-Thg(2)-OH (0.23 g), HONB (0.13 g) and DCC (0.20 g) were added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.02 g (97.9%), Melting point: 170°-172° C., Rf1 : 0.30, Rf2 : 0.69 [α]D 28 +3.6° (c=0.83, in DMF)
Elemental analysis: As C70 H78 N8 O15 S Calculated: C, 64.50; H, 6.03; N, 18.60; S, 2.46 Found: C, 64.52; H, 6.15; N, 8.77; S, 2.41
(7) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OH
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OPac (0.78 g) was dissolved in 90% aqueous AcOH (15 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.67 g (94.2%), Melting point: 145°-147° C., Rf1 : 0.22, Rf2 : 0.66 [α]D 28 +6.6° (c=1.00, in DMF).
Elemental analysis: As C62 H72 N8 O14 S Calculated: C, 62.82; H, 6.12; N, 9.45; S, 2.71 Found: C, 62.93; H, 6.24; N, 9.62; S, 2.44
(8) Production of cyclo[-D-Asp-Gln(Bzl)-Asp-D-Thg(2)-Leu-D-Trp-]
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Gln(Bzl)-Asp(OBzl)-OH (0.36 g) was dissolved in DCM (10 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8N-HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.42 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 75 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 5.0 mg (8.8%).
Anal for amino acids [110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 2.00(2); Glu 1.08 (1); Leu 1.09(1) LSIMS (M+H+)=887, (theoretical value)=887
[A] Production of cyclo[-D-Asp-Asn(CH2 CH2 -Ind)-Asp-DThg-(2)-Leu-D-Trp-]
(1) Production of Boc-Asn(CH2 CH2 -Ind)-OBzl
Boc-Asp(ONB)-OBzl [prepared from Boc-Asp-OBzl (14.23 g), HONB (8.68 g) and DCC (9.99 g)] was added to tryptamine hydrochloride (7.87 g) together with TEA (8.4 ml) in DMF (150 ml) under ice-cooling, and the mixture was stirred overnight. The reaction solution was concentrated, and the residue was dissolved in AcOEt. The resulting solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to give crystals, which were collected by filtration.
Yield: 17.1 g (92.0%), Melting point: 96°-97° C., Rf1 : 0.41, Rf2 : 0.70 [α]D 28 -9.8° (c=1.24, in DMF)
Elemental analysis: As C26 H30 N3 O5 Calculated: C, 67.22; H, 6.51; N, 9.05 Found: C, 67.31; H, 6.44; N, 8.97
(2) Production of Boc-Asn(CH2 CH2 -Ind)-OH.CHA
Boc-Asn(CH2 CH2 -Ind)-OBzl (4.6 g) was dissolved in methanol (100 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in ether-AcOEt (1:1), and CHA (1.1 ml) was added thereto to precipitate crystals, which were collected by filtration. The crystals were recrystallized from methanol-ether to obtain a desired material.
Yield: 4.1 g (88.9%), Melting point: 178°-179° C., Rf2 : 0.37 [α]D 28 +7.5° (c=1.17, in methanol)
Elemental analysis: As C25 H37 N4 O5 Calculated: C, 63.13; H, 8.26; N, 11.78 Found: C, 63.11; H, 8.22; N, 11.78
(3) Production of Boc-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac
Boc-Asn(CH2 CH2 -Ind)-OH [prepared from Boc-Asn(CH2 CH2 -Ind)-OH.CHA (3.7 g)] was dissolved in THF, and the solution was cooled to -15° C. with stirring. Then, N-methylmorpholine (0.9 ml) was added thereto, and subsequently, IBCF (1.1 ml) was added. After 2 minutes, a DMF solution of HCl.Asp(OBzl)-OPac and N-methylmorpholine was added. HCl.Asp(OBzl)-OPac was obtained by dissolving Boc-Asp(OBzl)-OPac (3.5 g) in 8-N HCl/dioxane (20 ml), stirring the solution under ice cooling for 30 minutes, followed by concentration, and adding ether to precipitate crystals, which were collected by filtration and dried. After stirring at -15° C. for 30 minutes, the solution was brought to room temperature. After 30 minutes, the resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with=water, the solution was dried with Na2 SO4 and concentrated. Ether was added to the resulting residue to separate out a precipitate, which was collected by filtration.
Yield: 4.3 g (79.2%), Melting point: 142°-143° C., Rf1 : 0.38, Rf2 : 0.69 [α]D 28 -8.0° (c=0.97, in DMF)
Elemental analysis: As C38 H41 N4 O9 Calculated: C, 65.41; H, 5.92; N, 8.03 Found: C, 65.46; H, 5.95; N, 7.89
(4) Production of Boc-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac (4.09 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (40 ml) and cooled with ice. Then, TEA (1.67 ml) was added thereto. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (2.16 g), HONB (1.31 g) and DCC (1.51 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 4.84 g (89.2%), Melting point: 92°-94° C., Rf1 : 0.41, Rf2 : 0.67 [α]D 28 -7.4° (c=1.11, in DMF)
Elemental analysis: As C49 H53 N5 O12 Calculated: C, 65.10; H, 5.91; N, 7.75 Found: C, 64.85; H, 5.97; N, 7.93
(5) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac (1.77 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (20 ml) and cooled with ice. Then, TEA (0.56 ml) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (0.67 g), HONB (0.43 g) and DCC (0.50 g)] was added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with NagSO4 and concentrated. Then, the residue was purified using silica gel chromatography (2% methanol/DCM). Subsequently, petroleum ether was added thereto to separate out a precipitate, which was collected by filtration.
Yield: 1.24 g (56.9%), Melting point: 139°-140° C., Rf1 : 0.34, Rf2 : 0.67 [α]D 28 -0.1° (c=0.92, in DMF)
Elemental analysis: As C60 H63 N7 O13 Calculated: C, 66.10; H, 5.82; N, 8.99 Found: C, 65.98; H, 5.83; N, 8.95
(6) Production of Boc-Leu-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac
8-N HCl/dioxane was added to Boc-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac (1.09 g) to dissolve it, and the solution was stirred under ice cooling for 30 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (15 ml) and cooled with ice. Then, TEA (0.28 ml) was added thereto. Boc-Leu-ONB [prepared from Boc-Leu-OH.H2 O (0.27 g), HONB (0.22 g) and DCC (0.25 g)] was added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.10 g (91.4%), Melting point: 140°-142° C., Rf1 : 0.34, Rf2 : 0.67 [α]D 28 -0.5° (c=0.84, in DMF)
Elemental analysis: As C66 H74 N8 O14 Calculated: C, 65.88; H, 6.20; N, 9.31 Found: C, 66.00; H, 6.23; N, 9.20
(7) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac
8N-HCl/dioxane was added to Boc-Leu-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac (0.96 g) to dissolve it, and the solution was stirred under ice cooling for 10 minutes, followed by concentration. Then, ether was added to the residue to precipitate crystals, which were collected by filtration and dried. The crystals were dissolved in DMF (10 ml) and cooled with ice. Then, TEA (0.22 ml) was added thereto. Boc-D-Thg(2)-OH (0.23 g), HONB (0.13 g) and DCC (0.20 g) were added thereto, followed by stirring for 3 hours. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in AcOEt, and the solution was washed with water, 10% aqueous citric acid and 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 1.06 g (98.7%), Melting point: 162°-164° C., Rf1 : 0.30, Rf2 : 0.69 [α]D 28 +4.4° (c=0.75, in DMF)
Elemental analysis: As C72 H79 N9 O15 S Calculated: C, 64.41; H, 5.93; N, 9.39; S, 2.39 Found: C, 64.36; H, 6.04; N, 9.49; S, 2.16
(8) Production of Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OH
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OPac (0.81 g) was dissolved in 90% aqueous AcOH (20 ml), and Zn powder (1.96 g) was added thereto, followed by stirring for 3 hours. The Zn powder was removed by filtration, and the filtrate was concentrated. AcOEt was added to the residue to dissolve it, and the solution was washed with 10% aqueous citric acid. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration.
Yield: 0.72 g (98.0%), Melting point: 140°-143° C., Rf1 : 0.22, Rf2 : 0.66 [α]D 28 +5.8° (c=0.93, in DMF)
Elemental analysis: As C64 H73 N9 O14 S Calculated: C, 62.78; H, 6.01; N, 10.30; S, 2.62 Found: C, 62.75; H, 6.14; N, 10.27; S, 2.49
(9) Production of cyclo[-D-Asp-Asn(CH2 CH2 -Ind)-Asp-D-Thg(2)-Leu-D-Trp-]
Boc-D-Thg(2)-Leu-D-Trp-D-Asp(OBzl)-Asn(CH2 CH2 -Ind)-Asp(OBzl)-OH (0.37 g) was dissolved in DCM (10 ml), and the solution was cooled with ice. HONB (0.11 g) and DCC (0.12 g) were added thereto, followed by stirring for 3 hours. Then, the resulting DCU was separated by filtration, followed by concentration, and ether was added to the residue to separate out a precipitate, which was collected by filtration. 8-N HCl/dioxane (10 ml) was added thereto under ice cooling to dissolve the precipitate. The resulting solution was stirred for 10 minutes and concentrated. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. The precipitate was dissolved in DMF (6 ml), and the resulting solution was added dropwise to DMF (54 ml) containing TEA (0.4 ml) for 30 minutes, followed by stirring overnight and concentration. The residue was dissolved in AcOEt, and the solution was washed with 4% aqueous NaHCO3. After washing with water, the solution was dried with Na2 SO4 and concentrated. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration and dried. Of this precipitate, 111 mg was dissolved in DMF (15 ml) and catalytically reduced in a stream of hydrogen using palladium black as a catalyst. The catalyst was removed by filtration, and then the filtrate was concentrated. The resulting residue was dissolved in a small amount of AcOH, and thereafter, water was added thereto to conduct lyophilization. Finally, a part of the lyophilized product was purified by liquid chromatography using a YMC-D-ODS-5 column (2 cm×25 cm) (Y.M.C.) to obtain a desired material. The yield was 5.4 mg (9.5%).
Anal. for amino acids [110° C., hydrolysis for 24 hours; figures in parentheses show theoretical values.]: Asp 3.00(3); Leu 1.39(1) LSIMS (M+H+)=926, (theoretical value)=926 [B]
Production of cyclo[-D-Asp-Asn(CH2 CH2 Ind)-AsP-D-Thg(2)-Leu-D-Trp-]
(1) Production of Boc-D-Thg(2)-Leu-OBzl
Boc-Thg(2)-OH.CHA (17.8 g, 50 mmoles) was suspended in a mixed solvent of ethyl acetate (250 ml) and water (250 ml), followed by vigorous stirring. Then, 1N aqueous H2 SO4 (50 ml) was added thereto to dissolve it completely. The ethyl acetate layer was separated and dried with Na2 SO4. The solvent was thereafter removed by evaporation under reduced pressure. DMF (90 ml) was added to the residue to prepare solution (I).
Tos.H-Leu-OBzl (39.4 g, 100 mmoles) was added to a mixed solvent of ethyl acetate (250 ml) and 10% aqueous NaHCO3 (250 ml), followed by vigorous stirring to dissolve it completely. The ethyl acetate layer was separated and dried with Na2 SO4. The solvent was thereafter removed by evaporation under reduced pressure. DMF (90 ml) was added to the residue to prepare solution (II).
Solutions (I) and (II) were combined with each other, and HOBT (13.5 g, 100 mmoles) was added thereto to dissolve it. Then, 30 ml of a solution of DCC (20.6 g, 100 mmoles) in DMF was added dropwise thereto under ice cooling for 10 minutes, followed by stirring for 1 hour. The resulting solution was thereafter stirred overnight at 4° C. The insoluble material was removed by filtration, and the solvent was removed by evaporation. Ethyl acetate and water were added to the residue, and 1N aqueous H2 SO4 (50 ml) was added thereto, followed by extraction with ethyl acetate. The ethyl acetate layer was separated and washed successively with the saturated aqueous solution of NaCl, 4% aqueous NaHCO3 and the saturated aqueous solution of NaCl. After drying with Na2 SO4, the solvent was removed by evaporation. The residue was purified by silica gel column chromatography (6 cm×30 cm, hexane:ethyl acetate=10:1-3:1). Colorless crystals were obtained by crystallization from a petroleum ether solution.
Yield: 14.9 g (87.2%)
Melting point: 71.0°-72.5° C., Rf1: 0.80, Rf2: 0.88 [α]D 25 -46.3° (c=1.02, in DMF)
Elemental analysis: As C24 H32 N2 O5 S Calculated: C, 62.59; H, 7.00; N, 6.08 Found: C, 62.35; H, 7.00; N, 6.10
(2) Production of Boc-D-Thg(2)-Leu-OPac
In 500 ml of methanol was dissolved 16.1 g (35.0 mmoles) of Boc-D-Thg(2)-Leu-OBzl synthesized in (1), and 5 g of charcoal was added thereto, followed by stirring. The charcoal was removed by filtration, and 1 g of palladium black was added to the filtrate. The mixture was stirred in a stream of hydrogen at room temperature for 5 hours. The catalyst was removed by filtration, and the filtrate was concentrated to about 100 ml under reduced pressure. Then, 50 ml of a aqueous solution of Cs2 CO3 (5.70 g, 17.5 mmoles) was added dropwise thereto for 10 minutes, followed by stirring for 30 minutes. The solvent was thereafter removed by evaporation. DMF (100 ml) was added to the residue, and the solvent was removed by evaporation under reduced pressure. This operation was repeated twice. DMF (100 ml) was added to the residue to dissolve it, and 50 ml of a solution of phenacyl bromide (7.18 g, 35.0 mmoles) in DMF was added dropwise thereto under ice cooling for 10 minutes. The resulting mixture was brought to room temperature and then stirred overnight. The solvent was removed by distillation, and ethyl acetate was added to the residue, followed by extraction with ethyl acetate. The ethyl acetate layer was separated and washed successively with 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO3 and the saturated aqueous solution of NaCl. After drying with Na2 SO4, the solvent was removed. Colorless crystals were obtained by crystallization from an ether-petroleum ether.
Yield: 14.9 (87.2%)
Melting point: 119.0°-120.0° C., Rf1: 0.79, Rf2: 0.91 [α]D 25 -50.2° (c=1.05, in DMF)
Elemental analysis: As C25 H32 N2 O6 S Calculated: C, 61.46; H, 6.60; N, 5.73 Found: C, 61.43; H, 6.63; N, 5.85
(3) Production of Boc-Asp(OBzl)-D-Thg(2)-Leu-OPac
In 30 ml of dioxane was dissolved 14.7 g (30.0 mmoles) of Boc-D-Thg(2)-Leu-OPac synthesized in (2), and 10N-HCl/dioxane (50 ml) was added thereto under ice cooling, followed by stirring for 15 minutes. The solvent was removed by evaporation under reduced pressure, and ether was added to the residue. The resulting precipitate was collected by filtration and dried. The precipitate was dissolved in DMF (160 ml) and the solution was cooled with ice. Then, diisopropylethylamine (5.30 ml, 30.36 mmoles) was added thereto. Boc-Asp(OBzl)-ONB [prepared from Boc-Asp(OBzl)-OH (9.68 g, 30 mmoles), HONB (5.91 g, 33.0 mmoles) and DCC (6.81 g, 33.0 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration. The residue was dissolved in ethyl acetate, and the solution was washed with water, 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO3 and the saturated aqueous solution of NaCl. After drying with Na2 SO4, the solvent was removed by evaporation. Ether-petroleum ether was added to the residue to obtain a precipitate.
Yield: 20.31 g (97.6%)
Melting point: 67.0°-68.5° C., Rf1: 0.61, Rf2: 0.83 [α]D 25 -52.0° (c=1.03, in DMF)
Elemental analysis: As C36 H43 N3 O9 S Calculated: C, 62.32; H, 6.25; N, 6.06 Found: C, 62.34; H, 6.36; N, 6.20
(4) Production of Boc-Asn(NHCH2 CH2 Ind)-AsP(OBzl)-D-Thg(2)-Leu-OPac
In 30 ml of dioxane was dissolved 20.1 g (29.0 mmoles) of Boc-Asp(OBzl)-D-Thg(2)-Leu-OPac synthesized in (3), and 10N-HCl/dioxane (150 ml) was added thereto under ice cooling, followed by stirring for 15 minutes. The solvent was removed by evaporation under reduced pressure, and ether was added to the residue. The resulting precipitate was collected by filtration and dried. The precipitate was dissolved in DMF (240 ml) and the solution was cooled with ice. Then, diisopropylethylamine (5.05 ml, 29.0 mmoles) was added thereto. Boc-Asn(CH2 CH2 -Ind)-ONB [prepared from Boc-Asn(NHCH2 CH2 ind)-OH {prepared from Boc-Asn(NHCH2 CH2 Ind)-OH.CHA (14.5 g, 30.45 mmoles)}, HONB (5.72 g, 31.9 mmoles) and DCC (6.58 g, 31.9 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration of the filtrate to obtain the residue. Ethyl acetate-ether (1:1) was added to the residue to obtain a precipitate.
Yield: 26.68 g (96.7%)
Melting point: 178.0°-180.5° C., Rf1: 0.38, Rf2: 0.77 [α]D 25 -44.8° (c=1.03, in DMF)
Elemental analysis: As C50 H58 N6 O11 S Calculated: C, 63.14; H, 6.15; N, 8.84 Found: C, 62.85; H, 6.11; N, 8.80
(5) Production of Boc-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-OPac
In 25 ml of dioxane was dissolved 24.7 g (26.0 mmoles) of Boc-Asn(CH2 CH2 -Ind)-Asp(OBzl)-D-Thg(2)-Leu-OPac synthesized in (4), and 10N-HCl/dioxane (130 ml) was added thereto under ice cooling, followed by stirring for 15 minutes. The solvent was removed by evaporation under reduced pressure, and ether was added to the residue. The resulting precipitate was collected by filtration and dried. The precipitate was dissolved in DMF (200 ml), and diisopropylethylamine (4.53 ml, 26.0 mmoles) was added thereto under ice cooling. Boc-D-Asp(OBzl)-ONB [prepared from Boc-D-Asp(OBzl)-OH (8.82 g, 27.3 mmoles), HONB (5.12 g, 28.6 mmoles) and DCC (5.90 g, 28.6 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration of the filtrate to obtain the residue. The residue was dissolved in ethyl acetate, and the solution was washed with water, 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO3 and the saturated aqueous solution of NaCl. After drying with Na2 SO4, the solvent was removed by evaporation. Ethyl acetate-ether was added to the residue to obtain a precipitate.
Yield: 25.82 g (85.9%)
Melting point: 148.0°-150.0° C., Rf1: 0.54 Rf2: 0.78 [α]D 25 -38.9° (c=1.04, in DMF)
Elemental analysis: As C61 H69 N7 O14 S Calculated: C, 63.36; H, 6.01; N, 8.48 Found: C, 63.15; H, 6.00; N, 8.45
(6) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-OPac
In 22 ml of dioxane was added 25.44 g (22.0 mmoles) of Boc-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-OPac synthesized in (5), and 10N-HCl/dioxane (110 ml) was added thereto under ice cooling, followed by stirring for 15 minutes. The solvent was removed by evaporation under reduced pressure, and ether was added to the residue. The resulting precipitate was collected by filtration and dried. The precipitate was dissolved in DMF (200 ml), and the solution was cooled with ice. Then, diisopropylethylamine (3.83 ml, 22.0 mmoles) was added thereto. Boc-D-Trp-ONB [prepared from Boc-D-Trp-OH (6.70 g, 22.0 mmoles), HONB (4.34 g, 24.2 mmoles) and DCC (5.00 g, 24.2 mmoles)] was further added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration of the filtrate to obtain the residue. The residue was dissolved in chloroform, and the solution was washed with water, 10% aqueous citric acid, the saturated aqueous solution of NaCl, the saturated aqueous solution of NaHCO3 and the saturated aqueous solution of NaCl. After drying with Na2 SO4, the solvent was removed by evaporation. The residue was purified by silica gel column chromatography (9.5 cm×50 cm, 0.5% methanol-chloroform). Ether-petroleum ether was added to the purified product to obtain a precipitate.
Yield: 20.10 g (68.0%)
Melting point: 172.0°-173.5° C., Rf1: 0.52, Rf2: 0.77 [α]D 25 -24.1° (c=1.05, in DMF)
Elemental analysis: As C72 H79 N9 O15 S Calculated: C, 64.41; H, 5.93; N, 9.39 Found: C, 64.35; H, 5.99; N, 9.22
(7) Production of Boc-D-Trp-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-OH
In 500 ml of a 90% aqueous solution of acetic acid was dissolved 6.71 g (5.00 mmoles) of Boc-D-Trp-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-OPac synthesized in (6), and 16.33 g (250.0 mmoles) of zinc powder was added thereto, followed by stirring for 1 hour. The zinc powder was separated by filtration, and the filtrate was concentrated. The residue was dissolved in ethyl acetate, and the solution was washed with 10% aqueous citric acid and the saturated aqueous solution of NaCl. After drying with Na2 SO4, the solvent was removed by evaporation. Ether was added to the residue to obtain a precipitate.
Yield: 6.00 g (98.0%)
Melting point: 120.0°-122.0° C. Rf1: 0.00, Rf2: 0.67 [α]D 25 -18.8° (c=1.03, in DMF)
Elemental analysis: As C64 H73 N9 O14 S Calculated: C, 62.78; H, 6.01; N, 10.30 Found: C, 62.66; H, 5.96; N, 10.06
(8) Production of cyclo[-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-D-Trp-]
In 80 ml of DMF was dissolved 5.82 g (4.75 mmoles) of Boc-D-Trp-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-OH synthesized in (7), and the solution was cooled with ice. Then, HONB (1.70 g, 9.50 mmoles) and DCC (1.96 g, 9.50 mmoles) were added thereto, followed by stirring overnight. The resulting insoluble material was separated by filtration, followed by concentration of the filtrate to obtain the residue. Then, ether-petroleum ether was added to the residue to separate out a precipitate, which was collected by filtration. The precipitate was dissolved in dioxane (5 ml), and 10N- HCl/dioxane (50 ml) was added thereto under ice cooling, followed by stirring for 5 minutes. After concentration of the filtrate to obtain the residue, ether was added to the residue. The resulting precipitate was collected by filtration and dried. The precipitate was dissolved in DMF (100 ml). The solution was added dropwise to 900 ml of DMF containing diisopropylethylamine (8.27 ml, 47.5 mmoles) for 30 minutes, followed by stirring overnight. The solvent was removed by evaporation, and distilled water was added to the residue. The resulting precipitate was collected by filtration. The precipitate was dissolved in DMF, followed by concentration of the filtrate to obtain the residue. Then, ether was added to the residue to separate out a precipitate, which was collected by filtration, washed with acetonitrile and dried.
Yield: 4.75 g (90.4%)
(9) Production of cyclo[-D-Asp-Asn(NHCH2 CH2 Ind)-Asp-D-Thg(2)-Leu-D-Trp-]
In 100 ml of DMF was dissolved 2.00 g (1.81 mmoles) of cyclo[-D-Asp(OBzl)-Asn(NHCH2 CH2 Ind)-Asp(OBzl)-D-Thg(2)-Leu-D-Trp-] synthesized in (8), and 1 g of charcoal was added thereto, followed by stirring. The charcoal was removed by filtration, and 1 g of palladium black was added to the filtrate. The mixture was stirred in a stream of hydrogen at room temperature for 6 hours. In addition, 1 g of palladium black was added, and the mixture was stirred in a stream of hydrogen at room temperature for 6 hours. The catalyst was removed by filtration, and the solvent was removed by evaporation under reduced pressure. Then, ether was added to obtain a precipitate.
Yield: 1.68 g (quant.)
Of this precipitate, 1.50 g was purified by reversed phase liquid chromatography [column: YMC-Pack R & D D-ODS-5B (3 cm×25 cm), solvent: 30%-40% acetonitrile (30 minutes)/H2 O (0.1% TFA)].
Yield: 1.11 g LSIMS (M+H+)=926, (theoretical value)=926
(10) Production of cyclo[-D-Asp-Asn(NHCH2 CH2 Ind)-Asp-D-Thg(2)-Leu-D-Trp-].2Na
In 60 ml of acetonitrile was suspended 3.00 g (3.24 mmoles) of cyclo[-D-Asp-Asn(NHCH2 CH2 Ind)-Asp-D-Thg(2)-Leu-D-Trp-] synthesized in (9), and the suspension was added dropwise to 240 ml of an aqueous solution of sodium carbonate (343.4 mg, 3.24 mmoles). After stirring at room temperature for 15 minutes, the pH was adjusted to 7.0 with a 0.1M aqueous solution of sodium carbonate, followed by concentration under reduced pressure. The resulting product was dissolved in 100 ml of distilled water and subjected to lyophilization.
Yield: 2.80 g
In accordance with the processes of Examples 1-14 (A), the processes of Examples 53-56 and 88-90 (B) or the processes of Examples 79-82 (C), the following compounds were synthesized:
__________________________________________________________________________
Example
No. Compound Process
__________________________________________________________________________
15 Cyclo[--D--Asp--D--Ala--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 714, (theoretical value) = 714
16 Cyclo[--D--Asp--Asp--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 758, (theoretical value) = 758
17 Cyclo[--D--Asp--Val--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 742, (theoretical value) = 742
18 Cyclo[--D--Asp--Leu--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 756, (theoretical value) = 756
19 Cyclo[--D--Asp--Phe--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 790, (theoretical value) = 790
20 Cyclo[--D--Asp--Ser(Bzl)--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 820, (theoretical value) = 820
21 Cyclo[--D--Asp--Thr(Bzl)--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 834, (theoretical value) = 834
22 Cyclo[--D--Asp--Trp(For)--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 857, (theoretical value) = 857
23 Cyclo[--D--Asp--Nal(1)--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 840, (theoretical value) = 840
24 Cyclo[--D--Asp--D--Pro--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 740, (theoretical value) = 740
25 Cyclo[--D--Asp--Azc--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 725, (theoretical value) = 725
26 Cyclo[--D--Asp--Pip--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 753, (theoretical value) = 753
27 Cyclo[--D--Asp--D--Asp--Ala--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 714, (theoretical value) = 714
28 Cyclo[--D--Asp--D--Glu--Ala--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 728, (theoretical value) = 728
29 Cyclo[--D--Asp--Asp--D--Ala--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 714, (theoretical value) = 714
30 Cyclo[--D--Asp--Asp--Pro--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 740, (theoretical value) = 740
31 Cyclo[--D--Asp--Asp--D--Pro--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 740, (theoretical value) = 740
32 Cyclo[--D--Asp--Asp--Leu--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 756, (theoretical value) = 756
33 Cyclo[--D--Asp--Asp--Trp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 829, (theoretical value) = 829
34 Cyclo[--D--Asp--Trp--Glu--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 844, (theoretical value) = 844
35 Cyclo[--D--Asp--Trp--Leu--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 828, (theoretical value) = 828
36 Cyclo[--D--Asp--Trp--Pro--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 811, (theoretical value) = 811
37 Cyclo[--D--Asp--Trp--Ser--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 801, (theoretical value) = 801
38 Cyclo[--D--Asp--Trp--Ser(Bzl)--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 892, (theoretical value) = 892
39 Cyclo[--D--Asp--Ala--Asp--D--tLeu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 714, (theoretical value) = 714
40 Cyclo[--D--Glu--Ala--Gly--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 670, (theoretical value) = 670
41 Cyclo[--D--Glu--Ala--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 728, (theoretical value) = 728
42 Cyclo[--D--Asp--Trp--Asp--D--Leu--Leu--D--Trp(For)--]
(A)
LSIMS(M + H.sup.+) = 857, (theoretical value) = 857
43 Cyclo[--D--Asp--Trp--Asp--D--Leu--Leu--D--Trp(Ac)--]
(A)
LSIMS(M + H.sup.+) = 871, (theoretical value) = 871
44 Cyclo[--D--Asp--Trp--Asp--Acpe--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 827, (theoretical value) = 827
45 Cyclo[--D--Asp--Trp--Asp--D--Phg--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 849, (theoretical value) = 849
46 Cyclo[--D--Asp--Sar--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 714, (theoretical value) = 714
47 Cyclo[--D--Asp--N--MeLeu--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 770, (theoretical value) = 770
48 Cyclo[--D--Asp--N--MePhe--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 804, (theoretical value) = 804
49 Cyclo[--D--Asp--Trp--Asp--D--Thg(3)--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 855, (theoretical value) = 855
50 Cyclo[--D--Asp--Trp--Asp--D--Thi--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 869, (theoretical value) = 869
51 Cyclo[--D--Asp--Trp--Asp--D--aIle--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 829, (theoretical value) = 829
52 Cyclo[--D--Asp--Trp--Asp--D--Val--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 815, (theoretical value) = 815
57 Cyclo[--D--Asp--Ala--Asp--D--Leu--Phe--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 748, (theoretical value) = 748
58 Cyclo[--D--Asp--Ala--Asp--D--Leu--Trp--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 787, (theoretical value) = 787
59 Cyclo[--D--Glu--Gly--Ala--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 670, (theoretical value) = 670
60 Cyclo[--D--Asp--Trp--Asp--D--Phe--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 863, (theoretical value) = 863
61 Cyclo[--D--Asp--Trp--Asp--Achx--Leu--D--Trp--]
(B)
LSIMS(M + H.sup.+) = 841, (theoretical value) = 841
62 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 861, (theoretical value) = 861
63 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--
] (C)
LSIMS(M + H.sup.+) = 875, (theoretical value) = 875
64 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Leu--Leu--D--Tr
p--] (C)
LSIMS(M + H.sup.+) = 914, (theoretical value) = 914
65 Cyclo[--D--Asp--Arg(Tos)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 953, (theoretical value) = 953
66 Cyclo[--D--Asp--Lys(Mtr)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 983, (theoretical value) = 983
67 Cyclo[--D--Asp--N--MeTrp--Asp--D--Leu--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 843, (theoretical value) = 843
68 Cyclo[--D--Asp--Asn(Me.CH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Tr
p--] (C)
LSIMS(M + H.sup.+) = 875, (theoretical value) = 875
69 Cyclo[--D--Asp--Asn(CH.sub.2 CHMePh)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 875, (theoretical value) = 875
70 Cyclo[--D--Asp--Asp(R1)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 902, (theoretical value) = 902
71 Cyclo[--D--Asp--Asp(R2)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 901, (theoretical value) = 901
72 Cyclo[--D--Asp--Asp(R3)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 859, (theoretical value) = 859
73 Cyclo[--D--Asp--Asp(R4)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 873, (theoretical value) = 873
74 Cyclo[--D--Asp--Asp(R5)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 887, (theoretical value) = 887
75 Cyclo[--D--Asp--Asp(R6)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 868, (theoretical value) = 868
76 Cyclo[--D--Asp--Glu(R3)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 873, (theoretical value) = 873
77 Cyclo[--D--Asp--Glu(R4)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 887, (theoretical value) = 887
78 Cyclo[--D--Asp--Glu(R5)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 901, (theoretical value) = 901
83 Cyclo[--D--Asp--His--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 780, (theoretical value) = 780
84 Cyclo[--D--Asp--His(Bom)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 900, (theoretical value) = 900
85 Cyclo[--D--Asp--His(Bzl)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 870, (theoretical value) = 870
86 Cyclo[--D--Asp--D,L-Tic--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 802, (theoretical value) = 802
87 Cyclo[--D--Asp--Tpr--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 758, (theoretical value) = 758
91 Cyclo[--D--Asp--Asp(Trp--NHEt)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 971, (theoretical value) = 971
92 Cyclo[--D--Asp--Asp(Trp--NHBzl)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 1033, (theoretical value) = 1033
93 Cyclo[--D--Asp--Asp(D--Trp--NHBzl)--Asp--D--Leu--Leu--D--Trp--]
(C)
LSIMS(M + H.sup.+) = 1033, (theoretical value) = 1033
94 Cyclo[--D--Asp--Asp(Trp--NHCH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D
--Trp--] (C)
LSIMS(M + H.sup.+) = 1047, (theoretical value) = 1047
95 Cyclo[--D--Asp--Trp--Asp--D--Leu--Leu--D--Trp(Me)--]
(A)
LSIMS(M + H.sup.+) = 843, (theoretical value) = 843
96 Cyclo[--D--Asp--Asp(R1)--Asp--D--Thg(2)--Leu--D--Trp--]
(A)
LSIMS(M + H.sup.+) = 928, (theoretical value) = 928
__________________________________________________________________________
In accordance with any one of the processes (A), (B) and (C) mentioned above, the following compounds can be synthesized:
__________________________________________________________________________
Example
No. Compound
__________________________________________________________________________
97 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Phg--Leu--D--Tr
p--]
98 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(3)--Leu--D-
-Trp--]
99 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--Acbu--Leu--D--Trp-
-]
100 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--Acpe--Leu--D--Trp-
-]
101 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--Achx--Leu--D--Trp-
-]
102 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--Achp--Leu--D--Trp-
-]
103 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(2)--Leu--D-
-Trp(Me)--]
104 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(2)--Leu--D-
-Trp(For)--]
105 Cyclo[--D--Cta--Trp--Asp--D--Val--Leu--D--Trp--]
106 Cyclo[--D--Cta--Trp--Asp--D--Leu--Leu--D--Trp--]
107 Cyclo[--D--Cta--Trp--Asp--D--Thg(2)--Leu--D--Trp--]
108 Cyclo[--D--Cta--Trp--Asp--D--Thg(3)--Leu--D--Trp--]
109 Cyclo[--D--Cta--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Val--Leu--D--Tr
p--]
110 Cyclo[--D--Cta--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Leu--Leu--D--Tr
p--]
111 Cyclo[--D--Cta--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(2)--Leu--D-
-Trp--]
112 Cyclo[--D--Cta--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(3)--Leu--D-
-Trp--]
113 Cyclo[--D--Cta--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(2)--Leu--D-
-Trp(Me)--]
114 Cyclo[--D--Cta--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(2)--Leu--D-
-Trp(For)--]
115 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Thg(3)--Leu--D--Trp--]
116 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Phg--Leu--D--Trp--]
117 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--]
118 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Val--Leu--D--Trp--]
119 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--aIle--Leu--D--Trp--]
120 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--tLeu--Leu--D--Trp--]
121 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Thg(2)--Leu--D--Trp(Me)--]
122 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Thg(3)--Leu--D--Trp(Me)--]
123 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Thg(2)--Leu--D--Trp(For)--]
124 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Thg(3)--Leu--D--Trp(For)--]
125 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 Ph)--Asp--D--Thg(2)--Leu--D--Tr
p--]
126 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 Ph)--Asp--D--Thg(3)--Leu--D--Tr
p--]
127 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(2)--Leu--D-
-Trp--]
128 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(3)--Leu--D-
-Trp--]
129 Cyclo[--D--Cta--Gln(CH.sub.2 Ph)--Asp--D--Thg(2)--Leu--D--Trp--]
130 Cyclo[--D--Cta--Gln(CH.sub.2 Ph)--Asp--D--Thg(3)--Leu--D--Trp--]
131 Cyclo[--D--Cta--Gln(CH.sub.2 CH.sub.2 Ph)--Asp--D--Thg(2)--Leu--D--Tr
p--]
132 Cyclo[--D--Cta--Gln(CH.sub.2 CH.sub.2 Ph)--Asp--D--Thg(3)--Leu--D--Tr
p--]
133 Cyclo[--D--Cta--Gln(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(2)--Leu--D-
-Trp--]
134 Cyclo[--D--Cta--Gln(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Thg(3)--Leu--D-
-Trp--]
135 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Val--Leu--D--Tr
p--]
136 Cyclo[--D--Asp--Asp(R7)--Asp--D--Thg(2)--Leu--D--Trp--]
137 Cyclo[--D--Asp--Asp(R8)--Asp--D--Thg(2)--Leu--D--Trp--]
138 Cyclo[--D--Asp--Asp(R9)--Asp--D--Thg(2)--Leu--D--Trp--]
139 Cyclo[--D--Asp--Asp(R10)--Asp--D--Thg(2)--Leu--D--Trp--]
140 Cyclo[--D--Asp--Asp(R11)--Asp--D--Thg(2)--Leu--D--Trp--]
141 Cyclo[--D--Asp--Asp(R12)--Asp--D--Thg(2)--Leu--D--Trp--]
142 Cyclo[--D--Asp--Asp(R13)--Asp--D--Thg(2)--Leu--D--Trp--]
143 Cyclo[--D--Asp--Asp(R14)--Asp--D--Thg(2)--Leu--D--Trp--]
144 Cyclo[--D--Asp--Asp(R15)--Asp--D--Thg(2)--Leu--D--Trp--]
145 Cyclo[--D--Asp--Asp(R16)--Asp--D--Thg(2)--Leu--D--Trp--]
146 Cyclo[--D--Cta--Asp(R1)--Asp--D--Thg(2)--Leu--D--Trp--]
147 Cyclo[--D--Cta--Asp(R7)--Asp--D--Thg(2)--Leu--D--Trp--]
148 Cyclo[--D--Cta--Asp(R8)--Asp--D--Thg(2)--Leu--D--Trp--]
149 Cyclo[--D--Cta--Asp(R9)--Asp--D--Thg(2)--Leu--D--Trp--]
150 Cyclo[--D--Cta--Asp(R10)--Asp--D--Thg(2)--Leu--D--Trp--]
151 Cyclo[--D--Cta--Asp(R11)--Asp--D--Thg(2)--Leu--D--Trp--]
152 Cyclo[--D--Cta--Asp(R12)--Asp--D--Thg(2)--Leu--D--Trp--]
153 Cyclo[--D--Cta--Asp(R13)--Asp--D--Thg(2)--Leu--D--Trp--]
154 Cyclo[--D--Cta--Asp(R14)--Asp--D--Thg(2)--Leu--D--Trp--]
155 Cyclo[--D--Cta--Asp(R15)--Asp--D--Thg(2)--Leu--D--Trp--]
156 Cyclo[--D--Cta--Asp(R16)--Asp--D--Thg(2)--Leu--D--Trp--]
157 Cyclo[--D--Asp--Asp(R1)--Asp--D--Cpg--Leu--D--Trp--]
158 Cyclo[--D--Asp--Asp(R7)--Asp--D--Cpg--Leu--D--Trp--]
159 Cyclo[--D--Asp--Asp(R8)--Asp--D--Cpg--Leu--D--Trp--]
160 Cyclo[--D--Asp--Asp(R9)--Asp--D--Cpg--Leu--D--Trp--]
161 Cyclo[--D--Asp--Asp(R10)--Asp--D--Cpg--Leu--D--Trp--]
162 Cyclo[--D--Asp--Asp(R11)--Asp--D--Cpg--Leu--D--Trp--]
163 Cyclo[--D--Asp--Asp(R12)--Asp--D--Cpg--Leu--D--Trp--]
164 Cyclo[--D--Asp--Asp(R13)--Asp--D--Cpg--Leu--D--Trp--]
165 Cyclo[--D--Asp--Asp(R14)--Asp--D--Cpg--Leu--D--Trp--]
166 Cyclo[--D--Asp--Asp(R15)--Asp--D--Cpg--Leu--D--Trp--]
167 Cyclo[--D--Asp--Asp(R16)--Asp--D--Cpg--Leu--D--Trp--]
168 Cyclo[--D--Cta--Asp(R1)--Asp--D--Cpg--Leu--D--Trp--]
169 Cyclo[--D--Cta--Asp(R7)--Asp--D--Cpg--Leu--D--Trp--]
170 Cyclo[--D--Cta--Asp(R8)--Asp--D--Cpg--Leu--D--Trp--]
171 Cyclo[--D--Cta--Asp(R9)--Asp--D--Cpg--Leu--D--Trp--]
172 Cyclo[--D--Cta--Asp(R10)--Asp--D--Cpg--Leu--D--Trp--]
173 Cyclo[--D--Cta--Asp(R11)--Asp--D--Cpg--Leu--D--Trp--]
174 Cyclo[--D--Cta--Asp(R12)--Asp--D--Cpg--Leu--D--Trp--]
175 Cyclo[--D--Cta--Asp(R13)--Asp--D--Cpg--Leu--D--Trp--]
176 Cyclo[--D--Cta--Asp(R14)--Asp--D--Cpg--Leu--D--Trp--]
177 Cyclo[--D--Cta--Asp(R15)--Asp--D--Cpg--Leu--D--Trp--]
178 Cyclo[--D--Cta--Asp(R16)--Asp--D--Cpg--Leu--D--Trp--]
179 Cyclo[--D--Asp--Asp(R7)--Asp--D--Leu--Leu--D--Trp--]
180 Cyclo[--D--Asp--Asp(R8)--Asp--D--Leu--Leu--D--Trp--]
181 Cyclo[--D--Asp--Asp(R9)--Asp--D--Leu--Leu--D--Trp--]
182 Cyclo[--D--Asp--Asp(R10)--Asp--D--Leu--Leu--D--Trp--]
183 Cyclo[--D--Asp--Asp(R11)--Asp--D--Leu--Leu--D--Trp--]
184 Cyclo[--D--Asp--Asp(R12)--Asp--D--Leu--Leu--D--Trp--]
185 Cyclo[--D--Asp--Asp(R13)--Asp--D--Leu--Leu--D--Trp--]
186 Cyclo[--D--Asp--Asp(R14)--Asp--D--Leu--Leu--D--Trp--]
187 Cyclo[--D--Asp--Asp(R15)--Asp--D--Leu--Leu--D--Trp--]
188 Cyclo[--D--Asp--Asp(R16)--Asp--D--Leu--Leu--D--Trp--]
189 Cyclo[--D--Cta--Asp(R1)--Asp--D--Leu--Leu--D--Trp--]
190 Cyclo[--D--Cta--Asp(R7)--Asp--D--Leu--Leu--D--Trp--]
191 Cyclo[--D--Cta--Asp(R8)--Asp--D--Leu--Leu--D--Trp--]
192 Cyclo[--D--Cta--Asp(R9)--Asp--D--Leu--Leu--D--Trp--]
193 Cyclo[--D--Cta--Asp(R10)--Asp--D--Leu--Leu--D--Trp--]
194 Cyclo[--D--Cta--Asp(R11)--Asp--D--Leu--Leu--D--Trp--]
195 Cyclo[--D--Cta--Asp(R12)--Asp--D--Leu--Leu--D--Trp--]
196 Cyclo[--D--Cta--Asp(R13)--Asp--D--Leu--Leu--D--Trp--]
197 Cyclo[--D--Cta--Asp(R14)--Asp--D--Leu--Leu--D--Trp--]
198 Cyclo[--D--Cta--Asp(R15)--Asp--D--Leu--Leu--D--Trp--]
199 Cyclo[--D--Cta--Asp(R16)--Asp--D--Leu--Leu--D--Trp--]
200 Cyclo[--D--Asp--Asp(R1)--Asp--D--Thi--Leu--D--Trp--]
201 Cyclo[--D--Asp--Asp(R1)--Asp--D--Phe--Leu--D--Trp--]
202 Cyclo[--D--Cta--Asp(R1)--Asp--D--Thi--Leu--D--Trp--]
203 Cyclo[--D--Cta--Asp(R1)--Asp--D--Phe--Leu--D--Trp--]
__________________________________________________________________________
In the formulae, R1 to R16 represent the following groups: ##STR3## Experimental Example 1
Assay of Affinity for Receptor (1) . . . Binding Activity on ETA Receptor
A membrane fraction prepared from the porcine heart was diluted to 0.15 mg/ml by using a buffer solution for assay, and 100 μl of the resulting suspension of the membrane fraction was poured into each assay tube to use for assay. To this suspension of the membrane fraction was added 2 μl of 5 nM 125 I-labeled endothelin-1 solution. Further, 3 μl of a test peptide solution was added thereto, followed by incubation at a temperature of 25° C. for 1 hour. Then, the resulting suspension was diluted with 900 μl of the buffer solution for assay cooled with ice, and thereafter separated into a supernatant and a precipitate by centrifugation at 12,000×g for 10 minutes. Cell membranes and an endothelin receptor A (ETA) embedded therein were contained in the precipitate, and radioactive iodine-labeled endothelin combined with the receptor was also recovered in the precipitate. Accordingly, the amount of radioactive iodine-labeled endothelin combined with the endothelin receptor A (ETA) was determined by measuring the amount of radioactive iodine contained in the precipitate with a gamma-ray counter. Results are as shown in Table 1 given below. The cyclic pentapeptide described in Japanese Patent Application No. 2-413828/1990, cyclo[-D-Glu-Ala-D-aIle-Leu-D-Trp-], was used as a control compound. The numerical value of ETA shown in Table 1 is the value of specific activity, taking the binding activity of this cyclic pentapeptide on the receptor A as 1.0. The binding activity (IC50) of this cyclic pentapeptide on the ETA receptor is 2×10-6 M.
Experimental Example 2
Assay of Affinity for Receptor (2) . . . Binding Activity on ETB Receptor *1
A membrane fraction prepared from the bovine brain was diluted to 0.15 mg/ml by using a buffer solution for assay, and 100 μl of the resulting suspension of the membrane fraction was poured into each assay tube to use for assay. To this suspension of the membrane fraction was added 2 μl of 5 nM 125 I labeled endothelin-1 solution. Further, 3 μl of a test peptide solution was added thereto, followed by incubation at a temperature of 25° C. for 1 hour. Then, the resulting suspension was diluted with 900 μl of the buffer solution for assay cooled with ice, and thereafter separated into a supernatant and a precipitate by centrifugation at 12,000×g for 10 minutes. Cell membranes and an endothelin receptor B (ETB) embedded therein were contained in the precipitate, and radioactive iodine-labeled endothelin bound to the receptor was also recovered in the precipitate. Accordingly, the amount of radioactive iodine-labeled endothelin bound to the endothelin receptor B (ETB) was determined by measuring the amount of radioactive iodine contained in the precipitate with a gamma-ray counter. Results are as shown in Table 1 given below. The numerical value of ETB shown in Table 1 is the value of specific activity, taking the binding activity of the compound of Example 8 on the receptor B as 100. The binding activity (IC50) of the compound of Example 8 on the ETB receptor is 3×10-6 M. According to the same assay, the value of specific activity of the pentapeptide described in European Patent Publication No. 436,189, cyclo[-D-Asp-Pro-D-val-Leu-D-Trp-], was less than 5, and that of the above-mentioned cyclic pentapeptide described in Japanese Patent Application No. 2-413328/1990, cyclo[-D-Glu-Ala-D-aIle-Leu-D-Trp-], was less than 1.
Experimental Example 2'
ETB Radio Receptor Assay *2
In the endothelin radio receptor assay, guinea pigs' kidneys were used. Guinea pigs (Std Hartrey, male 250 g, Japan SLC Ltd.) were made to have a cerebral concussion and sacrificed by bleeding from carotid arteries to pick up the kidneys and removed fat therefrom to prepare the kidneys. The obtained kidneys were sliced and homogenized by politron homogenizer in 20 ml of 50 mM Tris-HCl buffer [pH 7.4; 20 mM NaHCO3, 0.1 mM PMSF (Phenylmethylsulfonyl Fluoride), 1 mM EDTA (Ethylenediaminetetraacetic acid)] per one kidney. The homogenized kidney was applied to a centrifugation at 1,000×g for 15 minutes and the supernatant was further applied to a centrifugation for 20 minutes at 30,000×g. The resulting precipitate was twice washed with 50 mM Tris-HCl buffer (pH 7.4) containing 0.1 mM PMSF, 1 mM EDTA. The resultant was stored at -80 ° C. as a crude receptor membrane fraction and was used as the suspension in the following buffer when necessary.
740 Bq of 125 I-endothelin-1 (81.4 TBq/mmol, Du Pont, USA) as a radio ligand, the crude membrane fraction (2.1 μg protein) and samples were added to the following buffer. The reaction was performed at 37° C., for 90 minutes in 0.2 ml of the buffer [50 mM Tris-HCl buffer (pH 7.4) containing 0.1 mM PMSF, 1 mM EDTA, 0.2% bovine serum albumin].
The reaction was stopped by fast filtration on a glass filter (GF/B, Wattman, USA) by Cell Harvestor (290 PHD, Cambridge-Technology, Great Britain), and the filter was three times washed with 50 mM Tris-HCl buffer (pH 7.4). Radio activity remained on the filter was assayed by a gamma counter.
The results are shown in Table 1.
Experimental Example 3
Assay of Affinity for Receptor (3) . . . Binding Inhibiting Activity on NK2 Receptor
The method of Paul L. M. Van Giersbergen et al. [Proc. Natl. Acad. Sci. U.S.A., 88, 1661 (1991) was modified for this assay. The membrane fraction containing the receptor was prepared from the inner wall of the bovine third stomach (purchased from Kyoto Chuo Chikusan Fukuseibutsu Oroshi Kyoukai).
The inner wall of the bovine third stomach stored at -80° C. was cut to 1 cm×1 cm or less, and disrupted in 3 liters/kg of 50 mM Tris-HCl buffer (pH 7.4) supplemented with 120 mM sodium chloride, 5 mM potassium chloride, 0.02% BSA and 5% sucrose, using a polytron homogenizer (Kinematika, Germany). Then, the disrupted product was centrifuged at 1,000×g for 10 minutes. The supernatant was further centrifuged at 45,000×g for 20 minutes. The precipitate was suspended in 200 ml of 50 mM Tris-HCl buffer (pH 7.4) supplemented with 300 mM potassium chloride, 10 mM ethylenediaminetetraacetic acid, 0.1 mM phenylmethylsulfonium fluoride and 0.02% BSA, and gently stirred under ice cooling for 60 minutes. The suspension was centrifuged at 45,000×g for 20 minutes. The precipitate was washed with 200 ml of 50 mM Tris-HCl buffer (pH 7.4), and stored in the frozen state at -40° C. as a receptor sample.
This sample was suspended in a reaction buffer solution [50 mM Tris-HCl buffer (pH 7.4), 0.02% bovine serum albumin and 4 mM manganese chloride] so as to give a protein concentration of 0.7 mg/ml, and 100 μl thereof was used for reaction. A test sample and 125 I-NKA (0.61 KBq, 125 I-neurokinin A, 81.4 TBq/mmol, Du Pont/NEN Research Products, U.S.A.) were also added, and reacted in 0.2 ml of the reaction buffer solution at 25° C. for 3 hours. The reaction mixture was rapidly filtered through a glass filter (GF/B, Whatman, U.S.A.) using a cell harvester (Type 290PHD, Cambridge Technology Inc.) to terminate the reaction, and washed 3 times with 250 μl of 50 mM Tris-HCl buffer (pH 7.4) supplemented with 0.02% bovine serum albumin. The radioactivity left on the filter was measured with a gamma-ray counter. Results are shown in Table 1 as the binding inhibiting activity (IC50, unit: μM) on the NK2 receptor.
TABLE 1
__________________________________________________________________________
Binding Activity
Binding Inhibiting
on ET Receptor
Activity
Example (R. act.) on NK2 Receptor
No. Compound ET.sub.A
ET.sub.8 *1
ET.sub.8 *2
(IC.sub.50,
__________________________________________________________________________
μM)
1 Cyclo[--D--Asp--Ala--Asp--D--Leu--Leu--D--Trp--]
9.7
13 2.0
2 Cyclo[--D--Asp--Ala--D--Asp--D--Leu--Leu--D--Trp--]
3.7 3.1
3 Cyclo[--D--Asp--Ala--Glu--D--Leu--Leu--D--Trp--]
7.9 23
4 Cyclo[--D--Asp--Ala--D--Glu--D--Leu--Leu--D--Trp--]
2.3 1.4
5 Cyclo[--D--Asp--Gly--Ala--D--Leu--Leu--D--Trp--]
1.3 --
6 Cyclo[--D--Asp--Asp--Ala--D--Leu--Leu--D--Trp--]
6.0 7.1
7 Cyclo[--D--Asp--Glu--Ala--D--Leu--Leu--D--Trp--]
6.5 7.1
8 Cyclo[--D--Asp--Trp--Asp--D--Leu--Leu--D--Trp--]
76 100 100 6.4
9 Cyclo[--D--Asp--Pro--Asp--D--Leu--Leu--D--Trp--]
56 140 67
10 Cyclo[--D--Asp--Asn(CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--]
43 26 24
11 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--
] 93 42 44
12 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Leu--Leu--D--Tr
p--] 220
230 150
13 Cyclo[--D--Asp--Hyp(Bzl)--Asp--D--Leu--Leu--D--Trp--]
83 85 140
14 Cyclo[--D--Asp--Hyp--Asp--D--Leu--Leu--D--Trp--]
70 160 120
15 Cyclo[--D--Asp--D--Ala--Asp--D--Leu--Leu--D--Trp--]
5.7 7.7
16 Cyclo[--D--Asp--Asp--Asp--D--Leu--Leu--D--Trp--]
10 14 34
17 Cyclo[--D--Asp--Val--Asp--D--Leu--Leu--D--Trp--]
3.7 22
18 Cyclo[--D--Asp--Leu--Asp--D--Leu--Leu--D--Trp--]
13 2.2
19 Cyclo[--D--Asp--Phe--Asp--D--Leu--Leu--D--Trp--]
8.3 7.1
20 Cyclo[--D--Asp--Ser(Bzl)--Asp--D--Leu--Leu--D--Trp--]
14 13
21 Cyclo[--D--Asp--Thr(Bzl)--Asp--D--Leu--Leu--D--Trp--]
4.3 5.0
22 Cyclo[--D--Asp--Trp(For)--Asp--D--Leu--Leu--D--Trp--]
8.3
6.7 15
23 Cyclo[--D--Asp--Nal(1)--Asp--D--Leu--Leu--D--Trp--]
8.3
11 7.7 2.1
24 Cyclo[--D--Asp--D--Pro--Asp--D--Leu--Leu--D--Trp--]
1.7 --
25 Cyclo[--D--Asp--Azc--Asp--D--Leu--Leu--D--Trp--]
30 25 57
26 Cyclo[--D--Asp--Pip--Asp--D--Leu--Leu--D--Trp--]
25 38 73
27 Cyclo[--D--Asp--D--Asp--Ala--D--Leu--Leu--D--Trp--]
5.7 4.8
28 Cyclo[--D--Asp--D--Glu--Ala--D--Leu--Leu--D--Trp--]
5.7 5.3
29 Cyclo[--D--Asp--Asp--D--Ala--D--Leu--Leu--D--Trp--]
2.6 2.4
30 Cyclo[--D--Asp--Asp--Pro--D--Leu--Leu--D--Trp--]
4.4 9.1
31 Cyclo[--D--Asp--Asp--D--Pro--D--Leu--Leu--D--Trp--]
2.6 1.0
32 Cyclo[--D--Asp--Asp--Leu--D--Leu--Leu--D--Trp--]
4.0 7.7 2.6
33 Cyclo[--D--Asp--Asp--Trp--D--Leu--Leu--D--Trp--]
2.9 5.6 0.35
34 Cyclo[--D--Asp--Trp--Glu--D--Leu--Leu--D--Trp--]
20 77 44 7.4
35 Cyclo[--D--Asp--Trp--Leu--D--Leu--Leu--D--Trp--]
9.1
52 24 0.052
36 Cyclo[--D--Asp--Trp--Pro--D--Leu--Leu--D--Trp--]
17 40 42 1.1
37 Cyclo[--D--Asp--Trp--Ser--D--Leu--Leu--D--Trp--]
24 22 18 0.28
38 Cyclo[--D--Asp--Trp--Ser(Bzl)--D--Leu--Leu--D--Trp--]
13 66 170 0.070
39 Cyclo[--D--Asp--Ala--Asp--D--tLeu--Leu--D--Trp--]
6.8
59 53
40 Cyclo[--D--Glu--Ala--Gly--D--Leu--Leu--D--Trp--]
1.4
41 Cyclo[--D--Glu--Ala--Asp--D--Leu--Leu--D--Trp--]
2.1 26
42 Cyclo[--D--Asp--Trp--Asp--D--Leu--Leu--D--Trp(For)--]
150
100 150
43 Cyclo[--D--Asp--Trp--Asp--D--Leu--Leu--D--Trp(Ac)--]
8.2
120 250
44 Cyclo[--D--Asp--Trp--Asp--Acpe--Leu--D--Trp--]
34 11
45 Cyclo[--D--Asp--Trp--Asp--D--Phg--Leu--D--Trp--]
87 74 180
46 Cyclo[--D--Asp--Sar--Asp--D--Leu--Leu--D--Trp--]
8.1 75
47 Cyclo[--D--Asp--N-MeLeu--Asp--D--Leu--Leu--D--Trp--]
6.8 17
48 Cyclo[--D--Asp--N-MePhe--Asp--D--Leu--Leu--D--Trp--]
2.7 13
49 Cyclo[--D--Asp--Trp--Asp--D--Thg(3)--Leu--D--Trp--]
270
74 75
50 Cyclo[--D--Asp--Trp--Asp--D--Thi--Leu--D--Trp--]
4 350 57
51 Cyclo[--D--Asp--Trp--Asp--D--aIle--Leu--D--Trp--]
100
210 290
52 Cyclo[--D--Asp--Trp--Asp--D--Val--Leu--D--Trp--]
75 240 100
53 Cyclo[--D--Asp--Trp--Asp--D--tLeu--Leu--D--Trp--]
64 460
54 Cyclo[--D--Asp--Trp--Asp--D--γMeLeu--Leu--D--Trp--]
99 1000
55 Cyclo[--D--Asp--Trp--Asp--D--Thg(2)--Leu--D--Trp--]
340 120
56 Cyclo[--D--Asp--Trp--Asp--Acbu--Leu--D--Trp--]
51 4.3
57 Cyclo[--D--Asp--Ala--Asp--D--Leu--Phe--D--Trp--]
2.0
58 Cyclo[--D--Asp--Ala--Asp--D--Leu--Trp--D--Trp--]
0.7
6.7 22
59 Cyclo[--D--Glu--Gly--Ala--D--Leu--Leu--D--Trp--]
60 Cyclo[--D--Asp--Trp--Asp--D--Phe--Leu--D--Trp--]
1 210 44
61 Cyclo[--D--Asp--Trp--Asp--Achx--Leu--D--Trp--]
39 52
62 Cyclo[--D--Asp--Gln(CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--]
170 120
63 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--
] 130 340
64 Cyclo[--D--Asp--Gln(CH.sub.2 CH.sub.2 --Ind)--Asp--D--Leu--Leu--D--Tr
p--] 120 270
65 Cyclo[--D--Asp--Arg(Tos)--Asp--D--Leu--Leu--D--Trp--]
20 63
66 Cyclo[--D--Asp--Lys(Mtr)--Asp--D--Leu--Leu--D--Trp--]
51 120
67 Cyclo[--D--Asp--N-MeTrp--Asp--D--Leu--Leu--D--Trp--]
9.1 30
68 Cyclo[--D--Asp--Asn(Me.CH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Tr
p--] 24 52
69 Cyclo[--D--Asp--Asn(CH.sub.2 CHMePh)--Asp--D--Leu--Leu--D--Trp--]
140 60
70 Cyclo[--D--Asp--Asp(R1)--Asp--D--Leu--Leu--D--Trp--]
360
1500
2600
71 Cyclo[--D--Asp--Asp(R2)--Asp--D--Leu--Leu--D--Trp--]
160 1000
72 Cyclo[--D--Asp--Asp(R3)--Asp--D--Leu--Leu--D--Trp--]
45 100
73 Cyclo[--D--Asp--Asp(R4)--Asp--D--Leu--Leu--D--Trp--]
80 40
74 Cyclo[--D--Asp--Asp(R5)--Asp--D--Leu--Leu--D--Trp--]
37 31
75 Cyclo[--D--Asp--Asp(R6)--Asp--D--Leu--Leu--D--Trp--]
9 33
76 Cyclo[--D--Asp--Glu(R3)--Asp--D--Leu--Leu--D--Trp--]
17 57 10
77 Cyclo[--D--Asp--Glu(R4)--Asp--D--Leu--Leu--D--Trp--]
66 100
78 Cyclo[--D--Asp--Glu(R5)--Asp--D--Leu--Leu--D--Trp--]
120 130
79 Cyclo[--D--Asp--Orn(COPh)--Asp--D--Leu--Leu--D--Trp--]
26 71
80 Cyclo[--D--Asp--Orn(COCH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp--]
260 380
81 Cyclo[--D--Asp--Orn(COCH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D--Trp
--] 68 160
82 Cyclo[--D--Asp--Orn(COCH.sub.2 --Ind)--Asp--D--Leu--Leu--D--Trp--]
240 500
83 Cyclo[--D--Asp--His--Asp--D--Leu--Trp--D--Trp--]
15 43
84 Cyclo[--D--Asp--His(Bom)--Asp--D--Leu--Leu--D--Trp--]
20 80
85 Cyclo[--D--Asp--His(Bzl)--Asp--D--Leu--Leu--D--Trp--]
19 43
86 Cyclo[--D--Asp--D,L-Tic--Asp--D--Leu--Leu--D--Trp--]
38 240
87 Cyclo[--D--Asp--Tpr--Asp--D--Leu--Leu--D--Trp--]
93 380
88 Cyclo[--D--Asp--Hyp(Bzl)--Asp--D--Thg(2)--Leu--D--Trp--]
650
200 210
89 Cyclo[--D--Asp--Glu(Bzl)--Asp--D--Thg(2)--Leu--D--Trp--]
750
45 71
90 Cyclo[--D--Asp--Asn(CH.sub.2 CH.sub.2 Ind)--Asp--D--Thg(2)--Leu--D--T
rp--] 810
590 280
91 Cyclo[--D--Asp--Asp(Trp--NHET)--Asp--D--Leu--Leu--D--Trp--]
130 200
92 Cyclo[--D--Asp--Asp(Trp--NHBzl)--Asp--D--Leu--Leu--D--Trp--]
95 260 4.0
93 Cyclo[--D--Asp--Asp(D--Trp--NHBzl)--Asp--D--Leu--Leu--D--Trp--]
110 270
94 Cyclo[--D--Asp--Asp(Trp--NHCH.sub.2 CH.sub.2 Ph)--Asp--D--Leu--Leu--D
--Trp--] 120 140 5.8
95 Cyclo[--D--Asp--Trp--Asp--D--Leu--Leu--D--Trp(Me)--]
110 330
96 Cyclo[--D--Asp--Asp(R1)--Asp--D--Thg(2)--Leu--D--Trp--]
980
1800
__________________________________________________________________________
__________________________________________________________________________ SEQUENCE LISTING (1) GENERAL INFORMATION: (iii) NUMBER OF SEQUENCES: 3 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: CysSerCysSerSerLeuMetAspLysGluCysValTyrPheCysHis 151015 LeuAspIleIleTrp 20 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: CysSerCysSerSerTrpLeuAspLysGluCysValTyrPheCysHis 151015 LeuAspIleIleTrp 20 (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: CysThrCysPheThrTyrLysAspLysGluCysValTyrTyrCysHis 151015 LeuAspIleIleTrp 20 __________________________________________________________________________
Claims (1)
1. A cyclic peptide having endothelin receptor antagonistic activity represented by formula [I] or a pharmaceutically acceptable salt thereof: ##STR4## wherein A is D-aspartic acid, X is aspartic acid β-4-phenylpiperazineamide, Y is aspartic acid, B is D-2-thienylglycine, C is leucine and D is D-tryptophan.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/231,449 US5616684A (en) | 1991-08-13 | 1994-04-20 | Cyclic peptides and use thereof |
| US08/680,534 US5883075A (en) | 1991-08-13 | 1996-07-09 | Cyclic endothelin antagonists |
Applications Claiming Priority (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20303291 | 1991-08-13 | ||
| JP30363591 | 1991-11-19 | ||
| JP3543692 | 1992-02-21 | ||
| JP3-203032 | 1992-04-30 | ||
| JP4-35436 | 1992-04-30 | ||
| JP3-303635 | 1992-04-30 | ||
| JP4-111792 | 1992-04-30 | ||
| JP11179292 | 1992-04-30 | ||
| US92720592A | 1992-08-07 | 1992-08-07 | |
| US08/231,449 US5616684A (en) | 1991-08-13 | 1994-04-20 | Cyclic peptides and use thereof |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US92720592A Continuation | 1991-08-13 | 1992-08-07 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/680,534 Division US5883075A (en) | 1991-08-13 | 1996-07-09 | Cyclic endothelin antagonists |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5616684A true US5616684A (en) | 1997-04-01 |
Family
ID=27460093
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/231,449 Expired - Fee Related US5616684A (en) | 1991-08-13 | 1994-04-20 | Cyclic peptides and use thereof |
| US08/680,534 Expired - Fee Related US5883075A (en) | 1991-08-13 | 1996-07-09 | Cyclic endothelin antagonists |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/680,534 Expired - Fee Related US5883075A (en) | 1991-08-13 | 1996-07-09 | Cyclic endothelin antagonists |
Country Status (11)
| Country | Link |
|---|---|
| US (2) | US5616684A (en) |
| EP (1) | EP0528312B1 (en) |
| JP (2) | JP2677489B2 (en) |
| AT (1) | ATE155486T1 (en) |
| CA (1) | CA2075878C (en) |
| DE (1) | DE69220861T2 (en) |
| DK (1) | DK0528312T3 (en) |
| ES (1) | ES2103857T3 (en) |
| FI (1) | FI106031B (en) |
| GR (1) | GR3024495T3 (en) |
| NO (1) | NO310295B1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5811218A (en) * | 1993-07-28 | 1998-09-22 | Hitachi Chemical Company, Ltd. | Photoinitiator compositions including amino acids, coumarin and titanocene and photosensitive materials using the same |
| US6251861B1 (en) * | 1996-06-27 | 2001-06-26 | Takeda Chemical Industries, Ltd. | Treatment of cerebral infarction using cyclic hexapeptides |
| WO2005085277A1 (en) * | 2004-02-06 | 2005-09-15 | Concepcion Gisela P | Cyclic hexapeptides, process and use thereof |
| US20100022568A1 (en) * | 2006-04-13 | 2010-01-28 | Actelion Pharmaceeuticals Ltd. | Endothelin receptor antagonists for early stage idiopathic pulmonary fibrosis |
| US9486273B2 (en) | 2011-01-21 | 2016-11-08 | Kardium Inc. | High-density electrode-based medical device system |
| WO2024114782A1 (en) * | 2022-12-01 | 2024-06-06 | National Institute Of Biological Sciences, Beijing | Small-molecule modulators of spike protein |
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5767310A (en) * | 1993-03-19 | 1998-06-16 | Merck & Co., Inc. | Phenoxyphenylacetic acid derivatives |
| CA2121724A1 (en) * | 1993-04-21 | 1994-10-22 | Toshifumi Watanabe | Methods and compositions for the prophylactic and/or therapeutic treatment of organ hypofunction |
| KR950000167A (en) * | 1993-06-24 | 1995-01-03 | 다께다 구니오 | Sustained-release preparations of anti-endotherin substances |
| US6087324A (en) | 1993-06-24 | 2000-07-11 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
| CA2135151A1 (en) * | 1993-11-08 | 1995-05-09 | Mitsuhiro Wakimasu | Cyclic hexapeptides, their production and use |
| US5521156A (en) * | 1994-02-03 | 1996-05-28 | Merrell Pharmaceuticals Inc. | Cyclic neurokinin A antagonists |
| DE4415310A1 (en) * | 1994-04-30 | 1995-11-02 | Merck Patent Gmbh | Cyclopeptides |
| US5559135A (en) * | 1994-09-14 | 1996-09-24 | Merck & Co., Inc. | Endothelin antagonists bearing pyridyl amides |
| US5538991A (en) * | 1994-09-14 | 1996-07-23 | Merck & Co., Inc. | Endothelin antagonists bearing 5-membered heterocyclic amides |
| EP0714909A1 (en) * | 1994-12-01 | 1996-06-05 | Takeda Chemical Industries, Ltd. | Composition for prophylaxis or treatment of pulmonary circulatory diseases |
| EP0822939A1 (en) * | 1995-04-28 | 1998-02-11 | Takeda Chemical Industries, Ltd. | Cyclic pentapeptide lh-rh receptor antagonists |
| IT1304888B1 (en) * | 1998-08-05 | 2001-04-05 | Menarini Ricerche Spa | MONOCYCLIC ACTION COMPOUNDS NK-2 ANTAGONIST AND FORMULATIONS THAT CONTAIN |
| IL145406A0 (en) | 1999-03-29 | 2002-06-30 | Procter & Gamble | Melanocortin receptor ligands |
| WO2003006041A1 (en) * | 2001-07-12 | 2003-01-23 | Takeda Chemical Industries, Ltd. | Preventives/remedies for malignant tumor |
| GB0326632D0 (en) | 2003-11-14 | 2003-12-17 | Jagotec Ag | Dry powder formulations |
| US7838102B2 (en) * | 2004-10-28 | 2010-11-23 | E. I. Du Pont De Nemours And Company | Filled polyvinyl butyral sheeting for decorative laminated glass and a process for making same |
| AU2008210434C8 (en) | 2007-01-31 | 2014-03-27 | Dana-Farber Cancer Institute, Inc. | Stabilized p53 peptides and uses thereof |
| KR20160061439A (en) | 2007-03-28 | 2016-05-31 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Stitched polypeptides |
| DK2603600T3 (en) | 2010-08-13 | 2019-03-04 | Aileron Therapeutics Inc | PEPTIDOMIMETIC MACROCYCLES |
| WO2012028745A1 (en) | 2010-09-03 | 2012-03-08 | Pharmaterials Limited | Pharmaceutical composition suitable for use in a dry powder inhaler |
| RU2639523C2 (en) | 2011-10-18 | 2017-12-21 | Эйлерон Терапьютикс, Инк. | Peptidomimetic macrocycles and their application |
| RU2642299C2 (en) | 2012-02-15 | 2018-01-24 | Эйлерон Терапьютикс, Инк. | p53 PEPTIDOMIMETIC MACROCYCLES |
| CA2864120A1 (en) | 2012-02-15 | 2013-08-22 | Aileron Therapeutics, Inc. | Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles |
| WO2013152076A1 (en) * | 2012-04-04 | 2013-10-10 | The Brigham And Women's Hospital, Inc. | Compositions and methods for treating hypertension |
| US9604919B2 (en) | 2012-11-01 | 2017-03-28 | Aileron Therapeutics, Inc. | Disubstituted amino acids and methods of preparation and use thereof |
| JP2018503595A (en) | 2014-09-24 | 2018-02-08 | エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. | Peptidomimetic macrocycle and its preparation |
| SG11201702223UA (en) | 2014-09-24 | 2017-04-27 | Aileron Therapeutics Inc | Peptidomimetic macrocycles and uses thereof |
| US10253067B2 (en) | 2015-03-20 | 2019-04-09 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and uses thereof |
| US10023613B2 (en) | 2015-09-10 | 2018-07-17 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles as modulators of MCL-1 |
| KR102389725B1 (en) * | 2020-02-14 | 2022-04-25 | 서울대학교산학협력단 | Cyclic peptide compound containing piperazic acid, a preparing method thereof, and a use thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0436189A1 (en) * | 1989-12-28 | 1991-07-10 | Banyu Pharmaceutical Co., Ltd. | Endothelin atagonistic cyclic pentapeptides |
| WO1992002546A1 (en) * | 1990-08-03 | 1992-02-20 | A. Menarini Industrie Farmaceutiche Riunite S.R.L. | Synthetic peptides that antagonize neurokinin a, their salts and their manufacturing processes |
| US5260276A (en) * | 1991-06-14 | 1993-11-09 | Warner-Lambert Company | Linear and monocyclic endothelin antagonists |
-
1992
- 1992-08-08 DE DE69220861T patent/DE69220861T2/en not_active Expired - Fee Related
- 1992-08-08 ES ES92113568T patent/ES2103857T3/en not_active Expired - Lifetime
- 1992-08-08 DK DK92113568.7T patent/DK0528312T3/en active
- 1992-08-08 EP EP92113568A patent/EP0528312B1/en not_active Expired - Lifetime
- 1992-08-08 AT AT92113568T patent/ATE155486T1/en not_active IP Right Cessation
- 1992-08-12 CA CA002075878A patent/CA2075878C/en not_active Expired - Fee Related
- 1992-08-12 FI FI923619A patent/FI106031B/en active
- 1992-08-12 NO NO19923142A patent/NO310295B1/en unknown
- 1992-08-13 JP JP4216019A patent/JP2677489B2/en not_active Expired - Fee Related
-
1994
- 1994-04-20 US US08/231,449 patent/US5616684A/en not_active Expired - Fee Related
-
1995
- 1995-12-28 JP JP7342625A patent/JP2726647B2/en not_active Expired - Fee Related
-
1996
- 1996-07-09 US US08/680,534 patent/US5883075A/en not_active Expired - Fee Related
-
1997
- 1997-08-21 GR GR970402134T patent/GR3024495T3/en unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0436189A1 (en) * | 1989-12-28 | 1991-07-10 | Banyu Pharmaceutical Co., Ltd. | Endothelin atagonistic cyclic pentapeptides |
| US5114918A (en) * | 1989-12-28 | 1992-05-19 | Banyu Pharmaceutical Co., Ltd. | Endothelin antagonistic cyclic pentapeptides |
| WO1992002546A1 (en) * | 1990-08-03 | 1992-02-20 | A. Menarini Industrie Farmaceutiche Riunite S.R.L. | Synthetic peptides that antagonize neurokinin a, their salts and their manufacturing processes |
| US5260276A (en) * | 1991-06-14 | 1993-11-09 | Warner-Lambert Company | Linear and monocyclic endothelin antagonists |
Non-Patent Citations (26)
| Title |
|---|
| Doherty, Journal of Medicinal Chemistry, vol. 35(9), pp. 1493 1508, (1992). * |
| Doherty, Journal of Medicinal Chemistry, vol. 35(9), pp. 1493-1508, (1992). |
| Editors: Smith et al., "Peptides - Proceedings of the 12th American Peptide Proceedings of the 12th American Peptide Symposium", Jun. 1991, Cambridge, USA' 1992, Escom, Leiden, Holland & Ishikawa, et al., Endothelin antagonistic cyclic pentapeptides with high selectivity for ETa receptor; pp. 812-813. |
| Editors: Smith et al., Peptides Proceedings of the 12th American Peptide Proceedings of the 12th American Peptide Symposium , Jun. 1991, Cambridge, USA 1992, Escom, Leiden, Holland & Ishikawa, et al., Endothelin antagonistic cyclic pentapeptides with high selectivity for ETa receptor; pp. 812 813. * |
| Himata et al, Biochem. and Biophys. Research Commun., vol. 160, pp. 228 234, (Apr. 14, 1989). * |
| Himata et al, Biochem. and Biophys. Research Commun., vol. 160, pp. 228-234, (Apr. 14, 1989). |
| Ihara et al, Life Sciences, vol. 50, pp. 247 255, (1991). * |
| Ihara et al, Life Sciences, vol. 50, pp. 247-255, (1991). |
| Japanese Patent Unexamined Publication No. 3 130299/91. * |
| Japanese Patent Unexamined Publication No. 3 141295/91. * |
| Japanese Patent Unexamined Publication No. 3 17098/91. * |
| Japanese Patent Unexamined Publication No. 3 94692/91. * |
| Japanese Patent Unexamined Publication No. 3-130299/91. |
| Japanese Patent Unexamined Publication No. 3-141295/91. |
| Japanese Patent Unexamined Publication No. 3-17098/91. |
| Japanese Patent Unexamined Publication No. 3-94692/91. |
| K. Ishikawa et al.; Peptides, Chemistry and Biology, pp. 812 813, Jun. 16 21, 1991, Endothelin antagonistic cyclic pentapeptides with high selectivity for ET A receptor . * |
| K. Ishikawa et al.; Peptides, Chemistry and Biology, pp. 812-813, Jun. 16-21, 1991, "Endothelin antagonistic cyclic pentapeptides with high selectivity for ETA receptor". |
| Kimura et al, Biochem. and Biophys. Research Commun., vol. 156(3), (Nov. 15, 1988), pp. 1182 1186. * |
| Kimura et al, Biochem. and Biophys. Research Commun., vol. 156(3), (Nov. 15, 1988), pp. 1182-1186. |
| Masaki Ihara et al.; Biochemical and Biophysical Research Communications, vol. 178, No. 1, 1991 pp. 132 137, Jul. 15, 1991 An Endothelin Receptor (ET A ) Antagonist Isolated From Streptomyces Misakiensis . * |
| Masaki Ihara et al.; Biochemical and Biophysical Research Communications, vol. 178, No. 1, 1991 pp. 132-137, Jul. 15, 1991 "An Endothelin Receptor (ETA) Antagonist Isolated From Streptomyces Misakiensis". |
| Nakajima et al, Biochem. and Biophys. Research Commun., vol. 163(1), (Aug. 30, 1989), pp. 424 429. * |
| Nakajima et al, Biochem. and Biophys. Research Commun., vol. 163(1), (Aug. 30, 1989), pp. 424-429. |
| Saeki et al, Biochemical and Biophysical Res. Comm., vol. 179, No. 1, pp. 286 292, (Aug. 30, 1991). * |
| Saeki et al, Biochemical and Biophysical Res. Comm., vol. 179, No. 1, pp. 286-292, (Aug. 30, 1991). |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5811218A (en) * | 1993-07-28 | 1998-09-22 | Hitachi Chemical Company, Ltd. | Photoinitiator compositions including amino acids, coumarin and titanocene and photosensitive materials using the same |
| US6251861B1 (en) * | 1996-06-27 | 2001-06-26 | Takeda Chemical Industries, Ltd. | Treatment of cerebral infarction using cyclic hexapeptides |
| WO2005085277A1 (en) * | 2004-02-06 | 2005-09-15 | Concepcion Gisela P | Cyclic hexapeptides, process and use thereof |
| US20100022568A1 (en) * | 2006-04-13 | 2010-01-28 | Actelion Pharmaceeuticals Ltd. | Endothelin receptor antagonists for early stage idiopathic pulmonary fibrosis |
| US9486273B2 (en) | 2011-01-21 | 2016-11-08 | Kardium Inc. | High-density electrode-based medical device system |
| WO2024114782A1 (en) * | 2022-12-01 | 2024-06-06 | National Institute Of Biological Sciences, Beijing | Small-molecule modulators of spike protein |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2075878C (en) | 2002-12-24 |
| FI106031B (en) | 2000-11-15 |
| EP0528312B1 (en) | 1997-07-16 |
| NO923142D0 (en) | 1992-08-12 |
| DE69220861T2 (en) | 1997-11-20 |
| EP0528312A3 (en) | 1993-04-14 |
| JP2677489B2 (en) | 1997-11-17 |
| US5883075A (en) | 1999-03-16 |
| EP0528312A2 (en) | 1993-02-24 |
| NO923142L (en) | 1993-02-15 |
| NO310295B1 (en) | 2001-06-18 |
| ATE155486T1 (en) | 1997-08-15 |
| CA2075878A1 (en) | 1993-02-14 |
| FI923619L (en) | 1993-02-14 |
| GR3024495T3 (en) | 1997-11-28 |
| DK0528312T3 (en) | 1997-12-29 |
| JPH069689A (en) | 1994-01-18 |
| JPH08225595A (en) | 1996-09-03 |
| DE69220861D1 (en) | 1997-08-21 |
| ES2103857T3 (en) | 1997-10-01 |
| JP2726647B2 (en) | 1998-03-11 |
| FI923619A0 (en) | 1992-08-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5616684A (en) | Cyclic peptides and use thereof | |
| AU632043B2 (en) | Cyclic analogs of atrial natriuretic peptides | |
| US5583108A (en) | Vasonatrin peptide and analogs thereof | |
| US4086221A (en) | Polypeptides and process for producing the same | |
| EP0552417B1 (en) | Cyclic peptides and use thereof | |
| US5049654A (en) | Calcitonin gene related peptide derivatives | |
| US4716147A (en) | Synthetic airial peptides | |
| JP2837352B2 (en) | Motilin-like polypeptide that suppresses gastrointestinal motility activity | |
| EP0323740A2 (en) | Linear analogs of atrial natriuretic peptides | |
| AU626786B2 (en) | Derivatives of atrial natriuretic peptides | |
| WO1990000561A1 (en) | Novel peptides | |
| EP0283956B1 (en) | Fluorine containing atrial natriuretic peptides | |
| US5948754A (en) | Cyclic hexapeptides, their production and use | |
| US5306808A (en) | Peptide derivatives having vasodilating activity | |
| US5965526A (en) | Pentapeptide with specific conformation, its production and use | |
| US6610655B2 (en) | Pentapeptide with specific conformation, its production and use | |
| JPH0559098A (en) | Cyclic peptide and its use | |
| JPH05194589A (en) | Cyclic peptide, its production and use | |
| EP0714909A1 (en) | Composition for prophylaxis or treatment of pulmonary circulatory diseases | |
| JPH05194592A (en) | Peptide derivative and its use | |
| JPH07126288A (en) | Cyclic hexapeptide and its production and use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20050401 |