US3155498A - Ductile iron and method of making same - Google Patents
Ductile iron and method of making same Download PDFInfo
- Publication number
- US3155498A US3155498A US162558A US16255861A US3155498A US 3155498 A US3155498 A US 3155498A US 162558 A US162558 A US 162558A US 16255861 A US16255861 A US 16255861A US 3155498 A US3155498 A US 3155498A
- Authority
- US
- United States
- Prior art keywords
- silicon
- content
- iron alloy
- iron
- molten iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001141 Ductile iron Inorganic materials 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 46
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 38
- 229910052710 silicon Inorganic materials 0.000 claims description 38
- 239000010703 silicon Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 31
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 18
- 239000011777 magnesium Substances 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 13
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 239000011593 sulfur Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- 238000010079 rubber tapping Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 50
- 239000010439 graphite Substances 0.000 description 27
- 229910002804 graphite Inorganic materials 0.000 description 27
- 229910052742 iron Inorganic materials 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 17
- 150000001247 metal acetylides Chemical class 0.000 description 17
- 238000005266 casting Methods 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910052748 manganese Inorganic materials 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005242 forging Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910001296 Malleable iron Inorganic materials 0.000 description 3
- 235000000396 iron Nutrition 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 235000014036 Castanea Nutrition 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- VCTOKJRTAUILIH-UHFFFAOYSA-N manganese(2+);sulfide Chemical class [S-2].[Mn+2] VCTOKJRTAUILIH-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000012809 post-inoculation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
Definitions
- This invention relates to the manufacture of ductile iron and more particularly to ductile iron which can be subsequently formed into semi-finished and finished ductile iron products by various methods of working, i.e., rolling, forging, or hammering, which can be used in many applications instead of the more costly mild steels.
- nodular or spheroidalfree primary graphite in ductile iron castings inoculated with magnesium, cerium or the like increases the strength and ductility of these castings as compared to the strength and ductility of grey iron castings.
- These ductile iron castings are also susceptible to brittle rupture at low stress levels due to the large nodules formed during the solidification of the castings.
- Malleable iron castings can be hot worked but as a practical matter are limited to small sizes and must be subjected to lengthy and costly annealing cycles to obtain the necessary microstructures. They are chill cast in small cross-sectional molds to prevent the formation of any form of free primary graphite. This procedure favors the formation of free massive carbides which upon lengthy annealing at the proper temperatures decompose into ferrite and spheroids of graphite called temper carbon. Since any free primary flake graphite formed in the initial casting is not converted to the spheroidal form on heating, malleable iron castings must'be relatively small so that the entire mass is cooled rapidly in the chill molds.
- the free massive carbides formed in malleable castings are hard and brittle and are not conducive to hohworking operations so that it is necessary to decompose these carbides to ferrite and graphite. If comparatively large castings, e.g. large ingots, were made, the heat treatment required to make them suitable for subsequent hot-working operations would be of such duration as to make it economically unfeasible to produce such castings.
- the decomposition of the massive carbides to graphite is sluggish and requires holding times of many hours at temperatures exceeding 1200 F. and as high as l850 F., and these massive carbides decompose into relatively large graphite particles, which, as hereinbefore stated are not conducive to working operations.
- Another object of this invention is to produce a new article of manufacture which comprises ductile iron which can be readily transformed into semi-finished and finished products by the usual working operations, i.e., rolling, hammering, forging, etc., and a method of producing same.
- Another object of this invention is to produce a new article of manufacture which comprises ductile iron, the microstructure of which as-cast comprises primarily fine widely-dispersed unstable complex carbides in a substantially pearlitic or ferro-peralitic matrix in which free primary graphite is substantially absent, and a method of producing same.
- Another object of this invention is to produce a new article of manufacture which comprises ductile iron, the microstructure of which as-cast comprises primarily fine widely-dispersed unstable complex ferro-magnesium carbides in a substantially pearlitic or ferro-pearlitic matrix in which free primary graphite is substantially absent and a method of producing same.
- Still another object of the invention is to produce a new article of manufacture which comprises ductile iron having improved mechanical properties, particularly good ductility, high impact strength, low transition temperatures, good corrosion resistance, high damping capacity, and good-inachinability, and a method of producing same.
- a further object of the invention is to produce a new article of manufacture comprising ductile iron, the microstructure of which as-cast comprises primarily fine widelydispersed carbides in a pearlitic or ferro-p'earlitic matrix which, upon heating to the hot working temperature, com prises fine well-dispersed nodular graphite in an austenitic matrix, and a method of producing same.
- an ingot can be produced which comprises mainly fine, well-dispersed, unstable complex carbides and has practically no free primary graphite in any-form, but if some be present it will be in the form of minute, very widely-dispersed nodules or spheroids as the constituents of its microstructure.
- the said microstructure makes it possible to heat the castings to a temperature of about l850 Fpand hold for a very short time, e.g.
- the broad composition ranges permissible in the final product made by the method of this invention comprise by weight a total carbon content of about 1.20% up to about 3.60%, a silicon content of about 1.00% up .to about 2.00%, a phosphorus content not over 0.06%, a sulfur content not over 0.035%, and about 0.005% up' to about 2.00% of Well-known nodularizing elements such as magnesium, tellurium, cerium, calcium, lithium, sodium and potassium.
- the preferred chemical composition ranges of the final product made by the method of the present invention comprise a total carbon content of from about 2.40% to about 2.80%, silicon from about.
- a normal cast iron is melted to a manganese range of about 0.60% up to about 0.80% primarily to provide sufficient manganese to desulfurize the iron and to a lesser degree to add to the hardness of the iron.
- the nodularizing elements used in the manufacture of ductile iron are also powerful desulfurizers making it unnecessary to have a higher manganese than up to 0.35%.
- the hardness and brittleness of the iron are reduced, thus increasing the workability of the ductile iron of the present invention.
- it has been found that if a harder ductile iron is desired an increase of the manganese content up to 1.50% will not greatly affect the workability of the iron of the invention.
- the melting of the iron can be accomplished in any suitable melting apparatus such as a cupola furnace, blast furnace, open-hearth furnace or electric furnace using the usual ore mixtures, fuels and other necessary additives, although the preferred equipment is the cupola furnace familiar to all foundries, and the preferred charge is steel scrap.
- suitable melting apparatus such as a cupola furnace, blast furnace, open-hearth furnace or electric furnace using the usual ore mixtures, fuels and other necessary additives, although the preferred equipment is the cupola furnace familiar to all foundries, and the preferred charge is steel scrap.
- the ductile iron embodying the present invention can be produced, for example, by melting a suitable charge, preferably 100% selected steel scrap such as structural channel shapes, having a low content of residual elements such as copper, bismuth, tin, lead, titanium, so as to produce a heat of molten iron at tapping comprising a chemical content of, for example, carbon from about 2.50% up to about 4.20%, silicon about 2.00% max., manganese from about 0.05% up to about 1.00%, phosphorus about 0.06% max, sulfur up to about 0.30% max. and the balance iron.
- a suitable charge preferably 100% selected steel scrap such as structural channel shapes, having a low content of residual elements such as copper, bismuth, tin, lead, titanium, so as to produce a heat of molten iron at tapping comprising a chemical content of, for example, carbon from about 2.50% up to about 4.20%, silicon about 2.00% max., manganese from about 0.05% up to about 1.00%, phosphorus about 0.06% max, sulfur up
- the aforementioned molten iron is tapped into a ladle and the carbon and silicon contents are reduced by subjecting the said molten iron to the action of an oxidizing agent, preferably pure gaseous oxygen blown under pressure through a pipe onto the surface of the said molten iron.
- an oxidizing agent preferably pure gaseous oxygen blown under pressure through a pipe onto the surface of the said molten iron.
- the oxygen unites with the silicon in the iron resulting in the removal of substantially all of the silicon before the carbon is oxidized to the required ranges of 1.20% to 3.60%.
- the silicon is replaced in the iron in subsequent deoxidation and inoculation steps to a level of 1.00% to 2.00%.
- the carbon and silicon contents are required at this level so that large nodules of free primary graphite are not formed during the solidification of the metal in the mold as occurs in normal ductile iron and which would render the metal unworkable.
- the said molten iron is now deoxidized by the addition of silicon preferably in amounts which will also provide a silicon content of 0.20-0.50%. Small amounts of aluminum may be added to insure complete deoxidation, but this is not essential to the practice of the invention, as deoxidation can be accomplished by the silicon alone.
- a nodularizing agent consisting of one or more elements of the group magnesium, tellurium, cerium, calcium, lithium, sodium, potassium, preferably magnesium ferro silicon alloy, is placed in a second ladle.
- the said dioxidized molten iron is reladled into the ladle containing the aforementioned nodularizing agent to reduce the sulphur and to provide the final residual content of nodularizing agent necessary to provide nuclei for the formation of fine well-dispersed unstable complex carbides as cast and later the formation upon heating of small graphite nodules or spheroids and to inhibit the formation of any flake graphite in the final product.
- the silicon added in the deoxidation step and with the nodularizing agent should be sufiicient to promote graphitization in the heating or annealing step.
- invention comprises carbon about 2.40-2.80%, silicon about 150-2.00%, manganese about 0.15-0.40%, phosphorus about 0.06% max., sulfur about 0.025% max. and magnesium about 0.040.08%.
- the above treated molten iron is teemed into chill molds of any desired size or shape and allowed to remain for a period of time long enough to solidify the ingot.
- the resultant ingot will have a structure comprising fine well-dispersed unstable complex carbides in a ferrous matrix and little if any graphite, such graphite if present being in the form of minute, well-dispersed nodules.
- the solidified ingot is removed from the mold as soon as possible and charged into a holding chamber or furnace at 1500 F. to 2000 F. and preferably 18501950 F. prior to any working operation. Holding the ingot within this temperature range will result in the dissolution of all the carbides within a period of 1 to 2 hours resulting in a structure comprising small well-dispersed nodules of free graphite in an austenitic matrix. If for any reason the solidified ingot is allowed to becoae cold, it is preferred that the said cold ingot be charged into a preheat chamber or furnace at approximately 1000-1300 F., preferably about 1200 F., heated for a sufficient length of time to assure that the casting is at a uniform heat, then transferred to a heating chamber at 1500 F.
- the semi-finished and finished products referred to in the present invention include such articles as blooms and billet stock for secondary conversion by rolling, hammering or forging, bar stock both round and fiat as used in the industry for further processing by machining, drawing cold-working and the like, and finished hammered or forged materials such as steam traps, gear blanks and the These finished products may be used as rolled, or annealed or in the heat-treated condition. If the ingot is to be directly cold worked, the heating is followed by slow cooling to the cold working temperature.
- ductile iron which can be worked hot or cold by any of the conventional methods, rolling hammering, forging, into semi-finished and finished products which have better mechanical properties, particularly ductility, and higher impact strengths than grey cast irons, malleable cast irons or normal ductile irons; and lower transition temperatures, better corrosion resistance and higher damping capacity than mild steels.
- a molten iron bath containing by weight a total carbon content of about 3.40%, a manganese content of about 0.35% and a silicon content of about 1.30% was obtained by melting a charge of 6,000 pounds of selected steel scrap, 1,000 pounds of coke, 150 pounds of 50% ferrosilicon alloy and 60 pounds of limestone in a Cupolatype furnace.
- the molten metal was tapped at a temperature of approximately 2600 F. into a ladle which contained pounds or purite (Na CO which desulfurized the cupola iron and resulted in a sulfur content of below .03%.
- the molten metal was agitated with pure gaseous nitrogen for approximately 3 minutes.
- the molten metal was then oxidized by blowing 1650 cu. ft. of pure gaseous oxygen onto the surface of the The molten metal was then deoxidized by adding 9 pounds of 85% ferrosilicon as a deoxidizing agent, bringing the silicon content of the metal to 0.50%. After the deoxidation step 18 pounds of 75% erro-manganese were added to the molten metal in order to bring up the manganese content to a level which would insure a 0.35% content in the final product to provide hardenability to the iron.
- the molten metal in the ladle was then inoculated with 211 pounds of a nodularizing alloy containing 47.0% silicon, 9% magnesium, 10% cerium, 10% calcium, the balance iron, and 9 pounds of 85% ferrosilicon.
- the inoculated bath was then allowed to stand for several minutes, after which time the slag was removed and the molten metal teemed into two 13-inch round ingot mOlds.
- the metal was allowed to solidify in the molds for one hour.
- the molds were stripped from the ingots which were placed in a box and covered with sand to cool. Microscopic examination of test specimens cut from the cold ingot revealed the microstructure to be fine, welldispersed unstable complex ferro-magnesium carbides, and a very few small nodules of free primary graphite in a pearlitic matrix.
- the ingots were charged into a preheat furnace held at 1100 F. and soaked for 5 hours. One ingot was transferred to a furnace at 1900 F. and was soaked at n at a temperature of 1550 F. and air cooled to room te perature. Samples were cut from the roller bars and were mechanically tested at the Physical Laboratory. The results of the mechanical tests follows:
- step (d) is magnesium in an amount of .04% to .08%.
- step (d) consists essentially of a ferrosilicon magnesium alloy.
- the said molten iron alloy in the ladle to produce a silicon content of about 0.20% up to about 0.50%, (d) adding silicon and a nodularizing agent thereto, (2) teeming the molten iron alloy into a chill mold and allowing said molten iron alloy to solidify.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
United States Patent,
3,155,498 DUCTILE IRON AND METHOD (3F MAKING SAME Henry L. Jandras, Bethlehem, Pa, assignor to Bethlehem Steel Company, a corporation of Pennsylvania N0 Drawing. Filed Dec. 27, 1961, Ser. No. 162,558
13 Claims. (Cl. 75-130) This invention relates to the manufacture of ductile iron and more particularly to ductile iron which can be subsequently formed into semi-finished and finished ductile iron products by various methods of working, i.e., rolling, forging, or hammering, which can be used in many applications instead of the more costly mild steels.
Among the principal difficulties in producing a ductile iron ingot which can be deformed and converted to useful semi-finished and finished products by subsequent working processes is the prevention of the precipitation of large areas of free primary graphite, and free massive carbides usually referred to as cementite which render the ingot brittle and thus susceptible to rupture during the hot-working processes.
It is a well known fact that graphite in itself possesses no appreciable strength. It is obvious, therefore, that the form of the graphite in a cast iron ingot is important in the sense that it determines the shape of the discontinuities which the graphite forms in the matrix of the ingot. The mechanical strength of the ingot is dependent upon the manner in which these discontinuities interrupt the continuity of the essential matrix or mass of the ingot.
.areas of the matrix between the graphite flakes. These areas are usually of insufiicient strength to resist large concentrations of stresses and are bridged quite readily by these stresses, thus rendering the castings brittle and susceptible to fracture by lapplied static or dynamic forces.
The formation of nodular or spheroidalfree primary graphite in ductile iron castings inoculated with magnesium, cerium or the like increases the strength and ductility of these castings as compared to the strength and ductility of grey iron castings. These ductile iron castings, however, are also susceptible to brittle rupture at low stress levels due to the large nodules formed during the solidification of the castings.
Malleable iron castings can be hot worked but as a practical matter are limited to small sizes and must be subjected to lengthy and costly annealing cycles to obtain the necessary microstructures. They are chill cast in small cross-sectional molds to prevent the formation of any form of free primary graphite. This procedure favors the formation of free massive carbides which upon lengthy annealing at the proper temperatures decompose into ferrite and spheroids of graphite called temper carbon. Since any free primary flake graphite formed in the initial casting is not converted to the spheroidal form on heating, malleable iron castings must'be relatively small so that the entire mass is cooled rapidly in the chill molds.
in order to insure that only carbides are formed.
The free massive carbides formed in malleable castings are hard and brittle and are not conducive to hohworking operations so that it is necessary to decompose these carbides to ferrite and graphite. If comparatively large castings, e.g. large ingots, were made, the heat treatment required to make them suitable for subsequent hot-working operations would be of such duration as to make it economically unfeasible to produce such castings. The decomposition of the massive carbides to graphite is sluggish and requires holding times of many hours at temperatures exceeding 1200 F. and as high as l850 F., and these massive carbides decompose into relatively large graphite particles, which, as hereinbefore stated are not conducive to working operations.
It is the primary object of this invention to provide a new method for the manufacture of ductile iron which can be worked hot or cold by known methods into semifinished and finished articles.
Another object of this invention is to produce a new article of manufacture which comprises ductile iron which can be readily transformed into semi-finished and finished products by the usual working operations, i.e., rolling, hammering, forging, etc., and a method of producing same.
Another object of this invention is to produce a new article of manufacture which comprises ductile iron, the microstructure of which as-cast comprises primarily fine widely-dispersed unstable complex carbides in a substantially pearlitic or ferro-peralitic matrix in which free primary graphite is substantially absent, and a method of producing same.
Another object of this invention is to produce a new article of manufacture which comprises ductile iron, the microstructure of which as-cast comprises primarily fine widely-dispersed unstable complex ferro-magnesium carbides in a substantially pearlitic or ferro-pearlitic matrix in which free primary graphite is substantially absent and a method of producing same.
Still another object of the invention is to produce a new article of manufacture which comprises ductile iron having improved mechanical properties, particularly good ductility, high impact strength, low transition temperatures, good corrosion resistance, high damping capacity, and good-inachinability, and a method of producing same.
A further object of the invention is to produce a new article of manufacture comprising ductile iron, the microstructure of which as-cast comprises primarily fine widelydispersed carbides in a pearlitic or ferro-p'earlitic matrix which, upon heating to the hot working temperature, com prises fine well-dispersed nodular graphite in an austenitic matrix, and a method of producing same.
I have found that by controlling the chemical composition of iron, particularly the carbon, sulfur, siliconand magnesium contents, and by pouring the molten iron into a chill mold of any size or type, an ingot can be produced which comprises mainly fine, well-dispersed, unstable complex carbides and has practically no free primary graphite in any-form, but if some be present it will be in the form of minute, very widely-dispersed nodules or spheroids as the constituents of its microstructure. The said microstructure makes it possible to heat the castings to a temperature of about l850 Fpand hold for a very short time, e.g. 1 to 2 hours, to decompose the carbides to fine well-dispersed graphite nodules and austenite so that the ingot can be subsequently hot-worked by such methods as rolling, hammering, or forging. Should it be desired to cold work the ingot, it can be slowly cooled from the annealing temperature to produce a structure retaining the. said graphite nodules, but which below the critical will be in a matrix of ferrite or pearlite according to thecooling rate to give properties desired in the worked product. The time required at temperature to decompose the fine carbides to fine graphite is much shorter than that required to decompose the free massive carbides present in malleable iron castings.
; The broad composition ranges permissible in the final product made by the method of this invention comprise by weight a total carbon content of about 1.20% up to about 3.60%, a silicon content of about 1.00% up .to about 2.00%, a phosphorus content not over 0.06%, a sulfur content not over 0.035%, and about 0.005% up' to about 2.00% of Well-known nodularizing elements such as magnesium, tellurium, cerium, calcium, lithium, sodium and potassium. The preferred chemical composition ranges of the final product made by the method of the present invention comprise a total carbon content of from about 2.40% to about 2.80%, silicon from about.
1.50% to about 2.00%, phosphorus up to about 0.06%, sulphur up to about 0.025%, and magnesium from about 0.04% up to about 0.08%.
A normal cast iron is melted to a manganese range of about 0.60% up to about 0.80% primarily to provide sufficient manganese to desulfurize the iron and to a lesser degree to add to the hardness of the iron. The nodularizing elements used in the manufacture of ductile iron are also powerful desulfurizers making it unnecessary to have a higher manganese than up to 0.35%. The hardness and brittleness of the iron are reduced, thus increasing the workability of the ductile iron of the present invention. However, it has been found that if a harder ductile iron is desired an increase of the manganese content up to 1.50% will not greatly affect the workability of the iron of the invention.
The melting of the iron can be accomplished in any suitable melting apparatus such as a cupola furnace, blast furnace, open-hearth furnace or electric furnace using the usual ore mixtures, fuels and other necessary additives, although the preferred equipment is the cupola furnace familiar to all foundries, and the preferred charge is steel scrap.
The ductile iron embodying the present invention can be produced, for example, by melting a suitable charge, preferably 100% selected steel scrap such as structural channel shapes, having a low content of residual elements such as copper, bismuth, tin, lead, titanium, so as to produce a heat of molten iron at tapping comprising a chemical content of, for example, carbon from about 2.50% up to about 4.20%, silicon about 2.00% max., manganese from about 0.05% up to about 1.00%, phosphorus about 0.06% max, sulfur up to about 0.30% max. and the balance iron.
The aforementioned molten iron is tapped into a ladle and the carbon and silicon contents are reduced by subjecting the said molten iron to the action of an oxidizing agent, preferably pure gaseous oxygen blown under pressure through a pipe onto the surface of the said molten iron. The oxygen unites with the silicon in the iron resulting in the removal of substantially all of the silicon before the carbon is oxidized to the required ranges of 1.20% to 3.60%. The silicon is replaced in the iron in subsequent deoxidation and inoculation steps to a level of 1.00% to 2.00%. The carbon and silicon contents are required at this level so that large nodules of free primary graphite are not formed during the solidification of the metal in the mold as occurs in normal ductile iron and which would render the metal unworkable.
The said molten iron is now deoxidized by the addition of silicon preferably in amounts which will also provide a silicon content of 0.20-0.50%. Small amounts of aluminum may be added to insure complete deoxidation, but this is not essential to the practice of the invention, as deoxidation can be accomplished by the silicon alone.
After deoxidation, a nodularizing agent consisting of one or more elements of the group magnesium, tellurium, cerium, calcium, lithium, sodium, potassium, preferably magnesium ferro silicon alloy, is placed in a second ladle. The said dioxidized molten iron is reladled into the ladle containing the aforementioned nodularizing agent to reduce the sulphur and to provide the final residual content of nodularizing agent necessary to provide nuclei for the formation of fine well-dispersed unstable complex carbides as cast and later the formation upon heating of small graphite nodules or spheroids and to inhibit the formation of any flake graphite in the final product.
The silicon added in the deoxidation step and with the nodularizing agent should be sufiicient to promote graphitization in the heating or annealing step.
An example of a final composition of the iron of the like.
invention comprises carbon about 2.40-2.80%, silicon about 150-2.00%, manganese about 0.15-0.40%, phosphorus about 0.06% max., sulfur about 0.025% max. and magnesium about 0.040.08%.
Following the inoculation step, it has been found that the addition of silicon in a post inoculation treatment is sometimes desirable. This additional silicon has been found effective in shortening the heating times required to break up the unstable carbides. Although this has been found to be advantageous, it is not essential to the invention.
The above treated molten iron is teemed into chill molds of any desired size or shape and allowed to remain for a period of time long enough to solidify the ingot. The resultant ingot will have a structure comprising fine well-dispersed unstable complex carbides in a ferrous matrix and little if any graphite, such graphite if present being in the form of minute, well-dispersed nodules.
The solidified ingot is removed from the mold as soon as possible and charged into a holding chamber or furnace at 1500 F. to 2000 F. and preferably 18501950 F. prior to any working operation. Holding the ingot within this temperature range will result in the dissolution of all the carbides within a period of 1 to 2 hours resulting in a structure comprising small well-dispersed nodules of free graphite in an austenitic matrix. If for any reason the solidified ingot is allowed to becoae cold, it is preferred that the said cold ingot be charged into a preheat chamber or furnace at approximately 1000-1300 F., preferably about 1200 F., heated for a sufficient length of time to assure that the casting is at a uniform heat, then transferred to a heating chamber at 1500 F. to 2000 F., preferably l850-1950 F. and held for a sufficient length of time to assure a uniform heating prior to the final hot-working operations of rolling, hammering, or forging necessary to form the said ingot into semifinished and finished products. It will be understood that the semi-finished and finished products referred to in the present invention include such articles as blooms and billet stock for secondary conversion by rolling, hammering or forging, bar stock both round and fiat as used in the industry for further processing by machining, drawing cold-working and the like, and finished hammered or forged materials such as steam traps, gear blanks and the These finished products may be used as rolled, or annealed or in the heat-treated condition. If the ingot is to be directly cold worked, the heating is followed by slow cooling to the cold working temperature.
By careful'control of the chemical composition of ductile iron, particularly the carbon and silicon contents, and by careful hot metal procedures, it is possible to manufacture a ductile iron which can be worked hot or cold by any of the conventional methods, rolling hammering, forging, into semi-finished and finished products which have better mechanical properties, particularly ductility, and higher impact strengths than grey cast irons, malleable cast irons or normal ductile irons; and lower transition temperatures, better corrosion resistance and higher damping capacity than mild steels.
A specific example of my process is as follows:
A molten iron bath containing by weight a total carbon content of about 3.40%, a manganese content of about 0.35% and a silicon content of about 1.30% was obtained by melting a charge of 6,000 pounds of selected steel scrap, 1,000 pounds of coke, 150 pounds of 50% ferrosilicon alloy and 60 pounds of limestone in a Cupolatype furnace. The molten metal was tapped at a temperature of approximately 2600 F. into a ladle which contained pounds or purite (Na CO which desulfurized the cupola iron and resulted in a sulfur content of below .03%. In order to insure satisfactory desulfurization and the floating out of the manganese sulfides thus formed, the molten metal was agitated with pure gaseous nitrogen for approximately 3 minutes.
The molten metal was then oxidized by blowing 1650 cu. ft. of pure gaseous oxygen onto the surface of the The molten metal was then deoxidized by adding 9 pounds of 85% ferrosilicon as a deoxidizing agent, bringing the silicon content of the metal to 0.50%. After the deoxidation step 18 pounds of 75% erro-manganese were added to the molten metal in order to bring up the manganese content to a level which would insure a 0.35% content in the final product to provide hardenability to the iron. I
The molten metal in the ladle was then inoculated with 211 pounds of a nodularizing alloy containing 47.0% silicon, 9% magnesium, 10% cerium, 10% calcium, the balance iron, and 9 pounds of 85% ferrosilicon. The inoculated bath was then allowed to stand for several minutes, after which time the slag was removed and the molten metal teemed into two 13-inch round ingot mOlds. The metal was allowed to solidify in the molds for one hour. The molds were stripped from the ingots which were placed in a box and covered with sand to cool. Microscopic examination of test specimens cut from the cold ingot revealed the microstructure to be fine, welldispersed unstable complex ferro-magnesium carbides, and a very few small nodules of free primary graphite in a pearlitic matrix.
The ingots were charged into a preheat furnace held at 1100 F. and soaked for 5 hours. One ingot was transferred to a furnace at 1900 F. and was soaked at n at a temperature of 1550 F. and air cooled to room te perature. Samples were cut from the roller bars and were mechanically tested at the Physical Laboratory. The results of the mechanical tests follows:
Y.S. T.S. Elong. R.A. BHN
(p.s.i.) (p.s.i.) (percent) (percent) As-rolled 76,000 145,000 8.0 8.9 262 Annealed 55,000 96,750 16.0 19.2 163 The second ingot was transferred to a furnace at 1850 F. and was held for a total time of 12 hours, after which it was furnace cooled to 900 F. The ingot was removed from the furnace and air cooled. Blanks Weighing 74 pounds each were cut from the ingot, were heated to 1900 F. at which time said blanks had a microstructure comprising small nodules of well-dispersed free graphite in an austenitic matrix, and were forged into sixteen inch gear blanks. The finished pieces were allowed to cool in air. Specimens cut from the finished cold blanks revealed a microstructure of fine nodules of well-dispersed free graphite in a pearlitic matrix. Test specimens were removed from the forged blanks and tested at the Physical Laboratory. Results of the tests showed:
A chemical analysis was conducted on the broken test specimens and revealed the ductile iron to be comprised of 2.98% total carbon, 1.61% silicon, 26% manganese, 0.35% sulfur, 047% phosphorus, 06% magnesium.
Although I have described the process of manufacture and product in considerable detail, I am aware that alter.-
tions and changes may be made without departing from the spirit of the invention and scope of the claims.
I claim:
1. A method of manufacturing a workable ductile iron alloy having a total carbon content of from about 1.20% up to about 3.60%, a silicon content of from about 1.00% up to about 2.00%, a sulfur content of 0.035% max. and a content of from about 0.005% up to about 2.00% of a nodularizing agent,, said method comprising:
(a) tapping from a furnace into a ladle a molten iron alloy containing carbon, silicon and sulfur,
(b) treating the molten iron alloy in the ladle by oxygen injection for a period of time to effect substantially complete removal of all the silicon,
(0) adding a deoxidizing agent comprising silicon to the molten iron alloy in the ladle to produce a silicon content of about 0.20% up to about 0.50%,
(d) adding silicon and a nodularizing agent to the molten iron alloy in the ladle, said nodularizing agent consisting of at least one of the elements of the group magnesium, tellurium, cerium, calcium, lithium, sodium, potassium, thereby imparting to the said molten iron alloy a final silicon content of from about 1.00% up to about 2.00% and 0.005% up to about 2.00% of said nodularizing agent,
(e) teeming the molten iron alloy into a chill mold and allowing the said molten iron alloy to solidify.
2. A method as claimed in claim 1 in which the nodularizing agent in step (d) is magnesium in an amount of .04% to .08%.
3. A method as claimed in claim 1 in which the solidified metal alloy in the mold in step ((2) consists essentially of a total carbon of about 2.40% up to about 2.80%, a silicon content of about 1.50% up to about 2.00%, a manganese content of about 0.15% up to about 0.40%, a phosphorus content up to about 0.06%, a sulfur content up to about 0.025%, a magnesium content of about 0.04% up to about 0.08%, and the balance iron.
4. A method as claimed in claim 1 in which the nodularizing agent utilized in step (d) consists essentially of a ferrosilicon magnesium alloy.
5. A method as claimed in claim 1 in which the solidified iron alloy is subjected to heating above the upper critical temperature of the alloy.
6. A method as claimed in claim 2 in which the solidified iron alloy is subjected to heating above the upper critical temperature of the alloy. 1
7. A method as claimed in claim 3 in which the solidified iron alloy is subjected to heating above the upper critical temperature of the alloy.
8. A method as claimed in claim 4 in which the solidified iron alloy is subjected to heating above the upper critical temperature of the alloy.
'9. A method as claimed in claim 5 in which the iron alloy after heating is subjected to working.
10. A method as claimed in claim 6 in which the iron alloy after heating is subjected to working.
11. A method as claimed in claim 7 in which the iron alloy after heating is subjected to working.
12. A method as claimed in claim 8 in which the iron alloy after heating is subjected to working.
13. A method of manufacturing a workable ductile iron alloy having a total carbon content of from about 1.20%
up to about 3.60%, a silicon content of from 1.00% up.
the said molten iron alloy in the ladle to produce a silicon content of about 0.20% up to about 0.50%, (d) adding silicon and a nodularizing agent thereto, (2) teeming the molten iron alloy into a chill mold and allowing said molten iron alloy to solidify.
References Cited in the file of this patent UNITED STATES PATENTS 2,256,674 Herrmann Sept. 23, 1941 2,578,794 Gagnebin et a1 Dec. 18, 1951 2,855,336 Curry Oct. 7, 1958 2,937,084 Klepp et al May 17, 1960 8 FOREIGN PATENTS 702,776 Great Britain Jan. 20, 1954 OTHER REFERENCES Gagnebin et 211.: The Iron Age, February 17, 1949, pages 77-84, published by the Iron Age, Chestnut and 56th Street, Philadelphia 39, Pennsylvania.
Cast Metals Handbook, 4th edition, 1957, pages 195- 10 200, published by the American Foundrymens Society,
Des Plaines, Illinois.
Claims (1)
1. A METHOD OF MANUFACTURING A WORKABLE DUCTILE IRON ALLOY HAVING A TOTAL CARBON CONTENT OF FROM ABOUT 1.20% UP TO ABOUT 3.60%, A SILICON CONTENT OF FROM ABOUT 1.00% UP TO ABOUT 2.00%, A SULFUR CONTENT OF 0.035% MAX. AND A CONTENT OF FROM ABOUT 0.005% UP TO ABOUT 2.00% OF A NODULARIZING AGENT,, SAID METHOD COMPRISING: (A) TAPPING FROM A FURNACE INTO A LADLE A MOLTEN IRON ALLOY CONTAINING CARBON, SILICON AND SULFUR, (B) TREATING THE MOLTEN IRON ALLOY IN THE LADLE BY OXYGEN INJECTION FOR A PERIOD OF TIME TO EFFECT SUBSTANTIALLY COMPLETE REMOVAL OF ALL THE SILICON, (C) ADDING A DEOXIDIZING AGENT COMPRISING SILICON TO THE MOLTEN IRON ALLOY IN THE LADLE TO PRODUCE A SILICON CONTENT OF ABOUT 0.20% UP TO ABOUT 0.50%, (D) ADDING SILICON AND A NODULARIZING AGENT TO THE MOLTEN IRON ALLOY IN THE LADLE, SAID NODULARIZING AGENT CONSISTING OF AT LEAST ONE OF THE ELEMENTS OF THE GROUP MAGNESIUM, TELLURIUM, CERIUM, CALCIUM, LITHIUM, SODIUM, POTASSIUM, THEREBY IMPARTING TO THE SAID MOLTEN IRON ALLOY A FINAL SILICON CONTENT OF FROM ABOUT 1.00% UP TO ABOUT 2.00% ADN 0.005% UP TO ABOUT 2.00% OF SAID NODULARIZING AGENT. (E) TEEMING THE MOLTEN IRON ALLOY INTO A CHILL MOLD AND ALLOWING THE SAID MOLTEN IRON ALLOY TO SOLIDIFY.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US162558A US3155498A (en) | 1961-12-27 | 1961-12-27 | Ductile iron and method of making same |
| GB47743/62A GB950922A (en) | 1961-12-27 | 1962-12-18 | Cast iron |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US162558A US3155498A (en) | 1961-12-27 | 1961-12-27 | Ductile iron and method of making same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3155498A true US3155498A (en) | 1964-11-03 |
Family
ID=22586148
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US162558A Expired - Lifetime US3155498A (en) | 1961-12-27 | 1961-12-27 | Ductile iron and method of making same |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US3155498A (en) |
| GB (1) | GB950922A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3310397A (en) * | 1963-07-18 | 1967-03-21 | Inst Liteinogo Proisvodstva | Method of inoculating molten cast iron |
| US4096002A (en) * | 1974-09-25 | 1978-06-20 | Riken Piston Ring Industrial Co. Ltd. | High duty ductile cast iron with superplasticity and its heat treatment methods |
| US4099994A (en) * | 1975-04-22 | 1978-07-11 | Riken Piston Ring Industrial Co. Ltd. | High duty ductile case iron and its heat treatment method |
| US4166738A (en) * | 1976-09-09 | 1979-09-04 | Electro-Nite Co. | Method for the treatment of nodular or vermicular cast iron samples |
| GB2203448A (en) * | 1987-03-09 | 1988-10-19 | Hitachi Metals Ltd | Nodular cast iron |
| US4900375A (en) * | 1987-05-26 | 1990-02-13 | Georg Fischer Ag | Magnesium-treated, decarburizingly-annealed cast iron material |
| US20040171434A1 (en) * | 2003-02-27 | 2004-09-02 | Roger Cleveland Golf Co., Inc. | Golf club head of ductile or gray iron |
| US20060144478A1 (en) * | 2003-02-12 | 2006-07-06 | Nippon Steel Corporation | Cast iron billet excelling in workability and process for producing the same |
| US20080145645A1 (en) * | 2006-12-15 | 2008-06-19 | The Dexter Company | As-cast carbidic ductile iron |
| US20100304942A1 (en) * | 2009-05-29 | 2010-12-02 | Acos Villares S.A. | Process for the production of rolling mill cast rolls and a rolling mill cast roll |
| ES2394403A1 (en) * | 2009-05-28 | 2013-01-31 | Acos Villares S.A. | A procedure for the production of rollers of foundry for a laminator and a roller of founder for a laminator (Machine-translation by Google Translate, not legally binding) |
| CN101905311B (en) * | 2009-06-03 | 2014-07-02 | 盖尔道集团 | Process for manufacturing cast-rolling roller of rolling mill and cast-rolling roller of rolling mill |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2256674A (en) * | 1939-12-06 | 1941-09-23 | Belle City Malleable Iron Comp | Method of making malleable cast iron |
| US2578794A (en) * | 1949-09-02 | 1951-12-18 | Int Nickel Co | Magnesium-treated malleable iron |
| GB702776A (en) * | 1950-07-15 | 1954-01-20 | Steinmueller Gmbh L & C | Improvements relating to the production of spherulitic cast iron |
| US2855336A (en) * | 1957-02-04 | 1958-10-07 | Thomas W Curry | Nodular iron process of manufacture |
| US2937084A (en) * | 1957-11-18 | 1960-05-17 | Voest Ag | Process for production of high-grade cast-iron |
-
1961
- 1961-12-27 US US162558A patent/US3155498A/en not_active Expired - Lifetime
-
1962
- 1962-12-18 GB GB47743/62A patent/GB950922A/en not_active Expired
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2256674A (en) * | 1939-12-06 | 1941-09-23 | Belle City Malleable Iron Comp | Method of making malleable cast iron |
| US2578794A (en) * | 1949-09-02 | 1951-12-18 | Int Nickel Co | Magnesium-treated malleable iron |
| GB702776A (en) * | 1950-07-15 | 1954-01-20 | Steinmueller Gmbh L & C | Improvements relating to the production of spherulitic cast iron |
| US2855336A (en) * | 1957-02-04 | 1958-10-07 | Thomas W Curry | Nodular iron process of manufacture |
| US2937084A (en) * | 1957-11-18 | 1960-05-17 | Voest Ag | Process for production of high-grade cast-iron |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3310397A (en) * | 1963-07-18 | 1967-03-21 | Inst Liteinogo Proisvodstva | Method of inoculating molten cast iron |
| US4096002A (en) * | 1974-09-25 | 1978-06-20 | Riken Piston Ring Industrial Co. Ltd. | High duty ductile cast iron with superplasticity and its heat treatment methods |
| US4099994A (en) * | 1975-04-22 | 1978-07-11 | Riken Piston Ring Industrial Co. Ltd. | High duty ductile case iron and its heat treatment method |
| US4166738A (en) * | 1976-09-09 | 1979-09-04 | Electro-Nite Co. | Method for the treatment of nodular or vermicular cast iron samples |
| US4261740A (en) * | 1976-09-09 | 1981-04-14 | Electro-Nite Co. | Apparatus for analyzing nodular or vermicular cast iron samples |
| GB2203448A (en) * | 1987-03-09 | 1988-10-19 | Hitachi Metals Ltd | Nodular cast iron |
| GB2203448B (en) * | 1987-03-09 | 1991-05-22 | Hitachi Metals Ltd | Nodular cast iron |
| US4900375A (en) * | 1987-05-26 | 1990-02-13 | Georg Fischer Ag | Magnesium-treated, decarburizingly-annealed cast iron material |
| US20100172784A1 (en) * | 2003-02-12 | 2010-07-08 | Nippon Steel Corporation | Cast iron semi-finished product excellent in workability and method of production of the same |
| US20060144478A1 (en) * | 2003-02-12 | 2006-07-06 | Nippon Steel Corporation | Cast iron billet excelling in workability and process for producing the same |
| EP1595964A4 (en) * | 2003-02-12 | 2009-09-23 | Nippon Steel Corp | CAST IRON BARRIER WITH EXCELLENT WORKABILITY AND MANUFACTURING METHOD THEREFOR |
| US8302667B2 (en) | 2003-02-12 | 2012-11-06 | Nippon Steel Corporation | Cast iron semi-finished product excellent in workability and method of production of the same |
| US20040171434A1 (en) * | 2003-02-27 | 2004-09-02 | Roger Cleveland Golf Co., Inc. | Golf club head of ductile or gray iron |
| US20080145645A1 (en) * | 2006-12-15 | 2008-06-19 | The Dexter Company | As-cast carbidic ductile iron |
| US7824605B2 (en) * | 2006-12-15 | 2010-11-02 | Dexter Foundry, Inc. | As-cast carbidic ductile iron |
| ES2394403A1 (en) * | 2009-05-28 | 2013-01-31 | Acos Villares S.A. | A procedure for the production of rollers of foundry for a laminator and a roller of founder for a laminator (Machine-translation by Google Translate, not legally binding) |
| US20100304942A1 (en) * | 2009-05-29 | 2010-12-02 | Acos Villares S.A. | Process for the production of rolling mill cast rolls and a rolling mill cast roll |
| US8328703B2 (en) * | 2009-05-29 | 2012-12-11 | Acos Villares S.A. | Rolling mill cast roll |
| CN101905311B (en) * | 2009-06-03 | 2014-07-02 | 盖尔道集团 | Process for manufacturing cast-rolling roller of rolling mill and cast-rolling roller of rolling mill |
Also Published As
| Publication number | Publication date |
|---|---|
| GB950922A (en) | 1964-02-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Hosford | Iron and steel | |
| US4531974A (en) | Work-hardenable austenitic manganese steel and method for the production thereof | |
| US4673433A (en) | Low-alloy steel material, die blocks and other heavy forgings made thereof and a method to manufacture the material | |
| US2562467A (en) | Armor plate and method for making same | |
| US4484953A (en) | Method of making ductile cast iron with improved strength | |
| US3155498A (en) | Ductile iron and method of making same | |
| CN108385021A (en) | Corrosion resistant novel die-casting die steel of one kind and preparation method thereof | |
| US2283299A (en) | Manufacture of steel | |
| US2291842A (en) | Production of steel | |
| RU2156312C1 (en) | Method of production of rolled stock | |
| CN115896634A (en) | High-temperature-resistant non-ferrous metal die-casting forming die steel material and preparation method thereof | |
| US2867555A (en) | Nodular cast iron and process of manufacture thereof | |
| US3375105A (en) | Method for the production of fine grained steel | |
| US2855336A (en) | Nodular iron process of manufacture | |
| US2796373A (en) | Method of forming malleableized iron castings | |
| US1945260A (en) | Composition of matter and process of treating molten metals | |
| SU1574673A1 (en) | Malleable cast iron | |
| Parusov et al. | Ensuring high quality indices for the wire rod used to make metal cord | |
| US2943932A (en) | Boron-containing ferrous metal having as-cast compacted graphite | |
| US3132936A (en) | Refining of irons and steels | |
| JPS6056056A (en) | Process-hardenable austenite manganese steel and manufacture | |
| RU2156311C1 (en) | Method of production of rolled stock | |
| US2014559A (en) | Preparation of iron having improved characteristics | |
| Vennerholm et al. | Nodular cast iron | |
| SU855050A1 (en) | Steel |