US2731325A - Process for the preparation of chlorine dioxide - Google Patents
Process for the preparation of chlorine dioxide Download PDFInfo
- Publication number
- US2731325A US2731325A US265662A US26566252A US2731325A US 2731325 A US2731325 A US 2731325A US 265662 A US265662 A US 265662A US 26566252 A US26566252 A US 26566252A US 2731325 A US2731325 A US 2731325A
- Authority
- US
- United States
- Prior art keywords
- vessel
- electrolysis
- solution
- conduit
- chlorine dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 title description 12
- 238000000034 method Methods 0.000 title description 11
- 239000004155 Chlorine dioxide Substances 0.000 title description 6
- 235000019398 chlorine dioxide Nutrition 0.000 title description 6
- 238000002360 preparation method Methods 0.000 title description 4
- 238000005868 electrolysis reaction Methods 0.000 description 14
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000001704 evaporation Methods 0.000 description 13
- 230000008020 evaporation Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical class OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- -1 sodium chlorate Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
Definitions
- the quantity of solution discharging from the reaction apparatus is larger than the quantity of chlorate solution flowing into this apparatus, inasmuch as it is increased by the water which enters with the hydrochloric acid, as well as by the water which has formed during the chemical reaction. Moreover, in processes wherein the heating of the solution is effected in the reaction apparatus by the direct blowing-in of steam, it is still further increased by the water resulting from the condensation of this steam.
- cooling coils located in the electrolysis vessel, through which coils the cooling agent flows.
- Such cooling coils meet the requirements only very inadequately, inasmuch as they are formed either of corrosion-resistant material, such, for instance, as glass, porcelain or the like, or, it formed of metal, they must be provided with an outer rubber covering. In both cases the heat transfer from the cooling agent to the electrolyte liquid is poor.
- the cooling coils may also be formed of metal and be connected as cathodes, but this arrangement, however, possesses certain inherent structural disadvantages.
- the heat to be removed must always be transferred to the cooling agent and led away from the apparatus by the use of the said agent.
- One of the objects of the present invention is to use the heat which must be led away during the electrolysis for concentrating the reaction solution. This is carried out in that the discharged reaction solution, which is to be concentrated, is fed to a storage vessel which is connected in a cycle with the electrolytic cell and an evaporation cooler.
- the electrolyte circulating in this cycle is heated in the cell, passes via the storage vessel into the evaporation cooler, is cooled therein, and is then returned back into the cell, whereupon the cycle is repeated.
- the evaporation cooler 21 small part of the electrolyte is evaporated Without any external addition of heat, the temperature thus decreasing.
- the evaporation cooler can be constructed in a known manner as a vacuum cooler, or it may be formed as a tower in which the solution trickles down and is partly evaporated by a countercurrent fiow of air, thus cooling it.
- the electrolysis vessel is represented by the numeral 1.
- conduit 2 through which electrolyte is admitted in the form, for instance, of a mixed solution of sodium chloride and sodium chlorate, conduit 2 leads from an evaporation cooler 3, which is filled with Raschig rings, and which is provided at its bottom with a conduit or pipeline 4 for the admission of air.
- evaporation cooler 3 At the top of the evaporation cooler 3, there is provided a conduit 5 for admitting to this evaporation cooler the solution which is discharged thereinto.
- the evaporator 3 is furthermore provided, at its top, with a discharge conduit 6 for withdrawing the air-water vapor mixture.
- Conduit 5 leads from a storage receptacle 7, into the top of which vessel there leads an overflow conduit 8 leading from the elecrolysis vessel 1.
- Conduit 5 leads from a storage receptacle 7, into the top of which vessel there leads an overflow conduit 8 leading from the elecrolysis vessel 1.
- a conduit 9 for the admission of spent liquid to the storage receptacle.
- a pump 16 is located in pipeline 5.
- the conduit 9 proceeds from reaction apparatus 11, to which strengthened liquor from storage receptacle 7, is pumped by pump 12 and pipe 13.
- Electrolyte continuously flows to the electrolyzing vessel 1 through the conduit or pipeline 2, this electrolyte then discharging through line 8 into the storage vessel.
- the liquid passes, via pump 10 and pipeline 5, into the evaporation cooler 3.
- the liquid heated for example to about 45 C., is partly evaporated or volatilized without any addition of heat by the fine distribution and admission of air. It is thus cooled, for example, to 40 C.
- the cooled, non-evaporated liquid passes, via pipeline or conduit 2, into the electrolyzing vessel 1 with a temperature, for instance, of about 40 C. Here it is again heated to 45 C., and the cycle is then repeated.
- the heat produced in the electrolysis is just sullicient to support evaporation in the evaporator of the excess water introduced into the reaction solution in the reaction stage by the addition of HCl solution and condensation of steam.
- the quantity of liquid is not sufiicient it can be increased to the correct and necessary quantity by the addition of water to the circulating system for example via conduit 9.
- the quantity of liquid is too large, the missing quantity of heat can be supplied by means of a suitable disposed heat exchanger.
- the method herein described therefore has the advantage that an evaporator, and the necessary heat to operate the evaporator, are saved on the side of the reaction apparatus; while, on the electrolysis side, the expense of a cooling apparatus and the cooling agent are eliminated.
- a process of electrolytically manufacturing chlorine dioxide including the steps of reacting an aqueous chlorate salt solution and hydrochloric acid so as to liberate chlorine dioxide in a reaction zone, discharging and storing in a storing vessel the weakened liquor containing said chlorate salt and the corresponding chloride, regenerating said weakened liquor, said regeneration including the steps of passing said liquor into an electrolysis chamber, electrolyzing therein said liquor, whereby to transform at least part of said chloride into a chlorate, cyclically pump.- ing said liquor in a first pumping cycle between said re action zone and the storing vessel and cyclically and independently of said first pumping cycle, lowering the temperature of said liquor by evaporation therefrom of a portion of the water acting as a solvent for said chloride and said chlorate, during the passage of said liquor from the storage vessel into the electrolysis chamber and re turning the regenerated liquor from the electrolysis chamber into the storage tank.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
Jan. 17, 1956 KESTlNG 2,731,325
PROCESS FOR THE PREPARATIONOF CHLORINE DIOXIDE Filed Jan. 9, 1952 2 6 meat Va 5412/ 67'0124 E Bic 6P T6625 United States Patent PROCESS FOR THE PREPARATION OF CHLORINE DIQXIDE Edelbert E. Kesting, Munich, Germany Application January 9, 1952, Serial No. 265,662 Claims priority, application Germany June 5, 1951 1 Claim. (Cl. 23-452) This invention is directed to a new and improved method for the preparation of metal chlorates, such as sodium chlorate, and to new and improved apparatus for carrying out that method.
In the preparation of chlorine dioxide by reacting a chlorate and an acid, preferably by using sodium chlorate and hydrochloric acid, it has been suggested to feed the mixed solution of sodium chloride (table salt) and sodium chlorate which is discharged from the chlorine dioxide production apparatus, i. e. the so-called reaction apparatus, to a chlorate electrolysis vessel in order thereby to reconvert the table salt, either in whole or in part, back again into sodium chlorate. The sodium chlorate solution formed is recycled into the reaction apparatus, therein again reacted with hydrochloric acid, and then again brought to the electrolysis, the process being then repeated.
The quantity of solution discharging from the reaction apparatus is larger than the quantity of chlorate solution flowing into this apparatus, inasmuch as it is increased by the water which enters with the hydrochloric acid, as well as by the water which has formed during the chemical reaction. Moreover, in processes wherein the heating of the solution is effected in the reaction apparatus by the direct blowing-in of steam, it is still further increased by the water resulting from the condensation of this steam.
It is, therefore, necessary to remove sufiicient water so that the volume of the solution which discharges per unit of time from the electrolysis is the same as the quantity of chlorate solution fed, during the same period of time, into the reaction apparatus. Obviously, this may be done by evaporation of the water. For this there is needed an evaporator, which introduces additional difliculties of a considerable nature, owing to the corrosive nature of the solution on the structural material employed for the apparatus. in addition to this heat is needed to carry out the evaporation.
In the electrolytic cell only a part of the current fed is used for the electrolysis proper. A certain part of the current is converted into heat, as a result of which the temperature of the electrolyte is increased. Inasmuch as this is permissible only up to a certain degree, however, it is necessary to employ cooling during the electrolysis. This is effected in the known manner by the use of cooling coils located in the electrolysis vessel, through which coils the cooling agent flows. Such cooling coils meet the requirements only very inadequately, inasmuch as they are formed either of corrosion-resistant material, such, for instance, as glass, porcelain or the like, or, it formed of metal, they must be provided with an outer rubber covering. In both cases the heat transfer from the cooling agent to the electrolyte liquid is poor. The cooling coils may also be formed of metal and be connected as cathodes, but this arrangement, however, possesses certain inherent structural disadvantages.
Regardless of how the cooler device is constructed, and regardless of whether it is placed in the electrolytic cell,
or in a supply vessel located in a recycling line, the heat to be removed must always be transferred to the cooling agent and led away from the apparatus by the use of the said agent.
One of the objects of the present invention is to use the heat which must be led away during the electrolysis for concentrating the reaction solution. This is carried out in that the discharged reaction solution, which is to be concentrated, is fed to a storage vessel which is connected in a cycle with the electrolytic cell and an evaporation cooler.
The electrolyte circulating in this cycle is heated in the cell, passes via the storage vessel into the evaporation cooler, is cooled therein, and is then returned back into the cell, whereupon the cycle is repeated. In the evaporation cooler 21 small part of the electrolyte is evaporated Without any external addition of heat, the temperature thus decreasing. The evaporation cooler can be constructed in a known manner as a vacuum cooler, or it may be formed as a tower in which the solution trickles down and is partly evaporated by a countercurrent fiow of air, thus cooling it.
The annexed drawing shows, diagrammatically, one embodiment of an installation constructed in accordance with my invention.
in this drawing, the electrolysis vessel is represented by the numeral 1. Into the electrolysis vessel 1 there passes a conduit 2, through which electrolyte is admitted in the form, for instance, of a mixed solution of sodium chloride and sodium chlorate, conduit 2 leads from an evaporation cooler 3, which is filled with Raschig rings, and which is provided at its bottom with a conduit or pipeline 4 for the admission of air. At the top of the evaporation cooler 3, there is provided a conduit 5 for admitting to this evaporation cooler the solution which is discharged thereinto. The evaporator 3 is furthermore provided, at its top, with a discharge conduit 6 for withdrawing the air-water vapor mixture. Conduit 5 leads from a storage receptacle 7, into the top of which vessel there leads an overflow conduit 8 leading from the elecrolysis vessel 1. There is furthermore provided a conduit 9 for the admission of spent liquid to the storage receptacle. A pump 16 is located in pipeline 5. The conduit 9 proceeds from reaction apparatus 11, to which strengthened liquor from storage receptacle 7, is pumped by pump 12 and pipe 13.
Electrolyte continuously flows to the electrolyzing vessel 1 through the conduit or pipeline 2, this electrolyte then discharging through line 8 into the storage vessel. From the storage vessel 7 the liquid passes, via pump 10 and pipeline 5, into the evaporation cooler 3. In this evaporation cooler 3 the liquid, heated for example to about 45 C., is partly evaporated or volatilized without any addition of heat by the fine distribution and admission of air. It is thus cooled, for example, to 40 C. The cooled, non-evaporated liquid passes, via pipeline or conduit 2, into the electrolyzing vessel 1 with a temperature, for instance, of about 40 C. Here it is again heated to 45 C., and the cycle is then repeated.
Under ordinary operating conditions and with a proper adjustment of the pump 10 relative to the air stream or vacuum acting on the evaporator, the heat produced in the electrolysis is just sullicient to support evaporation in the evaporator of the excess water introduced into the reaction solution in the reaction stage by the addition of HCl solution and condensation of steam. However, if the quantity of liquid is not sufiicient it can be increased to the correct and necessary quantity by the addition of water to the circulating system for example via conduit 9. On the other hand, if the quantity of liquid is too large, the missing quantity of heat can be supplied by means of a suitable disposed heat exchanger.
The method herein described therefore has the advantage that an evaporator, and the necessary heat to operate the evaporator, are saved on the side of the reaction apparatus; while, on the electrolysis side, the expense of a cooling apparatus and the cooling agent are eliminated.
Various changes and modifications may be made in my improved method and in the appaartus for carrying out that method, certain preferred forms of which have been herein described, without departing from the spirt or scope of the invention. To the extent that they are included within the purview of the appended claim, they are to be regarded as within the scope of my invention.
I claim:
A process of electrolytically manufacturing chlorine dioxide, including the steps of reacting an aqueous chlorate salt solution and hydrochloric acid so as to liberate chlorine dioxide in a reaction zone, discharging and storing in a storing vessel the weakened liquor containing said chlorate salt and the corresponding chloride, regenerating said weakened liquor, said regeneration including the steps of passing said liquor into an electrolysis chamber, electrolyzing therein said liquor, whereby to transform at least part of said chloride into a chlorate, cyclically pump.- ing said liquor in a first pumping cycle between said re action zone and the storing vessel and cyclically and independently of said first pumping cycle, lowering the temperature of said liquor by evaporation therefrom of a portion of the water acting as a solvent for said chloride and said chlorate, during the passage of said liquor from the storage vessel into the electrolysis chamber and re turning the regenerated liquor from the electrolysis chamber into the storage tank.
References Cited in the file of this patent UNITED STATES PATENTS 1,847,435 Low Mar. 1, 1932 1,917,657 MacChesney July 11, 1933 2,484,402 Day et al. Oct. 11, 1949
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE2731325X | 1951-06-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2731325A true US2731325A (en) | 1956-01-17 |
Family
ID=7997372
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US265662A Expired - Lifetime US2731325A (en) | 1951-06-05 | 1952-01-09 | Process for the preparation of chlorine dioxide |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2731325A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3400063A (en) * | 1962-12-22 | 1968-09-03 | Electro Chimie Metal | Two-stage electrolytic process for preparing high-concentration sodium chlorate soluttions |
| US5324497A (en) * | 1992-02-26 | 1994-06-28 | Westerlund G Oscar | Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1847435A (en) * | 1930-01-27 | 1932-03-01 | Westvaco Chlorine Products Inc | Electrolytic manufacture of chlorine |
| US1917657A (en) * | 1929-01-04 | 1933-07-11 | Acme Steel Co | Galvanizing process and apparatus |
| US2484402A (en) * | 1946-01-04 | 1949-10-11 | Brown Co | Process for producing chlorine dioxide |
-
1952
- 1952-01-09 US US265662A patent/US2731325A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1917657A (en) * | 1929-01-04 | 1933-07-11 | Acme Steel Co | Galvanizing process and apparatus |
| US1847435A (en) * | 1930-01-27 | 1932-03-01 | Westvaco Chlorine Products Inc | Electrolytic manufacture of chlorine |
| US2484402A (en) * | 1946-01-04 | 1949-10-11 | Brown Co | Process for producing chlorine dioxide |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3400063A (en) * | 1962-12-22 | 1968-09-03 | Electro Chimie Metal | Two-stage electrolytic process for preparing high-concentration sodium chlorate soluttions |
| US5324497A (en) * | 1992-02-26 | 1994-06-28 | Westerlund G Oscar | Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3052612A (en) | Recovery of chlorine from electrol ysis of brine | |
| US4209369A (en) | Process for electrolysis of sodium chloride by use of cation exchange membrane | |
| JP2002508451A (en) | Electrochemical treatment of HCl gas into high purity chlorine | |
| US2666024A (en) | Oxidation and chlorine recovery process | |
| US4214957A (en) | System for electrolysis of sodium chloride by ion-exchange membrane process | |
| JPH033747B2 (en) | ||
| US3455797A (en) | Procedure for the preparation of olefin oxides | |
| US3883406A (en) | Process for recovering electrolytically produced alkali metal chlorates | |
| GB895690A (en) | Improvements in or relating to the preparation of sodium carbonate | |
| US4090932A (en) | Method for concentrating aqueous caustic alkali solution | |
| US2731325A (en) | Process for the preparation of chlorine dioxide | |
| RU98123657A (en) | METHOD FOR REMOVING BROMINE FROM BROMS-CONTAINING SOLUTIONS AND INSTALLATION FOR ITS IMPLEMENTATION | |
| US4176168A (en) | Process for producing chlorine dioxide | |
| US1961160A (en) | Process of recovering alkali metals and by-products | |
| US4082838A (en) | Process for preparing hydrazine | |
| US3442778A (en) | Preparation of chemicals for kraft pulping and bleaching and apparatus therefor | |
| US3446719A (en) | Dechlorination of brine and recovery of chlorine | |
| JP2013507311A (en) | Method for producing chlorine dioxide | |
| US3407128A (en) | Process for the manufacture of chlorine, sodium hydroxide and hydrogen by the electrolysis of sodium chloride in mercury cells | |
| US3422599A (en) | Chlorine stripping section for direct contact chlorine coolers | |
| US3251755A (en) | Electrolytic process for the manufacture of hydrazine | |
| JPS6342386A (en) | Production of potassium nitrate | |
| US959730A (en) | Process of treating electrolytic and similar solutions. | |
| EP0488251B1 (en) | Process for removing chlorate salt from aqueous alkali chloride solution | |
| US3420757A (en) | Mercury cathode electrolysis |