US2323387A - Process of producing water repellent textile material - Google Patents
Process of producing water repellent textile material Download PDFInfo
- Publication number
- US2323387A US2323387A US307416A US30741639A US2323387A US 2323387 A US2323387 A US 2323387A US 307416 A US307416 A US 307416A US 30741639 A US30741639 A US 30741639A US 2323387 A US2323387 A US 2323387A
- Authority
- US
- United States
- Prior art keywords
- water repellent
- water
- solution
- fabric
- paraffin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title description 54
- 230000002940 repellent Effects 0.000 title description 26
- 239000005871 repellent Substances 0.000 title description 26
- 239000000463 material Substances 0.000 title description 24
- 238000000034 method Methods 0.000 title description 15
- 239000004753 textile Substances 0.000 title description 7
- 239000004744 fabric Substances 0.000 description 26
- 239000000243 solution Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 239000012188 paraffin wax Substances 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 239000000835 fiber Substances 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 11
- 239000000839 emulsion Substances 0.000 description 11
- 239000002657 fibrous material Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- 238000009835 boiling Methods 0.000 description 8
- 150000004679 hydroxides Chemical class 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000000274 adsorptive effect Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000344 soap Substances 0.000 description 6
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- -1 naphtha Substances 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 235000013877 carbamide Nutrition 0.000 description 4
- 238000005108 dry cleaning Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009991 scouring Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 229940009827 aluminum acetate Drugs 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 description 3
- 150000004692 metal hydroxides Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 229940043379 ammonium hydroxide Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical class [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000008149 soap solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical class [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/02—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
Definitions
- This invention relates to improvements in the manufacture of water repellent textile or fibrous materials.
- An object of said invention is to provide a method for rendering textile or fibrous materials water repellent and for maintaining their water repellency under exceptional conditions, such as after repeated and prolonged washings and/or scourings in boiling solutions of soap and water, and/or after dry cleaning with usual solvents, such as gasoline, naphtha, carbon tetrachloride, acetone, alcohol, ether and the like,
- paraffin which is relatively inert and does not saponil'y with weak alkalies has also been used in conjunction with aluminum acetate.
- this mixture usually in the form of an emulsion
- this mixture provides a heterogeneous film which is little or not at all resistant to laundering.
- the method of the present invention includes forming on the fibers of the material to be treated an adherent binder having a strong affinity for a water repellent agent such as paraffin.
- a water repellent agent such as paraffin.
- the improved water repellency obtained thereby may be explained in part by the fact that the affinity of the binder for the water repellent agent appears to be adsorptive.
- Such binders may, on this hypothesis, be considered as carrying a positive electrical charge; and the water repellent materials may be considered as carrying a negative charge, said opposite charges facilitating bonding of said two types of materials for the purposes of this invention.
- a water repellent agent such as paraflin is effectively secured to the fibers of a fabric with suitably adsorptive binders in the form of ad'- sorptive metal hydroxides formed in situ on the fabric or fibrous material, Hydroxides useful for this purpose are produced by impregnating the fabric with suitable metal salts, including those of zirconium, aluminum, magnesium, ee-
- the hydroxides remaining on the fabric as a result of my improved method are in an environment or condition to effectively adsorb and re tain the paraflin, so that the treated fabric retains its water repellency after and in spite of repeated scouring and dry cleaning.
- hydroxides of the various metals mentloned differ in their individual properties; some, for example, are more soluble in alkaline solution than others, and some possess greater adsorption power than others. But all applications thereof to fibrous materials in the manner described above display improved durability.
- a textile, fibrous material, or fabric is impregnated with a Water solution of a Water soluble metal salt of the above-mentioned group yielding insoluble and adsorptive hydroxides.
- the metal salts preferred for presently known purposes are zirconyl acetate or a combination of aluminum and magnesium acetates.
- Surplus metal salt solution is removed and the fabric dried at a moderate temperature.
- the dried fabric is immersed in a solution of boiling the water removed, as by wringing and drying.
- the dried fabric is impregnated with a solution of parafiin dissolved in carbon tetrachloride,
- the deposited metal hydroxiidpbindaraloue r symbolizes little or no water repellents deca f tion in the present invention being mainly as a binder to fasten the paraffin, stearic acid, wax or other more water repellent agent to the fiber.
- the quantities and proportions of the binding and repelling agents to be used are significant chiefly to the extent that in general the more hydroxide or binder deposited, the more durable will be the water repellent-y oi that particular material.
- the quantity oi paraffin to be deposited is quite small; good water iepellency in certain fabrics being obtained with as little as 3 oz. per 100 lbs. of fabric. Larger quantities up to 2 to 3 lbs. of parailin per 100 lbs. of fabric work satisfactorily in so far as the intrinsic water repellent properties are concerned.
- the larger quantity oi paraffin may noticeably affect the stillness, feel, or appearance of said materials.
- the quantities of the metal salts and paraffin or other waxes to be used will therefore ordinarily be governed by the commercial considerations of cost, durability required, and the appearance and feel of the particular rubrics treat ed and their contemplated fields oi use.
- Example 1 700 yards of 38 inch wide cotton gabardine weighing approximately 6 oz. to the linear yard are impregnated with a water solution of twenty per cent (20%) aluminum acetate and ten per cent lllJ%) magnesium acetate, then squeezed and dried. The dried fabric is then saturated with a boiling aqueous ammonia solution comprising approximately seventy-five ('25) gallons of water containing two (2) gallons of twenty-eight per cent (28%) aqua ammonia, to precipitate the hydroxides oi aluminum and magnesium on the fibers.
- the fabric is washed in hot water, dried, and impregnated with a paraffin solution of approximately ten (10) pounds of pararlin dissolved in thirty l30l gallons of carbon tetrachloride.
- the fabric is again dried and the product thus produced has an unusually durable water repellence.
- the desired efiect of the magnesium hydroxide in the procedure above set forth is to prevent the aluminum hydroxide from being readily dissolved by alkali in soaps or other detergent materials since aluminum hydroxide is amphoteric and hence tends to dissolve in alkaline solutions.
- the magnesium hydroxide may form an adsorption complex with the acid side of the aluminum hydroxide, which is not readily dissolved by alkali.
- Hydroxides of other metals, as calcium, also serve a similar purpose when used with aluminum hydroxide.
- Example 2 The procedure of Example 1 is followed except that a water solution of 4% zirconyl acetate is used in place of the magnesium and aluminum acetate solution.
- Emmple 3.38 gallons of a 4% water solution of zlrconyl acetate at a temperature of 170 F. are mixed with 12 gallons of a 5.5% paral'fin wax emulsion also at 170 F. 250 lbs. of cotton fabric are impregnated with said paraffin-acetate mixture, and then, after drying, are washed in a boiling ammonia solution of approximately '75 gallons of water and 2 gallons of 28% aqua ammonia and washed free of soluble salts and dried.
- urea is added to the zirconyl acetate solution prior to mixing with the above described parafiin emulsion in the iollowin proportion: 4 lbs. urea are added to 10 gallon of zirconyl acetate solution. This procedure is indicated where the zirconyl acetate contains a trace of sulphates, which would cause coagulatlon of the paraflin emulsion and render the mixture unsuitable for use. With urea present in proper quantities, however, no coagulation oi the emulsion occurs. It remains stable and can be heated to 212 F. without separating the paraifin or otherwise deteriorating 101' its intended purpose.
- Example 4 A cotton fabric is impregnated with a mixture of 38 gallons of a 412;, water solution of zirconyl acetate and 12 gallons oi a 5.5JL aqueous paraffin wax emulsion made at 17f) F. Surplus mixture is removed in any suitable manner as by passing the fabric through a wringer and the fabric is then heated for one hour at 240 F.
- Example 5 In the process of Example 30 gallons of an aqueous emulsion containing 1.5% paraffin are substituted in place of the carbon tetrachloride-paraffin solution.
- Example 6 The fabric is impregnated with a 4% zirconyl acetate solution and then squeezed until it contains approximately 60% to 70% of its own weight of zirconyl acetate solution and is passed into an aqueous emulsion oi paraffin containing approximately 1.5% parafiin, after which the fabric is squeezed and dried and washed in a boiling ammonia solution and hot water as set forth in Examples 1 and 2.
- Example 7 The fabric is first treated with the 1.5 aqueous parafiln emulsion of Example 6 and then impregnated with the zirconyl acetate, dried, and washed with the boiling ammonia solution and hot water as set forth in Examples 1 and 2.
- ammonia in water solution is the preferred precipitating agent employed in the above examples to form the hydroxide on the fibre
- other alkaline agents may be used, such as triethanolamine, morpholine, ethylene-diamine or other amines.
- fibrous material or fabric impregnated with a Water solution of one or more of certain soluble metal salts and a water repellent material when treated with an alkaline solution and rinsed, will have precipitated thereon an adsorptive binder as of hydrated oxide miscelles of said metals which adsorb a water repellent material and hold it tenaciously. even when washed in boiling soap solution and/0r immersed in common- 1y used dry cleaning solvents.
- the metal salts are those of the volatile acids, such as acetic or formic, good results can be obtained by driving off the acid by heating at a sufiiciently high temperature; but better results are obtained by washing with the boiling water solution of ammonia as above described.
- the metal salts employed in the solutions are those of mineral acids, such as sulphuric or hydrochloric acid
- a buffer or protective agent is desirable to inhibit or prevent excessive tendering of cellulosic fibres, such as cotton, linen, or rayon.
- examples of such agents are ammonium acetate or ammonium formate, or a compound selected from the class of acid amides, such as carbamide, acetamid or formamide.
- a process of treating a fibrous material with a water repellent agent to produce a water repellent material substantially free from metallic soaps whereby the water repellent eiTect produced on said material has improved durability and resistance to the action of strong alkaline detergents comprising the steps of impregnating the fibers of said material with an aqueous solution of a salt of a metal selected from the group consisting of aluminum, zirconium, cerium, thorium, chromium, nickel, lead, barium, and titanium, drying said material after impregnation, treating the dried material with an aliraline solution to form a metal hydroxide on the libers thereof, and depositing a coating consisting of wax on the fibers of said material to render said material water repellent.
- a salt of a metal selected from the group consisting of aluminum, zirconium, cerium, thorium, chromium, nickel, lead, barium, and titanium
- a process of treating a fibrous material with a water repellent agent to produce a water repellent material substantially free from metallic soaps whereby the water repellent effect produced on said material has improved durability and resistance to the action of strong alkaline detergents comprising the steps of impregnating the fibers of said material with an aqueous solution of a salt of a metal selected from the group consisting of aluminum, zirconium, cerium. thorium, chromium, nickel, lead, barium, and titanium, drying said material after impregnation, treating the dried material with ammonium hydroxide to form a metal hydroxide on said fibers, and depositing paraffin on the fibers of said material to produce a water repellent effect thereon.
- a salt of a metal selected from the group consisting of aluminum, zirconium, cerium. thorium, chromium, nickel, lead, barium, and titanium
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
Patented July 6, 1943 UNITED PROCESS OF PRODUCING WATER REPELLEN T TEXTILE MATERIAL Oscar Edelstein, New Haven, Conn., assignor to The Pond Lily Company, a corporation of Connecticut No Drawing. Application December 4, 1939, Serial No. 307,416
2 Claims.-
This invention relates to improvements in the manufacture of water repellent textile or fibrous materials. An object of said invention is to provide a method for rendering textile or fibrous materials water repellent and for maintaining their water repellency under exceptional conditions, such as after repeated and prolonged washings and/or scourings in boiling solutions of soap and water, and/or after dry cleaning with usual solvents, such as gasoline, naphtha, carbon tetrachloride, acetone, alcohol, ether and the like,
Heretofore, the art of rendering textile or fibrous materials water repellent has commonly relied upon agents involving the chemical combination of certain metals and fatty acids to produce insoluble metallic soaps as stearates of metals such as aluminum.
These compounds while imparting more or less water repellent properties when applied to fibrous materials, as textiles, nevertheless are comparatively easily destroyed and removed in scouring operations employing soap and mild alkalies.
In an effort to remedy this condition, paraffin, which is relatively inert and does not saponil'y with weak alkalies has also been used in conjunction with aluminum acetate. When this mixture (usually in the form of an emulsion) is applied to fabric and dried, it provides a heterogeneous film which is little or not at all resistant to laundering.
The method of the present invention includes forming on the fibers of the material to be treated an adherent binder having a strong affinity for a water repellent agent such as paraffin. In accordance with my present understanding, the improved water repellency obtained thereby may be explained in part by the fact that the affinity of the binder for the water repellent agent appears to be adsorptive. Such binders may, on this hypothesis, be considered as carrying a positive electrical charge; and the water repellent materials may be considered as carrying a negative charge, said opposite charges facilitating bonding of said two types of materials for the purposes of this invention.
A water repellent agent such as paraflin is effectively secured to the fibers of a fabric with suitably adsorptive binders in the form of ad'- sorptive metal hydroxides formed in situ on the fabric or fibrous material, Hydroxides useful for this purpose are produced by impregnating the fabric with suitable metal salts, including those of zirconium, aluminum, magnesium, ee-
rium, thorium, barium, chromium, nickel, lead or titanium, and forming the hydroxides on the fibers, as by heating or by treating with ammo nium hydroxide solution and washing with water to remove detrimental or useless substances such as the acid radicals of the salts used, The removal of the acid radicals either by heating or by washing after ammonia treatment appears to improve the adsorptive affinity of the hydroxide for the water repellent material. Accordingly, the hydroxides remaining on the fabric as a result of my improved method are in an environment or condition to effectively adsorb and re tain the paraflin, so that the treated fabric retains its water repellency after and in spite of repeated scouring and dry cleaning.
' water containing ammonia, rinsed in water and Improved resistance to scouring and dry cleaning treatments is observed in respect to t e water repellency of fabrics treated with soluble metal salts such as acetates, formates, chlorides, sulphates or other salt of metals above mentioned and which form insoluble hydroxides which are adsorptive and adapted to yield a water repellent effect in conjunction with paraffin, fatty acids, or natural or synthetic gums, resins. waxes or other water repellent matter.
The hydroxides of the various metals mentloned differ in their individual properties; some, for example, are more soluble in alkaline solution than others, and some possess greater adsorption power than others. But all applications thereof to fibrous materials in the manner described above display improved durability.
A typical embodiment of the method of the present invention includes the following steps:
A textile, fibrous material, or fabric is impregnated with a Water solution of a Water soluble metal salt of the above-mentioned group yielding insoluble and adsorptive hydroxides.
The metal salts preferred for presently known purposes are zirconyl acetate or a combination of aluminum and magnesium acetates.
Surplus metal salt solution is removed and the fabric dried at a moderate temperature. The dried fabric is immersed in a solution of boiling the water removed, as by wringing and drying.
The dried fabric is impregnated with a solution of parafiin dissolved in carbon tetrachloride,
3 toluol or other volatile and inert solvent which is removed, as by squeezing and drying the fabric.
, The effect of paraflin thus deposited on the binder and so on the fibers is to produce a water repellent film or surface thereon.
The deposited metal hydroxiidpbindaraloue r duces little or no water repellents deca f tion in the present invention being mainly as a binder to fasten the paraffin, stearic acid, wax or other more water repellent agent to the fiber.
The quantities and proportions of the binding and repelling agents to be used are significant chiefly to the extent that in general the more hydroxide or binder deposited, the more durable will be the water repellent-y oi that particular material. The quantity oi paraffin to be deposited is quite small; good water iepellency in certain fabrics being obtained with as little as 3 oz. per 100 lbs. of fabric. Larger quantities up to 2 to 3 lbs. of parailin per 100 lbs. of fabric work satisfactorily in so far as the intrinsic water repellent properties are concerned. The larger quantity oi paraffin, however, may noticeably affect the stillness, feel, or appearance of said materials.
The quantities of the metal salts and paraffin or other waxes to be used will therefore ordinarily be governed by the commercial considerations of cost, durability required, and the appearance and feel of the particular rubrics treat ed and their contemplated fields oi use.
The following examples oi preferred modes oi carrying out the invention are given by Way of illustration and the invention is in no way restricted thereto.
Example 1.'700 yards of 38 inch wide cotton gabardine weighing approximately 6 oz. to the linear yard are impregnated with a water solution of twenty per cent (20%) aluminum acetate and ten per cent lllJ%) magnesium acetate, then squeezed and dried. The dried fabric is then saturated with a boiling aqueous ammonia solution comprising approximately seventy-five ('25) gallons of water containing two (2) gallons of twenty-eight per cent (28%) aqua ammonia, to precipitate the hydroxides oi aluminum and magnesium on the fibers. After this ammonia treatment, the fabric is washed in hot water, dried, and impregnated with a paraffin solution of approximately ten (10) pounds of pararlin dissolved in thirty l30l gallons of carbon tetrachloride. The fabric is again dried and the product thus produced has an unusually durable water repellence.
The desired efiect of the magnesium hydroxide in the procedure above set forth is to prevent the aluminum hydroxide from being readily dissolved by alkali in soaps or other detergent materials since aluminum hydroxide is amphoteric and hence tends to dissolve in alkaline solutions. The magnesium hydroxide may form an adsorption complex with the acid side of the aluminum hydroxide, which is not readily dissolved by alkali. Hydroxides of other metals, as calcium, also serve a similar purpose when used with aluminum hydroxide.
Example 2.-The procedure of Example 1 is followed except that a water solution of 4% zirconyl acetate is used in place of the magnesium and aluminum acetate solution.
Emmple 3.38 gallons of a 4% water solution of zlrconyl acetate at a temperature of 170 F. are mixed with 12 gallons of a 5.5% paral'fin wax emulsion also at 170 F. 250 lbs. of cotton fabric are impregnated with said paraffin-acetate mixture, and then, after drying, are washed in a boiling ammonia solution of approximately '75 gallons of water and 2 gallons of 28% aqua ammonia and washed free of soluble salts and dried.
In preparing emulsions of zlrconyl acetate antiparaffin for use in the above method of Example 3, it should be noted that even a small amount of sulphate S04 ions present in the acetate solution will sometimes cause coagulation. rendering the mixture useless. Consequently, it is desirable in such cases that the zirconyi acetate be free of sulphate ions,
In a modification of this invention as illustrated in Example 3, urea is added to the zirconyl acetate solution prior to mixing with the above described parafiin emulsion in the iollowin proportion: 4 lbs. urea are added to 10 gallon of zirconyl acetate solution. This procedure is indicated where the zirconyl acetate contains a trace of sulphates, which would cause coagulatlon of the paraflin emulsion and render the mixture unsuitable for use. With urea present in proper quantities, however, no coagulation oi the emulsion occurs. It remains stable and can be heated to 212 F. without separating the paraifin or otherwise deteriorating 101' its intended purpose.
Example 4.A cotton fabric is impregnated with a mixture of 38 gallons of a 412;, water solution of zirconyl acetate and 12 gallons oi a 5.5JL aqueous paraffin wax emulsion made at 17f) F. Surplus mixture is removed in any suitable manner as by passing the fabric through a wringer and the fabric is then heated for one hour at 240 F.
Example 5.In the process of Example 30 gallons of an aqueous emulsion containing 1.5% paraffin are substituted in place of the carbon tetrachloride-paraffin solution.
Example 6.The fabric is impregnated with a 4% zirconyl acetate solution and then squeezed until it contains approximately 60% to 70% of its own weight of zirconyl acetate solution and is passed into an aqueous emulsion oi paraffin containing approximately 1.5% parafiin, after which the fabric is squeezed and dried and washed in a boiling ammonia solution and hot water as set forth in Examples 1 and 2.
Example 7.-The fabric is first treated with the 1.5 aqueous parafiln emulsion of Example 6 and then impregnated with the zirconyl acetate, dried, and washed with the boiling ammonia solution and hot water as set forth in Examples 1 and 2.
Differently identified aqueous paraffin emulsion preparations available on the market may be used in carrying out the above described procedures, one which gives satisfactory results being known under the trade name Paracol #507-0. S. #219 C, manufactured and sold by Hercules Powder Company.
While ammonia in water solution is the preferred precipitating agent employed in the above examples to form the hydroxide on the fibre, other alkaline agents may be used, such as triethanolamine, morpholine, ethylene-diamine or other amines.
In view of the foregoing description, it will be seen that by employing the present invention, fibrous material or fabric impregnated with a Water solution of one or more of certain soluble metal salts and a water repellent material, when treated with an alkaline solution and rinsed, will have precipitated thereon an adsorptive binder as of hydrated oxide miscelles of said metals which adsorb a water repellent material and hold it tenaciously. even when washed in boiling soap solution and/0r immersed in common- 1y used dry cleaning solvents.
If the metal salts are those of the volatile acids, such as acetic or formic, good results can be obtained by driving off the acid by heating at a sufiiciently high temperature; but better results are obtained by washing with the boiling water solution of ammonia as above described.
If the metal salts employed in the solutions are those of mineral acids, such as sulphuric or hydrochloric acid, the addition thereto of a buffer or protective agent is desirable to inhibit or prevent excessive tendering of cellulosic fibres, such as cotton, linen, or rayon. Examples of such agents are ammonium acetate or ammonium formate, or a compound selected from the class of acid amides, such as carbamide, acetamid or formamide.
The following is an illustrative example of a typical binder solution containing a metal salt of a mineral acid together with a buffer or inhibiting agent:
Dissolve in fifty (50) gallons of water Pounds Zirconyl chloride ZIOC12'8HI2O 22 Formamide 22 This solution may be applied to and dried int cotton, rayon, or linen at a relatively high temperature without causing tendering of the cellulosic fibre.
Having thus described various embodiments of my invention both as to process and as to product, and having given specific illustrative examples thereof, I desire it to be understood that specific terms and illustratons so employed are used in a descriptive sense only, and not for purposes of limitation, the scope of the invention being defined and limited only by the terms of the appended claims.
I claim:
1. A process of treating a fibrous material with a water repellent agent to produce a water repellent material substantially free from metallic soaps whereby the water repellent eiTect produced on said material has improved durability and resistance to the action of strong alkaline detergents, comprising the steps of impregnating the fibers of said material with an aqueous solution of a salt of a metal selected from the group consisting of aluminum, zirconium, cerium, thorium, chromium, nickel, lead, barium, and titanium, drying said material after impregnation, treating the dried material with an aliraline solution to form a metal hydroxide on the libers thereof, and depositing a coating consisting of wax on the fibers of said material to render said material water repellent.
2. A process of treating a fibrous material with a water repellent agent to produce a water repellent material substantially free from metallic soaps whereby the water repellent effect produced on said material has improved durability and resistance to the action of strong alkaline detergents, comprising the steps of impregnating the fibers of said material with an aqueous solution of a salt of a metal selected from the group consisting of aluminum, zirconium, cerium. thorium, chromium, nickel, lead, barium, and titanium, drying said material after impregnation, treating the dried material with ammonium hydroxide to form a metal hydroxide on said fibers, and depositing paraffin on the fibers of said material to produce a water repellent effect thereon.
OSCAR EDELSTEIN.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US307416A US2323387A (en) | 1939-12-04 | 1939-12-04 | Process of producing water repellent textile material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US307416A US2323387A (en) | 1939-12-04 | 1939-12-04 | Process of producing water repellent textile material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2323387A true US2323387A (en) | 1943-07-06 |
Family
ID=23189665
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US307416A Expired - Lifetime US2323387A (en) | 1939-12-04 | 1939-12-04 | Process of producing water repellent textile material |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2323387A (en) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2451805A (en) * | 1944-10-04 | 1948-10-19 | Gen Electric | Process of coating asbestos |
| US2461302A (en) * | 1945-07-28 | 1949-02-08 | Rudolf F Hlavaty | Method of flameproofing |
| US2477336A (en) * | 1944-07-14 | 1949-07-26 | Du Pont | Coated cotton fabric |
| US2616815A (en) * | 1950-04-12 | 1952-11-04 | Robert R Parmentier | Transparentizing compositions and process |
| US2641558A (en) * | 1948-12-24 | 1953-06-09 | Nat Lead Co | Water repellence fixative treatment |
| US2695250A (en) * | 1951-07-28 | 1954-11-23 | Emery Industries Inc | Method of dry cleaning and weatherproofing fabrics |
| US2735786A (en) * | 1956-02-21 | Air permeable | ||
| US2793130A (en) * | 1953-07-29 | 1957-05-21 | Owens Corning Fiberglass Corp | Pressure molded cement products and methods for producing same |
| US2991146A (en) * | 1958-10-22 | 1961-07-04 | Raymond S Babiarz | Cellulose fabric and process of making same |
| US3013902A (en) * | 1959-04-13 | 1961-12-19 | Du Pont | Organic polymer coated, alumina bonded fibrous base |
| US3013904A (en) * | 1959-04-13 | 1961-12-19 | Du Pont | Substrate having an organic polymer containing pentavalent phosphorus bonded thereto |
| US3013901A (en) * | 1959-11-30 | 1961-12-19 | Du Pont | Article coated with fibrous boehmite |
| US3013903A (en) * | 1959-04-13 | 1961-12-19 | Du Pont | Fibrous substrate with an alumina bonded organic polymer coating |
| US3031335A (en) * | 1958-08-01 | 1962-04-24 | Segal Leon | Oil-and water-resistant fabrics and method for their production |
| US3052571A (en) * | 1958-07-11 | 1962-09-04 | Nopco Chem Co | Method of waterproofing leather |
| US3104196A (en) * | 1959-01-23 | 1963-09-17 | Owens Corning Fiberglass Corp | Insulating materials |
| US3304197A (en) * | 1959-12-09 | 1967-02-14 | Johns Manville | Composition characterized by uniformly distributed inorganic additives |
| US3429647A (en) * | 1965-01-06 | 1969-02-25 | Monsanto Co | Method of preventing jute staining |
| US3608559A (en) * | 1968-07-17 | 1971-09-28 | Sutton Res Corp | Process of introducing ashing ingredients into oxidized cellulose material intended as smoking product and product obtained thereby |
| US3645780A (en) * | 1966-08-08 | 1972-02-29 | Monsanto Co | Improving soil resistance through the use of rare earth metal containing compounds |
| US3860447A (en) * | 1973-01-02 | 1975-01-14 | Western Electric Co | Method of rendering a hydrophilic surface hydrophobic |
| US3966502A (en) * | 1972-08-17 | 1976-06-29 | Amchem Products, Inc. | Zirconium rinse for phosphate coated metal surfaces |
| US4102691A (en) * | 1974-03-28 | 1978-07-25 | Zirconal Processes Limited | Gellable binders |
| US20100281624A1 (en) * | 2007-09-05 | 2010-11-11 | Somnath Das | method of treating fabric |
| US20150102522A1 (en) * | 2012-05-18 | 2015-04-16 | Sumitomo Rubber Industries, Ltd. | Method of producing elastic glove |
-
1939
- 1939-12-04 US US307416A patent/US2323387A/en not_active Expired - Lifetime
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2735786A (en) * | 1956-02-21 | Air permeable | ||
| US2477336A (en) * | 1944-07-14 | 1949-07-26 | Du Pont | Coated cotton fabric |
| US2451805A (en) * | 1944-10-04 | 1948-10-19 | Gen Electric | Process of coating asbestos |
| US2461302A (en) * | 1945-07-28 | 1949-02-08 | Rudolf F Hlavaty | Method of flameproofing |
| US2641558A (en) * | 1948-12-24 | 1953-06-09 | Nat Lead Co | Water repellence fixative treatment |
| US2616815A (en) * | 1950-04-12 | 1952-11-04 | Robert R Parmentier | Transparentizing compositions and process |
| US2695250A (en) * | 1951-07-28 | 1954-11-23 | Emery Industries Inc | Method of dry cleaning and weatherproofing fabrics |
| US2793130A (en) * | 1953-07-29 | 1957-05-21 | Owens Corning Fiberglass Corp | Pressure molded cement products and methods for producing same |
| US3052571A (en) * | 1958-07-11 | 1962-09-04 | Nopco Chem Co | Method of waterproofing leather |
| US3031335A (en) * | 1958-08-01 | 1962-04-24 | Segal Leon | Oil-and water-resistant fabrics and method for their production |
| US2991146A (en) * | 1958-10-22 | 1961-07-04 | Raymond S Babiarz | Cellulose fabric and process of making same |
| US3104196A (en) * | 1959-01-23 | 1963-09-17 | Owens Corning Fiberglass Corp | Insulating materials |
| US3013903A (en) * | 1959-04-13 | 1961-12-19 | Du Pont | Fibrous substrate with an alumina bonded organic polymer coating |
| US3013904A (en) * | 1959-04-13 | 1961-12-19 | Du Pont | Substrate having an organic polymer containing pentavalent phosphorus bonded thereto |
| US3013902A (en) * | 1959-04-13 | 1961-12-19 | Du Pont | Organic polymer coated, alumina bonded fibrous base |
| US3013901A (en) * | 1959-11-30 | 1961-12-19 | Du Pont | Article coated with fibrous boehmite |
| US3304197A (en) * | 1959-12-09 | 1967-02-14 | Johns Manville | Composition characterized by uniformly distributed inorganic additives |
| US3429647A (en) * | 1965-01-06 | 1969-02-25 | Monsanto Co | Method of preventing jute staining |
| US3645780A (en) * | 1966-08-08 | 1972-02-29 | Monsanto Co | Improving soil resistance through the use of rare earth metal containing compounds |
| US3608559A (en) * | 1968-07-17 | 1971-09-28 | Sutton Res Corp | Process of introducing ashing ingredients into oxidized cellulose material intended as smoking product and product obtained thereby |
| US3966502A (en) * | 1972-08-17 | 1976-06-29 | Amchem Products, Inc. | Zirconium rinse for phosphate coated metal surfaces |
| US3860447A (en) * | 1973-01-02 | 1975-01-14 | Western Electric Co | Method of rendering a hydrophilic surface hydrophobic |
| US4102691A (en) * | 1974-03-28 | 1978-07-25 | Zirconal Processes Limited | Gellable binders |
| US20100281624A1 (en) * | 2007-09-05 | 2010-11-11 | Somnath Das | method of treating fabric |
| US20150102522A1 (en) * | 2012-05-18 | 2015-04-16 | Sumitomo Rubber Industries, Ltd. | Method of producing elastic glove |
| US9578906B2 (en) * | 2012-05-18 | 2017-02-28 | Sumitomo Rubber Industries, Ltd. | Method of producing elastic glove |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2323387A (en) | Process of producing water repellent textile material | |
| US3574521A (en) | Modification of cellulosic textile materials with divinyl sulfone precursors | |
| US2343090A (en) | Treatment of textiles and composition useful therefor | |
| US2628171A (en) | Solvent-soluble water-repellency compositions | |
| US2343091A (en) | Treatment of textiles and composition useful therefor | |
| US2426770A (en) | Textile finishing composition comprising a methoxymethyl melamine and an aliphatic alcohol having at least eight carbon atoms | |
| DE1128397B (en) | Process for finishing textile fabrics | |
| US2328431A (en) | Process for rendering textile materials water repellent | |
| US2455083A (en) | Cellulose ethers of 3, 4 epoxy 1-butene and their oxidation products | |
| US2641558A (en) | Water repellence fixative treatment | |
| US2361830A (en) | Water repellent textile and process of producing the same | |
| US2591368A (en) | Water-and flameproofing composition | |
| US2724632A (en) | Cyanoethylated cellulose textiles modified with chromic and periodic acids and process of making same | |
| DE1947366A1 (en) | Process for treating materials containing cellulose fibers | |
| US2426300A (en) | Method and composition for waterproofing | |
| US3462294A (en) | Coating | |
| US3510246A (en) | Treatment of cellulosic fibers with certain quaternary ammonium compounds | |
| US2191982A (en) | Water repellent textile material | |
| US2316057A (en) | Textile material | |
| US3510248A (en) | Treatment of cellulosic fibers with certain chloroamines and chloroquaternaries | |
| US2308664A (en) | Coating composition | |
| US2505259A (en) | Production of water-repellent textiles | |
| US3677798A (en) | Polymeric chromium sulfatozirconate compositions,their preparation and use | |
| US3620803A (en) | Selvage finish compositions and the treatment of resin treated cellulosic fabrics therewith | |
| US2167914A (en) | Process of improving regenerated cellulose |