US20250113867A1 - Atomizer and electronic atomization device - Google Patents
Atomizer and electronic atomization device Download PDFInfo
- Publication number
- US20250113867A1 US20250113867A1 US18/294,567 US202218294567A US2025113867A1 US 20250113867 A1 US20250113867 A1 US 20250113867A1 US 202218294567 A US202218294567 A US 202218294567A US 2025113867 A1 US2025113867 A1 US 2025113867A1
- Authority
- US
- United States
- Prior art keywords
- channel
- channel portion
- sealing element
- holder
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/48—Fluid transfer means, e.g. pumps
- A24F40/485—Valves; Apertures
Definitions
- Embodiments of this application relate to the field of electronic atomization technologies, and in particular, to an atomizer and an electronic atomization device.
- aerosol-providing articles for example, e-cigarette devices.
- the devices generally include e-liquid.
- the e-liquid is heated to be atomized, so as to generate an inhalable vapor or aerosol.
- the e-liquid may include nicotine and/or fragrance and/or an aerosol-generation article (for example, glycerol), except for the fragrance in the e-liquid.
- An existing e-cigarette device generally includes a porous ceramic body that has a large amount of micropores provided inside and is configured to absorb and conduct the e-liquid, and a heating element is arranged on a surface of the porous ceramic body and configured to heat and atomize the absorbed e-liquid.
- micropores in the porous body are used as channels for the e-liquid to infiltrate and flow to an atomization surface, and also used as air exchange channels for air to replenish and enter a liquid storage cavity from the outside to maintain balance of the air pressure in the liquid storage cavity after the e-liquid in the liquid storage cavity is consumed, so that bubbles are generated in the porous ceramic body when the e-liquid is heated, atomized, and consumed, and then the bubbles emerge from a liquid absorbing surface and then enter the liquid storage cavity.
- the liquid storage cavity is gradually in a negative pressure state, to prevent fluid transmission to a certain extent, so that the e-liquid is less conveyed to the atomization surface through the micropore channels of the porous ceramic body for atomization.
- the air outside the liquid storage cavity can hardly pass through the micropore channels of the porous ceramic body to enter the liquid storage cavity in a short time, slowing down a speed of conveying the e-liquid to the atomization surface, and insufficient e-liquid supplied to the heating element will cause a temperature of the heating element to be excessively high, resulting in decomposition and volatilization of e-liquid components to generate harmful substances such as formaldehyde.
- An embodiment of this application provides an atomizer, including a housing, where the housing is internally provided with:
- a first groove is provided on the side surface of the holder, and the first channel portion is defined and formed between the first groove and the sealing element.
- a depth dimension of the first groove is greater than a width dimension.
- a second groove is provided on the upper surface of the holder, and the second channel portion is defined and formed between the second groove and the sealing element.
- a width dimension of the second groove is greater than a depth dimension.
- the first channel portion includes an extending direction different from that of the second channel portion.
- the first channel portion is basically perpendicular to the second channel portion.
- an extension length of the first channel portion is greater than an extension length of the second channel portion.
- the sealing element at least partially covers the holder and exposes an air inlet end and/or an air outlet end of the air channel.
- a convex rib at least partially surrounding the sealing element is arranged on the sealing element, and the convex rib defines the interference fit region.
- Another embodiment of this application further provides an electronic atomization device, including an atomizer configured to atomize a liquid substrate to generate an aerosol and a power supply mechanism configured to supply power to the atomizer, where the atomizer includes the atomizer described above.
- a sealing member 260 is arranged inside the power supply mechanism 200 , and at least a part of an internal space of the power supply mechanism 200 is separated through the sealing member 260 to form the receiving cavity 270 .
- the sealing member 260 is configured to extend along a cross section direction of the power supply mechanism 200 , and is preferably prepared by using a flexible material such as silica gel, so as to prevent the liquid substrate seeping from the atomizer 100 to the receiving cavity 270 from flowing to a controller 220 , a sensor 250 , and other components inside the power supply mechanism 200 .
- the power supply mechanism 200 includes a sensor 250 , configured to sense an inhalation airflow generated by the atomizer 100 during inhalation, so that the controller 220 controls the battery core 210 to supply power to the atomizer 100 according to a detection signal of the sensor 250 .
- a charging interface 240 is provided on another end of the power supply mechanism 200 facing away from the receiving cavity 270 , and the charging interface is configured to charge the battery core 210 .
- FIG. 2 to FIG. 5 are schematic structural diagrams of an embodiment of the atomizer 100 in FIG. 1 .
- the atomizer includes:
- the second electrical contact 21 is penetrated into the atomizer 100 from a surface of the end cover 20 , so that at least a part of the second electrical contact is exposed outside the atomizer 100 , so as to form conductivity through being in contact with the first electrical contact 230 .
- the end cover 20 is further provided with a first air inlet 23 , configured to supply external air into the atomizer 100 during inhalation.
- the housing 10 is internally provided with a liquid storage cavity 12 configured to store the liquid substrate, and an atomization assembly 3 configured to absorb the liquid substrate from the liquid storage cavity 12 and heat and atomize the liquid substrate.
- the atomization assembly 3 generally includes a capillary liquid guide element configured to absorb the liquid substrate, and a heating element combined with the liquid guide element. The heating element heats at least a part of the liquid substrate in the liquid guide element to generate an aerosol when powered on.
- the liquid guide element includes flexible fibers such as cotton fibers, non-woven fabrics, and glass fiber ropes, or includes porous materials with a microporous structure, such as porous ceramics. The heating element may be combined onto the liquid guide element or wound on the liquid guide element through printing, deposition, sintering, physical assembly, or the like.
- the atomization assembly 3 includes: a porous body 30 configured to absorb and transfer the liquid substrate, and a heating element 40 configured to heat and atomize the liquid substrate absorbed by the porous body 30 .
- a porous body 30 configured to absorb and transfer the liquid substrate
- a heating element 40 configured to heat and atomize the liquid substrate absorbed by the porous body 30 .
- the housing 10 is internally provided with a vapor conveying tube 11 arranged along an axial direction; and the housing 10 is further internally provided with a liquid storage cavity 12 configured to store the liquid substrate.
- the vapor conveying tube 11 extends toward the inside of the liquid storage cavity 12
- the liquid storage cavity 12 is formed by a space between an outer wall of the vapor conveying tube 11 and an inner wall of the housing 10 .
- a first end of the vapor conveying tube 11 opposite to the proximal end 110 is in communication with the suction nozzle A, and a second end opposite to the distal end 120 is in airflow connection with an atomization chamber 340 defined and formed between an atomization surface 310 of the porous body 30 and the end cover 20 , so as to transmit the aerosol generated by the heating element 40 by atomizing the liquid substrate and released to the atomization chamber 340 to the suction nozzle A for inhalation.
- a side of the porous body 30 facing away from the atomization surface 310 is in fluid communication with the liquid storage cavity 12 , so as to absorb the liquid substrate, then a microporous structure inside the porous body 30 transmits the liquid substrate to the atomization surface 310 to be heated and atomized to form the aerosol, and the formed aerosol is released or escapes from the atomization surface 310 into the atomization chamber 340 .
- the heating element 40 is formed on the atomization surface 310 ; and after assembly, the second electrical contact 21 abuts against the heating element 40 , so as to supply power to the heating element 40 .
- a first insertion hole 72 for a lower end of the vapor conveying tube 11 to insert is provided on the sealing element 70 , a second insertion hole 62 is correspondingly provided on the holder 60 , and an aerosol output channel 63 through which the atomization surface 310 is in airflow communication with the second insertion hole 62 is provided on one side of the holder 60 opposite to the housing 10 .
- a complete inhalation airflow path after installation is shown by an arrow R 2 in FIG. 3 .
- the external air enters the atomization chamber 340 through the first air inlet 23 on the end cover 20 , then carries the generated aerosol to flow from the aerosol output channel 63 to the second insertion hole 62 , and then outputs to the vapor conveying tube 11 through the first insertion hole 72 .
- the porous body 30 is in an arched shape and includes a first side wall 31 and a second side wall 32 that are opposite to each other along a thickness direction, and a base portion 34 extending between the first side wall 31 and the second side wall 32 ; and a lower surface of the base portion 34 is configured as the atomization surface 310 .
- the first side wall 31 and the second side wall 32 extend along a length direction of the porous body 30 .
- a liquid channel 33 extending along the length direction of the porous body 30 is defined among the first side wall 31 , the second side wall 32 , and the base portion 34 , and the liquid substrate flowing through a first liquid guide hole 71 , a second liquid guide hole 61 , and a third liquid guide hole 51 is received and absorbed through the liquid channel 33 .
- the holder 60 is approximately in a shape of a cylinder, and a detailed structure thereof includes:
- an air channel 65 is further provided on the holder 60 , for the air in the atomization chamber 340 and/or the first air inlet 23 to enter the liquid storage cavity 12 .
- the air channel 65 is defined by grooves formed on the upper surface 610 and the side surface 620 of the holder 60 . Specifically, a first groove 651 extending along a longitudinal direction is provided on the side surface 620 of the holder 60 , and a second groove 652 extending along a width direction is provided on the upper surface 610 of the holder 60 .
- a cross-sectional area of the first groove 651 is greater than a cross-sectional area of the second groove 652 .
- an extension length of the first groove 651 is greater than an extension length of the second groove 652 . It is advantageous for the air to overcome the pressure of the liquid substrate to enter the second groove 652 from the first groove 651 .
Landscapes
- Special Spraying Apparatus (AREA)
- Electrostatic Spraying Apparatus (AREA)
- Nozzles (AREA)
Abstract
This application provides an atomizer and an electronic atomization device. The atomizer includes a housing, and the housing is internally provided with: a liquid storage cavity; an atomization assembly; a sealing element; a holder, configured to support the sealing element; and an air channel, including a first channel portion formed between the side surface of the holder and the sealing element and a second channel portion formed between the upper surface of the holder and the sealing element, where the first channel portion has a cross-sectional area greater than that of the second channel portion. The atomizer can supplement air to the liquid storage cavity to relieve or balance the negative pressure in the liquid storage cavity through the air channel; and the air channel including a portion with a different cross-sectional area, is advantageous for air to overcome the pressure of a liquid substrate into the liquid storage cavity.
Description
- This application claims priority to Chinese Patent Application No. 202121812932.8, entitled “ATOMIZER AND ELECTRONIC ATOMIZATION DEVICE” and filed with the China National Intellectual Property Administration on Aug. 4, 2021, which is incorporated herein by reference in its entirety.
- Embodiments of this application relate to the field of electronic atomization technologies, and in particular, to an atomizer and an electronic atomization device.
- There are aerosol-providing articles, for example, e-cigarette devices. The devices generally include e-liquid. The e-liquid is heated to be atomized, so as to generate an inhalable vapor or aerosol. The e-liquid may include nicotine and/or fragrance and/or an aerosol-generation article (for example, glycerol), except for the fragrance in the e-liquid.
- An existing e-cigarette device generally includes a porous ceramic body that has a large amount of micropores provided inside and is configured to absorb and conduct the e-liquid, and a heating element is arranged on a surface of the porous ceramic body and configured to heat and atomize the absorbed e-liquid. The micropores in the porous body are used as channels for the e-liquid to infiltrate and flow to an atomization surface, and also used as air exchange channels for air to replenish and enter a liquid storage cavity from the outside to maintain balance of the air pressure in the liquid storage cavity after the e-liquid in the liquid storage cavity is consumed, so that bubbles are generated in the porous ceramic body when the e-liquid is heated, atomized, and consumed, and then the bubbles emerge from a liquid absorbing surface and then enter the liquid storage cavity.
- For the existing e-cigarette device, as the e-liquid in the liquid storage cavity provided inside is consumed, the liquid storage cavity is gradually in a negative pressure state, to prevent fluid transmission to a certain extent, so that the e-liquid is less conveyed to the atomization surface through the micropore channels of the porous ceramic body for atomization. Particularly, when the existing e-cigarette device is in a continuous inhaling and use state, the air outside the liquid storage cavity can hardly pass through the micropore channels of the porous ceramic body to enter the liquid storage cavity in a short time, slowing down a speed of conveying the e-liquid to the atomization surface, and insufficient e-liquid supplied to the heating element will cause a temperature of the heating element to be excessively high, resulting in decomposition and volatilization of e-liquid components to generate harmful substances such as formaldehyde.
- An embodiment of this application provides an atomizer, including a housing, where the housing is internally provided with:
-
- a liquid storage cavity, configured to store a liquid substrate;
- an atomization assembly, configured to atomize the liquid substrate to generate an aerosol;
- a sealing element, configured to at least partially seal the liquid storage cavity;
- a holder, configured to support the sealing element, so that the sealing element is at least partially positioned between the holder and the liquid storage cavity, where the holder includes an upper surface close to the liquid storage cavity and a side surface surrounding the upper surface; and
- an air channel, configured to provide a flow path for air to enter the liquid storage cavity, and including a first channel portion formed between the side surface of the holder and the sealing element and a second channel portion formed between the upper surface and the sealing element, where the first channel portion has a cross-sectional area greater than that of the second channel portion.
- In a more preferred embodiment, a first groove is provided on the side surface of the holder, and the first channel portion is defined and formed between the first groove and the sealing element.
- In a more preferred embodiment, a depth dimension of the first groove is greater than a width dimension.
- In a more preferred embodiment, the holder includes a liquid guide channel, and the atomization assembly is in fluid communication with the liquid storage cavity through the liquid guide channel; and
-
- the second channel portion partially extends to an inner wall of the liquid guide channel and forms an air outlet end of the air channel on the inner wall of the liquid guide channel.
- In a more preferred embodiment, a second groove is provided on the upper surface of the holder, and the second channel portion is defined and formed between the second groove and the sealing element.
- In a more preferred embodiment, a width dimension of the second groove is greater than a depth dimension.
- In a more preferred embodiment, the first channel portion includes an extending direction different from that of the second channel portion. Preferably, the first channel portion is basically perpendicular to the second channel portion.
- In a more preferred embodiment, an extension length of the first channel portion is greater than an extension length of the second channel portion.
- In a more preferred embodiment, the sealing element at least partially covers the holder and exposes an air inlet end and/or an air outlet end of the air channel.
- In a more preferred embodiment, the sealing element includes an interference fit region, used to provide sealing between the housing and the holder through an interference fit of a part of the region; and the first channel portion crosses interference fit region.
- In a more preferred embodiment, a convex rib at least partially surrounding the sealing element is arranged on the sealing element, and the convex rib defines the interference fit region.
- Another embodiment of this application further provides an electronic atomization device, including an atomizer configured to atomize a liquid substrate to generate an aerosol and a power supply mechanism configured to supply power to the atomizer, where the atomizer includes the atomizer described above.
- The atomizer can supplement air to the liquid storage cavity to relieve or balance the negative pressure in the liquid storage cavity through the air channel formed between the holder and the sealing element; and the air channel includes a portion having a different cross-sectional area, which is advantageous for air to overcome the pressure of a liquid substrate into the liquid storage cavity.
- One or more embodiments are exemplarily described with reference to the corresponding figures in the accompanying drawings, and the descriptions do not constitute a limitation to the embodiments. Components in the accompanying drawings that have same reference numerals are represented as similar components, and unless otherwise particularly stated, the figures in the accompanying drawings are not drawn to scale.
-
FIG. 1 is a schematic structural diagram of an electronic atomization device according to an embodiment of this application; -
FIG. 2 is a schematic diagram of an embodiment of the atomizer inFIG. 1 ; -
FIG. 3 is a schematic exploded view of the atomizer inFIG. 2 from a perspective; -
FIG. 4 is a schematic exploded view of the atomizer inFIG. 2 from another perspective; -
FIG. 5 is a schematic cross-sectional view of the atomizer inFIG. 2 from a perspective; -
FIG. 6 is a schematic structural diagram of a porous body from another perspective; -
FIG. 7 is a schematic structural diagram of a holder from another perspective; -
FIG. 8 is a schematic diagram of a sealing element and a holder after assembly from another perspective; -
FIG. 9 is an enlarged view of a position B inFIG. 7 ; and -
FIG. 10 is a schematic cross-sectional view of an air channel formed between a sealing element and a holder. - For ease of understanding of this application, this application is described in further detail below with reference to the accompanying drawings and specific implementations.
- An embodiment of this application provides an electronic atomization device. Referring to
FIG. 1 , the electronic atomization device includes: anatomizer 100 configured to store a liquid substrate and atomize the liquid substrate to generate an aerosol, and apower supply mechanism 200 configured to supply power to theatomizer 100. - In an optional implementation, as shown in
FIG. 1 , thepower supply mechanism 200 includes: areceiving cavity 270 that is arranged at an end along a length direction and configured to receive and accommodate at least a part of theatomizer 100; and a firstelectrical contact 230 that is at least partially exposed on a surface of thereceiving cavity 270, configured to be electrically connected to theatomizer 100 to supply power to theatomizer 100 when at least a part of theatomizer 100 is received and accommodated in thepower supply mechanism 200. - According to the preferred embodiment shown in
FIG. 1 , an end portion of theatomizer 100 opposite to thepower supply mechanism 200 along the length direction is provided with a secondelectrical contact 21, so that when at least a part of theatomizer 100 is received in thereceiving cavity 270, the secondelectrical contact 21 forms conductivity through being in contact with and abutting against the firstelectrical contact 230. - A sealing
member 260 is arranged inside thepower supply mechanism 200, and at least a part of an internal space of thepower supply mechanism 200 is separated through the sealingmember 260 to form thereceiving cavity 270. In the preferred implementation shown inFIG. 1 , thesealing member 260 is configured to extend along a cross section direction of thepower supply mechanism 200, and is preferably prepared by using a flexible material such as silica gel, so as to prevent the liquid substrate seeping from theatomizer 100 to thereceiving cavity 270 from flowing to acontroller 220, asensor 250, and other components inside thepower supply mechanism 200. - In the preferred embodiment shown in
FIG. 1 , thepower supply mechanism 200 further includes abattery core 210 that is located at another end facing away from thereceiving cavity 270 along the length direction and configured to supply power; and acontroller 220 that is arranged between thebattery core 210 and thereceiving cavity 270, where thecontroller 220 operably guides a current between thebattery core 210 and the firstelectrical contact 230. - During use, the
power supply mechanism 200 includes asensor 250, configured to sense an inhalation airflow generated by theatomizer 100 during inhalation, so that thecontroller 220 controls thebattery core 210 to supply power to theatomizer 100 according to a detection signal of thesensor 250. - Further, in the preferred embodiment shown in
FIG. 1 , acharging interface 240 is provided on another end of thepower supply mechanism 200 facing away from thereceiving cavity 270, and the charging interface is configured to charge thebattery core 210. - The embodiments in
FIG. 2 toFIG. 5 are schematic structural diagrams of an embodiment of theatomizer 100 inFIG. 1 . The atomizer includes: -
- a
housing 10. According toFIG. 2 andFIG. 3 , thehousing 10 is approximately in a shape of a flat cylinder; and thehousing 10 includes aproximal end 110 and adistal end 120 opposite to each other along a length direction. According to a requirement of common use, theproximal end 110 is configured as an end for a user to inhale the aerosol, and a suction nozzle A for the user to inhale is arranged at theproximal end 110. Thedistal end 120 is used as an end combined with thepower supply mechanism 200, and thedistal end 120 of thehousing 10 is an opening on which adetachable end cover 20 is installed, where an opening structure is configured to install various necessary functional components inside thehousing 10.
- a
- Further, in specific embodiments shown in
FIG. 2 toFIG. 4 , the secondelectrical contact 21 is penetrated into theatomizer 100 from a surface of theend cover 20, so that at least a part of the second electrical contact is exposed outside theatomizer 100, so as to form conductivity through being in contact with the firstelectrical contact 230. In addition, theend cover 20 is further provided with afirst air inlet 23, configured to supply external air into theatomizer 100 during inhalation. - Further, referring to
FIG. 3 toFIG. 5 , thehousing 10 is internally provided with aliquid storage cavity 12 configured to store the liquid substrate, and an atomization assembly 3 configured to absorb the liquid substrate from theliquid storage cavity 12 and heat and atomize the liquid substrate. The atomization assembly 3 generally includes a capillary liquid guide element configured to absorb the liquid substrate, and a heating element combined with the liquid guide element. The heating element heats at least a part of the liquid substrate in the liquid guide element to generate an aerosol when powered on. In an optional implementation, the liquid guide element includes flexible fibers such as cotton fibers, non-woven fabrics, and glass fiber ropes, or includes porous materials with a microporous structure, such as porous ceramics. The heating element may be combined onto the liquid guide element or wound on the liquid guide element through printing, deposition, sintering, physical assembly, or the like. - Further, in the preferred embodiments shown in
FIG. 3 toFIG. 5 , the atomization assembly 3 includes: aporous body 30 configured to absorb and transfer the liquid substrate, and aheating element 40 configured to heat and atomize the liquid substrate absorbed by theporous body 30. Specifically: - In the schematic cross-sectional structural view shown in
FIG. 5 , thehousing 10 is internally provided with avapor conveying tube 11 arranged along an axial direction; and thehousing 10 is further internally provided with aliquid storage cavity 12 configured to store the liquid substrate. In this implementation, at least a part of thevapor conveying tube 11 extends toward the inside of theliquid storage cavity 12, and theliquid storage cavity 12 is formed by a space between an outer wall of thevapor conveying tube 11 and an inner wall of thehousing 10. A first end of thevapor conveying tube 11 opposite to theproximal end 110 is in communication with the suction nozzle A, and a second end opposite to thedistal end 120 is in airflow connection with anatomization chamber 340 defined and formed between anatomization surface 310 of theporous body 30 and theend cover 20, so as to transmit the aerosol generated by theheating element 40 by atomizing the liquid substrate and released to theatomization chamber 340 to the suction nozzle A for inhalation. - Referring to the structure of the
porous body 30 shown inFIG. 3 ,FIG. 4 , andFIG. 5 , a shape of theporous body 30 is configured to be, but not limited to, approximately a blocky structure in this embodiment. According to a preferred design of this embodiment, the porous body includes theatomization surface 310 that is in an arched shape and faces theend cover 20 along an axial direction of thehousing 10. During use, a side of theporous body 30 facing away from theatomization surface 310 is in fluid communication with theliquid storage cavity 12, so as to absorb the liquid substrate, then a microporous structure inside theporous body 30 transmits the liquid substrate to theatomization surface 310 to be heated and atomized to form the aerosol, and the formed aerosol is released or escapes from theatomization surface 310 into theatomization chamber 340. - Certainly, the
heating element 40 is formed on theatomization surface 310; and after assembly, the secondelectrical contact 21 abuts against theheating element 40, so as to supply power to theheating element 40. - On an aerosol output path during an inhalation process, referring to
FIG. 3 toFIG. 5 , afirst insertion hole 72 for a lower end of thevapor conveying tube 11 to insert is provided on the sealingelement 70, asecond insertion hole 62 is correspondingly provided on theholder 60, and anaerosol output channel 63 through which theatomization surface 310 is in airflow communication with thesecond insertion hole 62 is provided on one side of theholder 60 opposite to thehousing 10. A complete inhalation airflow path after installation is shown by an arrow R2 inFIG. 3 . The external air enters theatomization chamber 340 through thefirst air inlet 23 on theend cover 20, then carries the generated aerosol to flow from theaerosol output channel 63 to thesecond insertion hole 62, and then outputs to thevapor conveying tube 11 through thefirst insertion hole 72. - Referring to the preferred embodiment shown in
FIG. 6 , theporous body 30 is in an arched shape and includes afirst side wall 31 and asecond side wall 32 that are opposite to each other along a thickness direction, and abase portion 34 extending between thefirst side wall 31 and thesecond side wall 32; and a lower surface of thebase portion 34 is configured as theatomization surface 310. In addition, thefirst side wall 31 and thesecond side wall 32 extend along a length direction of theporous body 30. Further, aliquid channel 33 extending along the length direction of theporous body 30 is defined among thefirst side wall 31, thesecond side wall 32, and thebase portion 34, and the liquid substrate flowing through a firstliquid guide hole 71, a secondliquid guide hole 61, and a thirdliquid guide hole 51 is received and absorbed through theliquid channel 33. - Further, referring to
FIG. 7 andFIG. 8 , theholder 60 is approximately in a shape of a cylinder, and a detailed structure thereof includes: -
- a
channel surface 611 defining the secondliquid guide hole 61, where thechannel surface 611 is in fluid communication with theliquid storage cavity 12 to transmit the liquid substrate, and the secondliquid guide hole 61 is a liquid guide channel; - an
upper surface 610, arranged adjacent to theliquid storage cavity 12; and - a
side surface 620, configured to support the sealingelement 70, where the sealingelement 70 mainly surrounds or covers theside surface 620 to be stably kept.
- a
- Further, in the preferred embodiments shown in
FIG. 7 andFIG. 8 , anair channel 65 is further provided on theholder 60, for the air in theatomization chamber 340 and/or thefirst air inlet 23 to enter theliquid storage cavity 12. - Further, as shown in
FIG. 7 andFIG. 8 , theair channel 65 is defined by grooves formed on theupper surface 610 and theside surface 620 of theholder 60. Specifically, afirst groove 651 extending along a longitudinal direction is provided on theside surface 620 of theholder 60, and asecond groove 652 extending along a width direction is provided on theupper surface 610 of theholder 60. - Further, it may be seen from
FIG. 9 that, thefirst groove 651 runs through theside surface 620, and thesecond groove 652 extends from an upper end of thefirst groove 651 to thechannel surface 611 of the secondliquid guide hole 61; thefirst groove 651 and thesecond groove 652 further form a specific angle, so that the two grooves have different extending directions; and in the preferred implementation in the figure, thefirst groove 651 is basically perpendicular to thesecond groove 652. - Further, as shown in
FIG. 9 , an extension length dimension d1 of thefirst groove 651 approximately ranges from 2.2 mm to 2.5 mm; a width dimension d2 of thefirst groove 651 approximately ranges from 0.2 mm to 0.4 mm; and a depth dimension d3 of thefirst groove 651 approximately ranges from 0.5 mm to 0.7 mm. It may be seen from the above that, the depth dimension d3 of thefirst groove 651 is greater than the width dimension d2, and theflexible sealing element 70 is less recessed into thefirst groove 651 under an extrusion force after assembly, which is advantageous to prevent a cross section space of thefirst groove 651 from being affected by the assembly of the sealingelement 70. - Further, as shown in
FIG. 9 , an extension length dimension d4 of thesecond groove 652 approximately ranges from 0.8 mm to 1 mm; a width dimension d5 of thesecond groove 652 approximately ranges from 0.1 mm to 0.2 mm; and a depth dimension d6 of thesecond groove 652 approximately ranges from 0.05 mm to 0.15 mm. In contrast, the width dimension d5 of thesecond groove 652 is greater than the depth dimension d6, which is advantageous for air overflowing. - It may be also seen from the foregoing embodiments that, a cross-sectional area of the
first groove 651 is greater than a cross-sectional area of thesecond groove 652. In addition, an extension length of thefirst groove 651 is greater than an extension length of thesecond groove 652. It is advantageous for the air to overcome the pressure of the liquid substrate to enter thesecond groove 652 from thefirst groove 651. - In addition, after assembly is performed according to
FIG. 8 , thefirst groove 651 and thesecond groove 652 are covered by the sealingelement 70, thefirst groove 651 and thesecond groove 652 jointly define theair channel 65 formed between theholder 60 and the sealingelement 70. After the sealingelement 70 and theholder 60 are assembled, the sealingelement 70 does not cover an air inlet end and an air outlet end of theair channel 65. Specifically, it may be seen fromFIG. 8 andFIG. 10 that, a lower end of thefirst groove 651 used for air intaking is exposed, and an air outlet end of thesecond groove 652 located on thechannel surface 611 is also exposed. - During use, as shown in
FIG. 8 andFIG. 10 , the lower end of thefirst groove 651 forms airflow communication with theatomization chamber 340 through a gap between theholder 60 and thehousing 10. Further, when the negative pressure in theliquid storage cavity 12 exceeds a specific threshold during use, the air in theatomization chamber 340 and/or thefirst air inlet 23 can sequentially flow through, as shown by an arrow R3 inFIG. 8 andFIG. 10 , thefirst groove 651 and thesecond groove 652 and then enter the secondliquid guide hole 61, and finally enter theliquid storage cavity 12 to relieve the negative pressure in theliquid storage cavity 12. - Further, as shown in
FIG. 7 , severalcapillary trenches 66 extending along a circumferential direction are further provided on theholder 60. During use, on one hand, space of thecapillary trenches 66 can keep a sufficient gap between theholder 60 and thehousing 10, and further provide a gap for airflow communication between the lower end of thefirst groove 651 and theatomization chamber 340; and on the other hand, eachcapillary trench 66 has a width of about 0.5 mm, so that aerosol condensate in theatomization chamber 340 can be absorbed and kept through a capillary action, thereby preventing the condensate from leaking from thefirst air inlet 23. - Alternatively, in another variant embodiment, the
air channel 65 may alternatively be formed on an inner wall of the sealingelement 70 adjacent to theholder 60. For example, thefirst groove 651 is formed on an inner side wall extending along a circumferential direction of the sealingelement 70, and thesecond groove 652 is formed on an inner top wall of the sealingelement 70. - Further, in the preferred embodiments shown in
FIG. 3 andFIG. 10 , aconvex rib 73 extending along the circumferential direction is arranged on an outer side wall of the sealingelement 70; and During assembly, theconvex rib 73 provides interference fit between the sealingelement 70 and thehousing 10, and theconvex rib 73 is extruded after assembly, so as to provide sealing. Alternatively, in some variant embodiments, theconvex rib 73 is located on the inner side wall of the sealingelement 70 and is arranged adjacent to theside surface 620 of theholder 60; and after assembly, theconvex rib 73 is extruded by theside surface 620 of theholder 60 to form interference fit, thereby improving a sealing effect. - Further, referring to
FIG. 10 , thefirst groove 651 defining theair channel 65 crosses an interference fit region defined by theconvex rib 73. - It should be noted that, the specification and the accompanying drawings of this application illustrate preferred embodiments of this application, but this application is not limited to the embodiments described in this specification. Further, a person of ordinary skill in the art may make improvements or modifications according to the foregoing description, and all the improvements and modifications shall fall within the protection scope of the appended claims of this application.
Claims (20)
1. An atomizer, comprising a housing, wherein the housing is internally provided with:
a liquid storage cavity, configured to store a liquid substrate;
an atomization assembly, configured to atomize the liquid substrate to generate an aerosol;
a sealing element, configured to at least partially seal the liquid storage cavity;
a holder, configured to support the sealing element, so that the sealing element is at least partially positioned between the holder and the liquid storage cavity, wherein the holder comprises an upper surface close to the liquid storage cavity and a side surface surrounding the upper surface; and
an air channel, configured to provide a flow path for air to enter the liquid storage cavity, and comprising a first channel portion formed between the side surface of the holder and the sealing element and a second channel portion formed between the upper surface and the sealing element, wherein the first channel portion has a cross-sectional area greater than that of the second channel portion.
2. The atomizer according to claim 1 , wherein a first groove is provided on the side surface of the holder, and the first channel portion is defined and formed between the first groove and the sealing element.
3. The atomizer according to claim 2 , wherein a depth dimension of the first groove is greater than a width dimension.
4. The atomizer according to claim 1 , wherein the holder comprises a liquid guide channel, and the atomization assembly is in fluid communication with the liquid storage cavity through the liquid guide channel; and
the second channel portion partially extends to an inner wall of the liquid guide channel and forms an air outlet end of the air channel on the inner wall of the liquid guide channel.
5. The atomizer according to claim 1 , wherein a second groove is provided on the upper surface of the holder, and the second channel portion is defined and formed between the second groove and the sealing element.
6. The atomizer according to claim 5 , wherein a width dimension of the second groove is greater than a depth dimension.
7. The atomizer according to claim 1 , wherein the first channel portion comprises an extending direction different from that of the second channel portion.
8. The atomizer according to claim 1 , wherein an extension length of the first channel portion is greater than an extension length of the second channel portion.
9. The atomizer according to claim 1 , wherein the sealing element at least partially covers the holder and exposes an air inlet end and/or an air outlet end of the air channel.
10. The atomizer according to claim 1 , wherein the sealing element comprises an interference fit region, used to provide sealing between the housing and the holder through an interference fit of a part of the region; and the first channel portion crosses interference fit region.
11. The atomizer according to claim 10 , wherein a convex rib at least partially surrounding the sealing element is arranged on the sealing element, and the convex rib defines the interference fit region.
12. An electronic atomization device, comprising an atomizer configured to atomize a liquid substrate to generate an aerosol and a power supply mechanism configured to supply power to the atomizer, wherein the atomizer comprises the atomizer according to claim 1 .
13. The atomizer according to claim 2 , wherein the holder comprises a liquid guide channel, and the atomization assembly is in fluid communication with the liquid storage cavity through the liquid guide channel; and
the second channel portion partially extends to an inner wall of the liquid guide channel and forms an air outlet end of the air channel on the inner wall of the liquid guide channel.
14. The atomizer according to claim 3 , wherein the holder comprises a liquid guide channel, and the atomization assembly is in fluid communication with the liquid storage cavity through the liquid guide channel; and
the second channel portion partially extends to an inner wall of the liquid guide channel and forms an air outlet end of the air channel on the inner wall of the liquid guide channel.
15. The atomizer according to claim 2 , wherein a second groove is provided on the upper surface of the holder, and the second channel portion is defined and formed between the second groove and the sealing element.
16. The atomizer according to claim 15 , wherein a width dimension of the second groove is greater than a depth dimension.
17. The atomizer according to claim 3 , wherein a second groove is provided on the upper surface of the holder, and the second channel portion is defined and formed between the second groove and the sealing element.
18. The atomizer according to claim 17 , wherein a width dimension of the second groove is greater than a depth dimension.
19. The atomizer according to claim 2 , wherein the first channel portion comprises an extending direction different from that of the second channel portion.
20. The atomizer according to claim 3 , wherein the first channel portion comprises an extending direction different from that of the second channel portion.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202121812932.8 | 2021-08-04 | ||
| CN202121812932.8U CN215958347U (en) | 2021-08-04 | 2021-08-04 | Atomizer and electronic atomization device |
| PCT/CN2022/110084 WO2023011553A1 (en) | 2021-08-04 | 2022-08-03 | Atomizer and electronic atomization device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20250113867A1 true US20250113867A1 (en) | 2025-04-10 |
Family
ID=80513890
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/294,567 Pending US20250113867A1 (en) | 2021-08-04 | 2022-08-03 | Atomizer and electronic atomization device |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20250113867A1 (en) |
| EP (1) | EP4381970A4 (en) |
| CN (1) | CN215958347U (en) |
| WO (1) | WO2023011553A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN215958347U (en) * | 2021-08-04 | 2022-03-08 | 深圳市合元科技有限公司 | Atomizer and electronic atomization device |
| JP2025534132A (en) * | 2022-10-25 | 2025-10-09 | 深▲せん▼市合元科技有限公司 | Seal member, atomizer, and electronic atomizer |
| CN117064111A (en) * | 2023-09-19 | 2023-11-17 | 爱奇迹(香港)有限公司 | Atomization components and atomization devices |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN209403574U (en) * | 2018-09-05 | 2019-09-20 | 深圳麦克韦尔科技有限公司 | Atomising device and electronic cigarette |
| CN111631437B (en) * | 2020-05-29 | 2025-08-29 | 深圳麦克韦尔科技有限公司 | Atomizers and electronic atomization devices |
| CN212852491U (en) * | 2020-06-16 | 2021-04-02 | 深圳市合元科技有限公司 | Electronic Cigarettes and Electronic Cigarettes |
| CN112032150B (en) * | 2020-08-27 | 2022-09-30 | 深圳市卓力能技术有限公司 | Component of aerosol-forming device and aerosol-forming device |
| CN213587425U (en) * | 2020-09-15 | 2021-07-02 | 深圳市合元科技有限公司 | Electronic Cigarettes and Electronic Cigarettes |
| CN112471608B (en) * | 2020-11-03 | 2024-10-29 | 深圳麦克韦尔科技有限公司 | Atomizing assembly and electronic atomizing device |
| CN215958347U (en) * | 2021-08-04 | 2022-03-08 | 深圳市合元科技有限公司 | Atomizer and electronic atomization device |
-
2021
- 2021-08-04 CN CN202121812932.8U patent/CN215958347U/en active Active
-
2022
- 2022-08-03 US US18/294,567 patent/US20250113867A1/en active Pending
- 2022-08-03 WO PCT/CN2022/110084 patent/WO2023011553A1/en not_active Ceased
- 2022-08-03 EP EP22852265.2A patent/EP4381970A4/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| CN215958347U (en) | 2022-03-08 |
| WO2023011553A1 (en) | 2023-02-09 |
| EP4381970A4 (en) | 2024-12-25 |
| EP4381970A1 (en) | 2024-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP4305977A1 (en) | Atomizer and electronic atomizing device | |
| US20250113867A1 (en) | Atomizer and electronic atomization device | |
| US20250098773A1 (en) | Vaporizer and electronic vaporization device | |
| CN213819836U (en) | Atomizers and Electronic Atomizers | |
| CN215684777U (en) | Atomizer and electronic atomization device | |
| CN218354595U (en) | Atomizer and electronic atomization device | |
| CN217446677U (en) | Atomizer and electronic atomization device | |
| CN220109122U (en) | Atomizer and electronic atomization device | |
| WO2023134749A1 (en) | Atomizer and electronic atomization device | |
| CN215684857U (en) | Atomizer and electronic atomization device | |
| CN215958310U (en) | Atomizer and electronic atomization device | |
| CN216416032U (en) | Atomizer, electronic atomization device and atomization assembly | |
| EP4285747A1 (en) | Atomizer and electronic atomization device | |
| CN115336801B (en) | Atomizer and electronic atomization device thereof | |
| CN114652017A (en) | Atomizer and electronic atomization device | |
| CN219982148U (en) | Atomizer and electronic atomization device | |
| CN218784242U (en) | Atomizer and electronic atomization device | |
| CN218354596U (en) | Electronic atomization device and atomizer | |
| CN216983599U (en) | Atomizer and electronic atomization device | |
| CN220458619U (en) | Atomizer and electronic atomization device comprising same | |
| CN220712931U (en) | Atomizer and electronic atomization device | |
| CN220274915U (en) | Atomizers and electronic atomization devices | |
| CN220458600U (en) | Atomizers and electronic atomization devices | |
| CN222787061U (en) | Atomizer and electronic atomization device | |
| CN220458601U (en) | Atomizers and electronic atomization devices |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SHENZHEN FIRST UNION TECHNOLOGY CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LU, LINHAI;XU, ZHONGLI;LI, YONGHAI;REEL/FRAME:066334/0606 Effective date: 20240112 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |