US20230332585A1 - Cryogenic pump - Google Patents
Cryogenic pump Download PDFInfo
- Publication number
- US20230332585A1 US20230332585A1 US18/300,724 US202318300724A US2023332585A1 US 20230332585 A1 US20230332585 A1 US 20230332585A1 US 202318300724 A US202318300724 A US 202318300724A US 2023332585 A1 US2023332585 A1 US 2023332585A1
- Authority
- US
- United States
- Prior art keywords
- pump
- piston
- sump
- intermediate fluid
- jacket
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/02—Pumping installations or systems having reservoirs
- F04B23/021—Pumping installations or systems having reservoirs the pump being immersed in the reservoir
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/06—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
- F04B15/08—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/14—Pistons, piston-rods or piston-rod connections
- F04B53/143—Sealing provided on the piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/08—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
- F04B9/10—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
- F04B9/103—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
- F04B9/105—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber reciprocating movement of the pumping member being obtained by a double-acting liquid motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/08—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
- F04B9/10—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
- F04B9/103—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
- F04B9/107—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/06—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
- F04B15/08—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
- F04B2015/081—Liquefied gases
- F04B2015/0822—Hydrogen
Definitions
- the present invention relates generally to pumps for cryogenic liquids and, more particularly, to a cryogenic pump that uses an intermediate fluid.
- Cryogenic fluids such as liquid natural gas and hydrogen
- Cryogenic fluids have many important industrial uses and are increasing in importance as energy sources. With regard to the latter, hydrogen has grown in importance as an alternative clean energy source as advances are being made in fuel cell technology and the use of hydrogen in home power generation. In addition, use of fuel cell technology, such as in fuel cell powered vehicles, is growing.
- cryogenic fluids such as liquid natural gas
- hydrogen is transported and stored more efficiently in liquid form.
- Cryogenic pumps are therefore critical components in the storage and transport of cryogenic liquids.
- a pump for pumping a cryogenic liquid includes a pump housing defining an elongated cylinder.
- An elongated piston is slidably positioned within the cylinder so that an intermediate fluid chamber that receives an intermediate fluid is defined within the cylinder adjacent to a first end of the piston and a fluid pumping chamber is defined within the cylinder adjacent to a second end of the piston.
- the fluid pumping chamber includes an inlet and an outlet.
- a pump housing is positioned within a sump that receives and submerges a portion of the pump housing within the cryogenic liquid and provides cryogenic liquid to the inlet of the pumping chamber for pumping.
- a sump jacket surrounds the sump so that a sump insulation space is defined therebetween.
- a pump jacket surrounds the pump housing so that a pump insulation space is defined therebetween.
- FIG. 1 is a process flow and schematic illustrating a system including an embodiment of the cryogenic pump of the disclosure.
- FIG. 2 is a process flow and schematic illustrating a system including an alternative embodiment of the cryogenic pump of the disclosure.
- FIG. 3 illustrates an embodiment of an insulation system that may be used for the cryogenic pumps of the systems of FIGS. 1 and 2 .
- FIG. 4 A is a schematic illustrating a second embodiment of the cryogenic pump of the disclosure with the piston in the top dead center position.
- FIG. 4 B is a schematic illustrating a second embodiment of the cryogenic pump of the disclosure with the piston in the bottom dead center position.
- FIG. 5 is a side elevational exploded view of the piston and pump housing of FIGS. 4 A and 4 B .
- FIG. 6 is a side elevational exploded view of the top and bottom sections of the sump and sump jacket of FIGS. 4 A- 5 .
- FIG. 7 is a side elevational exploded view of the piston and pump housing and the top and bottom sections of the sump and sump jacket of FIGS. 4 A- 5 .
- FIG. 8 is perspective exploded view of the piston and pump housing and the top and bottom sections of the sump and sump jacket of FIGS. 4 A- 5 .
- FIG. 9 is a side elevational view of the assembled piston and pump housing and the top and bottom sections of the sump and sump jacket of FIGS. 4 A- 8 .
- FIG. 10 is a side elevational view of an alternative embodiment of the piston of the pump of FIGS. 4 A- 8 .
- FIG. 11 is a side elevational transparent view of the piston of FIG. 10 with the top cap removed.
- FIG. 12 is a cross sectional view of the core of the piston of FIGS. 10 and 11 with the section taken through the length of the longitudinal axis of the piston.
- FIG. 13 is an enlarged view of the piston seals of FIGS. 10 and 11 .
- FIG. 1 A system for pumping liquid hydrogen to a high pressure is illustrated in FIG. 1 .
- the system may pump the liquid hydrogen to approximately 1000 bar.
- the system includes a first cryogenic pump, indicated in general at 10 , and a second cryogenic pump, indicated in general at 12 .
- the pumps 10 and 12 are driven by an intermediate fluid, such as propane, 1-butene or other fluids known in the art. While two cryogenic pumps are illustrated, the system may include a single cryogenic pump or more than two cryogenic pumps.
- the embodiment of FIG. 1 uses propane as an intermediate fluid to drive pumps 10 and 12 .
- Propane may be maintained as a liquid at reasonably warm temperatures ( ⁇ 14° F.) and therefore low pressure.
- the liquid hydrogen is at ⁇ 415° F.
- the high-pressure propane drives the pistons of pumps 10 and 12 to pump the liquid hydrogen to near 1000 bar.
- Use of the intermediate fluid reduces seal issues and the differential pressure across the seals may be kept to a minimum. As a result, hydrogen seal leakage and friction, both of which are detrimental to the hydrogen pump overall performance, may be reduced.
- Fluids other than propane including but not limited to 1-butene, may alternatively be used as the intermediate fluid to drive pumps 10 and 12 .
- cryogenic pumps 10 and 12 are positioned in corresponding sumps 14 and 16 , respectively.
- Sump 14 includes a hydrogen liquid inlet 18 through which liquid hydrogen flows into the sump so that the bottom portion of the housing 20 of pump 10 is submerged.
- pump 10 is kept cool by the liquid hydrogen so that vapor formation within the pump 10 during pumping is eliminated (or at least minimized).
- Sump 14 also includes a liquid hydrogen outlet 22 so that liquid hydrogen may be returned to the source to provide recirculation of liquid hydrogen through the sump 14 (such as when the pump is idle and not in use).
- Sump 16 similarly features a pump housing 23 , hydrogen liquid inlet 24 and hydrogen liquid outlet 26 .
- the pump housing 20 of pump 10 defines a cylinder 32 within which a piston 34 is slidingly disposed.
- the piston includes an intermediate fluid or propane seal 36 and a pumped fluid or hydrogen seal 38 .
- the pump housing 23 of pump 12 similarly defines a cylinder 42 that contains piston 44 .
- the pistons 34 and 44 of pumps 10 and 12 respectively, move between a bottom dead center position, illustrated by pump 10 in FIG. 1 , and a top dead center position, illustrated by pump 12 in FIG. 1 .
- the piston of each pump moves in an upstroke or hydrogen intake direction, indicated by arrow 46 for pump 12 in FIG. 1 , when moving from the bottom dead center to the top dead center positions, and in a downstroke or hydrogen discharge direction, indicated by arrow 48 for pump 10 in FIG. 1 , when moving from the top dead center to the bottom dead center positions.
- the piston 34 divides the cylinder 32 of pump 10 into a pumping chamber 52 and an intermediate fluid chamber 54 .
- a pumping inlet, indicated by arrow 56 in FIG. 1 for pump 10 is formed in the pumping chamber 52 so that liquid hydrogen from the sump 14 enters the pumping chamber during the upstroke of piston 34 .
- the liquid hydrogen within the pumping chamber 52 exits the pumping chamber through the pump discharge line 58 during the downstroke of piston 34 .
- the liquid hydrogen may exit pump 10 through pump discharge line 58 at a pressure of approximately 1000 bar to a liquid hydrogen storage tank or process.
- Pump 12 features a similar construction and functionality.
- annular differential pressure (“dP”) space 62 of pump 10 is defined between the sidewall of piston 34 , the intermediate fluid seal, the pumped fluid seal and the inner surface of the pump housing 34 .
- the annular dP space 62 is connected to a vent line 64 having a dP vent valve 66 controlled by a dP switch 68 , which opens and closes based on the difference between the pressure within the annular dP space and the intermediate fluid pressure within an intermediate fluid pump line 72 .
- the pressure in the annular dP space may be measured via the vent line 64 (as shown in FIG. 1 ) or via a dedicated connection between the dP switch 68 and the annular dP space.
- the pressure of the intermediate fluid may alternatively be detected by the dP switch 68 via a fluid connection with the intermediate fluid chamber 54 (instead of line 72 ).
- Pump 12 features a similar construction and functionality.
- the dP switch 68 may be a switch that senses pressure or could alternatively include a pressure sensor or controller that senses pressure and a separate switch that is activated based on the pressure sensed by the sensor or controller.
- the cryogenic pumps 10 and 12 of FIG. 1 are driven by a drive system such as an intermediate fluid circuit, indicated in general at 80 .
- the intermediate fluid circuit includes a cooling vessel 82 containing a refrigeration coil 84 .
- the cooling vessel 82 may be refilled with propane via line 86 and is likewise provided with a vent line 88 to accommodate filling with liquid propane.
- the vent line 88 may be provided with a vent valve that automatically opens when a pressure within the cooling vessel 82 reaches a predetermined level.
- the refrigeration coil 84 receives refrigerant from a refrigeration system or other source and cools the propane within the cooling vessel 82 .
- the refrigeration system and coil 84 are preferably configured to cool the propane within the cooling vessel to a temperature corresponding to a pressure lower than the pressure within the hydrogen sump 14 (or 16 ).
- Liquid propane from the cooling vessel 82 is pumped via one or more high pressure intermediate fluid pumps 92 to cryogenic pump actuation valves 94 a and 94 b for pump 10 and pump actuation valves 96 a and 96 b for pump 12 .
- the high pressure pump(s) 92 may be, a frac style pump that pumps the propane to very high pressure, such as 1000 bar.
- Alternative high pressure pumps known in the art may alternatively be used.
- actuation valve 94 a is closed and actuation valve 94 b is open.
- piston 34 moves in its upstroke or intake direction (opposite the direction of arrow 48 in FIG. 1 )
- liquid propane within the intermediate fluid chamber 54 is directed through valve 94 b back to the cooling vessel 82 through recirculation line 98 .
- actuation valve 96 a is open and actuation valve 96 b is closed so that pressurized propane from high pressure intermediate fluid pump(s) 92 is supplied to the intermediate fluid chamber 102 of cryogenic pump 12 .
- piston 44 is driven in its downstroke or hydrogen discharge direction (opposition the direction of arrow 46 in FIG. 1 ) so as to force/pump the liquid hydrogen within the pumping chamber 104 of pump 12 through the cryogenic pump discharge line 106 to liquid hydrogen storage or a process.
- actuation valves 94 a and 96 b open while actuation valves 94 b and 96 a close so that pressurized liquid propane may be directed from intermediate fluid pump(s) 92 into intermediate fluid chamber 54 of pump 10 while liquid propane is driven to the cooling vessel 82 from the intermediate fluid chamber 102 of pump 12 via recirculation line 108 .
- cryogenic pumps 10 and 12 are driven by intermediate fluid delivered to the pumps in a cyclical fashion while liquid hydrogen is pumped at high pressure in a cyclical fashion through pump discharge lines 58 and 106 during the downstroke/discharge stroke of pumps 10 and 12 .
- intermediate fluid/propane is driven back, in a cyclical fashion through recycle lines 98 and 108 , to the cooling vessel 82 during the upstroke/intake strokes of pumps 10 and 12 .
- a high pressure recirculation valve 112 is also in fluid communication with the outlet of the intermediate fluid pump(s) 92 .
- the high pressure recirculation valve 112 temporarily opens when a piston bottoms out/reaches bottom dead center in each of cryogenic pumps 10 and 12 to prevent over pressure of the system as the corresponding piston transitions to movement in an upstroke/intake direction.
- the propane flow from intermediate fluid pump(s) 92 that is not directed to the actuation valves is directed back to the cooling vessel 82 through recirculation line 108 (although a dedicated return line may be used) when valve 112 is open.
- the propane flow pressure is set by the actuation valves 94 a , 94 b , 96 a and 96 b and is determined by the pressure needed to force the pistons of pumps 10 and 12 to get to 1000 bar hydrogen pressure to pump the liquid hydrogen to storage or a process.
- Optional proximity switches 114 and 116 may be used in combination with piston position rods 115 and 117 to indicate the positions of the pistons 34 and 44 of cryogenic pumps 10 and 12 . These switches may be used to control the rate of intermediate fluid flow and the speeds of the pistons and to ensure that the pistons can bottom out in the cylinders without damage to minimize the clearance volume in the pumps.
- the intermediate fluid seals 36 and 122 and the pumped fluid seals 38 and 124 normally keep the annular dP space 62 of pump 10 and the annular dP space 132 of pump 20 free of hydrogen and propane.
- the dP switches 68 of pump 10 and 118 of pump 12 are set to prevent propane intermediate fluid leaking into the liquid hydrogen and liquid hydrogen from leaking into the propane intermediate fluid, and in all cases to reduce the differential pressures across the intermediate fluid seals 36 , 122 and the pumped fluid seals 38 , 124 , preferably to a minimum.
- the pressure setting of dP switch 68 and 118 of each cryogenic pump 10 and 12 is slightly less that the intermediate fluid pressure (as measured through intermediate fluid pump lines 72 and 126 ) to prevent intermediate fluid from leaking into the hydrogen product on the downstroke (arrow 48 ), where the intermediate fluid pressure must be higher than the hydrogen sump pressure.
- This pressure setting for each dP switch also prevents hydrogen from leaking into the intermediate fluid on the upstroke (arrow 46 ), where the hydrogen sump pressure must be higher than the intermediate fluid pressure.
- cryogenic pump 10 of FIG. 1 In operation, with reference to cryogenic pump 10 of FIG. 1 , during the piston downstroke, which is being completed by pump 10 , the pressure of the propane must be higher than the pressure in the hydrogen sump (to drive the piston 34 and pump the hydrogen). Propane may therefore potentially leak into the annular dP space 62 through intermediate fluid seal 36 .
- the dP switch 68 will control the vent valve 66 so that the pressure in the annular dP space 62 is slightly less than the intermediate fluid/propane pressure, which will also be less than the pressure of the hydrogen in the sump 14 and pumping chamber 52 as it is being pumped.
- cryogenic pump 12 during the piston upstroke, which is being completed by pump 12 , the pressure of the hydrogen in the pumping chamber 104 of pump 12 will be higher than the intermediate fluid pressure in the intermediate fluid chamber 102 (and line 126 ). As a result, hydrogen may leak into the annular dP space 132 through pumped fluid seal 124 . As in the case of pump 10 , dP switch 118 will control the dP vent valve 136 so that the pressure in the annular dP space 132 is slightly less than the intermediate fluid/propane pressure.
- Pump 10 then operates as described above for pump 12 during its upstroke stage while pump 12 then operates as described above for pump 10 during its downstroke stage, with the pumps 10 and 12 cycling through stages as liquid hydrogen is pumped.
- one or more optional supplemental seals 202 and 204 may be used to separate leaked intermediate fluid from leaked hydrogen between the intermediate fluid seal 236 and the pumped fluid seal 238 of cryogenic pump 210 and the intermediate fluid seal 222 and the pumped fluid seal 224 of pump 212 .
- the supplemental seals 202 and 204 divide the annular dP spaces of pumps 210 and 212 into intermediate fluid annular dP spaces 242 and 244 and pumped fluid dP spaces 246 and 250 . Either dP annular space of each of pumps 210 and 212 , or both dP annular spaces of each pump, may be provided with the dP switch and dP vent valve arrangement described above with reference to FIG. 1 .
- cryogenic pump 210 includes intermediate fluid annular dP space 242 and pumped fluid dP space 246 .
- An intermediate fluid dP vent valve 252 is in fluid communication with the intermediate fluid annular dP space 242 .
- the intermediate fluid dP vent valve 252 is controlled by an intermediate fluid dP switch 254 , which opens and closes based on the difference between the pressure within the intermediate fluid annular dP space 242 and the pressure within an intermediate fluid pump line 256 .
- Cryogenic pump 212 features a similar arrangement.
- a pumped fluid dP vent valve 262 is in fluid communication with the pumped fluid annular dP space 246 .
- the pumped fluid dP vent valve 262 is controlled by a pumped fluid dP switch 264 , which opens and closes based on the difference between the pressure within the pumped fluid annular dP space 246 and the pressure within the intermediate fluid pump line 256 .
- Cryogenic pump 212 features a similar arrangement.
- the settings of the dP switches 254 and 264 of FIG. 2 are slightly less that the intermediate fluid pressure (as measured through intermediate fluid pump line 256 ) to prevent intermediate fluid from leaking into the hydrogen product on the downstroke (shown by arrow 248 of pump 210 ), where the intermediate fluid pressure must be higher than the hydrogen storage pressure.
- This pressure setting for each dP switch also prevents hydrogen from leaking into the intermediate fluid on the upstroke (shown by arrow 256 of pump 212 ), where the hydrogen sump pressure must be higher than the intermediate fluid pressure.
- the cryogenic pumps 10 and 12 of FIG. 1 may be insulated as shown in an insulation embodiment illustrated in FIG. 3 .
- a sump jacket 302 is formed around the sump 14 so that a vacuum space 304 is provided.
- a pump jacket 306 is provided around the pump housing 20 so that vacuum space 308 is formed.
- Vacuum spaces 304 and 308 may be joined by a neck jacket 312 .
- the neck jacket 312 may be used to suspend the pump jacket within the sump and defines a vacuum space that may be open with respect to vacuum spaces 304 and 308 .
- the neck jacket 312 may also surround the structure used to suspend the pump housing 20 within the sump as well as the piston position rod 115 ( FIG. 1 ). Pump 12 features similar insulation.
- a middle portion of the wall of the pump housing 20 provides a heat transfer path between the liquid propane in the intermediate fluid chamber 54 (illustrated for pump 10 ) and the liquid hydrogen in the pumping chamber 52 (illustrated for pump 12 ). More specifically, when the intermediate fluid chamber 54 is filled with propane, as illustrated for pump 10 in FIG. 3 , the surrounding upper portion of the wall of the pump housing reaches a temperature corresponding to the temperature of the liquid propane. In addition, when the pumping chamber 52 is filled with liquid hydrogen, as shown for pump 12 in FIG. 3 , the surrounding lower portion of the wall of the pump housing is cooled to a temperature corresponding to the temperature of the liquid hydrogen.
- FIGS. 4 A and 4 B the above issue is addressed or at least reduced by providing a pump, indicated in general at 310 , having an elongated piston, indicated at 322 that slides within an elongated cylinder 323 defined by the pump housing 320 .
- the piston divides the cylinder 323 into an intermediate fluid chamber 324 and pumping chamber 326 .
- the piston is provided with seals (not shown in FIGS. 4 A and 4 B ) that slidably engage the inner surfaces of the cylinder 323 of the pump housing 320 .
- intermediate fluid chamber 324 receives and expels pressurized intermediate fluid through intermediate fluid passage 319 via a pump drive system (such as intermediate fluid circuit 80 of FIG. 1 ), so as to drive the piston 322 .
- a pump drive system such as intermediate fluid circuit 80 of FIG. 1
- alternative pump drive systems known in the art may be use in place of intermediate fluid circuit 80 of FIG. 1 .
- Pump housing 320 is positioned within sump 328 which includes a liquid hydrogen inlet 332 through which liquid hydrogen flows into the sump.
- a liquid hydrogen inlet 332 through which liquid hydrogen flows into the sump.
- the bottom portion of the pump housing 320 is submerged in liquid hydrogen 333 (with hydrogen vapor 335 above) so as to be kept cool by the liquid hydrogen so that vapor formation within the pump 310 during pumping is eliminated (or at least reduced).
- Sump 328 also includes a liquid hydrogen outlet 334 so that liquid hydrogen may be returned to the source to provide recirculation of liquid hydrogen through the sump 328 (such as when the pump is idle and not in use).
- the piston 322 moves between a top dead center position, illustrated in FIG. 4 A , and a bottom dead center position, illustrated in FIG. 4 B .
- the piston 322 moves in an upstroke or hydrogen intake direction, indicated by arrow 336 in FIG. 4 A , when moving from the bottom dead center to the top dead center positions, and in a downstroke or hydrogen discharge direction, indicated by arrow 338 in FIG. 4 B , when moving from the top dead center to the bottom dead center positions.
- a pumping inlet is formed in the pumping chamber 326 so that liquid hydrogen from the sump 328 enters the pumping chamber during the upstroke of piston 322 .
- the liquid hydrogen within the pumping chamber 326 exits the pumping chamber through a pumping outlet, indicated by arrow 344 , during the downstroke of piston 322 .
- Pumping outlet 344 is in fluid communication with piping (not shown) that transfers the pumped liquid hydrogen out of the pump.
- the liquid hydrogen may exit pump 310 through pumping outlet 344 at a pressure of approximately 1000 bar to a liquid hydrogen storage tank or process.
- a sump jacket 346 is formed around the sump 328 so that a vacuum space 348 is provided.
- a pump jacket 352 is provided around the pump housing 320 so that vacuum space 354 is formed. As illustrated in FIG. 4 A , a bottom end of the pump jacket 352 may be generally coplanar with the bottom end of the piston 322 when the piston is in the top dead center position.
- Vacuum spaces 348 and 354 may be joined by a neck jacket 356 .
- the neck jacket 356 may be used to suspend the pump jacket within the sump and defines a vacuum space 358 that may be open with respect to vacuum spaces 348 and 354 .
- the neck jacket 356 may also surround the structure used to suspend the pump housing 320 within the sump 328 .
- the piston 322 moves along a stroke length of 357 between the top dead center position ( FIG. 4 A ) and the bottom dead center position ( FIG. 4 B ).
- the piston features a length indicated at 359 in FIG. 4 B .
- the piston length 359 (L) may be 30′′ while the stroke length 357 (I) may be 20′′, which per the above equation gives a heat transfer path length 360 (P) of ten inches.
- the heat transfer path length 360 (P) is preferably approximately six inches or more.
- the liquid propane within the intermediate fluid chamber 324 transfers less heat to the colder liquid hydrogen within the pumping chamber 326 . This reduces the likelihood of the liquid propane congealing and/or freezing.
- FIGS. 5 - 9 Non-limiting examples of assembly and dimensions of the components of pump 310 of FIGS. 4 A and 4 B are presented in FIGS. 5 - 9 .
- piston 322 may be cylindrical with elliptical end caps 362 on each end and have a longitudinal length or height 364 of 30 inches.
- Pump housing 320 may be tube-shaped with a pump housing cylinder ( 323 ) longitudinal length or height 366 of approximately 49 inches.
- the diameter 368 of cylinder 323 may be approximately 4 inches. As a result, the ratio of the pump housing cylinder diameter to the length of the pump housing cylinder is approximately 8%.
- the piston 322 is inserted into the pump housing 320 through an open bottom of the pump housing.
- a bottom cap 376 is bolted, or otherwise secured, to the bottom of the pump housing so as to cover and seal the open bottom.
- the piston and pump housing may have alternative dimensions.
- the jacketed sump ( 328 and 346 ) includes top portion, indicated in general at 382 , which includes the top portions of sump 328 and sump jacket 346 as well as pump jacket 352 and neck jacket 356 .
- the jacketed sump also includes a bottom portion indicated in general at 384 , which includes the bottom portions of sump 328 and sump jacket 346 as well as liquid hydrogen inlet 332 and outlet 334 .
- the length 381 between the bottom of the pump jacket 352 and the top of the sump jacket 346 may be approximately 44 inches
- the length 383 between the bottom of the pump jacket 352 and the top of the pump jacket may be approximately 36.5 inches
- the interior diameter 387 of the sump 328 may be approximately 22 inches
- the interior diameter of the pump jacket may be approximately 10.5 inches
- the interior diameter 391 of the liquid hydrogen inlets 332 and 334 may be approximately 2 inches.
- Alternative dimensions may be used in the construction of these components.
- pump housing 320 is inserted through the open bottom of pump jacket 352 and is welded or otherwise secured in place.
- the piston 322 is inserted into the pump housing 320 through the open bottom of the pump housing and bottom cap 376 is bolted, or otherwise secured, to the bottom of the pump housing 320 so as to cover and seal the open bottom.
- the top and bottom portions 382 and 384 of the jacketed sump are then secured together via flanges 386 and 388 by bolts, welding or other fastening methods known in the art.
- the piston 422 may include a top cap 421 ( FIG. 10 ) and a bottom cap 423 with a polytetrafluoroethylene (PTFE) coating on the surface between the top and bottom caps that is molded to provide circumferential seals 424 .
- the piston 422 may include a core 426 made of steel or another rigid material capable of withstanding cold temperatures and high pressures. In order to save weight and material, as illustrated in FIG. 12 , the cores 426 may include a cavity 428 .
- the length or height 432 of the piston may be approximately 30 inches
- the length or depth 434 of the core cavity may be approximately 25 inches
- the outer diameter 436 of the core 426 may be approximately 4 inches.
- Alternative dimensions may be used in the construction of the core and piston.
- FIG. 13 An enlarged view of the circumferential seals 424 molded in the PTFE coating of the piston 422 ( FIGS. 10 and 11 ) is provided in FIG. 13 .
- the radial width 438 of the seals may be approximately 0.25 inches.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 63/331,482, filed Apr. 15, 2022, the contents of which are hereby incorporated by reference in their entirety.
- The present invention relates generally to pumps for cryogenic liquids and, more particularly, to a cryogenic pump that uses an intermediate fluid.
- Cryogenic fluids, such as liquid natural gas and hydrogen, are fluids that have boiling points below −130° F./−90° C. Cryogenic fluids have many important industrial uses and are increasing in importance as energy sources. With regard to the latter, hydrogen has grown in importance as an alternative clean energy source as advances are being made in fuel cell technology and the use of hydrogen in home power generation. In addition, use of fuel cell technology, such as in fuel cell powered vehicles, is growing.
- As in the case of other cryogenic fluids, such as liquid natural gas, hydrogen is transported and stored more efficiently in liquid form. Furthermore, it is desirable to store hydrogen at high density and to transport and use hydrogen in a reduced volume and at a low cost to aid in the establishment of a practical hydrogen infrastructure. In addition, it is often necessary to pressurize other cryogenic liquids for use and transport as well as efficient storage. Cryogenic pumps are therefore critical components in the storage and transport of cryogenic liquids.
- Cryogenic pumps that are reliable, space efficient and economical to construct and operate are desired.
- There are several aspects of the present subject matter which may be embodied separately or together in the devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
- In one aspect, a pump for pumping a cryogenic liquid includes a pump housing defining an elongated cylinder. An elongated piston is slidably positioned within the cylinder so that an intermediate fluid chamber that receives an intermediate fluid is defined within the cylinder adjacent to a first end of the piston and a fluid pumping chamber is defined within the cylinder adjacent to a second end of the piston. The fluid pumping chamber includes an inlet and an outlet. A pump housing is positioned within a sump that receives and submerges a portion of the pump housing within the cryogenic liquid and provides cryogenic liquid to the inlet of the pumping chamber for pumping. A sump jacket surrounds the sump so that a sump insulation space is defined therebetween. A pump jacket surrounds the pump housing so that a pump insulation space is defined therebetween.
-
FIG. 1 is a process flow and schematic illustrating a system including an embodiment of the cryogenic pump of the disclosure. -
FIG. 2 is a process flow and schematic illustrating a system including an alternative embodiment of the cryogenic pump of the disclosure. -
FIG. 3 illustrates an embodiment of an insulation system that may be used for the cryogenic pumps of the systems ofFIGS. 1 and 2 . -
FIG. 4A is a schematic illustrating a second embodiment of the cryogenic pump of the disclosure with the piston in the top dead center position. -
FIG. 4B is a schematic illustrating a second embodiment of the cryogenic pump of the disclosure with the piston in the bottom dead center position. -
FIG. 5 is a side elevational exploded view of the piston and pump housing ofFIGS. 4A and 4B . -
FIG. 6 is a side elevational exploded view of the top and bottom sections of the sump and sump jacket ofFIGS. 4A-5 . -
FIG. 7 is a side elevational exploded view of the piston and pump housing and the top and bottom sections of the sump and sump jacket ofFIGS. 4A-5 . -
FIG. 8 is perspective exploded view of the piston and pump housing and the top and bottom sections of the sump and sump jacket ofFIGS. 4A-5 . -
FIG. 9 . is a side elevational view of the assembled piston and pump housing and the top and bottom sections of the sump and sump jacket ofFIGS. 4A-8 . -
FIG. 10 is a side elevational view of an alternative embodiment of the piston of the pump ofFIGS. 4A-8 . -
FIG. 11 is a side elevational transparent view of the piston ofFIG. 10 with the top cap removed. -
FIG. 12 is a cross sectional view of the core of the piston ofFIGS. 10 and 11 with the section taken through the length of the longitudinal axis of the piston. -
FIG. 13 is an enlarged view of the piston seals ofFIGS. 10 and 11 . - It should be noted that while the embodiments illustrated and presented below are described in terms of pumping liquid hydrogen, the invention may be used to pump other types of cryogenic liquids.
- A system for pumping liquid hydrogen to a high pressure is illustrated in
FIG. 1 . As an example only, the system may pump the liquid hydrogen to approximately 1000 bar. The system includes a first cryogenic pump, indicated in general at 10, and a second cryogenic pump, indicated in general at 12. As will be described in greater detail below, the 10 and 12 are driven by an intermediate fluid, such as propane, 1-butene or other fluids known in the art. While two cryogenic pumps are illustrated, the system may include a single cryogenic pump or more than two cryogenic pumps.pumps - The embodiment of
FIG. 1 uses propane as an intermediate fluid to drive 10 and 12. Propane may be maintained as a liquid at reasonably warm temperatures (˜−14° F.) and therefore low pressure. The liquid hydrogen is at ˜−415° F. As explained in greater detail below, a frac style pump may be used to pump the propane to very high pressure (1000 bar=14,500 psi). The high-pressure propane drives the pistons ofpumps 10 and 12 to pump the liquid hydrogen to near 1000 bar. Use of the intermediate fluid reduces seal issues and the differential pressure across the seals may be kept to a minimum. As a result, hydrogen seal leakage and friction, both of which are detrimental to the hydrogen pump overall performance, may be reduced.pumps - Fluids other than propane, including but not limited to 1-butene, may alternatively be used as the intermediate fluid to drive
10 and 12.pumps - With reference to
FIG. 1 , 10 and 12 are positioned incryogenic pumps 14 and 16, respectively.corresponding sumps Sump 14 includes ahydrogen liquid inlet 18 through which liquid hydrogen flows into the sump so that the bottom portion of thehousing 20 ofpump 10 is submerged. As a result,pump 10 is kept cool by the liquid hydrogen so that vapor formation within thepump 10 during pumping is eliminated (or at least minimized).Sump 14 also includes aliquid hydrogen outlet 22 so that liquid hydrogen may be returned to the source to provide recirculation of liquid hydrogen through the sump 14 (such as when the pump is idle and not in use).Sump 16 similarly features apump housing 23, hydrogenliquid inlet 24 andhydrogen liquid outlet 26. - The
pump housing 20 ofpump 10 defines acylinder 32 within which apiston 34 is slidingly disposed. The piston includes an intermediate fluid orpropane seal 36 and a pumped fluid orhydrogen seal 38. Thepump housing 23 ofpump 12 similarly defines acylinder 42 that containspiston 44. The 34 and 44 ofpistons 10 and 12, respectively, move between a bottom dead center position, illustrated bypumps pump 10 inFIG. 1 , and a top dead center position, illustrated bypump 12 inFIG. 1 . The piston of each pump moves in an upstroke or hydrogen intake direction, indicated byarrow 46 forpump 12 inFIG. 1 , when moving from the bottom dead center to the top dead center positions, and in a downstroke or hydrogen discharge direction, indicated byarrow 48 forpump 10 inFIG. 1 , when moving from the top dead center to the bottom dead center positions. - The
piston 34 divides thecylinder 32 ofpump 10 into apumping chamber 52 and anintermediate fluid chamber 54. A pumping inlet, indicated byarrow 56 inFIG. 1 forpump 10, is formed in thepumping chamber 52 so that liquid hydrogen from thesump 14 enters the pumping chamber during the upstroke ofpiston 34. The liquid hydrogen within the pumpingchamber 52 exits the pumping chamber through thepump discharge line 58 during the downstroke ofpiston 34. As an example only, the liquid hydrogen may exit pump 10 throughpump discharge line 58 at a pressure of approximately 1000 bar to a liquid hydrogen storage tank or process.Pump 12 features a similar construction and functionality. - With continued reference to
FIG. 1 , an annular differential pressure (“dP”)space 62 ofpump 10 is defined between the sidewall ofpiston 34, the intermediate fluid seal, the pumped fluid seal and the inner surface of thepump housing 34. Theannular dP space 62 is connected to avent line 64 having adP vent valve 66 controlled by adP switch 68, which opens and closes based on the difference between the pressure within the annular dP space and the intermediate fluid pressure within an intermediatefluid pump line 72. - The pressure in the annular dP space may be measured via the vent line 64 (as shown in
FIG. 1 ) or via a dedicated connection between thedP switch 68 and the annular dP space. In addition, the pressure of the intermediate fluid may alternatively be detected by thedP switch 68 via a fluid connection with the intermediate fluid chamber 54 (instead of line 72).Pump 12 features a similar construction and functionality. ThedP switch 68 may be a switch that senses pressure or could alternatively include a pressure sensor or controller that senses pressure and a separate switch that is activated based on the pressure sensed by the sensor or controller. - The cryogenic pumps 10 and 12 of
FIG. 1 are driven by a drive system such as an intermediate fluid circuit, indicated in general at 80. The intermediate fluid circuit includes a coolingvessel 82 containing arefrigeration coil 84. The coolingvessel 82 may be refilled with propane vialine 86 and is likewise provided with avent line 88 to accommodate filling with liquid propane. As is known in the art, thevent line 88 may be provided with a vent valve that automatically opens when a pressure within the coolingvessel 82 reaches a predetermined level. - The
refrigeration coil 84 receives refrigerant from a refrigeration system or other source and cools the propane within the coolingvessel 82. The refrigeration system andcoil 84 are preferably configured to cool the propane within the cooling vessel to a temperature corresponding to a pressure lower than the pressure within the hydrogen sump 14 (or 16). - Liquid propane from the cooling
vessel 82 is pumped via one or more high pressure intermediate fluid pumps 92 to cryogenic 94 a and 94 b forpump actuation valves pump 10 and 96 a and 96 b forpump actuation valves pump 12. As an example only, the high pressure pump(s) 92 may be, a frac style pump that pumps the propane to very high pressure, such as 1000 bar. Alternative high pressure pumps known in the art may alternatively be used. - Starting with the
34 and 44 ofpistons 10 and 12 in the positions illustrated inpumps FIG. 1 (i.e. bottom dead center and top dead center),actuation valve 94 a is closed andactuation valve 94 b is open. As a result, aspiston 34 moves in its upstroke or intake direction (opposite the direction ofarrow 48 inFIG. 1 ), liquid propane within theintermediate fluid chamber 54 is directed throughvalve 94 b back to the coolingvessel 82 throughrecirculation line 98. Meanwhile,actuation valve 96 a is open andactuation valve 96 b is closed so that pressurized propane from high pressure intermediate fluid pump(s) 92 is supplied to theintermediate fluid chamber 102 ofcryogenic pump 12. As a result,piston 44 is driven in its downstroke or hydrogen discharge direction (opposition the direction ofarrow 46 inFIG. 1 ) so as to force/pump the liquid hydrogen within thepumping chamber 104 ofpump 12 through the cryogenicpump discharge line 106 to liquid hydrogen storage or a process. Whenpiston 34 reaches top dead center andpiston 44 reaches bottom dead center, 94 a and 96 b open whileactuation valves 94 b and 96 a close so that pressurized liquid propane may be directed from intermediate fluid pump(s) 92 intoactuation valves intermediate fluid chamber 54 ofpump 10 while liquid propane is driven to the coolingvessel 82 from theintermediate fluid chamber 102 ofpump 12 viarecirculation line 108. - The cycle of the previous paragraph is repeated so that
10 and 12 are driven by intermediate fluid delivered to the pumps in a cyclical fashion while liquid hydrogen is pumped at high pressure in a cyclical fashion throughcryogenic pumps 58 and 106 during the downstroke/discharge stroke ofpump discharge lines 10 and 12. As this occurs, intermediate fluid/propane is driven back, in a cyclical fashion throughpumps 98 and 108, to the coolingrecycle lines vessel 82 during the upstroke/intake strokes of 10 and 12.pumps - A high
pressure recirculation valve 112 is also in fluid communication with the outlet of the intermediate fluid pump(s) 92. The highpressure recirculation valve 112 temporarily opens when a piston bottoms out/reaches bottom dead center in each of 10 and 12 to prevent over pressure of the system as the corresponding piston transitions to movement in an upstroke/intake direction. The propane flow from intermediate fluid pump(s) 92 that is not directed to the actuation valves is directed back to the coolingcryogenic pumps vessel 82 through recirculation line 108 (although a dedicated return line may be used) whenvalve 112 is open. - The propane flow pressure is set by the
94 a, 94 b, 96 a and 96 b and is determined by the pressure needed to force the pistons ofactuation valves 10 and 12 to get to 1000 bar hydrogen pressure to pump the liquid hydrogen to storage or a process.pumps - Alternative drive systems known in the art may be used in place of the
intermediate fluid circuit 80 ofFIG. 1 to drive the 10 and 12 using the intermediate fluid.cryogenic pumps - Optional proximity switches 114 and 116 may be used in combination with
115 and 117 to indicate the positions of thepiston position rods 34 and 44 ofpistons 10 and 12. These switches may be used to control the rate of intermediate fluid flow and the speeds of the pistons and to ensure that the pistons can bottom out in the cylinders without damage to minimize the clearance volume in the pumps.cryogenic pumps - The intermediate fluid seals 36 and 122 and the pumped fluid seals 38 and 124 normally keep the
annular dP space 62 ofpump 10 and theannular dP space 132 ofpump 20 free of hydrogen and propane. - The dP switches 68 of
10 and 118 ofpump pump 12 are set to prevent propane intermediate fluid leaking into the liquid hydrogen and liquid hydrogen from leaking into the propane intermediate fluid, and in all cases to reduce the differential pressures across the intermediate fluid seals 36, 122 and the pumped fluid seals 38, 124, preferably to a minimum. - In the embodiment of
FIG. 1 , the pressure setting of 68 and 118 of eachdP switch 10 and 12 is slightly less that the intermediate fluid pressure (as measured through intermediatecryogenic pump fluid pump lines 72 and 126) to prevent intermediate fluid from leaking into the hydrogen product on the downstroke (arrow 48), where the intermediate fluid pressure must be higher than the hydrogen sump pressure. This pressure setting for each dP switch also prevents hydrogen from leaking into the intermediate fluid on the upstroke (arrow 46), where the hydrogen sump pressure must be higher than the intermediate fluid pressure. - In operation, with reference to
cryogenic pump 10 ofFIG. 1 , during the piston downstroke, which is being completed bypump 10, the pressure of the propane must be higher than the pressure in the hydrogen sump (to drive thepiston 34 and pump the hydrogen). Propane may therefore potentially leak into theannular dP space 62 throughintermediate fluid seal 36. ThedP switch 68 will control thevent valve 66 so that the pressure in theannular dP space 62 is slightly less than the intermediate fluid/propane pressure, which will also be less than the pressure of the hydrogen in thesump 14 and pumpingchamber 52 as it is being pumped. As a result, propane leaked into theannular dP space 62 will be driven out opendP vent valve 66 instead of throughseal 38 and into the liquid hydrogen if the pressure in theannular dP space 62 rises to a level just below the pressure of the propane in the intermediate fluid chamber 54 (and line 72). The propane exiting the opendP vent valve 66 may be vented or recovered for use, such as in theintermediate fluid circuit 80. - Conversely, with reference to
cryogenic pump 12, during the piston upstroke, which is being completed bypump 12, the pressure of the hydrogen in thepumping chamber 104 ofpump 12 will be higher than the intermediate fluid pressure in the intermediate fluid chamber 102 (and line 126). As a result, hydrogen may leak into theannular dP space 132 through pumpedfluid seal 124. As in the case ofpump 10,dP switch 118 will control thedP vent valve 136 so that the pressure in theannular dP space 132 is slightly less than the intermediate fluid/propane pressure. As a result, hydrogen leaked into theannular dP space 132 will be driven out opendP vent valve 136 instead of throughseal 122 and into the propane intermediate fluid if the pressure in theannular dP space 122 rises to a level just below the pressure of the propane in the intermediate fluid chamber 102 (and line 126). The hydrogen exiting the opendP vent valve 136 may be vented or recovered for use, such as in the system supplying hydrogen to 14 and 16.sumps -
Pump 10 then operates as described above forpump 12 during its upstroke stage whilepump 12 then operates as described above forpump 10 during its downstroke stage, with the 10 and 12 cycling through stages as liquid hydrogen is pumped.pumps - As illustrated in
FIG. 2 , one or more optional 202 and 204 may be used to separate leaked intermediate fluid from leaked hydrogen between thesupplemental seals intermediate fluid seal 236 and the pumpedfluid seal 238 ofcryogenic pump 210 and theintermediate fluid seal 222 and the pumpedfluid seal 224 ofpump 212. As illustrated inFIG. 2 , the 202 and 204 divide the annular dP spaces ofsupplemental seals 210 and 212 into intermediate fluidpumps 242 and 244 and pumpedannular dP spaces 246 and 250. Either dP annular space of each offluid dP spaces 210 and 212, or both dP annular spaces of each pump, may be provided with the dP switch and dP vent valve arrangement described above with reference topumps FIG. 1 . - An embodiment where dedicated dP switches and dP valves is also illustrated in
FIG. 2 . More specifically, as noted previously,cryogenic pump 210 includes intermediate fluidannular dP space 242 and pumpedfluid dP space 246. An intermediate fluiddP vent valve 252 is in fluid communication with the intermediate fluidannular dP space 242. The intermediate fluiddP vent valve 252 is controlled by an intermediatefluid dP switch 254, which opens and closes based on the difference between the pressure within the intermediate fluidannular dP space 242 and the pressure within an intermediatefluid pump line 256.Cryogenic pump 212 features a similar arrangement. - Similarly, a pumped fluid
dP vent valve 262 is in fluid communication with the pumped fluidannular dP space 246. The pumped fluiddP vent valve 262 is controlled by a pumpedfluid dP switch 264, which opens and closes based on the difference between the pressure within the pumped fluidannular dP space 246 and the pressure within the intermediatefluid pump line 256.Cryogenic pump 212 features a similar arrangement. - As in the embodiment of
FIG. 1 , the settings of the dP switches 254 and 264 ofFIG. 2 (and the corresponding dP switches of pump 212) are slightly less that the intermediate fluid pressure (as measured through intermediate fluid pump line 256) to prevent intermediate fluid from leaking into the hydrogen product on the downstroke (shown byarrow 248 of pump 210), where the intermediate fluid pressure must be higher than the hydrogen storage pressure. This pressure setting for each dP switch also prevents hydrogen from leaking into the intermediate fluid on the upstroke (shown byarrow 256 of pump 212), where the hydrogen sump pressure must be higher than the intermediate fluid pressure. - The cryogenic pumps 10 and 12 of
FIG. 1 , or the 210 and 212 ofcryogenic pumps FIG. 2 , may be insulated as shown in an insulation embodiment illustrated inFIG. 3 . As shown forpump 10, asump jacket 302 is formed around thesump 14 so that avacuum space 304 is provided. In addition, apump jacket 306 is provided around thepump housing 20 so thatvacuum space 308 is formed. 304 and 308 may be joined by aVacuum spaces neck jacket 312. Theneck jacket 312 may be used to suspend the pump jacket within the sump and defines a vacuum space that may be open with respect to 304 and 308. Thevacuum spaces neck jacket 312 may also surround the structure used to suspend thepump housing 20 within the sump as well as the piston position rod 115 (FIG. 1 ).Pump 12 features similar insulation. - With continued reference to
FIG. 3 , a middle portion of the wall of thepump housing 20 provides a heat transfer path between the liquid propane in the intermediate fluid chamber 54 (illustrated for pump 10) and the liquid hydrogen in the pumping chamber 52 (illustrated for pump 12). More specifically, when theintermediate fluid chamber 54 is filled with propane, as illustrated forpump 10 inFIG. 3 , the surrounding upper portion of the wall of the pump housing reaches a temperature corresponding to the temperature of the liquid propane. In addition, when the pumpingchamber 52 is filled with liquid hydrogen, as shown forpump 12 inFIG. 3 , the surrounding lower portion of the wall of the pump housing is cooled to a temperature corresponding to the temperature of the liquid hydrogen. As a result, heat transfers down through the middle portion of the wall of thepump housing 20, as indicated by 314 and 316, along a heat transfer path length indicated at 318. This may cause the liquid propane within thearrows intermediate fluid chamber 54 to freeze or congeal, which impedes proper functioning of the pump drive system (such asintermediate fluid circuit 80 ofFIG. 1 ). - In accordance with a further embodiment of the disclosure, illustrated in
FIGS. 4A and 4B , the above issue is addressed or at least reduced by providing a pump, indicated in general at 310, having an elongated piston, indicated at 322 that slides within anelongated cylinder 323 defined by thepump housing 320. The piston divides thecylinder 323 into anintermediate fluid chamber 324 and pumpingchamber 326. As in the embodiment ofFIGS. 1-3 , the piston is provided with seals (not shown inFIGS. 4A and 4B ) that slidably engage the inner surfaces of thecylinder 323 of thepump housing 320. - As in the embodiments described above,
intermediate fluid chamber 324 receives and expels pressurized intermediate fluid throughintermediate fluid passage 319 via a pump drive system (such asintermediate fluid circuit 80 ofFIG. 1 ), so as to drive thepiston 322. As in previous embodiments, alternative pump drive systems known in the art may be use in place ofintermediate fluid circuit 80 ofFIG. 1 . -
Pump housing 320 is positioned withinsump 328 which includes aliquid hydrogen inlet 332 through which liquid hydrogen flows into the sump. As a result, the bottom portion of thepump housing 320 is submerged in liquid hydrogen 333 (withhydrogen vapor 335 above) so as to be kept cool by the liquid hydrogen so that vapor formation within thepump 310 during pumping is eliminated (or at least reduced).Sump 328 also includes aliquid hydrogen outlet 334 so that liquid hydrogen may be returned to the source to provide recirculation of liquid hydrogen through the sump 328 (such as when the pump is idle and not in use). - The
piston 322 moves between a top dead center position, illustrated inFIG. 4A , and a bottom dead center position, illustrated inFIG. 4B . As a result, thepiston 322 moves in an upstroke or hydrogen intake direction, indicated byarrow 336 inFIG. 4A , when moving from the bottom dead center to the top dead center positions, and in a downstroke or hydrogen discharge direction, indicated byarrow 338 inFIG. 4B , when moving from the top dead center to the bottom dead center positions. - A pumping inlet, indicated by
arrow 342 inFIG. 4A , is formed in thepumping chamber 326 so that liquid hydrogen from thesump 328 enters the pumping chamber during the upstroke ofpiston 322. The liquid hydrogen within thepumping chamber 326 exits the pumping chamber through a pumping outlet, indicated byarrow 344, during the downstroke ofpiston 322.Pumping outlet 344 is in fluid communication with piping (not shown) that transfers the pumped liquid hydrogen out of the pump. As an example only, the liquid hydrogen may exit pump 310 through pumpingoutlet 344 at a pressure of approximately 1000 bar to a liquid hydrogen storage tank or process. - A
sump jacket 346 is formed around thesump 328 so that avacuum space 348 is provided. In addition, apump jacket 352 is provided around thepump housing 320 so thatvacuum space 354 is formed. As illustrated inFIG. 4A , a bottom end of thepump jacket 352 may be generally coplanar with the bottom end of thepiston 322 when the piston is in the top dead center position. -
348 and 354 may be joined by aVacuum spaces neck jacket 356. Theneck jacket 356 may be used to suspend the pump jacket within the sump and defines avacuum space 358 that may be open with respect to 348 and 354. Thevacuum spaces neck jacket 356 may also surround the structure used to suspend thepump housing 320 within thesump 328. - As illustrated in
FIGS. 4A and 4B , thepiston 322 moves along a stroke length of 357 between the top dead center position (FIG. 4A ) and the bottom dead center position (FIG. 4B ). In addition, the piston features a length indicated at 359 inFIG. 4B . The stroke length 357 (I) and piston length 359 (L) of the embodiment ofFIGS. 4A and 4B are chosen to provide greater thermal isolation via the heat transfer path length indicated at 360 (P), where P=L−I. As an example only, the piston length 359 (L) may be 30″ while the stroke length 357 (I) may be 20″, which per the above equation gives a heat transfer path length 360 (P) of ten inches. In the illustrated embodiment, the heat transfer path length 360 (P) is preferably approximately six inches or more. A heat transfer path length 360 (P) of approximately twelve inches or more would be even more beneficial. - Due to the greater thermal isolation provided by the heat
transfer path length 360 ofFIGS. 4A and 4B , the liquid propane within theintermediate fluid chamber 324 transfers less heat to the colder liquid hydrogen within thepumping chamber 326. This reduces the likelihood of the liquid propane congealing and/or freezing. - Non-limiting examples of assembly and dimensions of the components of
pump 310 ofFIGS. 4A and 4B are presented inFIGS. 5-9 . - With reference to
FIG. 5 ,piston 322 may be cylindrical withelliptical end caps 362 on each end and have a longitudinal length orheight 364 of 30 inches.Pump housing 320 may be tube-shaped with a pump housing cylinder (323) longitudinal length orheight 366 of approximately 49 inches. Thediameter 368 ofcylinder 323 may be approximately 4 inches. As a result, the ratio of the pump housing cylinder diameter to the length of the pump housing cylinder is approximately 8%. - As indicated by
arrow 372, thepiston 322 is inserted into thepump housing 320 through an open bottom of the pump housing. Next, as illustrated byarrow 374, abottom cap 376 is bolted, or otherwise secured, to the bottom of the pump housing so as to cover and seal the open bottom. The piston and pump housing may have alternative dimensions. - With reference to
FIG. 6 , the jacketed sump (328 and 346) includes top portion, indicated in general at 382, which includes the top portions ofsump 328 andsump jacket 346 as well aspump jacket 352 andneck jacket 356. The jacketed sump also includes a bottom portion indicated in general at 384, which includes the bottom portions ofsump 328 andsump jacket 346 as well asliquid hydrogen inlet 332 andoutlet 334. As non-limiting examples only, thelength 381 between the bottom of thepump jacket 352 and the top of thesump jacket 346 may be approximately 44 inches, thelength 383 between the bottom of thepump jacket 352 and the top of the pump jacket may be approximately 36.5 inches, theinterior diameter 387 of thesump 328 may be approximately 22 inches, the interior diameter of the pump jacket may be approximately 10.5 inches and theinterior diameter 391 of the 332 and 334 may be approximately 2 inches. Alternative dimensions may be used in the construction of these components.liquid hydrogen inlets - As illustrated in
FIGS. 7 and 8 , pumphousing 320 is inserted through the open bottom ofpump jacket 352 and is welded or otherwise secured in place. As noted previously, thepiston 322 is inserted into thepump housing 320 through the open bottom of the pump housing andbottom cap 376 is bolted, or otherwise secured, to the bottom of thepump housing 320 so as to cover and seal the open bottom. As illustrated inFIG. 9 , the top and 382 and 384 of the jacketed sump are then secured together viabottom portions 386 and 388 by bolts, welding or other fastening methods known in the art.flanges - An alternative embodiment of the
piston 322 ofFIGS. 4A-5 is indicated in general at 422 inFIGS. 10 and 11 . Thepiston 422 may include a top cap 421 (FIG. 10 ) and abottom cap 423 with a polytetrafluoroethylene (PTFE) coating on the surface between the top and bottom caps that is molded to providecircumferential seals 424. As shown inFIGS. 11 and 12 , thepiston 422 may include acore 426 made of steel or another rigid material capable of withstanding cold temperatures and high pressures. In order to save weight and material, as illustrated inFIG. 12 , thecores 426 may include acavity 428. As non-limiting examples only, the length orheight 432 of the piston (minus the top cap) may be approximately 30 inches, the length ordepth 434 of the core cavity may be approximately 25 inches and theouter diameter 436 of thecore 426 may be approximately 4 inches. Alternative dimensions may be used in the construction of the core and piston. - An enlarged view of the
circumferential seals 424 molded in the PTFE coating of the piston 422 (FIGS. 10 and 11 ) is provided inFIG. 13 . Theradial width 438 of the seals may be approximately 0.25 inches. - There are several aspects of the present subject matter which may be embodied separately or together in the methods, devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
- While the preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by the appended claims.
Claims (14)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18/300,724 US20230332585A1 (en) | 2022-04-15 | 2023-04-14 | Cryogenic pump |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202263331482P | 2022-04-15 | 2022-04-15 | |
| US18/300,724 US20230332585A1 (en) | 2022-04-15 | 2023-04-14 | Cryogenic pump |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20230332585A1 true US20230332585A1 (en) | 2023-10-19 |
Family
ID=86332155
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/300,724 Pending US20230332585A1 (en) | 2022-04-15 | 2023-04-14 | Cryogenic pump |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20230332585A1 (en) |
| EP (1) | EP4508329A1 (en) |
| CN (1) | CN119654490A (en) |
| MX (1) | MX2024012703A (en) |
| WO (1) | WO2023201334A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117662451A (en) * | 2023-11-27 | 2024-03-08 | 烟台东德氢能技术有限公司 | Submerged type cold insulation method of high-pressure liquid hydrogen pump |
| CN119665130A (en) * | 2024-11-15 | 2025-03-21 | 同济大学 | Liquid hydrogen pressurizing device |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5355679A (en) * | 1993-06-25 | 1994-10-18 | Phpk Technologies, Incorporated | High reliability gas expansion engine |
| US20070197410A1 (en) * | 2006-02-21 | 2007-08-23 | Rohmax Additives Gmbh | Energy efficiency in hydraulic systems |
| US20090064672A1 (en) * | 2007-09-07 | 2009-03-12 | Rafalski Jr Leroy J | Compressed fluid motor |
| CH703376A1 (en) * | 2010-06-21 | 2011-12-30 | Fives Cryomec Ag | Lifting piston pump i.e. plunger pump, for cryogenic liquids, has exhaust valve arranged in cylinder head and sinked adjacent to exit port, and piston head penetrating volume of cavity with maximum piston pump stroke |
| US20160208793A1 (en) * | 2015-01-21 | 2016-07-21 | Caterpillar Inc. | Hydraulic Drive for Cryogenic Fuel Pump |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2362844C (en) * | 2001-11-30 | 2004-08-31 | Westport Research Inc. | Method and apparatus for delivering a high pressure gas from a cryogenic storage tank |
| CN111765664B (en) * | 2013-08-02 | 2022-04-05 | 查特股份有限公司 | Cryogenic refrigerator with magnetically reciprocating piston |
| CA2886538C (en) * | 2015-03-27 | 2023-05-09 | Kamal HATAMI AGHDAM | Cryogenic tank assembly with a pump drive unit disposed within fluid storage vessel |
| US10495083B2 (en) * | 2017-05-31 | 2019-12-03 | Caterpillar Inc. | Reciprocating pushrod assembly and cryogenic pump |
| CN110017271A (en) * | 2018-11-18 | 2019-07-16 | 何巨堂 | The plunger face of high pressure filling contact has the piston reciprocation of diamond coatings to seal |
| CN111997861B (en) * | 2020-07-23 | 2022-10-28 | 合肥通用机械研究院有限公司 | A reciprocating submersible liquid hydrogen pump that can effectively reduce heat transfer loss |
| MX2024003100A (en) * | 2021-09-14 | 2024-04-08 | Chart Energy & Chemicals Inc | Cryogenic pump. |
-
2023
- 2023-04-14 US US18/300,724 patent/US20230332585A1/en active Pending
- 2023-04-14 EP EP23723379.6A patent/EP4508329A1/en active Pending
- 2023-04-14 WO PCT/US2023/065776 patent/WO2023201334A1/en not_active Ceased
- 2023-04-14 CN CN202380040598.4A patent/CN119654490A/en active Pending
-
2024
- 2024-10-14 MX MX2024012703A patent/MX2024012703A/en unknown
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5355679A (en) * | 1993-06-25 | 1994-10-18 | Phpk Technologies, Incorporated | High reliability gas expansion engine |
| US20070197410A1 (en) * | 2006-02-21 | 2007-08-23 | Rohmax Additives Gmbh | Energy efficiency in hydraulic systems |
| US20090064672A1 (en) * | 2007-09-07 | 2009-03-12 | Rafalski Jr Leroy J | Compressed fluid motor |
| CH703376A1 (en) * | 2010-06-21 | 2011-12-30 | Fives Cryomec Ag | Lifting piston pump i.e. plunger pump, for cryogenic liquids, has exhaust valve arranged in cylinder head and sinked adjacent to exit port, and piston head penetrating volume of cavity with maximum piston pump stroke |
| US20160208793A1 (en) * | 2015-01-21 | 2016-07-21 | Caterpillar Inc. | Hydraulic Drive for Cryogenic Fuel Pump |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117662451A (en) * | 2023-11-27 | 2024-03-08 | 烟台东德氢能技术有限公司 | Submerged type cold insulation method of high-pressure liquid hydrogen pump |
| CN119665130A (en) * | 2024-11-15 | 2025-03-21 | 同济大学 | Liquid hydrogen pressurizing device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN119654490A (en) | 2025-03-18 |
| WO2023201334A1 (en) | 2023-10-19 |
| EP4508329A1 (en) | 2025-02-19 |
| MX2024012703A (en) | 2024-11-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2600001B1 (en) | Cryogenic pumps | |
| US20230332585A1 (en) | Cryogenic pump | |
| US12092098B2 (en) | Compression apparatus and filling station comprising such an apparatus | |
| CN100429453C (en) | Apparatus and method for holding and removing cryogenic fluids from with reduced heat leak | |
| US12188461B2 (en) | Compression apparatus and filling station comprising such an apparatus | |
| JP2005504927A (en) | High pressure pump system for supplying cryogenic fluid from storage tanks | |
| EP1314886A2 (en) | Self generating lift cryogenic pump for mobile ling fuel supply system | |
| US20230080231A1 (en) | Compression apparatus and filling station comprising such an apparatus | |
| US2018144A (en) | Method and apparatus for transferring gas material | |
| US20230093093A1 (en) | Cryogenic pump | |
| EP3274618B1 (en) | Cryogenic tank assembly with a pump drive unit disposed within fluid storage vessel | |
| US12135112B2 (en) | System having cryotank with offset pump housing, method of making and method of using the same | |
| KR20240158151A (en) | Device for supplying cryogenic fluid and installation for filling tanks | |
| CN223104712U (en) | An ultra-high pressure and low temperature fluid pressurization system | |
| US2775211A (en) | Double action pumps | |
| KR20230068212A (en) | Pumping device for transport of fuel in cryogenic conditions | |
| JP2025072752A (en) | Booster pump, cryogenic fluid supply system, and method for discharging cryogenic fluid from booster pump | |
| CN119163576A (en) | An ultra-high pressure and low temperature fluid pressurization system | |
| KR20250135866A (en) | reciprocating pump | |
| SU318726A1 (en) | PISTON PUMP |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CHART INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DRUBE, THOMAS K.;REEL/FRAME:063327/0150 Effective date: 20220518 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION COUNTED, NOT YET MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |