US20220226318A1 - Compounds for treatment of diseases related to DUX4 expression - Google Patents
Compounds for treatment of diseases related to DUX4 expression Download PDFInfo
- Publication number
- US20220226318A1 US20220226318A1 US17/574,615 US202217574615A US2022226318A1 US 20220226318 A1 US20220226318 A1 US 20220226318A1 US 202217574615 A US202217574615 A US 202217574615A US 2022226318 A1 US2022226318 A1 US 2022226318A1
- Authority
- US
- United States
- Prior art keywords
- inhibitor
- casein kinase
- dux4
- use according
- expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102100021158 Double homeobox protein 4 Human genes 0.000 title claims abstract description 169
- 101000968549 Homo sapiens Double homeobox protein 4 Proteins 0.000 title claims abstract description 169
- 150000001875 compounds Chemical class 0.000 title claims abstract description 99
- 201000010099 disease Diseases 0.000 title claims abstract description 48
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 48
- 238000011282 treatment Methods 0.000 title claims abstract description 35
- 208000037149 Facioscapulohumeral dystrophy Diseases 0.000 claims abstract description 65
- 208000008570 facioscapulohumeral muscular dystrophy Diseases 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 50
- 201000006938 muscular dystrophy Diseases 0.000 claims abstract description 15
- 229940076606 Casein kinase 1 inhibitor Drugs 0.000 claims description 97
- 239000000203 mixture Substances 0.000 claims description 86
- 210000004027 cell Anatomy 0.000 claims description 58
- 206010028980 Neoplasm Diseases 0.000 claims description 27
- 201000011510 cancer Diseases 0.000 claims description 23
- 210000000663 muscle cell Anatomy 0.000 claims description 23
- 230000002829 reductive effect Effects 0.000 claims description 18
- 102100037402 Casein kinase I isoform delta Human genes 0.000 claims description 13
- 108010047048 Casein Kinase Idelta Proteins 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 11
- XPWHRQHBPRSUAW-UHFFFAOYSA-N 4-[5-(4-fluorophenyl)-3-[1-(1,2-oxazol-3-ylmethyl)piperidin-4-yl]imidazol-4-yl]pyrimidin-2-amine Chemical compound NC1=NC=CC(C=2N(C=NC=2C=2C=CC(F)=CC=2)C2CCN(CC3=NOC=C3)CC2)=N1 XPWHRQHBPRSUAW-UHFFFAOYSA-N 0.000 claims description 10
- CEBMEQPREMCWOL-UHFFFAOYSA-N n-[(4,5-difluoro-1h-benzimidazol-2-yl)methyl]-9-(3-fluorophenyl)-2-morpholin-4-ylpurin-6-amine Chemical compound FC1=CC=CC(N2C3=NC(=NC(NCC=4NC5=CC=C(F)C(F)=C5N=4)=C3N=C2)N2CCOCC2)=C1 CEBMEQPREMCWOL-UHFFFAOYSA-N 0.000 claims description 10
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 10
- PSNKGVAXBSAHCH-UHFFFAOYSA-N PF-670462 Chemical compound Cl.Cl.NC1=NC=CC(C=2N(C=NC=2C=2C=CC(F)=CC=2)C2CCCCC2)=N1 PSNKGVAXBSAHCH-UHFFFAOYSA-N 0.000 claims description 9
- 229940122537 Casein kinase inhibitor Drugs 0.000 claims description 8
- 238000000338 in vitro Methods 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 238000001727 in vivo Methods 0.000 claims description 7
- 210000002865 immune cell Anatomy 0.000 claims description 5
- 238000012744 immunostaining Methods 0.000 claims description 5
- 238000001990 intravenous administration Methods 0.000 claims description 3
- 238000007920 subcutaneous administration Methods 0.000 claims description 3
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims 1
- 239000003112 inhibitor Substances 0.000 description 63
- 230000037396 body weight Effects 0.000 description 31
- 210000004940 nucleus Anatomy 0.000 description 26
- 230000004069 differentiation Effects 0.000 description 23
- 230000000694 effects Effects 0.000 description 22
- 108090000765 processed proteins & peptides Proteins 0.000 description 20
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 19
- 229910052736 halogen Inorganic materials 0.000 description 19
- 229920001184 polypeptide Polymers 0.000 description 19
- 102000004196 processed proteins & peptides Human genes 0.000 description 19
- 238000003556 assay Methods 0.000 description 18
- 150000002367 halogens Chemical class 0.000 description 18
- 239000000523 sample Substances 0.000 description 18
- 108010029485 Protein Isoforms Proteins 0.000 description 16
- 102000001708 Protein Isoforms Human genes 0.000 description 16
- 206010039491 Sarcoma Diseases 0.000 description 14
- 238000009472 formulation Methods 0.000 description 14
- 210000003098 myoblast Anatomy 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 13
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 230000005764 inhibitory process Effects 0.000 description 12
- 238000012216 screening Methods 0.000 description 12
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 11
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 10
- 102100037398 Casein kinase I isoform epsilon Human genes 0.000 description 10
- 101001026376 Homo sapiens Casein kinase I isoform epsilon Proteins 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 9
- -1 DNA repair Proteins 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 9
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 8
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical group NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 8
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 235000013305 food Nutrition 0.000 description 8
- 238000003757 reverse transcription PCR Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 206010009944 Colon cancer Diseases 0.000 description 7
- 101000825933 Homo sapiens Structural maintenance of chromosomes flexible hinge domain-containing protein 1 Proteins 0.000 description 7
- 102100022770 Structural maintenance of chromosomes flexible hinge domain-containing protein 1 Human genes 0.000 description 7
- 125000004093 cyano group Chemical group *C#N 0.000 description 7
- 125000000753 cycloalkyl group Chemical group 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 210000003205 muscle Anatomy 0.000 description 7
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 7
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 102000005403 Casein Kinases Human genes 0.000 description 6
- 108010031425 Casein Kinases Proteins 0.000 description 6
- 102000005604 Myosin Heavy Chains Human genes 0.000 description 6
- 108010084498 Myosin Heavy Chains Proteins 0.000 description 6
- 239000012826 P38 inhibitor Substances 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 230000001973 epigenetic effect Effects 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 102100039705 Beta-2 adrenergic receptor Human genes 0.000 description 5
- 102000008122 Casein Kinase I Human genes 0.000 description 5
- 108010049812 Casein Kinase I Proteins 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 235000015872 dietary supplement Nutrition 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 238000007423 screening assay Methods 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 4
- 101710152983 Beta-2 adrenergic receptor Proteins 0.000 description 4
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 4
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 4
- 101150047910 CSNK1D gene Proteins 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 208000034578 Multiple myelomas Diseases 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 206010060862 Prostate cancer Diseases 0.000 description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 208000029742 colonic neoplasm Diseases 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000008298 dragée Substances 0.000 description 4
- 239000003596 drug target Substances 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 125000002733 (C1-C6) fluoroalkyl group Chemical group 0.000 description 3
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 3
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 3
- VGEXRDWWPSGZDH-UHFFFAOYSA-N 1-[5-tert-butyl-2-(3-chloro-4-hydroxyphenyl)pyrazol-3-yl]-3-[[2-[[3-[2-(2-hydroxyethylsulfanyl)phenyl]-[1,2,4]triazolo[4,3-a]pyridin-6-yl]sulfanyl]phenyl]methyl]urea Chemical compound C=1C=C(O)C(Cl)=CC=1N1N=C(C(C)(C)C)C=C1NC(=O)NCC1=CC=CC=C1SC(=CN12)C=CC1=NN=C2C1=CC=CC=C1SCCO VGEXRDWWPSGZDH-UHFFFAOYSA-N 0.000 description 3
- RQVKVJIRFKVPBF-VWLOTQADSA-N 2-[[(2s)-2-amino-3-phenylpropyl]amino]-3-methyl-5-naphthalen-2-yl-6-pyridin-4-ylpyrimidin-4-one Chemical compound C([C@H](N)CNC=1N(C(C(C=2C=C3C=CC=CC3=CC=2)=C(C=2C=CN=CC=2)N=1)=O)C)C1=CC=CC=C1 RQVKVJIRFKVPBF-VWLOTQADSA-N 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 3
- QSUSKMBNZQHHPA-UHFFFAOYSA-N 4-[4-(4-fluorophenyl)-1-(3-phenylpropyl)-5-pyridin-4-ylimidazol-2-yl]but-3-yn-1-ol Chemical compound C=1C=CC=CC=1CCCN1C(C#CCCO)=NC(C=2C=CC(F)=CC=2)=C1C1=CC=NC=C1 QSUSKMBNZQHHPA-UHFFFAOYSA-N 0.000 description 3
- GDTQLZHHDRRBEB-UHFFFAOYSA-N 4-[5-(cyclopropylcarbamoyl)-2-methylanilino]-5-methyl-n-propylpyrrolo[2,1-f][1,2,4]triazine-6-carboxamide Chemical compound C12=C(C)C(C(=O)NCCC)=CN2N=CN=C1NC(C(=CC=1)C)=CC=1C(=O)NC1CC1 GDTQLZHHDRRBEB-UHFFFAOYSA-N 0.000 description 3
- IFGWYHGYNVGVRB-UHFFFAOYSA-N 5-(2,4-difluorophenoxy)-n-[2-(dimethylamino)ethyl]-1-(2-methylpropyl)indazole-6-carboxamide Chemical compound CN(C)CCNC(=O)C=1C=C2N(CC(C)C)N=CC2=CC=1OC1=CC=C(F)C=C1F IFGWYHGYNVGVRB-UHFFFAOYSA-N 0.000 description 3
- XPPBBJCBDOEXDN-UHFFFAOYSA-N 5-[2-tert-butyl-4-(4-fluorophenyl)-1h-imidazol-5-yl]-3-(2,2-dimethylpropyl)imidazo[4,5-b]pyridin-2-amine Chemical compound N1=C2N(CC(C)(C)C)C(N)=NC2=CC=C1C=1N=C(C(C)(C)C)NC=1C1=CC=C(F)C=C1 XPPBBJCBDOEXDN-UHFFFAOYSA-N 0.000 description 3
- RQHSAIGGUWVOBG-UHFFFAOYSA-N 6-(2,4-difluorophenoxy)-8-methyl-2-(oxan-4-ylamino)pyrido[2,3-d]pyrimidin-7-one;hydrochloride Chemical compound Cl.N=1C=C2C=C(OC=3C(=CC(F)=CC=3)F)C(=O)N(C)C2=NC=1NC1CCOCC1 RQHSAIGGUWVOBG-UHFFFAOYSA-N 0.000 description 3
- FYSRKRZDBHOFAY-UHFFFAOYSA-N 6-(N-carbamoyl-2,6-difluoroanilino)-2-(2,4-difluorophenyl)-3-pyridinecarboxamide Chemical compound FC=1C=CC=C(F)C=1N(C(=O)N)C(N=1)=CC=C(C(N)=O)C=1C1=CC=C(F)C=C1F FYSRKRZDBHOFAY-UHFFFAOYSA-N 0.000 description 3
- KKYABQBFGDZVNQ-UHFFFAOYSA-N 6-[5-[(cyclopropylamino)-oxomethyl]-3-fluoro-2-methylphenyl]-N-(2,2-dimethylpropyl)-3-pyridinecarboxamide Chemical compound CC1=C(F)C=C(C(=O)NC2CC2)C=C1C1=CC=C(C(=O)NCC(C)(C)C)C=N1 KKYABQBFGDZVNQ-UHFFFAOYSA-N 0.000 description 3
- ORVNHOYNEHYKJG-UHFFFAOYSA-N 8-(2,6-difluorophenyl)-2-(1,3-dihydroxypropan-2-ylamino)-4-(4-fluoro-2-methylphenyl)pyrido[2,3-d]pyrimidin-7-one Chemical compound CC1=CC(F)=CC=C1C1=NC(NC(CO)CO)=NC2=C1C=CC(=O)N2C1=C(F)C=CC=C1F ORVNHOYNEHYKJG-UHFFFAOYSA-N 0.000 description 3
- 102100029895 Bromodomain-containing protein 4 Human genes 0.000 description 3
- 101710126815 Bromodomain-containing protein 4 Proteins 0.000 description 3
- 102100023060 Casein kinase I isoform gamma-2 Human genes 0.000 description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 101150054841 DUX4 gene Proteins 0.000 description 3
- 206010061818 Disease progression Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEKAIDKUDLCBRU-UHFFFAOYSA-N N-[4-[2-ethyl-4-(3-methylphenyl)-5-thiazolyl]-2-pyridinyl]benzamide Chemical compound S1C(CC)=NC(C=2C=C(C)C=CC=2)=C1C(C=1)=CC=NC=1NC(=O)C1=CC=CC=C1 HEKAIDKUDLCBRU-UHFFFAOYSA-N 0.000 description 3
- KCAJXIDMCNPGHZ-UHFFFAOYSA-N PH 797804 Chemical compound CNC(=O)C1=CC=C(C)C(N2C(C(Br)=C(OCC=3C(=CC(F)=CC=3)F)C=C2C)=O)=C1 KCAJXIDMCNPGHZ-UHFFFAOYSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 3
- VEPKQEUBKLEPRA-UHFFFAOYSA-N VX-745 Chemical compound FC1=CC(F)=CC=C1SC1=NN2C=NC(=O)C(C=3C(=CC=CC=3Cl)Cl)=C2C=C1 VEPKQEUBKLEPRA-UHFFFAOYSA-N 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- NETXMUIMUZJUTB-UHFFFAOYSA-N apabetalone Chemical compound C=1C(OC)=CC(OC)=C(C(N2)=O)C=1N=C2C1=CC(C)=C(OCCO)C(C)=C1 NETXMUIMUZJUTB-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 201000010989 colorectal carcinoma Diseases 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000005750 disease progression Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 229960002848 formoterol Drugs 0.000 description 3
- BPZSYCZIITTYBL-UHFFFAOYSA-N formoterol Chemical compound C1=CC(OC)=CC=C1CC(C)NCC(O)C1=CC=C(O)C(NC=O)=C1 BPZSYCZIITTYBL-UHFFFAOYSA-N 0.000 description 3
- 238000007499 fusion processing Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- IMUYJWVXEHHUHB-UHFFFAOYSA-N imidazo[1,2-b]pyridazine Chemical group N1=CC=CC2=N[C]=CN21 IMUYJWVXEHHUHB-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- PWDYHMBTPGXCSN-VCBMUGGBSA-N n,n'-bis[3,5-bis[(e)-n-(diaminomethylideneamino)-c-methylcarbonimidoyl]phenyl]decanediamide Chemical compound NC(N)=N/N=C(\C)C1=CC(C(=N/N=C(N)N)/C)=CC(NC(=O)CCCCCCCCC(=O)NC=2C=C(C=C(C=2)C(\C)=N\N=C(N)N)C(\C)=N\N=C(N)N)=C1 PWDYHMBTPGXCSN-VCBMUGGBSA-N 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- JYYLVUFNAHSSFE-UHFFFAOYSA-N pamapimod Chemical compound O=C1N(C)C2=NC(NC(CCO)CCO)=NC=C2C=C1OC1=CC=C(F)C=C1F JYYLVUFNAHSSFE-UHFFFAOYSA-N 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 3
- 230000000392 somatic effect Effects 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- ZMELOYOKMZBMRB-DLBZAZTESA-N talmapimod Chemical compound C([C@@H](C)N(C[C@@H]1C)C(=O)C=2C(=CC=3N(C)C=C(C=3C=2)C(=O)C(=O)N(C)C)Cl)N1CC1=CC=C(F)C=C1 ZMELOYOKMZBMRB-DLBZAZTESA-N 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 2
- 125000006645 (C3-C4) cycloalkyl group Chemical group 0.000 description 2
- 125000006706 (C3-C6) carbocyclyl group Chemical group 0.000 description 2
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 2
- LNMRSSIMGCDUTP-UHFFFAOYSA-N 1-[5-tert-butyl-2-(4-methylphenyl)pyrazol-3-yl]-3-[[5-fluoro-2-[1-(2-hydroxyethyl)indazol-5-yl]oxyphenyl]methyl]urea Chemical compound C1=CC(C)=CC=C1N1C(NC(=O)NCC=2C(=CC=C(F)C=2)OC=2C=C3C=NN(CCO)C3=CC=2)=CC(C(C)(C)C)=N1 LNMRSSIMGCDUTP-UHFFFAOYSA-N 0.000 description 2
- JBNWDYGOTHQHOZ-UHFFFAOYSA-N 2-[5-[4-[(4-fluorophenyl)methyl]piperidine-1-carbonyl]-6-methoxy-1-methylindol-3-yl]-n,n-dimethyl-2-oxoacetamide Chemical compound COC1=CC=2N(C)C=C(C(=O)C(=O)N(C)C)C=2C=C1C(=O)N(CC1)CCC1CC1=CC=C(F)C=C1 JBNWDYGOTHQHOZ-UHFFFAOYSA-N 0.000 description 2
- MXNGYQJJYRVGGJ-QFIPXVFZSA-N 2-phenyl-n-[(1s)-1-phenylpropyl]quinoline-4-carboxamide Chemical compound N([C@@H](CC)C=1C=CC=CC=1)C(=O)C(C1=CC=CC=C1N=1)=CC=1C1=CC=CC=C1 MXNGYQJJYRVGGJ-QFIPXVFZSA-N 0.000 description 2
- VGUSQKZDZHAAEE-UHFFFAOYSA-N 3-[5-amino-4-(3-cyanobenzoyl)pyrazol-1-yl]-n-cyclopropyl-4-methylbenzamide Chemical compound CC1=CC=C(C(=O)NC2CC2)C=C1N(C=1N)N=CC=1C(=O)C1=CC=CC(C#N)=C1 VGUSQKZDZHAAEE-UHFFFAOYSA-N 0.000 description 2
- TWPJJJZCYVFUOA-UHFFFAOYSA-N 4-[2-(2,6-difluorophenyl)-4-(4-fluorophenyl)-1h-imidazol-5-yl]pyridine Chemical compound C1=CC(F)=CC=C1C1=C(C=2C=CN=CC=2)NC(C=2C(=CC=CC=2F)F)=N1 TWPJJJZCYVFUOA-UHFFFAOYSA-N 0.000 description 2
- 229940121786 Beta 2 adrenoreceptor agonist Drugs 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102100034357 Casein kinase I isoform alpha Human genes 0.000 description 2
- 102100037397 Casein kinase I isoform gamma-1 Human genes 0.000 description 2
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 230000033616 DNA repair Effects 0.000 description 2
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 2
- 231100000491 EC50 Toxicity 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 101000994700 Homo sapiens Casein kinase I isoform alpha Proteins 0.000 description 2
- 101001026384 Homo sapiens Casein kinase I isoform gamma-1 Proteins 0.000 description 2
- 101001049881 Homo sapiens Casein kinase I isoform gamma-2 Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 206010028289 Muscle atrophy Diseases 0.000 description 2
- 238000003559 RNA-seq method Methods 0.000 description 2
- 108091081400 Subtelomere Proteins 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 102000013814 Wnt Human genes 0.000 description 2
- 108050003627 Wnt Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229940125763 bromodomain inhibitor Drugs 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000027288 circadian rhythm Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 230000006806 disease prevention Effects 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000003365 immunocytochemistry Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 101150024228 mdm2 gene Proteins 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000001087 myotubule Anatomy 0.000 description 2
- ZMAZXHICVRYLQN-UHFFFAOYSA-N n-cyclopropyl-4-methyl-3-[6-(4-methylpiperazin-1-yl)-4-oxoquinazolin-3-yl]benzamide Chemical compound C1CN(C)CCN1C1=CC=C(N=CN(C=2C(=CC=C(C=2)C(=O)NC2CC2)C)C2=O)C2=C1 ZMAZXHICVRYLQN-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000004043 oxo group Chemical group O=* 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 231100000683 possible toxicity Toxicity 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000003909 protein kinase inhibitor Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 description 1
- 125000006700 (C1-C6) alkylthio group Chemical group 0.000 description 1
- 0 *.C.C*(C)C.C1=NC(c2ccccc2)=C(c2ccncc2)[Y]1.CC.CC.CC.CC(=O)Nc1nc2c(C)c(C)c(C3=C(C)CN=C3C)nn2c1C.Cc1cc(-c2c(-c3ccccc3)nc(C)n2C)ccn1.Cc1ccc2nc(NC(=O)Cc3cc(C)c(C)c(C)c3C)sc2c1.[5*]c1c(N2BCC2)nn2c(-c3ccnc(C)c3)c(C)nc2c1[6*].[7*]C.[7*]C Chemical compound *.C.C*(C)C.C1=NC(c2ccccc2)=C(c2ccncc2)[Y]1.CC.CC.CC.CC(=O)Nc1nc2c(C)c(C)c(C3=C(C)CN=C3C)nn2c1C.Cc1cc(-c2c(-c3ccccc3)nc(C)n2C)ccn1.Cc1ccc2nc(NC(=O)Cc3cc(C)c(C)c(C)c3C)sc2c1.[5*]c1c(N2BCC2)nn2c(-c3ccnc(C)c3)c(C)nc2c1[6*].[7*]C.[7*]C 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 1
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102000007272 Apoptosis Inducing Factor Human genes 0.000 description 1
- 108010033604 Apoptosis Inducing Factor Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 108090000749 Aurora kinase B Proteins 0.000 description 1
- 102000001805 Bromodomains Human genes 0.000 description 1
- 108050009021 Bromodomains Proteins 0.000 description 1
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 1
- NXBFCBISMOWLHH-UHFFFAOYSA-N CC1(C)CN(c2ccc3nc(-c4ccc(F)cc4)c(-c4ccncc4)n3n2)CCN1 Chemical compound CC1(C)CN(c2ccc3nc(-c4ccc(F)cc4)c(-c4ccncc4)n3n2)CCN1 NXBFCBISMOWLHH-UHFFFAOYSA-N 0.000 description 1
- HULSHLUPVZOACV-UHFFFAOYSA-N CC1(C)CN(c2ccc3nc(-c4ccccc4)c(-c4ccncc4)n3n2)CCN1 Chemical compound CC1(C)CN(c2ccc3nc(-c4ccccc4)c(-c4ccncc4)n3n2)CCN1 HULSHLUPVZOACV-UHFFFAOYSA-N 0.000 description 1
- 108091007924 CK1γ Proteins 0.000 description 1
- IKCPMZVUQBMHOD-UHFFFAOYSA-N CN1CCN(c2ccc3nc(-c4ccc(F)cc4)c(-c4ccncc4)n3n2)CC1 Chemical compound CN1CCN(c2ccc3nc(-c4ccc(F)cc4)c(-c4ccncc4)n3n2)CC1 IKCPMZVUQBMHOD-UHFFFAOYSA-N 0.000 description 1
- SEHBYLUPCCAMGV-UHFFFAOYSA-N CN1CCN(c2ccc3nc(-c4ccccc4)c(-c4ccncc4)n3n2)CC1 Chemical compound CN1CCN(c2ccc3nc(-c4ccccc4)c(-c4ccncc4)n3n2)CC1 SEHBYLUPCCAMGV-UHFFFAOYSA-N 0.000 description 1
- NGDXEOHYWJHBTJ-UHFFFAOYSA-N CN1Cc2nccc(-c3cn(C)nc3-c3ccc(F)cc3)c2C1=O Chemical compound CN1Cc2nccc(-c3cn(C)nc3-c3ccc(F)cc3)c2C1=O NGDXEOHYWJHBTJ-UHFFFAOYSA-N 0.000 description 1
- UEPOHWWKVBWCFV-UHFFFAOYSA-N CNCc1cc(-c2cn(C)nc2-c2ccc(F)cc2)ccn1 Chemical compound CNCc1cc(-c2cn(C)nc2-c2ccc(F)cc2)ccn1 UEPOHWWKVBWCFV-UHFFFAOYSA-N 0.000 description 1
- RXNQNOUVAKIMHA-UHFFFAOYSA-N CNc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCN(Cc3ccon3)CC2)n1 Chemical compound CNc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCN(Cc3ccon3)CC2)n1 RXNQNOUVAKIMHA-UHFFFAOYSA-N 0.000 description 1
- RBEFIAUFQJWNSM-UHFFFAOYSA-N COCCN1Cc2nccc(-c3cn(C)nc3-c3ccc(F)cc3)c2C1=O Chemical compound COCCN1Cc2nccc(-c3cn(C)nc3-c3ccc(F)cc3)c2C1=O RBEFIAUFQJWNSM-UHFFFAOYSA-N 0.000 description 1
- 101100061515 Caenorhabditis elegans csk-1 gene Proteins 0.000 description 1
- 101100180602 Caenorhabditis elegans csnk-1 gene Proteins 0.000 description 1
- 102100023067 Casein kinase I isoform gamma-3 Human genes 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- YCUSKMMSBMJKNS-UHFFFAOYSA-N Cn1cc(-c2ccnc3c2C(=O)N(C2CCOCC2)C3)c(-c2ccc(F)cc2)n1 Chemical compound Cn1cc(-c2ccnc3c2C(=O)N(C2CCOCC2)C3)c(-c2ccc(F)cc2)n1 YCUSKMMSBMJKNS-UHFFFAOYSA-N 0.000 description 1
- XISSYJGQGSMWHO-UHFFFAOYSA-N Cn1cc(-c2ccnc3c2C(=O)OC3)c(-c2ccc(F)cc2)n1 Chemical compound Cn1cc(-c2ccnc3c2C(=O)OC3)c(-c2ccc(F)cc2)n1 XISSYJGQGSMWHO-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 102100024810 DNA (cytosine-5)-methyltransferase 3B Human genes 0.000 description 1
- 101710123222 DNA (cytosine-5)-methyltransferase 3B Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101100291385 Drosophila melanogaster p38a gene Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- UHCVDGVAFYGKDF-UHFFFAOYSA-N Fc1ccc(-c2nc3ccc(N4CCC(N5CCCC5)CC4)nn3c2-c2ccncc2)cc1 Chemical compound Fc1ccc(-c2nc3ccc(N4CCC(N5CCCC5)CC4)nn3c2-c2ccncc2)cc1 UHCVDGVAFYGKDF-UHFFFAOYSA-N 0.000 description 1
- AHVJUQPLDYQRAX-UHFFFAOYSA-N Fc1ccc(-c2nc3ccc(N4CCNCC4)nn3c2-c2ccncc2)cc1 Chemical compound Fc1ccc(-c2nc3ccc(N4CCNCC4)nn3c2-c2ccncc2)cc1 AHVJUQPLDYQRAX-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 108010034791 Heterochromatin Proteins 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001026336 Homo sapiens Casein kinase I isoform delta Proteins 0.000 description 1
- 101001049879 Homo sapiens Casein kinase I isoform gamma-3 Proteins 0.000 description 1
- 101100332079 Homo sapiens DNMT3B gene Proteins 0.000 description 1
- 101000958753 Homo sapiens Myosin-2 Proteins 0.000 description 1
- 101100366030 Homo sapiens SMCHD1 gene Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 102100038303 Myosin-2 Human genes 0.000 description 1
- 201000002481 Myositis Diseases 0.000 description 1
- WUDBUIUHVNECTM-UHFFFAOYSA-N Nc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCCCC2)n1 Chemical compound Nc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCCCC2)n1 WUDBUIUHVNECTM-UHFFFAOYSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- IJDQETGUEUJVTB-HNNXBMFYSA-N Ro 320-1195 Chemical compound NC1=C(C(=O)C=2C=C(OC[C@@H](O)CO)C=CC=2)C=NN1C1=CC=C(F)C=C1 IJDQETGUEUJVTB-HNNXBMFYSA-N 0.000 description 1
- 101150023894 SMCHD1 gene Proteins 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- GIIZNNXWQWCKIB-UHFFFAOYSA-N Serevent Chemical compound C1=C(O)C(CO)=CC(C(O)CNCCCCCCOCCCCC=2C=CC=CC=2)=C1 GIIZNNXWQWCKIB-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101001023030 Toxoplasma gondii Myosin-D Proteins 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- IJDQETGUEUJVTB-UHFFFAOYSA-N [5-amino-1-(4-fluorophenyl)pyrazol-4-yl]-[3-(2,3-dihydroxypropoxy)phenyl]methanone Chemical compound NC1=C(C(=O)C=2C=C(OCC(O)CO)C=CC=2)C=NN1C1=CC=C(F)C=C1 IJDQETGUEUJVTB-UHFFFAOYSA-N 0.000 description 1
- 210000003489 abdominal muscle Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229950006577 acumapimod Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940040563 agaric acid Drugs 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000004900 autophagic degradation Effects 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 108010014499 beta-2 Adrenergic Receptors Proteins 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- ABTLUZBURGFKOA-UHFFFAOYSA-N c1ccc(-c2nc3ccc(N4CCC(N5CCCC5)CC4)nn3c2-c2ccncc2)cc1 Chemical compound c1ccc(-c2nc3ccc(N4CCC(N5CCCC5)CC4)nn3c2-c2ccncc2)cc1 ABTLUZBURGFKOA-UHFFFAOYSA-N 0.000 description 1
- HYWYUKFVYUXBJL-UHFFFAOYSA-N c1ccc(-c2nc3ccc(N4CCNCC4)nn3c2-c2ccncc2)cc1 Chemical compound c1ccc(-c2nc3ccc(N4CCNCC4)nn3c2-c2ccncc2)cc1 HYWYUKFVYUXBJL-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 230000006364 cellular survival Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 230000002060 circadian Effects 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000009226 cognitive therapy Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 229950009763 dilmapimod Drugs 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- MVCOAUNKQVWQHZ-UHFFFAOYSA-N doramapimod Chemical compound C1=CC(C)=CC=C1N1C(NC(=O)NC=2C3=CC=CC=C3C(OCCN3CCOCC3)=CC=2)=CC(C(C)(C)C)=N1 MVCOAUNKQVWQHZ-UHFFFAOYSA-N 0.000 description 1
- 229950005521 doramapimod Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- ZTQSADJAYQOCDD-UHFFFAOYSA-N ginsenoside-Rd2 Natural products C1CC(C2(CCC3C(C)(C)C(OC4C(C(O)C(O)C(CO)O4)O)CCC3(C)C2CC2O)C)(C)C2C1C(C)(CCC=C(C)C)OC(C(C(O)C1O)O)OC1COC1OCC(O)C(O)C1O ZTQSADJAYQOCDD-UHFFFAOYSA-N 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 210000004458 heterochromatin Anatomy 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 235000006486 human diet Nutrition 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 150000004942 imidazo[1,2-b]pyridazines Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000008798 inflammatory stress Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 210000004964 innate lymphoid cell Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229950003265 losmapimod Drugs 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000020763 muscle atrophy Effects 0.000 description 1
- 230000009756 muscle regeneration Effects 0.000 description 1
- 210000001665 muscle stem cell Anatomy 0.000 description 1
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- NNKPHNTWNILINE-UHFFFAOYSA-N n-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxopyrazin-1-yl]benzamide Chemical compound CNCCOC1=CC=CC=C1C1(NC=2C(N(C=3C(=C(F)C=C(C=3)C(=O)NC3CC3)C)C=CN=2)=O)CC1 NNKPHNTWNILINE-UHFFFAOYSA-N 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229940069817 neflamapimod Drugs 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 239000012740 non-selective inhibitor Substances 0.000 description 1
- 230000006849 nucleocytoplasmic transport Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229940124583 pain medication Drugs 0.000 description 1
- 229950001749 pamapimod Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 238000012247 phenotypical assay Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 229950010994 ralimetinib Drugs 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 229960002052 salbutamol Drugs 0.000 description 1
- 229960004017 salmeterol Drugs 0.000 description 1
- 210000001991 scapula Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 229950011005 semapimod Drugs 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000002512 suppressor factor Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229950008389 talmapimod Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4355—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having oxygen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/50—Pyridazines; Hydrogenated pyridazines
- A61K31/5025—Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
Definitions
- the present invention relates to compounds for the treatment of diseases related to DUX4 expression, such as muscular dystrophies, wherein the disease is facioscapulohumeral muscular dystrophy (FSHD). It also relates to use of such compounds, or to methods of use of such compounds.
- diseases related to DUX4 expression such as muscular dystrophies, wherein the disease is facioscapulohumeral muscular dystrophy (FSHD).
- FSHD facioscapulohumeral muscular dystrophy
- Serine/threonine kinases (EC 2.7.11.1) are a class of protein kinases that are promising drug targets for small molecule inhibitors. Due to their involvement in signaling pathways in eukaryotic cells, inhibition of serine/threonine kinases is likely to have relevance to the treatment of diseases such as cancer, diabetes, and a variety of inflammatory disorders.
- Casein kinase 1 belongs to the serine/threonine kinase family. CK1 isoforms are involved in Wnt signaling, circadian rhythms, nucleo-cytoplasmic shuttling of transcription factors, DNA repair, and DNA transcription (Eide E J, Virshup D M (2001) doi:10.1081/CBI-100103963). In mammals, the enzyme exists in seven isoforms: ⁇ , ⁇ , ⁇ 1, ⁇ 2, ⁇ 3, ⁇ , and ⁇ , all having a similar kinase domain.
- a tumor suppressor factor p53 and an oncogene mdm2 which are both important proteins for controlling abnormal cell growth, are substrates of CK1.
- Mammalian casein kinases such as casein kinase 1 ⁇ , casein kinase 1 ⁇ , and casein kinase 1 ⁇ are important regulators of various cellular growth and survival processes including Wnt signaling, circadian rhythms, and DNA repair. They have a kinase domain similar to those of other isoforms. However, their N-terminal and C-terminal domains are different from those of other isoforms. The C-terminal domain has a plurality of autophosphorylation sites, and is considered to be involved in regulation of autoenzyme activity.
- casein kinases such as casein kinase 1 ⁇ or casein kinase 1 ⁇ leads to a change in the interaction between p53 and mdm2. It has also been known that casein kinase 1 ⁇ and casein kinase 1 ⁇ are involved as a regulatory protein associated with the formation of a spindle as a central body during cell division, and that casein kinase 1 ⁇ and casein kinase 1 ⁇ are involved in apoptosis mediated by TRAIL (tumor necrosis factor-related apoptosis inducing factor) and Fas.
- TRAIL tumor necrosis factor-related apoptosis inducing factor
- WO2011051858 discloses CK1 inhibitors (both ⁇ and ⁇ ) useful in the treatment and/or prevention of diseases and disorders associated with the central nervous system. These inhibitors form a series of substituted imidazole compounds, more specifically a series of 4-aryl-5-heteroaryl-1-heterocycloalkyl-imidazoles and related analogs. Both their synthesis and IC 50 values for CK1 ⁇ and ⁇ are reported, the latter of which generally fall in the nanomolar range. A closely related family of CK1 inhibitors is disclosed in WO2012085721.
- WO2015119579 discloses a family that also features an azole core, namely a family of 2,4,5-tri-substituted azole compounds for use as CK1 inhibitors.
- the inhibitors are used for inducing or enhancing the differentiation of pluripotent stem cells into cardiomyocytes via CK1 inhibition.
- Synthetic pathways for obtaining the inhibitors are disclosed, and the inhibitors are shown to generally have IC 50 values in the nanomolar range as CK1 ⁇ and ⁇ inhibitors.
- EP2949651 discloses a family of derivatives of substituted benzothiazoles that act as CK1 inhibitors, and their use is coupled to the treatment and/or prevention of diseases mediated by CK1, especially inflammatory, neurological, psychiatric, neurodegenerative and/or ophthalmic diseases and certain regenerative processes. Methods of synthesis are provided, and the inhibitors were shown to have nanomolar inhibitory activity on CK1 ⁇ and ⁇ .
- WO2009016286 discloses 6-cycloamino-3-(pyrid-4-yl)imidazo[1,2-b]pyridazine derivatives useful as protein kinase inhibitors, particularly as CK1 ⁇ and ⁇ inhibitors. Their synthesis is described in detail, and the capacity of the CK1 inhibitors to inhibit the phosphorylation of casein by casein kinases 1 ⁇ and ⁇ was evaluated according to the procedure described in US2005/0131012, revealing IC 50 values in the nanomolar range.
- Facioscapulohumeral muscular dystrophy is the most prevalent hereditary muscular dystrophy. Symptoms begin before the age of 20, with weakness and atrophy of the muscles around the eyes and mouth, shoulders, upper arms and lower legs. Later, weakness can spread to abdominal muscles and sometimes hip muscles with approximately 20% of patients eventually becoming wheelchair-bound. Patients currently rely on treatment of symptoms like pain and fatigue, involving the use of pain medication, cognitive therapy and physical exercise, sometimes supplemented with medical devices used to maintain the patient's mobility. Furthermore, increased scapular function may be obtained by surgical treatment of the scapula. At best, these interventions remain symptomatic in nature and do not affect disease progression, illustrating the need for a therapy that is able to modify disease progression.
- DUX4 Double Homeobox 4
- FSHD is sometimes divided in two subtypes, namely FSHD1 and FSHD2.
- FSHD1 is associated with large deletions within a DNA tandem array (D4Z4) that is located in the subtelomeric region of chromosome 4q35.
- D4Z4 repeats contains a copy of the DUX4 gene, which is normally silenced in somatic tissues of healthy individuals. Healthy, genetically unaffected individuals are defined as having between 10 and 100 D4Z4 repeat units on both 4q chromosome arms, whereas individuals with FSHD1 have between 1 and 10 D4Z4 repeat units on one 4q chromosome arm.
- D4Z4 repeats that characterize FSHD remove a substantial portion of regulatory chromatin from this region, including several hundreds of histones and a significant amount of CpG-rich DNA. These elements are essential in the establishment of DNA methylation and heterochromatin and their loss significantly alters the epigenetic status of the D4Z4 array.
- the contraction of D4Z4 is by itself not pathogenic. Only when the contraction of D4Z4 occurs on a disease-permissive 4qA allele, containing a polymorphism that could affect the polyadenylation of the distal DUX4 transcript, the altered epigenetic context is associated with alternative splicing and increased expression of DUX4 in skeletal muscles of FSHD1 patients.
- FSHD2 In the much rarer form FSHD2, the cause is a mutated form of an epigenetic factor such as SMCHD1 or DNMT3B. In this form as well, the D4Z4 region is hypomethylated and muscle cells are characterized by a de-repressed DUX4 protein. Both forms of FSHD converge on undue DUX4 expression. It has therefore been suggested that FSHD1 and FSHD2 are on a continuum, rather than being separate (Van den Boogaard et al., 2016, DOI: 10.1016/j.ajhg.2016.03.013).
- DUX4 acts as a transcription factor whose expression initiates a transcription cascade resulting in progressive muscle cell dysfunction and death, and ultimately to overt pathology (Kowaljow et al., 2007, DOI: 10.1016/j.nmd.2007.04.002; Vanderplanck et al., 2011, doi: 10.1371/journal.pone.0026820; Geng et al., 2012, DOI: 10.1016/j.devcel.2011.11.013; Yao et al., 2014, DOI: 10.1093/hmg/ddu251; Wallace et al., 2011, DOI: 10.1002/ana.22275).
- DUX4 In healthy individuals, DUX4 is expressed in the germline, but is epigenetically silenced in somatic tissues. In FSHD patients, burst-like DUX4 expression in only a small fraction of myofibers causes myocyte death ultimately leading to muscle weakness and wasting (Lemmers et al., 2010). In the simplest terms, DUX4-overexpression is a primary pathogenic insult underlying FSHD, and its repression is a promising therapeutic approach for FSHD. In support of this, short repeat sizes are generally associated with a severe FSHD phenotype. Moderate repeat contractions have a milder and more variable clinical severity.
- FSHD2 A very rare subtype of FSHD, named FSHD2, is characterized by a moderate repeat contraction (>10 repeats remaining), and is associated with mutations in the SMCHD1 gene or in the DNMT3B gene. Also in FSHD2, the D4Z4 region is hypomethylated and muscle cells are characterized by a de-repressed DUX4 protein. Patients with less than 10 D4Z4 repeat units that also have a mutation in SMCHD1 have a very severe clinical phenotype, illustrating that a combination of repeat size and activity of epigenetic modifiers, both contributing to derepression of DUX4, determines the eventual disease severity in FSHD.
- suppressing DUX4 is a primary therapeutic approach for halting disease progression. This approach could also be useful for treating other diseases, such as cancers including acute lymphoblastic leukemia (Yasuda et al., 2016, doi: 10.1038/ng.3535) and sarcomas (Oyama et al., 2017 DOI: 10.1038/s41598-017-04967-0, Bergerat et al., 2017, DOI: 10.1016/j.prp.2016.11.015), etc.
- cancers including acute lymphoblastic leukemia (Yasuda et al., 2016, doi: 10.1038/ng.3535) and sarcomas (Oyama et al., 2017 DOI: 10.1038/s41598-017-04967-0, Bergerat et al., 2017, DOI: 10.1016/j.prp.2016.11.015), etc.
- the mechanisms behind DUX4 expression are poorly understood and
- the invention provides a casein kinase 1 inhibitor for use in the treatment of a disease or condition associated with DUX4 expression, wherein the casein kinase 1 inhibitor reduces DUX4 expression.
- the disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is a muscular dystrophy, most preferably facioscapulohumeral muscular dystrophy (FSHD).
- FSHD facioscapulohumeral muscular dystrophy
- the casein kinase 1 inhibitor is characterized in that it is administered to a subject 4, 3, 2, or 1 times per day or less, preferably 1 time per day.
- the casein kinase 1 inhibitor inhibits at least, and optionally is specific for, casein kinase 1 ⁇ .
- the CK1 inhibitor is characterized in that it is administered to a subject in an amount ranging from 0.1 to 400 mg/day, preferably from 0.25 to 150 mg/day.
- the casein kinase 1 inhibitor is characterized in that it is administered orally, sublingually, intravascularly, intravenously, subcutaneously, or transdermally, preferably orally.
- DUX4 expression is reduced by at least 30%, 40%, 60%, 80%, or more.
- the casein kinase 1 inhibitor reduces DUX4 expression in muscle cells, immune cells, or cancer cells.
- the reduction of DUX4 expression is determined using PCR or immunostaining.
- the casein kinase 1 inhibitor is from the class comprising an azole core.
- the casein kinase 1 inhibitor is selected from the group consisting of compounds A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, PF-670462, and PF-5006739.
- the invention provides a composition comprising at least one casein kinase 1 inhibitor as defined in the first embodiment, and a pharmaceutically acceptable excipient, for use as defined in the first embodiment.
- the composition for use is formulated for oral, sublingual, parenteral, intravascular, intravenous, subcutaneous, or transdermal administration, preferably for oral administration.
- the invention provides an in vivo, in vitro, or ex vivo method for reducing DUX4 expression, the method comprising the step of contacting a cell with a casein kinase 1 inhibitor as defined in the first aspect, or with a composition as defined in the second aspect.
- the invention provides a method for reducing DUX4 expression in a subject in need thereof, the method comprising the step of administering an effective amount of a casein kinase 1 inhibitor as defined in the first aspect, or a composition as defined in the second aspect.
- CK1 Caseine kinase 1
- DUX4 has historically been regarded as being challenging to detect in FSHD muscle. Its expression in primary myoblasts from patients with FSHD has been shown to be stochastic. Studies have reported that only 1 in 1000 or 1 in 200 nuclei is DUX4 positive in proliferating FSHD myoblasts and during myoblast differentiation, respectively. Due to this particularly low abundance of DUX4, detection of DUX4 protein has been reported to be a technical challenge. While primary FSHD muscle cells have been used extensively in the FSHD literature, none of the reports appear to be applicable beyond a bench scale level. The limitations posed by using primary cells and the recognised complexity of detecting the low levels of endogenous DUX4 illustrate the challenges associated with applying primary FSHD muscle cells to higher throughput formats.
- DUX4 expression increases upon in vitro differentiation of proliferating FSHD myoblasts into multinucleated myotubes, the levels remain low and the dynamic variability is widely accepted to be extremely challenging for robust large-scale screening approaches (Campbell et al., 2017).
- the invention provides a casein kinase 1 (CK1) inhibitor for use in the treatment of a disease or condition associated with (undue) DUX4 expression, wherein the casein kinase 1 inhibitor reduces DUX4 expression.
- CK1 inhibitor is referred to herein as a CK1 inhibitor for use according to the invention.
- CK1 inhibitors are known in the art and are described in more detail later herein.
- the medical use herein described is formulated as a compound as defined herein for use as a medicament for treatment of the stated condition(s) (e.g. by administration of an effective amount of the compound), but could equally be formulated as i) a method of treatment of the stated condition(s) using a compound as defined herein comprising a step of administering to a subject an effective amount of the compound, ii) a compound as defined herein for use in the manufacture of a medicament to treat the stated condition(s), wherein preferably the compound is to be administered in an effective amount, and iii) use of a compound as defined herein for the treatment of the stated condition(s), preferably by administering an effective amount.
- Such medical uses are all envisaged by the present invention.
- Preferred subjects are subjects in need of treatment.
- Treatment preferably leads to delay, amelioration, alleviation, stabilization, cure, or prevention of a disease or condition.
- a compound for use according to the invention can be a compound for the treatment, delay, amelioration, alleviation, stabilization, cure, or prevention of the stated disease or condition.
- the CK1 inhibitor for use according to the invention reduces DUX4 expression.
- This DUX4 expression is preferably the overall DUX4 expression of the subject that is treated.
- DUX4 expression can be determined using methods known in the art, or exemplified in the examples.
- DUX4 expression can be determined using PCR techniques such as RT-PCR, or using immunostaining, mass spectrometry, or ELISA, for example on a sample containing cells or cell extracts, preferably obtained from the subject.
- a reduction is preferably a reduction as compared to either a predetermined value, or to a reference value.
- a preferred reference value is a reference value obtained by determining DUX4 expression in an untreated sample containing cells or cell extracts.
- This untreated sample can be from the same subject or from a different and healthy subject, more preferably it is a sample that was obtained in the same way, thus containing the same type of cells.
- both the test sample and the reference sample can be part of a single larger sample that was obtained.
- the test sample was obtained from the subject before treatment commenced.
- a highly preferred reference value is the expression level of DUX4 in a sample obtained from a subject prior to the first administration of the casein kinase 1 inhibitor according to the invention.
- Another preferred reference value is a fixed value that represents an absence of DUX4 expression.
- a reduction of DUX4 expression preferably means that expression is reduced by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%.
- DUX4 is reduced by for example 100%, it may be that expression of DUX4 can no longer be detected.
- Reduction can be assessed at the protein level, for example through immunostaining, ELISA, or mass spectrometry, or it can be assessed at the mRNA level, for example through PCR techniques such as RT-PCR.
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein the reduction of DUX4 expression is determined using PCR or immunostaining, wherein a preferred PCR technique is RT-PCR.
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein DUX4 expression is reduced by at least 20%, 40%, 60%, 80%, or more, more preferably by at least 30%, 40%, 60%, 80%, or more.
- DUX4 expression is reduced by at least 10%.
- DUX4 expression is reduced by at least 20%.
- DUX4 expression is reduced by at least 30%.
- DUX4 expression is reduced by at least 40%.
- DUX4 expression is reduced by at least 50%.
- DUX4 expression is reduced by at least 60%.
- DUX4 expression is reduced by at least 70%. In further preferred embodiments, DUX4 expression is reduced by at least 80%. In further preferred embodiments, DUX4 expression is reduced by at least 90%. In further preferred embodiments, DUX4 expression is reduced by at least 95%. In the most preferred embodiments, DUX4 expression is reduced by about 100%, preferably by 100%.
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase 1 inhibitor reduces DUX4 expression in muscle cells, immune cells, or cancer cells, preferably in muscle cells or immune cells, most preferably in muscle cells.
- Preferred muscle cells are myoblasts, satellite cells, myotubes, and myofibers.
- Preferred immune cells are B cells, T cells, dendritic cells, neutrophils, natural killer cells, granulocytes, innate lymphoid cells, megakaryocytes, myeloid-derived suppressor cells, monocytes/macrophages, and thymocytes, and optionally mast cells.
- Other preferred cells are platelets and red blood cells.
- DUX4 expression is reduced in cancer cells.
- the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is a muscular dystrophy, most preferably facioscapulohumeral muscular dystrophy (FSHD).
- FSHD facioscapulohumeral muscular dystrophy
- a preferred muscular dystrophy is FSHD; a preferred cancer is prostate cancer (WO2014081923), multiple myeloma (US20140221313), lung cancer (Lang et al., 2014, DOI: 10.14205/2310-8703.2014.02.01.1), colon cancer (Paz et al., 2003, DOI: 10.1093/hmg/ddg226) sarcoma, or leukemia; a preferred sarcoma is small round cell sarcoma (Oyama et al., 2017 DOI: 10.1038/s41598-017-04967-0; Bergerat et al., 2017, DOI: 10.1016/j.prp.2016.11.015; Chebib and Jo, 2016, DOI: 10.1002/cncy.21685); a preferred leukemia is acute lymphoblastic leukemia (ALL), more particularly B-cell precursor ALL (Yasuda et al., 2016, doi: 10.1038/ng.
- ALL
- the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is FSHD, prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), preferably said disease or condition associated with DUX4 expression is FSHD.
- FSHD muscular dystrophy or cancer
- FSHD multiple myeloma
- lung cancer colon cancer (preferably colorectal carcinoma)
- sarcoma preferably small round cell sarcoma
- leukemia preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia
- said disease or condition associated with DUX4 expression is FSHD.
- the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is FSHD or cancer, wherein cancer is preferably prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), wherein cancer is more preferably sarcoma, most preferably small round cell sarcoma.
- cancer is preferably prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), wherein cancer is more preferably sarcoma, most preferably
- the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is cancer, wherein cancer is preferably prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), wherein cancer is more preferably sarcoma, most preferably small round cell sarcoma.
- cancer is preferably prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), wherein cancer is more preferably sarcoma, most preferably small round cell sarcoma.
- CTAs cancer testis antigens
- Casein kinase 1 inhibitors are known in the art.
- a casein kinase 1 inhibitor for use according to the invention is of general structural formula (1a), (1b), (2a), (2b), or (3):
- X and Y are independently ⁇ N—, —NR 1 —, CR 1 , or —S—, provided that at least one of X and Y is CR 1 ,
- ring A is absent (so effectively it is two H) or is a 4- to 7-membered cycloalkyl or heterocycloalkyl or a 5- to 6-membered heteroaryl, wherein up to 2 carbon atoms are replaced with a heteroatom selected from ⁇ N—, —NR 2 —, —O—, —S— and any remaining carbon atom may be substituted with R 3 as valency allows; preferably, ring A is a 4- to 7-membered cycloalkyl or heterocycloalkyl or a 5- to 6-membered heteroaryl, wherein up to 2 carbon atoms are replaced with a heteroatom selected from ⁇ N—, —NR 2 —, —O—, —S— and any remaining carbon atom may be substituted with R 3 as valency allows;
- each R 1 is independently H, C 1-4 alkyl, C 3-6 cycloalkyl, —CF 3 , —(CH 2 ) 1-3 CF 3 , 4- to 10-membered aryl, 4- to 10-membered heteroaryl, 4- to 10-membered heterocycloalkyl, wherein said aryl, heteroaryl, or heterocycloalkyl may be substituted with one, two, or three substituents independently selected from halogen, OH, oxo, cyano, —SO 2 CH 3 , carboxylic acid that is optionally esterified with methanol or ethanol, carboxamide, nitro, C 1-6 alkoxy, C 1-6 alkyl, or C 1-6 alkyl-O—C 1-6 alkyl; preferably, each R 1 is independently H, C 1-4 alkyl, C 3-6 cycloalkyl, —CF 3 , —(CH 2 ) 1-3 —CF 3 , 4- to 10-membered heterocycloalkyl,
- Each R 2 is independently H, C 1-6 alkyl, C 4-10 -bicycloalkyl, —(CH 2 ) t —CN, —S02-C 1-6 alkyl, —SO 2 (CH 2 ) t C 3-6 cycloalkyl, —C 1-6 alkyl-O—C 1-6 alkyl, —C 1-6 alkyl-C(O)O—C 1-6 alkyl, —C 3-6 cycloalkyl-C(O)O—C 1-6 alkyl, —C(O)—(O) u —C 1-6 alkyl, —C(O)—C 1-6 alkyl-O—C 1-6 alkyl, —C(O)—(O) u —(CH 2 ) t —(C 6-10 aryl), —(CH 2 ) t —(C 6-10 aryl), —C(O)—(O) u —(CH 2 ) t —
- aryl, heteroaryl, cycloalkyl, and heterocycloalkyl of R 2 may be substituted with up to two substituents independently selected from halogen, OH, cyano, C 1-6 alkyl, or C 1-6 alkyl-O—C 1-6 alkyl,
- any alkyl, cycloalkyl, and heterocycloalkyl of R 2 may be further substituted with oxo where valency allows;
- each R 3 is independently absent, C 1-3 alkyl, halogen, oxo, —NR 5 R 6 , or —OR 5 ;
- each R 4 is independently halogen, —CF 3 , C 1-3 alkyl, —(CH 2 ) t —C 3-4 cycloalkyl, —(CH 2 ) t —O—C 1-3 alkyl, —(CH 2 ) t -cyano, or —(CH 2 ) t -hydroxy, wherein a halogen is preferably F and is preferably para to the five-membered ring comprising X and Y, wherein C 1-3 alkyl is preferably methyl and is preferably meta to the five-membered ring comprising X and Y; preferably, each R 4 is independently halogen, —CF 3 , C 1-3 alkyl, —(CH 2 ) t —C 3-4 cycloalkyl, —(CH 2 ) t —O—C 1-3 alkyl, —(CH 2 ) t -cyano, or —(CH 2 ) t -hydroxy;
- each R 5 is independently H or C 1-6 alkyl
- each R 6 is independently H or C 1-6 alkyl
- R 7 is H, halogen, or C 1-3 alkyl
- n 0, 1, or 2;
- each t is independently 0, 1, or 2;
- each u is independently 0 or 1;
- A′ is a 4- to 7-membered cycloalkyl, a nitrogen-containing 4- to 7-membered heterocycloalkyl, or alternatively A′ can be directly fused to the ring to which it is attached through
- R′ 1 preferably, A′ is a nitrogen-containing 4- to 7-membered heterocycloalkyl, or alternatively A′ can be directly fused to the ring to which it is attached through R′ 1 ;
- L is C 1-3 alkyl
- R′ 1 is hydrogen, C 1-3 alkyl, or C 3-4 cycloalkyl
- each R′ 2 is independently C 1-3 alkyl, fluorine, hydroxyl, C 1-3 alkoxy, or cyano;
- R′ 3 is hydrogen, C 1-3 alkyl, or C 3-4 cycloalkyl
- R′ 4 is a 5- to 10-membered heteroaryl with 1 to 3 heteroatoms, optionally substituted with 1 to 3 R 4 substituents;
- R′ 5 is hydrogen or —N(R 8 ) 2 ;
- Z is N or —CR 9 ;
- each R 8 is independently hydrogen or C 1-3 alkyl
- R 9 is hydrogen, C 1-3 alkyl, or halogen
- n 0, 1 or 2;
- q 1, 2, or 3;
- R′′ 2 represents an aryl group optionally substituted with one or more substituents selected from halogen, C 1-6 alkyl, C 1-6 alkyloxy, C 1-6 alkylthio, C 1-6 fluoroalkyl, C 1-6 fluoroalkyloxy and —CN;
- R′′ 3 represents H, C 1-3 alkyl, —NR′′ 4 R′′ 5 , hydroxyl, or C 1-4 alkyloxy;
- A′′ represents C 1-7 -alkylene optionally substituted with one or two R a ;
- B represents C 1-7 -alkylene optionally substituted with R b ;
- L′′ represents either N substituted with R c or R d , or C substituted with R e1 and R d or with two groups R e2 ;
- R a , R b and R c are defined such that:
- R d represents a group selected from H, C 1-6 alkyl, C 3-7 cycloalkyl, C 3-7 cycloalkyl-C 1-6 alkyl, C 1-6 alkylthio-C 1-6 alkyl, C 1-6 alkyloxy-C 1-6 alkyl, C 1-6 fluoroalkyl, benzyl, C 1-6 acyl, and hydroxy-C 1-6 alkyl;
- R e1 represents —NR′′ 4 R′′ 5 or a cyclic monoamine optionally comprising an oxygen atom, the cyclic monoamine being optionally substituted with one or more substituents selected from F, C 1-6 alkyl, C 1-6 alkyloxy, and hydroxyl;
- R e2 form, with the carbon atom that bears them, a cyclic monoamine optionally comprising an oxygen atom, this cyclic monoamine being optionally substituted with one or more R f , which may be identical to or different than each other;
- R f represents C 1-6 alkyl, C 3-7 cycloalkyl, C 3-7 cycloalkyl C 1-6 alkyl, C 1-6 alkyloxy-C 1-6 alkyl, hydroxy-C 1-6 alkyl, C 1-6 fluoroalkyl or benzyl;
- R′′ 4 and R′′ 5 each independently represent H, C 1-4 alkyl, C 3-7 cycloalkyl, or C 3-7 cycloalkyl-C 1-6 alkyl;
- X 1 is selected from O and NQ 6 ; provided when X 1 is NQ 6 , Q 5 and Q 6 together with the nitrogen atom and the adjacent carbon atom to which they are respectively attached form a heterocyclic ring comprising carbon atoms and zero to 3 additional heteroatoms selected from N, NQ 8 , O, S and substituted with 1-5 Q 10 ;
- Q 1 is C 1-4 alkyl optionally substituted with halogen, OH, CN, and NQ a Q a , or Q 1 is —(CQ d Q d ) r -carbocyclyl substituted with 0-5 Q 11 , and —(CQ d Q d ) r -heterocyclyl comprising carbon atoms and 1 to 4 heteroatoms selected from N, NQ 9 , O, S, and substituted with 0-5 Q 11 ;
- Q 2 is selected from H, C 1-4 alkyl, halogen, CN, aryl, and heteroaryl;
- Q 3 is selected from H and C 1-4 alkyl
- Q 4 is selected from H, C 1-4 alkyl halogen, and CN;
- Q 5 is selected from H, C 1-4 alkyl substituted with 0-4 Q e , —(CH 2 ) r C 3-6 carbocyclyl substituted with 0-4 Q e , and —(CH 2 ) r -heterocyclyl comprising carbon atoms and 1 to 3 heteroatoms selected from N, O, S, and substituted with 0-4 Q e ;
- Q 7 is aryl substituted with 0-3 Q e ;
- Q 8 is selected from H, C 1-4 alkyl substituted with 0-3 Q e , —(CH 2 ) r CN, —(CH 2 ) r OQ b , —(CH 2 ) r S(O) p Q C , —(CH 2 ) r C( ⁇ O)Q b , —(CH 2 ) r NQ a Q a , —(CH 2 ) r C( ⁇ O)NQ a Q a , —(CH 2 ) r C( ⁇ O)—C 1-4 alkyl substituted with 0-3 Q e , —(CH 2 ) r NQ a C( ⁇ O)Q b , —(CH 2 ) r NQ a C( ⁇ O)OQ b , —(CH 2 ) r OC( ⁇ O)NQ a Q a , —(CH 2 ) r NQ a C( ⁇ O)NQ
- Q 9 is selected from H, —C( ⁇ O)Q b , C 1-6 alkyl substituted with 0-5 Q e , —(CH 2 ) r C 3-6 carbocyclyl substituted with 0-5 Q e , and —(CH 2 ) r -heterocyclyl substituted with 0-5 Q e ;
- Q 10 is selected from H, C 1-6 alkyl substituted with 0-3 Q e , —(CH 2 ) r NQ a Q a , —(CH 2 ) r C( ⁇ O)Q b , —(CH 2 ) r C( ⁇ O)OQ b , —(CH 2 ) r C( ⁇ O)NQ a Q a , —S(O) p Q c , —(CH 2 )C 3-6 carbocyclyl substituted with 0-3 Q e , and —(CH 2 ) r heterocyclyl substituted with 0-3 Q e ;
- each Q 11 is independently selected from H, halogen, ⁇ O, CN, NO 2 , —OQ b , —S(O) p Q c , —C( ⁇ O)Q b , —(CQ d Q d ) r NQ a Q a , —(CQ d Q d ) r C( ⁇ O)NQ a Q a , —NQ a C( ⁇ O)Q b , —NQ a C( ⁇ O)OQ b , —OC( ⁇ O)NQ a Q a , —NQ a C( ⁇ O)NQ a Q a , —(CQ d Q d ) r C( ⁇ O)OQ b , —S(O) 2 NQ a Q a , —NQ a S(O) 2 NQ a Q a , —NQ a S(O) 2 Q c ,
- each Q a is independently selected from H, CN, C 1-6 alkyl substituted with 0-5 Q e , C 2-6 alkenyl substituted with 0-5 Q e , C 2-6 alkynyl substituted with 0-5 Q e , —(CH 2 ) r C 3-10 carbocyclyl substituted with 0-5 Q e , and —(CH 2 ) r -heterocyclyl substituted with 0-5 Q e ; or two instances of Q a together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Q e ;
- each Q b is independently selected from H, C 1-6 alkyl substituted with 0-5 Q e , C 2-6 alkenyl substituted with 0-5 Q e , C 2-6 alkynyl substituted with 0-5 Q e , —(CH 2 ) r C 3-10 carbocyclyl substituted with 0-5 Q e , and —(CH 2 ) r -heterocyclyl substituted with 0-5 Q e ;
- each Q C is independently selected from C 1-6 alkyl substituted with 0-5 Q e , C 2-6 alkenyl substituted with 0-5 Q e , C 2-6 alkynyl substituted with 0-5 Q e , C 3-6 carbocyclyl substituted with 0-5 Q e , and heterocyclyl substituted with 0-5 Q e ;
- each Q d is independently selected from H and C 1-4 alkyl substituted with 0-5 Q e ;
- each Q e is independently selected from C 1-6 alkyl substituted with 0-5 Q f , C 2-6 alkenyl, C 2-6 alkynyl, —(CH 2 ) r —C 3-6 cycloalkyl, halogen, CN, NO 2 , ⁇ O, C 02 H, —(CH 2 ) r OQ f , SQ f , and —(CH 2 ) r NQ f Q f ;
- each Q f is independently selected from H, F, C 1-5 alkyl, C 3-6 cycloalkyl, and phenyl, or two instances of Q f together with the nitrogen atom to which they are both attached form a heterocyclic ring optionally substituted with C 1-4 alkyl;
- each p is independently 0, 1, or 2;
- each r is independently 0, 1, 2, 3, or 4,
- X 2 is selected from —NH—, —CH 2 —, —CH(Ph)-, —CH 2 CH 2 —, —CH 2 CH(Ph)-, —CH ⁇ CH—, —CH 2 OCH 2 —, —CH 2 NHC(O)—, —CH 2 NHC(O)CH(Ph)- and —CH 2 NHC(O)CH 2 —,
- Q′ 1 is selected from Q′ 6 , halogen, —CF 3 , —OCF 3 , —OQ′ 6 , —CO 2 Q′ 6 , —SO 2 N(Q′ 6 ) 2 , and —NO 2 ;
- Q′ 2 , Q′ 3 , Q′ 4 and Q′ 5 are independently selected from H, halogen, C 1-6 alkoxy, —NH 2 , —NHQ′ 6 , —CN, —NO 2 , —OCF 3 , and —CO 2 Q′ 6 ; wherein
- Q′ 6 is selected from H and C 1-6 alkyl; and wherein when X 2 is —CH(Ph)-, —CH 2 CH(Ph)- or —CH 2 NHC(O)CH(Ph)-, then Q′ 2 , Q′ 3 , Q′ 4 and Q′ 5 are H,
- a CK1 inhibitor for use according to the invention can also be SR-3029.
- the CK1 inhibitor for use according to the invention is of general formula (Ia) or (Ib), or isomers or pharmaceutically acceptable salts thereof, wherein X, Y, A, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , n, t, u, A′, L, R′ 1 , R′ 2 , R′ 3 , R′ 4 , R′ 5 , Z, R 8 , R 9 , m, and q are as defined above.
- CK1 inhibitors of this class are known per se in the art and have their structure and synthesis described in more detail in, for example, WO2011051858, WO2012085721, and WO2015119579.
- CK1 inhibitors of this class comprise an azole core.
- the invention provides casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase 1 inhibitor is from the class comprising an azole core.
- these CK1 inhibitors for use comprise a 4-aryl-5-heteroaryl-1-heterocycloalkyl-imidazole moiety.
- a single R 4 is present, para to the azole core; more preferably this R 4 is F.
- the casein kinase 1 inhibitor for use according to the invention comprises an azole core linked to a 4-halophenyl moiety, preferably a 4-fluorophenyl moiety.
- Highly preferred compounds comprising an azole core are compounds D, E, F, and G as shown in table 3; compound D is even more preferred.
- the CK1 inhibitor for use according to the invention is of general formula (2a) or (2b), or isomers or pharmaceutically acceptable salts thereof, wherein R 5 , R 6 , R′′ 2 , R′′ 3 , A′′B, L′′ R a , R b , R c , R d , R e , R e2 , R f , R′′ 4 , R′′ 5 , X 1 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 , Q 11 , Q a , Q b , Q c , Q d , Q e Q f , r, and P are as defined above.
- CK1 inhibitors of this class are known per se in the art and have their structure and synthesis described in more detail in, for example, WO2009016286 and WO2015195880.
- CK1 inhibitors of this class comprise a cyclo-3-pyrid-4-yl)imidazo[1,2-b]pyridazine core.
- the invention provides casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase 1 inhibitor is from the class comprising a cyclo-3-pyrid-4-yl)imidazo[1,2-b]pyridazine core.
- the casein kinase 1 inhibitor for use according to the invention comprises an azole core or comprises a cyclo-3-pyrid-4-yl)imidazo[1,2-b]pyridazine core.
- the casein kinase 1 inhibitor for use according to the invention is of general formula (1a), (1 b), (2a), or (2b), wherein X, Y, A, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , n, t, u, A′, L, R′ 1 , R′ 2 , R′ 3 , R′ 4 , R′ 5 , Z, R 8 , R 9 , m, q, R′′ 2 , R′′ 3 , A′′, B, L′′, R a , R b , R c , R d , R e , R e2 , R f , R′′ 4 , R′′ 5 , X 1 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 , Q 9 , Q 10 , Q 11 , Q a , Q b), wherein X,
- the CK1 inhibitor for use according to the invention is of general formula (3) or isomers or pharmaceutically acceptable salts thereof, wherein X 2 , Q′ 1 , Q 12 , Q 13 , Q′ 4 , Q′ 5 , and Q′ 6 are as defined above.
- CK1 inhibitors of this class are known in the art per se and have their structure and synthesis described in more detail in, for example, EP2949651.
- X 2 is preferably —CH 2 —, —CH 2 CH 2 —, —CH(Ph)-, or —NH—, most preferably —CH 2 —;
- Q′ 1 is preferably —CF 3 , halogen, or C 1-6 alkyl, more preferably —CF 3 ;
- Q′ 2 , Q 13 , Q′ 4 and Q′ 5 are preferably independently selected from H, halogen, and C 1-5 alkoxy. More preferably, when a CK1 inhibitor is of general formula (3), X 2 is —CH 2 — and Q′ 1 is —CF 3 .
- the invention provides the CK1 inhibitor for use according to the invention, wherein the casein kinase 1 inhibitor is selected from the group consisting of compounds A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, SR-3029, PF-670462, and PF-5006739.
- Compound O is also known as TA-01.
- the casein kinase 1 inhibitor is selected from the group consisting of compounds A, B, C, D, E, F, G, H, O, SR-3029, PF-670462, and PF-5006739.
- the casein kinase 1 inhibitor is selected from the group consisting of compounds A, D, F, G, H, O, SR-3029, PF-670462, and PF-5006739. Even more preferably, the casein kinase 1 inhibitor is selected from the group consisting of compounds A, D, F, G, H, SR-3029, PF-670462, and PF-5006739. Most preferably, the casein kinase 1 inhibitor is selected from the group consisting of compounds A, D, F, G, H, SR-3029, and PF-5006739. It is also highly preferred that the casein kinase 1 inhibitor be compound D. It is also highly preferred that the casein kinase 1 inhibitor is selected from the group consisting of compounds A, B, and H, more preferably it is compound H.
- the CK1 inhibitor for use according to the invention is an inhibitory antibody, an antisense oligonucleotide, or an oligonucleotide that prevents expression of CK1.
- casein kinase 1 The various isoforms of casein kinase 1 are known to have different functions. Within the set of known isoforms, CK1 ⁇ and CK1 ⁇ are preferred targets for the CK1 inhibitors according to the invention. These two isoforms are known to be closely related to one another. For example, CK1 ⁇ and CK1 ⁇ were thought to be generally redundant in circadian cycle length and protein stability, but were later revealed to have slightly different functions (Etchegaray J P et al., 2009, DOI:10.1128/MCB.00338-09).
- preferred embodiments of the invention provide a casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor inhibits at least casein kinase 1 ⁇ or casein kinase 1 ⁇ .
- the casein kinase inhibitor is specific for casein kinase 1 ⁇ or for casein kinase 1 ⁇ .
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1 ⁇ .
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1 ⁇ .
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1 ⁇ .
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1 ⁇ .
- the invention provides a casein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1 ⁇ 1, 1 ⁇ 2, and/or 1 ⁇ 3.
- a CK1 inhibitor is specific for a particular isoform when it at least partially inhibits that particular isoform. Preferably, it inhibits that particular isoform more efficiently than other isoforms.
- CK1 inhibitors suitable for use in the invention preferably have an IC 50 on a casein kinase of at most 650 nM, preferably of at most 500 nM, more preferably of at most 400 nM, even more preferably of at most 300 nM, still more preferably of at most 250 nM, still more preferably of at most 200 nM, most preferably of at most 100 nM.
- the CK1 inhibitor has an IC 50 on at least casein kinase 1 ⁇ or casein kinase 1 ⁇ of at most 450 nM, more preferably of at most 400 nM, even more preferably of at most 350 nM, more preferably still of at most 200 nM, even more preferably still of at most 100 nM, most preferably of at most 50 nM.
- the CK1 inhibitor has an IC 50 on casein kinase 1 ⁇ of at most 350 nM, preferably at most 100 nM, more preferably at most 35 nM, most preferably at most 25 nM.
- IC 50 values for CK1 can be determined using any method known in the art, for example as described in WO2011051858, WO2015119579, EP2949651, or US2005/0131012. Suitable assays can use a peptide substrate and a readout method, for example using the Kinase-Glo assay (Promega, part #V672A).
- the invention provides a composition comprising at least one CK1 inhibitor, and a pharmaceutically acceptable excipient, for use according to the invention.
- a composition for use according to the invention is referred to herein as a composition for use according to the invention.
- Preferred compositions for use according to the invention are pharmaceutical compositions.
- the composition for use according to the invention is formulated for oral, sublingual, parenteral, intravascular, intravenous, subcutaneous, or transdermal administration, optionally for administration by inhalation; preferably for oral administration. More features and definitions of administration methods are provided in the section on formulation and administration.
- compositions comprising the compounds as described above can be prepared as a medicinal or cosmetic preparation or in various other media, such as foods for humans or animals, including medical foods and dietary supplements.
- a “medical food” is a product that is intended for the specific dietary management of a disease or condition for which distinctive nutritional requirements exist.
- medical foods may include vitamin and mineral formulations fed through a feeding tube (referred to as enteral administration).
- enteral administration a feeding tube
- a “dietary supplement” shall mean a product that is intended to supplement the human diet and is typically provided in the form of a pill, capsule, tablet or like formulation.
- a dietary supplement may include one or more of the following ingredients: vitamins, minerals, herbs, botanicals; amino acids, dietary substances intended to supplement the diet by increasing total dietary intake, and concentrates, metabolites, constituents, extracts or combinations of any of the foregoing.
- Dietary supplements may also be incorporated into food, including, but not limited to, food bars, beverages, powders, cereals, cooked foods, food additives and candies; or other functional foods designed to promote health or to prevent or halt the progression of a degenerative disease associated with DUX4 expression or activity.
- compositions thus may be compounded with other physiologically acceptable materials that can be ingested including, but not limited to, foods.
- compositions for use as described herein may be administered orally in combination with (the separate) administration of food.
- compositions may be administered alone or in combination with other pharmaceutical or cosmetic agents and can be combined with a physiologically acceptable carrier thereof.
- the compounds described herein can be formulated as pharmaceutical or cosmetic compositions by formulation with additives such as pharmaceutically or physiologically acceptable excipients carriers, and vehicles.
- Suitable pharmaceutically or physiologically acceptable excipients, carriers and vehicles include processing agents and drug delivery modifiers and enhancers, such as, for example, calcium phosphate, magnesium stearate, talc, monosaccharides, disaccharides, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, dextrose, hydroxypropyl-P-cyclodextrin, polyvinylpyrrolidinone, low melting waxes, ion exchange resins, and the like, as well as combinations of any two or more thereof.
- Other suitable pharmaceutically acceptable excipients are described in “Remington's Pharmaceutical Sciences,” Mack Pub. Co., New Jersey (1991), and “Remington: The Science and Practice of Pharmacy,” Lippincott Williams & Wilkins, Philadelphia, 20th edition (2003), 21 st edition (2005) and 22 nd edition (2012), incorporated herein by reference.
- p38 mitogen-activated protein kinases are a class of mitogen-activated protein kinases (MAPKs) that are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation, cytokine secretion, apoptosis and autophagy. Persistent activation of the p38 MAPK pathway in muscle satellite cells (muscle stem cells) due to ageing is known to impair muscle regeneration.
- the CK1 inhibitor is also a p38 inhibitor.
- the invention also provides p38 inhibitors for use in the treatment of a disease or condition associated with DUX4 expression, wherein the p38 inhibitor reduces DUX4 expression.
- p38 inhibitors are known in the art. Except for exact molecular structure, terms and features of use according to the invention are as defined for the CK1 inhibitors for use according to the invention.
- Suitable p38 inhibitors are ARRY-797 (CHEMBL1088750, CAS: 1036404-17-7), LOSMAPIMOD (CHEMBL1088752, CAS: 585543-15-3), AZD-7624 (CHEMBL9960, CAS: 1095004-78-6), DORAMAPIMOD (CHEMBL103667), NEFLAMAPIMOD (CHEMBL119385, CAS: 209410-46-8), TAK-715 (CHEMBL363648, CAS: 303162-79-0), TALMAPIMOD (CHEMBL514201, CAS: 309913-83-5), PAMAPIMOD (CHEMBL1090089, CAS: 449811-01-2), VX-702 (CHEMBL1090090, CAS: 745833-23-2), PH-797804 (CHEMBL1088751, CAS: 586379-66-0), BMS-582949 (CHEMBL1230065, CAS: 623152-17-0), PF-03715455 (CHEMBL
- compositions for use according to the invention may be manufactured by processes well known in the art; e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes, which may result in liposomal formulations, coacervates, oil-in-water emulsions, nanoparticulate/microparticulate powders, or any other shape or form.
- Compositions for use in accordance with the invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent on the route of administration chosen.
- the CK1 inhibitors and compositions for use according to the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
- physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
- penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- CK1 inhibitors and compositions for use are formulated by combining them with pharmaceutically acceptable carriers well known in the art, or by using them as a food additive.
- Such strategies enable the CK1 inhibitors and compositions for use according to the invention to be formulated as tablets, pills, dragées, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject to be treated.
- Preparations or pharmacological preparations for oral use may be made with the use of a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragée cores.
- Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP).
- fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol
- cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose
- disintegrating agents may be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Additionally, coformulations may be made with uptake enhancers known in the art.
- Dragée cores are provided with suitable coatings.
- suitable coatings For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, PVP, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solution, and suitable organic solvents or solvent mixtures.
- Polymethacrylates can be used to provide pH-responsive release profiles so as to pass the stomach.
- Dyestuffs or pigments may be added to the tablets or dragée coatings for identification or to characterize different combinations of active CK1 inhibitor doses.
- CK1 inhibitors and compositions which can be administered orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules may contain the active ingredients in admixture with a filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
- the CK1 inhibitors and compositions for use according to the invention may be administered in the form of tablets or lozenges formulated in a conventional manner.
- the CK1 inhibitors and compositions for use according to the invention may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. In this way it is also possible to target a particular organ, tissue, tumor site, site of inflammation, etc.
- Formulations for infection may be presented in unit dosage form, e.g., in ampoules or in multi-dose container, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. This formulation is preferred because it enables specific targeting of muscle tissue.
- compositions for parenteral administration include aqueous solutions of the compositions in water soluble form. Additionally, suspensions may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compositions to allow for the preparation of highly concentrated solutions.
- one or more components of the composition may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- a suitable vehicle e.g., sterile pyrogen-free water
- compositions for use according to the invention may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- the CK1 inhibitors and compositions for use according to the invention may also be formulated as a depot preparation.
- Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
- they may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil), or as part of a solid or semi-solid implant that may or may not be auto-degrading in the body, or ion exchange resins, or one or more components of the composition can be formulated as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- suitable polymeric materials are known to the person skilled in the art and include PLGA and polylactones such as polycaproic acid.
- compositions for use according to the invention also may comprise suitable solid or gel phase carriers or excipients.
- suitable solid or gel phase carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- compositions for use according to the invention may also be comprised in a transdermal patch.
- Preferred transdermal patches for use according to the invention are selected from single-layer drug-in-adhesive patch, or multi-layer drug-in-adhesive patch, or reservoir patch, or matrix patch, or vapour patch.
- compositions for use according to the invention include CK1 inhibitors and compositions wherein the active ingredients are contained in an amount effective to achieve their intended purposes. More specifically, a therapeutically effective amount means an amount of compound effective to prevent, stabilize, alleviate, revert, or ameliorate causes or symptoms of disease, or prolong the survival, mobility, or independence of the subject being treated. Determination of a therapeutically effective amount is within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any CK1 inhibitors and compositions used in the invention, the therapeutically effective amount or dose can be estimated initially from cell culture assays, for example as exemplified herein. Dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl, et al., 1975, in “The Pharmacological Basis of Therapeutics” Ch. 1 p. 1).
- the amount of CK1 inhibitors and compositions administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.
- a composition for use according to the invention may be supplied such that a CK1 inhibitor for use according to the invention and one or more of the other components as defined herein are in the same container, either in solution, in suspension, or in powder form.
- a composition for use according to the invention may also be provided with all components provided separately from one another, for example to be mixed with one another prior to administration, or for separate or sequential administration.
- Various packaging options are possible and known to the ones skilled in the art, depending, among others, on the route and mechanism of administration.
- the invention provides a casein kinase 1 inhibitor for use according to the invention, or a composition for use according to the invention, characterized in that it is administered orally, sublingually, intravascularly, intravenously, subcutaneously, or transdermally, or optionally by inhalation; preferably orally.
- an “effective amount” of a CK1 inhibitor or composition is an amount which, when administered to a subject, is sufficient to reduce or eliminate either one or more symptoms of a disease, or to retard the progression of one or more symptoms of a disease, or to reduce the severity of one or more symptoms of a disease, or to suppress the manifestation of a disease, or to suppress the manifestation of adverse symptoms of a disease.
- An effective amount can be given in one or more administrations.
- the “effective amount” of that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host to which the active ingredient is administered and the particular mode of administration.
- the unit dosage chosen is usually fabricated and administered to provide a desired final concentration of the compound in the blood.
- the effective amount i.e. the effective total daily dose
- a total daily dose of about 0.01 to 2000 mg, or about 0.01 to 1000 mg, or about 0.01 to 500 mg, or about 5 to 1000 mg, or about 20 to 800 mg, or about 30 to 800 mg or about 30 to 700 mg, or about 20 to 700 mg or about 20 to 600 mg, or about 30 to 600 mg, or about 30 to 500 mg, about 30 to 450 mg or about 30 to 400 mg, or about 30 to 350 mg or about 30 to 300 mg or about 50 to 600 mg, or about 50 to 500 mg, or about 50 to 450 mg, or about 50 to 400 mg or about 50 to 300 mg, or about 50 to 250 mg, or about 100 to 250 mg or about 150 to 250 mg.
- the effective amount is about 200 mg.
- the invention provides a casein kinase 1 inhibitor for use according to the invention, or a composition for use according to the invention, characterized in that it is administered to a subject in an amount ranging from 0.1 to 1500 mg/day, preferably from 0.1 to 1000 mg/day, more preferably from 0.1 to 400 mg/day, still more preferably from 0.25 to 150 mg/day, such as about 100 mg/day.
- the effective amount of the compound, preferably for adults, preferably is administered per kg body weight.
- the total daily dose, preferably for adults, is therefore about 0.05 to about 40 mg/kg, about 0.1 to about 20 mg/kg, about 0.2 mg/kg to about 15 mg/kg, or about 0.3 mg/kg to about 15 mg/kg or about 0.4 mg/kg to about 15 mg/kg or about 0.5 mg/kg to about 14 mg/kg or about 0.3 mg/kg to about 14 mg/kg or about 0.3 mg/kg to about 13 mg/kg or about 0.5 mg/kg to about 13 mg/kg or about 0.5 mg/kg to about 11 mg/kg.
- the total daily dose for children is preferably at most 200 mg. More preferably the total daily dose is about 0.1 to 200 mg, about 1 to 200 mg, about 5 to 200 mg about 20 to 200 mg about 40 to 200 mg, or about 50 to 200 mg. Preferably, the total daily dose for children is about 0.1 to 150 mg, about 1 to 150 mg, about 5 to 150 mg about 10 to 150 mg about 40 to 150 mg, or about 50 to 150 mg. More preferably, the total daily dose is about 5 to 100 mg, about 10 to 100 mg, about 20 to 100 mg about 30 to 100 mg about 40 to 100 mg, or about 50 to 100 mg. Even more preferably, the total daily dose is about 5 to 75 mg, about 10 to 75 mg, about 20 to 75 mg about 30 to 75 mg about 40 to 75 mg, or about 50 to 75 mg.
- dosages which can be used are an effective amount of the compounds for use according to the invention within the dosage range of about 0.1 ⁇ g/kg to about 300 mg/kg, or within about 1.0 ⁇ g/kg to about 40 mg/kg body weight, or within about 1.0 ⁇ g/kg to about 20 mg/kg body weight, or within about 1.0 ⁇ g/kg to about 10 mg/kg body weight, or within about 10.0 ⁇ g/kg to about 10 mg/kg body weight, or within about 100 ⁇ g/kg to about 10 mg/kg body weight, or within about 1.0 mg/kg to about 10 mg/kg body weight, or within about 10 mg/kg to about 100 mg/kg body weight, or within about 50 mg/kg to about 150 mg/kg body weight, or within about 100 mg/kg to about 200 mg/kg body weight, or within about 150 mg/kg to about 250 mg/kg body weight, or within about 200 mg/kg to about 300 mg/kg body weight, or within about 250 mg/kg to about 300 mg/kg body weight.
- Other dosages which can be used are about 0.01 mg/kg body weight, about 0.1 mg/kg body weight, about 1 mg/kg body weight, about 10 mg/kg body weight, about 20 mg/kg body weight, about 30 mg/kg body weight, about 40 mg/kg body weight, about 50 mg/kg body weight, about 75 mg/kg body weight, about 100 mg/kg body weight, about 125 mg/kg body weight, about 150 mg/kg body weight, about 175 mg/kg body weight, about 200 mg/kg body weight, about 225 mg/kg body weight, about 250 mg/kg body weight, about 275 mg/kg body weight, or about 300 mg/kg body weight.
- Compounds or compositions for use according to the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided dosage of two, three or four times daily.
- “subject”, “individual”, or “patient” is understood to be an individual organism, preferably a vertebrate, more preferably a mammal, even more preferably a primate and most preferably a human.
- the human is an adult, e.g. a person that is 18 years or older.
- the average weight of an adult person is 62 kg, although the average weight is known to vary between countries. In another embodiment of the invention the average weight of an adult person is therefore between about 50-90 kg.
- the effective dose as defined herein is not confined to subjects having an average weight.
- the subject has a BMI (Body Mass Index) between 18.0 to 40.0 kg/m 2 , and more preferably a BMI between 18.0 to 30.0 kg/m 2 .
- the subject to be treated is a child, e.g. a person that is 17 years or younger.
- the subject to be treated may be a person between birth and puberty or between puberty and adulthood. It is herein understood that puberty starts for females at the age of 10-11 years and for males at the age of 11-12 year.
- the subject to be treated may be a neonate (first 28 days after birth), an infant (0-1 year), a toddler (1-3 years), a preschooler (3-5 years); a school-aged child (5-12 years) or an adolescent (13-18 years).
- the CK1 inhibitor or composition may be administered once a day, or once every two, three, four, or five days. However preferably, the compound may be administered at least once a day.
- the invention pertains to a casein kinase 1 inhibitor for use according to the invention, or a composition for use according to the invention, characterized in that it is administered to a subject 4, 3, 2, or 1 times per day or less, preferably 1 time per day.
- the total daily dose may be administered as a single daily dose.
- the compound is administered at least twice daily.
- the compound as defined herein may be administered once, twice, three, four or five times a day.
- the total daily dose may be divided over the several doses (units) resulting in the administration of the total daily dose as defined herein.
- the compound is administered twice daily. It is further understood that the terms “twice daily”, “bid” and “bis in die” can be used interchangeable herein.
- the total daily dose is divided over several doses per day. These separate doses may differ in amount. For example for each total daily dose, the first dose may have a larger amount of the compound than the second dose or vice versa.
- the compound is administered in similar or equal doses. Therefore in a most preferred embodiment, the compound is administered twice daily in two similar or equal doses.
- the total daily dose of the compound as defined herein above is administered in at least two separate doses.
- the interval between the administration of the at least two separate doses is at least about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours, preferably the interval between the at least two separate doses is at least about 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours and more preferably the interval between the at least two separate doses is at least about 8, 9, 10, 11 or 12 hours.
- the use is provided of either a CK1 inhibitor according to the invention, or of a composition according to the invention.
- Said use is for the treatment of a disease or condition associated with DUX4 expression of a subject in need thereof, and comprises administration to the subject of an effective dose of a CK1 inhibitor or composition according to the invention, wherein the CK1 inhibitor or composition are as defined earlier herein.
- the use is provided of either a CK1 inhibitor according to the invention, or of a composition according to the invention.
- Said use is for the treatment of muscular dystrophy or cancer in a subject in need thereof, and comprises administration to the subject of an effective dose of a CK1 inhibitor or composition according to the invention, wherein the CK1 inhibitor or composition are as defined earlier herein. Further features and definitions are preferably as defined elsewhere herein, particularly for diseases or conditions to be treated.
- One aspect of the invention provides an in vivo, in vitro, or ex vivo method for reducing DUX4 expression, the method comprising the step of contacting a cell with a CK1 inhibitor as defined earlier herein, or with a composition as defined earlier herein.
- said method is for treating a disease or condition associated with DUX4 expression, such as a muscular dystrophy or cancer, most preferably said disease or condition is facioscapulohumeral muscular dystrophy (FSHD).
- the method preferably comprises use as defined earlier herein.
- Preferred methods comprise contacting a cell with a CK1 inhibitor composition as defined earlier herein.
- contacting a cell with a CK1 inhibitor or a composition can comprise adding such a CK1 inhibitor or composition to a medium in which a cell is cultured.
- Contacting a cell with a CK1 inhibitor or a composition can also comprise adding such a CK1 inhibitor or composition to a medium, buffer, or solution in which a cell is suspended, or which covers a cell.
- Other preferred methods of contacting a cell comprise injecting a cell with a CK1 inhibitor or composition, or exposing a cell to a material comprising a CK1 inhibitor or composition according to the invention. Further methods for administration are defined elsewhere herein.
- Preferred cells are cells known to express DUX4, cells suspected of expressing DUX4, or cells known to be affected by a disease or condition as defined earlier herein.
- the method is an in vitro method. In a further embodiment of this aspect, the method is an ex vivo method. In a further embodiment of this aspect, the method is an in vivo method. In a preferred embodiment of this aspect, the method is an in vitro or an ex vivo method.
- the cell may be a cell from a sample obtained from a subject.
- a sample may be a sample that has been previously obtained from a subject.
- samples may have been previously obtained from a human subject.
- samples may have been obtained from a non-human subject. In a preferred embodiment of this aspect, obtaining the sample is not part of the method according to the invention.
- the method according to the invention is a method for reducing DUX4 expression in a subject in need thereof, the method comprising the step of administering an effective amount of a CK1 inhibitor as defined earlier herein, or a composition as defined earlier herein.
- the method is for the treatment of a disease or condition associated with DUX4 expression, preferably a muscular dystrophy or cancer, most preferably said disease or condition is facioscapulohumeral muscular dystrophy (FSHD). Further features and definitions are preferably as defined elsewhere herein.
- the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.
- the verb “to consist” may be replaced by “to consist essentially of” meaning that a combination or a composition as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention.
- reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
- the indefinite article “a” or “an” thus usually means “at least one”.
- Physiological conditions are known to a person skilled in the art, and comprise aqueous solvent systems, atmospheric pressure, pH-values between 6 and 8, a temperature ranging from room temperature to about 37° C. (from about 20° C. to about 40° C.), and a suitable concentration of buffer salts or other components.
- a substance as a medicament as described in this document can also be interpreted as the use of said substance in the manufacture of a medicament.
- a substance is used for treatment or as a medicament, it can also be used for the manufacture of a medicament for treatment.
- Products for use as a medicament described herein can be used in methods of treatments, wherein such methods of treatment comprise the administration of the product for use.
- CK1 inhibitors or compositions according to this invention are preferably for use in methods or uses according to this invention.
- expression is considered to be the transcription of a gene into functional mRNA, leading to a polypeptide such as an enzyme or transcription factor or for example DUX4 polypeptide.
- a polypeptide can assert an effect or have an activity.
- increased or decreased expression of a polypeptide can be considered an increased or decreased level of mRNA encoding said polypeptide, an increased or decreased level or amount of polypeptide molecules, or an increased or decreased total activity of said polypeptide molecules.
- an increased or decreased expression of a polypeptide results in an increased or decreased activity of said polypeptide, respectively, which can be caused by increased or decreased levels or amounts of polypeptide molecules.
- a reduction of DUX4 expression is a reduction of transcription of a DUX4 gene, destabilisation or degradation of DUX4 mRNA, reduction of the amount of DUX4 polypeptide molecules, reduction of DUX4 polypeptides molecule activity, destabilisation or degradation of DUX4 polypeptide, or combinations thereof.
- a destabilized mRNA leads to lower expression of its encoded polypeptide, possibly it cannot lead to such expression.
- a degraded mRNA is destroyed and cannot lead to expression of its encoded polypeptide.
- a destabilized polypeptide asserts less of an effect or has lower activity than the same polypeptide that has not been destabilized, possibly it asserts no effect or has no activity.
- a destabilized polypeptide can be denatured or misfolded. A degraded polypeptide is destroyed and does not assert an effect or have an activity.
- a decrease or increase of a parameter to be assessed means a change of at least 5% of the value corresponding to that parameter. More preferably, a decrease or increase of the value means a change of at least 10%, even more preferably at least 20%, at least 30%, at least 40%, at least 50%, at least 70%, at least 90%, or 100%. In this latter case, it can be the case that there is no longer a detectable value associated with the parameter.
- the word “about” or “approximately” when used in association with a numerical value preferably means that the value may be the given value (of 10) more or less 1% of the value.
- FIG. 1 Illustration of a DUX4 immunocytochemistry staining in FSHD myotubes from 2 different donors after 3 days of differentiation. DUX4-positive nuclei clusters are clearly stained, while DUX4-negative nuclei are not stained.
- the histograms show the intensity of the immunofluorescent signals (increasing intensity on the X-axis) after staining with the DUX4 and secondary antibody (top) or the secondary antibody alone (bottom); the arrows on top show the background signal (leftward arrow) or specific DUX4 signal (rightward arrow);
- FIG. 2 Script-based image analysis includes nuclei identification, myotube identification, detection of nuclei inside or outside myotube borders (used to calculate fusion index), DUX4 positive nuclei and clusters, myotube area, myotube width, and myotube skeleton length.
- FIG. 3 Values of the primary screening assay format in 384-well format. Three independent experiments are shown, illustrating the assay window obtained using script-based quantification of the number of DUX4-expressing nuclei in differentiating primary myotubes after 3 days in differentiation medium.
- the assay window is defined by the DUX4 signal and the background signal of the secondary antibody (representing the signal in total absence of DUX4).
- FIG. 4 (A): Schematic representation of the screening assay protocol. Myoblasts were seeded at day ⁇ 1 and medium was changed to differentiation medium at day zero. Cells were allowed to differentiate for 3 days. Compounds were added 15 h prior to fixation.
- FIG. 5 Consulation-response curves for various CK1 inhibitors for the different readouts.
- the DUX4 nuclei count, DUX4 intensity, fusion index, and total nucleus count were measured after 15 hour of compound exposure.
- G results for compound G; Structural formulae are shown in example 5.
- FIG. 6 (A): Schematic representation of the assay protocol. Myoblasts were seeded at day ⁇ 1 and medium was changed to differentiation medium at day zero. Cells were allowed to differentiate for 3 days. Compounds were added for 15 h or 72 h prior to fixation. For the 15 h treatment, compounds are administered when differentiation already progressed significantly. In case of 72 h treatment, compounds were incubated during the full differentiation phase. The other panels show concentration-response curves for a BET inhibitors (B, C) or for beta2 adrenoreceptor agonists (D, E, F, G, H, I) for the different readouts.
- BET inhibitors BET inhibitors
- beta2 adrenoreceptor agonists D, E, F, G, H, I
- DUX4 nuclei count, DUX4 intensity, fusion index, and total nuclei count were assessed after 15 h or after 72 h of treatment.
- J micrographs of myotubes after 72 hours in differentiation medium while exposed to the a beta2 adrenoreceptor agonist (formoterol);
- K, L results for both 15 hour and 72 hour exposure to a CK1 inhibitor (PF-670462).
- the inventors succeeded in establishing a sensitive DUX4 detection method in primary myotubes and used this to build a high-content assay for quantitative assessment of endogenous DUX4 expression.
- the method was developed into a validated phenotypic screening platform for automated detection and quantification of endogenous DUX4 expression.
- Mechanisms underlying DUX4 repression may involve many interacting proteins, favouring such a phenotypic approach.
- it is pathway/target independent (and thus not hypothesis-driven) and provides additional information on cell toxicity or interference with muscle differentiation.
- a quantitative assay readout was developed based on script-based image analysis.
- Cells were stained according to example 1, also using DAPI to detect myonuclei and an antibody against myosin heavy chain (MHC) to visualize the formation of myotubes.
- MHC myosin heavy chain
- an automated script was developed, enabling the detection of nuclei, myotube borders and DUX4 signals, with the script also detecting artefacts to reduce false positive signals.
- the script enabled multiple validated readouts including the number of DUX4 positive nuclei and nuclei clusters, the fusion index, myotube area, myotube width and myotube skeleton length (see FIG. 2 ). Additionally, the total nuclei count was included as a measure of cell loss or compound toxicity.
- the script was validated by evaluating endogenous DUX4 expression in the primary myotubes, and results were in line with literature values, with the number of DUX4 expressing nuclei being ⁇ 0.5%.
- the assay has been further matured to make it suitable for screening purposes.
- the assay quality was dependent on the donor cell line.
- the number of DUX4 positive nuclei was characteristic for each donor cell line, and was consistent between experiments.
- the best performing cell lines in terms of number of DUX4 expressing nuclei, reproducibility and Z-factor have been selected for miniaturization of the assay to a 384-well format, thus allowing for automated screening of large compound libraries.
- a cell line with 2 D4Z4 repeats was selected for the primary screening, while a cell line with 6 D4Z4 repeats was selected for later validation.
- the primary screening assay had a Z-factor of 0.6, which represents an excellent assay (Zhang et al., 1999, doi:10.1177/108705719900400206; see FIG. 3 ).
- a compound library containing approximately 5000 annotated compounds was screened in the high-content assay.
- primary myoblasts were seeded in 384 well plates after which the growth medium was replaced with differentiation medium.
- cells were treated with library compounds (in duplicate on different screening plates) for 15 h, after which they were fixed and stained with antibodies against DUX4, antibodies against myosin heavy chain (MHC), and with DAPI (4′,6-diamidino-2-phenylindole).
- Script-based analysis provided readouts for DUX4 expression (count of DUX4-positive nuclei or DUX4 intensity) and for potential toxicity (fusion index and nuclei count). Results are shown in FIG. 4 . The majority of the approximately 200 hits was confirmed in an experiment using the same assay and 5 replicates. These compounds were selected for further concentration-response profiling.
- RT-PCR was performed as described by Lemmers et al., (2010, DOI: 10.1126/science.1189044) using oligonucleotides ordered from Applied Biosystems (Foster City, USA), possibly as part of assay kits (for hGAPDH (app): AssayID Hs02758991_g1; for hTRIM43(app): Assay ID Hs00299174_m1; for hMYH2_tv1-2(app): AssayID Hs00430042_m1). Other oligonucleotides are shown in table 1.
- Example 3 CK1 Inhibitors Act as DUX4 Repressors
- the validated assay was used for screening an annotated compound library containing approximately 5000 compounds, to identify novel mechanisms of action for DUX4 repression.
- This library contained compounds with annotated pharmacology, not only entailing the primary pharmacology of the compounds but also potential known polypharmacology.
- the primary screening achieved multiple hits, identifying compounds that reduced the number of DUX4 positive nuclei. Hits were further profiled by establishing concentration-response curves.
- Profiled compounds were annotated as being phenotypically active when they showed a concentration-dependent effect on DUX4 (inhibition or activation). Of these, compounds which showed inhibition of the fusion index or of the total number of nuclei by more than 10% were excluded unless the effect on these readouts was at least 5-fold less potent than the effect on DUX4. As such, from the 4790 unique compounds, 188 compounds were classified as being phenotypically active, 162 of which were DUX4 inhibitors.
- the original target annotations were complemented with additional information that is publically available (literature, patent applications, supplier databases, etc.). All human proteins, and non-human orthologues where a mapping to the human proteome can be established, were considered.
- Each of the 4790 compounds was then evaluated against these target annotations, classifying the target as being active or inactive for a given compound.
- the annotated targets were classified as being active if the compound's potency on the target was ⁇ 10 times the phenotypic potency, otherwise the target was classified as inactive. This analysis revealed that approximately 201 targets were associated with phenotypic activity at a False Discovery Rate of 0.05. An enrichment of compounds annotated as CK1 inhibitors was detected in the group of phenotypically active compounds.
- RNA sequencing approach was followed to determine the expression of the different CK1 isoforms in primary myotubes from 4 different FSHD donors and from 4 different healthy donors. The results show expression of all CK1 isoforms, both in FSHD and in healthy muscle cells. The highest expression is of CK1 ⁇ , CK1 ⁇ and CK1 ⁇ (see table 2).
- casein kinase 1 isoforms in 4 healthy primary cell lines, and in 4 FSHD primary cell lines as determined by RNA sequencing of differentiated myotubes CSNK1A1 CSNK1D CSNK1E CSNK1G1 CSNK1G2 CSNK1G3 FSHD 134 159.1 160.1 49.9 81.8 37.9 FSHD 122.5 138.4 136.8 4.2 79.1 32.7 FSHD 176.7 170.6 120.5 69.8 65.8 41.3 FSHD 118.2 134 105.6 41.8 63.5 38.1 Healthy 138.9 168.5 188 45.8 75.9 35.8 Healthy 143.3 174.1 200.7 49.6 81.8 36.3 Healthy 139.2 192.8 176.1 51.9 71.4 33.2 Healthy 119.1 132.4 122.4 40.6 65.9 40.1
- Table 3 shows the structures of the CK1 inhibitors that are used in FIG. 5 .
- Compounds were incubated with primary FSHD cells for 15 hours, as indicated by the arrow in FIG. 4A . Results are shown in FIG. 5 , while table 3 shows half maximal effective concentrations (EC 50 ) values.
- Table 3 also shows determined IC 50 values in nM for CK1 ⁇ , CK1 ⁇ , CK1 ⁇ , and p38 ⁇ , denoted as CK1 a, d, e, and p38a, respectively.
- Bromo- and Extra-Terminal domain (BET) inhibitors such as the non-selective inhibitor (+)JQ1 or the BRD4-selective inhibitor RVX-208 can inhibit the expression of DUX4 in immortalised differentiated myotube cultures (see US2015087636A1). It was shown there that when differentiating myotubes were exposed to (+)JQ1 at the start of the differentiation process, i.e. from the moment when the growth medium was changed to the differentiation medium, the expression of myosin heavy chain (MYH2, a differentiation marker) was decreased, suggesting that the inhibitor also impacted the differentiation process. Both (+)JQ1 and RVX-208 have been evaluated in the phenotypic assay described in this application.
- Agonists of the beta2 adrenoreceptor have also been reported to inhibit DUX4 expression in differentiating myotubes (Campbell et al., 2017). We evaluated the effect of both BET inhibitors and beta2 adrenoreceptor agonists on the fusion process and compared in to the effect of a CK1 inhibitor.
- FIG. 6A shows the experimental setup of Example 2. Compounds are administered either 15 h before fixation, resembling the original screening protocol, or 72 h before fixation (grey arrow). In the latter case, compounds are present during the whole differentiation process.
- the inventors found that early administration of the BET inhibitor (+)JQ1 ( FIG. 6B , C) and agonists of the beta2 adrenoreceptor ( FIGS. 6D , E, F, G, H, I) inhibit the fusion process and the differentiation of myoblasts into myotubes.
- FIG. 6J shows that no myotube formation can be observed after treatment with a beta2 adrenoreceptor agonist (formoterol).
- the BET inhibitor RVX-208 did not show any effect on DUX4 expression, irrespective of treatment time (not shown). While the fusion index did not appear to be affected at the 15 h timepoint, also with this treatment time the myotube fusion process was affected by these compounds as determined by RT-PCR showing inhibition of the expression of the late differentiation marker myosin heavy chain (Myh; not shown; primers were from hMYH2 kit described above).
- inhibition of CK1 inhibits DUX4. This effect occurs without inhibiting myotube fusion, neither after 15 h nor after 72 h of compound treatment ( FIG. 6K , L).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The present invention relates to compounds for the treatment of diseases related to DUX4 expression, such as muscular dystrophies, wherein the disease is facioscapulohumeral muscular dystrophy (FSHD). It also relates to use of such compounds, or to methods of use of such compounds.
Description
- The present invention relates to compounds for the treatment of diseases related to DUX4 expression, such as muscular dystrophies, wherein the disease is facioscapulohumeral muscular dystrophy (FSHD). It also relates to use of such compounds, or to methods of use of such compounds.
- Serine/threonine kinases (EC 2.7.11.1) are a class of protein kinases that are promising drug targets for small molecule inhibitors. Due to their involvement in signaling pathways in eukaryotic cells, inhibition of serine/threonine kinases is likely to have relevance to the treatment of diseases such as cancer, diabetes, and a variety of inflammatory disorders.
- Casein kinase 1 (CK1, also known as CSNK1) belongs to the serine/threonine kinase family. CK1 isoforms are involved in Wnt signaling, circadian rhythms, nucleo-cytoplasmic shuttling of transcription factors, DNA repair, and DNA transcription (Eide E J, Virshup D M (2001) doi:10.1081/CBI-100103963). In mammals, the enzyme exists in seven isoforms: α, β, γ1, γ2, γ3, δ, and ε, all having a similar kinase domain. Through phosphorylation of different substrate proteins, these isoforms are able to activate, stabilize, inactivate, or destabilize the functions of these substrate proteins, thus regulating their functions. For example, a tumor suppressor factor p53 and an oncogene mdm2, which are both important proteins for controlling abnormal cell growth, are substrates of CK1.
- Mammalian casein kinases such as casein kinase 1γ, casein kinase 1δ, and casein kinase 1ε are important regulators of various cellular growth and survival processes including Wnt signaling, circadian rhythms, and DNA repair. They have a kinase domain similar to those of other isoforms. However, their N-terminal and C-terminal domains are different from those of other isoforms. The C-terminal domain has a plurality of autophosphorylation sites, and is considered to be involved in regulation of autoenzyme activity. Phosphorylation of p53 by casein kinases such as casein kinase 1δ or casein kinase 1ε leads to a change in the interaction between p53 and mdm2. It has also been known that casein kinase 1δ and casein kinase 1ε are involved as a regulatory protein associated with the formation of a spindle as a central body during cell division, and that casein kinase 1δ and casein kinase 1ε are involved in apoptosis mediated by TRAIL (tumor necrosis factor-related apoptosis inducing factor) and Fas. It has been further reported that inhibition of casein kinase 1δ or casein kinase 1ε by a nonselective CK1 inhibitory compound IC261 reduces pancreatic tumor cell growth in vitro and in vivo (Brockschmidt et al., 2008, DOI: 10.1136/gut.2007.123695). Hence, CK1 inhibitors have been developed and investigated for various important phenotypic and therapeutic effects.
- WO2011051858 discloses CK1 inhibitors (both δ and ε) useful in the treatment and/or prevention of diseases and disorders associated with the central nervous system. These inhibitors form a series of substituted imidazole compounds, more specifically a series of 4-aryl-5-heteroaryl-1-heterocycloalkyl-imidazoles and related analogs. Both their synthesis and IC50 values for CK1 δ and ε are reported, the latter of which generally fall in the nanomolar range. A closely related family of CK1 inhibitors is disclosed in WO2012085721.
- WO2015119579 discloses a family that also features an azole core, namely a family of 2,4,5-tri-substituted azole compounds for use as CK1 inhibitors. The inhibitors are used for inducing or enhancing the differentiation of pluripotent stem cells into cardiomyocytes via CK1 inhibition. Synthetic pathways for obtaining the inhibitors are disclosed, and the inhibitors are shown to generally have IC50 values in the nanomolar range as CK1 δ and ε inhibitors.
- EP2949651 discloses a family of derivatives of substituted benzothiazoles that act as CK1 inhibitors, and their use is coupled to the treatment and/or prevention of diseases mediated by CK1, especially inflammatory, neurological, psychiatric, neurodegenerative and/or ophthalmic diseases and certain regenerative processes. Methods of synthesis are provided, and the inhibitors were shown to have nanomolar inhibitory activity on CK1 δ and ε.
- WO2009016286 discloses 6-cycloamino-3-(pyrid-4-yl)imidazo[1,2-b]pyridazine derivatives useful as protein kinase inhibitors, particularly as CK1δ and ε inhibitors. Their synthesis is described in detail, and the capacity of the CK1 inhibitors to inhibit the phosphorylation of casein by casein kinases 1δ and ε was evaluated according to the procedure described in US2005/0131012, revealing IC50 values in the nanomolar range.
- WO2015195880 discloses a family with a similar core, namely substituted bicyclic pyrazoles useful as protein kinase inhibitors. Synthetic strategies for obtaining the inhibitors are described, and the resulting CK1 inhibitors were shown to be effective on CK1 δ and ε. A particular relevance is indicated for the treatment of cancer.
- Facioscapulohumeral muscular dystrophy (FSHD) is the most prevalent hereditary muscular dystrophy. Symptoms begin before the age of 20, with weakness and atrophy of the muscles around the eyes and mouth, shoulders, upper arms and lower legs. Later, weakness can spread to abdominal muscles and sometimes hip muscles with approximately 20% of patients eventually becoming wheelchair-bound. Patients currently rely on treatment of symptoms like pain and fatigue, involving the use of pain medication, cognitive therapy and physical exercise, sometimes supplemented with medical devices used to maintain the patient's mobility. Furthermore, increased scapular function may be obtained by surgical treatment of the scapula. At best, these interventions remain symptomatic in nature and do not affect disease progression, illustrating the need for a therapy that is able to modify disease progression.
- Significant progress has been made in recent years in the understanding of the molecular basis of FSHD. This resulted in the identification and characterization of the fundamental genetic lesions causing FSHD, giving rise to a new pathogenesis model in which epigenetic de-repression of the Double Homeobox 4 (DUX4) retrogene in muscle cells triggers pathology by initiating a transcription deregulation cascade that causes muscle atrophy, inflammation, and oxidative stress, which are key features of the disease. DUX4 shares similarities with transcription factors and it is normally abundantly expressed in germ cells of human testes, while being epigenetically repressed in somatic tissues. There is the wide support for the pathogenesis model in which gain-of-function of the DUX4 gene in muscle cells underlies FSHD etiology (Lemmers et al., 2010, DOI: 10.1126/science.1189044; Sharma et al., 2016, DOI:10.4172/2157-7412.1000303, Snider et al., 2010, DOI: 10.1371/journal.pgen.1001181; Tawil et al., 2014, DOI: 10.1186/2044-5040-4-12).
- FSHD is sometimes divided in two subtypes, namely FSHD1 and FSHD2. FSHD1 is associated with large deletions within a DNA tandem array (D4Z4) that is located in the subtelomeric region of chromosome 4q35. Each of the D4Z4 repeats contains a copy of the DUX4 gene, which is normally silenced in somatic tissues of healthy individuals. Healthy, genetically unaffected individuals are defined as having between 10 and 100 D4Z4 repeat units on both 4q chromosome arms, whereas individuals with FSHD1 have between 1 and 10 D4Z4 repeat units on one 4q chromosome arm. The deletions of D4Z4 repeats that characterize FSHD remove a substantial portion of regulatory chromatin from this region, including several hundreds of histones and a significant amount of CpG-rich DNA. These elements are essential in the establishment of DNA methylation and heterochromatin and their loss significantly alters the epigenetic status of the D4Z4 array. The contraction of D4Z4 is by itself not pathogenic. Only when the contraction of D4Z4 occurs on a disease-permissive 4qA allele, containing a polymorphism that could affect the polyadenylation of the distal DUX4 transcript, the altered epigenetic context is associated with alternative splicing and increased expression of DUX4 in skeletal muscles of FSHD1 patients. In the much rarer form FSHD2, the cause is a mutated form of an epigenetic factor such as SMCHD1 or DNMT3B. In this form as well, the D4Z4 region is hypomethylated and muscle cells are characterized by a de-repressed DUX4 protein. Both forms of FSHD converge on undue DUX4 expression. It has therefore been suggested that FSHD1 and FSHD2 are on a continuum, rather than being separate (Van den Boogaard et al., 2016, DOI: 10.1016/j.ajhg.2016.03.013).
- DUX4 acts as a transcription factor whose expression initiates a transcription cascade resulting in progressive muscle cell dysfunction and death, and ultimately to overt pathology (Kowaljow et al., 2007, DOI: 10.1016/j.nmd.2007.04.002; Vanderplanck et al., 2011, doi: 10.1371/journal.pone.0026820; Geng et al., 2012, DOI: 10.1016/j.devcel.2011.11.013; Yao et al., 2014, DOI: 10.1093/hmg/ddu251; Wallace et al., 2011, DOI: 10.1002/ana.22275). In healthy individuals, DUX4 is expressed in the germline, but is epigenetically silenced in somatic tissues. In FSHD patients, burst-like DUX4 expression in only a small fraction of myofibers causes myocyte death ultimately leading to muscle weakness and wasting (Lemmers et al., 2010). In the simplest terms, DUX4-overexpression is a primary pathogenic insult underlying FSHD, and its repression is a promising therapeutic approach for FSHD. In support of this, short repeat sizes are generally associated with a severe FSHD phenotype. Moderate repeat contractions have a milder and more variable clinical severity. A very rare subtype of FSHD, named FSHD2, is characterized by a moderate repeat contraction (>10 repeats remaining), and is associated with mutations in the SMCHD1 gene or in the DNMT3B gene. Also in FSHD2, the D4Z4 region is hypomethylated and muscle cells are characterized by a de-repressed DUX4 protein. Patients with less than 10 D4Z4 repeat units that also have a mutation in SMCHD1 have a very severe clinical phenotype, illustrating that a combination of repeat size and activity of epigenetic modifiers, both contributing to derepression of DUX4, determines the eventual disease severity in FSHD.
- Campbell et al. (2017, DOI 10.1186/s13395-017-0134-x) screened a selection of chemical compounds with known epigenetic activities as well as the Pharmakon 1600 library composed of compounds that have reached clinical testing to identify molecules that decrease DUX4 expression as monitored by the expression levels of DUX4 target gene mRNAs in immortalized FSHD skeletal muscle cell cultures. They identified several classes of molecules that include inhibitors of the bromodomain and extra-terminal (BET) family of proteins and agonists of the beta-2 adrenergic receptor. Their studies suggest that compounds from these two classes suppress the expression of DUX4 by blocking the activity of bromodomain-containing protein 4 (BRD4) or by increasing cyclic adenosine monophosphate (cAMP) levels, respectively.
- Because of its causative role in FSHD, suppressing DUX4 is a primary therapeutic approach for halting disease progression. This approach could also be useful for treating other diseases, such as cancers including acute lymphoblastic leukemia (Yasuda et al., 2016, doi: 10.1038/ng.3535) and sarcomas (Oyama et al., 2017 DOI: 10.1038/s41598-017-04967-0, Bergerat et al., 2017, DOI: 10.1016/j.prp.2016.11.015), etc. However, the mechanisms behind DUX4 expression are poorly understood and corresponding drug targets are poorly defined. As a result, there is no treatment for FSHD at present, and there is a need for compounds and compositions that can be used to suppress DUX4 expression.
- In a first aspect, the invention provides a
casein kinase 1 inhibitor for use in the treatment of a disease or condition associated with DUX4 expression, wherein thecasein kinase 1 inhibitor reduces DUX4 expression. Preferably, the disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is a muscular dystrophy, most preferably facioscapulohumeral muscular dystrophy (FSHD). Preferably, thecasein kinase 1 inhibitor is characterized in that it is administered to a 4, 3, 2, or 1 times per day or less, preferably 1 time per day. Preferably, thesubject casein kinase 1 inhibitor inhibits at least, and optionally is specific for, casein kinase 1δ. Preferably, the CK1 inhibitor is characterized in that it is administered to a subject in an amount ranging from 0.1 to 400 mg/day, preferably from 0.25 to 150 mg/day. Preferably, thecasein kinase 1 inhibitor is characterized in that it is administered orally, sublingually, intravascularly, intravenously, subcutaneously, or transdermally, preferably orally. Preferably, DUX4 expression is reduced by at least 30%, 40%, 60%, 80%, or more. Preferably, thecasein kinase 1 inhibitor reduces DUX4 expression in muscle cells, immune cells, or cancer cells. Preferably, the reduction of DUX4 expression is determined using PCR or immunostaining. Preferably, thecasein kinase 1 inhibitor is from the class comprising an azole core. Preferably, thecasein kinase 1 inhibitor is selected from the group consisting of compounds A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, PF-670462, and PF-5006739. - In a second aspect the invention provides a composition comprising at least one
casein kinase 1 inhibitor as defined in the first embodiment, and a pharmaceutically acceptable excipient, for use as defined in the first embodiment. Preferably, the composition for use is formulated for oral, sublingual, parenteral, intravascular, intravenous, subcutaneous, or transdermal administration, preferably for oral administration. - In a third aspect, the invention provides an in vivo, in vitro, or ex vivo method for reducing DUX4 expression, the method comprising the step of contacting a cell with a
casein kinase 1 inhibitor as defined in the first aspect, or with a composition as defined in the second aspect. In a fourth aspect, the invention provides a method for reducing DUX4 expression in a subject in need thereof, the method comprising the step of administering an effective amount of acasein kinase 1 inhibitor as defined in the first aspect, or a composition as defined in the second aspect. - Following the central role of DUX4 in the consensus disease hypothesis for FSHD, a therapeutic approach with a disease-modifying potential is expected to rely on the inhibition of DUX4. The inventors have surprisingly identified Caseine kinase 1 (CK1) as a novel drug target to achieve DUX4 repression in muscle cells. This invention has been made using primary FSHD patient-derived muscle cells. Because of the primate-specificity of the FSHD locus and questionable relevance of recombinant, immortalized, or tumorigenic cell or animal models to study endogenous DUX4 regulatory mechanisms, primary patient-derived muscle cells are the most relevant disease model available. Assays based on immortalized cells bear the risk of altered epigenomes, thereby limiting their relevance in studying the endogenous regulation of DUX4 expression. Particularly the subtelomeric location of D4Z4 and the importance of the D4Z4 epigenome in the stability of DUX4 repression (Stadler et al., 2013, DOI: 10.1038/nsmb.2571) underscore the necessity of using primary muscle cells to discover physiologically relevant drug targets that regulate the expression of DUX4.
- DUX4 has historically been regarded as being challenging to detect in FSHD muscle. Its expression in primary myoblasts from patients with FSHD has been shown to be stochastic. Studies have reported that only 1 in 1000 or 1 in 200 nuclei is DUX4 positive in proliferating FSHD myoblasts and during myoblast differentiation, respectively. Due to this particularly low abundance of DUX4, detection of DUX4 protein has been reported to be a technical challenge. While primary FSHD muscle cells have been used extensively in the FSHD literature, none of the reports appear to be applicable beyond a bench scale level. The limitations posed by using primary cells and the recognised complexity of detecting the low levels of endogenous DUX4 illustrate the challenges associated with applying primary FSHD muscle cells to higher throughput formats. Although DUX4 expression increases upon in vitro differentiation of proliferating FSHD myoblasts into multinucleated myotubes, the levels remain low and the dynamic variability is widely accepted to be extremely challenging for robust large-scale screening approaches (Campbell et al., 2017).
- In a first aspect the invention provides a casein kinase 1 (CK1) inhibitor for use in the treatment of a disease or condition associated with (undue) DUX4 expression, wherein the
casein kinase 1 inhibitor reduces DUX4 expression. Such a CK1 inhibitor is referred to herein as a CK1 inhibitor for use according to the invention. CK1 inhibitors are known in the art and are described in more detail later herein. - The medical use herein described is formulated as a compound as defined herein for use as a medicament for treatment of the stated condition(s) (e.g. by administration of an effective amount of the compound), but could equally be formulated as i) a method of treatment of the stated condition(s) using a compound as defined herein comprising a step of administering to a subject an effective amount of the compound, ii) a compound as defined herein for use in the manufacture of a medicament to treat the stated condition(s), wherein preferably the compound is to be administered in an effective amount, and iii) use of a compound as defined herein for the treatment of the stated condition(s), preferably by administering an effective amount. Such medical uses are all envisaged by the present invention. Preferred subjects are subjects in need of treatment. Treatment preferably leads to delay, amelioration, alleviation, stabilization, cure, or prevention of a disease or condition. In other words, a compound for use according to the invention can be a compound for the treatment, delay, amelioration, alleviation, stabilization, cure, or prevention of the stated disease or condition.
- The CK1 inhibitor for use according to the invention reduces DUX4 expression. This DUX4 expression is preferably the overall DUX4 expression of the subject that is treated. DUX4 expression can be determined using methods known in the art, or exemplified in the examples. For example, DUX4 expression can be determined using PCR techniques such as RT-PCR, or using immunostaining, mass spectrometry, or ELISA, for example on a sample containing cells or cell extracts, preferably obtained from the subject. In this context, a reduction is preferably a reduction as compared to either a predetermined value, or to a reference value. A preferred reference value is a reference value obtained by determining DUX4 expression in an untreated sample containing cells or cell extracts. This untreated sample can be from the same subject or from a different and healthy subject, more preferably it is a sample that was obtained in the same way, thus containing the same type of cells. Conveniently, both the test sample and the reference sample can be part of a single larger sample that was obtained. Alternately, the test sample was obtained from the subject before treatment commenced. A highly preferred reference value is the expression level of DUX4 in a sample obtained from a subject prior to the first administration of the
casein kinase 1 inhibitor according to the invention. Another preferred reference value is a fixed value that represents an absence of DUX4 expression. - A reduction of DUX4 expression preferably means that expression is reduced by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100%. If expression of DUX4 is reduced by for example 100%, it may be that expression of DUX4 can no longer be detected. Reduction can be assessed at the protein level, for example through immunostaining, ELISA, or mass spectrometry, or it can be assessed at the mRNA level, for example through PCR techniques such as RT-PCR. In preferred embodiments, the invention provides a
casein kinase 1 inhibitor for use according to the invention, wherein the reduction of DUX4 expression is determined using PCR or immunostaining, wherein a preferred PCR technique is RT-PCR. In preferred embodiments the invention provides acasein kinase 1 inhibitor for use according to the invention, wherein DUX4 expression is reduced by at least 20%, 40%, 60%, 80%, or more, more preferably by at least 30%, 40%, 60%, 80%, or more. In further preferred embodiments, DUX4 expression is reduced by at least 10%. In further preferred embodiments, DUX4 expression is reduced by at least 20%. In further preferred embodiments, DUX4 expression is reduced by at least 30%. In further preferred embodiments, DUX4 expression is reduced by at least 40%. In further preferred embodiments, DUX4 expression is reduced by at least 50%. In further preferred embodiments, DUX4 expression is reduced by at least 60%. In further preferred embodiments, DUX4 expression is reduced by at least 70%. In further preferred embodiments, DUX4 expression is reduced by at least 80%. In further preferred embodiments, DUX4 expression is reduced by at least 90%. In further preferred embodiments, DUX4 expression is reduced by at least 95%. In the most preferred embodiments, DUX4 expression is reduced by about 100%, preferably by 100%. - In preferred embodiments, the invention provides a
casein kinase 1 inhibitor for use according to the invention, wherein thecasein kinase 1 inhibitor reduces DUX4 expression in muscle cells, immune cells, or cancer cells, preferably in muscle cells or immune cells, most preferably in muscle cells. Preferred muscle cells are myoblasts, satellite cells, myotubes, and myofibers. Preferred immune cells are B cells, T cells, dendritic cells, neutrophils, natural killer cells, granulocytes, innate lymphoid cells, megakaryocytes, myeloid-derived suppressor cells, monocytes/macrophages, and thymocytes, and optionally mast cells. Other preferred cells are platelets and red blood cells. In other embodiments, DUX4 expression is reduced in cancer cells. - In preferred embodiments the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is a muscular dystrophy, most preferably facioscapulohumeral muscular dystrophy (FSHD).
- In this context, a preferred muscular dystrophy is FSHD; a preferred cancer is prostate cancer (WO2014081923), multiple myeloma (US20140221313), lung cancer (Lang et al., 2014, DOI: 10.14205/2310-8703.2014.02.01.1), colon cancer (Paz et al., 2003, DOI: 10.1093/hmg/ddg226) sarcoma, or leukemia; a preferred sarcoma is small round cell sarcoma (Oyama et al., 2017 DOI: 10.1038/s41598-017-04967-0; Bergerat et al., 2017, DOI: 10.1016/j.prp.2016.11.015; Chebib and Jo, 2016, DOI: 10.1002/cncy.21685); a preferred leukemia is acute lymphoblastic leukemia (ALL), more particularly B-cell precursor ALL (Yasuda et al., 2016, doi: 10.1038/ng.3535; Lilljebjörn & Fioretos, 2017, DOI: 10.1182/blood-2017-05-742643; Zhang et al., 2017, DOI:10.1038/ng.3691).
- Accordingly, in preferred embodiments, the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is FSHD, prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), preferably said disease or condition associated with DUX4 expression is FSHD. In more preferred embodiments, the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is FSHD or cancer, wherein cancer is preferably prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), wherein cancer is more preferably sarcoma, most preferably small round cell sarcoma.
- In a preferred embodiment, the invention provides the CK1 inhibitors for use according to the invention, wherein said disease or condition associated with DUX4 expression is cancer, wherein cancer is preferably prostate cancer, multiple myeloma, lung cancer, colon cancer (preferably colorectal carcinoma), sarcoma (preferably small round cell sarcoma), leukemia (preferably acute lymphoblastic leukemia, more preferably B-cell precursor acute lymphoblastic leukemia), wherein cancer is more preferably sarcoma, most preferably small round cell sarcoma.
- Other DUX4 targets are known as “cancer testis antigens” (CTAs), which are genes that are normally expressed only in testis, but which are de-repressed in some cancers, eliciting an immune response. These observations imply that DUX4 de-repression in cancers mediates the activation of HSATII, CTAs and/or THE1B promoters (Young et al., 2013, doi:10.1371/journal.pgen.1003947). In line with this, Dmitriev et al. (2014, DOI: 10.1111/jcmm.12182) demonstrate a similarity between FSHD and cancer cell expression profiles, suggesting a common step in the pathogenesis of these diseases.
- Casein kinase 1 inhibitors are known in the art. Preferably, in the context of this invention, a casein kinase 1 inhibitor for use according to the invention is of general structural formula (1a), (1b), (2a), (2b), or (3):
- wherein X and Y are independently ═N—, —NR1—, CR1, or —S—, provided that at least one of X and Y is CR1,
- ring A is absent (so effectively it is two H) or is a 4- to 7-membered cycloalkyl or heterocycloalkyl or a 5- to 6-membered heteroaryl, wherein up to 2 carbon atoms are replaced with a heteroatom selected from ═N—, —NR2—, —O—, —S— and any remaining carbon atom may be substituted with R3 as valency allows; preferably, ring A is a 4- to 7-membered cycloalkyl or heterocycloalkyl or a 5- to 6-membered heteroaryl, wherein up to 2 carbon atoms are replaced with a heteroatom selected from ═N—, —NR2—, —O—, —S— and any remaining carbon atom may be substituted with R3 as valency allows;
- each R1 is independently H, C1-4alkyl, C3-6cycloalkyl, —CF3, —(CH2)1-3CF3, 4- to 10-membered aryl, 4- to 10-membered heteroaryl, 4- to 10-membered heterocycloalkyl, wherein said aryl, heteroaryl, or heterocycloalkyl may be substituted with one, two, or three substituents independently selected from halogen, OH, oxo, cyano, —SO2CH3, carboxylic acid that is optionally esterified with methanol or ethanol, carboxamide, nitro, C1-6alkoxy, C1-6alkyl, or C1-6alkyl-O—C1-6alkyl; preferably, each R1 is independently H, C1-4alkyl, C3-6cycloalkyl, —CF3, —(CH2)1-3—CF3, 4- to 10-membered heterocycloalkyl, wherein said heterocycloalkyl may be substituted with up to two substituents independently selected from halogen, OH, oxo, cyano, C1-6alkyl, or C1-6alkyl-O—C1-6alkyl;
- Each R2 is independently H, C1-6alkyl, C4-10-bicycloalkyl, —(CH2)t—CN, —S02-C1-6alkyl, —SO2(CH2)tC3-6cycloalkyl, —C1-6alkyl-O—C1-6alkyl, —C1-6alkyl-C(O)O—C1-6alkyl, —C3-6cycloalkyl-C(O)O—C1-6alkyl, —C(O)—(O)u—C1-6alkyl, —C(O)—C1-6alkyl-O—C1-6alkyl, —C(O)—(O)u—(CH2)t—(C6-10aryl), —(CH2)t—(C6-10aryl), —C(O)—(O)u—(CH2)t-(5- to 10-membered heteroaryl), —(CH2)t—C(O)—NR5R6, —(CH2)t-(5- to 10-membered heteroaryl), —C(O)—(O)u—(CH2)t-(3- to 10-membered heterocycloalkyl), —(CH2)t-(4- to 10-membered heterocycloalkyl), —C(O)—(O)u—(CH2)t-(3- to 10-membered cycloalkyl), or —(CH2)t-(3- to 10-membered cycloalkyl),
- wherein said aryl, heteroaryl, cycloalkyl, and heterocycloalkyl of R2 may be substituted with up to two substituents independently selected from halogen, OH, cyano, C1-6alkyl, or C1-6alkyl-O—C1-6alkyl,
- and wherein any alkyl, cycloalkyl, and heterocycloalkyl of R2 may be further substituted with oxo where valency allows;
- each R3 is independently absent, C1-3alkyl, halogen, oxo, —NR5R6, or —OR5;
- each R4 is independently halogen, —CF3, C1-3alkyl, —(CH2)t—C3-4cycloalkyl, —(CH2)t—O—C1-3alkyl, —(CH2)t-cyano, or —(CH2)t-hydroxy, wherein a halogen is preferably F and is preferably para to the five-membered ring comprising X and Y, wherein C1-3alkyl is preferably methyl and is preferably meta to the five-membered ring comprising X and Y; preferably, each R4 is independently halogen, —CF3, C1-3alkyl, —(CH2)t—C3-4cycloalkyl, —(CH2)t—O—C1-3alkyl, —(CH2)t-cyano, or —(CH2)t-hydroxy;
- each R5 is independently H or C1-6alkyl;
- each R6 is independently H or C1-6alkyl;
- R7 is H, halogen, or C1-3alkyl;
- n is 0, 1, or 2;
- each t is independently 0, 1, or 2;
- each u is independently 0 or 1;
-
- and wherein
- A′ is a 4- to 7-membered cycloalkyl, a nitrogen-containing 4- to 7-membered heterocycloalkyl, or alternatively A′ can be directly fused to the ring to which it is attached through
- R′1; preferably, A′ is a nitrogen-containing 4- to 7-membered heterocycloalkyl, or alternatively A′ can be directly fused to the ring to which it is attached through R′1;
- L is C1-3alkyl;
- R′1 is hydrogen, C1-3alkyl, or C3-4cycloalkyl;
- each R′2 is independently C1-3alkyl, fluorine, hydroxyl, C1-3alkoxy, or cyano;
- R′3 is hydrogen, C1-3alkyl, or C3-4cycloalkyl;
- R′4 is a 5- to 10-membered heteroaryl with 1 to 3 heteroatoms, optionally substituted with 1 to 3 R4 substituents;
- R′5 is hydrogen or —N(R8)2;
- Z is N or —CR9;
- each R8 is independently hydrogen or C1-3alkyl;
- R9 is hydrogen, C1-3alkyl, or halogen;
- m is 0, 1 or 2;
- q is 1, 2, or 3;
-
- and wherein
- R″2 represents an aryl group optionally substituted with one or more substituents selected from halogen, C1-6alkyl, C1-6alkyloxy, C1-6alkylthio, C1-6fluoroalkyl, C1-6fluoroalkyloxy and —CN;
- R″3 represents H, C1-3alkyl, —NR″4R″5, hydroxyl, or C1-4alkyloxy;
- A″ represents C1-7-alkylene optionally substituted with one or two Ra;
- B represents C1-7-alkylene optionally substituted with Rb;
- L″ represents either N substituted with Rc or Rd, or C substituted with Re1 and Rd or with two groups Re2;
- the carbon atoms of A″ and B being optionally substituted with one or more groups R1, which may be identical to or different than each other;
- Ra, Rb and Rc are defined such that:
-
- two groups Ra may together form C1-6alkylene;
- Ra and Rb may together form a bond or C1-6alkylene;
- Ra and Rc may together form a bond or C1-6alkylene;
- Rb and Rc may together form a bond or C1-6alkylene;
- Rd represents a group selected from H, C1-6alkyl, C3-7cycloalkyl, C3-7cycloalkyl-C1-6alkyl, C1-6alkylthio-C1-6alkyl, C1-6alkyloxy-C1-6alkyl, C1-6fluoroalkyl, benzyl, C1-6acyl, and hydroxy-C1-6alkyl;
- Re1 represents —NR″4R″5 or a cyclic monoamine optionally comprising an oxygen atom, the cyclic monoamine being optionally substituted with one or more substituents selected from F, C1-6alkyl, C1-6alkyloxy, and hydroxyl;
- two groups Re2 form, with the carbon atom that bears them, a cyclic monoamine optionally comprising an oxygen atom, this cyclic monoamine being optionally substituted with one or more Rf, which may be identical to or different than each other;
- Rf represents C1-6alkyl, C3-7cycloalkyl, C3-7cycloalkyl C1-6alkyl, C1-6alkyloxy-C1-6alkyl, hydroxy-C1-6alkyl, C1-6fluoroalkyl or benzyl;
- R″4 and R″5 each independently represent H, C1-4alkyl, C3-7cycloalkyl, or C3-7cycloalkyl-C1-6alkyl;
-
- and wherein
- X1 is selected from O and NQ6; provided when X1 is NQ6, Q5 and Q6 together with the nitrogen atom and the adjacent carbon atom to which they are respectively attached form a heterocyclic ring comprising carbon atoms and zero to 3 additional heteroatoms selected from N, NQ8, O, S and substituted with 1-5 Q10;
- Q1 is C1-4alkyl optionally substituted with halogen, OH, CN, and NQaQa, or Q1 is —(CQdQd)r-carbocyclyl substituted with 0-5 Q11, and —(CQdQd)r-heterocyclyl comprising carbon atoms and 1 to 4 heteroatoms selected from N, NQ9, O, S, and substituted with 0-5 Q11;
- Q2 is selected from H, C1-4alkyl, halogen, CN, aryl, and heteroaryl;
- Q3 is selected from H and C1-4alkyl;
- Q4 is selected from H, C1-4alkyl halogen, and CN;
- Q5 is selected from H, C1-4alkyl substituted with 0-4 Qe, —(CH2)rC3-6carbocyclyl substituted with 0-4 Qe, and —(CH2)r-heterocyclyl comprising carbon atoms and 1 to 3 heteroatoms selected from N, O, S, and substituted with 0-4 Qe;
- Q7 is aryl substituted with 0-3 Qe;
- Q8 is selected from H, C1-4alkyl substituted with 0-3 Qe, —(CH2)rCN, —(CH2)rOQb, —(CH2)rS(O)pQC, —(CH2)rC(═O)Qb, —(CH2)rNQaQa, —(CH2)rC(═O)NQaQa, —(CH2)rC(═O)—C1-4alkyl substituted with 0-3 Qe, —(CH2)rNQaC(═O)Qb, —(CH2)rNQaC(═O)OQb, —(CH2)rOC(═O)NQaQa, —(CH2)rNQaC(═O)NQaQa, —(CH2)rC(═O)OQb, —(CH2)rS(O)2NQaQa, —(CH2)rNQaS(O)2NQaQa, —(CH2)rNQaS(O)2Qc, —(CH2)r-carbocyclyl substituted with 0-3 Qe, and —(CH2)r-heterocyclyl substituted with 0-3 Qe;
- Q9 is selected from H, —C(═O)Qb, C1-6alkyl substituted with 0-5 Qe, —(CH2)rC3-6carbocyclyl substituted with 0-5 Qe, and —(CH2)r-heterocyclyl substituted with 0-5 Qe;
- Q10 is selected from H, C1-6alkyl substituted with 0-3 Qe, —(CH2)rNQaQa, —(CH2)rC(═O)Qb, —(CH2)rC(═O)OQb, —(CH2)rC(═O)NQaQa, —S(O)pQc, —(CH2)C3-6carbocyclyl substituted with 0-3 Qe, and —(CH2)rheterocyclyl substituted with 0-3 Qe;
- each Q11 is independently selected from H, halogen, ═O, CN, NO2, —OQb, —S(O)pQc, —C(═O)Qb, —(CQdQd)rNQaQa, —(CQdQd)rC(═O)NQaQa, —NQaC(═O)Qb, —NQaC(═O)OQb, —OC(═O)NQaQa, —NQaC(═O)NQaQa, —(CQdQd)rC(═O)OQb, —S(O)2NQaQa, —NQaS(O)2NQaQa, —NQaS(O)2Qc, C1-6alkyl substituted with 0-5 Qe, —(CQdQd)rC3-6carbocyclyl substituted with 0-5 Qe, and —(CQdQd)r-heterocyclyl substituted with 0-5 Qe;
- each Qa is independently selected from H, CN, C1-6alkyl substituted with 0-5 Qe, C2-6alkenyl substituted with 0-5 Qe, C2-6alkynyl substituted with 0-5 Qe, —(CH2)rC3-10carbocyclyl substituted with 0-5 Qe, and —(CH2)r-heterocyclyl substituted with 0-5 Qe; or two instances of Qa together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Qe;
- each Qb is independently selected from H, C1-6alkyl substituted with 0-5 Qe, C2-6alkenyl substituted with 0-5 Qe, C2-6alkynyl substituted with 0-5 Qe, —(CH2)rC3-10carbocyclyl substituted with 0-5 Qe, and —(CH2)r-heterocyclyl substituted with 0-5 Qe;
- each QC is independently selected from C1-6alkyl substituted with 0-5 Qe, C2-6alkenyl substituted with 0-5 Qe, C2-6alkynyl substituted with 0-5 Qe, C3-6carbocyclyl substituted with 0-5 Qe, and heterocyclyl substituted with 0-5 Qe;
- each Qd is independently selected from H and C1-4alkyl substituted with 0-5 Qe;
- each Qe is independently selected from C1-6alkyl substituted with 0-5 Qf, C2-6alkenyl, C2-6alkynyl, —(CH2)r—C3-6cycloalkyl, halogen, CN, NO2, ═O, C02H, —(CH2)rOQf, SQf, and —(CH2)rNQfQf;
- each Qf is independently selected from H, F, C1-5alkyl, C3-6cycloalkyl, and phenyl, or two instances of Qf together with the nitrogen atom to which they are both attached form a heterocyclic ring optionally substituted with C1-4alkyl;
- each p is independently 0, 1, or 2; and
- each r is independently 0, 1, 2, 3, or 4,
-
- and wherein
- X2 is selected from —NH—, —CH2—, —CH(Ph)-, —CH2CH2—, —CH2CH(Ph)-, —CH═CH—, —CH2OCH2—, —CH2NHC(O)—, —CH2NHC(O)CH(Ph)- and —CH2NHC(O)CH2—,
- Q′1 is selected from Q′6, halogen, —CF3, —OCF3, —OQ′6, —CO2Q′6, —SO2N(Q′6)2, and —NO2;
- Q′2, Q′3, Q′4 and Q′5 are independently selected from H, halogen, C1-6alkoxy, —NH2, —NHQ′6, —CN, —NO2, —OCF3, and —CO2Q′6; wherein
- Q′6 is selected from H and C1-6alkyl; and wherein when X2 is —CH(Ph)-, —CH2CH(Ph)- or —CH2NHC(O)CH(Ph)-, then Q′2, Q′3, Q′4 and Q′5 are H,
- or isomers or pharmaceutically acceptable salts thereof.
- A CK1 inhibitor for use according to the invention can also be SR-3029.
- In preferred embodiments, the CK1 inhibitor for use according to the invention is of general formula (Ia) or (Ib), or isomers or pharmaceutically acceptable salts thereof, wherein X, Y, A, R1, R2, R3, R4, R5, R6, R7, n, t, u, A′, L, R′1, R′2, R′3, R′4, R′5, Z, R8, R9, m, and q are as defined above.
- In a further preferred embodiment, it is of general formula (Ia), or isomers or pharmaceutically acceptable salts thereof, wherein X, Y, A, R1, R2, R3, R4, R5, R6, R7, n, t, u, A′, L, R′1, R′2, R′3, R′4, R′5, Z, R8, R9, m, and q are as defined above. In a further preferred embodiment, it is of general formula (Ib), or isomers or pharmaceutically acceptable salts thereof, wherein X, Y, A, R1, R2, R3, R4, R5, R6, R7, n, t, u, A′, L, R′1, R′2, R′3, R′4, R′5, Z, R8, R9, m, and q are as defined above. CK1 inhibitors of this class are known per se in the art and have their structure and synthesis described in more detail in, for example, WO2011051858, WO2012085721, and WO2015119579.
- CK1 inhibitors of this class comprise an azole core. In preferred embodiments of this aspect, the invention provides
casein kinase 1 inhibitor for use according to the invention, wherein thecasein kinase 1 inhibitor is from the class comprising an azole core. More preferably, these CK1 inhibitors for use comprise a 4-aryl-5-heteroaryl-1-heterocycloalkyl-imidazole moiety. Preferably, for these inhibitors, a single R4 is present, para to the azole core; more preferably this R4 is F. Accordingly, in further more preferred embodiments, thecasein kinase 1 inhibitor for use according to the invention comprises an azole core linked to a 4-halophenyl moiety, preferably a 4-fluorophenyl moiety. Highly preferred compounds comprising an azole core are compounds D, E, F, and G as shown in table 3; compound D is even more preferred. - In preferred embodiments, the CK1 inhibitor for use according to the invention is of general formula (2a) or (2b), or isomers or pharmaceutically acceptable salts thereof, wherein R5, R6, R″2, R″3, A″B, L″ Ra, Rb, Rc, Rd, Re, Re2, Rf, R″4, R″5, X1, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Qa, Qb, Qc, Qd, Qe Qf, r, and P are as defined above. In a further preferred embodiment, it is of general formula (2a) or isomers or pharmaceutically acceptable salts thereof, wherein R5, R6, R″2, R″3, A″, B, L″ Ra, Rb, Rc, Rd, Re, Re2, Rf, R″4, R″5, X1, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Qa Qb, Qc, Qd, Qe Qf, P, and r are as defined above. In a further preferred embodiment, it is of general formula (2b) or isomers or pharmaceutically acceptable salts thereof, wherein R5, R6, R″2, R″3, A″, B, L″, Ra, Rb, Rc, Rd, Re, Re2, Rf, R″4, R″5, X1, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Qa Qb, Qc, Qd, Qe Qf, P, and r are as defined above. CK1 inhibitors of this class are known per se in the art and have their structure and synthesis described in more detail in, for example, WO2009016286 and WO2015195880.
- CK1 inhibitors of this class comprise a cyclo-3-pyrid-4-yl)imidazo[1,2-b]pyridazine core. In preferred embodiments of this aspect, the invention provides
casein kinase 1 inhibitor for use according to the invention, wherein thecasein kinase 1 inhibitor is from the class comprising a cyclo-3-pyrid-4-yl)imidazo[1,2-b]pyridazine core. In further preferred embodiments, thecasein kinase 1 inhibitor for use according to the invention comprises an azole core or comprises a cyclo-3-pyrid-4-yl)imidazo[1,2-b]pyridazine core. In further preferred embodiments, thecasein kinase 1 inhibitor for use according to the invention is of general formula (1a), (1 b), (2a), or (2b), wherein X, Y, A, R1, R2, R3, R4, R5, R6, R7, n, t, u, A′, L, R′1, R′2, R′3, R′4, R′5, Z, R8, R9, m, q, R″2, R″3, A″, B, L″, Ra, Rb, Rc, Rd, Re, Re2, Rf, R″4, R″5, X1, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Qa, Qb, Qc, Qd, Qe Qf, r, and P are as defined above. - In preferred embodiments, the CK1 inhibitor for use according to the invention is of general formula (3) or isomers or pharmaceutically acceptable salts thereof, wherein X2, Q′1, Q12, Q13, Q′4, Q′5, and Q′6 are as defined above. CK1 inhibitors of this class are known in the art per se and have their structure and synthesis described in more detail in, for example, EP2949651. When a Csk1 inhibitor is of general formula (3), X2 is preferably —CH2—, —CH2CH2—, —CH(Ph)-, or —NH—, most preferably —CH2—; Q′1 is preferably —CF3, halogen, or C1-6alkyl, more preferably —CF3; Q′2, Q13, Q′4 and Q′5 are preferably independently selected from H, halogen, and C1-5alkoxy. More preferably, when a CK1 inhibitor is of general formula (3), X2 is —CH2— and Q′1 is —CF3.
- Structures of exemplary CK1 inhibitors are shown in table 3. In further preferred embodiments, the invention provides the CK1 inhibitor for use according to the invention, wherein the
casein kinase 1 inhibitor is selected from the group consisting of compounds A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, SR-3029, PF-670462, and PF-5006739. Compound O is also known as TA-01. More preferably, thecasein kinase 1 inhibitor is selected from the group consisting of compounds A, B, C, D, E, F, G, H, O, SR-3029, PF-670462, and PF-5006739. Even more preferably, thecasein kinase 1 inhibitor is selected from the group consisting of compounds A, D, F, G, H, O, SR-3029, PF-670462, and PF-5006739. Even more preferably, thecasein kinase 1 inhibitor is selected from the group consisting of compounds A, D, F, G, H, SR-3029, PF-670462, and PF-5006739. Most preferably, thecasein kinase 1 inhibitor is selected from the group consisting of compounds A, D, F, G, H, SR-3029, and PF-5006739. It is also highly preferred that thecasein kinase 1 inhibitor be compound D. It is also highly preferred that thecasein kinase 1 inhibitor is selected from the group consisting of compounds A, B, and H, more preferably it is compound H. - In other embodiments, the CK1 inhibitor for use according to the invention is an inhibitory antibody, an antisense oligonucleotide, or an oligonucleotide that prevents expression of CK1.
- The various isoforms of
casein kinase 1 are known to have different functions. Within the set of known isoforms, CK1δ and CK1ε are preferred targets for the CK1 inhibitors according to the invention. These two isoforms are known to be closely related to one another. For example, CK1δ and CK1ε were thought to be generally redundant in circadian cycle length and protein stability, but were later revealed to have slightly different functions (Etchegaray J P et al., 2009, DOI:10.1128/MCB.00338-09). Due to their physiological importance, and the known efficacy of the CK1 inhibitors for use in the present invention, preferred embodiments of the invention provide acasein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor inhibits at least casein kinase 1δ or casein kinase 1ε. Optionally, the casein kinase inhibitor is specific for casein kinase 1δ or for casein kinase 1ε. Furthermore, in more preferred embodiments the invention provides acasein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1δ. In other more preferred embodiments the invention provides acasein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1ε. In other embodiments the invention provides acasein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1α. In other embodiments the invention provides acasein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1β. In other embodiments the invention provides acasein kinase 1 inhibitor for use according to the invention, wherein the casein kinase inhibitor at least inhibits, and optionally is specific for, casein kinase 1γ1, 1γ2, and/or 1γ3. It is to be understood in this context that a CK1 inhibitor is specific for a particular isoform when it at least partially inhibits that particular isoform. Preferably, it inhibits that particular isoform more efficiently than other isoforms. - CK1 inhibitors suitable for use in the invention preferably have an IC50 on a casein kinase of at most 650 nM, preferably of at most 500 nM, more preferably of at most 400 nM, even more preferably of at most 300 nM, still more preferably of at most 250 nM, still more preferably of at most 200 nM, most preferably of at most 100 nM. In preferred embodiments, the CK1 inhibitor has an IC50 on at least casein kinase 1δ or casein kinase 1ε of at most 450 nM, more preferably of at most 400 nM, even more preferably of at most 350 nM, more preferably still of at most 200 nM, even more preferably still of at most 100 nM, most preferably of at most 50 nM. In most preferred embodiments the CK1 inhibitor has an IC50 on casein kinase 1δ of at most 350 nM, preferably at most 100 nM, more preferably at most 35 nM, most preferably at most 25 nM. IC50 values for CK1 can be determined using any method known in the art, for example as described in WO2011051858, WO2015119579, EP2949651, or US2005/0131012. Suitable assays can use a peptide substrate and a readout method, for example using the Kinase-Glo assay (Promega, part #V672A).
- In a further aspect, the invention provides a composition comprising at least one CK1 inhibitor, and a pharmaceutically acceptable excipient, for use according to the invention. Such a composition is referred to herein as a composition for use according to the invention. Preferred compositions for use according to the invention are pharmaceutical compositions. In preferred embodiments, the composition for use according to the invention is formulated for oral, sublingual, parenteral, intravascular, intravenous, subcutaneous, or transdermal administration, optionally for administration by inhalation; preferably for oral administration. More features and definitions of administration methods are provided in the section on formulation and administration.
- The compositions comprising the compounds as described above, can be prepared as a medicinal or cosmetic preparation or in various other media, such as foods for humans or animals, including medical foods and dietary supplements. A “medical food” is a product that is intended for the specific dietary management of a disease or condition for which distinctive nutritional requirements exist. By way of example, but not limitation, medical foods may include vitamin and mineral formulations fed through a feeding tube (referred to as enteral administration). A “dietary supplement” shall mean a product that is intended to supplement the human diet and is typically provided in the form of a pill, capsule, tablet or like formulation. By way of example, but not limitation, a dietary supplement may include one or more of the following ingredients: vitamins, minerals, herbs, botanicals; amino acids, dietary substances intended to supplement the diet by increasing total dietary intake, and concentrates, metabolites, constituents, extracts or combinations of any of the foregoing. Dietary supplements may also be incorporated into food, including, but not limited to, food bars, beverages, powders, cereals, cooked foods, food additives and candies; or other functional foods designed to promote health or to prevent or halt the progression of a degenerative disease associated with DUX4 expression or activity.
- The subject compositions thus may be compounded with other physiologically acceptable materials that can be ingested including, but not limited to, foods. In addition or alternatively, the compositions for use as described herein may be administered orally in combination with (the separate) administration of food.
- The compositions may be administered alone or in combination with other pharmaceutical or cosmetic agents and can be combined with a physiologically acceptable carrier thereof. In particular, the compounds described herein can be formulated as pharmaceutical or cosmetic compositions by formulation with additives such as pharmaceutically or physiologically acceptable excipients carriers, and vehicles. Suitable pharmaceutically or physiologically acceptable excipients, carriers and vehicles include processing agents and drug delivery modifiers and enhancers, such as, for example, calcium phosphate, magnesium stearate, talc, monosaccharides, disaccharides, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, dextrose, hydroxypropyl-P-cyclodextrin, polyvinylpyrrolidinone, low melting waxes, ion exchange resins, and the like, as well as combinations of any two or more thereof. Other suitable pharmaceutically acceptable excipients are described in “Remington's Pharmaceutical Sciences,” Mack Pub. Co., New Jersey (1991), and “Remington: The Science and Practice of Pharmacy,” Lippincott Williams & Wilkins, Philadelphia, 20th edition (2003), 21st edition (2005) and 22nd edition (2012), incorporated herein by reference.
- It is known that many molecules that inhibit CK1 can also inhibit p38. p38 mitogen-activated protein kinases are a class of mitogen-activated protein kinases (MAPKs) that are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation, cytokine secretion, apoptosis and autophagy. Persistent activation of the p38 MAPK pathway in muscle satellite cells (muscle stem cells) due to ageing is known to impair muscle regeneration. In preferred embodiments, the CK1 inhibitor is also a p38 inhibitor.
- Due to the homology between p38 and CK1, the invention also provides p38 inhibitors for use in the treatment of a disease or condition associated with DUX4 expression, wherein the p38 inhibitor reduces DUX4 expression. This is referred to hereinafter as a p38 inhibitor for use according to the invention. p38 inhibitors are known in the art. Except for exact molecular structure, terms and features of use according to the invention are as defined for the CK1 inhibitors for use according to the invention.
- Examples of suitable p38 inhibitors are ARRY-797 (CHEMBL1088750, CAS: 1036404-17-7), LOSMAPIMOD (CHEMBL1088752, CAS: 585543-15-3), AZD-7624 (CHEMBL9960, CAS: 1095004-78-6), DORAMAPIMOD (CHEMBL103667), NEFLAMAPIMOD (CHEMBL119385, CAS: 209410-46-8), TAK-715 (CHEMBL363648, CAS: 303162-79-0), TALMAPIMOD (CHEMBL514201, CAS: 309913-83-5), PAMAPIMOD (CHEMBL1090089, CAS: 449811-01-2), VX-702 (CHEMBL1090090, CAS: 745833-23-2), PH-797804 (CHEMBL1088751, CAS: 586379-66-0), BMS-582949 (CHEMBL1230065, CAS: 623152-17-0), PF-03715455 (CHEMBL1938400, CAS: 1056164-52-3), DILMAPIMOD (CHEMBL2103838, CAS: 444606-18-2), SEMAPIMOD (CHEMBL2107779, CAS: 352513-83-8), RALIMETINIB (CHEMBL2364626, CAS: 862505-00-8), FX-005 (CHEMBL3545216, CAS: 2016822-86-7), ACUMAPIMOD (CHEMBL3545226, CAS: 836683-15-9), KC-706 (CHEMBL3545282, CAS: 896462-15-0), PG-760564 (CHEMBL3545398), RWJ-67657 (CHEMBL190333, CAS: 215303-72-3), RO-3201195 (CHEMBL203567, CAS: 249937-52-8), AMG-548 (CHEMBL585902, CAS: 864249-60-5), SD-0006 (CHEMBL1090173), SCIO-323 (CHEMBL1614702, CAS: 309913-51-7), R-1487 (CHEMBL1766582, CAS: 449808-64-4), AZD-6703 (CHEMBL2031465, CAS: 1083381-65-0), SC-80036 (CHEMBL3544930), GSK-610677 (CHEMBL3544968, CAS: 2016840-17-6), LY-3007113 (CHEMBL3544998), LEO-15520 (CHEMBL3545074), AVE-9940 (CHEMBL3545117, CAS: 1201685-00-8), PS-516895 (CHEMBL3545139), TA-5493 (CHEMBL3545201, CAS: 1073666-93-9), PEXMETINIB (ARRY614) (CHEMBL3545297, CAS: 945614-12-0), SB-85635 (CHEMBL3545384), and CK1 inhibitors.
- Compositions for use according to the invention may be manufactured by processes well known in the art; e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes, which may result in liposomal formulations, coacervates, oil-in-water emulsions, nanoparticulate/microparticulate powders, or any other shape or form. Compositions for use in accordance with the invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent on the route of administration chosen.
- For injection, the CK1 inhibitors and compositions for use according to the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- Oral and parenteral administration may be used where the CK1 inhibitors and compositions for use are formulated by combining them with pharmaceutically acceptable carriers well known in the art, or by using them as a food additive. Such strategies enable the CK1 inhibitors and compositions for use according to the invention to be formulated as tablets, pills, dragées, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject to be treated.
- Preparations or pharmacological preparations for oral use may be made with the use of a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragée cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Additionally, coformulations may be made with uptake enhancers known in the art.
- Dragée cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, PVP, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solution, and suitable organic solvents or solvent mixtures. Polymethacrylates can be used to provide pH-responsive release profiles so as to pass the stomach. Dyestuffs or pigments may be added to the tablets or dragée coatings for identification or to characterize different combinations of active CK1 inhibitor doses.
- CK1 inhibitors and compositions which can be administered orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules may contain the active ingredients in admixture with a filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
- For buccal administration, the CK1 inhibitors and compositions for use according to the invention may be administered in the form of tablets or lozenges formulated in a conventional manner.
- The CK1 inhibitors and compositions for use according to the invention may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. In this way it is also possible to target a particular organ, tissue, tumor site, site of inflammation, etc. Formulations for infection may be presented in unit dosage form, e.g., in ampoules or in multi-dose container, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. This formulation is preferred because it enables specific targeting of muscle tissue.
- Compositions for parenteral administration include aqueous solutions of the compositions in water soluble form. Additionally, suspensions may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compositions to allow for the preparation of highly concentrated solutions.
- Alternatively, one or more components of the composition may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- The compositions for use according to the invention may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
- In addition to the formulations described previously, the CK1 inhibitors and compositions for use according to the invention may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, they may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil), or as part of a solid or semi-solid implant that may or may not be auto-degrading in the body, or ion exchange resins, or one or more components of the composition can be formulated as sparingly soluble derivatives, for example, as a sparingly soluble salt. Examples of suitable polymeric materials are known to the person skilled in the art and include PLGA and polylactones such as polycaproic acid.
- The compositions for use according to the invention also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- The compositions for use according to the invention may also be comprised in a transdermal patch. Preferred transdermal patches for use according to the invention are selected from single-layer drug-in-adhesive patch, or multi-layer drug-in-adhesive patch, or reservoir patch, or matrix patch, or vapour patch.
- Compositions for use according to the invention include CK1 inhibitors and compositions wherein the active ingredients are contained in an amount effective to achieve their intended purposes. More specifically, a therapeutically effective amount means an amount of compound effective to prevent, stabilize, alleviate, revert, or ameliorate causes or symptoms of disease, or prolong the survival, mobility, or independence of the subject being treated. Determination of a therapeutically effective amount is within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any CK1 inhibitors and compositions used in the invention, the therapeutically effective amount or dose can be estimated initially from cell culture assays, for example as exemplified herein. Dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl, et al., 1975, in “The Pharmacological Basis of Therapeutics” Ch. 1 p. 1). The amount of CK1 inhibitors and compositions administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.
- A composition for use according to the invention may be supplied such that a CK1 inhibitor for use according to the invention and one or more of the other components as defined herein are in the same container, either in solution, in suspension, or in powder form. A composition for use according to the invention may also be provided with all components provided separately from one another, for example to be mixed with one another prior to administration, or for separate or sequential administration. Various packaging options are possible and known to the ones skilled in the art, depending, among others, on the route and mechanism of administration. In light of the methods of administration described above, the invention provides a
casein kinase 1 inhibitor for use according to the invention, or a composition for use according to the invention, characterized in that it is administered orally, sublingually, intravascularly, intravenously, subcutaneously, or transdermally, or optionally by inhalation; preferably orally. - An “effective amount” of a CK1 inhibitor or composition is an amount which, when administered to a subject, is sufficient to reduce or eliminate either one or more symptoms of a disease, or to retard the progression of one or more symptoms of a disease, or to reduce the severity of one or more symptoms of a disease, or to suppress the manifestation of a disease, or to suppress the manifestation of adverse symptoms of a disease. An effective amount can be given in one or more administrations.
- The “effective amount” of that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host to which the active ingredient is administered and the particular mode of administration. The unit dosage chosen is usually fabricated and administered to provide a desired final concentration of the compound in the blood.
- The effective amount (i.e. the effective total daily dose), preferably for adults, is herein defined as a total daily dose of about 0.01 to 2000 mg, or about 0.01 to 1000 mg, or about 0.01 to 500 mg, or about 5 to 1000 mg, or about 20 to 800 mg, or about 30 to 800 mg or about 30 to 700 mg, or about 20 to 700 mg or about 20 to 600 mg, or about 30 to 600 mg, or about 30 to 500 mg, about 30 to 450 mg or about 30 to 400 mg, or about 30 to 350 mg or about 30 to 300 mg or about 50 to 600 mg, or about 50 to 500 mg, or about 50 to 450 mg, or about 50 to 400 mg or about 50 to 300 mg, or about 50 to 250 mg, or about 100 to 250 mg or about 150 to 250 mg. In the most preferred embodiment, the effective amount is about 200 mg. In preferred embodiments, the invention provides a
casein kinase 1 inhibitor for use according to the invention, or a composition for use according to the invention, characterized in that it is administered to a subject in an amount ranging from 0.1 to 1500 mg/day, preferably from 0.1 to 1000 mg/day, more preferably from 0.1 to 400 mg/day, still more preferably from 0.25 to 150 mg/day, such as about 100 mg/day. - Alternatively, the effective amount of the compound, preferably for adults, preferably is administered per kg body weight. The total daily dose, preferably for adults, is therefore about 0.05 to about 40 mg/kg, about 0.1 to about 20 mg/kg, about 0.2 mg/kg to about 15 mg/kg, or about 0.3 mg/kg to about 15 mg/kg or about 0.4 mg/kg to about 15 mg/kg or about 0.5 mg/kg to about 14 mg/kg or about 0.3 mg/kg to about 14 mg/kg or about 0.3 mg/kg to about 13 mg/kg or about 0.5 mg/kg to about 13 mg/kg or about 0.5 mg/kg to about 11 mg/kg.
- The total daily dose for children is preferably at most 200 mg. More preferably the total daily dose is about 0.1 to 200 mg, about 1 to 200 mg, about 5 to 200 mg about 20 to 200 mg about 40 to 200 mg, or about 50 to 200 mg. Preferably, the total daily dose for children is about 0.1 to 150 mg, about 1 to 150 mg, about 5 to 150 mg about 10 to 150 mg about 40 to 150 mg, or about 50 to 150 mg. More preferably, the total daily dose is about 5 to 100 mg, about 10 to 100 mg, about 20 to 100 mg about 30 to 100 mg about 40 to 100 mg, or about 50 to 100 mg. Even more preferably, the total daily dose is about 5 to 75 mg, about 10 to 75 mg, about 20 to 75 mg about 30 to 75 mg about 40 to 75 mg, or about 50 to 75 mg.
- Alternative examples of dosages which can be used are an effective amount of the compounds for use according to the invention within the dosage range of about 0.1 μg/kg to about 300 mg/kg, or within about 1.0 μg/kg to about 40 mg/kg body weight, or within about 1.0 μg/kg to about 20 mg/kg body weight, or within about 1.0 μg/kg to about 10 mg/kg body weight, or within about 10.0 μg/kg to about 10 mg/kg body weight, or within about 100 μg/kg to about 10 mg/kg body weight, or within about 1.0 mg/kg to about 10 mg/kg body weight, or within about 10 mg/kg to about 100 mg/kg body weight, or within about 50 mg/kg to about 150 mg/kg body weight, or within about 100 mg/kg to about 200 mg/kg body weight, or within about 150 mg/kg to about 250 mg/kg body weight, or within about 200 mg/kg to about 300 mg/kg body weight, or within about 250 mg/kg to about 300 mg/kg body weight. Other dosages which can be used are about 0.01 mg/kg body weight, about 0.1 mg/kg body weight, about 1 mg/kg body weight, about 10 mg/kg body weight, about 20 mg/kg body weight, about 30 mg/kg body weight, about 40 mg/kg body weight, about 50 mg/kg body weight, about 75 mg/kg body weight, about 100 mg/kg body weight, about 125 mg/kg body weight, about 150 mg/kg body weight, about 175 mg/kg body weight, about 200 mg/kg body weight, about 225 mg/kg body weight, about 250 mg/kg body weight, about 275 mg/kg body weight, or about 300 mg/kg body weight.
- Compounds or compositions for use according to the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided dosage of two, three or four times daily.
- In a preferred embodiment of the invention, “subject”, “individual”, or “patient” is understood to be an individual organism, preferably a vertebrate, more preferably a mammal, even more preferably a primate and most preferably a human.
- In a further preferred embodiment of the invention, the human is an adult, e.g. a person that is 18 years or older. In addition, it is herein understood that the average weight of an adult person is 62 kg, although the average weight is known to vary between countries. In another embodiment of the invention the average weight of an adult person is therefore between about 50-90 kg. It is herein understood that the effective dose as defined herein is not confined to subjects having an average weight. Preferably, the subject has a BMI (Body Mass Index) between 18.0 to 40.0 kg/m2, and more preferably a BMI between 18.0 to 30.0 kg/m2.
- Alternatively, the subject to be treated is a child, e.g. a person that is 17 years or younger. In addition, the subject to be treated may be a person between birth and puberty or between puberty and adulthood. It is herein understood that puberty starts for females at the age of 10-11 years and for males at the age of 11-12 year. Furthermore, the subject to be treated may be a neonate (first 28 days after birth), an infant (0-1 year), a toddler (1-3 years), a preschooler (3-5 years); a school-aged child (5-12 years) or an adolescent (13-18 years).
- To maintain an effective range during treatment, the CK1 inhibitor or composition may be administered once a day, or once every two, three, four, or five days. However preferably, the compound may be administered at least once a day. Hence in a preferred embodiment, the invention pertains to a
casein kinase 1 inhibitor for use according to the invention, or a composition for use according to the invention, characterized in that it is administered to a 4, 3, 2, or 1 times per day or less, preferably 1 time per day. The total daily dose may be administered as a single daily dose. Alternatively, the compound is administered at least twice daily. Hence, the compound as defined herein may be administered once, twice, three, four or five times a day. As such, the total daily dose may be divided over the several doses (units) resulting in the administration of the total daily dose as defined herein. In a preferred embodiment, the compound is administered twice daily. It is further understood that the terms “twice daily”, “bid” and “bis in die” can be used interchangeable herein.subject - In a preferred embodiment, the total daily dose is divided over several doses per day. These separate doses may differ in amount. For example for each total daily dose, the first dose may have a larger amount of the compound than the second dose or vice versa. However preferably, the compound is administered in similar or equal doses. Therefore in a most preferred embodiment, the compound is administered twice daily in two similar or equal doses.
- In a further preferred embodiment of the invention, the total daily dose of the compound as defined herein above is administered in at least two separate doses. The interval between the administration of the at least two separate doses is at least about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours, preferably the interval between the at least two separate doses is at least about 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours and more preferably the interval between the at least two separate doses is at least about 8, 9, 10, 11 or 12 hours.
- In one aspect of the invention, the use is provided of either a CK1 inhibitor according to the invention, or of a composition according to the invention. Said use is for the treatment of a disease or condition associated with DUX4 expression of a subject in need thereof, and comprises administration to the subject of an effective dose of a CK1 inhibitor or composition according to the invention, wherein the CK1 inhibitor or composition are as defined earlier herein.
- In one embodiment of this aspect, the use is provided of either a CK1 inhibitor according to the invention, or of a composition according to the invention. Said use is for the treatment of muscular dystrophy or cancer in a subject in need thereof, and comprises administration to the subject of an effective dose of a CK1 inhibitor or composition according to the invention, wherein the CK1 inhibitor or composition are as defined earlier herein. Further features and definitions are preferably as defined elsewhere herein, particularly for diseases or conditions to be treated.
- One aspect of the invention provides an in vivo, in vitro, or ex vivo method for reducing DUX4 expression, the method comprising the step of contacting a cell with a CK1 inhibitor as defined earlier herein, or with a composition as defined earlier herein. Preferably, said method is for treating a disease or condition associated with DUX4 expression, such as a muscular dystrophy or cancer, most preferably said disease or condition is facioscapulohumeral muscular dystrophy (FSHD). The method preferably comprises use as defined earlier herein. Preferred methods comprise contacting a cell with a CK1 inhibitor composition as defined earlier herein. In the context of the invention, contacting a cell with a CK1 inhibitor or a composition can comprise adding such a CK1 inhibitor or composition to a medium in which a cell is cultured. Contacting a cell with a CK1 inhibitor or a composition can also comprise adding such a CK1 inhibitor or composition to a medium, buffer, or solution in which a cell is suspended, or which covers a cell. Other preferred methods of contacting a cell comprise injecting a cell with a CK1 inhibitor or composition, or exposing a cell to a material comprising a CK1 inhibitor or composition according to the invention. Further methods for administration are defined elsewhere herein. Preferred cells are cells known to express DUX4, cells suspected of expressing DUX4, or cells known to be affected by a disease or condition as defined earlier herein.
- In one embodiment of this aspect, the method is an in vitro method. In a further embodiment of this aspect, the method is an ex vivo method. In a further embodiment of this aspect, the method is an in vivo method. In a preferred embodiment of this aspect, the method is an in vitro or an ex vivo method.
- Within the embodiments of this aspect, the cell may be a cell from a sample obtained from a subject. Such a sample may be a sample that has been previously obtained from a subject. Within the embodiments of this aspect, samples may have been previously obtained from a human subject. Within the embodiments of this aspect, samples may have been obtained from a non-human subject. In a preferred embodiment of this aspect, obtaining the sample is not part of the method according to the invention.
- In preferred embodiments, the method according to the invention is a method for reducing DUX4 expression in a subject in need thereof, the method comprising the step of administering an effective amount of a CK1 inhibitor as defined earlier herein, or a composition as defined earlier herein. In more preferred embodiments, the method is for the treatment of a disease or condition associated with DUX4 expression, preferably a muscular dystrophy or cancer, most preferably said disease or condition is facioscapulohumeral muscular dystrophy (FSHD). Further features and definitions are preferably as defined elsewhere herein.
- In this document and in its claims, the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition the verb “to consist” may be replaced by “to consist essentially of” meaning that a combination or a composition as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention. In addition, reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one”.
- When a structural formula or chemical name is understood by the skilled person to have chiral centers, yet no chirality is indicated, for each chiral center individual reference is made to all three of either the racemic mixture, the pure R enantiomer, and the pure S enantiomer.
- Whenever a parameter of a substance is discussed in the context of this invention, it is assumed that unless otherwise specified, the parameter is determined, measured, or manifested under physiological conditions. Physiological conditions are known to a person skilled in the art, and comprise aqueous solvent systems, atmospheric pressure, pH-values between 6 and 8, a temperature ranging from room temperature to about 37° C. (from about 20° C. to about 40° C.), and a suitable concentration of buffer salts or other components.
- The use of a substance as a medicament as described in this document can also be interpreted as the use of said substance in the manufacture of a medicament. Similarly, whenever a substance is used for treatment or as a medicament, it can also be used for the manufacture of a medicament for treatment. Products for use as a medicament described herein can be used in methods of treatments, wherein such methods of treatment comprise the administration of the product for use. CK1 inhibitors or compositions according to this invention are preferably for use in methods or uses according to this invention.
- Throughout this application, expression is considered to be the transcription of a gene into functional mRNA, leading to a polypeptide such as an enzyme or transcription factor or for example DUX4 polypeptide. A polypeptide can assert an effect or have an activity. In this context, increased or decreased expression of a polypeptide can be considered an increased or decreased level of mRNA encoding said polypeptide, an increased or decreased level or amount of polypeptide molecules, or an increased or decreased total activity of said polypeptide molecules. Preferably, an increased or decreased expression of a polypeptide results in an increased or decreased activity of said polypeptide, respectively, which can be caused by increased or decreased levels or amounts of polypeptide molecules. More preferably, a reduction of DUX4 expression is a reduction of transcription of a DUX4 gene, destabilisation or degradation of DUX4 mRNA, reduction of the amount of DUX4 polypeptide molecules, reduction of DUX4 polypeptides molecule activity, destabilisation or degradation of DUX4 polypeptide, or combinations thereof. A destabilized mRNA leads to lower expression of its encoded polypeptide, possibly it cannot lead to such expression. A degraded mRNA is destroyed and cannot lead to expression of its encoded polypeptide. A destabilized polypeptide asserts less of an effect or has lower activity than the same polypeptide that has not been destabilized, possibly it asserts no effect or has no activity. A destabilized polypeptide can be denatured or misfolded. A degraded polypeptide is destroyed and does not assert an effect or have an activity.
- In the context of this invention, a decrease or increase of a parameter to be assessed means a change of at least 5% of the value corresponding to that parameter. More preferably, a decrease or increase of the value means a change of at least 10%, even more preferably at least 20%, at least 30%, at least 40%, at least 50%, at least 70%, at least 90%, or 100%. In this latter case, it can be the case that there is no longer a detectable value associated with the parameter.
- The word “about” or “approximately” when used in association with a numerical value (e.g. about 10) preferably means that the value may be the given value (of 10) more or less 1% of the value.
- Each embodiment as identified herein may be combined together unless otherwise indicated. The invention has been described above with reference to a number of embodiments. A skilled person could envision trivial variations for some elements of the embodiments. These are included in the scope of protection as defined in the appended claims. All patent and literature references cited are hereby incorporated by reference in their entirety.
-
FIG. 1 —(A): Illustration of a DUX4 immunocytochemistry staining in FSHD myotubes from 2 different donors after 3 days of differentiation. DUX4-positive nuclei clusters are clearly stained, while DUX4-negative nuclei are not stained. The histograms show the intensity of the immunofluorescent signals (increasing intensity on the X-axis) after staining with the DUX4 and secondary antibody (top) or the secondary antibody alone (bottom); the arrows on top show the background signal (leftward arrow) or specific DUX4 signal (rightward arrow); (B): Illustration of a DUX4-stained FSHD myotube after 3 days of differentiation. The dotted pattern results from the applied filter settings to deplete the background from the secondary antibody control. Note that the threshold settings prohibit detection of the weaker DUX4 signal in the nuclei more distant from the sentinel nucleus. -
FIG. 2 —Script-based image analysis includes nuclei identification, myotube identification, detection of nuclei inside or outside myotube borders (used to calculate fusion index), DUX4 positive nuclei and clusters, myotube area, myotube width, and myotube skeleton length. -
FIG. 3 —Validation of the primary screening assay format in 384-well format. Three independent experiments are shown, illustrating the assay window obtained using script-based quantification of the number of DUX4-expressing nuclei in differentiating primary myotubes after 3 days in differentiation medium. The assay window is defined by the DUX4 signal and the background signal of the secondary antibody (representing the signal in total absence of DUX4). -
FIG. 4 —(A): Schematic representation of the screening assay protocol. Myoblasts were seeded at day −1 and medium was changed to differentiation medium at day zero. Cells were allowed to differentiate for 3 days. Compounds were added 15 h prior to fixation. (B): Correlation of duplicated results from primary screening of an annotated compound library using 2 different readouts for DUX4 expression (Number of DUX4-positive nuclei and DUX4 intensity) and 2 different readouts to monitor potential toxicity (fusion index, nuclei count). Hit calling thresholds (high stringency) are indicated by a dashed line, and the upper right quadrants contain the hit compounds for the different readouts. Axes of the scatter plots are symmetrical. -
FIG. 5 —Concentration-response curves for various CK1 inhibitors for the different readouts. The DUX4 nuclei count, DUX4 intensity, fusion index, and total nucleus count were measured after 15 hour of compound exposure. (A): results for PF-670462; (B): results for PF-5006739; (C): results for compound C; (D): results for compound D; (E): results for compound E; (F): results for compound F; (G): results for compound G; Structural formulae are shown in example 5. -
FIG. 6 —(A): Schematic representation of the assay protocol. Myoblasts were seeded at day −1 and medium was changed to differentiation medium at day zero. Cells were allowed to differentiate for 3 days. Compounds were added for 15 h or 72 h prior to fixation. For the 15 h treatment, compounds are administered when differentiation already progressed significantly. In case of 72 h treatment, compounds were incubated during the full differentiation phase. The other panels show concentration-response curves for a BET inhibitors (B, C) or for beta2 adrenoreceptor agonists (D, E, F, G, H, I) for the different readouts. DUX4 nuclei count, DUX4 intensity, fusion index, and total nuclei count were assessed after 15 h or after 72 h of treatment. (B, C): (+)JQ1; (D, E): formoterol; (F, G): salbutamol; (H, I): salmeterol; (J): micrographs of myotubes after 72 hours in differentiation medium while exposed to the a beta2 adrenoreceptor agonist (formoterol); (K, L): results for both 15 hour and 72 hour exposure to a CK1 inhibitor (PF-670462). - The inventors succeeded in establishing a sensitive DUX4 detection method in primary myotubes and used this to build a high-content assay for quantitative assessment of endogenous DUX4 expression. The method was developed into a validated phenotypic screening platform for automated detection and quantification of endogenous DUX4 expression. Mechanisms underlying DUX4 repression may involve many interacting proteins, favouring such a phenotypic approach. Furthermore, it is pathway/target independent (and thus not hypothesis-driven) and provides additional information on cell toxicity or interference with muscle differentiation.
- Significant differences in the levels of DUX4 expression between cells obtained from different donors have been reported. Therefore, muscle cell lines derived from different donors were thoroughly characterised and an optimal cell line was selected for primary screening. MyoD staining of myoblasts confirmed solid myogenicity of all cell lines (Rudnicki et al., 1993; cell 75(7):1351-9). After optimisation of parameters, a DUX4 detection procedure was established that could be applied in a screening assay which resulted in the expected DUX4 pattern in FSHD cells, but not in myotubes from healthy donors. As shown in
FIG. 1 , this included a nuclear DUX4 localization, with only few positive cells, and an intensity gradient through DUX4-positive nuclear clusters, as also described by Rickard et al., (2015, DOI: 10.1093/hmg/ddv315). - A quantitative assay readout was developed based on script-based image analysis. Cells were stained according to example 1, also using DAPI to detect myonuclei and an antibody against myosin heavy chain (MHC) to visualize the formation of myotubes. To analyse the images, an automated script was developed, enabling the detection of nuclei, myotube borders and DUX4 signals, with the script also detecting artefacts to reduce false positive signals. The script enabled multiple validated readouts including the number of DUX4 positive nuclei and nuclei clusters, the fusion index, myotube area, myotube width and myotube skeleton length (see
FIG. 2 ). Additionally, the total nuclei count was included as a measure of cell loss or compound toxicity. The script was validated by evaluating endogenous DUX4 expression in the primary myotubes, and results were in line with literature values, with the number of DUX4 expressing nuclei being <0.5%. - The assay has been further matured to make it suitable for screening purposes. The assay quality was dependent on the donor cell line. The number of DUX4 positive nuclei was characteristic for each donor cell line, and was consistent between experiments. The best performing cell lines in terms of number of DUX4 expressing nuclei, reproducibility and Z-factor have been selected for miniaturization of the assay to a 384-well format, thus allowing for automated screening of large compound libraries. A cell line with 2 D4Z4 repeats was selected for the primary screening, while a cell line with 6 D4Z4 repeats was selected for later validation. The primary screening assay had a Z-factor of 0.6, which represents an excellent assay (Zhang et al., 1999, doi:10.1177/108705719900400206; see
FIG. 3 ). - A compound library containing approximately 5000 annotated compounds was screened in the high-content assay. For this purpose, primary myoblasts were seeded in 384 well plates after which the growth medium was replaced with differentiation medium. After 3 days of differentiation, cells were treated with library compounds (in duplicate on different screening plates) for 15 h, after which they were fixed and stained with antibodies against DUX4, antibodies against myosin heavy chain (MHC), and with DAPI (4′,6-diamidino-2-phenylindole). Script-based analysis provided readouts for DUX4 expression (count of DUX4-positive nuclei or DUX4 intensity) and for potential toxicity (fusion index and nuclei count). Results are shown in
FIG. 4 . The majority of the approximately 200 hits was confirmed in an experiment using the same assay and 5 replicates. These compounds were selected for further concentration-response profiling. - Half of these hits were validated using RT-PCR. Based on mRNA expression of DUX4 and the downstream target genes Trim43 & ZScan4, using housekeeping genes hGUSB, GAPDH, hRPL27 as a reference, a very good correlation between DUX4 repression in the immunocytochemistry assay (protein level) and the RT-PCR assay (mRNA level) was observed. This suggests that the vast majority of the hits have an upstream mode of action, i.e. they act by inhibiting the expression of DUX4 (as opposed to accelerating degradation of DUX4).
- RT-PCR was performed as described by Lemmers et al., (2010, DOI: 10.1126/science.1189044) using oligonucleotides ordered from Applied Biosystems (Foster City, USA), possibly as part of assay kits (for hGAPDH (app): AssayID Hs02758991_g1; for hTRIM43(app): Assay ID Hs00299174_m1; for hMYH2_tv1-2(app): AssayID Hs00430042_m1). Other oligonucleotides are shown in table 1.
-
TABLE 1 primers and probes for use in PCR Name Sequence SEQ ID NO: hDUX4 forward CCCGGCTGACGTGCAA 1 hDUX4 reverse AGCCAGAATTTCACGGAAGAAC 2 hDUX4 probe AGCTCGCTGGCCTCTCTGTGCC 3 hGUSB forward TTCCCTCCAGCTTCAATGACA 4 hGUSB reverse CCACACCCAGCCGACAA 5 hGUSB probe AGGACTGGCGTCTGCGGCA 6 hRPL27 forward TGTCCTGGCTGGACGCTACT 7 hRPL27 reverse GAGGTGCCATCATCAATGTTCTT 8 hRPL27 probe CGGACGCAAAGCTGTCATCGT 9 hZSCAN4 forward AGGCAGGAATTGCAAAGACTTT 10 hZSCAN4 reverse AATTTCATCCTTGCTGTGCTTTT 11 hZSCAN4 probe TAGGATCTTTCACTCATGGCTGC 12 AACCA hMYOG forward GCTCACGGCTGACCCTACA 13 hMYOG reverse CACTGTGATGCTGTCCACGAT 14 hMYOG probe CCCACAACCTGCACTCCCTCACCT 15 - The validated assay was used for screening an annotated compound library containing approximately 5000 compounds, to identify novel mechanisms of action for DUX4 repression. This library contained compounds with annotated pharmacology, not only entailing the primary pharmacology of the compounds but also potential known polypharmacology. The primary screening achieved multiple hits, identifying compounds that reduced the number of DUX4 positive nuclei. Hits were further profiled by establishing concentration-response curves. By applying a bioinformatics approach on the screening and profiling dataset, the inventors surprisingly discovered that compounds with a CK1 annotation were significantly enriched in the phenotypically active compound population, i.e. in the group of compounds inducing a repression of DUX4. Interestingly, none of the original compounds with a CK1 annotation had CK1 as its primary pharmacological target, each having other high potency targets from other protein families. Thus the bioinformatics analysis was essential in identifying the association between CK1 and DUX4 repression.
- Profiled compounds were annotated as being phenotypically active when they showed a concentration-dependent effect on DUX4 (inhibition or activation). Of these, compounds which showed inhibition of the fusion index or of the total number of nuclei by more than 10% were excluded unless the effect on these readouts was at least 5-fold less potent than the effect on DUX4. As such, from the 4790 unique compounds, 188 compounds were classified as being phenotypically active, 162 of which were DUX4 inhibitors.
- For the phenotypically active compounds, the original target annotations were complemented with additional information that is publically available (literature, patent applications, supplier databases, etc.). All human proteins, and non-human orthologues where a mapping to the human proteome can be established, were considered. Each of the 4790 compounds was then evaluated against these target annotations, classifying the target as being active or inactive for a given compound. For the phenotypically active compounds, the annotated targets were classified as being active if the compound's potency on the target was <10 times the phenotypic potency, otherwise the target was classified as inactive. This analysis revealed that approximately 201 targets were associated with phenotypic activity at a False Discovery Rate of 0.05. An enrichment of compounds annotated as CK1 inhibitors was detected in the group of phenotypically active compounds.
- To confirm target expression in both healthy and FSHD muscle cells, an RNA sequencing approach was followed to determine the expression of the different CK1 isoforms in primary myotubes from 4 different FSHD donors and from 4 different healthy donors. The results show expression of all CK1 isoforms, both in FSHD and in healthy muscle cells. The highest expression is of CK1 α, CK1 δ and CK1 ε (see table 2).
-
TABLE 2 expression of casein kinase 1 isoforms in 4 healthy primary cell lines, and in 4 FSHDprimary cell lines as determined by RNA sequencing of differentiated myotubes CSNK1A1 CSNK1D CSNK1E CSNK1G1 CSNK1G2 CSNK1G3 FSHD 134 159.1 160.1 49.9 81.8 37.9 FSHD 122.5 138.4 136.8 4.2 79.1 32.7 FSHD 176.7 170.6 120.5 69.8 65.8 41.3 FSHD 118.2 134 105.6 41.8 63.5 38.1 Healthy 138.9 168.5 188 45.8 75.9 35.8 Healthy 143.3 174.1 200.7 49.6 81.8 36.3 Healthy 139.2 192.8 176.1 51.9 71.4 33.2 Healthy 119.1 132.4 122.4 40.6 65.9 40.1 - The DUX4 repression of CK1 inhibitors was assayed following the protocol of Example 2, illustrated in
FIG. 4A . Table 3 shows the structures of the CK1 inhibitors that are used inFIG. 5 . Compounds were incubated with primary FSHD cells for 15 hours, as indicated by the arrow inFIG. 4A . Results are shown inFIG. 5 , while table 3 shows half maximal effective concentrations (EC50) values. Table 3 also shows determined IC50 values in nM for CK1α, CK1δ, CK1ε, and p38α, denoted as CK1 a, d, e, and p38a, respectively. - Several of these compounds were also tested in vivo in a mouse model. The model was based on human FSHD-affected myoblasts engrafted onto a mouse thigh muscle. These human FSHD myoblasts then fused and developed into myotubes, which produce DUX4. This model approximates natural FSHD biology as much as possible by using primary FSHD-affected muscle cells. The diseases cells are engrafted in one thigh, and healthy human myoblasts in the other thigh, so that each mouse serves as its own control. The compounds also showed repression of DUX4 in these in vivo models, as established by RT-PCR and histological examination.
- Because DUX4 expression increases upon in vitro differentiation of proliferating FSHD myoblasts into multinucleated myotubes (Balog et al., 2015 Epigenetics. 2015; 10(12):1133-42), inhibition of differentiation might lead to a false positive effect on DUX4 repression.
- Bromo- and Extra-Terminal domain (BET) inhibitors such as the non-selective inhibitor (+)JQ1 or the BRD4-selective inhibitor RVX-208 can inhibit the expression of DUX4 in immortalised differentiated myotube cultures (see US2015087636A1). It was shown there that when differentiating myotubes were exposed to (+)JQ1 at the start of the differentiation process, i.e. from the moment when the growth medium was changed to the differentiation medium, the expression of myosin heavy chain (MYH2, a differentiation marker) was decreased, suggesting that the inhibitor also impacted the differentiation process. Both (+)JQ1 and RVX-208 have been evaluated in the phenotypic assay described in this application. Agonists of the beta2 adrenoreceptor have also been reported to inhibit DUX4 expression in differentiating myotubes (Campbell et al., 2017). We evaluated the effect of both BET inhibitors and beta2 adrenoreceptor agonists on the fusion process and compared in to the effect of a CK1 inhibitor.
-
FIG. 6A shows the experimental setup of Example 2. Compounds are administered either 15 h before fixation, resembling the original screening protocol, or 72 h before fixation (grey arrow). In the latter case, compounds are present during the whole differentiation process. The inventors found that early administration of the BET inhibitor (+)JQ1 (FIG. 6B , C) and agonists of the beta2 adrenoreceptor (FIGS. 6D , E, F, G, H, I) inhibit the fusion process and the differentiation of myoblasts into myotubes.FIG. 6J shows that no myotube formation can be observed after treatment with a beta2 adrenoreceptor agonist (formoterol). This leads to a false positive readout when assessing the DUX4 signal. The BET inhibitor RVX-208 did not show any effect on DUX4 expression, irrespective of treatment time (not shown). While the fusion index did not appear to be affected at the 15 h timepoint, also with this treatment time the myotube fusion process was affected by these compounds as determined by RT-PCR showing inhibition of the expression of the late differentiation marker myosin heavy chain (Myh; not shown; primers were from hMYH2 kit described above). - As illustrated in example 5, inhibition of CK1 inhibits DUX4. This effect occurs without inhibiting myotube fusion, neither after 15 h nor after 72 h of compound treatment (
FIG. 6K , L). - Compounds PF-670462, PF-5006739, Compound E, Compound F, Compound D, Compound H, Compound A, and SR3029 were assayed for their inhibition of CK1 α, CK1 δ, CK1 ε, and of p38, and their concurrent repression of DUX4. Table 4 shows inhibitory results.
-
TABLE 4 inhibition of CK1 and p38 by CK1 inhibitors, in nM IC50 PF- PF- SR- EC 50670462 5006739 E F D H A 3029 CK1 α 320 123 592 561 644 33 30 >10k CK1 δ 29 20 31 18 33.1 22 19 346 CK1 ε 100 27 84 72 51.6 16 12 381 p38 32 74 1110 677 569 25 13 >10k DUX4 470 820 1890 2590 1410 10 50 50 (n = 4) (n = 12) (n = 4) (n = 2) (n = 2) (n = 2) (n = 2) -
- Balog et al., 2015 Epigenetics. 2015; 10(12):1133-42; Bergerat et al., 2017, DOI: 10.1016/j.prp.2016.11.015; Van den Boogaard et al., 2016, DOI: 10.1016/j.ajhg.2016.03.013; Brockschmidt et al., 2008, DOI: 10.1136/gut.2007.123695; Campbell et al., 2017, DOI: 10.1186/s13395-017-0134-x; Chebib and Jo, 2016, DOI: 10.1002/cncy.21685; Eide E J, Virshup D M, 2001, DOI:10.1081/CBI-100103963; Etchegaray J P et al., 2009, DOI:10.1128/MCB.00338-09; Geng et al., 2012, DOI: 10.1016/j.devcel.2011.11.013; Kowaljow et al., 2007, DOI: 10.1016/j.nmd.2007.04.002; Lang et al., 2014, DOI: 10.14205/2310-8703.2014.02.01.1; Lemmers et al., 2010, DOI: 10.1126/science.1189044; Lilljebjörn & Fioretos, 2017, DOI: 10.1182/blood-2017-05-742643; Oyama et al., 2017 DOI: 10.1038/s41598-017-04967-0; Paz et al., 2003, DOI: 10.1093/hmg/ddg226; Rickard et al., 2015, DOI: 10.1093/hmg/ddv315; Rudnicki et al., 1993; cell 75(7):1351-9; Sharma et al., 2016, DOI:10.4172/2157-7412.1000303; Snider et al., 2010, DOI: 10.1371/journal.pgen.1001181; Stadler et al., 2013, DOI: 10.1038/nsmb.2571; Tawil et al., 2014, DOI: 10.1186/2044-5040-4-12; Vanderplanck et al., 2011, doi: 10.1371/journal.pone.0026820; Wallace et al., 2011, DOI: 10.1002/ana.22275; Yao et al., 2014, DOI: 10.1093/hmg/ddu251; Yasuda et al., 2016, doi: 10.1038/ng.3535; Young et al., 2013, doi:10.1371/journal.pgen.1003947; Zhang et al., 1999, doi:10.1177/108705719900400206; Zhang et al., 2017, DOI:10.1038/ng.3691 WO2011051858/WO2012085721/WO2015119579/EP2949651/WO2009016286/US2005/0131012/WO2015195880/WO2014081923/US20140221313/US2015087636A1
Claims (15)
1. A casein kinase 1 inhibitor for use in the treatment of a disease or condition associated with DUX4 expression, wherein the casein kinase 1 inhibitor reduces DUX4 expression.
2. A casein kinase 1 inhibitor for use according to claim 1 , wherein said disease or condition associated with DUX4 expression is a muscular dystrophy or cancer, preferably wherein said disease or condition associated with DUX4 expression is a muscular dystrophy, most preferably facioscapulohumeral muscular dystrophy (FSHD).
3. A casein kinase 1 inhibitor for use according to claim 1 or 2 , characterized in that it is administered to a subject 4, 3, 2, or 1 times per day or less, preferably 1 time per day.
4. A casein kinase 1 inhibitor for use according to any one of claims 1 -3 , wherein the casein kinase inhibitor inhibits at least casein kinase 1δ.
5. A casein kinase 1 inhibitor for use according to any one of claims 1 -4 , characterized in that it is administered to a subject in an amount ranging from 0.1 to 1500 mg/day, preferably from 0.1 to 400 mg/day, more preferably from 0.25 to 150 mg/day.
6. A casein kinase 1 inhibitor for use according to any one of claims 1 -5 , characterized in that it is administered orally, sublingually, intravascularly, intravenously, subcutaneously, or transdermally, preferably orally.
7. A casein kinase 1 inhibitor for use according to any one of claims 1 -6 , wherein DUX4 expression is reduced by at least 20%, 40%, 60%, 80%, or more.
8. A casein kinase 1 inhibitor for use according to any one of claims 1 -7 , wherein the casein kinase 1 inhibitor reduces DUX4 expression in muscle cells, immune cells, or cancer cells.
9. A casein kinase 1 inhibitor for use according to any one of claims 1 -8 , wherein the reduction of DUX4 expression is determined using PCR or immunostaining.
10. A casein kinase 1 inhibitor for use according to any one of claims 1 -9 , wherein the casein kinase 1 inhibitor is from the class comprising an azole core.
11. A casein kinase 1 inhibitor for use according to any one of claims 1 -10 , wherein the casein kinase 1 inhibitor is selected from the group consisting of compounds A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, SR-3029, PF-670462, and PF-5006739.
12. A composition comprising
at least one casein kinase 1 inhibitor as defined in any one of claims 1 -11 , and
a pharmaceutically acceptable excipient,
for use as defined in any one of claims 1 -11 .
13. A composition for use according to claim 12 , wherein the composition is formulated for oral, sublingual, parenteral, intravascular, intravenous, subcutaneous, or transdermal administration, preferably for oral administration.
14. An in vivo, in vitro, or ex vivo method for reducing DUX4 expression, the method comprising the step of contacting a cell with a casein kinase 1 inhibitor as defined in any one of claims 1 -11 , or with a composition as defined in claim 12 or 13 .
15. A method for reducing DUX4 expression in a subject in need thereof, the method comprising the step of administering an effective amount of a casein kinase 1 inhibitor as defined in any one of claims 1 -11 , or a composition as defined in claim 12 or 13 .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/574,615 US20220226318A1 (en) | 2017-12-13 | 2022-01-13 | Compounds for treatment of diseases related to DUX4 expression |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP17207162.3 | 2017-12-13 | ||
| EP17207162 | 2017-12-13 | ||
| PCT/EP2018/084802 WO2019115711A1 (en) | 2017-12-13 | 2018-12-13 | Compounds for treatment of diseases related to dux4 expression |
| US202016771232A | 2020-06-10 | 2020-06-10 | |
| US17/574,615 US20220226318A1 (en) | 2017-12-13 | 2022-01-13 | Compounds for treatment of diseases related to DUX4 expression |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/771,232 Division US20210177847A1 (en) | 2017-12-13 | 2018-12-13 | Compounds for treatment of diseases related to DUX4 expression |
| PCT/EP2018/084802 Division WO2019115711A1 (en) | 2017-12-13 | 2018-12-13 | Compounds for treatment of diseases related to dux4 expression |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220226318A1 true US20220226318A1 (en) | 2022-07-21 |
Family
ID=60673528
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/217,184 Expired - Fee Related US10973820B2 (en) | 2017-12-13 | 2018-12-12 | Compounds for treatment of diseases related to DUX4 expression |
| US16/771,232 Abandoned US20210177847A1 (en) | 2017-12-13 | 2018-12-13 | Compounds for treatment of diseases related to DUX4 expression |
| US17/574,615 Abandoned US20220226318A1 (en) | 2017-12-13 | 2022-01-13 | Compounds for treatment of diseases related to DUX4 expression |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/217,184 Expired - Fee Related US10973820B2 (en) | 2017-12-13 | 2018-12-12 | Compounds for treatment of diseases related to DUX4 expression |
| US16/771,232 Abandoned US20210177847A1 (en) | 2017-12-13 | 2018-12-13 | Compounds for treatment of diseases related to DUX4 expression |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US10973820B2 (en) |
| EP (2) | EP3723756A1 (en) |
| JP (1) | JP2021506765A (en) |
| KR (1) | KR20200098536A (en) |
| CN (1) | CN111479570A (en) |
| AU (1) | AU2018382974A1 (en) |
| CA (1) | CA3083975A1 (en) |
| DK (1) | DK3498278T3 (en) |
| ES (1) | ES2791539T3 (en) |
| IL (1) | IL275321A (en) |
| MX (1) | MX2020006237A (en) |
| WO (1) | WO2019115711A1 (en) |
| ZA (1) | ZA202003407B (en) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113350352B (en) | 2015-03-23 | 2024-09-10 | 天莅生物科技私人有限公司 | Treatment of respiratory diseases |
| US10973820B2 (en) * | 2017-12-13 | 2021-04-13 | Facio Intellectual Property B.V. | Compounds for treatment of diseases related to DUX4 expression |
| WO2020093097A1 (en) | 2018-11-07 | 2020-05-14 | The University Of Melbourne | Compounds and compositions for the treatment of respiratory diseases |
| TW202112368A (en) * | 2019-06-13 | 2021-04-01 | 荷蘭商法西歐知識產權股份有限公司 | Inhibitor combinations for treatment of diseases related to dux4 expression |
| JP2023503988A (en) * | 2019-11-29 | 2023-02-01 | ファシオ インテレクチュアル プロパティ ビー.ヴイ. | New compounds for treating diseases associated with DUX4 expression |
| WO2021105481A1 (en) * | 2019-11-29 | 2021-06-03 | Facio Intellectual Property B.V. | Novel compounds for treatment of diseases related to dux4 expression |
| WO2021190615A1 (en) * | 2020-03-27 | 2021-09-30 | Gritscience Biopharmaceuticals Co., Ltd. | Compounds as casein kinase inhibitors |
| WO2022056266A2 (en) | 2020-09-11 | 2022-03-17 | Arrowhead Pharmaceuticals, Inc. | Rnai agents for inhibiting expression of dux4, compositions thereof, and methods of use |
| US20240076291A1 (en) * | 2020-11-24 | 2024-03-07 | Merck Sharp & Dohme Llc | Modified isoindolinones as glucosylceramide synthase inhibitors |
| GB202019622D0 (en) * | 2020-12-11 | 2021-01-27 | Adorx Therapeutics Ltd | Antagonist compounds |
| CN116888126A (en) * | 2020-12-15 | 2023-10-13 | 北京原基华毅生物科技有限公司 | Compound of casein kinase inhibitor |
| CN119487030A (en) * | 2022-06-14 | 2025-02-18 | 北京原基华毅生物科技有限公司 | Salts and/or crystalline forms of compounds as casein kinase inhibitors |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8536164B2 (en) * | 2010-12-20 | 2013-09-17 | Pfizer Inc. | Fused pyridine compounds as casein kinase inhibitors |
| US10973820B2 (en) * | 2017-12-13 | 2021-04-13 | Facio Intellectual Property B.V. | Compounds for treatment of diseases related to DUX4 expression |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RS50823B (en) | 2003-12-11 | 2010-08-31 | Aventis Pharmaceuticals Inc. | SUBSTITUTED 1H-PYROLO [3,2-B, 3,2-C, AND 2,3-C] PYRIDINE-2-CARBOXAMIDES AND RELATED ANALYSIS AS CASEINE KINASE AND EPSILON INHIBITORS |
| FR2918061B1 (en) * | 2007-06-28 | 2010-10-22 | Sanofi Aventis | 6-CYCLOAMINO-3- (PYRIDIN-4-YL) IMIDAZO-1,2-B1-PYRIDAZINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE. |
| IN2012DN03182A (en) | 2009-10-28 | 2015-09-25 | Pfizer | |
| EP2546357A1 (en) | 2011-07-14 | 2013-01-16 | Erasmus University Medical Center Rotterdam | A new classifier for the molecular classification of multiple myeloma. |
| US20150299807A1 (en) | 2012-11-21 | 2015-10-22 | The Johns Hopkins University | Genomic classifiers for non-invasive identification of high grade prostate cancer with metastatic potential |
| ES2489297B1 (en) * | 2013-01-22 | 2015-06-10 | Consejo Superior De Investigaciones Científicas (Csic) | BENZOTIAZOLES REPLACED AND ITS THERAPEUTIC APPLICATIONS FOR THE TREATMENT OF HUMAN DISEASES |
| US9814728B2 (en) | 2013-09-20 | 2017-11-14 | Saint Louis University | Inhibition of DUX4 expression using bromodomain and extra-terminal domain protein inhibitors (BETi) |
| CN106470699A (en) * | 2014-02-03 | 2017-03-01 | 耶路撒冷希伯来大学的益生研究开发有限公司 | Use of a casein kinase I inhibitor to deplete stem cells |
| EP3102207B1 (en) | 2014-02-07 | 2022-05-11 | Agency For Science, Technology And Research | 2,4,5-tri-substituted azole-based casein kinase 1 inhibitors as inducers for cardiomyogenesis |
| ES2770693T3 (en) | 2014-06-19 | 2020-07-02 | Bristol Myers Squibb Co | Imidazopyridazine derivatives as casein kinase 1 delta / epsilon inhibitors |
-
2018
- 2018-12-12 US US16/217,184 patent/US10973820B2/en not_active Expired - Fee Related
- 2018-12-13 CN CN201880080305.4A patent/CN111479570A/en active Pending
- 2018-12-13 AU AU2018382974A patent/AU2018382974A1/en not_active Abandoned
- 2018-12-13 EP EP18814976.9A patent/EP3723756A1/en not_active Withdrawn
- 2018-12-13 DK DK18212420.6T patent/DK3498278T3/en active
- 2018-12-13 US US16/771,232 patent/US20210177847A1/en not_active Abandoned
- 2018-12-13 JP JP2020531708A patent/JP2021506765A/en active Pending
- 2018-12-13 CA CA3083975A patent/CA3083975A1/en active Pending
- 2018-12-13 KR KR1020207017659A patent/KR20200098536A/en not_active Ceased
- 2018-12-13 WO PCT/EP2018/084802 patent/WO2019115711A1/en not_active Ceased
- 2018-12-13 ES ES18212420T patent/ES2791539T3/en active Active
- 2018-12-13 MX MX2020006237A patent/MX2020006237A/en unknown
- 2018-12-13 EP EP18212420.6A patent/EP3498278B1/en active Active
-
2020
- 2020-06-08 ZA ZA2020/03407A patent/ZA202003407B/en unknown
- 2020-06-11 IL IL275321A patent/IL275321A/en unknown
-
2022
- 2022-01-13 US US17/574,615 patent/US20220226318A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8536164B2 (en) * | 2010-12-20 | 2013-09-17 | Pfizer Inc. | Fused pyridine compounds as casein kinase inhibitors |
| US10973820B2 (en) * | 2017-12-13 | 2021-04-13 | Facio Intellectual Property B.V. | Compounds for treatment of diseases related to DUX4 expression |
Also Published As
| Publication number | Publication date |
|---|---|
| CA3083975A1 (en) | 2019-06-20 |
| ZA202003407B (en) | 2022-06-29 |
| WO2019115711A1 (en) | 2019-06-20 |
| EP3723756A1 (en) | 2020-10-21 |
| ES2791539T3 (en) | 2020-11-04 |
| DK3498278T3 (en) | 2020-04-20 |
| CN111479570A (en) | 2020-07-31 |
| US20210177847A1 (en) | 2021-06-17 |
| IL275321A (en) | 2020-07-30 |
| EP3498278A1 (en) | 2019-06-19 |
| MX2020006237A (en) | 2020-11-06 |
| KR20200098536A (en) | 2020-08-20 |
| US10973820B2 (en) | 2021-04-13 |
| AU2018382974A1 (en) | 2020-06-18 |
| JP2021506765A (en) | 2021-02-22 |
| EP3498278B1 (en) | 2020-03-18 |
| US20190175596A1 (en) | 2019-06-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20220226318A1 (en) | Compounds for treatment of diseases related to DUX4 expression | |
| EP3247375B1 (en) | Anti-senescence compounds and uses thereof | |
| Ebner et al. | Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 11th Cachexia Conference | |
| CN110652514A (en) | Pharmaceutical uses of third-generation EGFR inhibitors | |
| US20220226340A1 (en) | Casein kinase 1 inhibitors for use in the treatment of diseases related to dux4 expression such as muscular dystrophy and cancer | |
| CN109414419A (en) | Cancer therapy by simultaneously targeting energy metabolism and intracellular pH | |
| Cao et al. | Ruxolitinib improves the inflammatory microenvironment, restores glutamate homeostasis, and promotes functional recovery after spinal cord injury | |
| JP2019517536A (en) | Low dose FLT3 receptor inhibitors for the treatment of neuropathic pain | |
| CN110785174A (en) | Triptolide or a composition comprising triptolide for use in treating a condition | |
| TW202038960A (en) | Combination of a mcl-1 inhibitor and midostaurin, uses and pharmaceutical compositions thereof | |
| HK40009351B (en) | Compounds for treatment of diseases related to dux4 expression | |
| HK40009351A (en) | Compounds for treatment of diseases related to dux4 expression | |
| EP4190331B1 (en) | Preventive, relief or therapeutic use of 2,3,5-substituted thiophene compound against gastrointestinal stromal tumor | |
| WO2012074184A1 (en) | Pharmaceutical composition for preventing or treating obesity comprising sphingosine-1-phosphate or a pharmaceutically acceptable salt thereof as an active ingredient | |
| US20170027955A1 (en) | Expression levels of bcl-xl, bcl2, bcl-w, and bad and cancer therapies | |
| US20250049773A1 (en) | Inhibition of sterol response element binding proteins as atarget for selective elimination of senescent cells | |
| KR20070046906A (en) | Use of midostaurine for the treatment of gastrointestinal tract organic tumors | |
| Lu | Exploring rapamycin-induced pro-survival pathways in Tuberous Sclerosis Complex and the development of alternative therapies | |
| CN1579379A (en) | Compositions and uses of allylamine derivatives | |
| Antenora et al. | Friedreich Ataxia: 150 years of bench and bedside studies | |
| EA042675B1 (en) | GABA-A RECEPTOR LIGAND | |
| Schwarzera et al. | 10th Symposium of the Austrian Pharmacological Society (APHAR) | |
| US20140200255A1 (en) | Method for administration |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: FACIO INTELLECTUAL PROPERTY B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE MAEYER, JORIS;GEESE, MARCUS;SCHNEIDER, MARTIN;AND OTHERS;SIGNING DATES FROM 20210828 TO 20211208;REEL/FRAME:058686/0796 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |