US20170328610A1 - Semiconductor refrigerator - Google Patents
Semiconductor refrigerator Download PDFInfo
- Publication number
- US20170328610A1 US20170328610A1 US15/533,638 US201515533638A US2017328610A1 US 20170328610 A1 US20170328610 A1 US 20170328610A1 US 201515533638 A US201515533638 A US 201515533638A US 2017328610 A1 US2017328610 A1 US 2017328610A1
- Authority
- US
- United States
- Prior art keywords
- pipe
- semiconductor refrigerator
- hot end
- main pipe
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 73
- 238000001816 cooling Methods 0.000 claims abstract description 28
- 239000003570 air Substances 0.000 description 20
- 239000007788 liquid Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/003—General constructional features for cooling refrigerating machinery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/30—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/025—Removal of heat
- F25B2321/0252—Removal of heat by liquids or two-phase fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/18—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered
Definitions
- the present invention is related to a refrigerator, and more particularly to a semiconductor refrigerator.
- a semiconductor refrigerator also called a thermoelectric refrigerator, achieves refrigeration by using automatic voltage-and-current changing techniques and semiconductor cooling plates which radiate and transfer heat through highly efficient two-layered loop heat pipes.
- a semiconductor refrigerator does not require refrigerating working media and mechanically movable members, and solves the application problems of a traditional mechanical refrigerator such as contamination by working media and mechanical vibrations.
- An existing sintered heat pipe extends from its one end to the other along an exclusive path.
- the liquid in the capillary core is evaporated and vaporized.
- the vapor flows to the other end due to a slight pressure difference, emits heat and condenses into liquid again.
- the liquid flows to the evaporating segment again under the capillary force along porous materials. This process cycles endlessly, transferring the heat from one end to the other end of the sintered heat pipe.
- existing sintered heat pipes may not achieve desired effects when radiating heat for heat sources of a high heat flow density such as semiconductor cooling plates.
- One object of the present invention is to overcome at least one defect of an existing semiconductor refrigerator by providing a semiconductor refrigerator with high heat radiation efficiency.
- the present invention provides a semiconductor refrigerator comprising a semiconductor cooling plate and a hot end heat radiating device, wherein the hot end heat radiating device comprises multiple sintered heat pipes, each having a main pipe with both ends closed, wherein the main pipe comprises a first pipe segment thermally connected with a hot end of the semiconductor cooling plate, and a second pipe segment, which is located above the first pipe segment, and from whose one or more portions extend one or more manifolds to radiate heat from the hot end of the semiconductor cooling plate to an ambient environment.
- the first pipe segment of the main pipe is formed by extending from a lower end of the main pipe vertically upwards by a predetermined length, and the first pipe segments of multiple main pipes are located in the same plane in parallel and with gaps therebetween, the plane being parallel with a rear wall of an inner tank of the semiconductor refrigerator.
- the hot end heat radiating device further comprises: a fixed bottom plate whose front surface is thermally connected with the hot end of the semiconductor cooling plate and whose rear surface is provided with one or more grooves; and a fixed cover plate whose front surface is provided with one or more grooves and which is configured to cooperate with the fixed bottom plate to clamp the first pipe segment of the main pipe between the grooves of the fixed cover plate and of the fixed bottom plate.
- the second pipe segment of the main pipe is formed by extending from an upper end of the main pipe vertically downwards by a predetermined length, and the second pipe segments of multiple main pipes are located in the same plane in parallel and with gaps therebetween, the plane being parallel with the rear wall of the inner tank of the semiconductor refrigerator; or the second pipe segment of the main pipe is formed by extending from the upper end of the main pipe longitudinally forwards by a predetermined length and then vertically downwards by a predetermined length, the vertical portions of the second pipe segments of the multiple main pipes are located in the same plane in parallel and with gaps therebetween, the plane being parallel with the rear wall of the inner tank of the semiconductor refrigerator, and a starting end of the manifold of the sintered heat pipe is located at the vertical portion of a corresponding second pipe segment.
- the manifold of the sintered heat pipe is perpendicular to the rear wall of the inner tank.
- the manifolds of each sintered heat pipe are located at the same side of the corresponding main pipe, or the manifolds of each sintered heat pipe are located at the opposite sides of the corresponding main pipe respectively.
- the hot end heat radiating device further comprises: one or two fin groups, each fin group comprising multiple corresponding plate fins which are arranged in parallel and with gaps therebetween, and each fin group being installed at a manifold on a corresponding side of the main pipe via pipe holes of the respective plate fins.
- the hot end heat radiating device further comprises: a blower arranged at a transverse side of or above the multiple manifolds and configured such that an air inlet area of the blower sucks air flow and the air flow is blown to a gap between each two adjacent plate fins, or the air flow is sucked from the gap between each two adjacent plate fins and is then blown to the air inlet area.
- a blower arranged at a transverse side of or above the multiple manifolds and configured such that an air inlet area of the blower sucks air flow and the air flow is blown to a gap between each two adjacent plate fins, or the air flow is sucked from the gap between each two adjacent plate fins and is then blown to the air inlet area.
- each plate fin is provided with a receiving through hole so that each fin group defines a receiving space extending along the axes of the receiving through holes;
- the hot end heat radiating device further comprises one or two blowers respectively provided in the receiving spaces of the corresponding fin groups and configured such that air flow is sucked from an air inlet area of each blower and is blown to a gap between each two adjacent plate fins of the corresponding fin group.
- the hot end heat radiating device further comprises: multiple spiral fins each spirally installed on a corresponding manifold, and a blower arranged at a transverse side of or above the multiple manifolds such that the manifolds of each sintered heat pipe are located at an air inlet area or an air sucking area of the blower.
- the heat radiating or cold transferring efficiency of the semiconductor refrigerator is considerably improved, enabling the sintered heat pipe to adapt to heat sources of a high heat flow density, such as semiconductor cooling plates, for radiating heat, and enabling the semiconductor refrigerator of the present invention to have higher energy efficiency.
- FIG. 1 is a schematic right view of a semiconductor refrigerator according to an embodiment of the present invention.
- FIG. 3 is a schematic rear view of a semiconductor refrigerator according to an embodiment of the present invention.
- FIG. 4 is a schematic right view of a semiconductor refrigerator according to another embodiment of the present invention.
- FIG. 5 is a schematic right view of a semiconductor refrigerator according to yet another embodiment of the present invention.
- FIG. 6 is a schematic left view of a semiconductor refrigerator according to an embodiment of the present invention.
- the cold end cold transferring device 180 is configured to transfer the cold from the cold end of the semiconductor cooling plate 150 to a storage compartment in the inner tank 100 .
- the cold end cold transferring device 180 may comprise a cold transferring block, cold transferring fins and a cold transferring blower.
- the rear surface of the cold transferring block is thermally connected to the cold end of the semiconductor cooling plate 150 .
- the front surface of the cold transferring block is mounted with multiple cold transferring fins.
- the cold transferring fins and the cold transferring blower are mounted in an air passage inside the semiconductor refrigerator to transfer cold to the storage compartment.
- the hot end heat radiating device is configured to radiate the heat from the hot end of the semiconductor cooling plate 150 to ambient air.
- the hot end heat radiating device may comprise multiple sintered heat pipes 200 , each having a main pipe 210 with both ends closed.
- the main pipe 210 may comprise a first pipe segment 211 and a second pipe segment 212 located above the first pipe segment 211 .
- the first pipe segment 211 is thermally connected with a hot end of the semiconductor cooling plate 150 .
- one or more manifolds 220 extend from one or more portions of the second pipe segment 212 to radiate the heat from the hot end of the semiconductor cooling plate 150 to an ambient environment, which considerably improves the heat radiating efficiency of the semiconductor refrigerator.
- the working chamber of the manifold 220 may communicate with the working chamber of the corresponding main pipe 210 to facilitate steam flow in the sintered heat pipe 200 .
- the liquid absorbing core in the manifold 220 may be connected with the liquid absorbing core in the main pipe 210 .
- the liquid absorbing cores in the manifold 220 and in the main pipe 210 closely contact the inner wall of the corresponding pipes respectively to facilitate flow of the working liquid.
- the diameter of the manifold 220 may equal that of the main pipe 210 . In some alternative embodiments of the present invention, the diameter of the manifold 220 may be smaller than that of the main pipe 210 .
- the first pipe segment 211 of the main pipe 210 is formed by extending from a lower end of the main pipe 210 vertically upwards by a predetermined length; and the first pipe segments 211 of multiple main pipes 210 are located in the same plane in parallel and with gaps therebetween, the plane being parallel with the rear wall of an inner tank 100 of the semiconductor refrigerator.
- the hot end heat radiating device of the semiconductor cooling plate 150 further comprises a fixed bottom plate 310 and a fixed cover plate 320 .
- the rear surface of the fixed bottom plate 310 is provided with one or more grooves.
- the front surface of the fixed bottom plate 310 may be attached to the hot end of the semiconductor cooling plate 150 so as to be thermally connected therewith, or may be thermally connected the hot end of the semiconductor cooling plate 150 through a heat transferring block.
- the front surface of the fixed cover plate 320 is also provided with one or more grooves, and the fixed cover plate 320 is configured to cooperate with the fixed bottom plate 310 to clamp the first pipe segment 211 of the main pipe 210 between the grooves of the fixed cover plate 320 and of the fixed bottom plate 310 .
- the three members are firmly fixed together by welding or mechanical squeezing.
- heat conducting silicone grease is coated on the contact surfaces between the sintered heat pipe 200 and the fixed bottom plate 310 /the fixed cover plate 320 .
- the second pipe segment 212 of the main pipe 210 is formed by extending from an upper end of the main pipe 210 longitudinally forwards by a predetermined length and then vertically downwards by a predetermined length, and the vertical portions 2121 of the second pipe segments 212 of multiple main pipes 210 are located in the same plane in parallel and with gaps therebetween, the plane being parallel with the rear wall of the inner tank 100 of the semiconductor refrigerator. That is, the second pipe segment 212 of multiple main pipes 210 may comprise the vertical portion 2121 whose lower end communicates with the corresponding first pipe segment 211 and a horizontal portion 2122 which extends from the upper end of the vertical portion 2121 perpendicularly to the vertical portion 2121 and whose tail end is closed.
- a starting end of the manifold 220 of the sintered heat pipe 200 is located at the vertical portion 2121 of a corresponding second pipe segment 212 .
- the projection of the manifold 220 of each sintered heat pipe 200 in a plane perpendicular to the corresponding vertical portion 2121 overlaps with the projection of the corresponding horizontal portion 2122 in the plane.
- the manifolds 220 of each sintered heat pipe 200 are located at the same side of the corresponding main pipe 210 .
- the main pipe 210 may further include a connecting pipe segment 213 connected between the first and second pipe segments 211 , 212 and arranged at an angle of 100°-170° relative to the first pipe segment 211 and to the vertical portion 2121 of the second pipe segment 212 respectively.
- the hot end heat radiating device of the embodiments of the present invention may comprise four sintered heat pipes 200 .
- the main pipes 210 of the four sintered heat pipes 200 are arranged in the same plane in symmetry with respect to a geometrical symmetry plane.
- the length of the connecting pipe segment 213 of one sintered heat pipe 200 at one side of the geometrical symmetry plane is smaller than that of the connecting pipe segment 213 of the other sintered heat pipe 200 at the same side of the geometrical symmetry plane, so that the four sintered heat pipes 200 are reasonably arranged.
- the hot end heat radiating device further comprises a blower 500 provided in the receiving space of the corresponding fin group 400 and configured such that air flow is sucked from an air inlet area of the blower and is blown to a gap between each two adjacent plate fins of the fin group 400 .
- the blower 500 may be a centrifugal blower.
- the rotary axis of the blades overlaps with the axis of the receiving through hole, so that air flow is sucked from an axial direction of the centrifugal blower and is blown to the gap between each two adjacent plate fins using a centrifugal force.
- the plate fin may be rectangular.
- FIG. 4 is a schematic right view of a semiconductor refrigerator according to another embodiment of the present invention.
- the second pipe segment 212 of the main pipe 210 is formed by extending from an upper end of the main pipe 210 vertically downwards by a predetermined length, and the second pipe segments 212 of multiple main pipes 210 are located in the same plane in parallel and with gaps therebetween, the plane being parallel with the rear wall of the inner tank 100 of the semiconductor refrigerator.
- the manifolds 220 of each sintered heat pipe 200 are located at the opposite sides of the corresponding main pipe 210 respectively.
- the hot end heat radiating device further comprises two fin groups 400 and a blower 500 .
- Each fin group 400 comprises multiple corresponding plate fins which are arranged in parallel and with gaps therebetween, and is installed at a manifold 220 on a corresponding side of the main pipe 210 via pipe holes of the respective plate fins.
- the blower 500 may be arranged at a transverse side of or above the multiple manifolds 220 and configured such that an air inlet area of the blower sucks air flow and the air flow is blown to a gap between each two adjacent plate fins, or the air flow is sucked from the gap between each two adjacent plate fins and is then blown to the air inlet area.
- the blower 500 is an axial flow blower fixed on top of the two fin groups 400 .
- FIG. 5 is a schematic right view of a semiconductor refrigerator according to yet another embodiment of the present invention.
- the manifold 220 of the sintered heat pipe 200 is perpendicular to the rear wall of the inner tank 100 .
- the manifolds 220 of each sintered heat pipe 200 are located at the same side of the corresponding main pipe 210 , or are located at the opposite sides of the corresponding main pipe 210 respectively.
- the hot end heat radiating device further comprises: multiple spiral fins 450 and a blower 500 .
- Each of the multiple spiral fins 450 is spirally installed on a corresponding manifold 220 , and the blower 500 is arranged at a transverse side of or above the multiple manifolds 220 such that the manifolds 220 of each sintered heat pipe 200 are located at an air inlet area or an air sucking area of the blower 500 .
- the blower 500 may be an axial flow blower and may be located at one side transverse to the multiple manifolds 220 .
- the hot end heat radiating device further comprises one and/or two fastening members 600 .
- the fastening member 600 may be fixed at an end of the second pipe segment 212 of a corresponding main pipe 210 away from the corresponding first pipe segment 211 along the length direction of the fastening member 600 at different parts of the fastening member respectively.
- the other fastening member 600 may be fixed at an end of the second pipe segment 212 of a corresponding main pipe 210 close to the corresponding first pipe segment 211 along the length direction of the fastening member 600 at different parts of the fastening member respectively.
- the fastening member 600 may be a fastening steel bar, a fastening steel wire, a fastening tube or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Geometry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510055838.5A CN104729182B (zh) | 2015-02-03 | 2015-02-03 | 半导体制冷冰箱 |
| CN201510055838.5 | 2015-02-03 | ||
| PCT/CN2015/091094 WO2016123995A1 (fr) | 2015-02-03 | 2015-09-29 | Réfrigérateur de refroidissement à semi-conducteur |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20170328610A1 true US20170328610A1 (en) | 2017-11-16 |
Family
ID=53453320
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/533,638 Abandoned US20170328610A1 (en) | 2015-02-03 | 2015-09-29 | Semiconductor refrigerator |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20170328610A1 (fr) |
| EP (1) | EP3255362B1 (fr) |
| CN (1) | CN104729182B (fr) |
| WO (1) | WO2016123995A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180281957A1 (en) * | 2017-03-29 | 2018-10-04 | Rockwell Collins, Inc. | Liquid Chilled Galley Bar Unit |
| US11112186B2 (en) * | 2019-04-18 | 2021-09-07 | Furukawa Electric Co., Ltd. | Heat pipe heatsink with internal structural support plate |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104729182B (zh) * | 2015-02-03 | 2016-11-23 | 青岛海尔股份有限公司 | 半导体制冷冰箱 |
| CN112856615B (zh) * | 2021-01-07 | 2022-06-24 | 施斌卿 | 除湿机防结冰控制方法及除湿机 |
| CN115164493B (zh) * | 2022-07-15 | 2024-11-01 | 青岛海容商用冷链股份有限公司 | 风冷式半导体冷冻柜及其控制方法 |
| CN117073293A (zh) * | 2023-08-28 | 2023-11-17 | 浙江汉恒热电科技有限公司 | 通风式热电温控装置及具备该装置的抽屉式车载冷暖箱 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5253702A (en) * | 1992-01-14 | 1993-10-19 | Sun Microsystems, Inc. | Integral heat pipe, heat exchanger, and clamping plate |
| US6664673B2 (en) * | 2001-08-27 | 2003-12-16 | Advanced Rotary Systems Llc | Cooler for electronic devices |
| US20040069461A1 (en) * | 2002-08-02 | 2004-04-15 | Mitsubishi Aluminum Co., Ltd. | Heat pipe unit and heat pipe type heat exchanger |
| CN2720383Y (zh) * | 2004-07-21 | 2005-08-24 | 侯祺 | 集束型热管散热器 |
| US8904808B2 (en) * | 2009-07-17 | 2014-12-09 | Sheetak, Inc. | Heat pipes and thermoelectric cooling devices |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3451107B2 (ja) * | 1992-10-05 | 2003-09-29 | 株式会社エコ・トゥエンティーワン | 電子冷却装置 |
| JPH11257882A (ja) * | 1998-03-12 | 1999-09-24 | Sharp Corp | ヒートパイプ及び集熱装置 |
| AU765552B2 (en) * | 1999-02-26 | 2003-09-25 | Tempra Technology, Inc. | Preparation of heat sink materials |
| CN2681057Y (zh) * | 2003-12-10 | 2005-02-23 | 来学恩 | 热管散热式微型电子冰箱 |
| CN2797986Y (zh) * | 2005-04-29 | 2006-07-19 | 王龙岩 | 半导体冰箱的制冷散热结构 |
| CN201281563Y (zh) * | 2008-10-21 | 2009-07-29 | 顺德职业技术学院 | 以环保制冷剂-纳米铝为工质的多环路立管式热管 |
| CN101941072B (zh) * | 2009-07-08 | 2013-06-05 | 富准精密工业(深圳)有限公司 | 平板式热管的制造方法 |
| JP5773976B2 (ja) * | 2012-12-27 | 2015-09-02 | 三菱電機株式会社 | 冷蔵庫 |
| CN104729182B (zh) * | 2015-02-03 | 2016-11-23 | 青岛海尔股份有限公司 | 半导体制冷冰箱 |
| CN204612291U (zh) * | 2015-02-03 | 2015-09-02 | 青岛海尔股份有限公司 | 半导体制冷冰箱 |
-
2015
- 2015-02-03 CN CN201510055838.5A patent/CN104729182B/zh active Active
- 2015-09-29 WO PCT/CN2015/091094 patent/WO2016123995A1/fr not_active Ceased
- 2015-09-29 EP EP15880937.6A patent/EP3255362B1/fr active Active
- 2015-09-29 US US15/533,638 patent/US20170328610A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5253702A (en) * | 1992-01-14 | 1993-10-19 | Sun Microsystems, Inc. | Integral heat pipe, heat exchanger, and clamping plate |
| US6664673B2 (en) * | 2001-08-27 | 2003-12-16 | Advanced Rotary Systems Llc | Cooler for electronic devices |
| US20040069461A1 (en) * | 2002-08-02 | 2004-04-15 | Mitsubishi Aluminum Co., Ltd. | Heat pipe unit and heat pipe type heat exchanger |
| CN2720383Y (zh) * | 2004-07-21 | 2005-08-24 | 侯祺 | 集束型热管散热器 |
| US8904808B2 (en) * | 2009-07-17 | 2014-12-09 | Sheetak, Inc. | Heat pipes and thermoelectric cooling devices |
Non-Patent Citations (1)
| Title |
|---|
| Zengqi, Cluster Type Heat Radiator (Year: 2005) * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180281957A1 (en) * | 2017-03-29 | 2018-10-04 | Rockwell Collins, Inc. | Liquid Chilled Galley Bar Unit |
| US11136125B2 (en) * | 2017-03-29 | 2021-10-05 | Rockwell Collins, Inc. | Liquid chilled galley bar unit |
| US11112186B2 (en) * | 2019-04-18 | 2021-09-07 | Furukawa Electric Co., Ltd. | Heat pipe heatsink with internal structural support plate |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016123995A1 (fr) | 2016-08-11 |
| CN104729182B (zh) | 2016-11-23 |
| EP3255362A4 (fr) | 2018-08-29 |
| CN104729182A (zh) | 2015-06-24 |
| EP3255362A1 (fr) | 2017-12-13 |
| EP3255362B1 (fr) | 2019-11-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3255358B1 (fr) | Appareil d'échange de chaleur et réfrigérateur à refroidissement de semi-conducteur comprenant ce dernier | |
| EP3255362B1 (fr) | Réfrigérateur de refroidissement à semi-conducteur | |
| CN104654669B (zh) | 换热装置及具有其的半导体制冷冰箱 | |
| US9032743B2 (en) | Heat exchanger | |
| US20190212061A1 (en) | Heat exchanger and air conditioning system | |
| US10451354B2 (en) | Cooling apparatus with multiple pumps | |
| WO2016192653A1 (fr) | Système d'échangeur de chaleur | |
| CN105258382A (zh) | 换热装置及具有该换热装置的半导体制冷冰箱 | |
| CN104676949B (zh) | 烧结热管及具有其的半导体制冷冰箱 | |
| WO2017208558A1 (fr) | Échangeur de chaleur | |
| CN204612225U (zh) | 烧结热管及具有其的半导体制冷冰箱 | |
| KR101917484B1 (ko) | 배관 구조, 그 배관 구조를 사용한 냉각 장치, 및 냉매 증기 수송 방법 | |
| CN204612291U (zh) | 半导体制冷冰箱 | |
| CN104654849B (zh) | 换热装置及具有其的半导体制冷冰箱 | |
| EP3255359B1 (fr) | Conduit de chaleur fritté et réfrigérateur à refroidissement de semiconducteur comprenant ce dernier | |
| CN204612552U (zh) | 换热装置及具有其的半导体制冷冰箱 | |
| JPWO2017169969A1 (ja) | 冷却装置 | |
| CN204612553U (zh) | 换热装置及具有其的半导体制冷冰箱 | |
| CN204612257U (zh) | 换热装置及具有其的半导体制冷冰箱 | |
| JP4717794B2 (ja) | 真空装置における蒸気凝結器 | |
| CN204612224U (zh) | 烧结热管及具有其的半导体制冷冰箱 | |
| WO2016067509A1 (fr) | Dispositif d'échange de chaleur et dispositif de réception de corps de génération de chaleur le mettant en œuvre | |
| JP2012109371A (ja) | 発熱体収納箱冷却装置 | |
| TW201825849A (zh) | 環路熱管結構 | |
| TWM493854U (zh) | 冷媒式散熱裝置(二) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: QINGDAO HAIER JOINT STOCK CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAO, HAIBO;ZHANG, KUI;LIU, JIANRU;AND OTHERS;REEL/FRAME:042620/0372 Effective date: 20170413 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |