US20160168658A1 - Method of producing metal-coated steel strip - Google Patents
Method of producing metal-coated steel strip Download PDFInfo
- Publication number
- US20160168658A1 US20160168658A1 US14/436,536 US201314436536A US2016168658A1 US 20160168658 A1 US20160168658 A1 US 20160168658A1 US 201314436536 A US201314436536 A US 201314436536A US 2016168658 A1 US2016168658 A1 US 2016168658A1
- Authority
- US
- United States
- Prior art keywords
- alloy
- cooling
- water
- method defined
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000010959 steel Substances 0.000 title claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 title description 18
- 239000002184 metal Substances 0.000 title description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 103
- 239000000956 alloy Substances 0.000 claims abstract description 103
- 238000000576 coating method Methods 0.000 claims abstract description 71
- 229910007981 Si-Mg Inorganic materials 0.000 claims abstract description 66
- 229910008316 Si—Mg Inorganic materials 0.000 claims abstract description 66
- 238000001816 cooling Methods 0.000 claims abstract description 59
- 239000000498 cooling water Substances 0.000 claims abstract description 54
- 239000011248 coating agent Substances 0.000 claims abstract description 52
- 239000012535 impurity Substances 0.000 claims abstract description 16
- 229910019064 Mg-Si Inorganic materials 0.000 claims abstract description 6
- 229910019406 Mg—Si Inorganic materials 0.000 claims abstract description 6
- 238000007598 dipping method Methods 0.000 claims abstract description 4
- 238000010791 quenching Methods 0.000 claims description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 58
- 229910052749 magnesium Inorganic materials 0.000 claims description 22
- 239000002253 acid Substances 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000011777 magnesium Substances 0.000 description 41
- 229910018137 Al-Zn Inorganic materials 0.000 description 18
- 229910018573 Al—Zn Inorganic materials 0.000 description 18
- 239000011701 zinc Substances 0.000 description 18
- 239000002244 precipitate Substances 0.000 description 16
- 239000011575 calcium Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 11
- 239000007921 spray Substances 0.000 description 10
- 238000012827 research and development Methods 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 229910001092 metal group alloy Inorganic materials 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 239000004411 aluminium Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 101001056180 Homo sapiens Induced myeloid leukemia cell differentiation protein Mcl-1 Proteins 0.000 description 5
- 102100026539 Induced myeloid leukemia cell differentiation protein Mcl-1 Human genes 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- -1 aluminium-zinc-silicon-magnesium Chemical compound 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical class [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101000573526 Homo sapiens Membrane protein MLC1 Proteins 0.000 description 1
- 101000635885 Homo sapiens Myosin light chain 1/3, skeletal muscle isoform Proteins 0.000 description 1
- 102100030739 Myosin light chain 4 Human genes 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical group [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 101150035574 mcl2 gene Proteins 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000004894 snout Anatomy 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000004457 water analysis Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
- C23C2/00342—Moving elements, e.g. pumps or mixers
- C23C2/00344—Means for moving substrates, e.g. immersed rollers or immersed bearings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/20—Strips; Plates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the present invention relates to the production of metal strip, typically steel strip, which has a coating of a corrosion-resistant metal alloy that contains aluminium-zinc-silicon-magnesium as the main elements in the alloy, and is hereinafter referred to as an “Al—Zn—Si—Mg alloy” on this basis.
- the present invention relates particularly, although by no means exclusively, to the production of strip, typically steel strip, which has a coating of a corrosion-resistant metal alloy that contains aluminium-zinc-silicon-magnesium as the main elements in the alloy in the following ranges in % by weight:
- the Al—Zn—Si—Mg alloy may contain other elements that are present in the alloy as deliberate alloying additions or as unavoidable impurities.
- the phrase “Al—Zn—Si—Mg alloy” is understood herein to cover alloys that contain such other elements as deliberate alloying additions or as unavoidable impurities.
- the other elements may include by way of example any one or more of Fe, Ti, Cu, Ni, Co, Ca, Mn, Be, Sr, Ca, Cr, and V.
- the present invention relates to a hot-dip metal coating method of forming a coating of an Al—Zn—Si—Mg alloy on a strip that includes dipping uncoated strip into a bath of molten Al—Zn—Si—Mg alloy and forming a coating of the alloy on the strip.
- composition of the as-solidified coating of the Al—Zn—Si—Mg alloy may be different to an extent to the composition of the Al—Zn—Si—Mg alloy used to form the coating due to factors such as partial dissolution of the metal strip into the coating during the coating process.
- the profiled sheets are usually manufactured by cold forming painted, metal alloy coated strip. Typically, the profiled sheets are manufactured by roll-forming the painted strip.
- Another Al—Zn—Si—Mg alloy coating that is described in the patent literature although not commercially available in Australia is formed from an alloy that contains in % by weight: Al: 2 to 19%, Si: 0.01 to 2%, Mg: 1 to 10%, balance Zn and unavoidable impurities.
- the alloy coating is described and claimed in Australian patent 758643 entitled “Plated steel product, plated steel sheet and precoated steel sheet having excellent resistance to corrosion” in the name of Nippon Steel Corporation.
- Mg when Mg is included in Al—Zn coating compositions, Mg brings about certain beneficial effects on product performance, such as improved cut-edge protection.
- the applicant has carried out extensive research and development work in relation to Al—Zn—Si—Mg alloy coatings on strip such as steel strip.
- the present invention is the result of part of this research and development work.
- the applicant found that there was greater dissolution of Al—Zn—Si—Mg alloy coatings into quench water than was the case with conventional Al—Zn coatings and the dissolution resulted in precipitates in quench water that caused a rapid deterioration of cooling water circuit heat exchangers and caused undesirable coatings to form on cooling water storage tank surfaces in the quench water circuits in the metal coating lines.
- the precipitation problem is a potentially serious maintenance issue.
- a method of forming a coating of an Al—Zn—Si—Mg alloy on a steel strip to form an Al—Zn—Mg—Si coated steel strip including the steps of dipping steel strip into a bath of molten Al—Zn—Si—Mg alloy and forming a coating of the alloy on exposed surfaces of the steel strip and cooling the coated strip with cooling water, with the cooling step including controlling the pH of cooling water to be in a range of pH 5-9.
- the cooling step may include controlling the pH of cooling water to be less than 7.5.
- the cooling step may include controlling the pH of cooling water to be greater than 5.5.
- the cooling step may include controlling the pH of cooling water to be greater than 6.
- the cooling step may include controlling the temperature of cooling water to be in a range of 25-80° C.
- the cooling step may include controlling the temperature of cooling water to be less than 70° C.
- the cooling step may include controlling cooling water temperature to be less than 45° C.
- the cooling step may include controlling cooling water temperature to be greater than 30° C.
- the cooling step may include controlling cooling water temperature to be greater than 35° C.
- the cooling step may include controlling cooling water temperature to be greater than 40° C.
- the cooling step may include controlling the pH by adding acid to the cooling water.
- the cooling step may include controlling the pH by adding acid and other salts, buffers, wetting agents, surfactants, coupling agents, etc.
- the acid may be any suitable acid such as phosphoric acid and nitric acid by way of example.
- the cooling step may be a closed loop in which water is circulated through a circuit that supplies water to the coated strip and collects and cools water and returns the cooled water for cooling the coated strip.
- the closed loop may include a water storage tank, a spray system for supplying water to the coated strip from the tank, and a heat exchanger for cooling water after it has been sprayed onto the strip.
- the cooling step may be an open loop in which cooling water is not recycled in the cooling step.
- the cooling step may include controlling the operating conditions to cool the coated strip to a temperature range of 28-55° C.
- the cooling step may include controlling the operating conditions to cool the coated strip to a temperature range of 30-50° C.
- the method may include other steps including any one or more of the steps of pre-treating strip to clean the strip before the hot dip coating step, controlling the thickness of the coated strip immediately after the coating step, rolling the coated strip, treating the coated strip with a passivation solution, and coiling the coated strip.
- the Al—Zn—Si—Mg alloy may include the following ranges in % by weight:
- the Al—Zn—Si—Mg alloy may include the following ranges in % by weight of the elements Al, Zn, Si, and Mg:
- the Al—Zn—Si—Mg alloy coating may contain other elements that are present as deliberate alloying additions or as unavoidable impurities.
- the other elements may include by way of example any one or more of Fe, Sr, Cr, and V.
- the other elements may include Ca for dross control in molten coating baths.
- the steel may be a low carbon steel.
- the present invention also provides an Al—Zn—Mg—Si alloy coated steel strip produced by the above-described method.
- FIG. 1 is a schematic drawing of one embodiment of a continuous metal coating line for forming an Al—Zn—Si—Mg alloy coating on steel strip in accordance with the method of the present invention
- FIG. 2 is a graph of the Al and Ca concentrations in cooling water used during the course of a plant trial carried out by the applicant.
- FIG. 3 is a graph of the Mg and Zn concentrations in cooling water used during the course of the plant trial carried out by the applicant.
- coils of cold rolled low carbon steel strip are uncoiled at an uncoiling station 1 and successive uncoiled lengths of strip are welded end to end by a welder 2 and form a continuous length of strip.
- the strip is then passed successively through an accumulator 3 , a strip cleaning section 4 and a furnace assembly 5 .
- the furnace assembly 5 includes a preheater, a preheat reducing furnace, and a reducing furnace.
- the strip is heat treated in the furnace assembly 5 by careful control of process variables including: (i) the temperature profile in the furnaces, (ii) the reducing gas concentration in the furnaces, (iii) the gas flow rate through the furnaces, and (iv) strip residence time in the furnaces (i.e. line speed).
- the process variables in the furnace assembly 5 are controlled so that there is removal of iron oxide residues from the surface of the strip and removal of residual oils and iron fines from the surface of the strip.
- the heat treated strip is then passed via an outlet snout downwardly into and through a molten bath containing an Al—Zn—Si—Mg alloy held in a coating pot 6 and is coated with Al—Zn—Si—Mg alloy.
- the Al—Zn—Si—Mg alloy in the coating pot 6 comprises in % by weight: Zn: 2 to 19%, Si: 0.01 to 2%, Mg: 1 to 10%, and balance Al and unavoidable impurities.
- the coating pot 6 may also contain Ca for dross control in the molten bath.
- the Al—Zn—Si—Mg alloy is maintained molten in the coating pot at a selected temperature by use of heating inductors (not shown).
- the strip passes around a sink roll and is taken upwardly out of the bath.
- the line speed is selected to provide a selected immersion time of strip in the coating bath. Both surfaces of the strip are coated with the Al—Zn—Si—Mg alloy as it passes through the bath.
- the strip After leaving the coating bath 6 the strip passes vertically through a gas wiping station (not shown) at which its coated surfaces are subjected to jets of wiping gas to control the thickness of the coating.
- the exposed surfaces of the Al—Zn—Si—Mg alloy coating oxidise as the coated strip moves through the gas wiping station and a native oxide layer forms on the exposed surfaces of the coating.
- the native oxide is the first oxide to form on the surface of the metal alloy coating, with its chemical make-up being intrinsically dependent on the composition of the metal alloy coating, including Mg oxide, Al oxide, and a small amount of oxides of other elements of the Al—Zn—Si—Mg alloy coating.
- the coated strip is then passed through a cooling section 7 and is subjected to forced cooling by means of a water quench step.
- the forced cooling may include a forced air cooling step (not shown) before the water quench step.
- the water quench step is, by way of example, a closed loop in which water sprayed onto coated strip is collected and then cooled for re-use to cool coated strip.
- the cooling section 7 includes a coated strip cooling chamber 7 a , a spray system 7 b that sprays water onto the surface of the coated strip as it moves through the cooling chamber 7 a , a water quench tank 7 c for storing water that is collected from the cooling chamber 7 b , and a heat exchanger 7 d for cooling water from the water quench tank 7 c before transferring the water to the spray system 7 b.
- the pH of the cooling water supplied to the spray system 7 b is controlled to be in a range of pH 5-9, typically in a range of 5-8, more typically in a range of 5.5-7.5 and (b) the temperature of the cooling water supplied to the spray system is controlled to be in a relatively low temperature range of 30-50° C. Both control steps (a) and (b) minimise dissolution of the Al—Zn—Si—Mg alloy coating on the coated strip.
- the pH and temperature control may be achieved, by way of example, by using a pH probe and a temperature sensor in an overflow tank of the water quench tank 7 c and supplying data from the probe/sensor to a PLC and calculating required acid additions to maintain the pH at predetermined set points for pH and the water temperature, with any acid additions and temperature adjustments being made so that the water in the water quench tank 7 c is controlled to the set points for pH and temperature.
- This is not the only possible option for achieving pH and temperature control.
- the pH, temperature, and chemical control may also be achieved by way of example, by using a once through water cooling system where the quench water is not recirculated and the input water has pH and temperature properties as described above.
- the cooled, coated strip is then passed through a rolling section 8 that conditions the surface of the coated strip.
- This section may include one or more of skin pass and tension leveling operations.
- the conditioned strip is then passed through a passivation section 10 and coated with a passivation solution to provide the strip with a degree of resistance to wet storage and early dulling.
- the coated strip is thereafter coiled at a coiling station 11 .
- the Springhill metal coating lines are similar in general terms to the line shown in FIG. 1 and include a closed loop quench step on each of the three lines (MCL 1 , MCL 2 , and MCL 3 ). Each closed loop processes a relatively small volume (approx 5000 L) of water. The cooling water is cooled by dedicated heat exchangers on each line.
- the white precipitates formed on cooling system equipment surfaces and covered an initial layer of grey material.
- the grey layer was found to contain Al(OH) 3 and Al 2 O 3 .3H 2 O from previous line operations using conventional Al—Zn alloys.
- the white precipitates were found to contain Mg 4 Al 2 (OH) 14 .3H 2 O and Al 2 O 3 .3H 2 O.
- These magnesium/aluminium oxy/hydroxides also contained magnesium carbonate compounds.
- the applicant carried out x-ray photoelectron spectroscopy (XPS) depth profiling analysis to assess the condition of the surfaces of coatings of the Al—Zn—Si—Mg alloys used in the above-described initial plant trials.
- the XPS depth profiling analysis was carried out on steel panels produced on the Hot Dip Process Simulator (HDPS) at the research facilities of the applicant.
- the HDPS is a state-of-the-art unit purpose-built to the specifications of the applicant by Iwatani International Corp (Europe) GmbH.
- the HDPS unit comprises a molten metal pot furnace, an infrared heating furnace, gas wiping nozzles, de-drossing mechanisms, gas mixing and dewpoint management functions, and computerized automatic control systems.
- the HDPS unit is capable of simulating a typical hot dip cycle on a conventional metal coating line.
- the XPS depth profiling analysis identified thin oxide layers on the Al—Zn—Si—Mg alloy coated steel panels. The oxide layers consisted primarily of aluminium and magnesium oxides.
- the HDPS has gas cooling but no water quench, and thus the oxide layers are representative of oxides forming on the surface of the molten coatings at elevated temperatures after coated strip emerges form a coating bath.
- Group (a) alloys include the following ranges in % by weight of the elements Al, Zn, Si, and Mg: Al: 2 to 19%, Si: 0.01 to 2%, Mg: 1 to 10%, and balance Zn and unavoidable impurities.
- Group (b) alloys include the following ranges in % by weight of the elements Al, Zn, Si, and Mg: Al: 30 to 60%, Si: 0.3 to 3%, Mg: 0.3 to 10%, and balance Zn and unavoidable impurities.
- the plant trials carried out by the applicant comprised the above-described initial plant trials on Al—Zn—Si—Mg alloys that identified the precipitate problem in the first instance and later more extensive plant trials that confirmed the precipitate problem and evaluated several options to minimise the problem.
- the later plant trials on the MCL 1 line were carried out by hot dip coating steel strip with the following alloys in coating baths: (a) a known Al—Zn alloy (hereinafter referred to as “AZ”) and (b) an Al—Zn—Si—Mg alloy (hereinafter referred to as “AM”) having the following compositions, in wt. %:
- AZ Al—Zn alloy
- AM Al—Zn—Si—Mg alloy
- the first week of the plant trials on the MLC1 line was run with the AZ (Al—Zn) alloy and produced standard Zincalume (Registered Trade Mark) coated strip.
- the line was run in accordance with established operating conditions. In terms of the water cooling step on the line, the quench water was at a temperature of 50-60° C. upstream of the water sprays. There was no pH control of the quench water. Under these conditions the quench water became saturated with aluminium and the pH increased to around 8.5 (at 60° C.).
- a trial to control quench tank pH using phosphoric acid ran for 4 days.
- the control system was set to allow a pre-determined [OH ⁇ ] ion value of 1.0 ⁇ 10 ⁇ 6 mol/L.
- Table 2 provides the values of the pH set point for different water quench tank temperatures to maintain a set pH.
- the periods 1 - 4 represent pH control (1), low temperature control (35° C.) (2), quench tank set point at 50° C. (3), and quench tank set point at 40° C., respectively.
- the quench water pH control and temperature control component of the research and development work reported in the specification focuses on a group (b) alloy composition of 53Al-43Zn-2Mg-1.5Si—0.45Fe-incidental impurities. There are no specific results on quench water pH control and temperature control for the group (a) composition range reported in the specification. Nevertheless, the body of research and development work carried out by the applicant in relation to Al—Zn—Si—Mg alloy coatings on steel strip, across the group (a) and group (b) alloy composition ranges, including laboratory work and metallurgical modelling work, indicates that the quench water pH control and temperature control requirements for group (b) alloy compositions also apply to group (a) alloy compositions.
- the present invention is not so limited and extends to any suitable water cooling system, such as dunk or immersion tanks.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2012904523A AU2012904523A0 (en) | 2012-10-17 | Method of Producing Metal-Coated Steel Strip | |
| AU2012904523 | 2012-10-17 | ||
| PCT/AU2013/001197 WO2014059475A1 (fr) | 2012-10-17 | 2013-10-17 | Procédé de fabrication de bande d'acier revêtue de métal |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2013/001197 A-371-Of-International WO2014059475A1 (fr) | 2012-10-17 | 2013-10-17 | Procédé de fabrication de bande d'acier revêtue de métal |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/999,186 Continuation US11613792B2 (en) | 2012-10-17 | 2018-08-15 | Method of producing metal-coated steel strip |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160168658A1 true US20160168658A1 (en) | 2016-06-16 |
Family
ID=50487336
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/436,536 Abandoned US20160168658A1 (en) | 2012-10-17 | 2013-10-17 | Method of producing metal-coated steel strip |
| US15/999,186 Active 2034-09-04 US11613792B2 (en) | 2012-10-17 | 2018-08-15 | Method of producing metal-coated steel strip |
| US18/173,945 Pending US20230304122A1 (en) | 2012-10-17 | 2023-02-24 | Method of producing metal-coated steel strip |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/999,186 Active 2034-09-04 US11613792B2 (en) | 2012-10-17 | 2018-08-15 | Method of producing metal-coated steel strip |
| US18/173,945 Pending US20230304122A1 (en) | 2012-10-17 | 2023-02-24 | Method of producing metal-coated steel strip |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US20160168658A1 (fr) |
| AU (4) | AU2013332257A1 (fr) |
| NZ (1) | NZ706336A (fr) |
| WO (1) | WO2014059475A1 (fr) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2016226812C1 (en) * | 2015-03-02 | 2019-10-10 | Jfe Galvanizing & Coating Co., Ltd. | HOT-DIP Al-Zn-Mg-Si COATED STEEL SHEET AND METHOD OF PRODUCING SAME |
| WO2017017484A1 (fr) * | 2015-07-30 | 2017-02-02 | Arcelormittal | Procédé pour la fabrication d'une pièce durcie qui ne présente pas de problèmes lme (liquide metal embrittlement - fragilité par les métaux liquides) |
| WO2017017483A1 (fr) | 2015-07-30 | 2017-02-02 | Arcelormittal | Tôle d'acier revêtue d'un revêtement métallique à base d'aluminium |
| WO2017017485A1 (fr) | 2015-07-30 | 2017-02-02 | Arcelormittal | Procédé de fabrication d'une pièce phosphatable à partir d'une tôle d'acier revêtue d'un revêtement métallique à base d'aluminium |
| FR3064279B1 (fr) | 2017-03-22 | 2020-06-26 | Fives Stein | Procede et dispositif de refroidissement d'une bande d'acier en defilement dans une section de refroidissement d'une ligne continue |
| JP7335960B2 (ja) | 2018-12-18 | 2023-08-30 | ポスコ カンパニー リミテッド | 合金コーティング鋼板およびその製造方法 |
| EP3990845B1 (fr) | 2019-06-26 | 2024-04-17 | Carrier Corporation | Unité frigorifique de transport dotée d'une décongélation adaptative |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4812371A (en) * | 1986-11-17 | 1989-03-14 | Nippon Steel Corporation | Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating |
| US4818568A (en) * | 1985-08-29 | 1989-04-04 | Nisshin Steel Co., Ltd. | Hot dip coated steel sheet and process for producing the same |
| US6465114B1 (en) * | 1999-05-24 | 2002-10-15 | Nippon Steel Corporation | -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same |
| US7122148B2 (en) * | 2004-01-09 | 2006-10-17 | Water Conservation Technologies International | Cooling water scale and corrosion inhibition |
| US20110293838A1 (en) * | 2009-01-16 | 2011-12-01 | Galva Power Group Nv | Flux and fluxing bath for hot dip galvanization, process for the hot dip galvanization of an iron or steel article |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU412989B2 (en) | 1967-04-20 | 1971-05-04 | John Lysaght (Australia) Limited | Composition and process for inhibiting corrosion of zinc surfaces |
| US3845540A (en) * | 1972-04-28 | 1974-11-05 | Maneely Illinois | Hot galvanizing process and apparatus |
| US4165401A (en) * | 1977-08-29 | 1979-08-21 | Davis Walker Corporation | Recovery of suspended particulate metal from quench water |
| JPS58177446A (ja) | 1982-04-09 | 1983-10-18 | Nisshin Steel Co Ltd | 耐食性および塗装性に優れた溶融合金めつき鋼板の製造方法 |
| US4401727A (en) | 1982-06-23 | 1983-08-30 | Bethlehem Steel Corporation | Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method |
| JPH0331669Y2 (fr) | 1986-08-21 | 1991-07-04 | ||
| JPS63297576A (ja) | 1987-05-29 | 1988-12-05 | Nisshin Steel Co Ltd | 耐黒変性に優れた溶融めっき鋼板の製造方法 |
| JPS6428351A (en) | 1987-07-23 | 1989-01-30 | Nisshin Steel Co Ltd | Method for hot dip aluminizing hardly aluminizable steel sheet |
| US4854942A (en) | 1988-07-29 | 1989-08-08 | Quantum Chemical Corporation | Control of pH in water quench of a partial oxidation process |
| US6652990B2 (en) | 1992-03-27 | 2003-11-25 | The Louis Berkman Company | Corrosion-resistant coated metal and method for making the same |
| JPH0718399A (ja) | 1993-07-06 | 1995-01-20 | Parker Corp:Kk | ミニマムスパングル亜鉛メッキ鋼板の製造方法 |
| EP1193323B1 (fr) | 2000-02-29 | 2016-04-20 | Nippon Steel & Sumitomo Metal Corporation | Article en acier plaque dote d'une grande resistance a la corrosion ainsi que d'une remarquable aptitude au formage et procede de production |
| WO2004009863A1 (fr) | 2002-07-24 | 2004-01-29 | Nisshin Steel Co., Ltd. | Tole d'acier galvanisee par immersion a chaud a base de zinc, ayant un excellent maintien du brillant |
| US6677058B1 (en) * | 2002-07-31 | 2004-01-13 | Nisshin Steel Co., Ltd. | Hot-dip Zn plated steel sheet excellent in luster-retaining property and method of producing the same |
| KR100817735B1 (ko) | 2003-09-16 | 2008-03-31 | 닛신 세이코 가부시키가이샤 | 광택 유지성이 양호한 용융 Zn 기본 도금 강판의 제조방법 |
| DE102004052482A1 (de) * | 2004-10-28 | 2006-05-11 | Thyssenkrupp Steel Ag | Verfahren zum Herstellen eines korrosionsgeschützten Stahlblechs |
| KR101517375B1 (ko) | 2005-04-05 | 2015-05-07 | 블루스코프 스틸 리미티드 | 금속―코팅 강철 스트립 |
| EP2035594A4 (fr) | 2006-06-09 | 2010-12-08 | Teck Cominco Metals Ltd | Alliage à haute teneur en aluminium pour galvanisation générale |
| MY162123A (en) | 2007-05-09 | 2017-05-31 | Mcnnnac Energy Services Inc | Cooling system |
| JP5655263B2 (ja) | 2007-09-19 | 2015-01-21 | 新日鐵住金株式会社 | 溶融Mg−Al系合金めっき鋼材 |
| KR101749923B1 (ko) | 2008-02-07 | 2017-06-22 | 블루스코프 스틸 리미티드 | 금속 코팅된 강철 스트립 |
| EP3778978A1 (fr) | 2008-03-13 | 2021-02-17 | Bluescope Steel Limited | Bande d'acier revêtue de métal |
| EP2294156A4 (fr) | 2008-06-02 | 2016-03-23 | Imerys Filtration Minerals Inc | Procédé de prévention et de réduction d'une formation d'écailles |
| NZ597077A (en) | 2009-05-28 | 2014-04-30 | Bluescope Steel Ltd | Metal-coated steel strip |
| CN102762759B (zh) | 2010-02-18 | 2015-11-25 | 日铁住金钢板株式会社 | 热浸镀钢及其制造方法 |
| AU2012325673B2 (en) | 2011-10-18 | 2017-07-06 | Bluescope Steel Limited | Metal-coated steel strip |
| TWI653362B (zh) | 2012-10-17 | 2019-03-11 | 澳大利亞商布魯史寇普鋼鐵有限公司 | 金屬被覆鋼帶的製造方法 |
-
2013
- 2013-10-17 US US14/436,536 patent/US20160168658A1/en not_active Abandoned
- 2013-10-17 NZ NZ706336A patent/NZ706336A/en unknown
- 2013-10-17 AU AU2013332257A patent/AU2013332257A1/en not_active Abandoned
- 2013-10-17 WO PCT/AU2013/001197 patent/WO2014059475A1/fr not_active Ceased
-
2018
- 2018-08-15 US US15/999,186 patent/US11613792B2/en active Active
- 2018-10-04 AU AU2018241120A patent/AU2018241120B2/en active Active
-
2020
- 2020-09-09 AU AU2020230266A patent/AU2020230266B2/en active Active
-
2023
- 2023-02-24 US US18/173,945 patent/US20230304122A1/en active Pending
- 2023-03-22 AU AU2023201803A patent/AU2023201803A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4818568A (en) * | 1985-08-29 | 1989-04-04 | Nisshin Steel Co., Ltd. | Hot dip coated steel sheet and process for producing the same |
| US4812371A (en) * | 1986-11-17 | 1989-03-14 | Nippon Steel Corporation | Zn-Al hot-dip galvanized steel sheet having improved resistance against secular peeling of coating |
| US6465114B1 (en) * | 1999-05-24 | 2002-10-15 | Nippon Steel Corporation | -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same |
| US7122148B2 (en) * | 2004-01-09 | 2006-10-17 | Water Conservation Technologies International | Cooling water scale and corrosion inhibition |
| US20110293838A1 (en) * | 2009-01-16 | 2011-12-01 | Galva Power Group Nv | Flux and fluxing bath for hot dip galvanization, process for the hot dip galvanization of an iron or steel article |
Non-Patent Citations (1)
| Title |
|---|
| D.Wetzel, Batch Hot Dip Galvanized Coatings, Surface Engineering, Vol 5, ASM Handbook, ASM International, 1994, p 360-371 * |
Also Published As
| Publication number | Publication date |
|---|---|
| NZ706336A (en) | 2019-02-22 |
| WO2014059475A1 (fr) | 2014-04-24 |
| AU2020230266B2 (en) | 2022-12-22 |
| US11613792B2 (en) | 2023-03-28 |
| AU2018241120A1 (en) | 2018-10-25 |
| AU2020230266A1 (en) | 2020-10-01 |
| AU2023201803A1 (en) | 2023-04-27 |
| US20230304122A1 (en) | 2023-09-28 |
| US20190106766A1 (en) | 2019-04-11 |
| AU2013332257A1 (en) | 2015-04-09 |
| AU2018241120B2 (en) | 2020-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230304122A1 (en) | Method of producing metal-coated steel strip | |
| US10745791B2 (en) | Method of producing metal-coated steel strip | |
| US20230349034A1 (en) | Method of producing metal coated steel strip | |
| EP2521801A1 (fr) | Bande d'acier à revêtement de métal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BLUESCOPE STEEL LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RENSHAW, WAYNE ANDREW;NEUFELD, AARON KIFFER;SMITH, ROSS MCDOWALL;AND OTHERS;SIGNING DATES FROM 20150429 TO 20150731;REEL/FRAME:043092/0685 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |