US20160163652A1 - Coated fullerenes, composites and dielectrics made therefrom - Google Patents
Coated fullerenes, composites and dielectrics made therefrom Download PDFInfo
- Publication number
- US20160163652A1 US20160163652A1 US15/042,445 US201615042445A US2016163652A1 US 20160163652 A1 US20160163652 A1 US 20160163652A1 US 201615042445 A US201615042445 A US 201615042445A US 2016163652 A1 US2016163652 A1 US 2016163652A1
- Authority
- US
- United States
- Prior art keywords
- fullerene
- fullerenes
- coated
- inorganic material
- interconnect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 title claims abstract description 178
- 229910003472 fullerene Inorganic materials 0.000 title claims abstract description 177
- 239000002131 composite material Substances 0.000 title abstract description 13
- 239000003989 dielectric material Substances 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 87
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 55
- 239000011147 inorganic material Substances 0.000 claims abstract description 55
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 37
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 20
- 239000002109 single walled nanotube Substances 0.000 claims description 92
- 238000000151 deposition Methods 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000002048 multi walled nanotube Substances 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000004094 surface-active agent Substances 0.000 claims description 12
- 238000007306 functionalization reaction Methods 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 6
- 239000011800 void material Substances 0.000 claims description 4
- 230000006386 memory function Effects 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 230000037152 sensory function Effects 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 5
- 239000000919 ceramic Substances 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 125
- 239000000243 solution Substances 0.000 description 105
- 239000000377 silicon dioxide Substances 0.000 description 56
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 54
- 239000000047 product Substances 0.000 description 39
- 239000010410 layer Substances 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 33
- 239000010408 film Substances 0.000 description 30
- 230000008569 process Effects 0.000 description 29
- 238000001878 scanning electron micrograph Methods 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000003756 stirring Methods 0.000 description 22
- 239000002253 acid Substances 0.000 description 20
- 229910003638 H2SiF6 Inorganic materials 0.000 description 17
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 17
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 17
- ZEFWRWWINDLIIV-UHFFFAOYSA-N tetrafluorosilane;dihydrofluoride Chemical compound F.F.F[Si](F)(F)F ZEFWRWWINDLIIV-UHFFFAOYSA-N 0.000 description 17
- 238000000576 coating method Methods 0.000 description 15
- 229910021485 fumed silica Inorganic materials 0.000 description 15
- 239000007788 liquid Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 230000008021 deposition Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 8
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- 239000002071 nanotube Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000013580 millipore water Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910021426 porous silicon Inorganic materials 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229920001777 Tupperware Polymers 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- AOITVOSSTJRHSS-UHFFFAOYSA-N (c{60}-i{h})[5,6]fullerane-1,2,3,4,5,7,13,23,24,27,29,32,35,36,39,40,42,44,49,50,53,55,56,58-tetracosol Chemical compound OC12C3C4C(O)(C56O)C7(O)C1C(C18O)(O)C9C2(O)C2C(C%10C%11(C(C%12(C(O)(C%13%14)C%15%11O)O)(O)C%11%16)O)C3C%15C4C%14C5C3C%13C(C4C5(O)C%13%14)(O)C%12C5C%11C5C%13(O)C%11C%12(O)C%13(O)C5C%16C%10(O)C2C%13(O)C9(O)C%12C8C2(O)C(C58O)C1C7C6C8(O)C3(O)C4C5C%14C2%11 AOITVOSSTJRHSS-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 101000580353 Rhea americana Rheacalcin-1 Proteins 0.000 description 1
- 101000580354 Rhea americana Rheacalcin-2 Proteins 0.000 description 1
- 229910004074 SiF6 Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- XMQFTWRPUQYINF-UHFFFAOYSA-N bensulfuron-methyl Chemical compound COC(=O)C1=CC=CC=C1CS(=O)(=O)NC(=O)NC1=NC(OC)=CC(OC)=N1 XMQFTWRPUQYINF-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53276—Conductive materials containing carbon, e.g. fullerenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C01B31/0213—
-
- C01B31/0253—
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
- C01B32/156—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62807—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3045—Treatment with inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/06—Multi-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/28—Solid content in solvents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/12—Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
- C04B2235/5288—Carbon nanotubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Definitions
- the present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making.
- the present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics and/or inorganic oxides.
- a coated fullerene interconnect device wherein at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making.
- dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
- Fullerenes are broadly defined as the third form of the element carbon after diamond and graphite. Fullerenes are molecular solids that consist of fused six-membered and five-membered rings. Two general types of fullerenes may be described: Buckyballs and carbon nanotubes. Buckyballs have spherical structures and are typified by C 60 . Other spherical fullerenes include C 70 and higher oligomers. Single walled carbon nanotubes (SWNTs) are elongated members of the fullerene family.
- SWNTs Single walled carbon nanotubes
- fullerene can accommodate an atom, molecule, or particle, depending on the volume circumscribed by the structure of the fullerene, to provide so-called doped fullerenes.
- fullerenes may be chemically functionalized by reacting the surface under suitable conditions to form either covalent, van der Waals or dipolar interactions with a chemical substituent.
- SWNTs have come under intense multidisciplinary study because of their unique physical and chemical properties and their possible applications.
- the electronic characteristics of SWNT can be described as metallic or semiconducting; such characteristics deriving from the helicity and diameter of the SWNT. More importantly, it has been shown that these electronic properties are sensitive to the environment surrounding the SWNT. For example, it is well known that the presence of certain molecules, such as O 2 or NH 3 , may alter the overall conductivity of SWNTs through the donation or acceptance of electrons. Such properties make SWNT ideal for nanoscale sensing materials.
- Nanotube field effect transistors (FETs) have already been demonstrated as gas sensors.
- SWNT-based composites can provide excellent electronic and/or mechanical properties upon incorporation into a suitable matrix. Carbon nanotubes are excellent candidates for the fabrication of robust composites, and conducting polymers, due to their beautiful electronic and mechanical properties.
- two issues must be overcome prior to development of large-scale applications. First, the SWNTs must be stable within a desired matrix. Second, the aggregation of SWNTs into ropes and bundles requires high loading that is uneconomic and represents a waste of materials.
- the first of these issues requires that the SWNTs be protected from subsequent processing, e.g., oxidation.
- the formation of a stable tube/matrix interface is critical for composite applications. Surface treatments are required to ensure efficient tube-matrix interactions. Unfortunately, these treatments can result in the degradation of the tubes.
- the second of these issues requires that individual SWNTs (rather than bundles) be employed to maximize the impact of the SWNTs at the lowest possible loading.
- SWNTs may be obtained encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw SWNTs in the presence of a suitable surfactant (O'Connell et al., 2002). Upon drying the micellular solution, however, bundles re-form. SWNTs have been encased in a wide range of organic materials. It would be desirable to fabricate individually coated SWNTs where the coating is retained in solution and the solid state. Of particular interest are dielectric materials such as silica, which may also be compatible with composite matrix materials. Silica is an example of an inorganic oxide.
- sol-gel process for generating thin films of an oxide, such as silica, on substrates can be divided into three steps. First, preparation of a stable dispersion of colloidal oxide particles in a liquid, “sol formation”. Second, aggregation of the particles to encompass the liquid, “gel formation”, and deposition of the resulting gel on the surface of the substrate. Third, removal of the solvent by drying and/or heating (Vossen, et al., 2000).
- liquid phase deposition of silica from saturated fluorosilicic acid solutions involves the reaction of water with silica precursors that are solvated at the molecular level to generate silica gels that deposit onto the surface of the substrate (Yeh, et al., 1994).
- silica precursors that are solvated at the molecular level to generate silica gels that deposit onto the surface of the substrate.
- film growth in the sol-gel method is largely dependent on the size of the initial colloidal particles and its influence on their aggregation
- growth in the LPD method is more controlled since it continues layer by layer as more molecules react on the surface of the substrate.
- the important step in LPD is to provide an active site for growth to occur on a surface.
- the semiconductor industry has targeted the development of the interlayer and intrametal dielectric for the next several generations of higher density, faster computer chips, as specified by the milestones set out in the International Technology Roadmap for Semiconductors (the ITRS.)
- ITRS International Technology Roadmap for Semiconductors
- k value low dielectric constant
- Current processes are based either on sol-gel methods for film deposition and growth, or on low temperature chemical vapor deposition (CVD) of carbon or fluorine-containing silicon dioxide films.
- the k values achieved by these processes are in the range from ⁇ 2.7 to greater than 3, still well above the maximum value of 2 required by the industry in order to meet the chip performance milestones identified in the ITRS.
- Silicon dioxide (SiO 2 ) forms the basis of planar silicon chip technology. Insulator coatings for electronic and photonic devices layers are most frequently formed by thermal oxidation of silicon (Si) in the temperature range 900 to 1200° C. SiO 2 is also deposited by chemical vapor deposition (CVD) techniques at lower temperatures (200 to 900° C.) on various substrates. The growth of insulator films at low temperatures is very attractive for most device applications due to reduced capital cost, high output and freedom from technological constraints associated with the growth of dielectric thin films using conventional high-temperature growth/deposition techniques. Deposition of SiO 2 insulator layers from solution is previously known using organo-metallic solutions. In this procedure, the insulator layer is applied onto the substrate either by dipping the substrate into the solution or by spinning the substrate after a small amount of the solution is applied onto the surface. In both cases the substrate is then placed in an oven to drive off the solvent.
- CVD chemical vapor deposition
- the temperature of substrate is sufficiently high to allow mobility of fragments on the growth surface. These fragments travel around the surface until they find thermodynamically stable sites to which they attach. In this way the quality of CVD films is usually high.
- CVD uses surface growth. If gas phase growth occurs, uniform films are not produced. Instead, nanoparticles can form, from which films form after agglomeration. The resulting film requires further thermal processing in order to become uniform.
- Disadvantages with CVD include the high temperatures required and the use of volatile compounds or low pressures. Each of these adds to the environmental load of the process. Sol-gel is low temperature method.
- Precursor compounds are dissolved in solution and reacted with additional reagents (usually water or an acid) to give a gel. If a film or coating is required, then the gel must be spin-coated onto the substrate. Since most sol-gels consist of nanoparticles or clusters with a significant organic content, additional thermal or chemical treatments are required to form a true inorganic material.
- the present invention discloses, in one aspect, a method of making a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene wherein the method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; and (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene.
- the present invention discloses a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene.
- the coated fullerene of the present invention is substantially similar to the coated fullerene described in connection with a previous aspect of this invention.
- a composite comprising a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene; and at least one composite matrix selected from the group consisting of polymers, ceramics and inorganic oxides.
- a method of making a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect
- said method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene to provide a coated fullerene; (c) isolating the coated fullerene; (d) removing at least a portion of the layer of inorganic material in a manner suitable for permitting at least two fullerenes to contact each other to provide at least one spontaneous interconnect; (e) optionally, separating at least one spontaneous interconnect; (f) optionally, allowing at least two fullerenes
- a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect.
- the present invention provides dielectric films comprising the coated fullerenes of the present invention.
- the dielectric films of the present invention are particularly well suited for use as interlayer or intermetal dielectric on silicon-based computer chips.
- Insulating oxides especially silica are used as insulation layers in present chip technology. These are presently prepared by thermal oxidation, CVD, and sol gel techniques and have only limited success in achieving low k dielectric films. Additionally, a room temperature, or near room temperature, solution process would be cost effective.
- FIG. 1 SEM image, at 15,000 ⁇ , of silica product without particles added.
- FIG. 2 SEM image, at 15,000 ⁇ , of product of LPD silica reaction with fullerene added to reaction mixture.
- FIG. 3 SEM image, at 15,000 ⁇ , of product of LPD silica reaction with fullerenol added to reaction mixture.
- FIG. 4 SEM image, at 50,000 ⁇ , of product of LPD silica reaction with fullerenol added to reaction mixture.
- FIG. 5 SEM image, at 50,000 ⁇ , of product of LPD silica reaction with fullerenol added to reaction mixture.
- FIG. 6 SEM image, at 5,000 ⁇ , of product of LPD silica reaction with fullerenol added to reaction mixture.
- FIG. 7 SEM image, at 100,000 ⁇ , of product of LPD silica reaction with fullerenol added to reaction mixture.
- FIG. 8 SEM image, at 6500 ⁇ , of a silicon chip coated with silica-coated fullerenols.
- FIG. 9 SEM image, at 35,000 ⁇ , of a silicon chip coated with silica-coated fullerenols.
- FIG. 10 SEM image, at 15,000 ⁇ , of twice-coated silicon chip.
- FIG. 11 SEM image, at 35,000 ⁇ , of twice-coated silicon chip.
- FIG. 12 SEM image, at 50 ⁇ , of glass slide coated with silica coated fullerenols.
- FIG. 13 SEM image, at 15,000 ⁇ , of the product of the reaction of SDS with the LPD silica solution.
- FIG. 14 SEM image, at 50,000 ⁇ , of the product of the reaction of SDS with the LPD silica solution.
- FIG. 15 SEM image, at 15,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 16 SEM image, at 120,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 17 SEM image, at 25,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 18 SEM image, at 120,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 19 SEM image, at 20,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 20 SEM image, at 150,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 21 SEM image, at 25,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 22 SEM image, at 200,000 ⁇ , of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution.
- FIG. 23 SEM image, at 50,000 ⁇ , of selectively etched silica coated SWNT.
- FIG. 24 SEM image, at 25,000 ⁇ , of selectively etched silica coated SWNT.
- FIG. 25 SEM image, at 20,000 ⁇ , of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution.
- FIG. 26 SEM image, at 12,000 ⁇ , of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution.
- FIG. 27 TEM image, at 200,000 ⁇ , of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution.
- FIG. 28 SEM image, at 65,000 ⁇ , of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution.
- FIG. 29 Thin silica-SWNT paper formed by light etching of coated nanotubes.
- This invention discloses the use of liquid phase deposition to prepare coated fullerenes.
- Such coated fullerenes may be spherical, such as C 60 , or single walled nanotubes (SWNT).
- SWNT single walled nanotubes
- the present invention applies specifically to coating fullerenes with an inorganic material, such as, for example, an inorganic oxide typified by silica.
- the present invention also discloses a method for growing films of inorganic oxides comprising fullerenes in a mariner suitable for providing porous inorganic oxide films possessing desirable electronic and mechanical properties.
- the present invention discloses, in one aspect, a method of making a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene wherein the method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; and (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene.
- fullerene is any carbonaceous material wherein the structure is a regular, three dimensional network of fused carbon rings arranged in any one of a number of possible structures including, but not limited to, cylindrical, spherical, ovoid, oblate or oblong.
- Common fullerenes include the cylindrical carbon nanotube and the icosahedral C 60 carbon molecules.
- the fullerene is preferably selected from the group consisting of C 60 , C 72 , C 84 , C 96 , C 108 , C 120 , single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT).
- the fullerene is C 60 .
- the fullerene is a single walled carbon nanotube (SWNT).
- SWNT single walled carbon nanotube
- Single-walled carbon nanotubes differ from multi-walled carbon nanotubes based on the number of concentric tubes present; single-walled carbon nanotubes comprise only one tube about a given center whereas multi-walled carbon nanotubes have at least two, and often more, nested tubes about a common center.
- SWNT single-walled carbon nanotubes
- either aggregated or individually dispersed tubes may be used. Special techniques are usually required to obtain individually dispersed carbon nanotubes and the methods used in the present invention will be discussed hereinbelow.
- the fullerene is an individual single-walled carbon nanotube (SWNT).
- the coated fullerene of the present method comprises a layer of at least one inorganic material.
- an inorganic oxide will be any material comprising at least one inorganic element and oxygen; the oxide may additionally comprise other elements including, but not limited to, for example, hydrogen and fluorine.
- a preferred inorganic material is an inorganic oxide.
- a preferred oxide is the oxide of silicon. The refractive index of the silica coatings used so far may be altered within a modest range.
- the present method comprises dispersing a fullerene under suitable conditions to provide a dispersed fullerene.
- the process of dispersing a fullerene serves the dual purpose of allowing the fullerene to be soluble thereby permitting for the deposition of an inorganic material around individual tubes; and activating the tubes for deposition of an inorganic material.
- Suitable conditions for dispersing a fullerene comprise the use of a suitable solvent; water is a particularly preferred solvent.
- Suitable conditions may further comprise a particular technique to disperse fullerenes. Preferred techniques include chemical functionalization and surfactant addition.
- chemical functionalization provides at least one, and possibly several, specific reactive site(s) that act as sites that initiate growth of the layer of inorganic material.
- the fullerene is dispersed by a technique of chemical functionalization.
- chemical functionalization is any chemical reaction that modifies and/or adds chemical groups to the surface of fullerene to leave a reactive group at a surface of a fullerene.
- hydroxylation is a particularly useful chemical reaction for the chemical functionalization of the present invention.
- the fullerene is dispersed by a technique of surfactant addition.
- the surfactant surrounds the fullerenes and provides the required solubility while also assisting in dispersion of individual fullerenes.
- a single-walled carbon nanotube is dispersed by surfactant addition.
- the technique of surfactant addition may comprise the addition of sodium dodecylsulfate and/or dodecyltrimethyl ammonium bromide. The ability to uniformally coat individual SWNTs rather than ropes and bundles is a consequence of using a surfactant that is not affected by pH.
- the present method still further comprises depositing at least one inorganic material under suitable conditions onto at least a portion of one surface of the dispersed fullerene.
- depositing at least one inorganic material under suitable conditions comprises contacting the dispersed fullerene with a solution comprising silica.
- the silica is preferably at least partially dissolved in the solution; and more preferably the solution further comprises H 2 SiF 6 . It is also important to employ a non sol-gel approach to allow seeded growth on the surface of the SWNT.
- fluorosilicic acid can react with base to produce silica, as shown in Equation (1).
- Chemically functionalized substrates such as hydroxylated C 60 , can react with the acid in a condensation reaction, in turn acting as a nucleation site to begin layer growth as shown in Equation (2).
- a key advantage of the present invention is that the rate of formation of deposition is significantly faster than that reported in the prior art.
- coating individual single-walled carbon nanotubes (SWNT) by a solution process has not been possible until now.
- depositing at least one inorganic material preferably takes place at a rate no less than 10 nm/hour.
- the present method may further comprise isolating the coated fullerene. This is most preferably done using any technique of centrifugation. After the coating has reached the desired thickness, the coating reaction is quenched and the coated fullerenes may be isolated by centrifuge. The supernatant liquid is disposed of and the solid is re-dispersed in a suitable solvent such as ethanol. This centrifugation/re-dispersion process is repeated as required to purify the coated fullerenes. The coated SWNTs are then characterized in ethanol suspension or as a dried powder.
- the present invention discloses a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene.
- the coated fullerene of the present invention is substantially similar to the coated fullerene described in connection with a previous aspect of this invention.
- the coated fullerene comprises at least one inorganic material.
- at least one inorganic material is an inorganic oxide; more preferably, an inorganic oxide is silica.
- the fullerene comprising the coated fullerene is preferably selected from the group consisting of C 60 , C 72 , C 84 , C 96 , C 108 , C 120 , single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT).
- the coated fullerene may comprise a fullerene doped with at least one type of metal.
- a doped fullerene will be a fullerene comprising at least one metal wherein the atoms of metal may be within, adsorbed on, or incorporated into the fullerene.
- the coated fullerene may comprise a fullerene that is a single walled carbon nanotube (SWNT).
- SWNT single walled carbon nanotube
- the single walled carbon nanotubes (SWNT) may be present in the form of ropes, bundles, or individual tubes.
- the single-walled carbon nanotubes (SWNT) are present in the form of individual tubes.
- the coated fullerene further comprises at least one inorganic material. Preferably, this is an inorganic oxide; more preferably, silica.
- the coated fullerenes may be handled as a solid without any substantial change in physical, electrical or mechanical properties.
- the coated fullerenes of the preferred embodiment will also show characteristic bands in the Raman spectrum indicative of individual tubes.
- the coated fullerenes show no change in fluorescence intensity until the thickness of the coating is sufficient to cause scattering of the emitted light. This indicates that the coating does not alter the electrical properties and therefore the band gap of the fullerenes.
- a composite comprising a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene; and at least one composite matrix selected from the group consisting of polymers, ceramics and inorganic oxides.
- the fullerenes used in the current aspect may be selected from the group consisting of C 60 , C 72 , C 84 , C 96 , C 108 , C 120 , single-walled carbon nanotubes (SWNT) and multi-walled carbon nano-tubes (MWNT).
- the fullerenes are more preferably C 60 or single-walled carbon nanotubes; but is most preferably single-walled carbon nanotubes (SWNT).
- at least a portion of at least one surface of a fullerene is chemically functionalized.
- at least one inorganic material is preferably an inorganic oxide; but most preferably, an inorganic oxide is silica.
- a method of making a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect
- said method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene to provide a coated fullerene; (c) isolating the coated fullerene; (d) removing at least a portion of the layer of inorganic material in a manner suitable for permitting at least two fullerenes to contact each other to provide at least one spontaneous interconnect; (e) optionally, separating at least one spontaneous interconnect; (f) optionally, allowing at least two fullerenes
- fullerenes are selected from the group consisting of C 60 , C 72 , C 84 , C 96 , C 108 , 0 120 , single-walled nanotubes (SWNT) and multi-walled nanotubes (MWNT).
- the fullerenes are single-walled carbon nanotubes (SWNT).
- the present coated fullerene interconnect device comprises a layer of at least one inorganic material.
- at least one inorganic material comprises an inorganic oxide; more preferably, an inorganic oxide is an oxide of silicon.
- the present method of making a coated fullerene interconnect device comprises dispersing a fullerene under suitable conditions to provide a dispersed fullerene.
- the fullerene is dispersed by a technique of chemical functionalization or surfactant addition.
- the present method further comprises removing at least a portion of the layer of inorganic material; preferably this comprises treatment with a suitable etchant.
- removing at least a portion of the layer of inorganic material is effective in removing all of the inorganic material.
- at least a portion of the layer of inorganic material comprises selectively removing inorganic material from the ends of the fullerenes.
- removing at least a portion of the layer of inorganic material in a suitable manner comprises selectively removing inorganic material from the central portion of the fullerenes.
- the present method may further comprise allowing at least two fullerenes of at least one spontaneous contact to separate; this preferably comprises treatment with a suitable surfactant.
- the present method further comprises, optionally, allowing at least two fullerenes to contact each other to provide at least one new spontaneous interconnect.
- the number and nature of new spontaneous interconnects will differ from that observed for the first spontaneous interconnect.
- steps (e) and (f) may be repeated until a desired profile of electronic characteristics has been attained.
- the characteristics may be those found in electronic switching and memory devices.
- the present method further comprises testing the coated fullerene interconnect devices for suitability as electronic devices.
- a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect.
- the present coated fullerene interconnect device performs some electronic switching or memory function.
- One embodiment of the present invention is to dispense the previously coated fullerenes into the interlayer dielectric (ILD) or intermetal dielectric (IMD) layer growth process in such a manner as to achieve a specific void volume in the layer, while retaining the mechanical and electrical properties of the layer required for successful chip fabrication and performance.
- This invention provides a way to combine the above approaches to give a low temperature solution process that allows for the formation of uniform films; the films can be prepared with a variety of properties optimized for specific applications.
- the second is to grow multiple layers of the porous oxide films on large area wafers at the appropriate process steps in chip fabrication.
- the first layer of porous silicon dioxide with fullerene inclusions must be grown directly on the silicon wafer after it has been patterned with nano-scale transistors, and may use a different solution from that used to coat the fullerenes. All subsequent porous films must be grown on composite surfaces consisting of sub-micron width copper lines embedded in previously grown porous SiO 2 films, and may use yet another solution compared to those mentioned above.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with Millipore (UP) water. A sample of this solution (10 mL) was allowed to react in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then filtered, washed with UP water, dried and analyzed as a powder.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (10 mL) was allowed to react with fullerene (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then filtered, washed with UP water, dried and analyzed as a powder.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (10 mL) was allowed to react with fullerenol (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 12 hours. The product was then filtered, washed with UP water, dried and analyzed as a powder.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (5 mL) was allowed to react with fullerenol (5 mL of a 50 mg/L solution) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 12 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times. The product was then dried and analyzed as a powder.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (20 mL) was allowed to react with fullerenol (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times. The product was then dried and analyzed as a powder.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was diluted to 1.00 M. Fullerenols (10 mg) were added to a sample of this solution (50 mL) and allowed to react in a Tupperware container.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was diluted to 1.00 M. Fullerenols (10 mg) were added to a sample of this solution (50 mL) and allowed to react in a Tupperware container. To this mixture was added a silicon chip which had been previously coated with silica-coated fullerenols. The solution with the chip was stirred, at 30° C., for 4 hours. The chip was then removed from the solution, rinsed in Millipore water and dried with compressed air.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (50 mL) was allowed to react with fullerenol (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- the product dispersed in ethanol, was transferred to a clean scintillation vial.
- a glass slide which had been cleaned in a base bath, copiously rinsed in UP water and stored in ethanol, was placed upright in the scintillation vial. The solution was then allowed to evaporate overnight.
- the coated fullerenols coated the glass slide via capillary action.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (100 mL) was allowed to react with sodium dodecylsulfate (SDS, 1 mL of a 1% solution) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times. The product was then dried and analyzed as a powder.
- 3.20 M fluorosilicic acid solution H 2 SiF 6 : Riedel de Haen, 34% pure
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (100 mL) was added to al % SDS solution (1 mL) containing dispersed single walled carbon nanotubes (SWNT, 50 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (5 mL) was added to al % SDS solution (5 mL) containing dispersed SWNT (50 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (3 mL) was added to al % SDS solution (6.25 mL) containing dispersed SWNT (40 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (1 mL) was added to al % SDS solution (6.25 mL) containing dispersed SWNT (40 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (1 mL) was added to al % dodecyltrimethyl ammonium bromide solution (DTAB, 5 mL) containing dispersed SWNT (30 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for twelve hours.
- DTAB dodecyltrimethyl ammonium bromide solution
- the reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times.
- the coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H 2 SiF 6 : Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (1 mL) was added to al % DTAB solution (8.33 mL) containing dispersed SWNT (30 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for fifteen minutes. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was dispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- a sample of the product from example 16 was dried on a surface and then quickly etched with hydrofluoric acid. After a defined time period, the etch was quenched in UP water. The etched material was then allowed to dry on a metal stub. A thin coated SWNT paper was formed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
Description
- This application is a divisional of U.S. patent application Ser. No. 13/270,985 filed Oct. 11, 2011, which is a divisional of U.S. patent application Ser. No. 10/496,066 filed Nov. 17, 2004, which is a United States national stage entry of PCT/US2002/037211 filed on Nov. 20, 2002, which claims priority to U.S. provisional application 60/331,660 filed Nov. 20, 2001, which are each incorporated by reference as if written herein in their entirety.
- Not applicable.
- The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics and/or inorganic oxides. A coated fullerene interconnect device wherein at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
- Fullerenes are broadly defined as the third form of the element carbon after diamond and graphite. Fullerenes are molecular solids that consist of fused six-membered and five-membered rings. Two general types of fullerenes may be described: Buckyballs and carbon nanotubes. Buckyballs have spherical structures and are typified by C60. Other spherical fullerenes include C70 and higher oligomers. Single walled carbon nanotubes (SWNTs) are elongated members of the fullerene family.
- The interior cavity of a fullerene can accommodate an atom, molecule, or particle, depending on the volume circumscribed by the structure of the fullerene, to provide so-called doped fullerenes. Furthermore, fullerenes may be chemically functionalized by reacting the surface under suitable conditions to form either covalent, van der Waals or dipolar interactions with a chemical substituent.
- SWNTs have come under intense multidisciplinary study because of their unique physical and chemical properties and their possible applications. The electronic characteristics of SWNT can be described as metallic or semiconducting; such characteristics deriving from the helicity and diameter of the SWNT. More importantly, it has been shown that these electronic properties are sensitive to the environment surrounding the SWNT. For example, it is well known that the presence of certain molecules, such as O2 or NH3, may alter the overall conductivity of SWNTs through the donation or acceptance of electrons. Such properties make SWNT ideal for nanoscale sensing materials. Nanotube field effect transistors (FETs), for example, have already been demonstrated as gas sensors. It is thought that selectivity in nanotube sensors can be achieved through the placement of specific functional groups on the nanotube surface; such groups having the requisite ability to selectively bind specific target molecules. Working against this goal is the fact that functionalization changes the electronic properties from that of a semiconductor or conductor to that of an insulator. Moreover, chemical functionalization of SWNT is not as of yet regiospecific. A further major obstacle to such efforts has been diversity of tube diameters, chiral angles, and aggregation states of the tubes. Aggregation is particularly problematic because highly polarizable, smooth sided SWNTs readily form bundles or ropes with van der Waals binding energy of ca. 500 eV per micrometer of tube contact. This bundling perturbs the electronic structure of the tubes and precludes the separation of SWNTs by size or type.
- SWNT-based composites can provide excellent electronic and/or mechanical properties upon incorporation into a suitable matrix. Carbon nanotubes are excellent candidates for the fabrication of robust composites, and conducting polymers, due to their fascinating electronic and mechanical properties. Unfortunately, two issues must be overcome prior to development of large-scale applications. First, the SWNTs must be stable within a desired matrix. Second, the aggregation of SWNTs into ropes and bundles requires high loading that is uneconomic and represents a waste of materials.
- The first of these issues requires that the SWNTs be protected from subsequent processing, e.g., oxidation. In addition, the formation of a stable tube/matrix interface is critical for composite applications. Surface treatments are required to ensure efficient tube-matrix interactions. Unfortunately, these treatments can result in the degradation of the tubes. The second of these issues requires that individual SWNTs (rather than bundles) be employed to maximize the impact of the SWNTs at the lowest possible loading.
- It has been shown that individual SWNTs may be obtained encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw SWNTs in the presence of a suitable surfactant (O'Connell et al., 2002). Upon drying the micellular solution, however, bundles re-form. SWNTs have been encased in a wide range of organic materials. It would be desirable to fabricate individually coated SWNTs where the coating is retained in solution and the solid state. Of particular interest are dielectric materials such as silica, which may also be compatible with composite matrix materials. Silica is an example of an inorganic oxide.
- Coating of SiO2 on multiwalled carbon nanotubes (MWNTs) has been reported (Seeger et al., 2001). However, these coatings required a sol-gel type of reaction and extremely long reaction times on the order of 150 hours. Coatings have also been reported on SWNTs, but these require isolation of the tubes on a surface prior to reaction. It would be advantageous if there was a method by which individual fullerenes and individual SWNT could be coated under near ambient temperatures with reaction times on the order of a few hours, without the need for isolation on a surface prior to coating.
- The classical sol-gel process for generating thin films of an oxide, such as silica, on substrates can be divided into three steps. First, preparation of a stable dispersion of colloidal oxide particles in a liquid, “sol formation”. Second, aggregation of the particles to encompass the liquid, “gel formation”, and deposition of the resulting gel on the surface of the substrate. Third, removal of the solvent by drying and/or heating (Vossen, et al., 2000).
- In contrast, the liquid phase deposition, “LPD”, of silica from saturated fluorosilicic acid solutions involves the reaction of water with silica precursors that are solvated at the molecular level to generate silica gels that deposit onto the surface of the substrate (Yeh, et al., 1994). Whereas film growth in the sol-gel method is largely dependent on the size of the initial colloidal particles and its influence on their aggregation, growth in the LPD method is more controlled since it continues layer by layer as more molecules react on the surface of the substrate. The important step in LPD is to provide an active site for growth to occur on a surface.
- The semiconductor industry has targeted the development of the interlayer and intrametal dielectric for the next several generations of higher density, faster computer chips, as specified by the milestones set out in the International Technology Roadmap for Semiconductors (the ITRS.) There is still no acceptable material or process that produces films with the desired values of low dielectric constant (k value) concurrently with optimum electro- and thermo-mechanical properties. Current processes are based either on sol-gel methods for film deposition and growth, or on low temperature chemical vapor deposition (CVD) of carbon or fluorine-containing silicon dioxide films. The k values achieved by these processes are in the range from ˜2.7 to greater than 3, still well above the maximum value of 2 required by the industry in order to meet the chip performance milestones identified in the ITRS.
- Silicon dioxide (SiO2) forms the basis of planar silicon chip technology. Insulator coatings for electronic and photonic devices layers are most frequently formed by thermal oxidation of silicon (Si) in the temperature range 900 to 1200° C. SiO2 is also deposited by chemical vapor deposition (CVD) techniques at lower temperatures (200 to 900° C.) on various substrates. The growth of insulator films at low temperatures is very attractive for most device applications due to reduced capital cost, high output and freedom from technological constraints associated with the growth of dielectric thin films using conventional high-temperature growth/deposition techniques. Deposition of SiO2 insulator layers from solution is previously known using organo-metallic solutions. In this procedure, the insulator layer is applied onto the substrate either by dipping the substrate into the solution or by spinning the substrate after a small amount of the solution is applied onto the surface. In both cases the substrate is then placed in an oven to drive off the solvent.
- Attempts to produce porous silicon dioxide have failed to produce films with isolated voids and uniform void size, resulting in poor process reproducibility and film quality. Such processes also require the use of heat to evaporate a solvent or other component from the film to create the voids, something not required by the present invention.
- CVD (chemical vapor deposition) requires the pyrolysis or photolysis of volatile compounds to create chemical fragments that are deposited on the surface of a substrate. The temperature of substrate is sufficiently high to allow mobility of fragments on the growth surface. These fragments travel around the surface until they find thermodynamically stable sites to which they attach. In this way the quality of CVD films is usually high. Thus, CVD uses surface growth. If gas phase growth occurs, uniform films are not produced. Instead, nanoparticles can form, from which films form after agglomeration. The resulting film requires further thermal processing in order to become uniform. Disadvantages with CVD include the high temperatures required and the use of volatile compounds or low pressures. Each of these adds to the environmental load of the process. Sol-gel is low temperature method. Precursor compounds are dissolved in solution and reacted with additional reagents (usually water or an acid) to give a gel. If a film or coating is required, then the gel must be spin-coated onto the substrate. Since most sol-gels consist of nanoparticles or clusters with a significant organic content, additional thermal or chemical treatments are required to form a true inorganic material.
- The present invention discloses, in one aspect, a method of making a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene wherein the method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; and (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene.
- In another aspect, the present invention discloses a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene. The coated fullerene of the present invention is substantially similar to the coated fullerene described in connection with a previous aspect of this invention.
- In yet another aspect of the present invention is disclosed, a composite comprising a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene; and at least one composite matrix selected from the group consisting of polymers, ceramics and inorganic oxides.
- In still another aspect is presented a method of making a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect wherein said method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene to provide a coated fullerene; (c) isolating the coated fullerene; (d) removing at least a portion of the layer of inorganic material in a manner suitable for permitting at least two fullerenes to contact each other to provide at least one spontaneous interconnect; (e) optionally, separating at least one spontaneous interconnect; (f) optionally, allowing at least two fullerenes to contact each other to provide at least one new spontaneous interconnect; and (g) depositing a suitable metal contact at the site of at least one spontaneous interconnect and/or one new spontaneous interconnect.
- In another aspect of the present invention is disclosed a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect.
- In one more aspect, the present invention provides dielectric films comprising the coated fullerenes of the present invention. The dielectric films of the present invention are particularly well suited for use as interlayer or intermetal dielectric on silicon-based computer chips.
- Possible applications for this invention include, but are not limited to, the following:
- (1) Growth of insulating layers for nano-based chips. A new generation of nanotube or nanowire chips is being developed. At present these are 2D devices, however, in order for vertical integration to be developed a technology of low temperature insulator growth is required. A low k dielectric is not a requirement at present; oxide and silica films are therefore of potential interest for early generation devices.
- (2) Growth of low k dielectric layers for advanced semiconductor chip fabrication. Insulating oxides (especially silica) are used as insulation layers in present chip technology. These are presently prepared by thermal oxidation, CVD, and sol gel techniques and have only limited success in achieving low k dielectric films. Additionally, a room temperature, or near room temperature, solution process would be cost effective.
- For a more detailed description of the preferred embodiments of the present invention, reference will be made to the accompanying drawings, wherein:
-
FIG. 1 : SEM image, at 15,000×, of silica product without particles added. -
FIG. 2 : SEM image, at 15,000×, of product of LPD silica reaction with fullerene added to reaction mixture. -
FIG. 3 : SEM image, at 15,000×, of product of LPD silica reaction with fullerenol added to reaction mixture. -
FIG. 4 : SEM image, at 50,000×, of product of LPD silica reaction with fullerenol added to reaction mixture. -
FIG. 5 : SEM image, at 50,000×, of product of LPD silica reaction with fullerenol added to reaction mixture. -
FIG. 6 : SEM image, at 5,000×, of product of LPD silica reaction with fullerenol added to reaction mixture. -
FIG. 7 : SEM image, at 100,000×, of product of LPD silica reaction with fullerenol added to reaction mixture. -
FIG. 8 : SEM image, at 6500×, of a silicon chip coated with silica-coated fullerenols. -
FIG. 9 : SEM image, at 35,000×, of a silicon chip coated with silica-coated fullerenols. -
FIG. 10 : SEM image, at 15,000×, of twice-coated silicon chip. -
FIG. 11 : SEM image, at 35,000×, of twice-coated silicon chip. -
FIG. 12 : SEM image, at 50×, of glass slide coated with silica coated fullerenols. -
FIG. 13 : SEM image, at 15,000×, of the product of the reaction of SDS with the LPD silica solution. -
FIG. 14 : SEM image, at 50,000×, of the product of the reaction of SDS with the LPD silica solution. -
FIG. 15 : SEM image, at 15,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 16 : SEM image, at 120,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 17 : SEM image, at 25,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 18 : SEM image, at 120,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 19 : SEM image, at 20,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 20 : SEM image, at 150,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 21 : SEM image, at 25,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 22 : SEM image, at 200,000×, of the product of the reaction of SDS dispersed SWNTs with the LPD silica solution. -
FIG. 23 : SEM image, at 50,000×, of selectively etched silica coated SWNT. -
FIG. 24 : SEM image, at 25,000×, of selectively etched silica coated SWNT. -
FIG. 25 : SEM image, at 20,000×, of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution. -
FIG. 26 : SEM image, at 12,000×, of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution. -
FIG. 27 : TEM image, at 200,000×, of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution. -
FIG. 28 : SEM image, at 65,000×, of the product of the reaction of DTAB dispersed SWNTs with the LPD silica solution. -
FIG. 29 : Thin silica-SWNT paper formed by light etching of coated nanotubes. - This invention discloses the use of liquid phase deposition to prepare coated fullerenes. Such coated fullerenes may be spherical, such as C60, or single walled nanotubes (SWNT). The present invention applies specifically to coating fullerenes with an inorganic material, such as, for example, an inorganic oxide typified by silica. The present invention also discloses a method for growing films of inorganic oxides comprising fullerenes in a mariner suitable for providing porous inorganic oxide films possessing desirable electronic and mechanical properties.
- The present invention discloses, in one aspect, a method of making a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene wherein the method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; and (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene.
- As used herein, fullerene is any carbonaceous material wherein the structure is a regular, three dimensional network of fused carbon rings arranged in any one of a number of possible structures including, but not limited to, cylindrical, spherical, ovoid, oblate or oblong. Common fullerenes include the cylindrical carbon nanotube and the icosahedral C60 carbon molecules. In particular, the fullerene is preferably selected from the group consisting of C60, C72, C84, C96, C108, C120, single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT). In one preferred embodiment of the process, the fullerene is C60. In another preferred embodiment of the process, the fullerene is a single walled carbon nanotube (SWNT). Single-walled carbon nanotubes differ from multi-walled carbon nanotubes based on the number of concentric tubes present; single-walled carbon nanotubes comprise only one tube about a given center whereas multi-walled carbon nanotubes have at least two, and often more, nested tubes about a common center.
- All carbon nanotubes tend to agglomerate into ropes and bundles of many carbon nanotubes and it is ordinarily quite difficult to obtain individual, dispersed carbon nanotubes. In one embodiment of the present process using single-walled carbon nanotubes (SWNT), either aggregated or individually dispersed tubes may be used. Special techniques are usually required to obtain individually dispersed carbon nanotubes and the methods used in the present invention will be discussed hereinbelow. In a particularly preferred embodiment of the present process, the fullerene is an individual single-walled carbon nanotube (SWNT).
- The coated fullerene of the present method comprises a layer of at least one inorganic material. As defined here, an inorganic oxide will be any material comprising at least one inorganic element and oxygen; the oxide may additionally comprise other elements including, but not limited to, for example, hydrogen and fluorine. Although any one of a number of inorganic materials may be suitable for use in the present method, a preferred inorganic material is an inorganic oxide. In particular, although any one of a number of inorganic oxides could suffice in the present method, a preferred oxide is the oxide of silicon. The refractive index of the silica coatings used so far may be altered within a modest range.
- The present method comprises dispersing a fullerene under suitable conditions to provide a dispersed fullerene. Though not wishing to be bound by any particular theory, it is believed that the process of dispersing a fullerene serves the dual purpose of allowing the fullerene to be soluble thereby permitting for the deposition of an inorganic material around individual tubes; and activating the tubes for deposition of an inorganic material. Suitable conditions for dispersing a fullerene comprise the use of a suitable solvent; water is a particularly preferred solvent. Suitable conditions may further comprise a particular technique to disperse fullerenes. Preferred techniques include chemical functionalization and surfactant addition.
- Though not wishing to be bound by any particular theory, it is believed that chemical functionalization provides at least one, and possibly several, specific reactive site(s) that act as sites that initiate growth of the layer of inorganic material. In one embodiment, the fullerene is dispersed by a technique of chemical functionalization. As used herein, chemical functionalization is any chemical reaction that modifies and/or adds chemical groups to the surface of fullerene to leave a reactive group at a surface of a fullerene. Although there are many different chemical reactions that could be useful in the chemical functionalization of the present invention, it has been discovered that hydroxylation is a particularly useful chemical reaction for the chemical functionalization of the present invention.
- The presence of surface hydroxylate groups on at least a portion of one surface of a fullerene tends to impart greater solubility to the fullerene in water, thereby discouraging aggregation. The hydroxylation allows for the fullerenes to be dispersed in aqueous solution thereby facilitating possible subsequent deposition.
- In an alternate embodiment, the fullerene is dispersed by a technique of surfactant addition. Without wishing to be bound by any particular theory, it is believed that the surfactant surrounds the fullerenes and provides the required solubility while also assisting in dispersion of individual fullerenes. In one preferred embodiment, a single-walled carbon nanotube is dispersed by surfactant addition. According to this embodiment, the technique of surfactant addition may comprise the addition of sodium dodecylsulfate and/or dodecyltrimethyl ammonium bromide. The ability to uniformally coat individual SWNTs rather than ropes and bundles is a consequence of using a surfactant that is not affected by pH.
- The present method still further comprises depositing at least one inorganic material under suitable conditions onto at least a portion of one surface of the dispersed fullerene. In one preferred embodiment, depositing at least one inorganic material under suitable conditions comprises contacting the dispersed fullerene with a solution comprising silica. According to this embodiment, the silica is preferably at least partially dissolved in the solution; and more preferably the solution further comprises H2SiF6. It is also important to employ a non sol-gel approach to allow seeded growth on the surface of the SWNT.
- According to this embodiment, but without wishing to be bound by any particular theory, it is believed that fluorosilicic acid can react with base to produce silica, as shown in Equation (1).
- Chemically functionalized substrates, such as hydroxylated C60, can react with the acid in a condensation reaction, in turn acting as a nucleation site to begin layer growth as shown in Equation (2).
- Growth occurs at the initial silicate and reacts with additional fluorosilicic acid to grow layers of silica on the particle.
- A key advantage of the present invention is that the rate of formation of deposition is significantly faster than that reported in the prior art. In addition, coating individual single-walled carbon nanotubes (SWNT) by a solution process has not been possible until now. According to the present method, depositing at least one inorganic material preferably takes place at a rate no less than 10 nm/hour.
- The present method may further comprise isolating the coated fullerene. This is most preferably done using any technique of centrifugation. After the coating has reached the desired thickness, the coating reaction is quenched and the coated fullerenes may be isolated by centrifuge. The supernatant liquid is disposed of and the solid is re-dispersed in a suitable solvent such as ethanol. This centrifugation/re-dispersion process is repeated as required to purify the coated fullerenes. The coated SWNTs are then characterized in ethanol suspension or as a dried powder.
- In another aspect, the present invention discloses a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene. The coated fullerene of the present invention is substantially similar to the coated fullerene described in connection with a previous aspect of this invention.
- The coated fullerene comprises at least one inorganic material. Preferably, at least one inorganic material is an inorganic oxide; more preferably, an inorganic oxide is silica. The fullerene comprising the coated fullerene is preferably selected from the group consisting of C60, C72, C84, C96, C108, C120, single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT). The coated fullerene may comprise a fullerene doped with at least one type of metal. As used herein, a doped fullerene will be a fullerene comprising at least one metal wherein the atoms of metal may be within, adsorbed on, or incorporated into the fullerene. The coated fullerene may comprise a fullerene that is a single walled carbon nanotube (SWNT). The single walled carbon nanotubes (SWNT) may be present in the form of ropes, bundles, or individual tubes. In a preferred embodiment, the single-walled carbon nanotubes (SWNT) are present in the form of individual tubes. According to this embodiment, the coated fullerene further comprises at least one inorganic material. Preferably, this is an inorganic oxide; more preferably, silica. Also according to this embodiment, the coated fullerenes may be handled as a solid without any substantial change in physical, electrical or mechanical properties. The coated fullerenes of the preferred embodiment will also show characteristic bands in the Raman spectrum indicative of individual tubes. In addition, the coated fullerenes show no change in fluorescence intensity until the thickness of the coating is sufficient to cause scattering of the emitted light. This indicates that the coating does not alter the electrical properties and therefore the band gap of the fullerenes.
- The prior art has shown that individual SWNTs strongly fluoresce in solution in the presence of a surfactant; in particular, excitation at 532 nm results in an emission between 950-1400 nm. This fluorescence is quenched under conditions that permit for the aggregation of SWNT into ropes and bundles, namely pH<5. The silica-coated single-walled carbon nanotubes of the present invention fluoresce in solution suggesting that individual single-walled carbon nanotubes rather than ropes have been successfully coated.
- In yet another aspect of the present invention is disclosed, a composite comprising a coated fullerene comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene; and at least one composite matrix selected from the group consisting of polymers, ceramics and inorganic oxides.
- The fullerenes used in the current aspect may be selected from the group consisting of C60, C72, C84, C96, C108, C120, single-walled carbon nanotubes (SWNT) and multi-walled carbon nano-tubes (MWNT). The fullerenes are more preferably C60 or single-walled carbon nanotubes; but is most preferably single-walled carbon nanotubes (SWNT). In one preferred embodiment, at least a portion of at least one surface of a fullerene is chemically functionalized. In another preferred embodiment, at least one inorganic material is preferably an inorganic oxide; but most preferably, an inorganic oxide is silica.
- The creation of device structures using fullerenes in an assembled array to create a specific device is of considerable interest. The creation of two- and three-dimensional structures comprising coated fullerenes and spontaneous interconnects' led us to fabricate multi-function devices. Spontaneous interconnects will be defined as points of contact between at least two fullerenes. Gold connections may be deposited at the sites of these spontaneous interconnects to preferably provide devices comprising numerous connections between individual fullerenes.
- In still another aspect is presented a method of making a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect wherein said method comprises (a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene; (b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene to provide a coated fullerene; (c) isolating the coated fullerene; (d) removing at least a portion of the layer of inorganic material in a manner suitable for permitting at least two fullerenes to contact each other to provide at least one spontaneous interconnect; (e) optionally, separating at least one spontaneous interconnect; (f) optionally, allowing at least two fullerenes to contact each other to provide at least one new spontaneous interconnect; and (g) depositing a suitable metal contact at the site of at least one spontaneous interconnect and/or one new spontaneous interconnect.
- According to the present aspect, fullerenes are selected from the group consisting of C60, C72, C84, C96, C108, 0 120, single-walled nanotubes (SWNT) and multi-walled nanotubes (MWNT). Preferably, the fullerenes are single-walled carbon nanotubes (SWNT).
- The present coated fullerene interconnect device comprises a layer of at least one inorganic material. Preferably, at least one inorganic material comprises an inorganic oxide; more preferably, an inorganic oxide is an oxide of silicon.
- The present method of making a coated fullerene interconnect device comprises dispersing a fullerene under suitable conditions to provide a dispersed fullerene. Preferably, the fullerene is dispersed by a technique of chemical functionalization or surfactant addition.
- The present method further comprises removing at least a portion of the layer of inorganic material; preferably this comprises treatment with a suitable etchant. In one embodiment, removing at least a portion of the layer of inorganic material is effective in removing all of the inorganic material. In another embodiment, at least a portion of the layer of inorganic material comprises selectively removing inorganic material from the ends of the fullerenes. In yet another embodiment, removing at least a portion of the layer of inorganic material in a suitable manner comprises selectively removing inorganic material from the central portion of the fullerenes.
- The present method may further comprise allowing at least two fullerenes of at least one spontaneous contact to separate; this preferably comprises treatment with a suitable surfactant. The present method further comprises, optionally, allowing at least two fullerenes to contact each other to provide at least one new spontaneous interconnect.
- According to a preferred embodiment, the number and nature of new spontaneous interconnects will differ from that observed for the first spontaneous interconnect. According to this embodiment, steps (e) and (f) may be repeated until a desired profile of electronic characteristics has been attained. Preferably, the characteristics may be those found in electronic switching and memory devices.
- According to a preferred embodiment, the present method further comprises testing the coated fullerene interconnect devices for suitability as electronic devices.
- In another aspect of the present invention is disclosed a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect.
- Preferably, the present coated fullerene interconnect device performs some electronic switching or memory function.
- One embodiment of the present invention is to dispense the previously coated fullerenes into the interlayer dielectric (ILD) or intermetal dielectric (IMD) layer growth process in such a manner as to achieve a specific void volume in the layer, while retaining the mechanical and electrical properties of the layer required for successful chip fabrication and performance. This invention provides a way to combine the above approaches to give a low temperature solution process that allows for the formation of uniform films; the films can be prepared with a variety of properties optimized for specific applications.
- The second is to grow multiple layers of the porous oxide films on large area wafers at the appropriate process steps in chip fabrication. The first layer of porous silicon dioxide with fullerene inclusions must be grown directly on the silicon wafer after it has been patterned with nano-scale transistors, and may use a different solution from that used to coat the fullerenes. All subsequent porous films must be grown on composite surfaces consisting of sub-micron width copper lines embedded in previously grown porous SiO2 films, and may use yet another solution compared to those mentioned above.
- Prior art attempts to produce porous silicon dioxide have failed to produce films with isolated voids and uniform void size, resulting in poor process reproducibility and film quality. Such processes also require the use of heat to evaporate a solvent or other component from the film to create the voids, something not required by the present invention. The present process will produce distinct voids of controllable size in a film with superior properties compared to the CVD and sol gel processes with which it competes.
- The following examples are presented to illustrate the ease and versatility of the approach and are not to be construed as the only examples of the proposed approach or as limiting the scope of the present invention. It is understood that a practitioner, of ordinary skill in the art, will be able to employ alternative reagents and coatings to achieve similar results.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with Millipore (UP) water. A sample of this solution (10 mL) was allowed to react in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then filtered, washed with UP water, dried and analyzed as a powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (10 mL) was allowed to react with fullerene (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then filtered, washed with UP water, dried and analyzed as a powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (10 mL) was allowed to react with fullerenol (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 12 hours. The product was then filtered, washed with UP water, dried and analyzed as a powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (5 mL) was allowed to react with fullerenol (5 mL of a 50 mg/L solution) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 12 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times. The product was then dried and analyzed as a powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (20 mL) was allowed to react with fullerenol (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times. The product was then dried and analyzed as a powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was diluted to 1.00 M. Fullerenols (10 mg) were added to a sample of this solution (50 mL) and allowed to react in a Tupperware container. To this mixture was added a silicon chip which had been etched first in RCA-1 etch (NH4OH:H2O2:H2O), followed by a Millipore water rinse and then etched with an RCA-2 etch (HCl:H2O2:H2O) and again rinsed. The solution with the chip was stirred, at 30° C., for 4 hours. The chip was then removed from the solution, rinsed in Millipore water and dried with compressed air.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was diluted to 1.00 M. Fullerenols (10 mg) were added to a sample of this solution (50 mL) and allowed to react in a Tupperware container. To this mixture was added a silicon chip which had been previously coated with silica-coated fullerenols. The solution with the chip was stirred, at 30° C., for 4 hours. The chip was then removed from the solution, rinsed in Millipore water and dried with compressed air.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (50 mL) was allowed to react with fullerenol (10 mg) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times. The product, dispersed in ethanol, was transferred to a clean scintillation vial. A glass slide, which had been cleaned in a base bath, copiously rinsed in UP water and stored in ethanol, was placed upright in the scintillation vial. The solution was then allowed to evaporate overnight. The coated fullerenols coated the glass slide via capillary action.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The solution was then diluted to 1.0 M with UP water. A sample of this solution (100 mL) was allowed to react with sodium dodecylsulfate (SDS, 1 mL of a 1% solution) in a plastic centrifuge tube. This mixture was stirred, at 30° C., for 3 hours. The product was then centrifuged at 4000 rpm for 60 minutes. The supernatant liquid was discarded. The product was then redispersed in ethanol by sonification. This process was repeated six times. The product was then dried and analyzed as a powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (100 mL) was added to al % SDS solution (1 mL) containing dispersed single walled carbon nanotubes (SWNT, 50 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (5 mL) was added to al % SDS solution (5 mL) containing dispersed SWNT (50 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (3 mL) was added to al % SDS solution (6.25 mL) containing dispersed SWNT (40 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (1 mL) was added to al % SDS solution (6.25 mL) containing dispersed SWNT (40 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for four hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Products from Examples 12 and 13 were dried on a surface and selectively etched with hydrofluoric acid (1%). They were then thoroughly rinsed with UP water and dried for characterization.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (1 mL) was added to al % dodecyltrimethyl ammonium bromide solution (DTAB, 5 mL) containing dispersed SWNT (30 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for twelve hours. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was redispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- Fumed silica (3.0 g) was added to 50 mL of 3.20 M fluorosilicic acid solution (H2SiF6: Riedel de Haen, 34% pure) and allowed to stir overnight. This solution was then filtered, by vacuum, through a 0.22 micron Millipore filter. The filtrate was diluted to 1.0 M with UP water. A portion of this solution (1 mL) was added to al % DTAB solution (8.33 mL) containing dispersed SWNT (30 mg/L). These were allowed to react in a plastic centrifuge tube, with stirring, at 30° C., for fifteen minutes. The reaction was then quenched with ethanol and centrifuged at 4400 rpm for 15 minutes. The supernatant liquid was disposed of and the solid was dispersed in ethanol. This process was repeated six times. The coated SWNTs were then characterized in ethanol solution or as a dried powder.
- A sample of the product from example 16 was dried on a surface and then quickly etched with hydrofluoric acid. After a defined time period, the etch was quenched in UP water. The etched material was then allowed to dry on a metal stub. A thin coated SWNT paper was formed.
- A sample of the product of example 16, dispersed in ethanol was added to powdered PVP, with stirring. Once the solvent had evaporated, a sample of polymer with well-dispersed coated nanotubes was obtained.
Claims (21)
1. A method of making a coated fullerene interconnect device comprising a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes wherein:
at least two fullerenes are contacting each other to form a spontaneous interconnect; and at least one suitable metal contact is found at the site of at least one spontaneous interconnect, wherein said method comprises:
(a) dispersing a fullerene under suitable conditions to provide a dispersed fullerene;
(b) depositing at least one inorganic material under suitable conditions onto at least one surface of the dispersed fullerene to provide a coated fullerene;
(c) isolating the coated fullerene;
(d) removing at least a portion of the layer of inorganic material in a manner suitable for permitting at least two fullerenes to contact each other to provide at least one spontaneous interconnect;
(e) optionally, allowing at least two fullerenes of a spontaneous interconnect to separate;
(f) optionally, allowing at least two fullerenes to contact each other to provide at least one new spontaneous interconnect; and
(g) depositing a suitable metal contact at the site of at least one spontaneous interconnect and/or one new spontaneous interconnect.
2. The method according to claim 1 , wherein the fullerenes are selected from the group consisting of C60, C72, C84, C96, C108, C120, single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and combinations thereof.
3. The method according to claim 2 , wherein the fullerenes are single-walled carbon nanotubes (SWNT).
4. The method according to claim 1 , wherein the at least one inorganic material comprises an inorganic oxide.
5. The method according to claim 4 , wherein the inorganic oxide is an oxide of silicon.
6. The method according to claim 1 , wherein the fullerene is dispersed by a technique of chemical functionalization or surfactant addition.
7. The method according to claim 1 , wherein removing the at least a portion of the layer of inorganic material comprises treatment with a suitable etchant.
8. The method according to claim 1 , wherein removing the at least a portion of the layer of inorganic material is effective in removing all of the inorganic material.
9. The method according to claim 1 , wherein removing the at least a portion of the layer of inorganic material in a suitable manner comprises selectively removing inorganic material from the ends of the fullerenes.
10. The method according to claim 1 , wherein removing the at least a portion of the layer of inorganic material in a suitable manner comprises selectively removing inorganic material from the central portion of the fullerenes.
11. The method according to claim 1 , wherein separating the at least one spontaneous interconnect comprises treatment with a suitable surfactant.
12. The method according to claim 1 , wherein the method further comprises testing the coated fullerene interconnect devices for suitability as electronic devices.
13. A coated fullerene interconnect device made according to the method of claim 1 .
14. A coated fullerene interconnect device comprising:
a layer of at least one inorganic material covering at least a portion of at least one surface of fullerenes, wherein at least two fullerenes are contacting each other to form a spontaneous interconnect; and
at least one suitable metal contact is found at the site of at least one spontaneous interconnect.
15. The coated fullerene interconnect device according to claim 14 , wherein the device performs some electronic switching function.
16. The coated fullerene interconnect device according to claim 14 , wherein the device performs some electronic memory function.
17. The coated fullerene interconnect device according to claim 14 , wherein the device performs some electronic sensory function.
18. A method of depositing a dielectric onto a silicon computer chip comprising a coated fullerene comprising:
a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene onto a computer chip, wherein the method comprises
contacting a solution comprising coated fullerene with at least one region of a computer chip in a manner effective for depositing a dielectric layer to said region.
19. The method according to claim 18 , wherein contacting a solution comprising coated fullerene with at least one region of a computer chip in an effective manner takes place at a temperature no greater than 50° C.
20. The method according to claim 18 , wherein the dielectric layer is uniform in thickness.
21. The method according to claim 18 , wherein contacting a solution comprising coated fullerene with at least one region of a computer chip in an effective manner comprises effecting control over the void volume.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/042,445 US20160163652A1 (en) | 2001-11-20 | 2016-02-12 | Coated fullerenes, composites and dielectrics made therefrom |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US33166001P | 2001-11-20 | 2001-11-20 | |
| PCT/US2002/037211 WO2003043934A1 (en) | 2001-11-20 | 2002-11-20 | Coated fullerenes, composites and dielectrics made therefrom |
| US10/496,066 US8062702B2 (en) | 2001-11-20 | 2002-11-20 | Coated fullerenes, composites and dielectrics made therefrom |
| US13/270,985 US9290665B2 (en) | 2001-11-20 | 2011-10-11 | Coated fullerenes, compositions and dielectrics made therefrom |
| US15/042,445 US20160163652A1 (en) | 2001-11-20 | 2016-02-12 | Coated fullerenes, composites and dielectrics made therefrom |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/270,985 Division US9290665B2 (en) | 2001-11-20 | 2011-10-11 | Coated fullerenes, compositions and dielectrics made therefrom |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20160163652A1 true US20160163652A1 (en) | 2016-06-09 |
Family
ID=23294841
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/496,066 Expired - Fee Related US8062702B2 (en) | 2001-11-20 | 2002-11-20 | Coated fullerenes, composites and dielectrics made therefrom |
| US13/270,985 Expired - Fee Related US9290665B2 (en) | 2001-11-20 | 2011-10-11 | Coated fullerenes, compositions and dielectrics made therefrom |
| US15/042,445 Abandoned US20160163652A1 (en) | 2001-11-20 | 2016-02-12 | Coated fullerenes, composites and dielectrics made therefrom |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/496,066 Expired - Fee Related US8062702B2 (en) | 2001-11-20 | 2002-11-20 | Coated fullerenes, composites and dielectrics made therefrom |
| US13/270,985 Expired - Fee Related US9290665B2 (en) | 2001-11-20 | 2011-10-11 | Coated fullerenes, compositions and dielectrics made therefrom |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US8062702B2 (en) |
| EP (2) | EP2261173A1 (en) |
| AU (1) | AU2002352814A1 (en) |
| WO (1) | WO2003043934A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10443237B2 (en) | 2017-04-20 | 2019-10-15 | Samuel J. Lanahan | Truncated icosahedra assemblies |
Families Citing this family (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010104546A1 (en) * | 2009-01-26 | 2010-09-16 | Petrovich Svetozar B | Sustainable processes super green nuclear super plant |
| US6723299B1 (en) | 2001-05-17 | 2004-04-20 | Zyvex Corporation | System and method for manipulating nanotubes |
| WO2003043934A1 (en) | 2001-11-20 | 2003-05-30 | Wm. Marsh Rice University | Coated fullerenes, composites and dielectrics made therefrom |
| US6905667B1 (en) | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
| US20040034177A1 (en) | 2002-05-02 | 2004-02-19 | Jian Chen | Polymer and method for using the polymer for solubilizing nanotubes |
| WO2005000735A2 (en) | 2002-11-19 | 2005-01-06 | William Marsh Rice University | Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system |
| AU2003295721A1 (en) * | 2002-11-19 | 2004-06-15 | William Marsh Rice University | Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission |
| GB2421506B (en) | 2003-05-22 | 2008-07-09 | Zyvex Corp | Nanocomposites and methods thereto |
| US7296576B2 (en) | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
| US7233071B2 (en) * | 2004-10-04 | 2007-06-19 | International Business Machines Corporation | Low-k dielectric layer based upon carbon nanostructures |
| US7531209B2 (en) * | 2005-02-24 | 2009-05-12 | Michael Raymond Ayers | Porous films and bodies with enhanced mechanical strength |
| CA2616857C (en) * | 2005-08-05 | 2020-03-31 | Kahrl Retti | Multiple layer solar energy harvesting composition and method, solar energy harvesting buckyball, inductive coupling device; vehicle chassis; atmospheric intake hydrogen motor; electrical energy generating tire; and mechanical energy harvesting device |
| US7938987B2 (en) * | 2006-05-01 | 2011-05-10 | Yazaki Corporation | Organized carbon and non-carbon assembly and methods of making |
| US7883742B2 (en) | 2006-05-31 | 2011-02-08 | Roskilde Semiconductor Llc | Porous materials derived from polymer composites |
| US7919188B2 (en) | 2006-05-31 | 2011-04-05 | Roskilde Semiconductor Llc | Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials |
| WO2007143028A2 (en) * | 2006-05-31 | 2007-12-13 | Roskilde Semiconductor Llc | Low dielectric constant materials prepared from soluble fullerene clusters |
| US7491376B2 (en) | 2006-06-12 | 2009-02-17 | Newcyte, Inc. | Chemical derivatization of silica coated fullerenes and use of derivatized silica coated fullerenes |
| BRPI0719208A2 (en) | 2006-10-12 | 2017-09-26 | C 3 Int Llc | methods for obtaining prophylactic surface treatment for fluid processing systems and components thereof. |
| US8968604B2 (en) * | 2007-04-27 | 2015-03-03 | Kuraray Co., Ltd. | Single-walled carbon nanotube dispersion liquid and method for producing single-walled carbon nanotube dispersion liquid |
| US8431818B2 (en) | 2007-05-08 | 2013-04-30 | Vanguard Solar, Inc. | Solar cells and photodetectors with semiconducting nanostructures |
| US7999176B2 (en) * | 2007-05-08 | 2011-08-16 | Vanguard Solar, Inc. | Nanostructured solar cells |
| WO2008141271A1 (en) | 2007-05-10 | 2008-11-20 | Newcyte, Inc. | Artificial retinal implant |
| US20080296662A1 (en) * | 2007-05-30 | 2008-12-04 | Gerhard Poeppel | Discrete Trap Memory (DTM) Mediated by Fullerenes |
| WO2009020800A1 (en) * | 2007-08-03 | 2009-02-12 | Yazaki Corporation | Electrically conductive transparent coatings comprising organized assemblies of carbon and non-carbon compounds |
| US8623301B1 (en) | 2008-04-09 | 2014-01-07 | C3 International, Llc | Solid oxide fuel cells, electrolyzers, and sensors, and methods of making and using the same |
| US10101219B2 (en) * | 2008-09-05 | 2018-10-16 | The Research Foundation For The State University Of New York | Carbon nanotube sensing system, carbon nanotube dew point hygrometer, method of use thereof and method of forming a carbon nanotube dew point hygrometer |
| EP2332175B1 (en) * | 2008-09-09 | 2015-08-26 | Vanguard Solar, Inc. | Solar cells and photodetectors with semiconducting nanostructures |
| CN104192792B (en) * | 2008-11-14 | 2016-06-29 | 清华大学 | The preparation method of nanostructured |
| MX390999B (en) * | 2009-04-17 | 2025-03-21 | Seerstone Llc | METHOD FOR THE PRODUCTION OF SOLID CARBON BY THE REDUCTION OF CARBON OXIDES. |
| US20130146469A1 (en) | 2010-02-10 | 2013-06-13 | Ut-Battelle, Llc | Low Temperature Electrolytes for Solid Oxide Cells Having High Ionic Conductivity |
| US9505615B2 (en) * | 2011-07-27 | 2016-11-29 | California Institute Of Technology | Method for controlling microstructural arrangement of nominally-aligned arrays of carbon nanotubes |
| KR101340356B1 (en) * | 2012-03-20 | 2013-12-10 | 한국과학기술원 | Carbon nanotube/metal nanocomposites and preparing method thereof |
| WO2014028027A1 (en) * | 2012-08-17 | 2014-02-20 | Empire Technology Development Llc | Plastic nanocomposites and methods of making the same |
| CN104937044A (en) * | 2012-10-31 | 2015-09-23 | 纳米技术创新公司 | Nanotechnological thermal insulating coating and uses thereof |
| WO2015009618A1 (en) | 2013-07-15 | 2015-01-22 | Fcet, Llc | Low temperature solid oxide cells |
| US9214332B2 (en) * | 2014-03-20 | 2015-12-15 | International Business Machines Corporation | Composite dielectric materials with improved mechanical and electrical properties |
| KR101907912B1 (en) * | 2015-10-29 | 2018-10-15 | 주식회사 이쓰리파워 | SiOx-FULLERENE COMPOSITE, METHOD AND APPARATUS FOR MANUFACTURING THE SAME, AND THE USE OF THE SAME |
| KR101907916B1 (en) * | 2015-10-29 | 2018-10-15 | 주식회사 이쓰리파워 | APPARATUS AND METHOD FOR CAPTURING SiOx |
| EP3523013A4 (en) | 2016-10-06 | 2020-05-27 | Lyten, Inc. | Microwave reactor system with gas-solids separation |
| US12281013B2 (en) | 2016-10-06 | 2025-04-22 | Lyten, Inc. | Microwave reactor system enclosing a self-igniting plasma |
| US9812295B1 (en) | 2016-11-15 | 2017-11-07 | Lyten, Inc. | Microwave chemical processing |
| US9997334B1 (en) | 2017-02-09 | 2018-06-12 | Lyten, Inc. | Seedless particles with carbon allotropes |
| US9767992B1 (en) | 2017-02-09 | 2017-09-19 | Lyten, Inc. | Microwave chemical processing reactor |
| EP3596163A4 (en) | 2017-03-16 | 2021-01-13 | Lyten, Inc. | CARBON AND ELASTOMER INTEGRATION |
| US10920035B2 (en) | 2017-03-16 | 2021-02-16 | Lyten, Inc. | Tuning deformation hysteresis in tires using graphene |
| US9862606B1 (en) * | 2017-03-27 | 2018-01-09 | Lyten, Inc. | Carbon allotropes |
| US10465128B2 (en) | 2017-09-20 | 2019-11-05 | Lyten, Inc. | Cracking of a process gas |
| WO2019126196A1 (en) | 2017-12-22 | 2019-06-27 | Lyten, Inc. | Structured composite materials |
| US10644368B2 (en) | 2018-01-16 | 2020-05-05 | Lyten, Inc. | Pressure barrier comprising a transparent microwave window providing a pressure difference on opposite sides of the window |
| US11309545B2 (en) | 2019-10-25 | 2022-04-19 | Lyten, Inc. | Carbonaceous materials for lithium-sulfur batteries |
| US11489161B2 (en) | 2019-10-25 | 2022-11-01 | Lyten, Inc. | Powdered materials including carbonaceous structures for lithium-sulfur battery cathodes |
| CN115440962B (en) * | 2022-10-08 | 2024-05-17 | 湖北师范大学 | Manganese dioxide@conductive polymer submicron spherical shell material and preparation method and application thereof |
Family Cites Families (84)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US542054A (en) * | 1895-07-02 | Key-holding device for pipe-organs | ||
| US4845056A (en) * | 1987-10-09 | 1989-07-04 | Allied-Signal Inc. | Continuous process for production of fine particulate ceramics |
| JPH0732877B2 (en) | 1990-07-10 | 1995-04-12 | 工業技術院長 | Immobilized metal complex |
| US5274018A (en) * | 1991-05-24 | 1993-12-28 | Massachusetts Institute Of Technology | Salt tolerant super absorbents |
| US5177248A (en) | 1991-10-28 | 1993-01-05 | Exxon Research And Engineering Company | Process of forming polysubstituted fullerenes |
| JP2687794B2 (en) | 1991-10-31 | 1997-12-08 | 日本電気株式会社 | Graphite fiber with cylindrical structure |
| US5331183A (en) | 1992-08-17 | 1994-07-19 | The Regents Of The University Of California | Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells |
| US5364993A (en) * | 1993-01-21 | 1994-11-15 | Inrad, Inc. | Selective functionalization of fullerenes |
| US5308661A (en) * | 1993-03-03 | 1994-05-03 | The Regents Of The University Of California | Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate |
| US5397350A (en) | 1993-05-03 | 1995-03-14 | Chow; Alan Y. | Independent photoelectric artificial retina device and method of using same |
| US5424054A (en) | 1993-05-21 | 1995-06-13 | International Business Machines Corporation | Carbon fibers and method for their production |
| US5420081A (en) * | 1994-03-31 | 1995-05-30 | The Regents Of The University Of California Office Of Technology Transfer | Preparation of fullerene/glass composites |
| US6203814B1 (en) | 1994-12-08 | 2001-03-20 | Hyperion Catalysis International, Inc. | Method of making functionalized nanotubes |
| DE69622928T2 (en) * | 1995-05-29 | 2002-12-12 | Fuji Photo Film Co., Ltd. | Process for the production of protective layers from silicon dioxide |
| JP2953996B2 (en) * | 1995-05-31 | 1999-09-27 | 日本電気株式会社 | Metal-coated carbon nanotube and method for producing the same |
| US5741442A (en) * | 1995-07-11 | 1998-04-21 | The Regents Of The University Of California | Optical limiting materials |
| US5690807A (en) | 1995-08-03 | 1997-11-25 | Massachusetts Institute Of Technology | Method for producing semiconductor particles |
| US6126740A (en) | 1995-09-29 | 2000-10-03 | Midwest Research Institute | Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films |
| JPH09115334A (en) | 1995-10-23 | 1997-05-02 | Mitsubishi Materiais Corp | Transparent conductive film and composition for film formation |
| US5744399A (en) | 1995-11-13 | 1998-04-28 | Lsi Logic Corporation | Process for forming low dielectric constant layers using fullerenes |
| US5965202A (en) * | 1996-05-02 | 1999-10-12 | Lucent Technologies, Inc. | Hybrid inorganic-organic composite for use as an interlayer dielectric |
| US5648128A (en) * | 1996-06-06 | 1997-07-15 | National Science Council | Method for enhancing the growth rate of a silicon dioxide layer grown by liquid phase deposition |
| DE69728410T2 (en) | 1996-08-08 | 2005-05-04 | William Marsh Rice University, Houston | MACROSCOPICALLY MANIPULATED DEVICES MANUFACTURED FROM NANOROE ASSEMBLIES |
| US6683783B1 (en) | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
| US6344272B1 (en) | 1997-03-12 | 2002-02-05 | Wm. Marsh Rice University | Metal nanoshells |
| US6106609A (en) * | 1997-04-08 | 2000-08-22 | The United States Of America As Represented By The Secretary Of The Navy | Formation of nanocrystalline semiconductor particles within a bicontinuous cubic phase |
| AUPP004497A0 (en) | 1997-10-28 | 1997-11-20 | University Of Melbourne, The | Stabilized particles |
| US6322901B1 (en) | 1997-11-13 | 2001-11-27 | Massachusetts Institute Of Technology | Highly luminescent color-selective nano-crystalline materials |
| WO1999065821A1 (en) | 1998-06-19 | 1999-12-23 | The Research Foundation Of State University Of New York | Free-standing and aligned carbon nanotubes and synthesis thereof |
| DE69941294D1 (en) | 1998-09-18 | 2009-10-01 | Univ Rice William M | CHEMICAL DERIVATION OF UNIFORM CARBON NANOTUBES TO FACILITATE THEIR SOLVATATION AND USE OF DERIVATED NANORESE |
| US6835366B1 (en) | 1998-09-18 | 2004-12-28 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes |
| DE19905694A1 (en) | 1998-11-27 | 2000-08-17 | Forschungszentrum Juelich Gmbh | Component |
| DE60044238D1 (en) | 1999-02-22 | 2010-06-02 | Clawson Joseph E | ELECTRONIC COMPONENT BASED ON NANOSTRUCTURES |
| US6080683A (en) | 1999-03-22 | 2000-06-27 | Special Materials Research And Technology, Inc. | Room temperature wet chemical growth process of SiO based oxides on silicon |
| US6348295B1 (en) | 1999-03-26 | 2002-02-19 | Massachusetts Institute Of Technology | Methods for manufacturing electronic and electromechanical elements and devices by thin-film deposition and imaging |
| US6333598B1 (en) * | 2000-01-07 | 2001-12-25 | The United States Of America As Represented By The Secretary Of The Navy | Low gate current field emitter cell and array with vertical thin-film-edge emitter |
| US6277766B1 (en) | 2000-02-03 | 2001-08-21 | Michael Raymond Ayers | Method of making fullerene-decorated nanoparticles and their use as a low dielectric constant material for semiconductor devices |
| DE10006964C2 (en) | 2000-02-16 | 2002-01-31 | Infineon Technologies Ag | Electronic component with a conductive connection between two conductive layers and method for producing an electronic component |
| CA2400411A1 (en) * | 2000-02-16 | 2001-08-23 | Fullerene International Corporation | Diamond/carbon nanotube structures for efficient electron field emission |
| US6346136B1 (en) * | 2000-03-31 | 2002-02-12 | Ping Chen | Process for forming metal nanoparticles and fibers |
| DE10036897C1 (en) | 2000-07-28 | 2002-01-03 | Infineon Technologies Ag | Field effect transistor used in a switching arrangement comprises a gate region between a source region and a drain region |
| US6949216B2 (en) * | 2000-11-03 | 2005-09-27 | Lockheed Martin Corporation | Rapid manufacturing of carbon nanotube composite structures |
| CA2430888C (en) | 2000-12-11 | 2013-10-22 | President And Fellows Of Harvard College | Nanosensors |
| KR20020049630A (en) | 2000-12-19 | 2002-06-26 | 임지순 | field emitter |
| JP4848585B2 (en) | 2000-12-25 | 2011-12-28 | ソニー株式会社 | Fullerene derivative production method, fullerene derivative, proton conductor, and electrochemical device |
| US6992322B2 (en) | 2001-01-02 | 2006-01-31 | Kavassery Sureswaran Narayan | Photo-responsive organic field effect transistor |
| US20020094699A1 (en) * | 2001-01-12 | 2002-07-18 | Mau-Phon Houng | Method for producing a metal oxide semiconductor field effect transistor |
| CA2436218A1 (en) * | 2001-01-30 | 2003-01-16 | Materials And Electrochemical Research (Mer) Corporation | Nano carbon materials for enhancing thermal transfer in fluids |
| US6782154B2 (en) * | 2001-02-12 | 2004-08-24 | Rensselaer Polytechnic Institute | Ultrafast all-optical switch using carbon nanotube polymer composites |
| JP2002244577A (en) | 2001-02-16 | 2002-08-30 | Seiko Epson Corp | Flexible substrate, electro-optical device and electronic equipment |
| JP3731486B2 (en) | 2001-03-16 | 2006-01-05 | 富士ゼロックス株式会社 | Transistor |
| EP1246205A1 (en) * | 2001-03-26 | 2002-10-02 | Abb Research Ltd. | Electrically conducting nanocomposite material |
| GB0110580D0 (en) * | 2001-04-30 | 2001-06-20 | Univ Sussex | Nanotubes |
| US6918946B2 (en) | 2001-07-02 | 2005-07-19 | Board Of Regents, The University Of Texas System | Applications of light-emitting nanoparticles |
| US6710366B1 (en) | 2001-08-02 | 2004-03-23 | Ultradots, Inc. | Nanocomposite materials with engineered properties |
| WO2003029137A2 (en) | 2001-10-01 | 2003-04-10 | Tda Research, Inc. | Derivatization and solubilization of insoluble classes of fullerenes |
| WO2003043934A1 (en) | 2001-11-20 | 2003-05-30 | Wm. Marsh Rice University | Coated fullerenes, composites and dielectrics made therefrom |
| WO2003058776A1 (en) | 2002-01-08 | 2003-07-17 | Photon-X, Inc. | Optical waveguide amplifiers |
| US6894359B2 (en) | 2002-09-04 | 2005-05-17 | Nanomix, Inc. | Sensitivity control for nanotube sensors |
| US20030134433A1 (en) | 2002-01-16 | 2003-07-17 | Nanomix, Inc. | Electronic sensing of chemical and biological agents using functionalized nanostructures |
| US7074310B2 (en) * | 2002-03-04 | 2006-07-11 | William Marsh Rice University | Method for separating single-wall carbon nanotubes and compositions thereof |
| AU2003253590A1 (en) | 2002-03-29 | 2003-11-10 | Board Of Regents For The Oklahoma Agricultural And Mechanical Colleges, Acting For And On Behalf Of Oklahoma State University | Implantable biosensor from stratified nanostructured membranes |
| US6970239B2 (en) | 2002-06-12 | 2005-11-29 | Intel Corporation | Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate |
| US6946597B2 (en) | 2002-06-22 | 2005-09-20 | Nanosular, Inc. | Photovoltaic devices fabricated by growth from porous template |
| US6852920B2 (en) | 2002-06-22 | 2005-02-08 | Nanosolar, Inc. | Nano-architected/assembled solar electricity cell |
| US7291782B2 (en) | 2002-06-22 | 2007-11-06 | Nanosolar, Inc. | Optoelectronic device and fabrication method |
| JP4242832B2 (en) | 2002-07-03 | 2009-03-25 | シンテック,インコーポレイテッド | Fabrication method and activation treatment of nanostructured composite field emission cathode |
| US6755530B1 (en) | 2002-07-16 | 2004-06-29 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Retinal light processing using carbon nanotubes |
| TWI220269B (en) | 2002-07-31 | 2004-08-11 | Ind Tech Res Inst | Method for fabricating n-type carbon nanotube device |
| TW200425530A (en) | 2002-09-05 | 2004-11-16 | Nanosys Inc | Nanostructure and nanocomposite based compositions and photovoltaic devices |
| WO2005000735A2 (en) | 2002-11-19 | 2005-01-06 | William Marsh Rice University | Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system |
| AU2003295721A1 (en) | 2002-11-19 | 2004-06-15 | William Marsh Rice University | Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission |
| US6969897B2 (en) | 2002-12-10 | 2005-11-29 | Kim Ii John | Optoelectronic devices employing fibers for light collection and emission |
| US7163967B2 (en) | 2003-12-01 | 2007-01-16 | Cryovac, Inc. | Method of increasing the gas transmission rate of a film |
| US7253431B2 (en) | 2004-03-02 | 2007-08-07 | International Business Machines Corporation | Method and apparatus for solution processed doping of carbon nanotube |
| KR100624433B1 (en) | 2004-08-13 | 2006-09-19 | 삼성전자주식회사 | P-type semiconductor carbon nanotubes and a method of manufacturing the same |
| US20060036045A1 (en) | 2004-08-16 | 2006-02-16 | The Regents Of The University Of California | Shape memory polymers |
| TWI251354B (en) | 2005-02-02 | 2006-03-11 | Ind Tech Res Inst | Solar energy power module with carbon nano-tube |
| JP4752283B2 (en) | 2005-02-24 | 2011-08-17 | 富士ゼロックス株式会社 | Solar cell using carbon nanotubes |
| US20070005116A1 (en) | 2005-06-30 | 2007-01-04 | Lsi Logic Corporation | Implantable, fully integrated and high performance semiconductor device for retinal prostheses |
| WO2007041293A2 (en) | 2005-09-29 | 2007-04-12 | Doheny Eye Institute | Microelectrode systems for neuro-stimulation and neuro-sensing and microchip packaging and related methods |
| KR100649743B1 (en) | 2005-10-20 | 2006-11-27 | 삼성전기주식회사 | Solar cell containing CNT and manufacturing method thereof |
| US20090004471A1 (en) | 2006-01-17 | 2009-01-01 | Amthor Franklin R | Electrode Arrays and Methods of Fabrication Thereof |
| US7491376B2 (en) | 2006-06-12 | 2009-02-17 | Newcyte, Inc. | Chemical derivatization of silica coated fullerenes and use of derivatized silica coated fullerenes |
-
2002
- 2002-11-20 WO PCT/US2002/037211 patent/WO2003043934A1/en not_active Application Discontinuation
- 2002-11-20 AU AU2002352814A patent/AU2002352814A1/en not_active Abandoned
- 2002-11-20 EP EP10158813A patent/EP2261173A1/en not_active Withdrawn
- 2002-11-20 EP EP02789769A patent/EP1456124A4/en not_active Withdrawn
- 2002-11-20 US US10/496,066 patent/US8062702B2/en not_active Expired - Fee Related
-
2011
- 2011-10-11 US US13/270,985 patent/US9290665B2/en not_active Expired - Fee Related
-
2016
- 2016-02-12 US US15/042,445 patent/US20160163652A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10443237B2 (en) | 2017-04-20 | 2019-10-15 | Samuel J. Lanahan | Truncated icosahedra assemblies |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1456124A4 (en) | 2009-01-28 |
| US9290665B2 (en) | 2016-03-22 |
| AU2002352814A1 (en) | 2003-06-10 |
| US20050089684A1 (en) | 2005-04-28 |
| EP2261173A1 (en) | 2010-12-15 |
| WO2003043934A1 (en) | 2003-05-30 |
| US8062702B2 (en) | 2011-11-22 |
| EP1456124A1 (en) | 2004-09-15 |
| US20120119162A1 (en) | 2012-05-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9290665B2 (en) | Coated fullerenes, compositions and dielectrics made therefrom | |
| Meng et al. | Polymer composites of boron nitride nanotubes and nanosheets | |
| JP5775603B2 (en) | Graphene derivative-carbon nanotube composite material and manufacturing method thereof | |
| US7491376B2 (en) | Chemical derivatization of silica coated fullerenes and use of derivatized silica coated fullerenes | |
| US7566434B1 (en) | Spheroidal aggregates comprising single-wall carbon nanotubes and method for making the same | |
| Shimoda et al. | Self‐assembly of carbon nanotubes | |
| Okamoto et al. | Synthesis and modification of silicon nanosheets and other silicon nanomaterials | |
| US9452934B2 (en) | Synthesis of ultra-large graphene oxide sheets | |
| TWI417411B (en) | Aqueous carbon nanotube applicator liquid and method for producing the same | |
| US7956345B2 (en) | CNT devices, low-temperature fabrication of CNT and CNT photo-resists | |
| US8070988B2 (en) | Nano-carbon hybrid structures | |
| CN110352176B (en) | Fibrous carbon nanostructure dispersion, method for producing same, and fibrous carbon nanostructure | |
| Ma et al. | Size-controlled short nanobells: Growth and formation mechanism | |
| KR20070105182A (en) | Selective Catalyst Formation Method for Nanosized Conductive Structures and Selective Methods for Forming Nanoscale Conductive Structures | |
| Colorado et al. | Silica-coated single-walled nanotubes: nanostructure formation | |
| CN111417596B (en) | Fibrous carbon nanostructure, method for evaluating the same, and method for producing surface-modified product thereof | |
| CN101218173B (en) | Method for growing carbon nanotubes with predetermined chirality | |
| TW201206824A (en) | Separation method | |
| KR101321114B1 (en) | Method of manufacturing large area graphene film and patterning graphene film | |
| Whitsitt et al. | LPD silica coating of individual single walled carbon nanotubes | |
| CN1956920B (en) | Silicon particles, silicon particle superlattice and methods of making same | |
| Akbar et al. | Functionalization of carbon nanotubes: Manufacturing techniques and properties of customized nanocomponents for molecular-level technology | |
| CN107285296A (en) | Method for growing carbon nanomaterials | |
| Whitsitt | Liquid phase deposition of silica: Thin films, colloids and fullerenes | |
| Gu | Chemistry of nanostructured carbon: I. Fluorination, cutting and derivatization of single-wall carbon nanotubes; II. Fluorination and characterization of polymeric carbon 60 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: WILLIAM MARSH RICE UNIVERSITY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARRON, ANDREW R.;WHITSITT, ELIZABETH;REEL/FRAME:037728/0388 Effective date: 20040615 Owner name: NATCORE TECHNOLOGY, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FLOOD, DENNIS J.;REEL/FRAME:037728/0605 Effective date: 20141022 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |