US20040034177A1 - Polymer and method for using the polymer for solubilizing nanotubes - Google Patents
Polymer and method for using the polymer for solubilizing nanotubes Download PDFInfo
- Publication number
- US20040034177A1 US20040034177A1 US10/255,122 US25512202A US2004034177A1 US 20040034177 A1 US20040034177 A1 US 20040034177A1 US 25512202 A US25512202 A US 25512202A US 2004034177 A1 US2004034177 A1 US 2004034177A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- nanotube
- carbon
- solubilizing
- swnts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 123
- 239000002071 nanotube Substances 0.000 title claims abstract description 96
- 230000003381 solubilizing effect Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims description 92
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 142
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 107
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 107
- 125000000524 functional group Chemical group 0.000 claims abstract description 22
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 27
- -1 poly(phenyleneethynylene) Polymers 0.000 claims description 19
- 239000002904 solvent Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 11
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 10
- 229920000509 poly(aryleneethynylene) polymer Polymers 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000003125 aqueous solvent Substances 0.000 claims description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 5
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 claims 3
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 claims 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 claims 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 claims 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 claims 3
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 claims 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 claims 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 claims 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 claims 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 claims 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 claims 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 claims 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 claims 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 claims 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 claims 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 claims 1
- APQIUTYORBAGEZ-UHFFFAOYSA-N 1,1-dibromoethane Chemical compound CC(Br)Br APQIUTYORBAGEZ-UHFFFAOYSA-N 0.000 claims 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 claims 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 claims 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 claims 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 claims 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 claims 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims 1
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 claims 1
- 229950005228 bromoform Drugs 0.000 claims 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 claims 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 claims 1
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 claims 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 claims 1
- 235000019253 formic acid Nutrition 0.000 claims 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 claims 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 claims 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 claims 1
- 229940078552 o-xylene Drugs 0.000 claims 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims 1
- 229950011008 tetrachloroethylene Drugs 0.000 claims 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims 1
- 229930192474 thiophene Natural products 0.000 claims 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 claims 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 claims 1
- 230000003993 interaction Effects 0.000 abstract description 12
- 229920000547 conjugated polymer Polymers 0.000 abstract description 5
- 239000003049 inorganic solvent Substances 0.000 abstract 1
- 229910001867 inorganic solvent Inorganic materials 0.000 abstract 1
- 239000002109 single walled nanotube Substances 0.000 description 108
- 238000000981 high-pressure carbon monoxide method Methods 0.000 description 57
- 0 C.COCOC(=O)C1=CC=C2C(=O)C3=C(C=CC=C3)C(=O)C2=C1.C[Fe]C.O=C(OCO)c1cccc1.c1cccc1 Chemical compound C.COCOC(=O)C1=CC=C2C(=O)C3=C(C=CC=C3)C(=O)C2=C1.C[Fe]C.O=C(OCO)c1cccc1.c1cccc1 0.000 description 11
- 238000010891 electric arc Methods 0.000 description 11
- 238000009834 vaporization Methods 0.000 description 10
- 230000008016 vaporization Effects 0.000 description 10
- 238000005063 solubilization Methods 0.000 description 9
- 230000007928 solubilization Effects 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 229920000379 polypropylene carbonate Polymers 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 7
- 239000002048 multi walled nanotube Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000007306 functionalization reaction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004627 transmission electron microscopy Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002074 nanoribbon Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 4
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 4
- 238000005374 membrane filtration Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical group C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- SBKVVSJLUKOGMM-UHFFFAOYSA-N COCOC(=O)C1=CC=C2C(=O)C3=C(C=CC=C3)C(=O)C2=C1 Chemical compound COCOC(=O)C1=CC=C2C(=O)C3=C(C=CC=C3)C(=O)C2=C1 SBKVVSJLUKOGMM-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/124—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2975—Tubular or cellular
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Definitions
- the present invention is related to solubilization of nonotubes, and more particularly to a polymer that is capable of solubilizing nanotubes.
- a carbon nanotube can be visualized as a sheet of hexagonal graph paper rolled up into a seamless tube and joined.
- Each line on the graph paper represents a carbon-carbon bond, and each intersection point represents a carbon atom.
- carbon nanotubes are elongated tubular bodies which are typically only a few atoms in circumference.
- the carbon nanotubes are hollow and have a linear fullerene structure.
- the length of the carbon nanotubes potentially may be millions of times greater than their molecular-sized diameter.
- SWNTs single-walled carbon nanotubes
- MWNTs multi-walled carbon nanotubes
- Carbon nanotubes are currently being proposed for a number of applications since they possess a very desirable and unique combination of physical properties relating to, for example, strength and weight. Carbon nanotubes have also demonstrated electrical conductivity. See Yakobson, B. I., et al., American Principle, 85, (1997), 324-337; and Dresselhaus, M. S., et al., Science of Fullerenes and Carbon Nanotubes, 1996, San Diego: Academic Press, pp. 902-905. For example, carbon nanotubes conduct heat and electricity better than copper or gold and have 100 times the tensile strength of steel, with only a sixth of the weight of steel. Carbon nanotubes may be produced having extraordinarily small size. For example, carbon nanotubes are being produced that are approximately the size of a DNA double helix (or approximately ⁇ fraction (1/50,000) ⁇ th the width of a human hair).
- carbon nanotubes are well suited for a variety of uses, from the building of computer circuits to the reinforcement of composite materials, and even to the delivery of medicine. As a result of their properties, carbon nanotubes may be useful in microelectronic device applications, for example, which often demand high thermal conductivity, small dimensions, and light weight.
- One potential application of carbon nanotubes that has been recognized is their use in flat-panel displays that use electron field-emission technology (as carbon nanotubes can be good conductors and electron emitters).
- Electrode shielding such as for cellular telephones and laptop computers, radar absorption for stealth aircraft, nano-electronics (including memories in new generations of computers), and use as high-strength, lightweight composites.
- carbon nanotubes are potential candidates in the areas of electrochemical energy storage systems (e.g., lithium ion batteries) and gas storage systems.
- the “laser vaporization” technique utilizes a pulsed laser to vaporize graphite in producing the carbon nanotubes.
- the laser vaporization technique is further described by A. G. Rinzler et al. in Appl. Phys. A, 1998, 67, 29, the disclosure of which is hereby incorporated herein by reference.
- the laser vaporization technique produces carbon nanotubes that have a diameter of approximately 1.1 to 1.3 nanometers (nm).
- Such laser vaporization technique is generally a very low yield process, which requires a relatively long period of time to produce small quantities of carbon nanotubes. For instance, one hour of laser vaporization processing typically results in approximately 100 milligrams of carbon nanotubes.
- SWNTs single-walled nanotubes
- Ni:Y;C graphite powder
- SWNTs are produced as close-packed bundles (or “ropes”) with such bundles having diameters ranging from 5 to 20 nm.
- the SWNTs are well-aligned in a two-dimensional periodic triangular lattice bonded by van der Waals interactions.
- the electric arc technique of producing carbon nanotubes is further described by C. Journet and P. Bernier in Appl. Phys. A, 67, 1, the disclosure of which is hereby incorporated herein by reference. Utilizing such an electric arc technique, the average carbon nanotube diameter is typically approximately 1.3 to 1.5 nm and the triangular lattice parameter is approximately 1.7 nm.
- the electric arc production technique is generally a very low yield process that requires a relatively long period of time to produce small quantities of carbon nanotubes. For instance, one hour of electric arc processing typically results in approximately 100 milligrams of carbon nanotubes.
- the gas phase technique which produces much greater quantities of carbon nanotubes than the laser vaporization and electric arc production techniques.
- the gas phase technique which is referred to as the HiPcoTM process, produces carbon nanotubes utilizing a gas phase catalytic reaction.
- the HiPco process uses basic industrial gas (carbon monoxide), under temperature and pressure conditions common in modern industrial plants to create relatively high quantities of high-purity carbon nanotubes that are essentially free of by-products.
- the HiPco process is described in further detail by P. Nikolaev et al. in Chem. Phys. Lett., 1999, 313, 91, the disclosure of which is hereby incorporated herein by reference.
- the HiPco process may enable daily product of carbon nanotube in quantities of a pound or more.
- the HiPco technique produces carbon nanotubes that have relatively much smaller diameters than are typically produced in the laser vaporization or electric arc techniques.
- the nanotubes produced by the HiPco technique generally have diameters of approximately 0.7 to 0.8 nm.
- Covalent side-wall functionalizations of carbon nanotubes can lead to the dissolution of carbon nanotubes in organic solvents. It should be noted that the terms “dissolution” and “solubilization” are used interchangeably herein. See Boul, P. J. et al., Chem Phys. Lett. 1999, 310, 367 and Georgakilas, V. et al., J. Am. Chem. Soc. 2002, 124, 760-761, the disclosures of which are hereby incorporated herein by reference. The disadvantage of this approach is that a carbon nanotube's intrinsic properties are changed significantly by covalent side-wall functionalizations.
- Carbon nanotubes can also be solubilized in organic solvents and water by polymer wrapping. See Dalton, A. B. et al., J. Phys. Chem. B 2000, 104, 10012-10016, Star, A. et al. Angew. Chem., Int. Ed. 2001, 40, 1721-1725, and O'Connell, M. J. et al. Chem. Phys. Lett. 2001, 342, 265-271, the disclosures of which are hereby incorporated herein by reference.
- FIGS. 1 A- 1 C show examples of such polymer wrapping of a carbon nanotube. In polymer wrapping, a polymer “wraps” around the diameter of a carbon nanotube. For instance, FIG.
- FIG. 1 shows an example of polymers 102 A and 102 B wrapping around single-walled carbon nanotube (SWNT) 101 .
- FIG. 1B shows an example of polymer 103 A and 103 B wrapping around SWNT 101 .
- FIG. 1C shows an example of polymers 104 A and 104 B wrapping around SWNT 101 . It should be noted that the polymers in each of the examples of FIGS. 1 A- 1 C are the same, and the FIGURES illustrate that the type of polymer-wrapping that occurs is random (e.g., the same polymers wrap about the carbon nanotube in different ways in each of FIGS. 1 A- 1 C).
- SWNT HiPco is the only SWNT material that can be currently produced at a large scale with high purity.
- the present invention is directed to a method for solubilizing nanotubes, a polymer for solubilizing nanotubes, and resulting compositions of matter that may be formed using solubilized nanotubes.
- Embodiments of the present invention provide a new approach to solubilizing nanotubes, such as carbon nanotubes, in solvents.
- the solvents can be, in principle, any solvents. Solubilization of carbon nanotubes in accordance with embodiments of the present invention have been experimentally demonstrated in organic solvents and in water.
- carbon nanotube surfaces are functionalized in a non-wrapping fashion by functional conjugated polymers that include functional groups for solubilizing such nanotubes.
- non-wrapping means not enveloping the diameter of a nanotube.
- associating a polymer with a nanotube in a “non-wrapping fashion” encompasses any association of the polymer with the nanotube in which the polymer does not completely envelope the diameter of the nanotube.
- the non-wrapping fashion may be further defined and/or restricted.
- a polymer can associate with a nanotube (e.g., via ⁇ -stacking interaction therewith) wherein the polymer's backbone extends substantially along the length of the nanotube without any portion of the backbone extending over more than half of the nanotube's diameter in relation to any other portion of the polymer's backbone.
- Various embodiments provide polymers that associate with carbon nanotubes in a non-wrapping fashion. More specifically, various embodiments of polymers are provided that comprise a relatively rigid backbone that is suitable for associating with a carbon nanotube substantially along the nanotube's length, as opposed to about its diameter. In preferred polymers, the major interaction between the polymer backbone and the nanotube surface is parallel ⁇ -stacking. Such interaction may result in the polymer non-covalently bonding (or otherwise associating) with the nanotube.
- rigid functional conjugated polymers that may be utilized in embodiments of the present invention include, without limitation, poly(aryleneethynylene)s and poly(3-decylthiophene).
- the polymers further comprise at least one functional extension from the backbone, wherein such at least one function extension comprises any of various desired functional groups that are suitable for solubilizing a carbon nanotube.
- a method of solubilizing a nanotube comprises mixing a polymer with a nanotube, and the polymer noncovalently bonding with the nanotube in a non-wrapping fashion, wherein the polymer comprises at least one functional portion for solubilizing the nanotube.
- mixing is intended to encompass “adding,” “combining,” and similar terms for presenting at least one polymer to at least one nanotube.
- a polymer for solubilizing nanotubes comprises a backbone portion for noncovalently bonding with a nanotube in a non-wrapping fashion, and at least one functional portion for solubilizing the nanotube.
- a process comprises mixing at least one polymer with at least one nanotube in a solvent.
- the solvent may comprise an organic solvent, and in other embodiments the solvent may comprise an aqueous solvent. The mixing results in the at least one polymer forming a noncovalent bond with the at least one nanotube in a non-wrapping fashion, and the at least one polymer solubilizing the at least one nanotube.
- a method of solubilizing carbon nanotubes comprises mixing at least one polymer with at least one carbon nanotube in a solvent.
- the solvent may comprise an organic solvent, and in other embodiments the solvent may comprise an aqueous solvent.
- the method further comprises the at least one polymer interacting with the at least one carbon nanotube's surface via ⁇ -stacking, and the at least one polymer solubilizing the at least one carbon nanotube.
- FIGS. 1 A- 1 C show examples of polymer wrapping of carbon nanotubes of the prior art
- FIGS. 2 A- 2 B show an example molecular model of a polymer that associates with a carbon nanotube in a non-wrapping fashion in accordance with an embodiment of the present invention
- FIGS. 3 A- 3 C show example polymer structures of embodiments of the present invention.
- FIG. 4 shows another example of a polymer structure that may be implemented for associating with a carbon nanotube in a non-wrapping fashion in accordance with an embodiment of the present invention
- FIG. 5A shows a graph illustrating the thin film visible and near infrared (IR) spectra of SWNTs HiPco (without a polymer associated therewith);
- FIG. 5B shows a graph illustrating the thin film visible and near IR spectra of SWNTs HiPco solubilized by an example polymer of an embodiment of the present invention
- FIG. 6A shows a transmission electron microscopy (“TEM”) image of SWNTs laser (i.e., SWNTs produced by the laser technique) solubilized by an example polymer of an embodiment of the present invention
- FIG. 6B shows a TEM image of SWNTs arc (i.e., SWNTs produced by the arc technique) solubilized by an example polymer of an embodiment of the present invention
- FIGS. 6C and 6D show TEM images of SWNTs HiPco solubilized with an example polymer of an embodiment of the present invention
- FIGS. 7A and 7B show high resolution TEM images of SWNTs laser solubilized with an example polymer of an embodiment of the present invention
- FIGS. 8 A- 8 C show high resolution TEM images of SWNTs arc solubilized with an example polymer of an embodiment of the present invention.
- FIG. 9 shows a field-emission scanning electron microscopy (“SEM”) image (1.00 kV) of a tom edge of Bucky paper formed in accordance with a solubilization technique of an embodiment of the present invention, which illustrates that the majority of the sample is SWNT nanoribbon.
- SEM field-emission scanning electron microscopy
- Embodiments of the present invention provide a new approach to solubilizing nanotubes in solvents.
- certain embodiments of the present invention may enable solubilization in organic solvents, and certain embodiments may enable solubilization in aqueous solvents.
- This approach is based on a discovery that carbon nanotube surfaces can be functionalized in a non-wrapping fashion by functional conjugated polymers. For instance, an example molecular model of a polymer that associates (e.g., noncovalently bonds) with a carbon nanotube in a non-wrapping fashion is shown in FIGS. 2 A- 2 B.
- FIG. 2B is a cross-sectional view of FIG. 2A taken as indicated in FIG. 2A.
- a carbon nanotube (and more specifically a single-walled carbon nanotube in this example) 201 has polymer 202 associated with it in a non-wrapping fashion therewith.
- Polymer 202 comprises a relatively rigid backbone 203 that associates with carbon nanotube 201 substantially along the length, as opposed to about the diameter, of such carbon nanotube 201 .
- polymer 202 associates with carbon nanotube 201 in a non-wrapping fashion, which is advantageous for various reasons, some of which are described more fully herein.
- backbone 203 associates with nanotube 201 (e.g., via ⁇ -stacking interaction therewith) wherein such backbone 203 extends substantially along the length of nanotube 201 without any portion of backbone 203 extending over more than half of the diameter of nanotube 201 in relation to any other portion of backbone 203 .
- backbone 203 is sufficiently rigid such that no portion thereof bends to the extent that such portion passes the half-diameter (or “equator line”) 205 of nanotube 201 relative to location 206 of nanotube 201 at which at least a portion of backbone 203 is associated with nanotube 201 .
- backbones 203 may vary (e.g., certain implementations may enable a portion of backbone 203 to bend beyond half-diameter 205 while another portion of such backbone is arranged at location 206 of nanotube 201 ), but such backbones 203 are preferably sufficiently rigid such that they do not wrap (i.e., fully envelope the diameter of) nanotube 201 .
- backbones 203 are preferably sufficiently rigid such that they do not wrap (i.e., fully envelope the diameter of) nanotube 201 .
- portions of polymer 202 may extend about all or a portion of the diameter of nanotube 201 , but backbone 203 of polymer 202 is preferably sufficiently rigid such that it does not wrap about the diameter of nanotube 201 .
- Polymer 202 further comprises various functional extensions from backbone 203 , such as functional extensions 204 A and 204 B, which may comprise any of various desired functional groups for functionalizing carbon nanotube 201 .
- functional extensions 204 A and 204 B may comprise any of various desired functional groups for functionalizing carbon nanotube 201 .
- embodiments of the present invention include functional groups in polymer 202 that are suitable for solubilizing carbon nanotube 201 .
- polymer 202 associating with carbon nanotube 201 e.g., via r-stacking interaction
- polymer 202 associating with carbon nanotube 201 e.g., via r-stacking interaction
- functional groups such as functional extensions 204 A and 204 B
- backbone 203 in a desired manner to accurately control the spacing of such functional groups.
- functional groups such as functional extensions 204 A and 204 B
- backbone 203 in a desired manner to accurately control the spacing of such functional groups.
- it becomes much more difficult to control the relative spacing of the functional groups arranged on the polymer because their spacing is dependent on the wrapping of the polymer.
- By controlling the spacing of such functional groups along backbone 202 more control may be provided over if/how the functional groups interact with each other, carbon nanotube 201 , and/or other elements to which the functional groups may be exposed.
- carbon nanotubes possess a very desirable and unique combination of physical properties relating to, for example, strength, weight, electrical conductivity, etc. Having the ability to solubilize carbon nanotubes while preserving nearly all of the nanotubes' properties thus offers many possibilities in, for example, material science. For instance, in certain applications, carbon nanotubes may be solubilized and thus used in forming a desired composition of matter (or “material”) that has desired properties supplied at least in part by the nanotubes, some examples of which are described further below.
- FIGS. 3 A- 3 C show example polymer structures of embodiments of the present invention.
- FIG. 3A shows an example poly(aryleneethynylene) (labeled “1”) polymer structure that may be used to noncovalently bond with a carbon nanotube in a non-wrapping fashion.
- the example polymer structure shown in FIG. 3A comprises functional extensions R 1 , R 2 , R 3 , and R 4 , which may, in alternative example implementations for solubilizing carbon nanotubes, be implemented as either 1a, 1b, 1c, or 1d shown hereafter:
- FIG. 3B shows another example poly(aryleneethynylene) (labeled “3” and referred to herein as “3”) polymer structure that may be used to noncovalently bond with a carbon nanotube in a non-wrapping fashion.
- FIG. 3C shows another example poly(aryleneethynylene) (labeled “4” and referred to herein as “4”) polymer structure that may be used to noncovalently bond with a carbon nanotube in a non-wrapping fashion.
- the example polymer structures 1, 3, and 4 shown in FIGS. 3 A- 3 C are poly(phenyleneethynylene) structures, it should be understood that other poly(aryleneethynylene)-type structures may be used in accordance with embodiments of the present invention.
- the example polymer structures of FIGS. 3 A- 3 C may be implemented for noncovalently bonding with a carbon nanotube in a non-wrapping fashion, as with the example shown in FIGS. 2 A- 2 B, for solubilizing such carbon nanotube.
- the present invention is not intended to be limited solely to the functional groups of 1a, 1b, 1c, and 1d (or the functional groups of polymer structures 3 and 4) shown above for solubilizing carbon nanotubes, but rather any such functional group now known or later developed for solubilizing carbon nanotubes may be used in accordance with embodiments of the present invention.
- the solubilizing functional group(s) included in the polymer do not substantially alter the intrinsic properties of the carbon nanotube.
- FIG. 4 shows another example of a polymer structure that may be implemented for noncovalently bonding with a carbon nanotube in a non-wrapping fashion. More specifically, FIG. 4 shows an example structure of a highly regioregular head-to-tail poly(3-decylthiophene) (labeled “2”) that may be implemented in certain embodiments of the present invention.
- the backbone of 1, 2, 3, and 4 described above is rigid and cannot wrap around the SWNTs, and the major interaction between the polymer backbone and the nanotube surface is parallel ⁇ -stacking.
- the example backbones 5-18 described below are also rigid such that they do not wrap around the nanotube, and the major interaction between such polymer backbones and the nanotube surface is parallel ⁇ -stacking.
- Parallel ⁇ -stacking is one type of noncovalent bonding. See Chen, R. J. et al., J. Am. Chem.
- SWNTs can be readily solubilized in CHCl 3 by mixing with 1 (e.g., 1a, 1b, 1c, or 1d), 2, 3, or 4 after vigorous shaking and/or bath-sonication.
- the minimum weight ratio (WR initial ) of 1:SWNTs HiPco , 2:SWNTs HiPco , 3:SWNTs HiPco , and 4:SWNTs HiPco required to solubilize the SWNTs HiPco (i.e., SWNTs produced by the HiPco technique) is about 0.4; and the maximum concentration of SWNTs HiPco in CHCl 3 is about 5 mg/ml for 1d, which represents the highest solubility of SWNTs HiPco in organic solvents by noncovalent functionalization.
- SWNTs Hipco can be dissolved in 6.8 ml of CHCl 3 in the presence of 5.4 mg of 1a; and 20.4 mg of SWNTs HiPco can be dissolved in 4.0 ml of CHCl 3 in the presence of 20.4 mg of 1d.
- the maximum concentration of SWNTs laser (i.e., SWNTs produced by the laser technique) and SWNTs arc (i.e., SWNTs produced by the arc technique) is about 0.5 mg/ml for 1a.
- the solubility of SWNTs can be further improved by optimizing the polymer side chain's length and composition. For example, the longer side chains and/or the side chains with branched structures can further improve the solubility of the SWNTs.
- SWNTs can be readily solubilized in deionized water by mixing with 4 after bath-sonication.
- 13.7 mg of SWNTs HiPco can be dissolved in 6.9 ml of deionized water in the presence of 13.7 mg of 4.
- SWNTs HiPco purified HiPco-SWNTs
- SWNTs laser purified laser-grown SWNTs
- SWNTs arc purified electric arc-grown SWNTs
- the weight ratio (WR final ) of 1a:SWNTs HiPco in the final product is estimated to be about 0.38-0.40, which is independent of WR initial .
- FIG. 5A shows a graph illustrating the thin film visible and near infrared (IR) spectra of SWNTs HiPco (without a polymer associated therewith).
- FIG. 5B shows a graph illustrating the thin film visible and near IR spectra of 1a-SWNTs HiPco .
- the band structures of 1a-SWNTs HiPco are very similar to those of pristine SWNTs HiPco (of FIG.
- the resulting bucky paper dissolves more slowly in CHCl 3 at a lower concentration (approximately 0.1-0.2 mg/ml of 1a-SWNTs HiPco in CHCl 3 ).
- concentration approximately 0.1-0.2 mg/ml of 1a-SWNTs HiPco in CHCl 3 .
- n is preferably greater than or equal to 2
- R represents any organic functional group, such as R ⁇ OC 10 H 21 , R ⁇ C 10 H 21 , or other functional group described herein for solubilizing nanotubes, as examples.
- the example backbones 5-15 are poly (aryleneethynylene)s, backbone 16 is a polyphenylene, backbone 17 is a polypyrrole, and backbone 18 is a polythiophene.
- the 1-SWNTs HiPco solution of a preferred embodiment can mix homogeneously with other polymer solutions such as polycarbonate and polystyrene.
- Homogeneous nanotube-polycarbonate and -polystyrene composites can be prepared by removing the organic solvents.
- Soluble 1a-SWNTs HiPco complex significantly improves the mechanical properties of commercial polymers.
- the tensile strength and break strain of pure poly(bisphenol A carbonate) are 26 MPa and 1.23%, respectively; 3.8 wt % of SWNTs HiPco filling results in 68% and 1800% increases in tensile strength (43.7 MPa) and break strain (19.1%) of poly(bisphenol A carbonate) (average M W approximately 64,000), respectively.
- FIGS. 6 A- 6 D, 7 A- 7 B, and 8 A- 8 C show transmission electron microscopy (TEM) images
- FIG. 9 shows a field emission scanning electron microscopy (SEM) image, which are described further hereafter. More specifically, FIG. 6A shows a TEM image of 1-SWNTs laser
- FIG. 6B shows a TEM image of 1-SWNTs arc
- FIGS. 6C and 6D show TEM images of 1-SWNTs HiPco .
- the scale bar shown in FIGS. 6 A- 6 D is 100 nm.
- FIGS. 7A and 7B show high resolution TEM images of 1a-SWNTs laser (120 kV, one drop of the freshly prepared chlorobenzene solution of 1a-SWNTs laser (approximately 0.05 mg/ml) was placed on a Holey Carbon 400 mesh TEM grid (SPI Supplies, Formvar coating was removed) in contact with a Kimwipes wiper. The solvent was quickly soaked away by the wiper, preventing the aggregation of nanotubes).
- the scale bar shown in FIGS. 7 A- 7 B is 5 nm.
- FIGS. 8 A- 8 C show high resolution TEM images of 1a-SWNTs arc (120 kV, one drop of the freshly prepared chlorobenzene solution of 1a-SWNTs arc (approximately 0.05 mg/ml) was placed on a Holey Carbon 400 mesh TEM grid (SPI Supplies, Formvar coating was removed) in contact with a Kimwipes wiper. The solvent was quickly soaked away by the wiper, preventing the aggregation of nanotubes).
- the scale bar shown in FIGS. 8 A- 8 C is 5 nm.
- FIG. 9 shows field-emission SEM image (1.00 kV) of a torn edge of Bucky paper (1a-SWNTs HiPco ), illustrating that the majority of sample is SWNT nanoribbon.
- the TEM images show that the majority of SWNTs in 1a-SWNTs laser and 1a-SWNTs arc are small ropes (2-6 nm, see FIGS. 6A, 6B, 7 A, 7 B, and 8 A- 8 C), whereas the majority of SWNTs in 1a-SWNTs HiPco are nanoribbon assemblies of small ropes (see FIGS. 6C, 6D, and 9 ).
- FIGS. 6C, 6D, and 9 The observation of a twisted SWNT nanoribbon on TEM grid surface shown in FIG.
- 6D is indicative of the robustness of such two dimensional (2D) assemblies and further supports a ⁇ -stacking interaction with the polymer backbone oriented along the nanotube's length.
- Such nanoribbon is indicative of robustness because if the 2D assembly is not robust, it will easily collapse into small ropes on the TEM grid surface. It should be possible to prevent such 2D assembly and obtain small ropes and/or individual SWNTs HiPco by using 1, for example, with bulky and/or ionic functional groups in the end of the side chains.
- embodiments of the present invention provide a molecular structure that is capable of noncovalently bonding with a nanotube (e.g., carbon nanotube) in a non-wrapping manner, and the molecular structure may comprise one or more functional groups for solubilizing the nanotube to which the molecular structure associates.
- the molecular structure forms a non-covalent bond with the nanotube; however, in certain implementations the molecular structure may be such that it forms a covalent bond with the nanotube in a non-wrapping fashion.
- Solubilization of nanotubes allows for their use in enhancing the properties of various compositions of matter, including, as one example, plastics.
- Insoluble nanotubes cannot be dispersed homogeneously in commercial plastics and adhesives; therefore the polymer composites made by the addition of insoluble nanotubes gave little improvement in mechanical performance of plastics (Ajayan, P. M. et al., Adv. Mater. 2000, 12, 750; Schadler, L. S. et al. Appl. Phys. Lett. 1998, 73, 3842).
- soluble nanotubes can significantly improve the mechanical performance of plastics, for example.
- the tensile strength and break strain of pure poly(bisphenol A carbonate) are 26 MPa and 1.23%, respectively; 3.8 wt % of SWNTs HiPco filling results in 68% and 1800% increases in tensile strength (43.7 MPa) and break strain (19.1%) of poly(bisphenol A carbonate) (average M W approximately 64,000), respectively.
- Nanotubes may be formed from various materials such as, for example, carbon, boron nitride, and composites thereof.
- the nanotubes may be single-walled nanotubes or multi-walled nanotubes.
- MWNTs multi-walled carbon nanotubes
- boron nitride nanotubes and composites thereof.
- nanotubes is not limited solely to carbon nanotubes. Rather, the term “nanotubes” is used broadly herein and, unless otherwise qualified, is intended to encompass any type of nanotube now known or later developed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
A new, non-wrapping approach to solubilize nanotubes, such as carbon nanotubes, in organic and inorganic solvents is provided. In accordance with certain embodiments, carbon nanotube surfaces are functionalized in a non-wrapping fashion by functional conjugated polymers that include functional groups for solubilizing such nanotubes. Various embodiments provide polymers that noncovalently bond with carbon nanotubes in a non-wrapping fashion. For example, various embodiments of polymers are provided that comprise a relatively rigid backbone that is suitable for noncovalently bonding with a carbon nanotube substantially along the nanotube's length, as opposed to about its diameter. In preferred polymers, the major interaction between the polymer backbone and the nanotube surface is parallel π-stacking. The polymers further comprise at least one functional extension from the backbone that are any of various desired functional groups that are suitable for solubilizing a carbon nanotube.
Description
- This application claims priority to Provisional Patent Application Serial No. 60/377,856 entitled “SYSTEM AND METHOD FOR DISSOLUTION OF NANOTUBES”, filed May 2, 2002; and Provisional Patent Application Serial No. 60/377,920 entitled “SYSTEM AND METHOD FOR FUNCTIONALIZATION OF NANOTUBE SURFACES”, filed May 2, 2002, the disclosures of which are hereby incorporated herein by reference.
- The present invention is related to solubilization of nonotubes, and more particularly to a polymer that is capable of solubilizing nanotubes.
- A carbon nanotube can be visualized as a sheet of hexagonal graph paper rolled up into a seamless tube and joined. Each line on the graph paper represents a carbon-carbon bond, and each intersection point represents a carbon atom.
- In general, carbon nanotubes are elongated tubular bodies which are typically only a few atoms in circumference. The carbon nanotubes are hollow and have a linear fullerene structure. The length of the carbon nanotubes potentially may be millions of times greater than their molecular-sized diameter. Both single-walled carbon nanotubes (SWNTs), as well as multi-walled carbon nanotubes (MWNTs) have been recognized.
- Carbon nanotubes are currently being proposed for a number of applications since they possess a very desirable and unique combination of physical properties relating to, for example, strength and weight. Carbon nanotubes have also demonstrated electrical conductivity. See Yakobson, B. I., et al., American Scientist, 85, (1997), 324-337; and Dresselhaus, M. S., et al., Science of Fullerenes and Carbon Nanotubes, 1996, San Diego: Academic Press, pp. 902-905. For example, carbon nanotubes conduct heat and electricity better than copper or gold and have 100 times the tensile strength of steel, with only a sixth of the weight of steel. Carbon nanotubes may be produced having extraordinarily small size. For example, carbon nanotubes are being produced that are approximately the size of a DNA double helix (or approximately {fraction (1/50,000)}th the width of a human hair).
- Considering the excellent properties of carbon nanotubes, they are well suited for a variety of uses, from the building of computer circuits to the reinforcement of composite materials, and even to the delivery of medicine. As a result of their properties, carbon nanotubes may be useful in microelectronic device applications, for example, which often demand high thermal conductivity, small dimensions, and light weight. One potential application of carbon nanotubes that has been recognized is their use in flat-panel displays that use electron field-emission technology (as carbon nanotubes can be good conductors and electron emitters). Further potential applications that have been recognized include electromagnetic shielding, such as for cellular telephones and laptop computers, radar absorption for stealth aircraft, nano-electronics (including memories in new generations of computers), and use as high-strength, lightweight composites. Further, carbon nanotubes are potential candidates in the areas of electrochemical energy storage systems (e.g., lithium ion batteries) and gas storage systems.
- Various techniques for producing carbon nanotubes have been developed. As examples, methods of forming carbon nanotubes are described in U.S. Pat. Nos. 5,753,088 and 5,482,601, the disclosures of which are hereby incorporated herein by reference. The three most common techniques for producing carbon nanotubes are: 1) laser vaporization technique, 2) electric arc technique, and 3) gas phase technique (e.g., HiPco™ process), which are discussed further below.
- In general, the “laser vaporization” technique utilizes a pulsed laser to vaporize graphite in producing the carbon nanotubes. The laser vaporization technique is further described by A. G. Rinzler et al. in Appl. Phys. A, 1998, 67, 29, the disclosure of which is hereby incorporated herein by reference. Generally, the laser vaporization technique produces carbon nanotubes that have a diameter of approximately 1.1 to 1.3 nanometers (nm). Such laser vaporization technique is generally a very low yield process, which requires a relatively long period of time to produce small quantities of carbon nanotubes. For instance, one hour of laser vaporization processing typically results in approximately 100 milligrams of carbon nanotubes.
- Another technique for producing carbon nanotubes is the “electric arc” technique in which carbon nanotubes are synthesized utilizing an electric arc discharge. As an example, single-walled nanotubes (SWNTs) may be synthesized by an electric arc discharge under helium atmosphere with the graphite anode filled with a mixture of metallic catalysts and graphite powder (Ni:Y;C), as described more fully by C. Journet et al. in Nature (London), 388 (1997), 756. Typically, such SWNTs are produced as close-packed bundles (or “ropes”) with such bundles having diameters ranging from 5 to 20 nm. Generally, the SWNTs are well-aligned in a two-dimensional periodic triangular lattice bonded by van der Waals interactions. The electric arc technique of producing carbon nanotubes is further described by C. Journet and P. Bernier in Appl. Phys. A, 67, 1, the disclosure of which is hereby incorporated herein by reference. Utilizing such an electric arc technique, the average carbon nanotube diameter is typically approximately 1.3 to 1.5 nm and the triangular lattice parameter is approximately 1.7 nm. As with the laser vaporization technique, the electric arc production technique is generally a very low yield process that requires a relatively long period of time to produce small quantities of carbon nanotubes. For instance, one hour of electric arc processing typically results in approximately 100 milligrams of carbon nanotubes.
- More recently, Richard Smalley and his colleagues at Rice University have discovered another process, the “gas phase” technique, which produces much greater quantities of carbon nanotubes than the laser vaporization and electric arc production techniques. The gas phase technique, which is referred to as the HiPco™ process, produces carbon nanotubes utilizing a gas phase catalytic reaction. The HiPco process uses basic industrial gas (carbon monoxide), under temperature and pressure conditions common in modern industrial plants to create relatively high quantities of high-purity carbon nanotubes that are essentially free of by-products. The HiPco process is described in further detail by P. Nikolaev et al. in Chem. Phys. Lett., 1999, 313, 91, the disclosure of which is hereby incorporated herein by reference.
- While daily quantities of carbon nanotubes produced using the above-described laser vaporization and electric arc techniques are approximately 1 gram per day, the HiPco process may enable daily product of carbon nanotube in quantities of a pound or more. Generally, the HiPco technique produces carbon nanotubes that have relatively much smaller diameters than are typically produced in the laser vaporization or electric arc techniques. For instance, the nanotubes produced by the HiPco technique generally have diameters of approximately 0.7 to 0.8 nm.
- Full-length (unshortened) carbon nanotubes, due to their high aspect ratio, small diameter, light weight, high strength, high electrical- and thermal-conductivity, are recognized as the ultimate carbon fibers for nanostructured materials. See Calvert, P. Nature 1999, 399, 210, and Andrews, R. et al. Appl. Phys. Lett. 199, 75, 1329, the disclosures of which are hereby incorporated herein by reference. The carbon nanotube materials, however, are insoluble in common organic solvents. See Ebbesen, T. W. Acc. Chem. Res. 1998, 31, 558-556, the disclosure of which is hereby incorporated herein by reference.
- Covalent side-wall functionalizations of carbon nanotubes can lead to the dissolution of carbon nanotubes in organic solvents. It should be noted that the terms “dissolution” and “solubilization” are used interchangeably herein. See Boul, P. J. et al., Chem Phys. Lett. 1999, 310, 367 and Georgakilas, V. et al., J. Am. Chem. Soc. 2002, 124, 760-761, the disclosures of which are hereby incorporated herein by reference. The disadvantage of this approach is that a carbon nanotube's intrinsic properties are changed significantly by covalent side-wall functionalizations.
- Carbon nanotubes can also be solubilized in organic solvents and water by polymer wrapping. See Dalton, A. B. et al., J. Phys. Chem. B 2000, 104, 10012-10016, Star, A. et al. Angew. Chem., Int. Ed. 2001, 40, 1721-1725, and O'Connell, M. J. et al. Chem. Phys. Lett. 2001, 342, 265-271, the disclosures of which are hereby incorporated herein by reference. FIGS. 1A-1C show examples of such polymer wrapping of a carbon nanotube. In polymer wrapping, a polymer “wraps” around the diameter of a carbon nanotube. For instance, FIG. 1 shows an example of
102A and 102B wrapping around single-walled carbon nanotube (SWNT) 101. FIG. 1B shows an example ofpolymers 103A and 103B wrapping aroundpolymer SWNT 101. FIG. 1C shows an example ofpolymers 104A and 104B wrapping aroundSWNT 101. It should be noted that the polymers in each of the examples of FIGS. 1A-1C are the same, and the FIGURES illustrate that the type of polymer-wrapping that occurs is random (e.g., the same polymers wrap about the carbon nanotube in different ways in each of FIGS. 1A-1C). One disadvantage of this approach is that the polymer is very inefficient in wrapping the small-diameter single-walled carbon nanotubes produced by the HiPco process because of high strain conformation required for the polymer. For example, such polymer wrapping approach can only solubilize the SWNTsHipco (i.e., SWNTs produced by the HiPco process) at about 0.1 mg/ml in organic solvents. SWNTHiPco is the only SWNT material that can be currently produced at a large scale with high purity. - The present invention is directed to a method for solubilizing nanotubes, a polymer for solubilizing nanotubes, and resulting compositions of matter that may be formed using solubilized nanotubes. Embodiments of the present invention provide a new approach to solubilizing nanotubes, such as carbon nanotubes, in solvents. The solvents can be, in principle, any solvents. Solubilization of carbon nanotubes in accordance with embodiments of the present invention have been experimentally demonstrated in organic solvents and in water. In accordance with certain embodiments of the present invention, carbon nanotube surfaces are functionalized in a non-wrapping fashion by functional conjugated polymers that include functional groups for solubilizing such nanotubes. As used herein, “non-wrapping” means not enveloping the diameter of a nanotube. Thus, associating a polymer with a nanotube in a “non-wrapping fashion” encompasses any association of the polymer with the nanotube in which the polymer does not completely envelope the diameter of the nanotube. When describing certain embodiments of the present invention, the non-wrapping fashion may be further defined and/or restricted. For instance, in a preferred embodiment of the present invention, a polymer can associate with a nanotube (e.g., via π-stacking interaction therewith) wherein the polymer's backbone extends substantially along the length of the nanotube without any portion of the backbone extending over more than half of the nanotube's diameter in relation to any other portion of the polymer's backbone.
- Various embodiments provide polymers that associate with carbon nanotubes in a non-wrapping fashion. More specifically, various embodiments of polymers are provided that comprise a relatively rigid backbone that is suitable for associating with a carbon nanotube substantially along the nanotube's length, as opposed to about its diameter. In preferred polymers, the major interaction between the polymer backbone and the nanotube surface is parallel π-stacking. Such interaction may result in the polymer non-covalently bonding (or otherwise associating) with the nanotube. Examples of rigid functional conjugated polymers that may be utilized in embodiments of the present invention include, without limitation, poly(aryleneethynylene)s and poly(3-decylthiophene). In accordance with embodiments of the present invention, the polymers further comprise at least one functional extension from the backbone, wherein such at least one function extension comprises any of various desired functional groups that are suitable for solubilizing a carbon nanotube.
- In one embodiment of the present invention, a method of solubilizing a nanotube is disclosed. The method comprises mixing a polymer with a nanotube, and the polymer noncovalently bonding with the nanotube in a non-wrapping fashion, wherein the polymer comprises at least one functional portion for solubilizing the nanotube. As used herein, “mixing” is intended to encompass “adding,” “combining,” and similar terms for presenting at least one polymer to at least one nanotube.
- In another embodiment of the present invention, a polymer for solubilizing nanotubes is disclosed. The polymer comprises a backbone portion for noncovalently bonding with a nanotube in a non-wrapping fashion, and at least one functional portion for solubilizing the nanotube.
- In another embodiment, a process is disclosed that comprises mixing at least one polymer with at least one nanotube in a solvent. In certain embodiments, the solvent may comprise an organic solvent, and in other embodiments the solvent may comprise an aqueous solvent. The mixing results in the at least one polymer forming a noncovalent bond with the at least one nanotube in a non-wrapping fashion, and the at least one polymer solubilizing the at least one nanotube.
- In another embodiment, a method of solubilizing carbon nanotubes is provided. The method comprises mixing at least one polymer with at least one carbon nanotube in a solvent. Again, in certain embodiments, the solvent may comprise an organic solvent, and in other embodiments the solvent may comprise an aqueous solvent. The method further comprises the at least one polymer interacting with the at least one carbon nanotube's surface via π-stacking, and the at least one polymer solubilizing the at least one carbon nanotube.
- The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
- For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
- FIGS. 1A-1C show examples of polymer wrapping of carbon nanotubes of the prior art;
- FIGS. 2A-2B show an example molecular model of a polymer that associates with a carbon nanotube in a non-wrapping fashion in accordance with an embodiment of the present invention;
- FIGS. 3A-3C show example polymer structures of embodiments of the present invention;
- FIG. 4 shows another example of a polymer structure that may be implemented for associating with a carbon nanotube in a non-wrapping fashion in accordance with an embodiment of the present invention;
- FIG. 5A shows a graph illustrating the thin film visible and near infrared (IR) spectra of SWNTs HiPco (without a polymer associated therewith);
- FIG. 5B shows a graph illustrating the thin film visible and near IR spectra of SWNTs HiPco solubilized by an example polymer of an embodiment of the present invention;
- FIG. 6A shows a transmission electron microscopy (“TEM”) image of SWNTs laser (i.e., SWNTs produced by the laser technique) solubilized by an example polymer of an embodiment of the present invention;
- FIG. 6B shows a TEM image of SWNTs arc (i.e., SWNTs produced by the arc technique) solubilized by an example polymer of an embodiment of the present invention;
- FIGS. 6C and 6D show TEM images of SWNTs HiPco solubilized with an example polymer of an embodiment of the present invention;
- FIGS. 7A and 7B show high resolution TEM images of SWNTs laser solubilized with an example polymer of an embodiment of the present invention;
- FIGS. 8A-8C show high resolution TEM images of SWNTsarc solubilized with an example polymer of an embodiment of the present invention; and
- FIG. 9 shows a field-emission scanning electron microscopy (“SEM”) image (1.00 kV) of a tom edge of Bucky paper formed in accordance with a solubilization technique of an embodiment of the present invention, which illustrates that the majority of the sample is SWNT nanoribbon.
- Various embodiments of the present invention are now described with reference to the above figures. Embodiments of the present invention provide a new approach to solubilizing nanotubes in solvents. Advantageously, certain embodiments of the present invention may enable solubilization in organic solvents, and certain embodiments may enable solubilization in aqueous solvents. This approach is based on a discovery that carbon nanotube surfaces can be functionalized in a non-wrapping fashion by functional conjugated polymers. For instance, an example molecular model of a polymer that associates (e.g., noncovalently bonds) with a carbon nanotube in a non-wrapping fashion is shown in FIGS. 2A-2B. FIG. 2B is a cross-sectional view of FIG. 2A taken as indicated in FIG. 2A. As shown in this example, a carbon nanotube (and more specifically a single-walled carbon nanotube in this example) 201 has
polymer 202 associated with it in a non-wrapping fashion therewith. -
Polymer 202 comprises a relativelyrigid backbone 203 that associates withcarbon nanotube 201 substantially along the length, as opposed to about the diameter, ofsuch carbon nanotube 201. Thus,polymer 202 associates withcarbon nanotube 201 in a non-wrapping fashion, which is advantageous for various reasons, some of which are described more fully herein. In this example,backbone 203 associates with nanotube 201 (e.g., via π-stacking interaction therewith) whereinsuch backbone 203 extends substantially along the length ofnanotube 201 without any portion ofbackbone 203 extending over more than half of the diameter ofnanotube 201 in relation to any other portion of backbone 203.For instance,backbone 203 is sufficiently rigid such that no portion thereof bends to the extent that such portion passes the half-diameter (or “equator line”) 205 ofnanotube 201 relative tolocation 206 ofnanotube 201 at which at least a portion ofbackbone 203 is associated withnanotube 201. The specific rigidity ofvarious backbones 203 that may be implemented in accordance with embodiments of the present invention may vary (e.g., certain implementations may enable a portion ofbackbone 203 to bend beyond half-diameter 205 while another portion of such backbone is arranged atlocation 206 of nanotube 201), butsuch backbones 203 are preferably sufficiently rigid such that they do not wrap (i.e., fully envelope the diameter of)nanotube 201. Of course, as shown in the example of FIGS. 2A-2B, portions of polymer 202 (e.g., 204A and 204B) may extend about all or a portion of the diameter offunctional extensions nanotube 201, butbackbone 203 ofpolymer 202 is preferably sufficiently rigid such that it does not wrap about the diameter ofnanotube 201. -
Polymer 202 further comprises various functional extensions frombackbone 203, such as 204A and 204B, which may comprise any of various desired functional groups for functionalizingfunctional extensions carbon nanotube 201. As described further herein, embodiments of the present invention include functional groups inpolymer 202 that are suitable for solubilizingcarbon nanotube 201. - One advantage of
polymer 202 associating with carbon nanotube 201 (e.g., via r-stacking interaction) in a non-wrapping fashion is that it enables functional groups, such as 204A and 204B, to be arranged alongfunctional extensions backbone 203 in a desired manner to accurately control the spacing of such functional groups. In polymers that associate with a carbon nanotube in a wrapping fashion, it becomes much more difficult to control the relative spacing of the functional groups arranged on the polymer because their spacing is dependent on the wrapping of the polymer. By controlling the spacing of such functional groups alongbackbone 202, more control may be provided over if/how the functional groups interact with each other,carbon nanotube 201, and/or other elements to which the functional groups may be exposed. - Another advantage of such noncovalent functionalization of carbon nanotubes is that it allows for a significant degree of functionalization to be added to carbon nanotube surfaces (sidewalls) while still preserving nearly all of the nanotubes' intrinsic properties. That is, as described above, carbon nanotubes possess a very desirable and unique combination of physical properties relating to, for example, strength, weight, electrical conductivity, etc. Having the ability to solubilize carbon nanotubes while preserving nearly all of the nanotubes' properties thus offers many possibilities in, for example, material science. For instance, in certain applications, carbon nanotubes may be solubilized and thus used in forming a desired composition of matter (or “material”) that has desired properties supplied at least in part by the nanotubes, some examples of which are described further below.
- As an example of a technique for solubilizing carbon nanotubes, I have conducted a study in which I used rigid functional conjugated polymers, poly(aryleneethynylene)s (also referred to as “1”, “3”, “4” herein). See Bunz, U. H. F. Chem. Rev. 2000, 100, 1605-1644 and McQuade, D. T. et al., J. Am. Chem. Soc. 2000, 122, 12389-12390, the disclosures of which are hereby incorporated herein by reference, and poly(3-decylthiophene) (also referred to as “2” herein). FIGS. 3A-3C show example polymer structures of embodiments of the present invention. More specifically, FIG. 3A shows an example poly(aryleneethynylene) (labeled “1”) polymer structure that may be used to noncovalently bond with a carbon nanotube in a non-wrapping fashion. The example polymer structure shown in FIG. 3A comprises functional extensions R1, R2, R3, and R4, which may, in alternative example implementations for solubilizing carbon nanotubes, be implemented as either 1a, 1b, 1c, or 1d shown hereafter:
- R1═R4═H, R2═R3═OC10H21 (1a)
- FIG. 3B shows another example poly(aryleneethynylene) (labeled “3” and referred to herein as “3”) polymer structure that may be used to noncovalently bond with a carbon nanotube in a non-wrapping fashion. Further, FIG. 3C shows another example poly(aryleneethynylene) (labeled “4” and referred to herein as “4”) polymer structure that may be used to noncovalently bond with a carbon nanotube in a non-wrapping fashion. While the
1, 3, and 4 shown in FIGS. 3A-3C are poly(phenyleneethynylene) structures, it should be understood that other poly(aryleneethynylene)-type structures may be used in accordance with embodiments of the present invention.example polymer structures - The example polymer structures of FIGS. 3A-3C may be implemented for noncovalently bonding with a carbon nanotube in a non-wrapping fashion, as with the example shown in FIGS. 2A-2B, for solubilizing such carbon nanotube. Indeed, the example molecular model of FIGS. 2A-2B illustrates an example of implementation 1a, described above, of the polymer of FIG. 3A, and more specifically it shows an example of implementation 1an=1 5-SWNT(6,6) complex (i.e., armchair SWNT), wherein n is the repeat number. It should be understood that the present invention is not intended to be limited solely to the functional groups of 1a, 1b, 1c, and 1d (or the functional groups of
polymer structures 3 and 4) shown above for solubilizing carbon nanotubes, but rather any such functional group now known or later developed for solubilizing carbon nanotubes may be used in accordance with embodiments of the present invention. Preferably, the solubilizing functional group(s) included in the polymer do not substantially alter the intrinsic properties of the carbon nanotube. - FIG. 4 shows another example of a polymer structure that may be implemented for noncovalently bonding with a carbon nanotube in a non-wrapping fashion. More specifically, FIG. 4 shows an example structure of a highly regioregular head-to-tail poly(3-decylthiophene) (labeled “2”) that may be implemented in certain embodiments of the present invention.
- In contrast to previous work, See Dalton, Star, and O'Connell, M. J. et al., the backbone of 1, 2, 3, and 4 described above is rigid and cannot wrap around the SWNTs, and the major interaction between the polymer backbone and the nanotube surface is parallel π-stacking. Further, the example backbones 5-18 described below are also rigid such that they do not wrap around the nanotube, and the major interaction between such polymer backbones and the nanotube surface is parallel π-stacking. Parallel π-stacking is one type of noncovalent bonding. See Chen, R. J. et al., J. Am. Chem. Soc., 2001, 123, 3838-3839, the disclosure of which is hereby incorporated herein by reference. The techniques disclosed herein utilize such polymers to enable the dissolution (or “solubilization”) of various types of carbon nanotubes in organic solvents (such as CHCl3, chlorobenzene etc), which represents the first example of solubilization of carbon nanotubes via π-stacking without polymer wrapping.
- As an example, SWNTs can be readily solubilized in CHCl 3 by mixing with 1 (e.g., 1a, 1b, 1c, or 1d), 2, 3, or 4 after vigorous shaking and/or bath-sonication. The minimum weight ratio (WRinitial) of 1:SWNTsHiPco, 2:SWNTsHiPco, 3:SWNTsHiPco, and 4:SWNTsHiPco required to solubilize the SWNTsHiPco (i.e., SWNTs produced by the HiPco technique) is about 0.4; and the maximum concentration of SWNTsHiPco in CHCl3 is about 5 mg/ml for 1d, which represents the highest solubility of SWNTsHiPco in organic solvents by noncovalent functionalization. As examples, 13.6 mg of SWNTsHipco can be dissolved in 6.8 ml of CHCl3 in the presence of 5.4 mg of 1a; and 20.4 mg of SWNTsHiPco can be dissolved in 4.0 ml of CHCl3 in the presence of 20.4 mg of 1d. The maximum concentration of SWNTslaser (i.e., SWNTs produced by the laser technique) and SWNTsarc (i.e., SWNTs produced by the arc technique) is about 0.5 mg/ml for 1a. The solubility of SWNTs can be further improved by optimizing the polymer side chain's length and composition. For example, the longer side chains and/or the side chains with branched structures can further improve the solubility of the SWNTs.
- As another example, SWNTs can be readily solubilized in deionized water by mixing with 4 after bath-sonication. For example, 13.7 mg of SWNTs HiPco can be dissolved in 6.9 ml of deionized water in the presence of 13.7 mg of 4.
- The new polymers (1a-1, n average=19.5; 1a-2, naverage=13; 1b, naverage=19; 1c, naverage=19; 1d) were synthesized and characterized according to known methods. See Bunz, U. H. F. Chem. Rev. 2000, 100, 1605-1644, the disclosure of which is hereby incorporated herein by reference. Three types of SWNTs were used in this study: 1) purified HiPco-SWNTs (“SWNTsHiPco”, from Carbon Nanotechnologies, Inc.); 2) purified laser-grown SWNTs (“SWNTslaser”); and 3) purified electric arc-grown SWNTs (“SWNTsarc”). As an example preparation procedure for 1a-SWNTsHiPco complex: 14.7 mg of SWNTsHiPco was sonicated in 29.4 ml of CHCl3 for 30 minutes (“min”) to give an unstable suspension of visible insoluble solids. 14.7 mg of 1a was then added and most of the visible insoluble solids became soluble simply by vigorous shaking. The resulting solution was further sonicated for 10-30 min to give a black-colored stable solution with no detectable solid precipitation for over 10 days. Such resulting black-colored and unsaturated carbon nanotube solution was visually nonscattering and no precipitation occurred upon prolonged standing (e.g., over 10 days). The product was collected by PTFE membrane filtration (0.2-0.8 μm pore size), washed with CHCl3, and dried at room temperature under vacuum to give 20.6 mg of free-standing black solid film (bucky paper).
- The procedures followed in my study for 2-SWNTs HiPco, 1c-SWNTsHipco, 1b-SWNTsHiPco, 1d-SWNTsHiPco, 3-SWNTsHiPco, 1a-SWNTslaser and 1a-SWNTsarc are similar to that described above for 1a-SWNTsHiPco. The as-prepared SWNTsHiPco and CVD-grown multi-walled carbon nanotubes (MWNTs) can also be solubilized in CHCl3 by a similar procedure. The as-prepared SWNTsarc, however, form an unstable suspension using a similar procedure, presumably due to the amorphous carbon coating on nanotubes that prevents the efficient π-π interaction between 1 and the nanotube surfaces.
- The PTFE membrane filtration and CHCl 3 washing steps were used to remove free 1a. According to the weight gain, the weight ratio (WRfinal) of 1a:SWNTsHiPco in the final product is estimated to be about 0.38-0.40, which is independent of WRinitial. For example, the WR data in three 1a:SWNTsHiPco reactions are as follows: 1) WRinitial=1.00, WRfinal=0.40; 2) WRinitial=0.40, WRfinal=0.38; 3) WRinitial=0.40, WRfinal=0.39. Although this estimate is still rough, it strongly suggests that 1 could form stable and irreversibly bound complexes with carbon nanotubes in CHCl3, instead of a simple mixture.
- A preferred embodiment of the present invention provides a polymer for solubilizing carbon nanotubes while preserving nearly all of the nanotubes' intrinsic properties. For instance, FIG. 5A shows a graph illustrating the thin film visible and near infrared (IR) spectra of SWNTs HiPco (without a polymer associated therewith). FIG. 5B shows a graph illustrating the thin film visible and near IR spectra of 1a-SWNTsHiPco. According to the thin film visible and near-IR spectroscopies, the band structures of 1a-SWNTsHiPco (of FIG. 5B) are very similar to those of pristine SWNTsHiPco (of FIG. 5A), indicating that the electronic structures of SWNTsHiPco are basically intact upon polymer complexation. The charge-transfer in 1a-SWNTsHiPco is believed to be insignificant based on both absorption and Raman spectra. It should be noted that in the spectrum of 1a-SWNTsHiPco (of FIG. 5B) there is a very broad signal that is overlapped with those of SWNTsHiPco (of FIG. 5A) between 3.5 and 2 eV, which presumably arises from the lowest energy absorption of 1a in the nanotube complex.
- The bucky paper made of 1-SWNTs HiPco complex (Tensile strength=28.3 MPa; Young's modulus=4.5 GPa) demonstrates a significant improvement in mechanical properties compared to those of bucky paper made of pure SWNTsHiPco (Tensile strength=9.74 MPa; Young's modulus=0.26 GPa). Both types of bucky papers were produced by the same room temperature membrane filtration process (without any high temperature annealing) for better comparison. This shows that 1 can increase the adhesion between nanotubes via more efficient π-π interactions. Accordingly, the resulting bucky paper dissolves more slowly in CHCl3 at a lower concentration (approximately 0.1-0.2 mg/ml of 1a-SWNTsHiPco in CHCl3). For applications that require high nanotube concentration (for example, polymer composites), using 1-SWNTs (W=0.4) solution in CHCl3 prepared in situ without filtration is recommended.
- Various other soluble functional polymers with π-conjugated backbone structures may also be used to solubilize carbon nanotubes in organic solvents in accordance with alternative embodiments of the present invention. Some of such polymer backbone structures are shown as below (R represents any organic functional group; Ar represents any π-conjugated structure), as structures 5-18:
- In the above backbones 5-18, n is preferably greater than or equal to 2, and R represents any organic functional group, such as R═OC 10H21, R═C10H21, or other functional group described herein for solubilizing nanotubes, as examples. It should be recognized that the example backbones 5-15 are poly (aryleneethynylene)s, backbone 16 is a polyphenylene, backbone 17 is a polypyrrole, and backbone 18 is a polythiophene.
- The 1-SWNTs HiPco solution of a preferred embodiment can mix homogeneously with other polymer solutions such as polycarbonate and polystyrene. Homogeneous nanotube-polycarbonate and -polystyrene composites can be prepared by removing the organic solvents.
- As an example, 0.6 ml of a chloroform solution (125 mg/ml) of poly(bisphenol A carbonate) was homogeneously mixed with 2.89 ml of a chloroform solution (1.3 mg/ml of SWNTs HiPco) of 1a-SWNTsHiPco. A homogeneous SWNTs/poly(bisphenol A carbonate) composite (5 wt % of SWNTsHiPco) was formed after removing the chloroform solvent. By varying the ration of 1a-SWNTsHiPco: poly(bisphenol A carbonate), a series of SWNTs/poly(bisphenol A carbonate) composites with different SWNTs fillings can be easily made.
- Soluble 1a-SWNTs HiPco complex significantly improves the mechanical properties of commercial polymers. For example, the tensile strength and break strain of pure poly(bisphenol A carbonate) are 26 MPa and 1.23%, respectively; 3.8 wt % of SWNTsHiPco filling results in 68% and 1800% increases in tensile strength (43.7 MPa) and break strain (19.1%) of poly(bisphenol A carbonate) (average MW approximately 64,000), respectively.
- FIGS. 6A-6D, 7A-7B, and 8A-8C show transmission electron microscopy (TEM) images, and FIG. 9 shows a field emission scanning electron microscopy (SEM) image, which are described further hereafter. More specifically, FIG. 6A shows a TEM image of 1-SWNTslaser, FIG. 6B shows a TEM image of 1-SWNTsarc, and FIGS. 6C and 6D show TEM images of 1-SWNTsHiPco. For reference, the scale bar shown in FIGS. 6A-6D is 100 nm.
- FIGS. 7A and 7B show high resolution TEM images of 1a-SWNTs laser (120 kV, one drop of the freshly prepared chlorobenzene solution of 1a-SWNTslaser (approximately 0.05 mg/ml) was placed on a Holey Carbon 400 mesh TEM grid (SPI Supplies, Formvar coating was removed) in contact with a Kimwipes wiper. The solvent was quickly soaked away by the wiper, preventing the aggregation of nanotubes). For reference, the scale bar shown in FIGS. 7A-7B is 5 nm.
- FIGS. 8A-8C show high resolution TEM images of 1a-SWNTsarc (120 kV, one drop of the freshly prepared chlorobenzene solution of 1a-SWNTsarc (approximately 0.05 mg/ml) was placed on a Holey Carbon 400 mesh TEM grid (SPI Supplies, Formvar coating was removed) in contact with a Kimwipes wiper. The solvent was quickly soaked away by the wiper, preventing the aggregation of nanotubes). For reference, the scale bar shown in FIGS. 8A-8C is 5 nm.
- FIG. 9 shows field-emission SEM image (1.00 kV) of a torn edge of Bucky paper (1a-SWNTs HiPco), illustrating that the majority of sample is SWNT nanoribbon. The TEM images show that the majority of SWNTs in 1a-SWNTslaser and 1a-SWNTsarc are small ropes (2-6 nm, see FIGS. 6A, 6B, 7A, 7B, and 8A-8C), whereas the majority of SWNTs in 1a-SWNTsHiPco are nanoribbon assemblies of small ropes (see FIGS. 6C, 6D, and 9). The observation of a twisted SWNT nanoribbon on TEM grid surface shown in FIG. 6D is indicative of the robustness of such two dimensional (2D) assemblies and further supports a π-stacking interaction with the polymer backbone oriented along the nanotube's length. Such nanoribbon is indicative of robustness because if the 2D assembly is not robust, it will easily collapse into small ropes on the TEM grid surface. It should be possible to prevent such 2D assembly and obtain small ropes and/or individual SWNTsHiPco by using 1, for example, with bulky and/or ionic functional groups in the end of the side chains.
- The bucky paper made of 1-SWNTs HiPco complex (Tensile strength=28.3 MPa; Young's modulus=4.5 GPa) demonstrates quantitatively a significant improvement in mechanical properties compared to those of bucky paper of pure SWNTsHiPco (Tensile strength=9.74 MPa; Young's modulus=0.26 GPa). Both types of bucky papers were produced by the same room temperature membrane filtration process (without any high temperature annealing) for better comparison.
- In view of the above, it should be recognized that embodiments of the present invention provide a molecular structure that is capable of noncovalently bonding with a nanotube (e.g., carbon nanotube) in a non-wrapping manner, and the molecular structure may comprise one or more functional groups for solubilizing the nanotube to which the molecular structure associates. Preferably, the molecular structure forms a non-covalent bond with the nanotube; however, in certain implementations the molecular structure may be such that it forms a covalent bond with the nanotube in a non-wrapping fashion.
- Solubilization of nanotubes allows for their use in enhancing the properties of various compositions of matter, including, as one example, plastics. Insoluble nanotubes cannot be dispersed homogeneously in commercial plastics and adhesives; therefore the polymer composites made by the addition of insoluble nanotubes gave little improvement in mechanical performance of plastics (Ajayan, P. M. et al., Adv. Mater. 2000, 12, 750; Schadler, L. S. et al. Appl. Phys. Lett. 1998, 73, 3842). In contrast, soluble nanotubes can significantly improve the mechanical performance of plastics, for example. For example, the tensile strength and break strain of pure poly(bisphenol A carbonate) are 26 MPa and 1.23%, respectively; 3.8 wt % of SWNTsHiPco filling results in 68% and 1800% increases in tensile strength (43.7 MPa) and break strain (19.1%) of poly(bisphenol A carbonate) (average MW approximately 64,000), respectively.
- While various examples above are described for solubilizing carbon nanotubes, and more particularly single-walled carbon nanotubes, embodiments of the present invention are not intended to be limited solely in application to carbon nanotubes. Nanotubes may be formed from various materials such as, for example, carbon, boron nitride, and composites thereof. The nanotubes may be single-walled nanotubes or multi-walled nanotubes. Thus, while examples are described herein above for solubilizing carbon nanotubes, certain embodiments of the present invention may be utilized for solubilizing various other types of nanotubes, including without limitation multi-walled carbon nanotubes (MWNTs), boron nitride nanotubes, and composites thereof. Accordingly, as used herein, the term “nanotubes” is not limited solely to carbon nanotubes. Rather, the term “nanotubes” is used broadly herein and, unless otherwise qualified, is intended to encompass any type of nanotube now known or later developed.
- Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Claims (34)
1. A method of solubilizing a nanotube, said method comprising:
presenting a polymer with said nanotube; and
said polymer noncovalently bonding with said nanotube in a non-wrapping fashion, wherein said polymer comprises at least one functional portion for solubilizing said nanotube.
2. The method of claim 1 wherein said presenting comprises:
mixing said polymer to said nanotube in a solvent.
3. The method of claim 2 wherein said solvent comprises an organic solvent.
4. The method of claim 2 wherein said solvent comprises an aqueous solvent.
5. The method of claim 1 wherein said polymer comprises a backbone portion that noncovalently bonds with said nanotube in a non-wrapping fashion via π-stacking.
6. The method of claim 1 wherein said nanotube is a carbon nanotube.
7. The method of claim 1 wherein said polymer comprises poly(aryleneethynylene).
8. The method of claim 1 wherein said polymer comprises poly(phenyleneethynylene).
9. The method of claim 1 wherein said polymer comprises poly(3-decylthiophene).
10. A product resulting from the process of claim 1 .
11. A composition of matter comprising at least one nanotube solubilized by the process of claim 1 .
12. A polymer for solubilizing nanotubes, said polymer comprising:
a backbone portion for noncovalently bonding with a nanotube in a non-wrapping fashion; and
at least one functional portion for solubilizing said nanotube.
14. The polymer of claim 12 comprising poly(aryleneethynylene).
16. The polymer of claim 12 comprising poly(phenyleneethynylene).
17. The polymer of claim 12 comprising poly(3-decylthiophene).
18. The polymer of claim 12 wherein said nanotube is a carbon nanotube.
19. The polymer of claim 12 wherein said backbone portion is capable of interacting with said nanotube's surface via π-stacking.
21. A process comprising:
mixing at least one polymer with at least one nanotube in a solvent; and
said mixing results in said at least one polymer forming a noncovalent bond with said at least one nanotube in a non-wrapping fashion and said at least one polymer solubilizing said at least one nanotube.
22. A product resulting from the process of claim 21 .
23. A composition of matter comprising at least one nanotube solubilized by the process of claim 21 .
24. The process of claim 21 wherein said at least one nanotube is a carbon nanotube.
25. The process of claim 21 wherein said at least one polymer comprises a backbone portion for forming said noncovalent bond with said at least one nanotube.
26. The process of claim 21 wherein said backbone interacts with said at least one nanotube's surface via π-stacking.
27. The process of claim 21 wherein said solvent comprises one selected from the group consisting of:
CHCl3, chlorobenzene, water, acetic acid, acetone, acetonitrile, aniline, benzene, benzonitrile, benzyl alcohol, bromobenzene, bromoform, 1-butanol, 2-butanol, carbon disulfide, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, cyclohexanol, decalin, dibromethane, diethylene glycol, diethylene glycol ethers, diethyl ether, diglyme, dimethoxymethane, N,N-dimethylformamide, ethanol, ethylamine, ethylbenzene, ethylene glycol ethers, ethylene glycol, ethylene oxide, formaldehyde, formic acid, glycerol, heptane, hexane, iodobenzene, mesitylene, methanol, methoxybenzene, methylamine, methylene bromide, methylene chloride, methylpyridine, morpholine, naphthalene, nitrobenzene, nitromethane, octane, pentane, pentyl alcohol, phenol, 1-propanol, 2-propanol, pyridine, pyrrole, pyrrolidine, quinoline, 1,1,2,2-tetrachloroethane, tetrachloroethylene, tetrahydrofuran, tetrahydropyran, tetralin, tetramethylethylenediamine, thiophene, toluene, 1,2,4-trichlorobenzene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, triethylamine, triethylene glycol dimethyl ether, 1,3,5-trimethylbenzene, m-xylene, o-xylene, p-xylene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene.
28. A method of solubilizing carbon nanotubes, said method comprising:
mixing at least one polymer with at least one carbon nanotube in a solvent;
said at least one polymer interacting with said at least one carbon nanotube's surface via π-stacking; and
said at least one polymer solubilizing said at least one carbon nanotube.
29. The method of claim 28 wherein said at least one polymer noncovalently bonds with said at least one carbon nanotube in a non-wrapping fashion.
30. The method of claim 28 wherein said at least one polymer comprises poly(aryleneethynylene).
31. The method of claim 28 wherein said at least one polymer comprises poly(phenyleneethynylene).
32. The method of claim 28 wherein said at least one polymer comprises poly(3-decylthiophene).
33. A product resulting from the process of claim 28 .
34. A composition of matter comprising at least one carbon nanotube solubilized by the process of claim 28.
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/255,122 US20040034177A1 (en) | 2002-05-02 | 2002-09-24 | Polymer and method for using the polymer for solubilizing nanotubes |
| AT03252761T ATE498582T1 (en) | 2002-05-02 | 2003-05-01 | POLYMER AND METHOD FOR DISSOLVING NANOTUBE USING THIS POLYMER |
| EP03252761A EP1359121B1 (en) | 2002-05-02 | 2003-05-01 | Polymer and method for using the polymer for solubilizing nanotubes |
| DE60336032T DE60336032D1 (en) | 2002-05-02 | 2003-05-01 | Polymer and method for dissolving nanotubes with the aid of this polymer |
| JP2003127132A JP2004002850A (en) | 2002-05-02 | 2003-05-02 | Polymer for solubilizing nanotube and method for solubilizing nanotube using the polymer |
| KR1020030029184A KR100582330B1 (en) | 2002-05-02 | 2003-05-02 | How to use this polymer to dissolve polymers and nanotubes |
| US10/895,161 US7244407B2 (en) | 2002-05-02 | 2004-07-20 | Polymer and method for using the polymer for solubilizing nanotubes |
| US11/775,633 US7544415B2 (en) | 2002-05-02 | 2007-07-10 | Polymer and method for using the polymer for solubilizing nanotubes |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US37785602P | 2002-05-02 | 2002-05-02 | |
| US37792002P | 2002-05-02 | 2002-05-02 | |
| US10/255,122 US20040034177A1 (en) | 2002-05-02 | 2002-09-24 | Polymer and method for using the polymer for solubilizing nanotubes |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/895,161 Continuation US7244407B2 (en) | 2002-05-02 | 2004-07-20 | Polymer and method for using the polymer for solubilizing nanotubes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20040034177A1 true US20040034177A1 (en) | 2004-02-19 |
Family
ID=29219655
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/255,122 Abandoned US20040034177A1 (en) | 2002-05-02 | 2002-09-24 | Polymer and method for using the polymer for solubilizing nanotubes |
| US10/895,161 Expired - Lifetime US7244407B2 (en) | 2002-05-02 | 2004-07-20 | Polymer and method for using the polymer for solubilizing nanotubes |
| US11/775,633 Expired - Lifetime US7544415B2 (en) | 2002-05-02 | 2007-07-10 | Polymer and method for using the polymer for solubilizing nanotubes |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/895,161 Expired - Lifetime US7244407B2 (en) | 2002-05-02 | 2004-07-20 | Polymer and method for using the polymer for solubilizing nanotubes |
| US11/775,633 Expired - Lifetime US7544415B2 (en) | 2002-05-02 | 2007-07-10 | Polymer and method for using the polymer for solubilizing nanotubes |
Country Status (6)
| Country | Link |
|---|---|
| US (3) | US20040034177A1 (en) |
| EP (1) | EP1359121B1 (en) |
| JP (1) | JP2004002850A (en) |
| KR (1) | KR100582330B1 (en) |
| AT (1) | ATE498582T1 (en) |
| DE (1) | DE60336032D1 (en) |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050029126A1 (en) * | 2003-03-31 | 2005-02-10 | Alexander Tregub | Fullerenes to increase radiation resistance in polymer-based pellicles |
| US20050053525A1 (en) * | 2003-05-14 | 2005-03-10 | Nantero, Inc. | Sensor platform using a horizontally oriented nanotube element |
| US20050058590A1 (en) * | 2003-09-08 | 2005-03-17 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US20050232844A1 (en) * | 2004-03-02 | 2005-10-20 | Diner Bruce A | Reversible oxidation of carbon nanotubes |
| US20050269553A1 (en) * | 2003-09-08 | 2005-12-08 | Nantero, Inc. | Spin-coatable liquid for use in electronic fabrication processes |
| US20050269554A1 (en) * | 2004-06-03 | 2005-12-08 | Nantero, Inc. | Applicator liquid containing ethyl lactate for preparation of nanotube films |
| US20060002841A1 (en) * | 2002-05-02 | 2006-01-05 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
| US20060041104A1 (en) * | 2004-08-18 | 2006-02-23 | Zyvex Corporation | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
| US20060054866A1 (en) * | 2004-04-13 | 2006-03-16 | Zyvex Corporation. | Methods for the synthesis of modular poly(phenyleneethynlenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
| US20060260785A1 (en) * | 2005-05-13 | 2006-11-23 | Delta Electronics, Inc. | Heat sink |
| US7244407B2 (en) | 2002-05-02 | 2007-07-17 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
| US20070265379A1 (en) * | 2003-05-22 | 2007-11-15 | Zyvex Corporation | Nanocomposites and methods thereto |
| US7344691B2 (en) | 2001-05-17 | 2008-03-18 | Zyvek Performance Materials, Llc | System and method for manipulating nanotubes |
| US20080237464A1 (en) * | 2007-03-30 | 2008-10-02 | Tsinghua University | Transmission electron microscope micro-grid and method for making the same |
| US20080306202A1 (en) * | 2007-06-08 | 2008-12-11 | Xerox Corporation | Intermediate transfer members comprised of hydrophobic carbon nanotubes |
| US20090099016A1 (en) * | 2005-12-19 | 2009-04-16 | Advanced Technology Materials, Inc. | Production of carbon nanotubes |
| US20090140213A1 (en) * | 2004-06-03 | 2009-06-04 | Nantero, Inc. | Method of making an applicator liquid for electronics fabrication process |
| US20090140167A1 (en) * | 2005-09-06 | 2009-06-04 | Natero, Inc. | Nanotube fabric-based sensor systems and methods of making same |
| US20090154218A1 (en) * | 2005-05-09 | 2009-06-18 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
| US20090162637A1 (en) * | 2007-12-20 | 2009-06-25 | Xerox Corporation | Carbon nanotube filled polycarbonate anti-curl back coating with improved electrical and mechanical properties |
| US20090162777A1 (en) * | 2007-12-20 | 2009-06-25 | Xerox Corporation | Electrically resistive coatings/layers using soluble carbon nanotube complexes in polymers |
| US7666382B2 (en) | 2004-12-16 | 2010-02-23 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
| US20100065786A1 (en) * | 2005-10-26 | 2010-03-18 | Simons Richard S | Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor |
| US20100181482A1 (en) * | 2007-03-30 | 2010-07-22 | Tsinghua University | Transmission electron microscope micro-grid |
| EP2233489A1 (en) | 2009-03-23 | 2010-09-29 | Maverick Corporation | Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor |
| US20100243637A1 (en) * | 2009-03-27 | 2010-09-30 | Tsinghua University | Heater |
| US7858185B2 (en) | 2003-09-08 | 2010-12-28 | Nantero, Inc. | High purity nanotube fabrics and films |
| US20110027497A1 (en) * | 2009-07-31 | 2011-02-03 | Nantero, Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
| US20110036826A1 (en) * | 2009-08-14 | 2011-02-17 | Tsinghua University | Carbon nanotube heater-equipped electric oven |
| US20110036828A1 (en) * | 2009-08-14 | 2011-02-17 | Tsinghua University | Carbon nanotube fabric and heater adopting the same |
| US20110056928A1 (en) * | 2009-09-08 | 2011-03-10 | Tsinghua University | Wall mounted electric heater |
| US20110062350A1 (en) * | 2009-09-11 | 2011-03-17 | Tsinghua University | Infrared physiotherapeutic apparatus |
| US20110108545A1 (en) * | 2009-11-10 | 2011-05-12 | Tsinghua University | Heater and method for making the same |
| US20110180140A1 (en) * | 2010-01-28 | 2011-07-28 | University Of Central Florida Research Foundation, Inc. | Supramolecular structures comprising at least partially conjugated polymers attached to carbon nanotubes or graphenes |
| US8574673B2 (en) | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
| US8790610B2 (en) | 2010-01-28 | 2014-07-29 | University Of Central Florida Research Foundation, Inc. | Method of forming composite materials including conjugated materials attached to carbon nanotubes or graphenes |
| JP2015131734A (en) * | 2014-01-09 | 2015-07-23 | 国立大学法人信州大学 | Single-walled carbon nanotube, electrode sheet including the same, production method thereof, and production method of dispersoid thereof |
| US9617151B2 (en) | 2010-02-12 | 2017-04-11 | Nantero Inc. | Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films |
| US9634251B2 (en) | 2012-02-27 | 2017-04-25 | Nantero Inc. | Nanotube solution treated with molecular additive, nanotube film having enhanced adhesion property, and methods for forming the nanotube solution and the nanotube film |
| US9650732B2 (en) | 2013-05-01 | 2017-05-16 | Nantero Inc. | Low defect nanotube application solutions and fabrics and methods for making same |
| US10069072B2 (en) | 2010-09-20 | 2018-09-04 | Nantero, Inc. | Nanotube solutions with high concentration and low contamination and methods for purifiying nanotube solutions |
| US10654718B2 (en) | 2013-09-20 | 2020-05-19 | Nantero, Inc. | Scalable nanotube fabrics and methods for making same |
| US12227625B2 (en) | 2018-01-11 | 2025-02-18 | Nanocore Aps | Composite materials comprising mechanical ligands |
Families Citing this family (62)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7645400B2 (en) * | 2002-11-01 | 2010-01-12 | Mitsubishi Rayon Co., Ltd. | Composition containing carbon nanotubes having a coating |
| US7641829B2 (en) * | 2004-07-21 | 2010-01-05 | Florida State University Research Foundation | Method for mechanically chopping carbon nanotube and nanoscale fibrous materials |
| US7247670B2 (en) | 2004-08-24 | 2007-07-24 | General Electric Company | Nanotubes and methods of dispersing and separating nanotubes |
| US9169579B2 (en) * | 2005-03-11 | 2015-10-27 | New Jersey Institute Of Technology | Carbon nanotube mediated membrane extraction |
| FR2883879B1 (en) * | 2005-04-04 | 2007-05-25 | Arkema Sa | POLYMER MATERIALS CONTAINING IMPROVED DISPERSION CARBON NANOTUBES AND PROCESS FOR THEIR PREPARATION |
| US20060278866A1 (en) * | 2005-06-08 | 2006-12-14 | Alexander Star | Nanotube optoelectronic memory devices |
| KR100779008B1 (en) * | 2005-11-16 | 2007-11-28 | 광주과학기술원 | pH-sensitive luminescent single-walled carbon nanotube derivatives and preparation method thereof |
| FR2893947A1 (en) * | 2005-11-30 | 2007-06-01 | Arkema Sa | Obtaining pulverulent compositions, useful as polymeric materials, reinforcement and/or modifying agent, comprises contact of carbon nanotubes e.g. with a monomer (mixture), optional heat treatment, purification and/or separation |
| US7915338B2 (en) * | 2005-12-28 | 2011-03-29 | 3M Innovative Properties Company | Adhesive with alkanoate blend |
| US8097229B2 (en) | 2006-01-17 | 2012-01-17 | Headwaters Technology Innovation, Llc | Methods for manufacturing functionalized inorganic oxides and polymers incorporating same |
| KR20070076875A (en) | 2006-01-20 | 2007-07-25 | 삼성전자주식회사 | Dispersant for carbon nanotubes and carbon nanotube composition comprising the same |
| KR101224739B1 (en) | 2006-01-23 | 2013-01-21 | 삼성전자주식회사 | Aromatic imide-based dispersant for carbon nanotube and carbon nanotube composition comprising the same |
| KR101198763B1 (en) * | 2006-03-23 | 2012-11-12 | 엘지이노텍 주식회사 | Post structure and LED using the structure and method of making the same |
| KR100839226B1 (en) * | 2006-04-06 | 2008-06-17 | 주식회사 지오모바일 | Crack measurement method and corrosion measurement method using a sensor containing carbon nanotubes |
| EP1845124A1 (en) * | 2006-04-14 | 2007-10-17 | Arkema France | Conductive carbon nanotube-polymer composite |
| KR100773551B1 (en) | 2006-04-14 | 2007-11-07 | 삼성전자주식회사 | Carbon nanotube dispersion and its manufacturing method |
| JP4725890B2 (en) * | 2006-05-09 | 2011-07-13 | 独立行政法人物質・材料研究機構 | Acylated boron nitride nanotubes, dispersion thereof, and method for producing the boron nitride nanotubes |
| FR2901154B1 (en) * | 2006-05-18 | 2008-07-18 | Arkema France | USE OF COMPOSITE MATERIALS BASED ON CARBON NANOTUBES AS VISCOSIFYING AGENTS OF AQUEOUS SOLUTIONS |
| US20090280324A1 (en) * | 2006-05-22 | 2009-11-12 | Florida State University Research Foundation | Prepreg Nanoscale Fiber Films and Methods |
| US20100137528A1 (en) * | 2006-08-29 | 2010-06-03 | Sample Jennifer L | Method for Functionalizing Nanotubes and Improved Polymer-Nanotube Composites Formed Using Same |
| US8961830B2 (en) | 2006-10-11 | 2015-02-24 | University Of Florida Research Foundation, Inc. | Electroactive polymers containing pendant pi-interacting/binding substituents, their carbon nanotube composites, and processes to form the same |
| DE102006055106C5 (en) | 2006-11-14 | 2018-08-23 | Byk-Chemie Gmbh | dispersing |
| KR100858090B1 (en) * | 2006-11-17 | 2008-09-10 | 삼성전자주식회사 | Carbon nanotube composites and birefringent thin films prepared therefrom |
| US20080287598A1 (en) * | 2006-11-29 | 2008-11-20 | Kiu-Seung Lee | Method of preparing aramid polymers incorporating carbon nanotubes |
| US20080227168A1 (en) * | 2007-02-16 | 2008-09-18 | Board Of Regents, The University Of Texas System | Methods and materials for extra and intracellular delivery of carbon nanotubes |
| FR2916364B1 (en) | 2007-05-22 | 2009-10-23 | Arkema France | PROCESS FOR THE PREPARATION OF PRE-COMPOSITES BASED ON NANOTUBES, IN PARTICULAR CARBON |
| KR100913700B1 (en) * | 2007-06-12 | 2009-08-24 | 삼성전자주식회사 | Carbon nanotube (CNT) thin film containing amine compound and manufacturing method thereof |
| US20100206811A1 (en) * | 2007-09-10 | 2010-08-19 | National University Of Singapore | Polymeric membranes incorporating nanotubes |
| FR2921759B1 (en) * | 2007-09-27 | 2010-01-01 | Commissariat Energie Atomique | HYBRID MATRICES FOR THIN FILM TRANSISTORS |
| US20100196246A1 (en) * | 2007-10-09 | 2010-08-05 | Headwaters Technology Innovation, Llc | Methods for mitigating agglomeration of carbon nanospheres using a crystallizing dispersant |
| US8598511B1 (en) * | 2008-03-05 | 2013-12-03 | University Of South Florida | Carbon nanotube anchor for mass spectrometer |
| US8058364B2 (en) | 2008-04-15 | 2011-11-15 | Florida State University Research Foundation | Method for functionalization of nanoscale fibers and nanoscale fiber films |
| US8784603B2 (en) * | 2008-04-28 | 2014-07-22 | Florida State University Research Foundation, Inc. | Actuator device including nanoscale fiber films |
| US8020456B2 (en) * | 2008-05-30 | 2011-09-20 | Florida State University Research Foundation | Sensor and a method of making a sensor |
| JP2010031168A (en) * | 2008-07-30 | 2010-02-12 | Kinki Univ | Polymer nanotube bonding nanoparticles and method of producing the same |
| US20100084125A1 (en) * | 2008-08-18 | 2010-04-08 | Goldstein Albert M | Microclimate control system |
| JP5674224B2 (en) * | 2008-09-09 | 2015-02-25 | サン・ケミカル・コーポレーション | Carbon nanotube dispersion |
| WO2010083098A2 (en) * | 2009-01-16 | 2010-07-22 | Shell Oil Company | Systems and methods for producing oil and/or gas |
| US20110045274A1 (en) * | 2009-01-28 | 2011-02-24 | Florida State University Research Foundation | Functionalized nanoscale fiber films, composites, and methods for functionalization of nanoscale fiber films |
| EP2398955B8 (en) | 2009-02-17 | 2020-06-03 | Applied NanoStructured Solutions, LLC | Composites comprising carbon nanotubes on fiber |
| US20100240900A1 (en) * | 2009-03-23 | 2010-09-23 | Headwaters Technology Innovation, Llc | Dispersible carbon nanospheres and methods for making same |
| JP5696269B2 (en) | 2009-11-18 | 2015-04-08 | コペリオン ゲーエムベーハー | Method for producing composite material based on polymer and carbon nanotube, composite material produced by this method and use thereof |
| KR20120117978A (en) | 2009-11-23 | 2012-10-25 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
| US8601965B2 (en) | 2009-11-23 | 2013-12-10 | Applied Nanostructured Solutions, Llc | CNT-tailored composite sea-based structures |
| CA2780354A1 (en) | 2009-12-14 | 2011-11-17 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
| US8999453B2 (en) | 2010-02-02 | 2015-04-07 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
| DE102010002447A1 (en) * | 2010-02-26 | 2011-09-01 | Tutech Innovation Gmbh | Adhesive with anisotropic electrical conductivity and process for its preparation and use |
| US8916651B2 (en) | 2010-04-20 | 2014-12-23 | Florida State University Research Foundation, Inc. | Composite materials and method for making high-performance carbon nanotube reinforced polymer composites |
| US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
| KR101218062B1 (en) | 2011-04-28 | 2013-01-03 | 씨큐브 주식회사 | Silver coated glaze pigment and method for fabrication the same |
| CN103930951B (en) * | 2011-06-24 | 2017-04-19 | 布鲁尔科技公司 | Highly soluble carbon nanotubes with enhanced conductivity |
| GB201122296D0 (en) | 2011-12-23 | 2012-02-01 | Cytec Tech Corp | Composite materials |
| WO2014032172A1 (en) | 2012-08-31 | 2014-03-06 | Soucy Techno Inc. | Rubber compositions and uses thereof |
| US9162530B2 (en) | 2013-02-14 | 2015-10-20 | The Goodyear Tire & Rubber Company | Tire with rubber tread containing precipitated silica and functionalized carbon nanotubes |
| TWI567101B (en) * | 2013-09-23 | 2017-01-21 | 崑山科技大學 | Polythiophene nanocrystalline pillars for organic solar panels and methods for their preparation |
| US9840611B2 (en) | 2013-10-18 | 2017-12-12 | Soucy Techno Inc. | Rubber compositions and uses thereof |
| US9663640B2 (en) | 2013-12-19 | 2017-05-30 | Soucy Techno Inc. | Rubber compositions and uses thereof |
| WO2017136806A1 (en) | 2016-02-04 | 2017-08-10 | General Nano Llc | Carbon nanotube sheet structure and method for its making |
| WO2016019143A1 (en) | 2014-07-30 | 2016-02-04 | General Nano Llc | Carbon nanotube sheet structure and method for its making |
| FR3024982B1 (en) * | 2014-08-21 | 2018-03-09 | Universite Grenoble Alpes | METHOD FOR MANUFACTURING A CONDUCTIVE FILM OF AN ELECTROCHEMICAL BIOREACTOR |
| US10758936B2 (en) | 2015-12-08 | 2020-09-01 | The Boeing Company | Carbon nanomaterial composite sheet and method for making the same |
| CN108473317A (en) | 2015-12-29 | 2018-08-31 | 沙特基础工业全球技术有限公司 | The multi-walled carbon nanotube of polymer-coated |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030083421A1 (en) * | 2001-08-29 | 2003-05-01 | Satish Kumar | Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same |
| US6576341B1 (en) * | 1998-04-09 | 2003-06-10 | Horcom Limited | Composition |
| US20030168756A1 (en) * | 2002-03-08 | 2003-09-11 | Balkus Kenneth J. | Electrospinning of polymer and mesoporous composite fibers |
Family Cites Families (552)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3118503C2 (en) | 1981-05-09 | 1985-12-12 | Fa. J.S. Staedtler, 8500 Nürnberg | Process for the production of writing or drawing leads |
| US5707916A (en) | 1984-12-06 | 1998-01-13 | Hyperion Catalysis International, Inc. | Carbon fibrils |
| US4663230A (en) | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
| US5611964A (en) | 1984-12-06 | 1997-03-18 | Hyperion Catalysis International | Fibril filled molding compositions |
| US5165909A (en) | 1984-12-06 | 1992-11-24 | Hyperion Catalysis Int'l., Inc. | Carbon fibrils and method for producing same |
| US6464908B1 (en) | 1988-01-28 | 2002-10-15 | Hyperion Catalysis International, Inc. | Method of molding composites containing carbon fibrils |
| WO1990014221A1 (en) | 1989-05-15 | 1990-11-29 | Hyperion Catalysis International | Surface treatment of carbon microfibers |
| US5098771A (en) | 1989-07-27 | 1992-03-24 | Hyperion Catalysis International | Conductive coatings and inks |
| US5204038A (en) | 1990-12-27 | 1993-04-20 | The Regents Of The University Of California | Process for forming polymers |
| US5281406A (en) * | 1992-04-22 | 1994-01-25 | Analytical Bio-Chemistry Laboratories, Inc. | Recovery of C60 and C70 buckminsterfullerenes from carbon soot by supercritical fluid extraction and their separation by adsorption chromatography |
| JPH0822733B2 (en) | 1993-08-04 | 1996-03-06 | 工業技術院長 | Separation and purification method of carbon nanotube |
| JP2526408B2 (en) * | 1994-01-28 | 1996-08-21 | 工業技術院長 | Carbon nano tube continuous manufacturing method and apparatus |
| US20040202603A1 (en) | 1994-12-08 | 2004-10-14 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
| US6203814B1 (en) | 1994-12-08 | 2001-03-20 | Hyperion Catalysis International, Inc. | Method of making functionalized nanotubes |
| US5866434A (en) | 1994-12-08 | 1999-02-02 | Meso Scale Technology | Graphitic nanotubes in luminescence assays |
| US6140045A (en) | 1995-03-10 | 2000-10-31 | Meso Scale Technologies | Multi-array, multi-specific electrochemiluminescence testing |
| CN1192097C (en) | 1995-03-10 | 2005-03-09 | 梅索磅秤技术有限公司 | Multi-array, multi-specific electrochemiluminescent assays |
| US5627140A (en) | 1995-05-19 | 1997-05-06 | Nec Research Institute, Inc. | Enhanced flux pinning in superconductors by embedding carbon nanotubes with BSCCO materials |
| US5824470A (en) | 1995-05-30 | 1998-10-20 | California Institute Of Technology | Method of preparing probes for sensing and manipulating microscopic environments and structures |
| US6017390A (en) | 1996-07-24 | 2000-01-25 | The Regents Of The University Of California | Growth of oriented crystals at polymerized membranes |
| AU4055297A (en) | 1996-08-08 | 1998-02-25 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
| US7080260B2 (en) * | 1996-11-19 | 2006-07-18 | Johnson R Brent | System and computer based method to automatically archive and retrieve encrypted remote client data files |
| US6180114B1 (en) * | 1996-11-21 | 2001-01-30 | University Of Washington | Therapeutic delivery using compounds self-assembled into high axial ratio microstructures |
| US5753088A (en) * | 1997-02-18 | 1998-05-19 | General Motors Corporation | Method for making carbon nanotubes |
| US6683783B1 (en) | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
| US6770583B2 (en) | 1997-03-14 | 2004-08-03 | The United States Of America As Represented By The Secretary Of The Navy | Transistion metal containing ceramic with metal nanoparticles |
| US6205016B1 (en) | 1997-06-04 | 2001-03-20 | Hyperion Catalysis International, Inc. | Fibril composite electrode for electrochemical capacitors |
| US5968650A (en) | 1997-11-03 | 1999-10-19 | Hyperion Catalysis International, Inc. | Three dimensional interpenetrating networks of macroscopic assemblages of randomly oriented carbon fibrils and organic polymers |
| US6113819A (en) | 1997-11-03 | 2000-09-05 | Hyperion Catalysis International, Inc. | Three dimensional interpenetrating networks of macroscopic assemblages of oriented carbon fibrils and organic polymers |
| US6276214B1 (en) | 1997-12-26 | 2001-08-21 | Toyoaki Kimura | Strain sensor functioned with conductive particle-polymer composites |
| ATE409215T1 (en) | 1998-05-05 | 2008-10-15 | Massachusetts Inst Technology | EMITTING POLYMERS AND DEVICES CONTAINING THESE POLYMERS |
| DE69921472T2 (en) | 1998-05-07 | 2006-02-02 | Commissariat à l'Energie Atomique | PROCESS FOR FIXING AND SELF-ORGANIZATION OF BIOLOGICAL MACROMOLECULES ON CARBON NANOTUBES AND THEIR USE |
| US6287765B1 (en) | 1998-05-20 | 2001-09-11 | Molecular Machines, Inc. | Methods for detecting and identifying single molecules |
| JP2002518280A (en) | 1998-06-19 | 2002-06-25 | ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク | Aligned free-standing carbon nanotubes and their synthesis |
| US6426134B1 (en) | 1998-06-30 | 2002-07-30 | E. I. Du Pont De Nemours And Company | Single-wall carbon nanotube-polymer composites |
| US7282260B2 (en) | 1998-09-11 | 2007-10-16 | Unitech, Llc | Electrically conductive and electromagnetic radiation absorptive coating compositions and the like |
| US7252812B2 (en) | 1998-09-18 | 2007-08-07 | Mary Lou Margrave, legal representative | High-yield method of endohedrally encapsulating species inside fluorinated fullerene nanocages |
| WO2000017101A1 (en) | 1998-09-18 | 2000-03-30 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes |
| US6835366B1 (en) | 1998-09-18 | 2004-12-28 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes |
| US6630772B1 (en) | 1998-09-21 | 2003-10-07 | Agere Systems Inc. | Device comprising carbon nanotube field emitter structure and process for forming device |
| US6146230A (en) | 1998-09-24 | 2000-11-14 | Samsung Display Devices Co., Ltd. | Composition for electron emitter of field emission display and method for producing electron emitter using the same |
| US6597090B1 (en) | 1998-09-28 | 2003-07-22 | Xidex Corporation | Method for manufacturing carbon nanotubes as functional elements of MEMS devices |
| US6146227A (en) | 1998-09-28 | 2000-11-14 | Xidex Corporation | Method for manufacturing carbon nanotubes as functional elements of MEMS devices |
| US6368569B1 (en) | 1998-10-02 | 2002-04-09 | University Of Kentucky Research Foundation | Method of solubilizing unshortened carbon nanotubes in organic solutions |
| US6187823B1 (en) * | 1998-10-02 | 2001-02-13 | University Of Kentucky Research Foundation | Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines |
| US6531513B2 (en) * | 1998-10-02 | 2003-03-11 | University Of Kentucky Research Foundation | Method of solubilizing carbon nanotubes in organic solutions |
| US6331262B1 (en) * | 1998-10-02 | 2001-12-18 | University Of Kentucky Research Foundation | Method of solubilizing shortened single-walled carbon nanotubes in organic solutions |
| US6641793B2 (en) * | 1998-10-02 | 2003-11-04 | University Of Kentucky Research Foundation | Method of solubilizing single-walled carbon nanotubes in organic solutions |
| US6284832B1 (en) | 1998-10-23 | 2001-09-04 | Pirelli Cables And Systems, Llc | Crosslinked conducting polymer composite materials and method of making same |
| US6432320B1 (en) | 1998-11-02 | 2002-08-13 | Patrick Bonsignore | Refrigerant and heat transfer fluid additive |
| US20040069454A1 (en) | 1998-11-02 | 2004-04-15 | Bonsignore Patrick V. | Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof |
| JP2003530610A (en) * | 1999-01-21 | 2003-10-14 | サウス カロライナ大学 | Molecular computer |
| WO2000044822A2 (en) | 1999-01-27 | 2000-08-03 | The United States Of America, As Represented By The Secretary Of The Navy | Fabrication of conductive/non-conductive nanocomposites by laser evaporation |
| JP2002536778A (en) | 1999-02-12 | 2002-10-29 | ゼネラル・エレクトリック・カンパニイ | Data storage medium |
| US6555945B1 (en) | 1999-02-25 | 2003-04-29 | Alliedsignal Inc. | Actuators using double-layer charging of high surface area materials |
| US6280697B1 (en) | 1999-03-01 | 2001-08-28 | The University Of North Carolina-Chapel Hill | Nanotube-based high energy material and method |
| US6315956B1 (en) | 1999-03-16 | 2001-11-13 | Pirelli Cables And Systems Llc | Electrochemical sensors made from conductive polymer composite materials and methods of making same |
| AU3919500A (en) | 1999-03-23 | 2000-10-09 | Carnegie Wave Energy Limited | Catalytic processes for the controlled polymerization of free radically (co)polymerizable monomers and functional polymeric systems prepared thereby |
| GB9915633D0 (en) | 1999-07-05 | 1999-09-01 | Printable Field Emitters Limit | Field electron emission materials and devices |
| US6299812B1 (en) | 1999-08-16 | 2001-10-09 | The Board Of Regents Of The University Of Oklahoma | Method for forming a fibers/composite material having an anisotropic structure |
| US20050181209A1 (en) | 1999-08-20 | 2005-08-18 | Karandikar Prashant G. | Nanotube-containing composite bodies, and methods for making same |
| US20010016283A1 (en) * | 1999-09-09 | 2001-08-23 | Masashi Shiraishi | Carbonaceous material for hydrogen storage, production method thereof, and electrochemical device and fuel cell using the same |
| US20020054995A1 (en) | 1999-10-06 | 2002-05-09 | Marian Mazurkiewicz | Graphite platelet nanostructures |
| CN1287404C (en) | 1999-10-12 | 2006-11-29 | 松下电器产业株式会社 | Electron-emitting device and electron source comprising the same, field-emission image display, fluorescent lamp, and methods for producing them |
| US6741019B1 (en) | 1999-10-18 | 2004-05-25 | Agere Systems, Inc. | Article comprising aligned nanowires |
| US6790425B1 (en) | 1999-10-27 | 2004-09-14 | Wiliam Marsh Rice University | Macroscopic ordered assembly of carbon nanotubes |
| US7195780B2 (en) | 2002-10-21 | 2007-03-27 | University Of Florida | Nanoparticle delivery system |
| US6897009B2 (en) | 1999-11-29 | 2005-05-24 | Trustees Of The University Of Pennsylvania | Fabrication of nanometer size gaps on an electrode |
| US6352782B2 (en) | 1999-12-01 | 2002-03-05 | General Electric Company | Poly(phenylene ether)-polyvinyl thermosetting resin |
| WO2001092381A1 (en) | 1999-12-07 | 2001-12-06 | William Marsh Rice University | Oriented nanofibers embedded in polymer matrix |
| JP3353768B2 (en) | 1999-12-17 | 2002-12-03 | 日本電気株式会社 | How to process nanotubes |
| JP2004510953A (en) | 1999-12-30 | 2004-04-08 | キャボット コーポレイション | Sensors with improved properties |
| US6599961B1 (en) | 2000-02-01 | 2003-07-29 | University Of Kentucky Research Foundation | Polymethylmethacrylate augmented with carbon nanotubes |
| AU2001236763A1 (en) | 2000-02-07 | 2001-08-14 | Xidex Corporation | System and method for fabricating logic devices comprising carbon nanotube transistors |
| AU2001241466A1 (en) | 2000-02-10 | 2001-08-20 | The Government of the United States of America as represented by the Administrator of the National Aeronautics Space Administration (NASA) | Phenylethynyl-containing imide silanes |
| US7066800B2 (en) | 2000-02-17 | 2006-06-27 | Applied Materials Inc. | Conductive polishing article for electrochemical mechanical polishing |
| US6991528B2 (en) | 2000-02-17 | 2006-01-31 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
| US6979248B2 (en) | 2002-05-07 | 2005-12-27 | Applied Materials, Inc. | Conductive polishing article for electrochemical mechanical polishing |
| WO2001063273A2 (en) | 2000-02-22 | 2001-08-30 | California Institute Of Technology | Development of a gel-free molecular sieve based on self-assembled nano-arrays |
| FR2805179B1 (en) | 2000-02-23 | 2002-09-27 | Centre Nat Rech Scient | PROCESS FOR OBTAINING MACROSCOPIC FIBERS AND TAPES FROM COLLOIDAL PARTICLES, IN PARTICULAR CARBON NANOTUBES |
| US20030118815A1 (en) | 2000-03-03 | 2003-06-26 | Rodriguez Nelly M. | Carbon nanostructures on nanostructures |
| KR100860860B1 (en) | 2000-03-15 | 2008-09-29 | 오르버스네이치 메디칼 인코포레이티드 | Coatings That Promote Endothelial Cell Attachment |
| JP2003528755A (en) | 2000-03-28 | 2003-09-30 | ザ・ボード・オブ・リージェンツ・フォー・オクラホマ・ステート・ユニバーシティ | Assembling a free-standing film using a layer-by-layer process |
| US6610351B2 (en) * | 2000-04-12 | 2003-08-26 | Quantag Systems, Inc. | Raman-active taggants and their recognition |
| JP3844436B2 (en) | 2000-04-26 | 2006-11-15 | 旭化成ケミカルズ株式会社 | Conductive resin composition and process for producing the same |
| US6913713B2 (en) | 2002-01-25 | 2005-07-05 | Konarka Technologies, Inc. | Photovoltaic fibers |
| AU2001261689A1 (en) | 2000-05-16 | 2001-11-26 | Rensselaer Polytechnic Institute | Electrically conducting nanocomposite materials for biomedical applications |
| US6524466B1 (en) | 2000-07-18 | 2003-02-25 | Applied Semiconductor, Inc. | Method and system of preventing fouling and corrosion of biomedical devices and structures |
| US6709566B2 (en) | 2000-07-25 | 2004-03-23 | The Regents Of The University Of California | Method for shaping a nanotube and a nanotube shaped thereby |
| US20020102617A1 (en) | 2000-08-03 | 2002-08-01 | Macbeath Gavin | Protein microarrays |
| AU8543901A (en) | 2000-08-15 | 2002-02-25 | Univ Pennsylvania | Directed assembly of nanometer-scale molecular devices |
| WO2002039051A2 (en) | 2000-08-23 | 2002-05-16 | Cynthia A Kuper | METHOD FOR UTILIZING SOL-GEL PROCESSING IN THE PRODUCTION OF A MACROSCOPIC TWO OR THREE DIMENSIONALLY ORDERED ARRAY OF SINGLE WALL NANOTUBES (SWNTs) |
| EP1313900A4 (en) | 2000-08-24 | 2011-12-07 | Univ Rice William M | SINGLE WALL CARBON NANOTUBES, POLYMER COATED |
| EP1186572A1 (en) | 2000-09-06 | 2002-03-13 | Facultés Universitaires Notre-Dame de la Paix | Short carbon nanotubes and method for the production thereof |
| US20050001100A1 (en) | 2000-09-19 | 2005-01-06 | Kuang Hsi-Wu | Reinforced foam covering for cryogenic fuel tanks |
| US20040018139A1 (en) | 2000-09-25 | 2004-01-29 | Xidex Corporation | Nanotube apparatus |
| US6861481B2 (en) | 2000-09-29 | 2005-03-01 | Solvay Engineered Polymers, Inc. | Ionomeric nanocomposites and articles therefrom |
| KR100395902B1 (en) | 2000-11-01 | 2003-08-25 | 학교법인 서강대학교 | Preparation of a patterned mono- or multi-layered composite of zeolite or zeotype molecular sieve on a substrate and composite prepared by the same |
| US6949216B2 (en) | 2000-11-03 | 2005-09-27 | Lockheed Martin Corporation | Rapid manufacturing of carbon nanotube composite structures |
| US6682677B2 (en) | 2000-11-03 | 2004-01-27 | Honeywell International Inc. | Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns |
| US20040206941A1 (en) | 2000-11-22 | 2004-10-21 | Gurin Michael H. | Composition for enhancing conductivity of a carrier medium and method of use thereof |
| US20030151030A1 (en) | 2000-11-22 | 2003-08-14 | Gurin Michael H. | Enhanced conductivity nanocomposites and method of use thereof |
| US20060135030A1 (en) | 2004-12-22 | 2006-06-22 | Si Diamond Technology,Inc. | Metallization of carbon nanotubes for field emission applications |
| US20040018371A1 (en) | 2002-04-12 | 2004-01-29 | Si Diamond Technology, Inc. | Metallization of carbon nanotubes for field emission applications |
| EP1342075B1 (en) | 2000-12-11 | 2008-09-10 | President And Fellows Of Harvard College | Device contaning nanosensors for detecting an analyte and its method of manufacture |
| US6783746B1 (en) | 2000-12-12 | 2004-08-31 | Ashland, Inc. | Preparation of stable nanotube dispersions in liquids |
| US6634321B2 (en) | 2000-12-14 | 2003-10-21 | Quantum Fuel Systems Technologies Worldwide, Inc. | Systems and method for storing hydrogen |
| US20030119714A1 (en) | 2000-12-15 | 2003-06-26 | Naylor Alasdair Mark | Treatment of male sexual dysfunction |
| WO2002079514A1 (en) | 2001-01-10 | 2002-10-10 | The Trustees Of Boston College | Dna-bridged carbon nanotube arrays |
| US6756795B2 (en) | 2001-01-19 | 2004-06-29 | California Institute Of Technology | Carbon nanobimorph actuator and sensor |
| US7250147B2 (en) | 2001-01-29 | 2007-07-31 | Tour James M | Process for derivatizing carbon nanotubes with diazonium species |
| JP4308527B2 (en) | 2001-01-29 | 2009-08-05 | ウィリアム・マーシュ・ライス・ユニバーシティ | Method for derivatizing carbon nanotubes using diazonium species and composition thereof |
| WO2003004944A2 (en) | 2001-01-30 | 2003-01-16 | Materials And Electrochemical Research (Mer) Corporation | Nano carbon materials for enhancing thermal transfer in fluids |
| US7052668B2 (en) | 2001-01-31 | 2006-05-30 | William Marsh Rice University | Process utilizing seeds for making single-wall carbon nanotubes |
| US6782154B2 (en) | 2001-02-12 | 2004-08-24 | Rensselaer Polytechnic Institute | Ultrafast all-optical switch using carbon nanotube polymer composites |
| US6692663B2 (en) | 2001-02-16 | 2004-02-17 | Elecon, Inc. | Compositions produced by solvent exchange methods and uses thereof |
| JP3991602B2 (en) | 2001-03-02 | 2007-10-17 | 富士ゼロックス株式会社 | Carbon nanotube structure manufacturing method, wiring member manufacturing method, and wiring member |
| EP1244168A1 (en) | 2001-03-20 | 2002-09-25 | Francois Sugnaux | Mesoporous network electrode for electrochemical cell |
| IL142254A0 (en) | 2001-03-26 | 2002-03-10 | Univ Ben Gurion | Method for the preparation of stable suspensions of single carbon nanotubes |
| CA2442310A1 (en) | 2001-03-26 | 2002-10-03 | Eikos, Inc. | Coatings containing carbon nanotubes |
| US6986853B2 (en) | 2001-03-26 | 2006-01-17 | Eikos, Inc. | Carbon nanotube fiber-reinforced composite structures for EM and lightning strike protection |
| WO2002095099A1 (en) | 2001-03-29 | 2002-11-28 | Stanford University | Noncovalent sidewall functionalization of carbon nanotubes |
| US20020193514A1 (en) | 2001-03-30 | 2002-12-19 | Eastman Kodak Company | Composite colorant particles |
| US6737939B2 (en) | 2001-03-30 | 2004-05-18 | California Institute Of Technology | Carbon nanotube array RF filter |
| US6803840B2 (en) | 2001-03-30 | 2004-10-12 | California Institute Of Technology | Pattern-aligned carbon nanotube growth and tunable resonator apparatus |
| US6740403B2 (en) | 2001-04-02 | 2004-05-25 | Toyo Tanso Co., Ltd. | Graphitic polyhederal crystals in the form of nanotubes, whiskers and nanorods, methods for their production and uses thereof |
| US20030077515A1 (en) | 2001-04-02 | 2003-04-24 | Chen George Zheng | Conducting polymer-carbon nanotube composite materials and their uses |
| DE60236642D1 (en) | 2001-04-06 | 2010-07-22 | Univ Carnegie Mellon | METHOD FOR PRODUCING NANOSTRUCTURED MATERIALS |
| US7842882B2 (en) | 2004-03-01 | 2010-11-30 | Basol Bulent M | Low cost and high throughput deposition methods and apparatus for high density semiconductor film growth |
| CH695222A5 (en) | 2001-04-25 | 2006-01-31 | Eva Maria Moser | Gas-tight container. |
| US7250569B2 (en) | 2001-04-26 | 2007-07-31 | New York University School Of Medicine | Method for dissolving nanostructural materials |
| US7160531B1 (en) | 2001-05-08 | 2007-01-09 | University Of Kentucky Research Foundation | Process for the continuous production of aligned carbon nanotubes |
| US6902720B2 (en) | 2001-05-10 | 2005-06-07 | Worcester Polytechnic Institute | Cyclic peptide structures for molecular scale electronic and photonic devices |
| US6723299B1 (en) | 2001-05-17 | 2004-04-20 | Zyvex Corporation | System and method for manipulating nanotubes |
| US6872681B2 (en) | 2001-05-18 | 2005-03-29 | Hyperion Catalysis International, Inc. | Modification of nanotubes oxidation with peroxygen compounds |
| JP4207398B2 (en) | 2001-05-21 | 2009-01-14 | 富士ゼロックス株式会社 | Method for manufacturing wiring of carbon nanotube structure, wiring of carbon nanotube structure, and carbon nanotube device using the same |
| US20040184982A1 (en) | 2001-06-12 | 2004-09-23 | Burrington James D. | Substrates with modified carbon surfaces |
| US20030113714A1 (en) | 2001-09-28 | 2003-06-19 | Belcher Angela M. | Biological control of nanoparticles |
| US20020197474A1 (en) | 2001-06-06 | 2002-12-26 | Reynolds Thomas A. | Functionalized fullerenes, their method of manufacture and uses thereof |
| US6762237B2 (en) | 2001-06-08 | 2004-07-13 | Eikos, Inc. | Nanocomposite dielectrics |
| US20040048241A1 (en) | 2001-06-11 | 2004-03-11 | Freeman Beverly Annette | Methods for attaching molecules |
| WO2003042396A2 (en) | 2001-06-11 | 2003-05-22 | Genorx, Inc. | Electronic detection of biological molecules using thin layers |
| US6824974B2 (en) | 2001-06-11 | 2004-11-30 | Genorx, Inc. | Electronic detection of biological molecules using thin layers |
| WO2002103825A1 (en) | 2001-06-14 | 2002-12-27 | Showa Denko K.K. | Method for producing composite material for electrode comprising quinoxaline based polymer, such material, electrode and battery using the same |
| US20050100499A1 (en) | 2001-06-25 | 2005-05-12 | Asao Oya | Carbon nanotube and process for producing the same |
| JP2003086022A (en) | 2001-06-29 | 2003-03-20 | Sony Corp | Proton conductor and electrochemical device using the same |
| DK1412725T3 (en) | 2001-06-29 | 2019-03-25 | Meso Scale Technologies Llc | Multi-well plates for LUMINESCENSE TEST MEASUREMENTS |
| GB0116074D0 (en) | 2001-06-29 | 2001-08-22 | Univ Strathclyde | Nanoparticle structures |
| WO2003004410A1 (en) | 2001-07-03 | 2003-01-16 | Facultes Universitaires Notre-Dame De La Paix | Catalyst supports and carbon nanotubes produced thereon |
| US7288238B2 (en) | 2001-07-06 | 2007-10-30 | William Marsh Rice University | Single-wall carbon nanotube alewives, process for making, and compositions thereof |
| US7125502B2 (en) | 2001-07-06 | 2006-10-24 | William Marsh Rice University | Fibers of aligned single-wall carbon nanotubes and process for making the same |
| US6896864B2 (en) | 2001-07-10 | 2005-05-24 | Battelle Memorial Institute | Spatial localization of dispersed single walled carbon nanotubes into useful structures |
| US7166266B2 (en) | 2001-07-10 | 2007-01-23 | Gb Tech, Inc. | Isolation and purification of single walled carbon nanotube structures |
| US6878361B2 (en) | 2001-07-10 | 2005-04-12 | Battelle Memorial Institute | Production of stable aqueous dispersions of carbon nanotubes |
| US6783702B2 (en) | 2001-07-11 | 2004-08-31 | Hyperion Catalysis International, Inc. | Polyvinylidene fluoride composites and methods for preparing same |
| JP3632682B2 (en) | 2001-07-18 | 2005-03-23 | ソニー株式会社 | Method for manufacturing electron emitter, method for manufacturing cold cathode field emission device, and method for manufacturing cold cathode field emission display |
| WO2003032330A2 (en) | 2001-07-27 | 2003-04-17 | Tour James M | Molecular electronic interconnects |
| EP1444701A4 (en) | 2001-07-27 | 2005-01-12 | Eikos Inc | Conformal coatings comprising carbon nanotubes |
| US6670179B1 (en) | 2001-08-01 | 2003-12-30 | University Of Kentucky Research Foundation | Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth |
| US6669918B2 (en) | 2001-08-07 | 2003-12-30 | The Mitre Corporation | Method for bulk separation of single-walled tubular fullerenes based on chirality |
| FR2828500B1 (en) | 2001-08-08 | 2004-08-27 | Centre Nat Rech Scient | PROCESS FOR REFORMING COMPOSITE FIBERS AND APPLICATIONS |
| KR100438408B1 (en) | 2001-08-16 | 2004-07-02 | 한국과학기술원 | Method for Synthesis of Core-Shell type and Solid Solution type Metallic Alloy Nanoparticles via Transmetalation Reactions and Their Applications |
| US6680016B2 (en) | 2001-08-17 | 2004-01-20 | University Of Dayton | Method of forming conductive polymeric nanocomposite materials |
| US7179506B2 (en) | 2001-08-24 | 2007-02-20 | Mount Holyoke College | Surface modification of solid phase objects by poly(vinyl alcohol) |
| CA2457916A1 (en) | 2001-08-31 | 2003-03-06 | Arryx, Inc. | Optical tools manipulated by optical traps |
| JP2003073591A (en) | 2001-09-03 | 2003-03-12 | Fuji Photo Film Co Ltd | Ink composition and ink jet recording |
| JP3823784B2 (en) | 2001-09-06 | 2006-09-20 | 富士ゼロックス株式会社 | Nanowire and manufacturing method thereof, and nanonetwork using the same, manufacturing method of nanonetwork, carbon structure, and electronic device |
| AU2002324947B2 (en) | 2001-09-10 | 2007-11-15 | Meso Scale Technologies, Llc. | Assay buffer, compositions containing the same, and methods of using the same |
| JP5061414B2 (en) | 2001-09-27 | 2012-10-31 | 東レ株式会社 | Thin film transistor element |
| EP2319453B1 (en) | 2001-09-28 | 2016-07-20 | Boston Scientific Limited | A cardiovascular balloon catheter comprising nanocomposites |
| US7671230B2 (en) | 2001-10-01 | 2010-03-02 | Tda Research, Inc. | Derivatization and solubilization of insoluble classes of fullerenes |
| US7812190B2 (en) | 2001-10-01 | 2010-10-12 | Tda Research, Inc. | Derivatization and solubilization of fullerenes for use in therapeutic and diagnostic applications |
| US6758891B2 (en) | 2001-10-09 | 2004-07-06 | Degussa Ag | Carbon-containing material |
| JP4306990B2 (en) | 2001-10-18 | 2009-08-05 | 独立行政法人産業技術総合研究所 | Nonlinear optical element |
| US7462498B2 (en) | 2001-10-19 | 2008-12-09 | Applied Nanotech Holdings, Inc. | Activation of carbon nanotubes for field emission applications |
| WO2003038398A2 (en) | 2001-10-29 | 2003-05-08 | Unitech, Llc. | Pulsed electric field method and apparatus for preventing biofouling on aquatic surfaces |
| AU2002336675C1 (en) | 2001-10-29 | 2008-10-16 | Hyperion Catalysis International, Inc. | Polymer containing functionalized carbon nanotubes |
| JP2003138040A (en) | 2001-11-07 | 2003-05-14 | Toray Ind Inc | Aromatic polyamide film and magnetic recording medium |
| JP3654236B2 (en) | 2001-11-07 | 2005-06-02 | 株式会社日立製作所 | Electrode device manufacturing method |
| DE60233176D1 (en) | 2001-11-08 | 2009-09-10 | Seti Inst | ORGANIC ORGANIC NANOSTRUCTURES MADE FROM CHAPERONIN POLYPEPTIDES |
| JP3579689B2 (en) | 2001-11-12 | 2004-10-20 | 独立行政法人 科学技術振興機構 | Manufacturing method of functional nanomaterial using endothermic reaction |
| JP2005509533A (en) | 2001-11-19 | 2005-04-14 | ユニヴェルシテ ラヴァル | Electrode for electric discharge machining and electric discharge machining method |
| AU2002352814A1 (en) | 2001-11-20 | 2003-06-10 | Andrew R. Barron | Coated fullerenes, composites and dielectrics made therefrom |
| US20060054488A1 (en) | 2001-11-29 | 2006-03-16 | Harmon Julie P | Carbon nanotube/polymer composites resistant to ionizing radiation |
| US7252749B2 (en) | 2001-11-30 | 2007-08-07 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
| JP2003168355A (en) | 2001-11-30 | 2003-06-13 | Sony Corp | Method of manufacturing electron emitter, method of manufacturing cold cathode field emission device, and method of manufacturing cold cathode field emission display |
| US20030108477A1 (en) | 2001-12-10 | 2003-06-12 | Keller Teddy M. | Bulk synthesis of carbon nanotubes from metallic and ethynyl compounds |
| US6921462B2 (en) | 2001-12-17 | 2005-07-26 | Intel Corporation | Method and apparatus for producing aligned carbon nanotube thermal interface structure |
| US6902658B2 (en) | 2001-12-18 | 2005-06-07 | Motorola, Inc. | FED cathode structure using electrophoretic deposition and method of fabrication |
| WO2003052182A1 (en) | 2001-12-18 | 2003-06-26 | Yale University | Controlled growth of single-wall carbon nanotubes |
| EP1324411A3 (en) | 2001-12-26 | 2004-12-22 | Mitsubishi Chemical Corporation | Composite material for fuel cell separator molding and production method thereof, and fuel cell separator which uses the composite material and production method thereof |
| US7314896B2 (en) | 2002-01-04 | 2008-01-01 | Acushnet Company | Nano-particulate blends with fully-neutralized ionomeric polymers for golf ball layers |
| US20050215718A1 (en) | 2002-01-04 | 2005-09-29 | Murali Rajagopalan | Nanocomposite ethylene copolymer compositions for golf balls |
| JP3453377B2 (en) | 2002-01-08 | 2003-10-06 | 科学技術振興事業団 | Carbon nanotube / carbon nanohorn composite and method for producing the same |
| US6894359B2 (en) | 2002-09-04 | 2005-05-17 | Nanomix, Inc. | Sensitivity control for nanotube sensors |
| WO2003062135A1 (en) | 2002-01-24 | 2003-07-31 | Cantion A/S | A sensor |
| US6950296B2 (en) | 2002-01-25 | 2005-09-27 | Nanolab, Inc. | Nanoscale grasping device, method for fabricating the same, and method for operating the same |
| US7115305B2 (en) | 2002-02-01 | 2006-10-03 | California Institute Of Technology | Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials |
| JP2003292801A (en) | 2002-02-04 | 2003-10-15 | Toray Ind Inc | Polymer composite |
| US20040029706A1 (en) | 2002-02-14 | 2004-02-12 | Barrera Enrique V. | Fabrication of reinforced composite material comprising carbon nanotubes, fullerenes, and vapor-grown carbon fibers for thermal barrier materials, structural ceramics, and multifunctional nanocomposite ceramics |
| TW200307563A (en) | 2002-02-14 | 2003-12-16 | Sixty Inc C | Use of BUCKYSOME or carbon nanotube for drug delivery |
| US20040166152A1 (en) | 2002-02-14 | 2004-08-26 | Andreas Hirsch | Use of buckysome or carbon nanotube for drug delivery |
| JP3922039B2 (en) | 2002-02-15 | 2007-05-30 | 株式会社日立製作所 | Electromagnetic wave absorbing material and various products using the same |
| US7423084B2 (en) | 2002-02-15 | 2008-09-09 | Dsm Ip Assets B.V. | Method of producing high strength elongated products containing nanotubes |
| US7074310B2 (en) | 2002-03-04 | 2006-07-11 | William Marsh Rice University | Method for separating single-wall carbon nanotubes and compositions thereof |
| US7148269B2 (en) | 2002-03-11 | 2006-12-12 | Trustees Of The University Of Pennsylvania | Interfacial polymer incorporation of nanotubes |
| CA2464955C (en) | 2002-03-13 | 2008-03-18 | Gopalakrishnan Srinivasan | Process and synthesizer for molecular engineering and synthesis of materials |
| US6805801B1 (en) | 2002-03-13 | 2004-10-19 | Novellus Systems, Inc. | Method and apparatus to remove additives and contaminants from a supercritical processing solution |
| JP3962376B2 (en) | 2002-03-14 | 2007-08-22 | カーボン ナノテクノロジーズ インコーポレーテッド | Composite materials containing polar polymers and single-walled carbon nanotubes |
| EP1349179A1 (en) | 2002-03-18 | 2003-10-01 | ATOFINA Research | Conductive polyolefins with good mechanical properties |
| US6899945B2 (en) | 2002-03-19 | 2005-05-31 | William Marsh Rice University | Entangled single-wall carbon nanotube solid material and methods for making same |
| US7223811B2 (en) | 2002-03-20 | 2007-05-29 | Facultes Universitaires Notre-Dame De La Paix | Nanocomposite: products, process for obtaining them and uses thereof |
| US7405854B2 (en) | 2002-03-21 | 2008-07-29 | Cornell Research Foundation, Inc. | Fibrous micro-composite material |
| ITTO20020256A1 (en) | 2002-03-22 | 2003-09-22 | Fiat Ricerche | PROCEDURE FOR THE CREATION OF AN INCANDESCENT LIGHT SOURCE AND LIGHT SOURCE OBTAINED BY SUCH PROCEDURE. |
| US7378075B2 (en) | 2002-03-25 | 2008-05-27 | Mitsubishi Gas Chemical Company, Inc. | Aligned carbon nanotube films and a process for producing them |
| TWI237064B (en) | 2002-03-25 | 2005-08-01 | Ind Tech Res Inst | Supported metal catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition and method of synthesizing nanotubes using the same |
| US6774333B2 (en) | 2002-03-26 | 2004-08-10 | Intel Corporation | Method and system for optically sorting and/or manipulating carbon nanotubes |
| CN1628075A (en) | 2002-04-08 | 2005-06-15 | 威廉马歇莱思大学 | Method for cutting single-wall carbon nanotubes through fluorination |
| US6975063B2 (en) | 2002-04-12 | 2005-12-13 | Si Diamond Technology, Inc. | Metallization of carbon nanotubes for field emission applications |
| US7112816B2 (en) | 2002-04-12 | 2006-09-26 | University Of South Flordia | Carbon nanotube sensor and method of producing the same |
| DE10217362B4 (en) | 2002-04-18 | 2004-05-13 | Infineon Technologies Ag | Targeted deposition of nanotubes |
| WO2003090255A2 (en) | 2002-04-18 | 2003-10-30 | Northwestern University | Encapsulation of nanotubes via self-assembled nanostructures |
| US7452452B2 (en) | 2002-04-29 | 2008-11-18 | The Trustees Of Boston College | Carbon nanotube nanoelectrode arrays |
| US6905667B1 (en) | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
| US20040034177A1 (en) | 2002-05-02 | 2004-02-19 | Jian Chen | Polymer and method for using the polymer for solubilizing nanotubes |
| KR100571803B1 (en) | 2002-05-03 | 2006-04-17 | 삼성전자주식회사 | Electronic device comprising a semiconductor carbon nanotube functionalized with hydrogen and a method of manufacturing the same |
| US7465362B2 (en) | 2002-05-08 | 2008-12-16 | Btu International, Inc. | Plasma-assisted nitrogen surface-treatment |
| US20060228497A1 (en) | 2002-05-08 | 2006-10-12 | Satyendra Kumar | Plasma-assisted coating |
| US20060057016A1 (en) | 2002-05-08 | 2006-03-16 | Devendra Kumar | Plasma-assisted sintering |
| US20060062930A1 (en) | 2002-05-08 | 2006-03-23 | Devendra Kumar | Plasma-assisted carburizing |
| US7445817B2 (en) | 2002-05-08 | 2008-11-04 | Btu International Inc. | Plasma-assisted formation of carbon structures |
| US7638727B2 (en) | 2002-05-08 | 2009-12-29 | Btu International Inc. | Plasma-assisted heat treatment |
| US6908261B2 (en) | 2002-05-09 | 2005-06-21 | Forward Ventures, Lp | Conductor polymer backfill composition and method of use as a reinforcement material for utility poles |
| US20050124535A1 (en) | 2002-05-10 | 2005-06-09 | Mcgimpsey William G. | Cyclic peptide nanotube structures for molecular scale electronic and photonic devices |
| JP3816889B2 (en) | 2002-05-15 | 2006-08-30 | 独立行政法人産業技術総合研究所 | Optical transmission medium |
| US20030215816A1 (en) | 2002-05-20 | 2003-11-20 | Narayan Sundararajan | Method for sequencing nucleic acids by observing the uptake of nucleotides modified with bulky groups |
| US7348298B2 (en) | 2002-05-30 | 2008-03-25 | Ashland Licensing And Intellectual Property, Llc | Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube |
| JP3879991B2 (en) | 2002-06-03 | 2007-02-14 | 独立行政法人農業・食品産業技術総合研究機構 | Polymer-coated carbon nanotubes |
| EP1369504A1 (en) | 2002-06-05 | 2003-12-10 | Hille & Müller | Metal strip for the manufacture of components for electrical connectors |
| FR2840529B1 (en) | 2002-06-06 | 2004-10-01 | Oreal | COSMETIC COMPOSITION FOR PROVIDING VOLUME TO KERATINIC FIBERS AND COSMETIC USE OF NANOTUBES FOR PROVIDING VOLUME TO KERATINIC FIBERS |
| WO2003103854A1 (en) | 2002-06-07 | 2003-12-18 | The Board Of Regents For Oklahoma State University | Preparation of the layer-by-layer assembled materials from dispersions of highly anisotropic colloids |
| US20050194038A1 (en) | 2002-06-13 | 2005-09-08 | Christoph Brabec | Electrodes for optoelectronic components and the use thereof |
| US7153903B1 (en) | 2002-06-19 | 2006-12-26 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube-filled composites prepared by in-situ polymerization |
| US7029598B2 (en) | 2002-06-19 | 2006-04-18 | Fuji Photo Film Co., Ltd. | Composite material for piezoelectric transduction |
| US6946597B2 (en) | 2002-06-22 | 2005-09-20 | Nanosular, Inc. | Photovoltaic devices fabricated by growth from porous template |
| US7061749B2 (en) | 2002-07-01 | 2006-06-13 | Georgia Tech Research Corporation | Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same |
| US6852410B2 (en) | 2002-07-01 | 2005-02-08 | Georgia Tech Research Corporation | Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same |
| US20040007528A1 (en) | 2002-07-03 | 2004-01-15 | The Regents Of The University Of California | Intertwined, free-standing carbon nanotube mesh for use as separation, concentration, and/or filtration medium |
| FR2841908B1 (en) | 2002-07-04 | 2004-09-24 | Commissariat Energie Atomique | SOLID SUPPORT COMPRISING A CONDUCTIVE OR SEMICONDUCTOR SURFACE OF THE FUNCTIONALIZED ELECTRICITY, ITS PREPARATION PROCESS AND USES THEREOF |
| AU2003253923A1 (en) | 2002-07-16 | 2004-02-02 | James M. Tour | Process for functionalizing carbon nanotubes under solvent-free conditions |
| US7171312B2 (en) | 2002-07-19 | 2007-01-30 | Smiths Detection, Inc. | Chemical and biological agent sensor array detectors |
| EP1523512B1 (en) | 2002-07-22 | 2019-12-25 | Aspen Aerogels Inc. | Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same |
| US8999200B2 (en) | 2002-07-23 | 2015-04-07 | Sabic Global Technologies B.V. | Conductive thermoplastic composites and methods of making |
| ITTO20020643A1 (en) | 2002-07-23 | 2004-01-23 | Fiat Ricerche | DIRECT ALCOHOL FUEL BATTERY AND RELATED METHOD OF REALIZATION |
| ITMI20021737A1 (en) | 2002-08-01 | 2004-02-02 | Univ Degli Studi Trieste | PURIFICATION PROCESS OF CARBON NANOTUBES. |
| US20050093425A1 (en) | 2002-08-01 | 2005-05-05 | Sanyo Electric Co., Ltd | Optical sensor, method of manufacturing and driving an optical sensor, method of detecting light intensity |
| US7094367B1 (en) | 2002-08-13 | 2006-08-22 | University Of Florida | Transparent polymer carbon nanotube composites and process for preparation |
| US7358121B2 (en) | 2002-08-23 | 2008-04-15 | Intel Corporation | Tri-gate devices and methods of fabrication |
| JP4120315B2 (en) | 2002-08-22 | 2008-07-16 | 富士ゼロックス株式会社 | Optical switching system |
| US6843850B2 (en) | 2002-08-23 | 2005-01-18 | International Business Machines Corporation | Catalyst-free growth of single-wall carbon nanotubes |
| US20040036056A1 (en) | 2002-08-26 | 2004-02-26 | Shea Lawrence E. | Non-formaldehyde reinforced thermoset plastic composites |
| US20040058457A1 (en) | 2002-08-29 | 2004-03-25 | Xueying Huang | Functionalized nanoparticles |
| JP4547852B2 (en) | 2002-09-04 | 2010-09-22 | 富士ゼロックス株式会社 | Manufacturing method of electrical parts |
| US20060099135A1 (en) | 2002-09-10 | 2006-05-11 | Yodh Arjun G | Carbon nanotubes: high solids dispersions and nematic gels thereof |
| AU2002334664A1 (en) | 2002-09-17 | 2004-04-08 | Midwest Research Institute | Carbon nanotube heat-exchange systems |
| WO2004029128A2 (en) | 2002-09-24 | 2004-04-08 | E.I. Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
| US7371336B2 (en) | 2002-09-24 | 2008-05-13 | E.I. Du Pont Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
| CN100540628C (en) | 2002-09-24 | 2009-09-16 | E.I.内穆尔杜邦公司 | Conductive organic polymer/nanoparticle compositions and methods of application thereof |
| US7317047B2 (en) | 2002-09-24 | 2008-01-08 | E.I. Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
| CN1681869B (en) | 2002-09-24 | 2010-05-26 | E.I.内穆尔杜邦公司 | Water-dispersible polyaniline made from polymer acid colloids for electronic devices |
| JP4351430B2 (en) | 2002-10-04 | 2009-10-28 | 財団法人癌研究会 | Peptide having binding ability to nanographite structure |
| US6798127B2 (en) | 2002-10-09 | 2004-09-28 | Nano-Proprietary, Inc. | Enhanced field emission from carbon nanotubes mixed with particles |
| DE10247679A1 (en) | 2002-10-12 | 2004-04-22 | Fujitsu Ltd., Kawasaki | Semiconductor body structure, as a biosensor, has two thick layers of one material separated by a thin different intermediate layer forming a nano gap, with organic wire structures as the contacts |
| KR100937085B1 (en) | 2002-10-26 | 2010-01-15 | 삼성전자주식회사 | Carbon nanotube lamination and pattern formation method using chemical self-assembly |
| US20040197638A1 (en) | 2002-10-31 | 2004-10-07 | Mcelrath Kenneth O | Fuel cell electrode comprising carbon nanotubes |
| US7645400B2 (en) | 2002-11-01 | 2010-01-12 | Mitsubishi Rayon Co., Ltd. | Composition containing carbon nanotubes having a coating |
| WO2004041719A1 (en) | 2002-11-07 | 2004-05-21 | Sanyo Electric Co., Ltd. | Carbon nanotube construct and process for producing the same |
| AT412265B (en) | 2002-11-12 | 2004-12-27 | Electrovac | HEAT EXTRACTION COMPONENT |
| US20040092330A1 (en) | 2002-11-12 | 2004-05-13 | Meyer Jeffrey W. | Hybrid golf club shaft |
| US6805642B2 (en) | 2002-11-12 | 2004-10-19 | Acushnet Company | Hybrid golf club shaft |
| US20040167014A1 (en) | 2002-11-13 | 2004-08-26 | The Regents Of The Univ. Of California, Office Of Technology Transfer, University Of California | Nanostructured proton exchange membrane fuel cells |
| US7125533B2 (en) | 2002-11-15 | 2006-10-24 | William Marsh Rice University | Method for functionalizing carbon nanotubes utilizing peroxides |
| AU2003291061A1 (en) | 2002-11-18 | 2004-06-15 | Rensselaer Polytechnic Institute | Nanotube polymer composite and methods of making same |
| US7452519B2 (en) | 2002-11-18 | 2008-11-18 | William Marsh Rice University | Sidewall functionalization of single-wall carbon nanotubes through C-N bond forming substitutions of fluoronanotubes |
| KR100801820B1 (en) | 2002-11-19 | 2008-02-11 | 삼성전자주식회사 | Pattern Forming Method Using Surface-Modified Carbon Nanotubes |
| AU2003304249A1 (en) | 2002-11-19 | 2005-01-13 | William Marsh Rice University | Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system |
| US7498423B2 (en) | 2002-11-21 | 2009-03-03 | E.I. Du Pont De Nemours & Company | Carbon nanotube-nucleic acid complexes |
| CA2450150C (en) | 2002-11-22 | 2012-01-24 | Minh-Tan Ton-That | Polymeric nanocomposites |
| US6790790B1 (en) | 2002-11-22 | 2004-09-14 | Advanced Micro Devices, Inc. | High modulus filler for low k materials |
| US20040150312A1 (en) | 2002-11-26 | 2004-08-05 | Mcelrath Kenneth O. | Carbon nanotube particulate electron emitters |
| JP4619130B2 (en) | 2002-11-27 | 2011-01-26 | ウィリアム・マーシュ・ライス・ユニバーシティ | Functionalized carbon nanotube polymer composite and interaction with radiation |
| US6773954B1 (en) | 2002-12-05 | 2004-08-10 | Advanced Micro Devices, Inc. | Methods of forming passive layers in organic memory cells |
| US6746971B1 (en) | 2002-12-05 | 2004-06-08 | Advanced Micro Devices, Inc. | Method of forming copper sulfide for memory cell |
| US6770905B1 (en) | 2002-12-05 | 2004-08-03 | Advanced Micro Devices, Inc. | Implantation for the formation of CuX layer in an organic memory device |
| WO2004052782A1 (en) | 2002-12-06 | 2004-06-24 | Hokkaido Technology Licensing Office Co., Ltd. | Nanocarbon-dissolving aqueous solution, aqueous solution for purification, and method of purification |
| US7355216B2 (en) | 2002-12-09 | 2008-04-08 | The Regents Of The University Of California | Fluidic nanotubes and devices |
| EP1428793B1 (en) | 2002-12-12 | 2011-02-09 | Sony Deutschland GmbH | Soluble carbon nanotubes |
| US20040113127A1 (en) | 2002-12-17 | 2004-06-17 | Min Gary Yonggang | Resistor compositions having a substantially neutral temperature coefficient of resistance and methods and compositions relating thereto |
| US20040222080A1 (en) | 2002-12-17 | 2004-11-11 | William Marsh Rice University | Use of microwaves to crosslink carbon nanotubes to facilitate modification |
| US6830595B2 (en) | 2002-12-20 | 2004-12-14 | Advanced Energy Technology Inc. | Method of making composite electrode and current collectors |
| US7311926B2 (en) | 2002-12-20 | 2007-12-25 | Battelle Memorial Institute | Biocomposite materials and methods for making the same |
| US7206189B2 (en) | 2002-12-20 | 2007-04-17 | Advanced Energy Technology Inc. | Composite electrode and current collectors and processes for making the same |
| AU2003296082A1 (en) | 2002-12-25 | 2004-07-22 | Fuji Xerox Co., Ltd. | Liquid mixture, structure, and method for forming structure |
| FR2849437B1 (en) | 2002-12-30 | 2005-03-25 | Nanoledge | CARBON NANOTUBES |
| US7244499B2 (en) | 2003-01-10 | 2007-07-17 | Sanyo Electric Co., Ltd. | Bonded structure including a carbon nanotube |
| US6875274B2 (en) | 2003-01-13 | 2005-04-05 | The Research Foundation Of State University Of New York | Carbon nanotube-nanocrystal heterostructures and methods of making the same |
| US20040137834A1 (en) | 2003-01-15 | 2004-07-15 | General Electric Company | Multi-resinous molded articles having integrally bonded graded interfaces |
| JP4345308B2 (en) | 2003-01-15 | 2009-10-14 | 富士ゼロックス株式会社 | Polymer composite and method for producing the same |
| KR101010550B1 (en) | 2003-01-20 | 2011-01-24 | 데이진 가부시키가이샤 | Carbon nanotubes coated with aromatic condensed polymers |
| US20040180244A1 (en) | 2003-01-24 | 2004-09-16 | Tour James Mitchell | Process and apparatus for microwave desorption of elements or species from carbon nanotubes |
| US20050186565A1 (en) | 2003-02-10 | 2005-08-25 | American Environmental Systems, Inc. | Method and spectral/imaging device for optochemical sensing with plasmon-modified polarization |
| US20040232073A1 (en) | 2003-02-10 | 2004-11-25 | Fotios Papadimitrakopoulos | Bulk separation of semiconducting and metallic single wall nanotubes |
| CA2515895A1 (en) | 2003-02-13 | 2004-08-26 | Stichting Dutch Polymer Institute | Reinforced polymer |
| FR2851258B1 (en) | 2003-02-17 | 2007-03-30 | Commissariat Energie Atomique | METHOD OF COATING A SURFACE, FABRICATION OF MICROELECTRONIC INTERCONNECTION USING THE SAME, AND INTEGRATED CIRCUITS |
| JP2004261885A (en) | 2003-02-18 | 2004-09-24 | Japan Science & Technology Agency | How to introduce functional materials into organic nanotubes |
| US20040160156A1 (en) | 2003-02-19 | 2004-08-19 | Matsushita Electric Industrial Co., Ltd. | Electrode for a battery and production method thereof |
| KR100599404B1 (en) | 2003-02-25 | 2006-07-12 | 한국과학기술원 | Method for preparing nanocomposite powder reinforced with carbon nanotubes |
| KR100947702B1 (en) | 2003-02-26 | 2010-03-16 | 삼성전자주식회사 | Pattern thin film formation method using carbon nanotubes surface-modified with curable functional groups, and method for manufacturing polymer composite |
| US7419601B2 (en) | 2003-03-07 | 2008-09-02 | Seldon Technologies, Llc | Nanomesh article and method of using the same for purifying fluids |
| US6656763B1 (en) | 2003-03-10 | 2003-12-02 | Advanced Micro Devices, Inc. | Spin on polymers for organic memory devices |
| US7335344B2 (en) | 2003-03-14 | 2008-02-26 | Massachusetts Institute Of Technology | Method and apparatus for synthesizing filamentary structures |
| US6969690B2 (en) | 2003-03-21 | 2005-11-29 | The University Of North Carolina At Chapel Hill | Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles |
| JP3973662B2 (en) | 2003-03-31 | 2007-09-12 | 富士通株式会社 | Carbon nanotube manufacturing method |
| US20040199069A1 (en) | 2003-04-02 | 2004-10-07 | Connelly Patrick R. | Device and method for preventing magnetic resonance imaging induced damage |
| US6825060B1 (en) | 2003-04-02 | 2004-11-30 | Advanced Micro Devices, Inc. | Photosensitive polymeric memory elements |
| WO2004089818A1 (en) | 2003-04-14 | 2004-10-21 | Centre National De La Recherche Scientifique | Functionalized carbon nanotubes, a process for preparing the same and their use in medicinal chemistry |
| US7390438B2 (en) | 2003-04-22 | 2008-06-24 | E.I. Du Pont De Nemours And Company | Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids |
| US20040211942A1 (en) | 2003-04-28 | 2004-10-28 | Clark Darren Cameron | Electrically conductive compositions and method of manufacture thereof |
| US20040219093A1 (en) | 2003-04-30 | 2004-11-04 | Gene Kim | Surface functionalized carbon nanostructured articles and process thereof |
| FR2854409B1 (en) | 2003-04-30 | 2005-06-17 | Centre Nat Rech Scient | PROCESS FOR OBTAINING FIBERS HAVING A HIGH CONTENT OF COLLOIDAL PARTICLES AND COMPOSITE FIBERS OBTAINED |
| US6962092B2 (en) | 2003-05-02 | 2005-11-08 | William Marsh Rice University | Method and apparatus for determining the length of single-walled carbon nanotubes |
| US20050008919A1 (en) | 2003-05-05 | 2005-01-13 | Extrand Charles W. | Lyophilic fuel cell component |
| US7556789B2 (en) | 2003-05-14 | 2009-07-07 | Central Michigan University Board Of Trustees | Low temperature synthesis of carbon nanotubes |
| US7462774B2 (en) | 2003-05-21 | 2008-12-09 | Nanosolar, Inc. | Photovoltaic devices fabricated from insulating nanostructured template |
| US7605327B2 (en) | 2003-05-21 | 2009-10-20 | Nanosolar, Inc. | Photovoltaic devices fabricated from nanostructured template |
| WO2004106420A2 (en) | 2003-05-22 | 2004-12-09 | Zyvex Corporation | Nanocomposites and method for production |
| US20040232389A1 (en) | 2003-05-22 | 2004-11-25 | Elkovitch Mark D. | Electrically conductive compositions and method of manufacture thereof |
| US6842328B2 (en) | 2003-05-30 | 2005-01-11 | Joachim Hossick Schott | Capacitor and method for producing a capacitor |
| US7682654B2 (en) | 2003-06-03 | 2010-03-23 | Seldon Technologies, Llc | Fused nanostructure material |
| US7241817B2 (en) | 2003-06-06 | 2007-07-10 | Arkema France | Process for grafting a fluoropolymer and multilayer structures comprising this grafted polymer |
| EP1634053A4 (en) | 2003-06-10 | 2010-02-24 | Univ Louisville Res Found | COLLECTION DEVICE HAVING DIRECT CIRCULATING SMALL SCALE ABSORBING PLATE |
| GB0313808D0 (en) | 2003-06-14 | 2003-07-23 | Binstead Ronald P | Improvements in touch technology |
| CA2774877C (en) | 2003-06-16 | 2015-02-03 | William Marsh Rice University | Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes |
| WO2005030858A2 (en) | 2003-06-20 | 2005-04-07 | William Marsh Rice University | Polymerization initiated at the sidewalls of carbon nanotubes |
| KR100521475B1 (en) | 2003-06-23 | 2005-10-12 | 삼성에스디아이 주식회사 | Plasma display device |
| US7070923B1 (en) | 2003-06-26 | 2006-07-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) | Provision of carbon nanotube bucky paper cages for immune shielding of cells, tissues, and medical devices |
| US6979857B2 (en) | 2003-07-01 | 2005-12-27 | Micron Technology, Inc. | Apparatus and method for split gate NROM memory |
| US7170481B2 (en) | 2003-07-02 | 2007-01-30 | Kent Displays Incorporated | Single substrate liquid crystal display |
| US7236151B2 (en) | 2004-01-28 | 2007-06-26 | Kent Displays Incorporated | Liquid crystal display |
| US7169329B2 (en) | 2003-07-07 | 2007-01-30 | The Research Foundation Of State University Of New York | Carbon nanotube adducts and methods of making the same |
| US20050272856A1 (en) | 2003-07-08 | 2005-12-08 | Cooper Christopher H | Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation |
| TWI297709B (en) | 2003-07-08 | 2008-06-11 | Canon Kk | Lens barrel |
| US7259039B2 (en) | 2003-07-09 | 2007-08-21 | Spansion Llc | Memory device and methods of using and making the device |
| US7025840B1 (en) | 2003-07-15 | 2006-04-11 | Lockheed Martin Corporation | Explosive/energetic fullerenes |
| JP4927319B2 (en) | 2003-07-24 | 2012-05-09 | 韓国科学技術園 | Biochip manufacturing method using high-density carbon nanotube film or pattern |
| JP2005041835A (en) | 2003-07-24 | 2005-02-17 | Fuji Xerox Co Ltd | Carbon nanotube structure, method for producing the same, carbon nanotube transfer and solution |
| CA2483824A1 (en) | 2003-07-25 | 2005-01-25 | Albany International Techniweave, Inc. | Control of carbon coating microcrackings in fabrication of fuel cell gdl electrode layers(s) |
| US20050065229A1 (en) | 2003-07-28 | 2005-03-24 | Anthony Bonnet | Process for oxidizing a fluoropolymer and multilayer structures comprising this oxidized fluoropolymer |
| US7413907B2 (en) | 2003-07-28 | 2008-08-19 | William Marsh Rice University | Carbon nanotubes and their derivatives as matrix elements for the matrix-assisted laser desorption mass spectrometry of biomolecules and sequencing using associated fragmentation |
| JP2005050669A (en) | 2003-07-28 | 2005-02-24 | Tdk Corp | Electrode and electrochemical element using the same |
| US20050035334A1 (en) | 2003-08-01 | 2005-02-17 | Alexander Korzhenko | PTC compositions based on PVDF and their applications for self-regulated heating systems |
| JP2007512658A (en) | 2003-08-08 | 2007-05-17 | ゼネラル・エレクトリック・カンパニイ | Conductive composition and method for producing the same |
| US7354988B2 (en) | 2003-08-12 | 2008-04-08 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
| US7026432B2 (en) | 2003-08-12 | 2006-04-11 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
| US7166243B2 (en) | 2003-08-16 | 2007-01-23 | General Electric Company | Reinforced poly(arylene ether)/polyamide composition |
| US20060205872A1 (en) | 2003-08-16 | 2006-09-14 | General Electric Company | Reinforced Poly(Arylene Ether)/Polyamide Composition and Articles Thereof |
| US7182886B2 (en) | 2003-08-16 | 2007-02-27 | General Electric Company | Poly (arylene ether)/polyamide composition |
| US7195721B2 (en) | 2003-08-18 | 2007-03-27 | Gurin Michael H | Quantum lilypads and amplifiers and methods of use |
| US7220818B2 (en) | 2003-08-20 | 2007-05-22 | The Regents Of The University Of California | Noncovalent functionalization of nanotubes |
| JP2005072209A (en) | 2003-08-22 | 2005-03-17 | Fuji Xerox Co Ltd | Resistive element, its manufacturing method, and thermistor |
| TW587165B (en) | 2003-08-27 | 2004-05-11 | Ind Tech Res Inst | Gas sensor and the manufacturing method thereof |
| US7563500B2 (en) | 2003-08-27 | 2009-07-21 | Northeastern University | Functionalized nanosubstrates and methods for three-dimensional nanoelement selection and assembly |
| CA2535842C (en) | 2003-08-29 | 2012-07-10 | Velocys Inc. | Process for separating nitrogen from methane using microchannel process technology |
| US6989325B2 (en) | 2003-09-03 | 2006-01-24 | Industrial Technology Research Institute | Self-assembled nanometer conductive bumps and method for fabricating |
| US7351444B2 (en) | 2003-09-08 | 2008-04-01 | Intematix Corporation | Low platinum fuel cell catalysts and method for preparing the same |
| US8211593B2 (en) | 2003-09-08 | 2012-07-03 | Intematix Corporation | Low platinum fuel cells, catalysts, and method for preparing the same |
| WO2005026694A2 (en) | 2003-09-12 | 2005-03-24 | Nanomix, Inc. | Carbon dioxide nanoelectronic sensor |
| JP2005089318A (en) | 2003-09-12 | 2005-04-07 | Mitsubishi Chemicals Corp | Phenyleneethynylenes and nanoparticle compositions containing the same |
| US20050116336A1 (en) | 2003-09-16 | 2005-06-02 | Koila, Inc. | Nano-composite materials for thermal management applications |
| US7235159B2 (en) | 2003-09-17 | 2007-06-26 | Molecular Nanosystems, Inc. | Methods for producing and using catalytic substrates for carbon nanotube growth |
| US20050214197A1 (en) | 2003-09-17 | 2005-09-29 | Molecular Nanosystems, Inc. | Methods for producing and using catalytic substrates for carbon nanotube growth |
| JP2005096024A (en) | 2003-09-24 | 2005-04-14 | Fuji Xerox Co Ltd | Wire, its manufacturing method, and electromagnet using the wire |
| US7105851B2 (en) | 2003-09-24 | 2006-09-12 | Intel Corporation | Nanotubes for integrated circuits |
| JP4380282B2 (en) | 2003-09-26 | 2009-12-09 | 富士ゼロックス株式会社 | Method for producing carbon nanotube composite structure |
| DE10344777B4 (en) | 2003-09-26 | 2006-04-27 | Infineon Technologies Ag | Stamping device for soft lithography and method for its production |
| US7641882B2 (en) | 2003-09-30 | 2010-01-05 | Massachusetts Institute Of Technology | Fullerenic structures and such structures tethered to carbon materials |
| US7294372B2 (en) | 2003-10-01 | 2007-11-13 | Eastman Kodak Company | Conductive color filters |
| WO2005034070A2 (en) | 2003-10-01 | 2005-04-14 | Board Of Regents The University Of Texas System | Compositions, methods and systems for making and using electronic paper |
| WO2005032617A2 (en) | 2003-10-08 | 2005-04-14 | Roy Abell | Method for delivering a colonic lavage |
| JP4945888B2 (en) | 2003-10-09 | 2012-06-06 | 富士ゼロックス株式会社 | Composite and production method thereof |
| JP4419507B2 (en) | 2003-10-17 | 2010-02-24 | 富士ゼロックス株式会社 | Capacitor manufacturing method |
| JP2007514519A (en) | 2003-10-20 | 2007-06-07 | ウィリアム・マーシュ・ライス・ユニバーシティ | Method for producing microcapsules comprising polymer and charged nanoparticles |
| US20050165155A1 (en) | 2003-10-21 | 2005-07-28 | Blanchet-Fincher Graciela B. | Insulating polymers containing polyaniline and carbon nanotubes |
| TWI242639B (en) | 2003-10-21 | 2005-11-01 | Ind Tech Res Inst | Humidity sensor element, device and method for manufacturing thereof |
| JP2005125187A (en) | 2003-10-22 | 2005-05-19 | Fuji Xerox Co Ltd | Gas decomposer, electrode for fuel cell, and method for manufacturing the decomposer |
| US7799276B2 (en) | 2003-10-27 | 2010-09-21 | Michigan Molecular Institute | Functionalized particles for composite sensors |
| JP4412052B2 (en) | 2003-10-28 | 2010-02-10 | 富士ゼロックス株式会社 | Composite material and method for producing the same |
| US7759413B2 (en) | 2003-10-30 | 2010-07-20 | The Trustees Of The University Of Pennsylvania | Dispersion method |
| US20050116214A1 (en) | 2003-10-31 | 2005-06-02 | Mammana Victor P. | Back-gated field emission electron source |
| US7122165B2 (en) | 2003-11-03 | 2006-10-17 | The Research Foundation Of State University Of New York | Sidewall-functionalized carbon nanotubes, and methods for making the same |
| US6955939B1 (en) | 2003-11-03 | 2005-10-18 | Advanced Micro Devices, Inc. | Memory element formation with photosensitive polymer dielectric |
| US20050098437A1 (en) | 2003-11-12 | 2005-05-12 | Proton Energy Systems, Inc. | Use of carbon coating in an electrochemical cell |
| KR100552697B1 (en) | 2003-11-13 | 2006-02-20 | 삼성에스디아이 주식회사 | Catalyst carrier composed of metal oxide-carbon composite and fuel cell using same |
| US20060029537A1 (en) | 2003-11-20 | 2006-02-09 | Xiefei Zhang | High tensile strength carbon nanotube film and process for making the same |
| KR100557338B1 (en) | 2003-11-27 | 2006-03-06 | 한국과학기술원 | Method for manufacturing carbon nanotubes wrapped with self-assembled materials |
| EP1690673B1 (en) | 2003-12-01 | 2008-01-02 | Arkema France | Use of a tube comprising a fluoropolymer grafted by irradiation for the fuel transport in a gas station |
| JP2005235728A (en) | 2003-12-01 | 2005-09-02 | Fuji Xerox Co Ltd | Electrical component, electrical apparatus, and their manufacturing method |
| US20050118372A1 (en) | 2003-12-02 | 2005-06-02 | Anthony Bonnet | Use of a structure based on a grafted fluoropolymer for storing and transporting chemicals |
| JP4811020B2 (en) | 2003-12-03 | 2011-11-09 | 旭硝子株式会社 | Spatial light modulation element and spatial light modulation method |
| US7608240B2 (en) | 2003-12-05 | 2009-10-27 | Board Of Trustees Of The University Of Arkansas | Nanotubes for cancer therapy and diagnostics |
| US20060067941A1 (en) | 2003-12-05 | 2006-03-30 | Secretary, Department Of Health & Human Services | Nanotubes for cancer therapy and diagnostics |
| US7118881B2 (en) | 2003-12-05 | 2006-10-10 | Northwestern University | Micro/nano-fabricated glucose sensors using single-walled carbon nanotubes |
| WO2005056474A1 (en) | 2003-12-09 | 2005-06-23 | Carbon Nanotechnologies, Inc. | Process for purifying carbon nanotubes made on refractory oxide supports |
| TWM255251U (en) | 2003-12-10 | 2005-01-11 | Dau-Ming Guo | Ozone garbage bin |
| US7473411B2 (en) | 2003-12-12 | 2009-01-06 | Rensselaer Polytechnic Institute | Carbon nanotube foam and method of making and using thereof |
| US20060057055A1 (en) | 2003-12-15 | 2006-03-16 | Resasco Daniel E | Rhenium catalysts and methods for production of single-walled carbon nanotubes |
| KR20050060287A (en) | 2003-12-16 | 2005-06-22 | 삼성에스디아이 주식회사 | Method for forming carbon nanotube emitter |
| WO2005069789A2 (en) | 2003-12-18 | 2005-08-04 | Clemson University | Process for separating metallic from semiconducting single-walled carbon nanotubes |
| US20050228110A1 (en) | 2003-12-24 | 2005-10-13 | Ko Frank K | Continuous organic and inorganic matrix composite fibrils and methods for their production from carbon nanotubes |
| US7316982B2 (en) | 2003-12-24 | 2008-01-08 | Intel Corporation | Controlling carbon nanotubes using optical traps |
| US7811272B2 (en) | 2003-12-29 | 2010-10-12 | Kimberly-Clark Worldwide, Inc. | Nanofabricated gecko-like fasteners with adhesive hairs for disposable absorbent articles |
| US20050143508A1 (en) | 2003-12-30 | 2005-06-30 | General Electric Company | Resin compositions with fluoropolymer filler combinations |
| KR100580641B1 (en) | 2004-01-02 | 2006-05-16 | 삼성전자주식회사 | Screening method of semiconducting carbon nanotubes |
| AU2004314423A1 (en) | 2004-01-09 | 2005-08-04 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube pastes and methods of use |
| US20050276743A1 (en) | 2004-01-13 | 2005-12-15 | Jeff Lacombe | Method for fabrication of porous metal templates and growth of carbon nanotubes and utilization thereof |
| KR100569188B1 (en) | 2004-01-16 | 2006-04-10 | 한국과학기술연구원 | Carbon-Porous Support Composite Electrode and Manufacturing Method Thereof |
| US7692249B2 (en) | 2004-01-21 | 2010-04-06 | Intel Corporation | End functionalization of carbon nanotubes |
| US20050161212A1 (en) | 2004-01-23 | 2005-07-28 | Schlumberger Technology Corporation | System and Method for Utilizing Nano-Scale Filler in Downhole Applications |
| US20050169831A1 (en) | 2004-02-04 | 2005-08-04 | Montgomery Stephen W. | Three-dimensional nanotube structure |
| JP4239848B2 (en) | 2004-02-16 | 2009-03-18 | 富士ゼロックス株式会社 | Microwave antenna and manufacturing method thereof |
| US20050186378A1 (en) | 2004-02-23 | 2005-08-25 | Bhatt Sanjiv M. | Compositions comprising carbon nanotubes and articles formed therefrom |
| GB2426826B (en) | 2004-02-23 | 2008-06-25 | Joel S Douglas | Strip electrode with conductive nano tube printing |
| US7402264B2 (en) | 2004-03-09 | 2008-07-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same |
| US7507472B2 (en) | 2004-03-09 | 2009-03-24 | The United States Of America As Represented By The Administator Of National Aeronatics And Space Adminstration | Multilayer electroactive polymer composite material comprising carbon nanotubes |
| US7351358B2 (en) | 2004-03-17 | 2008-04-01 | E.I. Du Pont De Nemours And Company | Water dispersible polypyrroles made with polymeric acid colloids for electronics applications |
| US7250461B2 (en) | 2004-03-17 | 2007-07-31 | E. I. Du Pont De Nemours And Company | Organic formulations of conductive polymers made with polymeric acid colloids for electronics applications, and methods for making such formulations |
| US7338620B2 (en) | 2004-03-17 | 2008-03-04 | E.I. Du Pont De Nemours And Company | Water dispersible polydioxythiophenes with polymeric acid colloids and a water-miscible organic liquid |
| US7093664B2 (en) | 2004-03-18 | 2006-08-22 | Halliburton Energy Services, Inc. | One-time use composite tool formed of fibers and a biodegradable resin |
| JP2005276498A (en) | 2004-03-23 | 2005-10-06 | Fuji Xerox Co Ltd | Electron beam generating device and its manufacturing method |
| JP2005272184A (en) | 2004-03-23 | 2005-10-06 | Honda Motor Co Ltd | Method for producing hydrophilic carbon nanotube |
| US7276283B2 (en) | 2004-03-24 | 2007-10-02 | Wisconsin Alumni Research Foundation | Plasma-enhanced functionalization of carbon-containing substrates |
| JP4515798B2 (en) | 2004-03-24 | 2010-08-04 | 本田技研工業株式会社 | Method for producing carbon nanotube reinforced composite material |
| CA2561277A1 (en) | 2004-03-26 | 2005-10-13 | Foster-Miller, Inc. | Carbon nanotube-based electronic devices made by electronic deposition and applications thereof |
| US20050221473A1 (en) | 2004-03-30 | 2005-10-06 | Intel Corporation | Sensor array integrated circuits |
| US7455793B2 (en) | 2004-03-31 | 2008-11-25 | E.I. Du Pont De Nemours And Company | Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids |
| US7135122B2 (en) | 2004-03-31 | 2006-11-14 | Freudenberg-Nok General Partnership | Polytetrafluoroethylene composites |
| US20050222333A1 (en) | 2004-03-31 | 2005-10-06 | Che-Hsiung Hsu | Aqueous electrically doped conductive polymers and polymeric acid colloids |
| US7354532B2 (en) | 2004-04-13 | 2008-04-08 | E.I. Du Pont De Nemours And Company | Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids |
| CN1954028A (en) | 2004-04-13 | 2007-04-25 | 塞威公司 | Methods for the synthesis of modular poly(phenyleneethynlenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
| US7452528B2 (en) | 2004-04-15 | 2008-11-18 | E.I. Du Pont De Nemours And Company | Peptide-based carbon nanotube hair colorants and their use in hair colorant and cosmetic compositions |
| US7276088B2 (en) | 2004-04-15 | 2007-10-02 | E.I. Du Pont De Nemours And Company | Hair coloring and cosmetic compositions comprising carbon nanotubes |
| DE102004018746A1 (en) | 2004-04-17 | 2005-12-01 | Degussa Ag | Carbon material |
| US7803262B2 (en) | 2004-04-23 | 2010-09-28 | Florida State University Research Foundation | Alignment of carbon nanotubes using magnetic particles |
| US20050238810A1 (en) | 2004-04-26 | 2005-10-27 | Mainstream Engineering Corp. | Nanotube/metal substrate composites and methods for producing such composites |
| US20060062985A1 (en) | 2004-04-26 | 2006-03-23 | Karandikar Prashant G | Nanotube-containing composite bodies, and methods for making same |
| US20060233692A1 (en) | 2004-04-26 | 2006-10-19 | Mainstream Engineering Corp. | Nanotube/metal substrate composites and methods for producing such composites |
| WO2006073454A2 (en) | 2004-04-28 | 2006-07-13 | University Of South Florida | Polymer/carbon nanotube composites, methods of use and methods of synthesis thereof |
| KR20050104839A (en) | 2004-04-29 | 2005-11-03 | 삼성에스디아이 주식회사 | A method for preparing an emitter, an emitter and an electron emission device comprising the emitter |
| ATE374514T1 (en) | 2004-04-30 | 2007-10-15 | Sgl Carbon Ag | WORKPIECE CARRIER FOR INDUCTIVE HEATING OF WORKPIECES |
| TWI384495B (en) | 2004-05-05 | 2013-02-01 | Union Carbide Chem Plastic | Flame retardant plenum cable |
| US20060057290A1 (en) | 2004-05-07 | 2006-03-16 | Glatkowski Paul J | Patterning carbon nanotube coatings by selective chemical modification |
| GB2413895A (en) | 2004-05-07 | 2005-11-09 | Seiko Epson Corp | Patterning substrates by ink-jet or pad printing |
| JP3947776B2 (en) | 2004-05-13 | 2007-07-25 | ニスカ株式会社 | Conductive material and manufacturing method thereof |
| US7758572B2 (en) | 2004-05-20 | 2010-07-20 | Boston Scientific Scimed, Inc. | Medical devices and methods including cooling balloons having nanotubes |
| US7230808B2 (en) | 2004-05-21 | 2007-06-12 | Forward Ventures, Lp | Grounding of electrical structures |
| JP2005342937A (en) | 2004-06-01 | 2005-12-15 | National Printing Bureau | Roller for printing press and method for manufacturing the same |
| CN1296436C (en) | 2004-06-07 | 2007-01-24 | 清华大学 | Prepn process of composite material based on carbon nanotube |
| US7250232B2 (en) | 2004-06-10 | 2007-07-31 | California Institute Of Technology | Processing techniques for the fabrication of solid acid fuel cell membrane electrode assemblies |
| CA2570040C (en) | 2004-06-14 | 2012-04-24 | Kadant Web Systems, Inc. | Planar elements for use in papermaking machines |
| US7410629B2 (en) | 2004-06-15 | 2008-08-12 | Changchun Institute Of Applied Chemistry Chinese Academy Of Science | Method of preparation for carbon nanotube material |
| KR100599716B1 (en) | 2004-06-23 | 2006-07-12 | 삼성에스디아이 주식회사 | Fuel cell and manufacturing method thereof |
| JP2006008861A (en) | 2004-06-25 | 2006-01-12 | Fuji Xerox Co Ltd | Coating material for electric part and method for forming coating film |
| US7160621B2 (en) | 2004-06-28 | 2007-01-09 | General Electric Company | Energy absorbing articles |
| US7282294B2 (en) | 2004-07-02 | 2007-10-16 | General Electric Company | Hydrogen storage-based rechargeable fuel cell system and method |
| US20060292297A1 (en) | 2004-07-06 | 2006-12-28 | Nano-Proprietary, Inc. | Patterning CNT emitters |
| US20060293434A1 (en) | 2004-07-07 | 2006-12-28 | The Trustees Of The University Of Pennsylvania | Single wall nanotube composites |
| US20060014155A1 (en) | 2004-07-16 | 2006-01-19 | Wisconsin Alumni Research Foundation | Methods for the production of sensor arrays using electrically addressable electrodes |
| US20060016552A1 (en) | 2004-07-20 | 2006-01-26 | George Fischer Sloane, Inc. | Electrofusion pipe-fitting joining system and method utilizing conductive polymeric resin |
| US7094467B2 (en) | 2004-07-20 | 2006-08-22 | Heping Zhang | Antistatic polymer monofilament, method for making an antistatic polymer monofilament for the production of spiral fabrics and spiral fabrics formed with such monofilaments |
| US20060025515A1 (en) | 2004-07-27 | 2006-02-02 | Mainstream Engineering Corp. | Nanotube composites and methods for producing |
| US20060032702A1 (en) | 2004-07-29 | 2006-02-16 | Oshkosh Truck Corporation | Composite boom assembly |
| US7189455B2 (en) | 2004-08-02 | 2007-03-13 | The Research Foundation Of State University Of New York | Fused carbon nanotube-nanocrystal heterostructures and methods of making the same |
| JP2006049435A (en) | 2004-08-02 | 2006-02-16 | Sony Corp | Carbon nanotube, method for arranging the same, field effect transistor using the same, method for manufacturing the same, and semiconductor device |
| US20060027499A1 (en) | 2004-08-05 | 2006-02-09 | Banaras Hindu University | Carbon nanotube filter |
| US7704422B2 (en) | 2004-08-16 | 2010-04-27 | Electromaterials, Inc. | Process for producing monolithic porous carbon disks from aromatic organic precursors |
| US20060036045A1 (en) | 2004-08-16 | 2006-02-16 | The Regents Of The University Of California | Shape memory polymers |
| US7296576B2 (en) | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
| US20060040381A1 (en) | 2004-08-20 | 2006-02-23 | Board Of Trustees Of The University Of Arkansas | Surface-modified single-walled carbon nanotubes and methods of detecting a chemical compound using same |
| US7247670B2 (en) | 2004-08-24 | 2007-07-24 | General Electric Company | Nanotubes and methods of dispersing and separating nanotubes |
| US20060126175A1 (en) | 2004-09-02 | 2006-06-15 | Zhijian Lu | Viewing screens including carbon materials and methods of using |
| KR20060032402A (en) | 2004-10-12 | 2006-04-17 | 삼성에스디아이 주식회사 | Carbon nanotube emitter and its manufacturing method and electric field emitting device using same and manufacturing method thereof |
| US7075067B2 (en) | 2004-10-15 | 2006-07-11 | Agilent Technologies, Inc. | Ionization chambers for mass spectrometry |
| US7226818B2 (en) | 2004-10-15 | 2007-06-05 | General Electric Company | High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing |
| US20060084742A1 (en) | 2004-10-15 | 2006-04-20 | Hatsuo Ishida | Composite material and a method for producing the composite material by controlling distribution of a filler therein |
| WO2006050496A1 (en) | 2004-11-02 | 2006-05-11 | E.I. Dupont De Nemours And Company | Substituted anthracenes and electronic devices containing the substituted anthracenes |
| KR100669750B1 (en) | 2004-11-04 | 2007-01-16 | 삼성에스디아이 주식회사 | Medium Porous Carbon Composite with Carbon Nanotubes |
| US7395395B2 (en) | 2004-11-09 | 2008-07-01 | At&T Delaware Intellectual Property, Inc. | Methods, systems, and storage mediums for monitoring consumption of storage space and relocating content contained in the storage when a predetermined condition is met |
| US7479940B2 (en) | 2004-11-12 | 2009-01-20 | Kent Displays Incorporated | Display device with electrical zipper interconnect |
| MX2007005793A (en) | 2004-11-16 | 2007-10-04 | Hyperion Catalysis Int | METHOD FOR PREPARING CATALYSTS SUPPORTED FROM CARBON NANOTUBES LOADED WITH METALS. |
| US7485600B2 (en) | 2004-11-17 | 2009-02-03 | Honda Motor Co., Ltd. | Catalyst for synthesis of carbon single-walled nanotubes |
| US20060104886A1 (en) | 2004-11-17 | 2006-05-18 | Luna Innovations Incorporated | Pure-chirality carbon nanotubes and methods |
| EP1827681A4 (en) | 2004-11-17 | 2011-05-11 | Hyperion Catalysis Int | Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes |
| WO2007050096A2 (en) | 2004-11-23 | 2007-05-03 | William Marsh Rice University | Ozonation of carbon nanotubes in fluorocarbons |
| CN100500778C (en) | 2004-11-23 | 2009-06-17 | 鸿富锦精密工业(深圳)有限公司 | Surface anti-fingerprint coating |
| KR100669456B1 (en) | 2004-11-26 | 2007-01-15 | 삼성에스디아이 주식회사 | Electrode for fuel cell, fuel cell comprising same and method for manufacturing electrode for fuel cell |
| US7578941B2 (en) | 2004-11-30 | 2009-08-25 | William Marsh Rice University | Length-based liquid-liquid extraction of carbon nanotubes using a phase transfer catalyst |
| CN100388967C (en) | 2004-12-02 | 2008-05-21 | 鸿富锦精密工业(深圳)有限公司 | Particle dispersion method and its equipment |
| EP1838769A1 (en) | 2004-12-03 | 2007-10-03 | William Marsh Rice University | Well-dispersed polymer nanocomposites via interfacial polymerization |
| US20060122614A1 (en) | 2004-12-06 | 2006-06-08 | Csaba Truckai | Bone treatment systems and methods |
| US20060124028A1 (en) | 2004-12-09 | 2006-06-15 | Xueying Huang | Inkjet ink compositions comprising carbon nanotubes |
| CN102593466A (en) | 2004-12-09 | 2012-07-18 | 奈米系统股份有限公司 | Nanowire-based membrane electrode assemblies for fuel cells |
| US20060154195A1 (en) | 2004-12-10 | 2006-07-13 | Mather Patrick T | Shape memory polymer orthodontic appliances, and methods of making and using the same |
| US20060291142A1 (en) | 2004-12-13 | 2006-12-28 | Ohio State University Research Foundation | Composite material containing nanotubes and an electrically conductive polymer |
| US7370587B2 (en) | 2004-12-14 | 2008-05-13 | Spacesaver Corporation | Modular wheel assembly for a carriage in a mobile storage system |
| US7354354B2 (en) | 2004-12-17 | 2008-04-08 | Integran Technologies Inc. | Article comprising a fine-grained metallic material and a polymeric material |
| US7387578B2 (en) | 2004-12-17 | 2008-06-17 | Integran Technologies Inc. | Strong, lightweight article containing a fine-grained metallic layer |
| US7820591B2 (en) | 2005-01-04 | 2010-10-26 | Korea Electric Power Corporation | Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture |
| US7598516B2 (en) | 2005-01-07 | 2009-10-06 | International Business Machines Corporation | Self-aligned process for nanotube/nanowire FETs |
| US8007829B2 (en) | 2005-01-19 | 2011-08-30 | William Marsh Rice University | Method to fabricate inhomogeneous particles |
| WO2006077256A1 (en) | 2005-01-24 | 2006-07-27 | Cinvention Ag | Metal containing composite materials |
| US7504132B2 (en) | 2005-01-27 | 2009-03-17 | International Business Machines Corporation | Selective placement of carbon nanotubes on oxide surfaces |
| US7579397B2 (en) | 2005-01-27 | 2009-08-25 | Rensselaer Polytechnic Institute | Nanostructured dielectric composite materials |
| US7481990B2 (en) | 2005-01-27 | 2009-01-27 | The Research Foundation Of State University Of New York | Methods for osmylating and ruthenylating single-walled carbon nanotubes |
| KR100657949B1 (en) | 2005-02-05 | 2006-12-14 | 삼성전자주식회사 | Cylindrical soft solar cell and manufacturing method thereof |
| US7122461B2 (en) | 2005-02-10 | 2006-10-17 | Intel Corporation | Method to assemble structures from nano-materials |
| WO2006086344A2 (en) | 2005-02-10 | 2006-08-17 | Douglas Joel S | Antistatic fabrics and anti-taser protective device |
| US20060180755A1 (en) | 2005-02-15 | 2006-08-17 | Ying-Lan Chang | Patterned nanostructure sample supports for mass spectrometry and methods of forming thereof |
| WO2007061431A2 (en) | 2005-02-16 | 2007-05-31 | University Of Dayton | Asymmetric end-functionalization of carbon nanotubes |
| US7261647B2 (en) | 2005-02-18 | 2007-08-28 | Acushnet Company | Nano-particulate compositions for decreasing the water vapor transmission rate of golf ball layers |
| US20060188723A1 (en) | 2005-02-22 | 2006-08-24 | Eastman Kodak Company | Coating compositions containing single wall carbon nanotubes |
| US20060194058A1 (en) | 2005-02-25 | 2006-08-31 | Amlani Islamshah S | Uniform single walled carbon nanotube network |
| WO2006094190A2 (en) | 2005-03-02 | 2006-09-08 | Velocys Inc. | Separation process using microchannel technology |
| US20060235113A1 (en) | 2005-03-11 | 2006-10-19 | Dorgan John R | High modulus polymer composites and methods of making the same |
| US7754054B2 (en) | 2005-03-11 | 2010-07-13 | New Jersey Institute Of Technology | Microwave induced functionalization of single wall carbon nanotubes and composites prepared therefrom |
| US7126207B2 (en) | 2005-03-24 | 2006-10-24 | Intel Corporation | Capacitor with carbon nanotubes |
| JP4873453B2 (en) | 2005-03-31 | 2012-02-08 | 独立行政法人産業技術総合研究所 | Conductive thin film, actuator element and manufacturing method thereof |
| CN1841713A (en) | 2005-03-31 | 2006-10-04 | 清华大学 | Thermal interface material and its making method |
| US7335258B2 (en) | 2005-03-31 | 2008-02-26 | Intel Corporation | Functionalization and separation of nanotubes and structures formed thereby |
| US20060276056A1 (en) | 2005-04-05 | 2006-12-07 | Nantero, Inc. | Nanotube articles with adjustable electrical conductivity and methods of making the same |
| US7399549B2 (en) | 2005-04-22 | 2008-07-15 | Gm Global Technology Operations, Inc. | Altering zeta potential of dispersions for better HCD performance and dispersion stability |
| CN100517832C (en) | 2005-04-22 | 2009-07-22 | 鸿富锦精密工业(深圳)有限公司 | Bipolar plate, its manufacturing method and fuel cell having the bipolar plate |
| US20060237221A1 (en) | 2005-04-25 | 2006-10-26 | Cable Components Group, Llc. | High performance, multi-media communication cable support-separators with sphere or loop like ends for eccentric or concentric cables |
| US7473849B2 (en) | 2005-04-25 | 2009-01-06 | Cable Components Group | Variable diameter conduit tubes for high performance, multi-media communication cable |
| US7465879B2 (en) | 2005-04-25 | 2008-12-16 | Cable Components Group | Concentric-eccentric high performance, multi-media communications cables and cable support-separators utilizing roll-up designs |
| US7473850B2 (en) | 2005-04-25 | 2009-01-06 | Cable Components Group | High performance, multi-media cable support-separator facilitating insertion and removal of conductive media |
| US7438411B2 (en) | 2005-05-07 | 2008-10-21 | Nanospectra Biosciences, Inc. | Plasmon resonant based eye protection |
| US8246995B2 (en) | 2005-05-10 | 2012-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells |
| US7666939B2 (en) | 2005-05-13 | 2010-02-23 | National Institute Of Aerospace Associates | Dispersions of carbon nanotubes in polymer matrices |
| US20060270790A1 (en) | 2005-05-26 | 2006-11-30 | Brian Comeau | Carbon-nanotube-reinforced composites for golf ball layers |
| US7645497B2 (en) | 2005-06-02 | 2010-01-12 | Eastman Kodak Company | Multi-layer conductor with carbon nanotubes |
| US8545790B2 (en) | 2005-06-04 | 2013-10-01 | Gregory Konesky | Cross-linked carbon nanotubes |
| US7964159B2 (en) | 2005-07-08 | 2011-06-21 | The Trustees Of The University Of Pennsylvania | Nanotube-based sensors and probes |
-
2002
- 2002-09-24 US US10/255,122 patent/US20040034177A1/en not_active Abandoned
-
2003
- 2003-05-01 AT AT03252761T patent/ATE498582T1/en not_active IP Right Cessation
- 2003-05-01 EP EP03252761A patent/EP1359121B1/en not_active Expired - Lifetime
- 2003-05-01 DE DE60336032T patent/DE60336032D1/en not_active Expired - Lifetime
- 2003-05-02 KR KR1020030029184A patent/KR100582330B1/en not_active Expired - Fee Related
- 2003-05-02 JP JP2003127132A patent/JP2004002850A/en not_active Withdrawn
-
2004
- 2004-07-20 US US10/895,161 patent/US7244407B2/en not_active Expired - Lifetime
-
2007
- 2007-07-10 US US11/775,633 patent/US7544415B2/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6576341B1 (en) * | 1998-04-09 | 2003-06-10 | Horcom Limited | Composition |
| US20030083421A1 (en) * | 2001-08-29 | 2003-05-01 | Satish Kumar | Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same |
| US20030168756A1 (en) * | 2002-03-08 | 2003-09-11 | Balkus Kenneth J. | Electrospinning of polymer and mesoporous composite fibers |
Cited By (90)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7344691B2 (en) | 2001-05-17 | 2008-03-18 | Zyvek Performance Materials, Llc | System and method for manipulating nanotubes |
| US7241496B2 (en) | 2002-05-02 | 2007-07-10 | Zyvex Performance Materials, LLC. | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
| US7547472B2 (en) | 2002-05-02 | 2009-06-16 | Zyvex Performance Materials, Inc. | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
| US20080194737A1 (en) * | 2002-05-02 | 2008-08-14 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
| US20060002841A1 (en) * | 2002-05-02 | 2006-01-05 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
| US7544415B2 (en) | 2002-05-02 | 2009-06-09 | Zyvex Performance Materials, Inc. | Polymer and method for using the polymer for solubilizing nanotubes |
| US7244407B2 (en) | 2002-05-02 | 2007-07-17 | Zyvex Performance Materials, Llc | Polymer and method for using the polymer for solubilizing nanotubes |
| US20050029126A1 (en) * | 2003-03-31 | 2005-02-10 | Alexander Tregub | Fullerenes to increase radiation resistance in polymer-based pellicles |
| US7288300B2 (en) * | 2003-03-31 | 2007-10-30 | Intel Corporation | Fullerenes to increase radiation resistance in polymer-based pellicles |
| US20060008528A1 (en) * | 2003-03-31 | 2006-01-12 | Intel Corporation | Fullerences to increase radiation resistance in polymer-based pellicles |
| US7288299B2 (en) * | 2003-03-31 | 2007-10-30 | Intel Corporation | Fullerenes to increase radiation resistance in polymer-based pellicles |
| US7786540B2 (en) | 2003-05-14 | 2010-08-31 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
| US20100022045A1 (en) * | 2003-05-14 | 2010-01-28 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
| US20060237805A1 (en) * | 2003-05-14 | 2006-10-26 | Nantero, Inc. | Sensor platform using a horizontally oriented nanotube element |
| US20060125033A1 (en) * | 2003-05-14 | 2006-06-15 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
| US7780918B2 (en) | 2003-05-14 | 2010-08-24 | Nantero, Inc. | Sensor platform using a horizontally oriented nanotube element |
| US20050053525A1 (en) * | 2003-05-14 | 2005-03-10 | Nantero, Inc. | Sensor platform using a horizontally oriented nanotube element |
| US7538400B2 (en) | 2003-05-14 | 2009-05-26 | Nantero, Inc. | Sensor platform using a non-horizontally oriented nanotube element |
| US8357559B2 (en) | 2003-05-14 | 2013-01-22 | Nantero Inc. | Method of making sensor platform using a non-horizontally oriented nanotube element |
| US8310015B2 (en) | 2003-05-14 | 2012-11-13 | Nantero Inc. | Sensor platform using a horizontally oriented nanotube element |
| US7479516B2 (en) * | 2003-05-22 | 2009-01-20 | Zyvex Performance Materials, Llc | Nanocomposites and methods thereto |
| US20070265379A1 (en) * | 2003-05-22 | 2007-11-15 | Zyvex Corporation | Nanocomposites and methods thereto |
| US20080179571A1 (en) * | 2003-09-08 | 2008-07-31 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US20050058590A1 (en) * | 2003-09-08 | 2005-03-17 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US20080224126A1 (en) * | 2003-09-08 | 2008-09-18 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US7858185B2 (en) | 2003-09-08 | 2010-12-28 | Nantero, Inc. | High purity nanotube fabrics and films |
| US7375369B2 (en) | 2003-09-08 | 2008-05-20 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US8628692B2 (en) | 2003-09-08 | 2014-01-14 | Nantero Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US8147722B2 (en) | 2003-09-08 | 2012-04-03 | Nantero Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US7504051B2 (en) | 2003-09-08 | 2009-03-17 | Nantero, Inc. | Applicator liquid for use in electronic manufacturing processes |
| US20050269553A1 (en) * | 2003-09-08 | 2005-12-08 | Nantero, Inc. | Spin-coatable liquid for use in electronic fabrication processes |
| US8187502B2 (en) | 2003-09-08 | 2012-05-29 | Nantero Inc. | Spin-coatable liquid for formation of high purity nanotube films |
| US7429371B2 (en) * | 2004-03-02 | 2008-09-30 | E. I. Du Pont De Nemours And Company | Reversible oxidation of carbon nanotubes |
| US20050232844A1 (en) * | 2004-03-02 | 2005-10-20 | Diner Bruce A | Reversible oxidation of carbon nanotubes |
| US20060054866A1 (en) * | 2004-04-13 | 2006-03-16 | Zyvex Corporation. | Methods for the synthesis of modular poly(phenyleneethynlenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
| US20090203867A1 (en) * | 2004-04-13 | 2009-08-13 | Zyvex Performance Materials, Inc. | Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
| US20090140213A1 (en) * | 2004-06-03 | 2009-06-04 | Nantero, Inc. | Method of making an applicator liquid for electronics fabrication process |
| US20050269554A1 (en) * | 2004-06-03 | 2005-12-08 | Nantero, Inc. | Applicator liquid containing ethyl lactate for preparation of nanotube films |
| US7556746B2 (en) | 2004-06-03 | 2009-07-07 | Nantero, Inc. | Method of making an applicator liquid for electronics fabrication process |
| US7658869B2 (en) | 2004-06-03 | 2010-02-09 | Nantero, Inc. | Applicator liquid containing ethyl lactate for preparation of nanotube films |
| US20060041104A1 (en) * | 2004-08-18 | 2006-02-23 | Zyvex Corporation | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
| US7296576B2 (en) * | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
| US8771628B2 (en) | 2004-12-16 | 2014-07-08 | Nantero Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
| US7666382B2 (en) | 2004-12-16 | 2010-02-23 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
| US20100051880A1 (en) * | 2004-12-16 | 2010-03-04 | Ghenciu Eliodor G | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
| US8580586B2 (en) | 2005-05-09 | 2013-11-12 | Nantero Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
| US20090154218A1 (en) * | 2005-05-09 | 2009-06-18 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
| US20060260785A1 (en) * | 2005-05-13 | 2006-11-23 | Delta Electronics, Inc. | Heat sink |
| US20090140167A1 (en) * | 2005-09-06 | 2009-06-04 | Natero, Inc. | Nanotube fabric-based sensor systems and methods of making same |
| US8366999B2 (en) | 2005-09-06 | 2013-02-05 | Nantero Inc. | Nanotube fabric-based sensor systems and methods of making same |
| US20100065786A1 (en) * | 2005-10-26 | 2010-03-18 | Simons Richard S | Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor |
| US7976731B2 (en) * | 2005-10-26 | 2011-07-12 | Maverick Corporation | Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor |
| US20090099016A1 (en) * | 2005-12-19 | 2009-04-16 | Advanced Technology Materials, Inc. | Production of carbon nanotubes |
| US8562937B2 (en) | 2005-12-19 | 2013-10-22 | Nantero Inc. | Production of carbon nanotubes |
| US8288723B2 (en) * | 2007-03-30 | 2012-10-16 | Beijing Funate Innovation Technology Co., Ltd. | Transmission electron microscope micro-grid and method for making the same |
| US20080237464A1 (en) * | 2007-03-30 | 2008-10-02 | Tsinghua University | Transmission electron microscope micro-grid and method for making the same |
| US20100181482A1 (en) * | 2007-03-30 | 2010-07-22 | Tsinghua University | Transmission electron microscope micro-grid |
| US8294098B2 (en) | 2007-03-30 | 2012-10-23 | Tsinghua University | Transmission electron microscope micro-grid |
| US8980991B2 (en) * | 2007-06-08 | 2015-03-17 | Xerox Corporation | Intermediate transfer members comprised of hydrophobic carbon nanotubes |
| US20080306202A1 (en) * | 2007-06-08 | 2008-12-11 | Xerox Corporation | Intermediate transfer members comprised of hydrophobic carbon nanotubes |
| US8859667B2 (en) * | 2007-12-20 | 2014-10-14 | Xerox Corporation | Carbon nanotube filled polycarbonate anti-curl back coating with improved electrical and mechanical properties |
| US8962736B2 (en) * | 2007-12-20 | 2015-02-24 | Xerox Corporation | Electrically resistive coatings/layers using soluble carbon nanotube complexes in polymers |
| US20090162777A1 (en) * | 2007-12-20 | 2009-06-25 | Xerox Corporation | Electrically resistive coatings/layers using soluble carbon nanotube complexes in polymers |
| US20090162637A1 (en) * | 2007-12-20 | 2009-06-25 | Xerox Corporation | Carbon nanotube filled polycarbonate anti-curl back coating with improved electrical and mechanical properties |
| EP2233489A1 (en) | 2009-03-23 | 2010-09-29 | Maverick Corporation | Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor |
| US20100243637A1 (en) * | 2009-03-27 | 2010-09-30 | Tsinghua University | Heater |
| US8841588B2 (en) | 2009-03-27 | 2014-09-23 | Tsinghua University | Heater |
| US8574673B2 (en) | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
| US20110027497A1 (en) * | 2009-07-31 | 2011-02-03 | Nantero, Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
| US8128993B2 (en) | 2009-07-31 | 2012-03-06 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
| US20110036828A1 (en) * | 2009-08-14 | 2011-02-17 | Tsinghua University | Carbon nanotube fabric and heater adopting the same |
| US8357881B2 (en) | 2009-08-14 | 2013-01-22 | Tsinghua University | Carbon nanotube fabric and heater adopting the same |
| US20110036826A1 (en) * | 2009-08-14 | 2011-02-17 | Tsinghua University | Carbon nanotube heater-equipped electric oven |
| US8278604B2 (en) | 2009-08-14 | 2012-10-02 | Tsinghua University | Carbon nanotube heater-equipped electric oven |
| US20110056928A1 (en) * | 2009-09-08 | 2011-03-10 | Tsinghua University | Wall mounted electric heater |
| US8253122B2 (en) | 2009-09-11 | 2012-08-28 | Tsinghua University | Infrared physiotherapeutic apparatus |
| US20110062350A1 (en) * | 2009-09-11 | 2011-03-17 | Tsinghua University | Infrared physiotherapeutic apparatus |
| US20110108545A1 (en) * | 2009-11-10 | 2011-05-12 | Tsinghua University | Heater and method for making the same |
| US8790610B2 (en) | 2010-01-28 | 2014-07-29 | University Of Central Florida Research Foundation, Inc. | Method of forming composite materials including conjugated materials attached to carbon nanotubes or graphenes |
| US20110180140A1 (en) * | 2010-01-28 | 2011-07-28 | University Of Central Florida Research Foundation, Inc. | Supramolecular structures comprising at least partially conjugated polymers attached to carbon nanotubes or graphenes |
| US8613898B2 (en) * | 2010-01-28 | 2013-12-24 | University Of Central Florida Research Foundation, Inc. | Supramolecular structures comprising at least partially conjugated polymers attached to carbon nanotubes or graphenes |
| US9617151B2 (en) | 2010-02-12 | 2017-04-11 | Nantero Inc. | Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films |
| US10773960B2 (en) | 2010-02-12 | 2020-09-15 | Nantero, Inc. | Low porosity nanotube fabric articles |
| US10069072B2 (en) | 2010-09-20 | 2018-09-04 | Nantero, Inc. | Nanotube solutions with high concentration and low contamination and methods for purifiying nanotube solutions |
| US9634251B2 (en) | 2012-02-27 | 2017-04-25 | Nantero Inc. | Nanotube solution treated with molecular additive, nanotube film having enhanced adhesion property, and methods for forming the nanotube solution and the nanotube film |
| US11072714B2 (en) | 2012-02-27 | 2021-07-27 | Nantero, Inc. | Nanotube solution treated with molecular additive, nanotube film having enhanced adhesion property, and methods for forming the nanotube solution and the nanotube film |
| US9650732B2 (en) | 2013-05-01 | 2017-05-16 | Nantero Inc. | Low defect nanotube application solutions and fabrics and methods for making same |
| US10654718B2 (en) | 2013-09-20 | 2020-05-19 | Nantero, Inc. | Scalable nanotube fabrics and methods for making same |
| JP2015131734A (en) * | 2014-01-09 | 2015-07-23 | 国立大学法人信州大学 | Single-walled carbon nanotube, electrode sheet including the same, production method thereof, and production method of dispersoid thereof |
| US12227625B2 (en) | 2018-01-11 | 2025-02-18 | Nanocore Aps | Composite materials comprising mechanical ligands |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60336032D1 (en) | 2011-03-31 |
| EP1359121A2 (en) | 2003-11-05 |
| KR100582330B1 (en) | 2006-05-22 |
| US20080194737A1 (en) | 2008-08-14 |
| KR20030086442A (en) | 2003-11-10 |
| ATE498582T1 (en) | 2011-03-15 |
| EP1359121A3 (en) | 2003-11-12 |
| US7244407B2 (en) | 2007-07-17 |
| JP2004002850A (en) | 2004-01-08 |
| EP1359121B1 (en) | 2011-02-16 |
| US7544415B2 (en) | 2009-06-09 |
| US20040266939A1 (en) | 2004-12-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1359121B1 (en) | Polymer and method for using the polymer for solubilizing nanotubes | |
| EP1359169B1 (en) | Polymer and method for using the polymer for noncovalently functionalizing nanotubes | |
| US7344691B2 (en) | System and method for manipulating nanotubes | |
| Jeon et al. | Functionalization of carbon nanotubes | |
| Muñoz et al. | Highly conducting carbon nanotube/polyethyleneimine composite fibers | |
| Choudhary et al. | Polymer/carbon nanotube nanocomposites | |
| Branca et al. | Characterization of carbon nanotubes by TEM and infrared spectroscopy | |
| Gu et al. | Fabrication of free‐standing, conductive, and transparent carbon nanotube films | |
| Hirsch et al. | Functionalization of carbon nanotubes | |
| JP5254608B2 (en) | Method for synthesizing modular poly (phenylene ethylenin) and method for fine-tuning its electronic properties to functionalize nanomaterials | |
| Zhang et al. | Tubular composite of doped polyaniline with multi-walled carbon nanotubes | |
| Goh et al. | Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/phenoxy resin composite | |
| Bag et al. | Chemical functionalization of carbon nanotubes with 3-methacryloxypropyltrimethoxysilane (3-MPTS) | |
| Lee et al. | Short carbon nanotubes produced by cryogenic crushing | |
| Yang et al. | Large‐diameter single‐walled carbon nanotubes synthesized by chemical vapor deposition | |
| CN1239604C (en) | Polymer and process for solubilizing nano tube by using such polymer | |
| Eo et al. | Poly (2, 5-benzoxazole)/carbon nanotube composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild poly (phosphoric acid) | |
| Kang et al. | Selected synthesis of carbon nanostructures directed by silver nanocrystals | |
| Maser et al. | Carbon nanotubes: from fundamental nanoscale objects towards functional nanocomposites and applications | |
| Dehkharghani | Covalent Functionalization of Carbon Nanostructures | |
| Liu et al. | Organic modification of carbon nanotubes | |
| Liu et al. | Carbon Nanotube‐Based Hybrid Materials and Their Polymer Composites | |
| Elashmawi et al. | Polymer nanocomposites doped with carbon nanotubes | |
| Karima et al. | Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the-radiolysis polymerization method | |
| WO2010126627A2 (en) | Processes for the preparation of carbon nanotubes layers coated on a flexible substrate and carbon nanotubes fibers made therefrom |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ZYVEX CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, JIAN;REEL/FRAME:013535/0842 Effective date: 20021014 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: ZYVEX PERFORMANCE MATERIALS, LLC, TEXAS Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:ZYVEX CORPORATION;REEL/FRAME:019353/0482 Effective date: 20070521 |