[go: up one dir, main page]

US20140259685A1 - Constructible utensils - Google Patents

Constructible utensils Download PDF

Info

Publication number
US20140259685A1
US20140259685A1 US14/214,993 US201414214993A US2014259685A1 US 20140259685 A1 US20140259685 A1 US 20140259685A1 US 201414214993 A US201414214993 A US 201414214993A US 2014259685 A1 US2014259685 A1 US 2014259685A1
Authority
US
United States
Prior art keywords
constructible
scores
utensil
utensils
handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/214,993
Inventor
Peggy V. K. Cross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EcoTensil Inc
Original Assignee
EcoTensil Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EcoTensil Inc filed Critical EcoTensil Inc
Priority to US14/214,993 priority Critical patent/US20140259685A1/en
Assigned to ECOTENSIL INC. reassignment ECOTENSIL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CROSS, PEGGY V. K., MS.
Publication of US20140259685A1 publication Critical patent/US20140259685A1/en
Priority to US15/092,895 priority patent/US9869575B2/en
Priority to US15/498,473 priority patent/US20220167769A9/en
Priority to US17/714,050 priority patent/US12484725B2/en
Priority to US17/894,585 priority patent/US11832747B2/en
Priority to US18/158,114 priority patent/US20230157467A1/en
Priority to US18/231,085 priority patent/US12446717B2/en
Assigned to ECOTENSIL INC. reassignment ECOTENSIL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CROSS, Peggy V. K.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G21/00Table-ware
    • A47G21/06Combined or separable sets of table-service utensils; Oyster knives with openers; Fish servers with means for removing bones
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G21/00Table-ware
    • A47G21/04Spoons; Pastry servers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D3/00Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines
    • B65D3/28Other details of walls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G21/00Table-ware
    • A47G2021/002Table-ware collapsible

Definitions

  • the present invention relates generally to constructible utensils, and more specifically, but not exclusively, to constructible utensils for foodstuff.
  • the “green” world employs a special lexicon, particularly for words such as degradable, biodegradable, recyclable, sustainable, and compostable.
  • Degradable plastics are oil based and break down through chemical reactions rather than the activity of micro-organisms, so they can degrade in an anaerobic environment into water, CO2, biomass, and trace elements.
  • biodegradable by itself does not mean much when biodegradable plastics and some types of biodegradable spoons include products that may take 100's to 1,000's of years to degrade. Since “biodegradable” specifies NO time limits, for the purposes of composting and sustainability “biodegradable” is a meaningless term.
  • plastic material must break down within 180 days in a commercial compost facility.
  • Biodegradable plastic has no time limit.
  • ASTM D6400-2004 “Standard Specification for Compostable Plastics,” ASTM International, West Conshohocken, Pa., 2003, DOI: 10.1520/D6400-04, hereby expressly incorporated by reference thereto in its entirety for all purposes for plastic to be considered as compostable, it must be able to break down into carbon dioxide, water, and biomass at the same rate as paper. It also needs to look like compost, should not produce any toxic material and should be able to support plant life.
  • Compostable items are made from plant materials such as corn, potato, cellulose, soy, sugar, and the like.
  • ASTM D6868-2011 “Standard Specification for Labeling of End Items that Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to be Aerobically Composted in Municipal or Industrial Facilities,” ASTM International, West Conshohocken, Pa., 2003, DOI: 10.1520/D6868-11, also hereby expressly incorporated by reference thereto in its entirety for all purposes.
  • This specification establishes the requirements for labeling of materials and products (including packaging), wherein a biodegradable plastic film or coating is attached (either through lamination or extrusion directly onto the paper) to compostable substrates and the entire product or package is designed to be composted in municipal and industrial aerobic composting facilities within 180 days.
  • compostable until recently was subject to some ambiguity.
  • Certifications and representations of compostability most often reference commercial/municipal composting facilities that precisely control the environment (e.g., temperature) and microbes (e.g., periodic infusion of appropriate quantities of the appropriate microbes).
  • Few bio-based utensils are certified compostable, and most include varying amounts of plant based starch and petroleum and take over the required 180 days or more to compost under the best of conditions. Home composting is rarely an option for these materials.
  • Some “biodegradable” products like Taterware may take years—compost facilities either disallow all bioplastic utensils or pick them out of the compost at the end of the composting process.
  • Compostable logo which is designed to help remove some of the confusion for consumers.
  • the Compostable logo builds credibility and recognition for products that meet the ASTM D6400 and/or D6868 standards so consumers, composters, regulators, and others can be assured that the product will compost as expected.
  • utensils are single-use (e.g., foodstuff tasting/dispensing utensils or single-serving disposable utensils).
  • sorting/processing problem multiplied by the sheer volume of these products used world-wide, they also use up too many resources. This is because these products also have the further undesirable characteristic of attempting to emulate conventional multi-use utensils in their construction and arrangement which results in poor packing density.
  • Manufacturers, distributors, and retailers are increasingly concerned about cube utilization (amount of product that can be shipped/stored in a specific cubic volume). The less efficient the cube utilization, particularly as compared to alternative products, the more costly it becomes to ship and warehouse.
  • bioplastics use more material in their construction because they do not have the same material properties (e.g., tensile strength of bio-material versus stainless steel versus conventional petroleum-based plastic).
  • material properties e.g., tensile strength of bio-material versus stainless steel versus conventional petroleum-based plastic.
  • the following summary of the invention is provided to facilitate an understanding of some of technical features related to constructible utensils, particularly to those used as a spoonlid or single-use tasters, and is not intended to be a full description of the present invention.
  • a full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
  • the present invention is applicable to other constructible utensils as well as constructible paperboard structures other than utensils.
  • a deformable sheet defines a handle and an operational element in which one or more scores, both straight and curved, are cooperatively provided on the sheet.
  • the one or more scores enable deformation of the handle and/or operational element(s) to convert the structure into a strong, sturdy, and functional implement sufficient to meet the required application.
  • the unconstructed utensil is provided on a planar sheet made of the requisite material (i.e., an appropriately green/sustainable material) that may be processed to enhance function (e.g., coated with environmentally appropriate material) to resist premature degradation during use (e.g., a moisture-barrier) or it may be manufactured of a moisture-barrier material (e.g., calcium carbonate), collectively a coating, or inherent characteristic or other moisture protection system is referred to as moisture-barrier property.
  • a moisture-barrier material e.g., calcium carbonate
  • the handle typically with a curved score that defines a folding axis, is operated by bringing portions closer together out of the plane (e.g., folding or otherwise deforming) the handle along the one or more handle scores. This folding induces a responsive distortion/deformation of the operational element to create the desired functional element.
  • the curved score(s) in cooperation with the structural organization and composition, produce a constructed utensil that meets or exceeds performance of conventional preformed disposable/single-use utensils. This provides a superior option over conventional constructed utensils because the user gains the advantage of an improved single-use application while the utensil is eco-friendly as it has a minimalist design that is effective and capable of being made compostable and/or recyclable with recyclable, sustainable, renewable resources.
  • These constructible utensils may be particularly configured for specific applications, including tasting, stirring, spreading, consuming harder/firmer foodstuffs, “fork-like” utensil, and the like.
  • the user-constructible utensils include tasters, spreaders, stirrers that can have appropriately shaped handles and operational elements (e.g., bowls for a tasting spoon) that have the desired capacity, shape, and mouth-feel. Some bowls may have a deep configuration for more capacity while others may be shallower and sturdier to serve dense/hard foodstuff (e.g., ice cream).
  • the fundamental teachings herein are adaptable to a wide-variety of user-constructible utensils for a wide-variety of tasks.
  • the utensil doubles as a dispensing mechanism, in lieu of a cup, which is particularly important for applications that use a utensil along with a cup and/or plate/napkin, cracker, or the like, providing valuable cost-savings.
  • the base material and scores are arranged and configured so that a deformed handle (e.g., folded) maintains a sufficiently useful fold after being released from the folder to retain the desired configuration of the operational end.
  • a deformed handle e.g., folded
  • several utensils may be configured including folding the handle to produce the bowl.
  • the folded utensils are set on a work surface and a product is placed into each of the bowls. Consumers may simply pick up a utensil and sample the product without any other apparatus. This allows for one-handed sampling, as opposed to cup and spoon, which is ideal for consumers having their hands full with products, information, containers, kids, and the like.
  • lateral edges of the planar apparatus are folded up to produce a handle and bowl, often leaving a planar medial portion of the handle and bowl that provide a stable platform for adding, dispensing, and presenting the product to the prospective consumers.
  • Most tasting spoons could not be arrayed and used in this fashion as they are not large enough or stable enough and do not have the upward-extending handle portions to allow them to be easily grasped. In this way, packing density for dispensing and presenting is improved and retailers/users may select from a middle of the array with greatly reduced risk of touching or otherwise contaminating foodstuff in other utensils.
  • the versatility of the implementations of the present invention in combining these functions further saves costs and reduces environmental impact in the pre-consumer and post-consumer costs of such scenarios.
  • the preferred implementations of the present invention provide a greatly reduced carbon footprint due to several factors including use of a new minimalist design (rather than scaling of previous utensils) that both uses less material and reduces unnecessary material and use of environmentally friendly materials. This is true even in cases where the material is misprocessed by the consumer after use. For example, if a compostable EcoTensil® brand utensil ends up in a landfill it will have an increased chance to be partially-to-substantially degraded by the time it gets to a landfill where under normal conditions it would not degrade. (Modern landfill designs attempt to minimize any degradation of all materials by removing oxygen and other requirements for biodegradation/composting). Because the product has minimal material use and quickly degrades, the product lends itself to interstitial location among the nooks and crannies of other more rigid elements of the landfill, which effectively removes its contribution to the landfill volume.
  • Reduction in material used in the designs helps to maximize an amount of pre-disposal degradation that occurs which is advantageous no matter whether the consumer selected the correct disposal option.
  • the advantages of minimal construction are magnified when also considering the production, shipment, storage, use, and disposal volumes.
  • the reduced eco-footprint appears all along the lifespan of the product and savings and advantages are compounded when considering the entire lifecycle.
  • a constructible utensil such as for a taster for example, includes a deformable generally planar rigid paperboard sheet defining a body, the body including a handle element having a fold axis and a bowl element coupled to the handle element wherein the handle element is generally elongate and rectilinear and includes a length generally parallel to the fold axis that is at least two times greater than a width generally perpendicular to the fold axis; a first curved score disposed on the body and extending from a first point on the bowl element proximate a first edge of the bowl element to a second point on the handle element proximate the fold axis; and a second curved score disposed on the body and extending from a third point on the bowl element proximate a second edge of the bowl element towards the second point; wherein the scores are generally concave with respect to the fold axis; and wherein the body is configured with an arrangement of the scores such that a folding of the body about the fold axis
  • a constructible utensil such as for a stirrer for example, includes a deformable generally planar rigid sheet material defining a body, the body including a handle element having a fold axis and a bowl element coupled to the handle element at a transition area wherein the handle element is generally elongate and includes a length generally parallel to the fold axis that is at least ten times greater than a first width generally perpendicular to the fold axis; a first score disposed on the body and extending from a first point on the bowl element to a second point on the handle element proximate the fold axis and crossing the transition area; and a second score disposed on the body and extending from a third point towards the second point, wherein the third point is disposed on the bowl element; wherein the scores are curved and generally concave with respect to the fold axis and generally symmetrical about the fold axis; wherein the body is configured with arrangement of the scores such that a folding of the body about the fold axis introduce
  • a constructible utensil such as for a spreader for example, includes a deformable generally planar rigid paperboard sheet defining a body, the body including a handle element having a fold path and a spreader element coupled to the handle element wherein the spreader element is generally asymmetrically elongate and includes a first lateral edge generally straight and parallel to the fold path and a second lateral edge generally convexly curved with respect to the fold path and converging to the first lateral edge; a first score disposed on the body and extending from a first point on the spreader element to a second point on the handle element proximate the fold path; and a second score disposed on the body and extending from a third point towards the second point; wherein the body is configured with arrangement of the scores such that a folding of the body about the fold path introduces a bowl in the spreader element.
  • a constructible utensil includes a deformable generally planar rigid paperboard sheet defining a generally elongate and rectilinear body having a long axis extending from a proximal end to a distal end and a short axis generally perpendicular to the long axis with the body including a fold axis extending along the long axis and the body including a length generally parallel to the fold axis that is at least two times greater than a width generally parallel to the short axis; a first curved score disposed on the body and convex with respect to the fold axis, the first curved score extending from a first point on the body near a first lateral edge of the body at the distal end of the body to a second point on the body proximate the fold axis, wherein the first point is greater than 75% of the length from the proximal end and wherein the second point within 33% of the length from the proximal end; and a second curved score,
  • a method of manufacturing a constructible utensil includes a) forming a generally elongate and rectilinear body from a deformable generally planar rigid paperboard sheet, the body having a long axis extending from a proximal end to a distal end and a short axis generally perpendicular to the long axis with the body including a fold axis extending along the long axis and the body including a length generally parallel to the fold axis that is at least two times greater than a width generally parallel to the short axis; b) disposing a first curved score on the body, the first curved score convex with respect to the fold axis, the first curved score extending from a first point on the body near a first lateral edge of the body at the distal end of the body to a second point on the body proximate the fold axis, wherein the first point is greater than 75% of the length from the proximal end and wherein the second point within 3
  • a method of constructing a utensil includes a) folding a generally elongate and rectilinear body about a fold axis, the body constructed from a deformable generally planar rigid paperboard sheet, the body having a long axis extending from a proximal end to a distal end and a short axis generally perpendicular to the long axis with the body including the fold axis extending along the long axis and the body including a length generally parallel to the fold axis that is at least two times greater than a width generally parallel to the short axis and the body including a pair of curved scores symmetrically disposed on the body, the pair of curved scores convex with respect to the fold axis, the curved scores extending from a pair of points on the body near opposing lateral edges of the body at the distal end of the body and each converging to a convergence point on the body proximate the fold axis, wherein the pair of points are greater than 75%
  • a system for serving a foodstuff includes a worksurface; and a plurality of user-constructible utensils constructed into a plurality of shape-retaining utensils with each the shape-retaining utensil including a bowl-element supporting a portion of the foodstuff and having a pair of lateral edges folded upwards and retained folded without adhesive due to a configuration of construction materials used in a manufacture of the plurality of user-constructible utensils and wherein the plurality of constructed utensils are arrayed on the worksurface with the upward pair of lateral edges useable as a handle to remove a corresponding utensil and foodstuff from the worksurface.
  • inventions described herein may be used alone or together with one another in any combination.
  • inventions encompassed within this specification may also include embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract.
  • various embodiments of the invention may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments of the invention do not necessarily address any of these deficiencies.
  • different embodiments of the invention may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
  • FIG. 1 illustrates a constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible spork
  • FIG. 2 illustrates a constructible taster utensil including an exterior perimeter and a score pattern configured to produce a constructible taster having a widened operative element
  • FIG. 3 illustrates both an unconstructed and constructed constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible utensil having a backstop;
  • FIG. 4 illustrates a constructible taster utensil including a perpendicular score for length-shortening folding
  • FIG. 5 illustrates a construction sequence for a constructible utensil including an exterior perimeter and a score pattern configured to produce a novel spoon lid utensil.
  • Embodiments of the present invention provide a system and method for meeting market demand for better constructible utensils.
  • the following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements.
  • the figures include specific shapes, paths, and arrangements of scores used to facilitate formation of three dimensional bowls as a part of a body is folded.
  • the scores have been illustrated to accurately present representative suitable score paths for the particular utensil type and application, particularly with respect to location, arrangement, and placement.
  • the constructible utensils disclosed herein are generally representative of a wide range of constructible utensils, some of which have been illustrated and described in related patents and patent applications. These related patents and patent applications include U.S. Pat. Nos. 8,210,381, D646,529, and D651,480, and U.S. patent applications Ser. Nos. 13/357,557, 61/699,808, 61/699,787, 61/712,610, 13/797,446, concurrently filed application entitled MATRIX FOR CONSTRUCTIBLE UTENSIL, U.S. application Ser. No. ______ (Attorney Docket 20226-7013), and concurrently filed application entitled SPOONWRAP FOR CONTAINER, U.S. application Ser. No. ______ (Attorney Docket 20226-7014), all of which are hereby expressly incorporated by reference thereto in their entireties for all purposes.
  • a preferred embodiment includes environmentally friendly materials which often include paper and paper-like substances.
  • the foodstuff may have a significant moisture content.
  • moisture resistance is important in some implementations.
  • Such utensils may be processed to enhance function (e.g., coated with environmentally appropriate material) to resist premature degradation during use (e.g., a moisture-barrier) or it may be manufactured of a moisture-barrier material (e.g., calcium carbonate or the like), collectively a coating, or inherent characteristic or other moisture protection system is referred to as moisture-barrier property.
  • Some preferred embodiments include a paperboard sheet material.
  • score lines that are specifically set forth to be close to, but spaced away from, an edge of a body or body element of a constructible utensil. For some materials, these scores break down fiber used in the body and could increase moisture absorption. Spacing a terminating end of these score lines away from the physical edge improves moisture absorption resistance.
  • the preferred embodiments use sustainable tree-based wood fibers due to improved material properties. In some applications, and as additional materials are developed, other materials (such as shorter fibers from other plants or mineral-based substrates) may be used in lieu of tree-based wood fibers. Additionally, the preferred embodiments describe implementations that include multiple curved scores, including multiple curved scores that “bend” inwardly towards each other. Some implementations may include other configurations, including a single curved implementation that produces a bowl when folded along this score.
  • Some of the disclosed embodiments include configuration changes to a basic constructible single-use taster.
  • the constructible taster includes a generally “bullet” shaped perimeter having a longitudinal axis about which the constructible taster is generally symmetric.
  • the perimeter is about 1.25 inches wide and about 3.125 inches long (the “bullet” shaped perimeter including a generally rectangular body that is about 1.25 inches ⁇ about 2.5625 inches and a semi-disk at one end of the rectangle having a radius of about 0.5625 inches).
  • a handle portion is joined to a functional end with handle portion including a short handle score extending along the longitudinal axis and joining a pair of curved scores extending from lateral edges of the functional end located at a distal end (e.g., opposite of the handle portion at a proximal end).
  • the handle score may be omitted, its function provided by an extension of one or more of the curved scores extending towards the proximal end from the distal end. Folding/deforming the proximal end along the handle score (or handle score substitute) induces the deformation of the functional end about the one or more curved scores to create a three-dimensional structure (generally described as arched or bowl-shaped) which adds strength/rigidity and function, such as retaining low-viscosity foodstuff.
  • the tasters are generally small and the constructible taster is particularly configured to reduce material use while providing efficient operation.
  • a size and shape of a bowl formed in the constructible taster at the distal end is determined, again, by the arrangement of the scores with respect to the body and its structures.
  • the scores are close to lateral edges of the body near the distal end (without reaching the edge to improve mouth feel by reducing sharp edges) and converge to a central fold axis near the proximal end and produce the desired bowl shape.
  • the scores are gentle and convex with respect to the fold axis and curve over almost the entire length of the rectilinear body and do not meet until very close to the edge.
  • the scores converge within 33% of the length of the body element from the handle end and most preferably within 10% of the length from the handle end. At the other end, the scores reach near the lateral edges at points greater than 50% of the length and most preferably at points greater than 75%.
  • informational indicia e.g., specifically positioned dots
  • identify a preferred location for squeezing/deforming the handle portion e.g., bend to touch dots which recreate the desired deformation in the handle to help optimize formation of the functional element.
  • these indicia are placed near where the scores converge. In this case, towards the proximal end of the body, so that the body gradually distorts along scores generally over the entire length.
  • the material selection of the body and the depth and nature of the formation of the scores are one way to provide for a retaining force resisting unfolding when a folding force is removed.
  • some type of tacky adhesive or interconnecting tabs may be used to hold the lateral edges together and the body in the folded mode.
  • FIG. 1 illustrates a constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible spork.
  • the constructible spork of FIG. 1 is a modification of the constructible taster and includes a bowl-producing score pattern with the forward free curvilinear edge including 2 tines, with 2-5 tines possible with different perimeter notching.
  • the tines of the constructible spork helps to spear and catch noodles, salads, fruit salads and the like.
  • FIG. 2 illustrates a constructible taster utensil including an exterior perimeter and a score pattern configured to produce a constructible taster having a widened operative element.
  • the constructible taster utensil of FIG. 2 is a modification of the constructible taster and includes a widened spoon end (i.e., the functional end).
  • the constructible taster utensil of FIG. 2 aids the consumer and can help to reduce material usage during manufacturing.
  • FIG. 3 illustrates both an unconstructed and constructed constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible utensil having a backstop.
  • the constructible taster utensil of FIG. 3 is a modification of the constructible taster and includes a score pattern having backstop scores at the end of the handle portion. When needed or desired, a consumer is able to fold up the backstop along the backstop scores to create a dam that prevents contents (e.g., liquids) from spilling off the back end of the handle.
  • the backstop scores include a pair of linear scores extending from a common point on the longitudinal axis back towards rear corners of the handle portion.
  • Those scores combined with a longitudinal score extending from an edge of the handle towards the functional end (which is sometimes present in certain implementation of the constructible taster) cooperate with the pair of linear scores to selectively produce the independently operable backstop.
  • the backstop is independent from the bowl-producing scoring pattern as the user may or may not use the backstop with a folded and constructed utensil.
  • FIG. 4 illustrates a constructible taster utensil including a perpendicular score for length-shortening folding.
  • the constructible taster utensil of FIG. 4 is a modification of the constructible taster and includes a perpendicular (e.g., to the longitudinal axis and/or the fold axis) fold to allow the constructible taster utensil to be length collapsible to fit on small packages.
  • the constructible taster is typically configured to be very short, there are applications in which it is desired to have a shortened constructible taster, such as inclusion in certain small footprint foodstuff containers (e.g., food samples and the like).
  • the constructible taster utensil frequently needs to be longer than the side or top of a container so it can reach into the container and still have length for the consumer to hold the handle end.
  • the perpendicular fold enables a pre-constructed length of constructible taster utensil to shortened for packaging.
  • the folded length may be shortened anywhere from 50% to 75% of the unfolded length.
  • FIG. 5 illustrates a construction sequence for a constructible utensil including an exterior perimeter and a score pattern configured to produce a novel spoon lid utensil.
  • the incorporated patent documents include description and illustrations of several different spoon lids.
  • the products can have a handle portion having a perimeter matching the container opening/lid shape and a functional extension that is foldably attached to the handle portion. Unfolding the functional extension and folding the handle portion creates an extended bowl-portion suitable for reaching into the container and consuming the foodstuff contained within.
  • Those solutions offer the advantage of a small pre-constructed footprint with the ability to have a greater length when constructed.
  • the folding process increases unit costs due to the folding step and addition of any releasable adhesive securing the functional extension in the folded configuration to be ready for use. And as compared to the constructible utensil illustrated in FIG. 5 , such a system includes “extra” material that is not used by the embodiment of FIG. 5 .
  • the constructible utensil of FIG. 5 includes a paperboard (or other suitable foundation material) blank shaped to match the intended packing location (which for this implementation is under a lid to help maintain the constructible utensil in a clean and sanitary condition but other locations are possible).
  • the perimeter can thus be shaped to match the container mounting/attachment location, frequently it is circular such as for a yogurt container. Other perimeter shapes are possible and as varied as possible opening shapes.
  • the desired perimeter shape is cut and a number of interior scores and cuts are formed within the blank.
  • the cuts form a bullet-shaped functional portion that is hingedly fixed to the interior of the blank.
  • a pair of lateral scores connecting ends of the cut to the exterior form hinges that allow the bullet-shaped functional portion to be displaced from the plane of the blank and rotated 180 degrees about the hinging lateral scores so the functional portion now extends past the opening-shaped perimeter.
  • Scores on the functional include a typical curved score pattern that are symmetric about a fold axis. That fold axis is aligned with a score on the interior portion of the blank and thus allows the structure to be easily folded about the fold axis to produce a constructed utensil for use with the container.
  • the constructible utensil thus saves material and folding costs as compared to the reference spoonlid system described herein.
  • any signal arrows in the drawings/ Figures should be considered only as exemplary, and not limiting, unless otherwise specifically noted.
  • the term “or” as used herein is generally intended to mean “and/or” unless otherwise indicated. Combinations of components or steps will also be considered as being noted, where terminology is foreseen as rendering the ability to separate or combine is unclear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Table Devices Or Equipment (AREA)

Abstract

A system and method for meeting market demand for better constructible utensils. A deformable sheet defines a handle and an operational element in which one or more scores, both straight and curved, are cooperatively provided on the sheet. The one or more scores enable deformation of the handle and/or operational element(s) to convert the structure into a strong, sturdy, and functional implement sufficient to meet the required application.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of U.S. patent application No. 61/786,434 filed 15 Mar. 2013, the contents of which are hereby expressly incorporated in its entirety by reference thereto.
  • FIELD OF THE INVENTION
  • The present invention relates generally to constructible utensils, and more specifically, but not exclusively, to constructible utensils for foodstuff.
  • BACKGROUND OF THE INVENTION
  • The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
  • As market acceptance for constructible utensils increases, alternative designs and implementations offer retailers and consumers more choices to further increase market acceptance (including functions, cost, and ease of use).
  • Sustainability, recyclability, compostability are becoming increasingly important to retailers and consumers. However, not everyone uses the terms correctly—marketers sometimes use these indiscriminately and vaguely, often to the frustration of environmentally and socially conscious manufacturers, retailers, and users who desire more accuracy. Increasingly standards for sustainability are being developed and used to help retailers and consumers avoid “green washing” for the products that they buy and use.
  • For true ecological friendliness, materials and products meet specific, ever-evolving standards and requirements. The “green” world employs a special lexicon, particularly for words such as degradable, biodegradable, recyclable, sustainable, and compostable.
  • Degradable plastics are oil based and break down through chemical reactions rather than the activity of micro-organisms, so they can degrade in an anaerobic environment into water, CO2, biomass, and trace elements. For example, the term “biodegradable” by itself does not mean much when biodegradable plastics and some types of biodegradable spoons include products that may take 100's to 1,000's of years to degrade. Since “biodegradable” specifies NO time limits, for the purposes of composting and sustainability “biodegradable” is a meaningless term.
  • To be considered compostable, plastic material must break down within 180 days in a commercial compost facility. Biodegradable plastic has no time limit. According to the American Society for Testing & Materials (e.g., ASTM D6400-2004 “Standard Specification for Compostable Plastics,” ASTM International, West Conshohocken, Pa., 2003, DOI: 10.1520/D6400-04, hereby expressly incorporated by reference thereto in its entirety for all purposes), for plastic to be considered as compostable, it must be able to break down into carbon dioxide, water, and biomass at the same rate as paper. It also needs to look like compost, should not produce any toxic material and should be able to support plant life. Compostable items are made from plant materials such as corn, potato, cellulose, soy, sugar, and the like.
  • Another important ASTM standard is ASTM D6868-2011 “Standard Specification for Labeling of End Items that Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to be Aerobically Composted in Municipal or Industrial Facilities,” ASTM International, West Conshohocken, Pa., 2003, DOI: 10.1520/D6868-11, also hereby expressly incorporated by reference thereto in its entirety for all purposes. This specification establishes the requirements for labeling of materials and products (including packaging), wherein a biodegradable plastic film or coating is attached (either through lamination or extrusion directly onto the paper) to compostable substrates and the entire product or package is designed to be composted in municipal and industrial aerobic composting facilities within 180 days.
  • The term compostable until recently was subject to some ambiguity. Certifications and representations of compostability most often reference commercial/municipal composting facilities that precisely control the environment (e.g., temperature) and microbes (e.g., periodic infusion of appropriate quantities of the appropriate microbes). Few bio-based utensils are certified compostable, and most include varying amounts of plant based starch and petroleum and take over the required 180 days or more to compost under the best of conditions. Home composting is rarely an option for these materials. Some “biodegradable” products like Taterware may take years—compost facilities either disallow all bioplastic utensils or pick them out of the compost at the end of the composting process.
  • Consumers have become increasingly skeptical of certain claims as to the various “green” attributes of various manufacturers and products since the introduction of “biodegradable plastics” in the late 1980s. Although touted as “environmentally friendly,” many so-called biodegradable plastic products did not compost as implied. And yet manufacturers of these products were able to make claims of biodegradable because no scientifically based definitions, test methods and standards existed. Promulgation, adoption, and use of the ASTM specifications, definitions, and tests mentioned above provide a standard by which products and materials may be evaluated. To this end, there are organizations that provide certification of conformance to one or more of these standards as appropriate. For example, the Biodegradable Products Institute, 331 West 57th Street, Suite 415, New York, N.Y. 10019 has created a “compostable logo” which is designed to help remove some of the confusion for consumers. The Compostable logo builds credibility and recognition for products that meet the ASTM D6400 and/or D6868 standards so consumers, composters, regulators, and others can be assured that the product will compost as expected.
  • As consumers, composters, waste scavengers, regulators, and others continue to develop the technologies and processes for efficiently handling and sorting consumer waste, consumers and businesses (collectively purchasers) are on the front line and make important decisions. The decisions include selection, use, and, disposal of products. Selection is important, based upon a purchaser's understanding the degradability of the product and, as noted above, can be improved by certifications informing a purchaser of the attributes of a product. Additionally, based upon experience and history that the purchaser has with particular products, the purchaser may be influenced towards selection or use. This is important with utensils designed for foodstuffs—how the utensil feels in the mouth of the user is important. Coatings, sharp edges, dimensions, sturdiness, and the like all play a part in selection and use.
  • After selection and use, the user decides on, or initiates/influences, post-use handling. It is not always clear to the user whether a product is recyclable, compostable, or should be included as trash. Users are often confronted with a multitude of bins with disposal options. For some products, it is problematic to select the wrong receptacle. And the propriety is not just a simple matter of knowing the characteristics of the product—one sometimes needs to know the specifics of the processing used by the disposal/recycling/scavenging entity to match a product to the right process capabilities of recycler/scavenger. This can be overwhelming to a user and can produce undesirable outcomes for the intended “green” behavior. For example, many petroleum-based utensils are recyclable, and most bio-based plastics are NOT recyclable. Most users cannot readily distinguish one composition from another to allow them to properly manage the product, even if they were current as to the recycling capabilities of the local processor.
  • As varying compositions of consumer-products are introduced, the user becomes increasingly confused as to which the product that they want to process is recyclable and how to quickly and error-free sort the various products. Some “green” conferences have recycling advisors stationed at waste collecting areas to help educate users.
  • There are many instances where single-use products are currently used for tasting and consuming foodstuffs. Mostly these products are made from a plastic or a bio-material that is not, or insufficiently, compostable and easily bio-degradable. These products typically come preformed into the recommended configuration for use by the user.
  • To compound the problem, there are many venues in which utensils are single-use (e.g., foodstuff tasting/dispensing utensils or single-serving disposable utensils). Not only is the sorting/processing problem multiplied by the sheer volume of these products used world-wide, they also use up too many resources. This is because these products also have the further undesirable characteristic of attempting to emulate conventional multi-use utensils in their construction and arrangement which results in poor packing density. Manufacturers, distributors, and retailers are increasingly concerned about cube utilization (amount of product that can be shipped/stored in a specific cubic volume). The less efficient the cube utilization, particularly as compared to alternative products, the more costly it becomes to ship and warehouse.
  • It is not always the case that a utensil design scales well as seen in many “mini” tasting spoons that yield a bowl that is often too small and shallow for properly supporting, dispensing, and consuming adequate serving sizes of a range of foodstuff. Both the retailer and the end-user can become frustrated by this. Sometimes the design is further altered after scaling which results in more material and often worse cube utilization. Not only can these products be inefficient, such products often take up an unnecessarily large amount of space in the preformed configurations while being inefficient and costing more. It is understandable as preformed configurations in consumer-familiar designs is believed to maximize strength while minimizing user complexities.
  • Compounding the problem further, bioplastics use more material in their construction because they do not have the same material properties (e.g., tensile strength of bio-material versus stainless steel versus conventional petroleum-based plastic). There are many disadvantages to conventional tasting/single-use utensils, particularly to those attempting to be truly environmentally-friendly.
  • Currently there are several “green” factors that can be independently evaluated which include: recyclable, renewable, compostable, and sustainable, and usage of material efficiency and cube utilization efficiency for volume and weight). A product and processes that measure favorably against these factors while being friendly, convenient, effective, and efficient for the retailer, consumer and waste processor is preferred.
  • What is needed is a system and method for meeting market demand for better constructible utensils.
  • BRIEF SUMMARY OF THE INVENTION
  • Disclosed is a system and method for meeting market demand for better constructible utensils. The following summary of the invention is provided to facilitate an understanding of some of technical features related to constructible utensils, particularly to those used as a spoonlid or single-use tasters, and is not intended to be a full description of the present invention. A full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole. The present invention is applicable to other constructible utensils as well as constructible paperboard structures other than utensils.
  • A deformable sheet defines a handle and an operational element in which one or more scores, both straight and curved, are cooperatively provided on the sheet. The one or more scores enable deformation of the handle and/or operational element(s) to convert the structure into a strong, sturdy, and functional implement sufficient to meet the required application. In the preferred embodiment, the unconstructed utensil is provided on a planar sheet made of the requisite material (i.e., an appropriately green/sustainable material) that may be processed to enhance function (e.g., coated with environmentally appropriate material) to resist premature degradation during use (e.g., a moisture-barrier) or it may be manufactured of a moisture-barrier material (e.g., calcium carbonate), collectively a coating, or inherent characteristic or other moisture protection system is referred to as moisture-barrier property. Thus, quantities of the unconstructed material achieve a far greater packing density as compared to pre-constructed utensils, which saves money on shipping and storage because of the smaller cube size. For many applications, the handle and operational elements are minimalist in material cost while maximizing structural strength and user-experience consistent with the intended use all the while having a smaller carbon footprint.
  • The handle, typically with a curved score that defines a folding axis, is operated by bringing portions closer together out of the plane (e.g., folding or otherwise deforming) the handle along the one or more handle scores. This folding induces a responsive distortion/deformation of the operational element to create the desired functional element. The curved score(s), in cooperation with the structural organization and composition, produce a constructed utensil that meets or exceeds performance of conventional preformed disposable/single-use utensils. This provides a superior option over conventional constructed utensils because the user gains the advantage of an improved single-use application while the utensil is eco-friendly as it has a minimalist design that is effective and capable of being made compostable and/or recyclable with recyclable, sustainable, renewable resources. These constructible utensils may be particularly configured for specific applications, including tasting, stirring, spreading, consuming harder/firmer foodstuffs, “fork-like” utensil, and the like.
  • Manufacturers have an option of configuring the base material, the periphery boundary, the placement and orientation of scores, and any coating to customize the final design in a wide variety of ways. As further explained herein, the user-constructible utensils include tasters, spreaders, stirrers that can have appropriately shaped handles and operational elements (e.g., bowls for a tasting spoon) that have the desired capacity, shape, and mouth-feel. Some bowls may have a deep configuration for more capacity while others may be shallower and sturdier to serve dense/hard foodstuff (e.g., ice cream). The fundamental teachings herein are adaptable to a wide-variety of user-constructible utensils for a wide-variety of tasks. In some cases, the utensil doubles as a dispensing mechanism, in lieu of a cup, which is particularly important for applications that use a utensil along with a cup and/or plate/napkin, cracker, or the like, providing valuable cost-savings.
  • In some embodiments, such as a dispensing and tasting implement at a food show of the like, the base material and scores are arranged and configured so that a deformed handle (e.g., folded) maintains a sufficiently useful fold after being released from the folder to retain the desired configuration of the operational end. For example for a tasting spoon, several utensils may be configured including folding the handle to produce the bowl. The folded utensils are set on a work surface and a product is placed into each of the bowls. Consumers may simply pick up a utensil and sample the product without any other apparatus. This allows for one-handed sampling, as opposed to cup and spoon, which is ideal for consumers having their hands full with products, information, containers, kids, and the like. In many of the preferred embodiments, lateral edges of the planar apparatus are folded up to produce a handle and bowl, often leaving a planar medial portion of the handle and bowl that provide a stable platform for adding, dispensing, and presenting the product to the prospective consumers. Most tasting spoons could not be arrayed and used in this fashion as they are not large enough or stable enough and do not have the upward-extending handle portions to allow them to be easily grasped. In this way, packing density for dispensing and presenting is improved and retailers/users may select from a middle of the array with greatly reduced risk of touching or otherwise contaminating foodstuff in other utensils.
  • Particularly for those applications that include a disposable plate, cup, napkin for dispensing and a utensil to consume, the versatility of the implementations of the present invention in combining these functions further saves costs and reduces environmental impact in the pre-consumer and post-consumer costs of such scenarios.
  • As noted above, many existing single use solutions attempt to emulate conventional utensils. While this is desirable to simplify training and use of the utensils, the products are often wasteful of material (and in some cases extra unneeded material results in the material/product taking up excessive space which further adds to costs in transportation and storage and is “anti-green”), particularly for applications where the utensil may be used for a few seconds. Considering that some current utensils are used for just a few seconds and may exist in landfills for centuries points out one of the many problems addressed and mitigated by embodiments of the present invention.
  • The preferred implementations of the present invention provide a greatly reduced carbon footprint due to several factors including use of a new minimalist design (rather than scaling of previous utensils) that both uses less material and reduces unnecessary material and use of environmentally friendly materials. This is true even in cases where the material is misprocessed by the consumer after use. For example, if a compostable EcoTensil® brand utensil ends up in a landfill it will have an increased chance to be partially-to-substantially degraded by the time it gets to a landfill where under normal conditions it would not degrade. (Modern landfill designs attempt to minimize any degradation of all materials by removing oxygen and other requirements for biodegradation/composting). Because the product has minimal material use and quickly degrades, the product lends itself to interstitial location among the nooks and crannies of other more rigid elements of the landfill, which effectively removes its contribution to the landfill volume.
  • Reduction in material used in the designs helps to maximize an amount of pre-disposal degradation that occurs which is advantageous no matter whether the consumer selected the correct disposal option. The advantages of minimal construction are magnified when also considering the production, shipment, storage, use, and disposal volumes. The reduced eco-footprint appears all along the lifespan of the product and savings and advantages are compounded when considering the entire lifecycle.
  • A constructible utensil, such as for a taster for example, includes a deformable generally planar rigid paperboard sheet defining a body, the body including a handle element having a fold axis and a bowl element coupled to the handle element wherein the handle element is generally elongate and rectilinear and includes a length generally parallel to the fold axis that is at least two times greater than a width generally perpendicular to the fold axis; a first curved score disposed on the body and extending from a first point on the bowl element proximate a first edge of the bowl element to a second point on the handle element proximate the fold axis; and a second curved score disposed on the body and extending from a third point on the bowl element proximate a second edge of the bowl element towards the second point; wherein the scores are generally concave with respect to the fold axis; and wherein the body is configured with an arrangement of the scores such that a folding of the body about the fold axis introduces a bowl in the bowl element by distortion of the bowl element along the curved scores.
  • A constructible utensil, such as for a stirrer for example, includes a deformable generally planar rigid sheet material defining a body, the body including a handle element having a fold axis and a bowl element coupled to the handle element at a transition area wherein the handle element is generally elongate and includes a length generally parallel to the fold axis that is at least ten times greater than a first width generally perpendicular to the fold axis; a first score disposed on the body and extending from a first point on the bowl element to a second point on the handle element proximate the fold axis and crossing the transition area; and a second score disposed on the body and extending from a third point towards the second point, wherein the third point is disposed on the bowl element; wherein the scores are curved and generally concave with respect to the fold axis and generally symmetrical about the fold axis; wherein the body is configured with arrangement of the scores such that a folding of the body about the fold axis introduces a bowl in the bowl element.
  • A constructible utensil, such as for a spreader for example, includes a deformable generally planar rigid paperboard sheet defining a body, the body including a handle element having a fold path and a spreader element coupled to the handle element wherein the spreader element is generally asymmetrically elongate and includes a first lateral edge generally straight and parallel to the fold path and a second lateral edge generally convexly curved with respect to the fold path and converging to the first lateral edge; a first score disposed on the body and extending from a first point on the spreader element to a second point on the handle element proximate the fold path; and a second score disposed on the body and extending from a third point towards the second point; wherein the body is configured with arrangement of the scores such that a folding of the body about the fold path introduces a bowl in the spreader element.
  • A constructible utensil includes a deformable generally planar rigid paperboard sheet defining a generally elongate and rectilinear body having a long axis extending from a proximal end to a distal end and a short axis generally perpendicular to the long axis with the body including a fold axis extending along the long axis and the body including a length generally parallel to the fold axis that is at least two times greater than a width generally parallel to the short axis; a first curved score disposed on the body and convex with respect to the fold axis, the first curved score extending from a first point on the body near a first lateral edge of the body at the distal end of the body to a second point on the body proximate the fold axis, wherein the first point is greater than 75% of the length from the proximal end and wherein the second point within 33% of the length from the proximal end; and a second curved score, symmetric about the fold axis to the first curved score and disposed on the body, the second curved score extending from a third point on the body near a second lateral edge of the body at the distal end to the second point; wherein the body is configured with arrangement of the scores such that a folding of the body about the fold axis introduces a bowl in the body at the distal end by distortion in the body along the scores.
  • A method of manufacturing a constructible utensil includes a) forming a generally elongate and rectilinear body from a deformable generally planar rigid paperboard sheet, the body having a long axis extending from a proximal end to a distal end and a short axis generally perpendicular to the long axis with the body including a fold axis extending along the long axis and the body including a length generally parallel to the fold axis that is at least two times greater than a width generally parallel to the short axis; b) disposing a first curved score on the body, the first curved score convex with respect to the fold axis, the first curved score extending from a first point on the body near a first lateral edge of the body at the distal end of the body to a second point on the body proximate the fold axis, wherein the first point is greater than 75% of the length from the proximal end and wherein the second point within 33% of the length from the proximal end; and c) disposing a second curved score, symmetric about the fold axis to the first curved score, on the body, the second curved score extending from a third point on the body near a second lateral edge of the body at the distal end to the second point; wherein the body is configured with arrangement of the scores such that a folding of the body about the fold axis introduces a bowl in the body at the distal end by distortion in the body along the scores.
  • A method of constructing a utensil includes a) folding a generally elongate and rectilinear body about a fold axis, the body constructed from a deformable generally planar rigid paperboard sheet, the body having a long axis extending from a proximal end to a distal end and a short axis generally perpendicular to the long axis with the body including the fold axis extending along the long axis and the body including a length generally parallel to the fold axis that is at least two times greater than a width generally parallel to the short axis and the body including a pair of curved scores symmetrically disposed on the body, the pair of curved scores convex with respect to the fold axis, the curved scores extending from a pair of points on the body near opposing lateral edges of the body at the distal end of the body and each converging to a convergence point on the body proximate the fold axis, wherein the pair of points are greater than 75% of the length from the proximal end and wherein the convergence point is within 33% of the length from the proximal end; and b) inducing a bowl in the distal end responsive to the folding step a) by distorting the body along the pair of scores as the body is folded.
  • A system for serving a foodstuff includes a worksurface; and a plurality of user-constructible utensils constructed into a plurality of shape-retaining utensils with each the shape-retaining utensil including a bowl-element supporting a portion of the foodstuff and having a pair of lateral edges folded upwards and retained folded without adhesive due to a configuration of construction materials used in a manufacture of the plurality of user-constructible utensils and wherein the plurality of constructed utensils are arrayed on the worksurface with the upward pair of lateral edges useable as a handle to remove a corresponding utensil and foodstuff from the worksurface.
  • Any of the embodiments described herein may be used alone or together with one another in any combination. Inventions encompassed within this specification may also include embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract. Although various embodiments of the invention may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments of the invention do not necessarily address any of these deficiencies. In other words, different embodiments of the invention may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
  • Other features, benefits, and advantages of the present invention will be apparent upon a review of the present disclosure, including the specification, drawings, and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the present invention and, together with the detailed description of the invention, serve to explain the principles of the present invention.
  • FIG. 1 illustrates a constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible spork;
  • FIG. 2 illustrates a constructible taster utensil including an exterior perimeter and a score pattern configured to produce a constructible taster having a widened operative element;
  • FIG. 3 illustrates both an unconstructed and constructed constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible utensil having a backstop;
  • FIG. 4 illustrates a constructible taster utensil including a perpendicular score for length-shortening folding; and
  • FIG. 5 illustrates a construction sequence for a constructible utensil including an exterior perimeter and a score pattern configured to produce a novel spoon lid utensil.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention provide a system and method for meeting market demand for better constructible utensils. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements.
  • Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
  • It should be noted that the figures include specific shapes, paths, and arrangements of scores used to facilitate formation of three dimensional bowls as a part of a body is folded. The scores have been illustrated to accurately present representative suitable score paths for the particular utensil type and application, particularly with respect to location, arrangement, and placement.
  • The constructible utensils disclosed herein are generally representative of a wide range of constructible utensils, some of which have been illustrated and described in related patents and patent applications. These related patents and patent applications include U.S. Pat. Nos. 8,210,381, D646,529, and D651,480, and U.S. patent applications Ser. Nos. 13/357,557, 61/699,808, 61/699,787, 61/712,610, 13/797,446, concurrently filed application entitled MATRIX FOR CONSTRUCTIBLE UTENSIL, U.S. application Ser. No. ______ (Attorney Docket 20226-7013), and concurrently filed application entitled SPOONWRAP FOR CONTAINER, U.S. application Ser. No. ______ (Attorney Docket 20226-7014), all of which are hereby expressly incorporated by reference thereto in their entireties for all purposes.
  • In some cases, because a preferred embodiment includes environmentally friendly materials which often include paper and paper-like substances. For a utensil, it is the case that the foodstuff may have a significant moisture content. To enhance longevity in terms of preserving structural integrity and strength over the serving/portion size, moisture resistance is important in some implementations. Such utensils may be processed to enhance function (e.g., coated with environmentally appropriate material) to resist premature degradation during use (e.g., a moisture-barrier) or it may be manufactured of a moisture-barrier material (e.g., calcium carbonate or the like), collectively a coating, or inherent characteristic or other moisture protection system is referred to as moisture-barrier property.
  • Some preferred embodiments include a paperboard sheet material. In some of the descriptions, there are certain score lines that are specifically set forth to be close to, but spaced away from, an edge of a body or body element of a constructible utensil. For some materials, these scores break down fiber used in the body and could increase moisture absorption. Spacing a terminating end of these score lines away from the physical edge improves moisture absorption resistance.
  • The preferred embodiments use sustainable tree-based wood fibers due to improved material properties. In some applications, and as additional materials are developed, other materials (such as shorter fibers from other plants or mineral-based substrates) may be used in lieu of tree-based wood fibers. Additionally, the preferred embodiments describe implementations that include multiple curved scores, including multiple curved scores that “bend” inwardly towards each other. Some implementations may include other configurations, including a single curved implementation that produces a bowl when folded along this score.
  • Some of the disclosed embodiments include configuration changes to a basic constructible single-use taster.
  • The constructible taster includes a generally “bullet” shaped perimeter having a longitudinal axis about which the constructible taster is generally symmetric. The perimeter is about 1.25 inches wide and about 3.125 inches long (the “bullet” shaped perimeter including a generally rectangular body that is about 1.25 inches×about 2.5625 inches and a semi-disk at one end of the rectangle having a radius of about 0.5625 inches). A handle portion is joined to a functional end with handle portion including a short handle score extending along the longitudinal axis and joining a pair of curved scores extending from lateral edges of the functional end located at a distal end (e.g., opposite of the handle portion at a proximal end). In some implementations the handle score may be omitted, its function provided by an extension of one or more of the curved scores extending towards the proximal end from the distal end. Folding/deforming the proximal end along the handle score (or handle score substitute) induces the deformation of the functional end about the one or more curved scores to create a three-dimensional structure (generally described as arched or bowl-shaped) which adds strength/rigidity and function, such as retaining low-viscosity foodstuff.
  • The tasters are generally small and the constructible taster is particularly configured to reduce material use while providing efficient operation. A size and shape of a bowl formed in the constructible taster at the distal end is determined, again, by the arrangement of the scores with respect to the body and its structures. For example, in the preferred embodiment, the scores are close to lateral edges of the body near the distal end (without reaching the edge to improve mouth feel by reducing sharp edges) and converge to a central fold axis near the proximal end and produce the desired bowl shape. The scores are gentle and convex with respect to the fold axis and curve over almost the entire length of the rectilinear body and do not meet until very close to the edge. For purposes of this application in the context of a taster, the scores converge within 33% of the length of the body element from the handle end and most preferably within 10% of the length from the handle end. At the other end, the scores reach near the lateral edges at points greater than 50% of the length and most preferably at points greater than 75%.
  • Included with the constructible taster are informational indicia (e.g., specifically positioned dots) that identify a preferred location for squeezing/deforming the handle portion. (E.g., bend to touch dots which recreate the desired deformation in the handle to help optimize formation of the functional element.) Preferably these indicia are placed near where the scores converge. In this case, towards the proximal end of the body, so that the body gradually distorts along scores generally over the entire length.
  • In some embodiments it will be desirable to provide some type of mechanism to maintain the lateral edges of the body (e.g., near the indicia) in a generally folded arrangement to preserve a desired minimum capacity/shape to the formed bowl (and to maintain those lateral edges extending upwards to be easily grasped to permit The constructible taster to be picked up from a work surface, especially with the bowl shape retained). The material selection of the body and the depth and nature of the formation of the scores are one way to provide for a retaining force resisting unfolding when a folding force is removed. In other embodiments, some type of tacky adhesive or interconnecting tabs may be used to hold the lateral edges together and the body in the folded mode.
  • The incorporated patents and patent applications describe alternate score patterns and perimeter shapes for the constructible taster, and other constructible utensils described herein. Those alternates may be combined with the basic taster and further modified as described herein in keeping with the present invention.
  • FIG. 1 illustrates a constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible spork. The constructible spork of FIG. 1 is a modification of the constructible taster and includes a bowl-producing score pattern with the forward free curvilinear edge including 2 tines, with 2-5 tines possible with different perimeter notching. The tines of the constructible spork helps to spear and catch noodles, salads, fruit salads and the like.
  • FIG. 2 illustrates a constructible taster utensil including an exterior perimeter and a score pattern configured to produce a constructible taster having a widened operative element. The constructible taster utensil of FIG. 2 is a modification of the constructible taster and includes a widened spoon end (i.e., the functional end). The constructible taster utensil of FIG. 2 aids the consumer and can help to reduce material usage during manufacturing.
  • FIG. 3 illustrates both an unconstructed and constructed constructible utensil including an exterior perimeter and a score pattern configured to produce a constructible utensil having a backstop. The constructible taster utensil of FIG. 3 is a modification of the constructible taster and includes a score pattern having backstop scores at the end of the handle portion. When needed or desired, a consumer is able to fold up the backstop along the backstop scores to create a dam that prevents contents (e.g., liquids) from spilling off the back end of the handle. The backstop scores include a pair of linear scores extending from a common point on the longitudinal axis back towards rear corners of the handle portion. Those scores, combined with a longitudinal score extending from an edge of the handle towards the functional end (which is sometimes present in certain implementation of the constructible taster) cooperate with the pair of linear scores to selectively produce the independently operable backstop. The backstop is independent from the bowl-producing scoring pattern as the user may or may not use the backstop with a folded and constructed utensil.
  • FIG. 4 illustrates a constructible taster utensil including a perpendicular score for length-shortening folding. The constructible taster utensil of FIG. 4 is a modification of the constructible taster and includes a perpendicular (e.g., to the longitudinal axis and/or the fold axis) fold to allow the constructible taster utensil to be length collapsible to fit on small packages. Even though the constructible taster is typically configured to be very short, there are applications in which it is desired to have a shortened constructible taster, such as inclusion in certain small footprint foodstuff containers (e.g., food samples and the like). Also the constructible taster utensil frequently needs to be longer than the side or top of a container so it can reach into the container and still have length for the consumer to hold the handle end.
  • The perpendicular fold enables a pre-constructed length of constructible taster utensil to shortened for packaging. Depending upon a location, the folded length may be shortened anywhere from 50% to 75% of the unfolded length.
  • FIG. 5 illustrates a construction sequence for a constructible utensil including an exterior perimeter and a score pattern configured to produce a novel spoon lid utensil. The incorporated patent documents include description and illustrations of several different spoon lids. The products can have a handle portion having a perimeter matching the container opening/lid shape and a functional extension that is foldably attached to the handle portion. Unfolding the functional extension and folding the handle portion creates an extended bowl-portion suitable for reaching into the container and consuming the foodstuff contained within. Those solutions offer the advantage of a small pre-constructed footprint with the ability to have a greater length when constructed. In some instances the folding process increases unit costs due to the folding step and addition of any releasable adhesive securing the functional extension in the folded configuration to be ready for use. And as compared to the constructible utensil illustrated in FIG. 5, such a system includes “extra” material that is not used by the embodiment of FIG. 5.
  • The constructible utensil of FIG. 5 includes a paperboard (or other suitable foundation material) blank shaped to match the intended packing location (which for this implementation is under a lid to help maintain the constructible utensil in a clean and sanitary condition but other locations are possible). The perimeter can thus be shaped to match the container mounting/attachment location, frequently it is circular such as for a yogurt container. Other perimeter shapes are possible and as varied as possible opening shapes.
  • The desired perimeter shape is cut and a number of interior scores and cuts are formed within the blank. The cuts form a bullet-shaped functional portion that is hingedly fixed to the interior of the blank. A pair of lateral scores connecting ends of the cut to the exterior form hinges that allow the bullet-shaped functional portion to be displaced from the plane of the blank and rotated 180 degrees about the hinging lateral scores so the functional portion now extends past the opening-shaped perimeter. Scores on the functional include a typical curved score pattern that are symmetric about a fold axis. That fold axis is aligned with a score on the interior portion of the blank and thus allows the structure to be easily folded about the fold axis to produce a constructed utensil for use with the container. The constructible utensil thus saves material and folding costs as compared to the reference spoonlid system described herein.
  • The system and methods above has been described in general terms as an aid to understanding details of preferred embodiments of the present invention. In the description herein, numerous specific details are provided, such as examples of components and/or methods, to provide a thorough understanding of embodiments of the present invention. Some features and benefits of the present invention are realized in such modes and are not required in every case. One skilled in the relevant art will recognize, however, that an embodiment of the invention can be practiced without one or more of the specific details, or with other apparatus, systems, assemblies, methods, components, materials, parts, and/or the like. In other instances, well-known structures, materials, or operations are not specifically shown or described in detail to avoid obscuring aspects of embodiments of the present invention.
  • Reference throughout this specification to “one embodiment”, “an embodiment”, or “a specific embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention and not necessarily in all embodiments. Thus, respective appearances of the phrases “in one embodiment”, “in an embodiment”, or “in a specific embodiment” in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics of any specific embodiment of the present invention may be combined in any suitable manner with one or more other embodiments. It is to be understood that other variations and modifications of the embodiments of the present invention described and illustrated herein are possible in light of the teachings herein and are to be considered as part of the spirit and scope of the present invention.
  • It will also be appreciated that one or more of the elements depicted in the drawings/figures can also be implemented in a more separated or integrated manner, or even removed or rendered as inoperable in certain cases, as is useful in accordance with a particular application.
  • Additionally, any signal arrows in the drawings/Figures should be considered only as exemplary, and not limiting, unless otherwise specifically noted. Furthermore, the term “or” as used herein is generally intended to mean “and/or” unless otherwise indicated. Combinations of components or steps will also be considered as being noted, where terminology is foreseen as rendering the ability to separate or combine is unclear.
  • As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
  • The foregoing description of illustrated embodiments of the present invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed herein. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes only, various equivalent modifications are possible within the spirit and scope of the present invention, as those skilled in the relevant art will recognize and appreciate. As indicated, these modifications may be made to the present invention in light of the foregoing description of illustrated embodiments of the present invention and are to be included within the spirit and scope of the present invention.
  • Thus, while the present invention has been described herein with reference to particular embodiments thereof, a latitude of modification, various changes and substitutions are intended in the foregoing disclosures, and it will be appreciated that in some instances some features of embodiments of the invention will be employed without a corresponding use of other features without departing from the scope and spirit of the invention as set forth. Therefore, many modifications may be made to adapt a particular situation or material to the essential scope and spirit of the present invention. It is intended that the invention not be limited to the particular terms used in following claims and/or to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include any and all embodiments and equivalents falling within the scope of the appended claims. Thus, the scope of the invention is to be determined solely by the appended claims.

Claims (2)

What is claimed as new and desired to be protected by Letters Patent of the United States is:
1. The apparatus substantially as disclosed herein.
2. The method substantially as disclosed herein.
US14/214,993 2011-01-25 2014-03-16 Constructible utensils Abandoned US20140259685A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/214,993 US20140259685A1 (en) 2013-03-15 2014-03-16 Constructible utensils
US15/092,895 US9869575B2 (en) 2012-10-11 2016-04-07 Constructible utensils
US15/498,473 US20220167769A9 (en) 2011-01-25 2017-04-27 Constructible utensils
US17/714,050 US12484725B2 (en) 2011-01-25 2022-04-05 Constructible utensils with locking tab
US17/894,585 US11832747B2 (en) 2011-01-25 2022-08-24 Measuring scoop
US18/158,114 US20230157467A1 (en) 2011-01-25 2023-01-23 Utensil contiguous with an element of a food package
US18/231,085 US12446717B2 (en) 2011-01-25 2023-08-07 Utensils having inwardly curving and perpendicular scores

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361786434P 2013-03-15 2013-03-15
US14/214,993 US20140259685A1 (en) 2013-03-15 2014-03-16 Constructible utensils

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US14/032,194 Continuation-In-Part US20140103675A1 (en) 2011-01-25 2013-09-19 Constructible scoop
US15/092,895 Continuation-In-Part US9869575B2 (en) 2011-01-25 2016-04-07 Constructible utensils

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US14/214,992 Continuation-In-Part US20140291333A1 (en) 2011-01-25 2014-03-16 Spoonwrap for container
US14/271,415 Continuation US9884707B2 (en) 2011-01-25 2014-05-06 Pop-out constructible utensil
US201514695039A Continuation-In-Part 2011-01-25 2015-04-23
US15/498,473 Continuation US20220167769A9 (en) 2011-01-25 2017-04-27 Constructible utensils

Publications (1)

Publication Number Publication Date
US20140259685A1 true US20140259685A1 (en) 2014-09-18

Family

ID=51520660

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/214,993 Abandoned US20140259685A1 (en) 2011-01-25 2014-03-16 Constructible utensils

Country Status (1)

Country Link
US (1) US20140259685A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150182051A1 (en) * 2013-12-26 2015-07-02 Theo Stewart-Stand Multipurpose eating utensil
US9265372B2 (en) * 2013-12-26 2016-02-23 Folditflat Multipurpose eating utensil
US20220338652A1 (en) * 2019-09-25 2022-10-27 Be Green Packaging Co., Ltd. Pulp molded folding spoon

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US652350A (en) * 1900-02-28 1900-06-26 Elmer E Davenport Scoop.
FR897092A (en) * 1943-04-05 1945-03-12 Spoon
DE9312076U1 (en) * 1993-08-12 1994-03-10 Posegga, Susanne, 82335 Berg Disposable spoons made of aluminum lid folding system (yogurt, etc.)
WO1996011858A1 (en) * 1994-10-17 1996-04-25 Alois Mosimann Cover for beaker or tin-shaped containers
EP1142522A1 (en) * 2000-04-03 2001-10-10 DeSter. ACS Holding B.V. Flexible element for forming a piece of cutlery
EP1418134A1 (en) * 2002-11-11 2004-05-12 Breves, Daniel Disc for making a scooping tool
US6751873B2 (en) * 2001-08-10 2004-06-22 Roberts Polypro, Inc. Foldable eating utensil
US20090205209A1 (en) * 2008-02-16 2009-08-20 Cristian Bredee Tovar Folding Spoon Apparatus and Method
FR2942461A1 (en) * 2009-02-25 2010-08-27 Francois Gourdikian Cover for food pot, has spoon formed using fine strip and equipped with rigid handle extended by flat and round part, where spoon extends by hollow part at level of handle using fold
US7971774B2 (en) * 2009-05-18 2011-07-05 Ofir Yaloz Drinking apparatus
EP2591708A1 (en) * 2011-11-08 2013-05-15 Magisso OY Scoop used in cooking and/or portioning food
USD686045S1 (en) * 2012-03-07 2013-07-16 Anna M. Stewart Spoon spreader
US8484855B1 (en) * 2012-06-13 2013-07-16 Larry Don King, Sr. Flexible plastic utensil
US20140103675A1 (en) * 2012-10-11 2014-04-17 Ecotensil Inc. Constructible scoop
US20140190022A1 (en) * 2013-01-10 2014-07-10 Juhani Siren Scoop used in cooking and/or portioning food
US20140238987A1 (en) * 2013-02-27 2014-08-28 Matthew Brooks Foldable spoon and method for making
US20140259697A1 (en) * 2006-11-14 2014-09-18 Ecotensil Inc. Constructible eating utensil with scoop from foldable blank
US20140261024A1 (en) * 2013-03-15 2014-09-18 Ecotensil Inc. Matrix for constructible utensil
US20140291333A1 (en) * 2013-03-15 2014-10-02 Ecotensil Inc. Spoonwrap for container
US20140332539A1 (en) * 2013-05-07 2014-11-13 Ecotensil Inc. Pop-out constructible utensil
US9131793B2 (en) * 2012-09-11 2015-09-15 Ecotensil Inc. Patterning for constructable utensil
US20150257560A1 (en) * 2014-03-11 2015-09-17 II Patrick A. Boateng Reconfigurable food container and eating utensil
US9265372B2 (en) * 2013-12-26 2016-02-23 Folditflat Multipurpose eating utensil
US9272807B2 (en) * 2013-12-26 2016-03-01 Folditflat Multipurpose eating utensil

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US652350A (en) * 1900-02-28 1900-06-26 Elmer E Davenport Scoop.
FR897092A (en) * 1943-04-05 1945-03-12 Spoon
DE9312076U1 (en) * 1993-08-12 1994-03-10 Posegga, Susanne, 82335 Berg Disposable spoons made of aluminum lid folding system (yogurt, etc.)
WO1996011858A1 (en) * 1994-10-17 1996-04-25 Alois Mosimann Cover for beaker or tin-shaped containers
EP1142522A1 (en) * 2000-04-03 2001-10-10 DeSter. ACS Holding B.V. Flexible element for forming a piece of cutlery
US6751873B2 (en) * 2001-08-10 2004-06-22 Roberts Polypro, Inc. Foldable eating utensil
EP1418134A1 (en) * 2002-11-11 2004-05-12 Breves, Daniel Disc for making a scooping tool
US20140259697A1 (en) * 2006-11-14 2014-09-18 Ecotensil Inc. Constructible eating utensil with scoop from foldable blank
US20090205209A1 (en) * 2008-02-16 2009-08-20 Cristian Bredee Tovar Folding Spoon Apparatus and Method
FR2942461A1 (en) * 2009-02-25 2010-08-27 Francois Gourdikian Cover for food pot, has spoon formed using fine strip and equipped with rigid handle extended by flat and round part, where spoon extends by hollow part at level of handle using fold
US7971774B2 (en) * 2009-05-18 2011-07-05 Ofir Yaloz Drinking apparatus
EP2591708A1 (en) * 2011-11-08 2013-05-15 Magisso OY Scoop used in cooking and/or portioning food
USD686045S1 (en) * 2012-03-07 2013-07-16 Anna M. Stewart Spoon spreader
US8484855B1 (en) * 2012-06-13 2013-07-16 Larry Don King, Sr. Flexible plastic utensil
US9131793B2 (en) * 2012-09-11 2015-09-15 Ecotensil Inc. Patterning for constructable utensil
US20160066722A1 (en) * 2012-09-11 2016-03-10 Ecotensil Inc. Patterning for constructable utensil
US20140103675A1 (en) * 2012-10-11 2014-04-17 Ecotensil Inc. Constructible scoop
US20140190022A1 (en) * 2013-01-10 2014-07-10 Juhani Siren Scoop used in cooking and/or portioning food
US9301631B2 (en) * 2013-01-10 2016-04-05 Magisso Oy Scoop used in cooking and/or portioning food
US20140238987A1 (en) * 2013-02-27 2014-08-28 Matthew Brooks Foldable spoon and method for making
US20140261024A1 (en) * 2013-03-15 2014-09-18 Ecotensil Inc. Matrix for constructible utensil
US20140291333A1 (en) * 2013-03-15 2014-10-02 Ecotensil Inc. Spoonwrap for container
US20140332539A1 (en) * 2013-05-07 2014-11-13 Ecotensil Inc. Pop-out constructible utensil
US9265372B2 (en) * 2013-12-26 2016-02-23 Folditflat Multipurpose eating utensil
US9272807B2 (en) * 2013-12-26 2016-03-01 Folditflat Multipurpose eating utensil
US20150257560A1 (en) * 2014-03-11 2015-09-17 II Patrick A. Boateng Reconfigurable food container and eating utensil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150182051A1 (en) * 2013-12-26 2015-07-02 Theo Stewart-Stand Multipurpose eating utensil
US9265372B2 (en) * 2013-12-26 2016-02-23 Folditflat Multipurpose eating utensil
US9272807B2 (en) * 2013-12-26 2016-03-01 Folditflat Multipurpose eating utensil
US20220338652A1 (en) * 2019-09-25 2022-10-27 Be Green Packaging Co., Ltd. Pulp molded folding spoon

Similar Documents

Publication Publication Date Title
US9869575B2 (en) Constructible utensils
US20230157467A1 (en) Utensil contiguous with an element of a food package
CA2604632C (en) Package
WO2021050253A1 (en) Cooler with carry handle
US10264905B2 (en) Coaster for coupling to a cup
US20090126204A1 (en) Recyclable and compostable eating utensils and other products made from crop-based resin & method of manufacture
US20250176744A1 (en) Utensil With Outwardly Then Inwardly Curving Scores
US20140259685A1 (en) Constructible utensils
US20150336708A1 (en) Snap-fold containers
WO2014059369A1 (en) Constructible utensils
US12446717B2 (en) Utensils having inwardly curving and perpendicular scores
US20250359693A1 (en) Utensils Within Lids
US20180014668A1 (en) Recyclable Disposable Tableware Fabricated From Rapidly Renewable Resources
JP3172713U (en) Container carrier
US20140053737A1 (en) Beverage infuser
CN201509813U (en) Loading container
JP3225206U (en) Drinking paper straws
KR200450062Y1 (en) Yogurt drink preservation pack which can use a cover like a spoon
CN201176310Y (en) Cake box with shear dashed line
KR101040287B1 (en) Picnic book
US20070045390A1 (en) Container support with tool
EP4218501A1 (en) Disposable paper spoon for ice cream and similar solid foodstuffs, in particular pasty solid foodstuffs
CN208217212U (en) Environmental protection simple bag
JP3138242U (en) Recycled tableware
KR20170003123U (en) cover for drink cup

Legal Events

Date Code Title Description
AS Assignment

Owner name: ECOTENSIL INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CROSS, PEGGY V. K., MS.;REEL/FRAME:033057/0487

Effective date: 20140418

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ECOTENSIL INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CROSS, PEGGY V. K.;REEL/FRAME:070203/0529

Effective date: 20250212

Owner name: ECOTENSIL INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:CROSS, PEGGY V. K.;REEL/FRAME:070203/0529

Effective date: 20250212