US20130122461A1 - Medical cutting tool - Google Patents
Medical cutting tool Download PDFInfo
- Publication number
- US20130122461A1 US20130122461A1 US13/813,399 US201113813399A US2013122461A1 US 20130122461 A1 US20130122461 A1 US 20130122461A1 US 201113813399 A US201113813399 A US 201113813399A US 2013122461 A1 US2013122461 A1 US 2013122461A1
- Authority
- US
- United States
- Prior art keywords
- brazing
- joint
- neck
- shank
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C3/00—Dental tools or instruments
- A61C3/02—Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/16—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00526—Methods of manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2210/00—Details of milling cutters
- B23C2210/08—Side or top views of the cutting edge
- B23C2210/084—Curved cutting edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/20—Tools
Definitions
- the present invention relates to a medical cutting tool which is used to cut a surface layer of a tooth, a bone including an alveolar bone, and the like used during dental treatment.
- a desired treatment may be performed by cutting a surface layer of a tooth.
- a medical cutting tool used during the treatment includes a shank portion gripped by a chuck of a handpiece, and a working portion continuously formed from the shank portion and including a cutting blade which is formed from an outer circumference to a leading end portion and is used to cut a surface layer.
- the medical cutting tool formed as described above is fixed to the handpiece when the shank portion is gripped by the chuck. Then, by an operation of a doctor, the rotating working portion is pressed to a portion to be treated, thereby cutting a desired portion.
- the working portion needs to ensure a sufficient cutting performance with respect to a hard surface layer.
- the working portion is formed using cemented carbide represented by tungsten carbide.
- the shank portion needs to ensure a strength that can sufficiently resist bending and warping affected when a desired portion is cut by the working portion.
- the shank portion be formed continuously from the working portion and using cemented carbide.
- the shank portion is formed using, for example, SUS 420 which is martensitic stainless steel or carbon tool steels (SK), an intermediate component used to form the working portion is formed by cemented carbide, and the intermediate component of the working portion is bonded to a leading end of the shank portion by pressure welding, so that a medical cutting tool processed in a desired shape is provided.
- SUS 420 which is martensitic stainless steel or carbon tool steels (SK)
- SK martensitic stainless steel or carbon tool steels
- a bonded portion is heated. Accordingly, a strength of a material forming the shank portion may vary due to a thermal effect, and cemented carbide may be oxidized. That is, an annealing effect may occur due to an increase in temperature of the bonded portion, and thus the strength of the shank portion may decrease and an oxide film may be generated on a surface of cemented carbide.
- a material forming the shank portion is martensitic stainless steel or carbon steel that may expect hardening from a heat treatment
- the strength can be improved by performing heat treatment again after the bonding.
- martensitic stainless steel or carbon steel has problems that the generation of rust cannot be excluded and a fracture is likely to be generated when hardness is excessively increased by heat treatment.
- austenitic stainless steel be used as a material of the shank portion.
- this material may not have an improved strength from heat treatment.
- the strength is improved by extending a structure to a fiber shape by a cold drawing process.
- the strength may be degraded.
- An object of the invention is to provide a medical cutting tool in which rust is not be generated, a fracture is hardly generated, and a high strength is stably exhibited.
- a medical cutting tool according to the invention to resolve the above problems is a medical cutting tool formed by brazing a working portion formed of cemented carbide or ceramic to a leading end of a shank portion formed by a round austenitic stainless steel bar, wherein the shank portion includes a shank, a neck formed to be continuous to the shank, and a joint which is formed to be continuous to neck and brazes the working portion formed of cemented carbide or ceramic, and at least a portion of stainless steel in the joint and near the joint of the neck includes a structure of a fiber shape.
- a structure of the stainless steel in the joint at a side of the working portion be a granular structure.
- the shank portion is formed of austenitic stainless steel, and includes the shank, the neck, and the joint, and at least a portion of stainless steel in the joint and near the joint of the neck has a structure of a fiber shape.
- the joint at the side of the working portion of stainless steel in the joint is a granular structure, the joint at the side of the working portion is in an annealing state, and thus flexibility can be exhibited and a fracture can be difficult to be generated.
- FIG. 1 is a diagram illustrating a configuration of a cutting tool.
- FIG. 2 is an enlarged view illustrating a state in which a material of a working portion is brazed to a brazing surface of a shank portion.
- FIG. 3 is a diagram illustrating a configuration in which gas is sprayed to a brazing region and near the brazing region to perform cooling.
- FIG. 4 is a diagram illustrating a process order when the cutting tool is manufactured.
- FIG. 5 is a diagram illustrating a measurement position of hardness in a neck of the cutting tool.
- FIG. 6 is a diagram illustrating a structure of the brazing region of the cutting tool.
- the cutting tool of the invention is fixed to a chuck of a handpiece gripped and operated by a hand of a doctor to be rotated, so that a working portion presses a surface layer of a tooth or a surface of a bone including an alveolar bone to cut the surface layer or the surface.
- cemented carbide or ceramic
- stainless steel a round austenitic stainless steel bar
- a structure on a side of the working portion of a joint forming the shank portion is formed in a granular structure, thereby causing a side of the brazing portion in the joint to exhibit flexibility so that a fracture is hardly generated.
- the shank portion is formed using a round stainless steel bar.
- the shank portion includes a shank, a neck formed to be continuous to the shank, and a joint formed to be continuous to the neck.
- the shank and the neck are provided in the substantially same shape and size as those of a desired cutting tool, and the joint is provided in a size corresponding to a size of a material to be brazed.
- the shank portion is extremely thin, where the shank which is the thickest portion is about 1.6 mm and the thinnest portion in the neck is about 0.4 mm.
- the neck forming the shank portion has a function of smoothly connecting from the thickness of the shank to the thickness of the working portion (thickness of the joint).
- the thickness of the shank is greater than the thickness of the working portion, and thus the neck is formed in a tapered shape where a diameter decreases from the shank to the joint.
- the strength in the neck can be identified by conducting a test such as a tensile test and a flexural test.
- a test such as a tensile test and a flexural test.
- the inventor verifies a relation among the Vickers hardness, the strength needed for the cutting tool, and the extension of a fiber of a structure entailed by a cold drawing process as a result of various experiments conducted in a developmental process of the cutting tool over the years.
- both a granular structure and a fiber shaped structure are included when the Vickers hardness of stainless steel is around 200, and a structure is extended in a fiber shape when the Vickers hardness is greater than or equal to 250.
- the Vickers hardness has an upper limit which is about 650 at the maximum, and in particular, it is preferable that the Vickers hardness is in the range of 350 or more and 600 or less because there occurs a problem that a fracture is easily generated when the hardness is excessively high.
- stainless steel forming the shank portion needs to be able to have the Vickers hardness in the neck in the range of 350 or more and 650 or less.
- the cold drawing process is performed in advance on the stainless steel forming the shank portion, and a structure is extended in a fiber shape.
- a structure is extended in a fiber shape.
- the surface of the stainless steel in which a structure is extended in a fiber shape by performing the cold drawing process, needs to have a sufficiently great value than the Vickers hardness of 350.
- the surface of austenitic stainless steel has such hardness, it is possible to provide the Vickers hardness of the neck of 350 or more and the fiber shaped structure by cutting a portion corresponding to the neck in forming the shank portion.
- Tungsten carbide (WC) or titanium carbide used as a cutting tool in machine processing may be employed as cemented carbide forming the working portion, and carbide ceramics represented by cermet may be employed as ceramic.
- the cemented carbide is brazed to the joint formed at a leading end of the shank portion in a state of a material. Thereafter, in a state in which the shank is gripped, machine processing is performed to have a size corresponding to a desired cutting tool, and machine processing of forming a spiral-shaped cutting blade is performed. Therefore, when a material of the working portion is brazed to the shank portion, the shank and the neck forming the shank portion substantially have a shape and a size corresponding to a desired cutting tool. However, a material of the joint and the working portion does not have a shape of the desired cutting tool, and has a large size.
- a material of a solder used when the joint of the shank portion and a material of the working portion are brazed is not particularly limited.
- a silver solder that melts at a relatively low temperature for example, about 700° C.
- a property of the solder is not particularly limited, and any of a foil shape, a bar shape, and a paste shape may be used.
- a solder in a paste shape is preferable since a thickness of the joint of the shank portion or a material of the working portion is thin, and a void is small.
- cemented carbide which is the material of the working portion is heated in general.
- examples of a scheme of heating the material of the working portion formed of cemented carbide or ceramic include a heat scheme using a flame, a heat scheme of accommodating the material in a holding furnace, a heat scheme using an electromagnetic induction, and the like, and a scheme may be selected and employed from the schemes.
- the material of the working portion is brazed to the joint forming the shank portion.
- a temperature of the joint on the side of the working portion increases to an annealing temperature
- the temperature of the joint and the neck near the joint increases to an annealing temperature depending on a heating temperature and a heating time.
- the joint on the side of the working portion is annealed so that the structure becomes a granular structure.
- the granular structure portion exhibits flexibility so that a fracture is hardly generated.
- the structure is stainless steel extended in a fiber shape
- both the joint and the neck are annealed, and thus a structure of a fiber shape may become a granular structure.
- a brazing region of stainless steel forming the shank portion and the neighborhood be forcibly cooled down.
- a cutting tool A includes a shank portion 1 fixed to a chuck of a handpiece (not illustrated), and a working portion 2 that cuts a surface layer of a tooth (not illustrated).
- the shank portion 1 is made from stainless steel in which a structure is extended in a fiber shape, and the working portion 2 is made from WC as a material.
- the cutting tool A is constructed when the shank portion 1 and the working portion 2 are connected and integrated with each other through a brazing portion 3 using brazing.
- the shank portion 1 of the cutting tool A is fixed to the chuck of the handpiece (not illustrated), and rotates in this state. For this reason, a shank 1 a fixed to the chuck of the handpiece is formed on one side of the shank portion 1 .
- the shank 1 a has a constant thickness (a thickness of about 1.6 mm in the embodiment) corresponding to the size of the chuck regardless of the shape, the thickness, and the length of the working portion 2 .
- a specification such as an external shape, a thickness, and a length of the working portion 2 in the cutting tool A is set according to a therapeutic purpose of a portion or a degree to be cut.
- the cutting tool A illustrated in FIG. 1 is merely an example of the cutting tool A.
- a shape of the working portion 2 includes a round bar shape illustrated in FIG. 1 in which a leading end has a spherical shape and a thickness is uniform, a tapered shape in which a leading end has a spherical shape and a thickness becomes thinner toward the leading end, a sphere shape, and the like.
- a plurality of spiral-shaped cutting blades 2 a is formed on an outer circumference surface of the working portion 2 .
- an external diameter of the working portion 2 is set to various values corresponding to the purpose of the cutting tool A.
- a material 7 of cemented carbide used to form the working portion 2 corresponding to the cutting tool A (hereinafter, simply referred to as “material 7 ”) is brazed to the leading end of the shank portion 1 corresponding to the desired cutting tool A in advance, and then machine processing such as cutting and grinding is performed on the leading end portion of the shank portion 1 and the material 7 , thereby providing a shape and a size corresponding to the desired working portion 2 .
- a neck 1 b in a tapered shape is formed to be continuous to the shank 1 a having a constant thickness, and a joint 1 c having a diameter substantially equal to or slightly less than a thickness of the material 7 is formed at a leading end of the neck 1 b .
- a thickness of the joint 1 c is not particularly limited, and one third of a diameter of the joint 1 c or less is sufficient for the thickness.
- a brazing surface 1 d is formed on an edge face of the joint 1 c
- a sloped surface 5 b having an apex 5 a is formed on the brazing surface 1 d.
- the sloped surface 5 b having the apex 5 a formed on the brazing surface 1 d of the shank portion 1 is formed as a sloped surface having a circular cone shape for an easiness of processing.
- the brazing surface 1 d may be fabricated concurrently with a fabrication of another portion, for example, the neck 1 b and the joint 1 c when the shank portion 1 is rotated and cut from a stainless steel material having a round bar shape, which is advantageous.
- the height of the sloped surface 5 b in the brazing portion 3 is confirmed to be present. That is, referring to the relation, it is preferable that the height of the sloped surface 5 b be set in the range of 0.5% to 8% of the diameter of the brazing surface. When the height is less than a value in the range, an amount of solder is small, and thus the sufficient joint strength is difficult to be obtained.
- the height of the sloped surface 5 b provided on the brazing surface 1 d be set in the range of 1% to 5% of a diameter of the brazing surface 1 d.
- the height of the sloped surface 5 b is 0.038 mm, and is set to be about 3.1% of the thickness of the working portion 2 .
- the height is 0.031 mm, and is set to be about 3.1% of the thickness of the working portion 2 .
- the height is 0.022 mm, and is set to be about 2.8% of the thickness of the working portion 2 .
- the brazing surface 2 b is formed on an edge face at the side of the shank portion 1 of the working portion 2 (material 7 ).
- the shape of the brazing surface 2 b is not particularly limited, and may be a flat surface or the same shape as that of the brazing surface 1 d of the shank portion 1 .
- the brazing surface 2 b of the working portion 2 is formed as a flat surface.
- the shank portion 1 and the material 7 are disposed in which the brazing surface 1 d formed at the joint 1 c of the shank portion 1 and the brazing surface 2 b formed on an edge face of the material 7 face each other in the brazing portion 3 , and are bonded to each other by the solder 6 supplied to a void formed between the brazing surfaces 1 d and 2 b and hardened.
- the void between the brazing surfaces 1 d and 2 b is set to a size identical to the height of the sloped surface 5 b . Accordingly, a volume of the void in the brazing portion 3 is substantially constant, and a supplied amount of the solder 6 may be stable.
- the brazing portion 3 is heated to a melting temperature of the solder 6 , and the solder 6 is melted due to an increased temperature in the brazing portion 3 , so that the void formed between the brazing surfaces 1 d and 2 b is filled. Then, when heating of the brazing portion 3 is suspended, the brazing portion 3 is cooled down, and the solder 6 is hardened, so that the shank portion 1 and the material 7 are bonded to each other. Thereafter, the cutting tool A is constructed by performing predetermined machine processing on the material 7 .
- the neck 1 b has the hardness greater than or equal to the Vickers hardness 350 , and it is possible to exhibit the sufficient strength with respect to the bending stress and the torsional force acting when a desired cutting operation is performed by the working portion 2 .
- the Vickers hardness of the neck 1 b is less than or equal to 350, the neck portion is bent, and a stable cutting is difficult, which is not preferable.
- an unlimitedly high hardness of the neck 1 b is not preferable.
- the Vickers hardness exceeds 650, a fracture is easily generated, which is not preferable.
- the joint 1 c and a joint part between the joint 1 c and the neck 1 b are collectively referred to as a brazing region.
- a neighborhood of the joint 1 c in the neck 1 b includes the joint part between the joint 1 c and the neck 1 b , is a portion included in a neighborhood of the brazing region, and is a portion about twice a thickness of the joint 1 c.
- a scheme of cooling down the brazing region and the neighborhood of the brazing region are not particularly limited.
- a cooling scheme that may maintain the brazing region and the neighborhood of the brazing region at a temperature less than or equal to a transformation temperature of a structure may be used. That is, a transformation of austenitic stainless steel may occur from about 500° C., and thus a cooling scheme that may maintain the temperature or less by forcibly cooling down the brazing region and the neighborhood of the brazing region in the shank portion 1 may be employed.
- Examples of the cooling scheme include a cooling scheme that sprays gas having a pressure, a cooling scheme that sprays liquid as a mist, a cooling scheme that directly sprays liquid, a cooling scheme that sprays a dry ice chip or an ice chip, and a cooling scheme that disposes a cooling medium at the brazing region and the neighborhood of the brazing region, and sprays wind through the cooling medium.
- a cooling scheme may be selected and employed from the cooling schemes.
- the shank portion 1 is formed using stainless steel
- the working portion 2 is formed using cemented carbide which is formed from WC
- an oxidization of a surface of the stainless steel and a surface of the cemented carbide occurring during a brazing operation be reduced as possible.
- an inert gas be sprayed when forcibly cooling down the brazing region or the neighborhood of the brazing region in stainless steel.
- gas generally used as an inert gas such as nitrogen gas and argon gas be used as the inert gas.
- an object of spraying an inert gas is to prevent an oxidization of a surface of stainless steel and a surface of cemented carbide, and thus gas which is inert at a degree capable of achieving the object may be used. That is, 100% nitrogen gas or argon gas may not be used as an inert gas, and gas in which nitrogen gas or argon gas and air are mixed may be used.
- the shank portion 1 and the material 7 of the working portion 2 are brazed, gas is generated due to an increased temperature of a solder.
- the generated gas may be smoothly removed from a brazing part.
- a brazing operation by causing the apex 5 a to come into contact with the edge face of the material 7 , a gap therebetween may be maintained.
- cemented carbide forming the material 7 be disposed in the bottom for supporting, and the shank portion 1 be substantially perpendicularly disposed to cause the apex 5 a to come into contact with the edge face of the material 7 .
- gas generated during a brazing rises along the sloped surface 5 b and is vented to atmosphere from an outer circumference of the joint 1 c .
- a melted solder penetrates into a small part by capillary phenomenon acting on a minute void formed from a slope of the protrusion portion and the edge face of the working portion, and an excellent brazing may be realized.
- a gap between the brazing surface 1 d and the edge face of the material 7 may be set during a brazing operation, and the gap may be maintained through the brazing operation.
- the brazing operation may be performed while the gap between the brazing surface 1 d and the edge face of the material 7 is stably maintained, and a variation in strength resulting from the brazing operation may be excluded.
- a shape of the sloped surface 5 b including the apex 5 a provided on the brazing surface 1 d is not particularly limited.
- Examples of the shape include a curved surface shape, a circular cone shape, a pyramid shape, and the like, and a shape including the shapes may be used. However, considering at least a condition of easiness and the like of processing when the shank portion 1 is formed, it is preferable to be formed as a circular cone shape.
- the sloped surface 5 b including the apex 5 a provided on the brazing surface 1 d of the shank portion 1 is brazed in a state of coming into contact with an opposing brazing surface (the edge face of the material 7 ).
- a height of the sloped surface 5 b defines a gap between two opposing brazing surfaces, and sets a volume of a solder in the brazing portion. For this reason, it is preferable that the height of the sloped surface 5 b be changed in response to the thickness in the joint portion between the shank portion 1 and the working portion 2 .
- the brazing device illustrated in FIG. 3 is configured so as to be able to forcibly cool down a brazing region of the shank portion 1 and the material 7 , and a neighborhood of the brazing region by spraying an inert gas.
- a chuck 11 is configured to be able to reciprocate along an axis line 12 by gripping the shank 1 a of the shank portion 1 .
- a holding member 13 is configured to be able to put and hold the material 7 of the working portion 2 in a holding hole 13 a formed on the axis line 12 .
- a heating member 14 is configured to be able to heat the material 7 held in the holding hole 13 a of the holding member 13 by a coil in a ring shape.
- a nozzle 15 is configured to spray an inert gas to forcibly cool down a brazing region of the brazing surface 1 d formed at the joint 1 c of the shank portion 1 and the material 7 of the working portion, and a neighborhood of the brazing region.
- an inert gas As the inert gas sprayed from the nozzle 15 , nitrogen gas, argon gas, and the like may be selectively used. For this reason, a source of supply of an inert gas (not illustrated) is connected to the nozzle 15 .
- the number of nozzles 15 is not limited, and may be one, or two or more.
- the nozzle 15 is needed to be disposed to be able to evenly cool down a brazing region in the shank portion 1 and the neck 1 b which is a neighborhood of the brazing region.
- a temperature of an inert gas sprayed from the nozzle 15 is not limited, and a sufficient cooling effect may be exhibited even when an inert gas in a normal temperature state is sprayed.
- An amount of inert gas sprayed from the nozzle 15 is preferably large. However, it is preferable to be appropriately set from a relation with a scheme of heating the brazing portion 3 .
- a scheme of heating the brazing portion 3 For example, in a case of a heating scheme using a combustion flame of gas, a stable combustion flame may be difficult to be formed when a flow rate of an inert gas increases, and a current speed increases.
- a high cooling effect may be exhibited by spraying an inert gas of a sufficiently large flow rate.
- the material 7 is put into the holding hole 13 a of the holding member 13 , and the shank 1 a of the shank portion 1 is gripped by the chuck 11 .
- the solder 6 is supplied to the brazing surface 2 b which is the edge face of the material 7 , the chuck 11 is caused to descend along the axis line 12 , and the apex 5 a of the sloped surface 5 b formed on the brazing surface 1 d of the shank portion 1 is caused to come into contact with the brazing surface 2 b.
- the material 7 of the working portion 2 is heated for a short period of time by operating the heating member 14 , and the solder 6 is melted due to the heating to flow to and fill the void formed by the sloped surface 5 b provided on the brazing surface 1 d of the shank portion 1 , and the edge face of the material 7 .
- gas generated due to the melting of the solder 6 moves upward along the sloped surface 5 b , arrives at the circumference surface of the joint 1 c , and then is vented to atmosphere.
- the heating member 14 is operated for a predetermined time (for example, about greater than or equal to 1 second and less than or equal to 5 seconds), and the operation of the heating member 14 is suspended after the melted solder 6 sufficiently flows to fill the void formed by the sloped surface 5 b and the edge face of the material 7 .
- the solder 6 is hardened due to the suspension of the operation of the heating member 14 , and a brazing operation is ended.
- the material 7 of the working portion 2 brazed to the shank portion 1 may not have a shaft center accurately matching a shaft center of the shank portion 1 .
- the desired cutting tool A is manufactured by performing machine processing including a cutting or a grinding on the material 7 .
- the material 7 of cemented carbide sufficiently greater than a thickness and a length of the desired working portion 2 is brazed to the brazing surface 1 d formed at the joint 1 c of the shank portion 1 , and then an intermediate material 8 is constructed by processing the material 7 as illustrated in FIG. 4( b ).
- This operation is fixing the shank 1 a of the shank portion 1 to a processing equipment (not illustrated), and grinding the material 7 so that the working portion 2 has a desired thickness while causing a rotation in this state.
- a center of rotation of the shank 1 a of the shank portion 1 is a center of rotation of the cutting tool A, a center of rotation of the intermediate material 8 accurately matches the center of rotation of the shank portion 1 even when a center of rotation of the material 7 does not match the center of rotation of the shank portion 1 .
- the intermediate material 8 is processes to form a hemispherical edge, and the spiral-shaped cutting blades 2 a are formed on a circumference surface.
- the working portion 2 is formed of the material 7 through the intermediate material 8 , thereby manufacturing the desired cutting tool A.
- the inventors measured the Vickers hardness of the neck 1 b in the cutting tool A formed by forcibly cooling down the brazing region in the shank portion 1 and the neck 1 b which is a neighborhood of the brazing region, and the Vickers hardness of the neck 1 b in a cutting tool formed without forcibly cooling down the neck 1 b , and compared the Vickers hardness. The result will be described.
- Ten cutting tools of a specification illustrated in FIG. 5 are fabricated as test pieces.
- a minimum size of the neck 1 b in FIG. 5 is 1.02 mm.
- Five test pieces among the ten test pieces are fabricated by spraying nitrogen gas of 5 normal liters per minute to the brazing region in the shank portion 1 and a neighborhood of the brazing region, and forcibly cooling down the brazing region and the neighborhood. The remaining five pieces are fabricated without being cooled down.
- an intersection part of the neck 1 b and the joint 1 c of the shank portion 1 is set, and the hardness is measured for four points (0, 0.7, 1.4, and 2.1) from this part for each 0.7 mm.
- a measurement scheme of hardness is based on JIS Z2244 (2003). The Vickers hardness is HV0.3, a test pressure is 2.942 N, and a holding time of the test pressure is 15 seconds.
- the Vickers hardness of the five cooled pieces is in a range of 367 to 412 at the point 0, in a range of 475 to 503 at the point 0.7, in a range of 504 to 533 at the point 1.4, and in a range of 516 to 550 at the point 2.1.
- the Vickers hardness of the five pieces that are not cooled is in a range of 285 to 299 at the point 0, in a range of 334 to 343 at the point 0.7, in a range of 439 to 453 at the point 1.4, and in a range of 484 to 508 at the point 2.1.
- the Vickers hardness of 350 or more of the neck 1 b may be realized by forcibly cooling down the brazing region and a neighborhood of the brazing region.
- the neck 1 b having the Vickers hardness of 350 or more it can be presumed that a structure maintains a state of being extended in a fiber shape.
- ten cutting tools in which a length of the neck 1 b of FIG. 5 is 6.3 mm, and a minimum size of the neck 1 b is 0.62 mm are fabricated as test pieces.
- five test pieces among the ten test pieces are fabricated by spraying nitrogen gas of 5 normal liters per minute to the brazing region in the shank portion 1 and a neighborhood of the brazing region, and forcibly cooling down the brazing region and the neighborhood. The remaining five pieces are fabricated without being cooled down. Then, the hardness for four points are measured under the same condition as described above.
- the Vickers hardness of the five cooled pieces is in a range of 357 to 376 at the point 0, in a range of 460 to 478 at the point 0.7, in a range of 533 to 544 at the point 1.4, and in a range of 550 to 558 at the point 2.1.
- the Vickers hardness of the five pieces that are not cooled is in a range of 260 to 283 at the point 0, in a range of 318 to 342 at the point 0.7, in a range of 404 to 430 at the point 1.4, and in a range of 502 to 532 at the point 2.1.
- the Vickers hardness of 350 or more of the neck 1 b may be realized by forcibly cooling down the brazing region and a neighborhood of the brazing region even for the cutting tool in which a length of the neck 1 b is 6.3 mm, and a minimum size of the neck 1 b is 0.62 mm.
- the neck 1 b having the Vickers hardness of 350 or more it may be presumed that a structure maintains a state of being extended in a fiber shape.
- FIG. 6 is an enlarged view of the structure of the brazing portion 3 in a longitudinal direction (a direction that cuts the shank portion 1 , the solder 6 , and the working portion 2 longitudinally) of the cutting tool A.
- the joint 1 c at the side of the working portion 2 is in a granular structure at a range of a depth of several ⁇ m, and another portion maintains a structure of a fiber shape.
- a cutting tool of the invention is formed by brazing and bonding a working portion formed of cemented carbide or ceramics to a leading end of a shank portion formed by a round austenitic stainless steel bar, and at least a portion of stainless steel in a joint and near the joint of the neck includes a structure of a fiber shape, and thus the neck has a sufficient strength for a bending and a warping. For this reason, it is advantageous to be used when cutting a hard layer such as a tooth.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010-171777 | 2010-07-03 | ||
| JP2010171777 | 2010-07-30 | ||
| PCT/JP2011/067263 WO2012014979A1 (ja) | 2010-07-30 | 2011-07-28 | 医療用切削器具 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/067263 A-371-Of-International WO2012014979A1 (ja) | 2010-07-03 | 2011-07-28 | 医療用切削器具 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/835,255 Division US10543059B2 (en) | 2010-07-03 | 2017-12-07 | Method of producing a medical cutting tool |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130122461A1 true US20130122461A1 (en) | 2013-05-16 |
Family
ID=45530179
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/813,399 Abandoned US20130122461A1 (en) | 2010-07-03 | 2011-07-28 | Medical cutting tool |
| US15/835,255 Active 2032-02-10 US10543059B2 (en) | 2010-07-03 | 2017-12-07 | Method of producing a medical cutting tool |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/835,255 Active 2032-02-10 US10543059B2 (en) | 2010-07-03 | 2017-12-07 | Method of producing a medical cutting tool |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20130122461A1 (ja) |
| JP (1) | JP5743164B2 (ja) |
| CA (1) | CA2807123C (ja) |
| WO (1) | WO2012014979A1 (ja) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9585675B1 (en) | 2015-10-23 | 2017-03-07 | RELIGN Corporation | Arthroscopic devices and methods |
| US20170072519A1 (en) * | 2010-06-30 | 2017-03-16 | Mani, Inc. | Method of producing a medical cutting instrument |
| US9603656B1 (en) | 2015-10-23 | 2017-03-28 | RELIGN Corporation | Arthroscopic devices and methods |
| US20180078279A1 (en) * | 2016-09-20 | 2018-03-22 | RELIGN Corporation | Arthroscopic devices and methods |
| US10022140B2 (en) | 2016-02-04 | 2018-07-17 | RELIGN Corporation | Arthroscopic devices and methods |
| US10582966B2 (en) | 2015-04-21 | 2020-03-10 | RELIGN Corporation | Arthroscopic devices and methods |
| US10595889B2 (en) | 2016-04-11 | 2020-03-24 | RELIGN Corporation | Arthroscopic devices and methods |
| US11065023B2 (en) | 2017-03-17 | 2021-07-20 | RELIGN Corporation | Arthroscopic devices and methods |
| US11172953B2 (en) | 2016-04-11 | 2021-11-16 | RELIGN Corporation | Arthroscopic devices and methods |
| US11207119B2 (en) | 2016-03-11 | 2021-12-28 | RELIGN Corporation | Arthroscopic devices and methods |
| US11426231B2 (en) | 2017-01-11 | 2022-08-30 | RELIGN Corporation | Arthroscopic devices and methods |
| US12167888B2 (en) | 2016-03-10 | 2024-12-17 | RELIGN Corporation | Arthroscopic devices and methods |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102012009038A1 (de) * | 2012-05-04 | 2013-11-07 | Hufschmied Zerspanungssysteme Gmbh | Fräser und Fräsverfahren |
| USD882791S1 (en) * | 2018-01-31 | 2020-04-28 | Beijing Smtp Technology Co., Ltd. | Ultrasonic cutter head |
| USD882794S1 (en) * | 2018-01-31 | 2020-04-28 | Beijing Smtp Technology Co., Ltd. | Ultrasonic cutter head |
| US12220296B1 (en) | 2018-12-06 | 2025-02-11 | Gary Bram | Osteotomy drill bit to produce an optimally shaped jawbone opening for a dental implant and abutment |
| US11471172B1 (en) | 2018-12-06 | 2022-10-18 | Gary Bram | Osteotomy drill bit to produce an optimally shaped jawbone opening for a dental implant and abutment |
| USD1088228S1 (en) | 2019-12-05 | 2025-08-12 | Gary Bram | Osteotomy drill |
| US12167951B1 (en) * | 2022-01-20 | 2024-12-17 | Gary Bram | Osteotomy drill bit to produce an optimally shaped jawbone opening for a dental implant and abutment |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070015107A1 (en) * | 2005-07-18 | 2007-01-18 | Werner Mannschedel | Root canal instrument having an abrasive coating and method for the production thereof |
| US20090039117A1 (en) * | 2006-02-28 | 2009-02-12 | Mani, Inc. | Eyeless Sewing Needle and Fabrication Method for the Same |
| WO2009107595A1 (ja) * | 2008-02-29 | 2009-09-03 | マニー株式会社 | 歯科用切削具 |
| US20110195377A1 (en) * | 2010-02-11 | 2011-08-11 | Sybron Canada Lp | Bur and Method of Making Same |
Family Cites Families (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4834655A (en) * | 1986-06-04 | 1989-05-30 | G-C Dental Industrial Corp. | Cutting tools |
| JPH06199580A (ja) * | 1992-12-25 | 1994-07-19 | Matsutani Seisakusho Co Ltd | 超硬合金とステンレス鋼との接合方法及び超硬合金とステンレス鋼からなる治療器具 |
| JP3375771B2 (ja) | 1995-02-02 | 2003-02-10 | マニー株式会社 | ピーソーリーマ又はゲーツドリル |
| JPH0975373A (ja) * | 1995-09-13 | 1997-03-25 | Manii Kk | カーバイドバー及びその製造方法 |
| GB2330787B (en) * | 1997-10-31 | 2001-06-06 | Camco Internat | Methods of manufacturing rotary drill bits |
| US6257889B1 (en) * | 1999-03-25 | 2001-07-10 | Temple University - Of The Commonwealth System Of Higher Education | Dental bur and method |
| JP4485037B2 (ja) * | 2000-09-28 | 2010-06-16 | 株式会社ジーシー | 歯科用ダイヤモンドバー |
| US6722883B2 (en) * | 2000-11-13 | 2004-04-20 | G & H Technologies Llc | Protective coating for abrasive dental tools and burs |
| US7232311B1 (en) * | 2002-04-19 | 2007-06-19 | Greggs Thomas S | Bur for preparing metal substrates |
| JP4112328B2 (ja) * | 2002-09-30 | 2008-07-02 | 株式会社ジーシー | 歯科用ダイヤモンドバー |
| WO2004052226A2 (en) * | 2002-12-05 | 2004-06-24 | Roetzer Patrick L | Improved dental bur |
| US20040152045A1 (en) * | 2003-02-03 | 2004-08-05 | Benjamin Kachalon | PCD dental drill bit |
| KR100572669B1 (ko) * | 2004-02-09 | 2006-04-24 | 신한다이아몬드공업 주식회사 | 복수의 지립층이 형성된 절삭 공구 및 그 제조 방법 |
| JP2006141439A (ja) * | 2004-11-16 | 2006-06-08 | Akiyoshi Funato | 歯科用バー及びそれを用いた穿孔方法 |
| US20060286506A1 (en) * | 2005-06-16 | 2006-12-21 | Birnholtz Mark D | Dental bur with use history recording rings and method of recording the number of uses of a dental bur |
| EP2022438A4 (en) * | 2006-05-23 | 2012-05-02 | Univ Nihon | CUTTING BARS FOR DENTAL USE |
| ATE450225T1 (de) * | 2006-06-27 | 2009-12-15 | Straumann Holding Ag | Bohrer für die dentalimplantologie |
| EP2057947B1 (en) * | 2006-08-29 | 2016-05-25 | MANI Inc. | Method of bending working for medical suture needle and medical suture needle |
| CN101594828B (zh) * | 2007-01-11 | 2011-04-13 | 马尼株式会社 | 缝合针 |
| JP5205647B2 (ja) * | 2007-08-30 | 2013-06-05 | マニー株式会社 | ステンレススチールバー |
| WO2009017148A1 (ja) * | 2007-08-01 | 2009-02-05 | Mani, Inc. | ステンレススチールバー |
| JP5233019B2 (ja) * | 2008-08-28 | 2013-07-10 | マニー株式会社 | 歯科用工具芯金およびその製造方法 |
| JP2010120144A (ja) * | 2008-11-21 | 2010-06-03 | Union Tool Co | 穴明け工具及びその製造方法 |
| JP5551395B2 (ja) * | 2009-08-28 | 2014-07-16 | マニー株式会社 | カニューレ及びその製造方法 |
| JP5628532B2 (ja) * | 2010-02-25 | 2014-11-19 | マニー株式会社 | 外科用刃物類とその製造方法 |
| US20130171583A1 (en) * | 2010-06-30 | 2013-07-04 | Mutsunori SHIOIRI | Medical cutting instrument |
| JP2012045279A (ja) * | 2010-08-30 | 2012-03-08 | Manii Kk | 医療用ナイフ |
| EP2623054A4 (en) * | 2010-09-28 | 2017-03-29 | Mani, Inc. | Edged medical cutting tool |
| DE102011000352A1 (de) * | 2011-01-27 | 2012-02-16 | Arno Friedrichs | Dentalbohrer und Verfahren zu seiner Herstellung |
| US20130029288A1 (en) * | 2011-07-29 | 2013-01-31 | Dentsply International, Inc. | Positive drive chuck and bur arrangement for a dental handpiece |
-
2011
- 2011-07-28 WO PCT/JP2011/067263 patent/WO2012014979A1/ja not_active Ceased
- 2011-07-28 JP JP2012526549A patent/JP5743164B2/ja active Active
- 2011-07-28 CA CA2807123A patent/CA2807123C/en active Active
- 2011-07-28 US US13/813,399 patent/US20130122461A1/en not_active Abandoned
-
2017
- 2017-12-07 US US15/835,255 patent/US10543059B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070015107A1 (en) * | 2005-07-18 | 2007-01-18 | Werner Mannschedel | Root canal instrument having an abrasive coating and method for the production thereof |
| US20090039117A1 (en) * | 2006-02-28 | 2009-02-12 | Mani, Inc. | Eyeless Sewing Needle and Fabrication Method for the Same |
| WO2009107595A1 (ja) * | 2008-02-29 | 2009-09-03 | マニー株式会社 | 歯科用切削具 |
| US20110195377A1 (en) * | 2010-02-11 | 2011-08-11 | Sybron Canada Lp | Bur and Method of Making Same |
Non-Patent Citations (4)
| Title |
|---|
| "Joining Stainless Steel by by soldering, brazing, and resistance welding" by L.D. Connell reprint from Stainless Steel Industry of January 1975. * |
| Effect of Rolling and Annealing on Hardness of Brass, pages 1-5, Anderew Cantrell, University of Washington, Edmonds Community College; Seattle, Washington; 2009 * |
| Machine Translation of 2009 publication of Mani et al. WO 2009/107595 from World Intellectual Property Association website. * |
| Translation of Mani et al. WO 2009/107595 through Sehreiber Translations * |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10350715B2 (en) * | 2010-06-30 | 2019-07-16 | Mani , Inc. | Method of producing a medical cutting instrument |
| US20170072519A1 (en) * | 2010-06-30 | 2017-03-16 | Mani, Inc. | Method of producing a medical cutting instrument |
| US10582966B2 (en) | 2015-04-21 | 2020-03-10 | RELIGN Corporation | Arthroscopic devices and methods |
| US12023090B2 (en) | 2015-10-23 | 2024-07-02 | RELIGN Corporation | Arthroscopic devices and methods |
| US11234759B2 (en) | 2015-10-23 | 2022-02-01 | RELIGN Corporation | Arthroscopic devices and methods |
| US10327842B2 (en) | 2015-10-23 | 2019-06-25 | RELIGN Corporation | Arthroscopic devices and methods |
| US10568685B2 (en) | 2015-10-23 | 2020-02-25 | RELIGN Corporation | Arthroscopic devices and methods |
| US9603656B1 (en) | 2015-10-23 | 2017-03-28 | RELIGN Corporation | Arthroscopic devices and methods |
| US9585675B1 (en) | 2015-10-23 | 2017-03-07 | RELIGN Corporation | Arthroscopic devices and methods |
| US11419670B2 (en) | 2015-10-23 | 2022-08-23 | RELIGN Corporation | Arthroscopic devices and methods |
| US10022140B2 (en) | 2016-02-04 | 2018-07-17 | RELIGN Corporation | Arthroscopic devices and methods |
| US11771456B2 (en) | 2016-02-04 | 2023-10-03 | RELIGN Corporation | Arthroscopic devices and methods |
| US12167888B2 (en) | 2016-03-10 | 2024-12-17 | RELIGN Corporation | Arthroscopic devices and methods |
| US12096969B2 (en) | 2016-03-11 | 2024-09-24 | RELIGN Corporation | Arthroscopic devices and methods |
| US11207119B2 (en) | 2016-03-11 | 2021-12-28 | RELIGN Corporation | Arthroscopic devices and methods |
| US10595889B2 (en) | 2016-04-11 | 2020-03-24 | RELIGN Corporation | Arthroscopic devices and methods |
| US11172953B2 (en) | 2016-04-11 | 2021-11-16 | RELIGN Corporation | Arthroscopic devices and methods |
| US11622784B2 (en) | 2016-04-11 | 2023-04-11 | RELIGN Corporation | Arthroscopic devices and methods |
| US12042167B2 (en) | 2016-04-11 | 2024-07-23 | RELIGN Corporation | Arthroscopic devices and methods |
| US11576699B2 (en) | 2016-09-20 | 2023-02-14 | RELIGN Corporation | Arthroscopic devices and methods |
| US10849648B2 (en) | 2016-09-20 | 2020-12-01 | RELIGN Corporation | Arthroscopic devices and methods |
| US10028767B2 (en) * | 2016-09-20 | 2018-07-24 | RELIGN Corporation | Arthroscopic devices and methods |
| US20180078279A1 (en) * | 2016-09-20 | 2018-03-22 | RELIGN Corporation | Arthroscopic devices and methods |
| US11426231B2 (en) | 2017-01-11 | 2022-08-30 | RELIGN Corporation | Arthroscopic devices and methods |
| US12004765B2 (en) | 2017-03-17 | 2024-06-11 | RELIGN Corporation | Arthroscopic devices and methods |
| US11065023B2 (en) | 2017-03-17 | 2021-07-20 | RELIGN Corporation | Arthroscopic devices and methods |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012014979A1 (ja) | 2012-02-02 |
| CA2807123A1 (en) | 2012-02-02 |
| CA2807123C (en) | 2018-10-02 |
| US20190008609A1 (en) | 2019-01-10 |
| US10543059B2 (en) | 2020-01-28 |
| JP5743164B2 (ja) | 2015-07-01 |
| JPWO2012014979A1 (ja) | 2013-09-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10543059B2 (en) | Method of producing a medical cutting tool | |
| JP5818819B2 (ja) | バーおよびバーを製作する方法 | |
| US10350715B2 (en) | Method of producing a medical cutting instrument | |
| CN103298582B (zh) | 叶轮的制造方法 | |
| JPH02289242A (ja) | 手術用鋸刃およびその製造方法 | |
| JPWO2010074165A1 (ja) | 金属材の加工方法、金属材の加工方法によって加工された構造物及び回転ツール | |
| CN110238503A (zh) | 镍基中间层合金、其制备方法及应用以及焊接方法 | |
| JP5382463B2 (ja) | 歯科用切削具 | |
| CN105149886A (zh) | 一种医用钳及医用钳的加工方法 | |
| JP2014217936A (ja) | 切削工具の製造方法 | |
| CN108118331A (zh) | 一种螺丝批头及螺丝批头的制造方法 | |
| JPS58151958A (ja) | 刃物の製造方法 | |
| HK1178772B (en) | Medical cutting instrument | |
| JP2008100348A (ja) | ガラスチョップドストランド製造用切断刃の製造方法及びガラスチョップドストランド製造用切断刃 | |
| JP5437833B2 (ja) | アトマイズ用ノズルおよび金属粉末の製造方法 | |
| JP2007066677A (ja) | プラズマトーチ用の電極 | |
| CA3210321A1 (en) | Method of producing a working area for a root canal instrument and for producing a root canal instrument, and root canal instrument | |
| JP6602540B2 (ja) | 板ガラス用工具 | |
| JP2002326190A (ja) | 繊維切断装置及びそれによって製造されたガラスチョップドストランド | |
| KR20030006793A (ko) | 다이아몬드계 치(齒)공구의 제조방법 및 이에 의해 제조된치(齒)공구 | |
| JP2002239736A (ja) | プラズマトーチ用電極 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MANI, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIOIRI, MUTSUNORI;REEL/FRAME:029811/0818 Effective date: 20130114 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |