US20130171583A1 - Medical cutting instrument - Google Patents
Medical cutting instrument Download PDFInfo
- Publication number
- US20130171583A1 US20130171583A1 US13/807,659 US201113807659A US2013171583A1 US 20130171583 A1 US20130171583 A1 US 20130171583A1 US 201113807659 A US201113807659 A US 201113807659A US 2013171583 A1 US2013171583 A1 US 2013171583A1
- Authority
- US
- United States
- Prior art keywords
- brazing
- cutting instrument
- shank
- apex
- working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/28—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C3/00—Dental tools or instruments
- A61C3/02—Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C1/00—Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/19—Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/20—Tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
- B23K2103/05—Stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
Definitions
- the present invention relates to a medical cutting instrument which is used to cut a surface layer of a tooth, a bone including an alveolar bone, and the like used during dental treatment.
- a desired treatment may be performed by cutting a surface layer of a tooth.
- a medical cutting instrument used during the treatment includes a shank portion gripped by a chuck of a handpiece, and a working portion continuously formed of the shank portion and including a cutting blade which is used to cut a surface layer from an outer circumference to a leading end portion.
- the desired treatment is performed by cutting the surface layer.
- cemented carbide represented by tungsten carbide is generally used for the working portion to ensure a cutting performance with respect to a hard surface layer.
- the shank portion is also formed using cemented carbide, a problem of increasing the number of hours for processing occurs.
- an instrument in which a shank portion is formed of stainless steel or tool steel, and cemented carbide forming a working portion is connected to a front end of the shank portion through butt-jointing is provided.
- a method such as friction pressure welding, resistance welding, or brazing is selectively employed in general.
- bonding surfaces of the shank portion and the working portion are formed as a flat surface, and the bonding surfaces come into contact with each other and are brazed.
- a joint strength varies in response to a variation of a gap between the bonding surfaces.
- An object of the invention is to provide a medical cutting instrument capable of stably exhibiting a high joint strength.
- a medical cutting instrument is a medical cutting instrument provided with a working portion formed of cemented carbide or ceramic at a leading end of a shank portion formed by a round stainless steel bar or a round tool steel bar, wherein stainless steel or tool steel forming the shank portion and cemented carbide or ceramic forming the working portion are bonded to each other through a brazing portion, the brazing portion being brazed while brazing surfaces, which are provided with protrusion portions formed on one or both of the shank portion and the working portion, are caused to be in contact with each other.
- the protrusion portion provided on the brazing surface be formed as a sloped surface including an apex, and brazing be performed while the apex is in contact with a flat surface or a sloped surface including an apex in a sloped surface including an apex provided on an opposing brazing surface, and it is preferable that the sloped surface including the apex be formed on a brazing surface formed at an edge in an axial direction of the round stainless steel bar or the round tool steel bar forming the shank surface, and a height of the sloped surface be set in a range of 0.5% to 8% of a diameter of the brazing surface of stainless steel or tool steel.
- a protrusion portion is provided on one or both of a brazing surface formed at an edge of a shank portion and a brazing surface formed at an edge of a working portion, and brazing is performed while the brazing surfaces face and come into contact with each other. That is, since the brazing surface of the shank portion and the brazing surface of the working portion face and come into contact with each other, a portion of an exterior surface forming a protrusion portion provided on one brazing surface comes into contact with a portion of an exterior surface forming a protrusion portion provided on the other surface or a portion of a surface formed in a shape different from a protrusion portion.
- a void corresponding to a shape of protrusion portions or a void corresponding to a shape of a protrusion portion and a shape different from a protrusion portion is formed between the brazing surfaces which come into contact with each other.
- a gap of the voids does not change since the both brazing surfaces come into contact with each other. Accordingly, during brazing, a volume of a void where a solder is filled is constant, and a stable brazing operation without a variation can be performed. As a result, it is possible to stably exhibit a high joint strength.
- a contact area is substantially a point contact.
- a void formed between the opposing brazing surfaces has a shape in which a gap decreases toward the apex. Accordingly, the void exhibits capillary phenomenon.
- the distance between the opposing brazing surfaces can be decreased, and the capillary phenomenon can be stably exhibited.
- FIG. 1 is a diagram illustrating a configuration of a cutting instrument.
- FIG. 2 is an enlarged view illustrating a configuration of a brazing portion.
- FIG. 3 is a diagram illustrating a process order when the cutting instrument is manufactured.
- the cutting instrument of the invention is fixed to a chuck of a handpiece gripped and operated by a hand of a doctor to be rotated, so that a working portion presses a surface layer of a tooth or a surface of a bone including an alveolar bone to cut the surface layer or the surface.
- a favorable cutting performance is ensured by forming the working portion using cemented carbide or ceramic, and a high durability is exhibited by forming a shank portion using stainless steel or tool steel.
- the shank portion is formed in a round bar shape made from stainless steel or tool steel, and a brazing surface is formed at an edge.
- Precipitation hardening stainless steel, martensitic stainless steel, or austenitic stainless steel may be employed as stainless steel forming the shank portion, and tool steel such as carbon tool steels, high-speed tool steel, or alloy tool steel may be selectively employed as the tool steel.
- the working portion is made from cemented carbide or ceramic, and a brazing surface is formed at an edge.
- Tungsten carbide (WC) or titanium carbide used as a cutting tool in machine processing may be employed as cemented carbide forming the working portion, and carbide ceramics represented by cermet may be employed as ceramic.
- a function of a protrusion portion provided on one or both of the brazing surface of the shank portion and the brazing surface of the working portion is to set a gap between the brazing surface of the shank portion and the brazing surface of the working portion, and to maintain the gap during a brazing operation.
- a gap between the brazing surfaces can be maintained by causing the protrusion portion provided on the brazing surface to come into contact with the opposing brazing surface. Accordingly, a brazing operation may be performed while the gap between the brazing surfaces is stably maintained, and a strength variation resulting from the brazing operation can be excluded.
- the protrusion portion provided on the brazing surface it is only required that the protrusion portion exhibit the above functions.
- the shape thereof is not particularly limited.
- the protrusion portion may have a curved surface shape, a circular cone shape, a pyramid shape, and may have any shape including these shapes.
- the protrusion portion be formed in a sloped surface having an apex. It is also preferable that brazing be performed in a state in which the apex of the sloped surface forming the protrusion portion provided on the brazing surface is brought into contact with a flat surface or a sloped surface including an apex that forms a protrusion portion provided on another opposing brazing surface.
- the protrusion portion provided on the brazing surface corresponds to one or both of the brazing surface of the shank portion and the brazing surface of the working portion.
- the protrusion portion be provided on the brazing surface of one of the shank portion and the working portion since the shank portion is formed using stainless steel or tool steel having an excellent workability.
- the brazing surface be formed at an edge of the shank portion in a longitudinal direction (axial direction).
- the sloped surface having the apex provided on the brazing surface is brazed in a state in which the sloped surface comes into contact with the flat surface or the sloped surface including an apex of the opposing brazing surface. That is, the height of the sloped surface defines a gap between two opposing brazing surfaces, and sets a capacity of solder in the brazing portion. Thus, it is preferable that the height of the sloped surface be changed in response to the thickness in the joint portion between the shank portion and the working portion.
- the height of the sloped surface provided on the brazing surface be set in the range of 0.5% to 8% of the diameter of the brazing surface.
- the height is less than a value in the range, an amount of solder is small, and thus it is difficult to obtain a sufficient joint strength.
- the height is greater than a value in the range, an amount of solder is large, and thus workability deteriorates, cost increases, and variation occurs in a joint strength.
- the height of the sloped surface provided on the brazing surface be set in the range of 1% to 5% of the diameter of the brazing surface.
- the shank portion and the working portion are bonded to each other through the brazing portion.
- a material of solder used when forming the brazing portion is not particularly limited. However, a silver solder that melts at a relatively low temperature is preferable.
- a property of the silver solder is not particularly limited, and any of a foil shape, a bar shape, and a paste shape may be used. However, it is preferable that the cutting instrument be in a paste state since the thickness of the working portion is about 1 mm, which is thin.
- a cutting instrument A includes a shank portion 1 fixed to a chuck of a handpiece (not illustrated), and a working portion 2 that cuts a surface layer of a tooth (not illustrated).
- the shank portion 1 is made from austenitic stainless steel
- the working portion 2 is made from WC.
- the cutting instrument A is constructed when the shank portion 1 and the working portion 2 are connected and integrated with each other through the brazing portion 3 using brazing.
- a specification such as an external shape, a thickness, and a length of the working portion 2 in the cutting instrument A is set according to a therapeutic purpose of a portion or a degree to be cut.
- the cutting instrument A illustrated in FIG. 1 is merely an example of the cutting instrument A.
- a shape of the working portion 2 includes a round bar shape illustrated in FIG. 1 in which a leading end has a spherical shape and a thickness is uniform, a taper shape in which a leading end has a spherical shape and a thickness becomes thinner toward the leading end, a sphere shape, and the like.
- a plurality of spiral-shaped cutting blades 2 a is formed on an outer circumference surface of the working portion 2 .
- a brazing surface 2 b is formed on an edge face of the working portion 2 at a side of the shank portion 1 .
- the brazing surface 2 b of the working portion 2 is formed as a flat surface.
- the shank portion 1 is rotated and operated while being fixed to the chuck of the handpiece. Accordingly, a gripper 1 a fixed to the chuck is formed at one side of the shank portion 1 .
- the gripper 1 a has a uniform thickness corresponding to a size of the chuck regardless of a shape, a thickness, and a length of the working portion 2 .
- a neck portion 1 b having a taper shape is formed continuously from the gripper 1 a in the shank portion 1 , and a joint 1 c is formed at a leading end of the neck portion 1 b .
- a brazing surface 1 d is formed on an edge face of the joint 1 c , and a sloped surface 5 b having an apex 5 a is formed on the brazing surface 1 d.
- the thickness of the working portion 2 is appropriately set according to a specification. Accordingly, when the diameter of the thinnest portion of the neck portion 1 b is set according to the thickness of the working portion 2 , types of the shank portion 1 increase. Thus, by forming the joint 1 c at the leading end of the neck portion 1 b , types of the shank portion 1 are decreased to attempt a reduction of stock quantity.
- the joint 1 c has the same diameter as an external diameter of the working portion 2 , and a portion of the cutting blades 2 a is continuously formed on an outer circumference surface of the joint 1 c .
- the joint 1 c is formed to have a diameter greater than the thickness of the thinnest portion of the neck portion 1 b forming the shank portion 1 .
- the sloped surface 5 b having the apex 5 a formed on the brazing surface 1 d of the shank portion 1 is formed as a sloped surface having a circular cone shape for an easiness of processing.
- the brazing surface 1 d may be fabricated concurrently with a fabrication of another portion, for example, the neck portion 1 b and the joint 1 c when the shank portion 1 is rotated and cut from a material having a round bar shape, which is advantageous.
- the height of the sloped surface 5 b is 0.038 mm, and is set to be about 3.1% of the thickness of the working portion 2 .
- the height is 0.031 mm, and is set to be about 3.1% of the thickness of the working portion 2 .
- the height is 0.022 mm, and is set to be about 2.8% of the thickness of the working portion 2 .
- the inventors conducted a bending test using a method defined in JIS T 5502:2001 (dental rotary instrument—test method) 3.3 neck region strength test by setting a thickness of the working portion 2 to 1.0 mm, forming the brazing surface 2 b in a flat surface, providing the sloped surface 5 b on the brazing surface 1 d of the shank portion 1 , setting a height of the brazing surface to eight types in a range from 0.003 mm to 0.09 mm, and fabricating ten test pieces for each set sizes.
- a bending strength desired for the cutting instrument A that cuts a hard layer such as a tooth and an alveolar bone is greater than or equal to 35 N (Newton).
- a height of the brazing surface 0.005 mm
- a ratio with respect to a thickness of the working portion 2 0.50%
- a bending strength was 35 N. The bending strength is determined to be practically sufficient.
- Test 3 a height of the brazing surface: 0.02 mm, a ratio with respect to a thickness of the working portion 2 : 2.00%, a bending strength was 41 N. The bending strength is determined to be practically sufficient.
- Test 6 a height of the brazing surface: 0.06 mm, a ratio with respect to a thickness of the working portion 2 : 6.00%, a bending strength was 38 N. The bending strength is determined to be practically sufficient.
- a height at which the most favorable bending strength may be exhibited is present, and a bending strength is degraded when the height as an apex is decreased or increased.
- a bending strength is practically insufficient when the height is extremely low or extremely high. That is, a graph of the test result is a quadratic curve in which a ratio is 3.00% and a bending strength 45N is an apex.
- a range in which a practical bending strength may be exhibited is a range of 0.5% to 8% of the diameter of the brazing surface.
- a ratio with respect to a diameter of the brazing surface be in a range of 1% to 5%, which indicates that a bending strength is in a range exceeding about 40 N.
- the apex 5 a of the sloped surface 5 b provided on the brazing surface 1 d of the shank portion 1 comes into contact with a flat surface of the brazing surface 2 b of the working portion 2 , and thus a void having a gap corresponding to a height of the sloped surface 5 b is formed between the two brazing surfaces 1 d and 2 b .
- a solder 6 filled in the void the shank portion 1 and the working portion 2 are bonded to each other in an integrated manner.
- a solder used when the shank portion 1 and the working portion 2 are brazed is not particularly limited. However, a silver solder that melts at a relatively low temperature is preferable.
- a property of a solder used when a brazing operation is performed may be a foil shape and a bar shape, and is preferably a paste shape.
- the cutting instrument A constructed as described above is gripped by the handpiece and rotates at a high speed to cut a desired portion, the working portion 2 is likely to eccentrically rotate and fracture when a center of rotation of the shank portion 1 does not accurately match a center of rotation of the working portion 2 .
- the cutting instrument A according to the embodiment is manufactured as illustrated in FIG. 3 . That is, instead of brazing cemented carbide, as the working portion 2 in which the cutting blades 2 a are formed in advance, to the shank portion 1 , cemented carbide sufficiently greater than a thickness and a length of the desired working portion 2 is brazed to the shank portion 1 , and then the cemented carbide is processed, thereby manufacturing the cutting instrument A in which centers of rotation match each other.
- a material 7 of cemented carbide sufficiently greater than a thickness and a length of the desired working portion 2 is caused to face the brazing surface 1 d formed on the joint 1 c of the shank portion 1 .
- a surface facing the brazing surface 1 d of the shank portion 1 of the material 7 is the brazing surface 2 b of the working portion 2 , and thus is formed as a flat surface.
- the apex of the sloped surface 5 b provided on the brazing surface 1 d of the shank portion 1 comes into contact with the brazing surface 2 b formed on the edge face of the material 7 to construct the brazing portion 3 .
- the solder 6 is filled between the both brazing surfaces 1 d and 2 b , and the brazing portion 3 is heated.
- the solder 6 is melted by heating the brazing portion 3 , the melted solder reliably penetrates into a center section by capillary phenomenon occurring between the sloped surface 5 b and the flat surface, and a void is not formed.
- a center of rotation of the shank portion 1 may not match a center of rotation of the material 7 .
- the material 7 is processed to construct an intermediate material 8 .
- This operation is fixing the gripper 1 a of the shank portion 1 to a processing equipment (not illustrated), and grinding the material 7 so that the working portion 3 has a desired thickness while causing a rotation in this state.
- a center of rotation of the gripper 1 a of the shank portion 1 is a center of rotation of the cutting instrument A, a center of rotation of the intermediate material 8 accurately matches a center of rotation of the shank portion 1 even when a center of rotation of the material 7 does not match the center of rotation of the shank portion 1 .
- the intermediate material 8 is processes to form a hemispherical edge, and the spiral-shaped cutting blades 2 a are formed on a circumference surface.
- the working portion 2 is formed of the material 7 through the intermediate material 8 , thereby manufacturing the cutting instrument A.
- the working portion 2 is formed of cemented carbide which is extremely hard, and thus it is advantageous to use the cutting instrument when cutting a hard portion including a bone in a general surgery, not being limited to a hard surface layer of a tooth, an alveolar bone, or a dental treatment.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Surgical Instruments (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
A medical cutting instrument which stably exhibits high joint strength obtained by brazing. A cutting instrument (A) is configured by providing a working section (2) to the front end of a shank section (1), the working section (2) consisting of a carbide or a ceramic, the shank section (1) being constructed from a round stainless steel bar or a round tool steel bar. The shank section (1) and the working section (2) are connected through a brazed section (3). The brazed section (3) is the portion at which the shank section (1) and the working section (2) are brazed together while brazing surfaces, which are provided with protrusion sections formed on the shank section (1) and/or the working section (2), are caused to be in contact with each other. The protrusion sections provided on the brazing surfaces each comprise sloped surfaces (5 b) having an apex (5 a), and the height of the sloped surfaces (5 b) is set in the range of 0.5%-8%, inclusive, of the diameter of the brazing surface of the shank section (1).
Description
- The present invention relates to a medical cutting instrument which is used to cut a surface layer of a tooth, a bone including an alveolar bone, and the like used during dental treatment.
- For example, in dental treatment, a desired treatment may be performed by cutting a surface layer of a tooth. A medical cutting instrument used during the treatment includes a shank portion gripped by a chuck of a handpiece, and a working portion continuously formed of the shank portion and including a cutting blade which is used to cut a surface layer from an outer circumference to a leading end portion. When a doctor presses a portion to be treated with the working portion while rotating the medical cutting instrument by operating the handpiece, the desired treatment is performed by cutting the surface layer.
- In the medical cutting instrument with the above-described configuration, cemented carbide represented by tungsten carbide is generally used for the working portion to ensure a cutting performance with respect to a hard surface layer. However, when the shank portion is also formed using cemented carbide, a problem of increasing the number of hours for processing occurs.
- Thus, as the medical cutting instrument, an instrument in which a shank portion is formed of stainless steel or tool steel, and cemented carbide forming a working portion is connected to a front end of the shank portion through butt-jointing is provided. In this way, when different metals such as stainless steel or tool steel and cemented carbide are bonded to each other, a method such as friction pressure welding, resistance welding, or brazing is selectively employed in general.
- In a medical cutting instrument provided by welding stainless steel or tool steel forming a shank portion and cemented carbide forming a working portion using friction pressure welding or resistance welding, there are problems in that a variation occurs in a joint strength in a bonding surface and a fraction defective increases.
- In addition, in a medical cutting instrument provided by brazing stainless steel or tool steel forming a shank portion and cemented carbide forming a working portion, bonding surfaces of the shank portion and the working portion are formed as a flat surface, and the bonding surfaces come into contact with each other and are brazed. In a case of such a medical cutting instrument, there occurs a problem that a joint strength varies in response to a variation of a gap between the bonding surfaces.
- An object of the invention is to provide a medical cutting instrument capable of stably exhibiting a high joint strength.
- To resolve the above problem, a medical cutting instrument according to the invention is a medical cutting instrument provided with a working portion formed of cemented carbide or ceramic at a leading end of a shank portion formed by a round stainless steel bar or a round tool steel bar, wherein stainless steel or tool steel forming the shank portion and cemented carbide or ceramic forming the working portion are bonded to each other through a brazing portion, the brazing portion being brazed while brazing surfaces, which are provided with protrusion portions formed on one or both of the shank portion and the working portion, are caused to be in contact with each other.
- In the medical cutting instrument, it is preferable that the protrusion portion provided on the brazing surface be formed as a sloped surface including an apex, and brazing be performed while the apex is in contact with a flat surface or a sloped surface including an apex in a sloped surface including an apex provided on an opposing brazing surface, and it is preferable that the sloped surface including the apex be formed on a brazing surface formed at an edge in an axial direction of the round stainless steel bar or the round tool steel bar forming the shank surface, and a height of the sloped surface be set in a range of 0.5% to 8% of a diameter of the brazing surface of stainless steel or tool steel.
- In a medical cutting instrument according to the invention, a protrusion portion is provided on one or both of a brazing surface formed at an edge of a shank portion and a brazing surface formed at an edge of a working portion, and brazing is performed while the brazing surfaces face and come into contact with each other. That is, since the brazing surface of the shank portion and the brazing surface of the working portion face and come into contact with each other, a portion of an exterior surface forming a protrusion portion provided on one brazing surface comes into contact with a portion of an exterior surface forming a protrusion portion provided on the other surface or a portion of a surface formed in a shape different from a protrusion portion.
- Thus, a void corresponding to a shape of protrusion portions or a void corresponding to a shape of a protrusion portion and a shape different from a protrusion portion is formed between the brazing surfaces which come into contact with each other. A gap of the voids does not change since the both brazing surfaces come into contact with each other. Accordingly, during brazing, a volume of a void where a solder is filled is constant, and a stable brazing operation without a variation can be performed. As a result, it is possible to stably exhibit a high joint strength.
- In particular, when a protrusion portion provided on a brazing surface is formed as a sloped surface including an apex, and the apex comes into contact with a flat surface or a sloped surface including an apex in a sloped surface including an apex provided on an opposing brazing surface, a contact area is substantially a point contact. Thus, a void formed between the opposing brazing surfaces has a shape in which a gap decreases toward the apex. Accordingly, the void exhibits capillary phenomenon. When a solder filled in the void is melted, the solder is attracted toward the apex and is inhibited from flowing to the outside. Thus, a stable brazing operation can be performed.
- Further, when the height of the sloped surface is in the range of 0.5% to 8% of the diameter of the brazing surface, the distance between the opposing brazing surfaces can be decreased, and the capillary phenomenon can be stably exhibited.
-
FIG. 1 is a diagram illustrating a configuration of a cutting instrument. -
FIG. 2 is an enlarged view illustrating a configuration of a brazing portion. -
FIG. 3 is a diagram illustrating a process order when the cutting instrument is manufactured. -
-
- A Cutting instrument
- 1 Shank portion
- 1 a Gripper
- 1 b Neck portion
- 1 c Joint
- 1 d Brazing surface
- 2 Working portion
- 2 a Cutting blade
- 2 b Brazing surface
- 3 Brazing portion
- 5 a Apex
- 5 b Sloped surface
- 6 Solder
- 7 Material
- 8 Intermediate material
- Hereinafter, a medical cutting instrument (hereinafter, referred to as a “cutting instrument”) of the invention will be described. The cutting instrument of the invention is fixed to a chuck of a handpiece gripped and operated by a hand of a doctor to be rotated, so that a working portion presses a surface layer of a tooth or a surface of a bone including an alveolar bone to cut the surface layer or the surface. In particular, a favorable cutting performance is ensured by forming the working portion using cemented carbide or ceramic, and a high durability is exhibited by forming a shank portion using stainless steel or tool steel.
- In the cutting instrument of the invention, the shank portion is formed in a round bar shape made from stainless steel or tool steel, and a brazing surface is formed at an edge. Precipitation hardening stainless steel, martensitic stainless steel, or austenitic stainless steel may be employed as stainless steel forming the shank portion, and tool steel such as carbon tool steels, high-speed tool steel, or alloy tool steel may be selectively employed as the tool steel.
- In addition, the working portion is made from cemented carbide or ceramic, and a brazing surface is formed at an edge. Tungsten carbide (WC) or titanium carbide used as a cutting tool in machine processing may be employed as cemented carbide forming the working portion, and carbide ceramics represented by cermet may be employed as ceramic.
- A function of a protrusion portion provided on one or both of the brazing surface of the shank portion and the brazing surface of the working portion is to set a gap between the brazing surface of the shank portion and the brazing surface of the working portion, and to maintain the gap during a brazing operation. A gap between the brazing surfaces can be maintained by causing the protrusion portion provided on the brazing surface to come into contact with the opposing brazing surface. Accordingly, a brazing operation may be performed while the gap between the brazing surfaces is stably maintained, and a strength variation resulting from the brazing operation can be excluded.
- As the protrusion portion provided on the brazing surface, it is only required that the protrusion portion exhibit the above functions. The shape thereof is not particularly limited. The protrusion portion may have a curved surface shape, a circular cone shape, a pyramid shape, and may have any shape including these shapes.
- However, given a condition of easiness and the like of processing with respect to a material forming the shank portion or the working portion, it is preferable that the protrusion portion be formed in a sloped surface having an apex. It is also preferable that brazing be performed in a state in which the apex of the sloped surface forming the protrusion portion provided on the brazing surface is brought into contact with a flat surface or a sloped surface including an apex that forms a protrusion portion provided on another opposing brazing surface.
- As described above, the protrusion portion provided on the brazing surface corresponds to one or both of the brazing surface of the shank portion and the brazing surface of the working portion. In particular, when the protrusion portion is provided on the brazing surface of one of the shank portion and the working portion, it is preferable that the protrusion portion be provided on the brazing surface of the shank portion since the shank portion is formed using stainless steel or tool steel having an excellent workability. It is preferable that the brazing surface be formed at an edge of the shank portion in a longitudinal direction (axial direction).
- The sloped surface having the apex provided on the brazing surface is brazed in a state in which the sloped surface comes into contact with the flat surface or the sloped surface including an apex of the opposing brazing surface. That is, the height of the sloped surface defines a gap between two opposing brazing surfaces, and sets a capacity of solder in the brazing portion. Thus, it is preferable that the height of the sloped surface be changed in response to the thickness in the joint portion between the shank portion and the working portion.
- In an experiment of the inventors, it is preferable that the height of the sloped surface provided on the brazing surface be set in the range of 0.5% to 8% of the diameter of the brazing surface. When the height is less than a value in the range, an amount of solder is small, and thus it is difficult to obtain a sufficient joint strength. In addition, when the height is greater than a value in the range, an amount of solder is large, and thus workability deteriorates, cost increases, and variation occurs in a joint strength. In particular, to obtain a uniform and sufficiently great joint strength, it is preferable that the height of the sloped surface provided on the brazing surface be set in the range of 1% to 5% of the diameter of the brazing surface.
- The shank portion and the working portion are bonded to each other through the brazing portion. A material of solder used when forming the brazing portion is not particularly limited. However, a silver solder that melts at a relatively low temperature is preferable. In addition, a property of the silver solder is not particularly limited, and any of a foil shape, a bar shape, and a paste shape may be used. However, it is preferable that the cutting instrument be in a paste state since the thickness of the working portion is about 1 mm, which is thin.
- Next, a configuration of the cutting instrument according to the embodiment will be described in detail with reference to
FIGS. 1 and 2 . - Referring to the drawings, a cutting instrument A includes a
shank portion 1 fixed to a chuck of a handpiece (not illustrated), and a workingportion 2 that cuts a surface layer of a tooth (not illustrated). In the embodiment, theshank portion 1 is made from austenitic stainless steel, and the workingportion 2 is made from WC. The cutting instrument A is constructed when theshank portion 1 and the workingportion 2 are connected and integrated with each other through thebrazing portion 3 using brazing. - A specification such as an external shape, a thickness, and a length of the working
portion 2 in the cutting instrument A is set according to a therapeutic purpose of a portion or a degree to be cut. Thus, the cutting instrument A illustrated inFIG. 1 is merely an example of the cutting instrument A. For example, a shape of the workingportion 2 includes a round bar shape illustrated inFIG. 1 in which a leading end has a spherical shape and a thickness is uniform, a taper shape in which a leading end has a spherical shape and a thickness becomes thinner toward the leading end, a sphere shape, and the like. A plurality of spiral-shapedcutting blades 2 a is formed on an outer circumference surface of the workingportion 2. - In addition, a
brazing surface 2 b is formed on an edge face of the workingportion 2 at a side of theshank portion 1. In particular, as illustrated inFIG. 2 , in the embodiment, thebrazing surface 2 b of the workingportion 2 is formed as a flat surface. - The
shank portion 1 is rotated and operated while being fixed to the chuck of the handpiece. Accordingly, agripper 1 a fixed to the chuck is formed at one side of theshank portion 1. Thegripper 1 a has a uniform thickness corresponding to a size of the chuck regardless of a shape, a thickness, and a length of the workingportion 2. - In addition, a
neck portion 1 b having a taper shape is formed continuously from thegripper 1 a in theshank portion 1, and a joint 1 c is formed at a leading end of theneck portion 1 b. Abrazing surface 1 d is formed on an edge face of the joint 1 c, and asloped surface 5 b having an apex 5 a is formed on thebrazing surface 1 d. - As described above, the thickness of the working
portion 2 is appropriately set according to a specification. Accordingly, when the diameter of the thinnest portion of theneck portion 1 b is set according to the thickness of the workingportion 2, types of theshank portion 1 increase. Thus, by forming the joint 1 c at the leading end of theneck portion 1 b, types of theshank portion 1 are decreased to attempt a reduction of stock quantity. - The joint 1 c has the same diameter as an external diameter of the working
portion 2, and a portion of thecutting blades 2 a is continuously formed on an outer circumference surface of the joint 1 c. Thus, the joint 1 c is formed to have a diameter greater than the thickness of the thinnest portion of theneck portion 1 b forming theshank portion 1. - The
sloped surface 5 b having the apex 5 a formed on thebrazing surface 1 d of theshank portion 1 is formed as a sloped surface having a circular cone shape for an easiness of processing. By forming thesloped surface 5 b in a circular cone shape, thebrazing surface 1 d may be fabricated concurrently with a fabrication of another portion, for example, theneck portion 1 b and the joint 1 c when theshank portion 1 is rotated and cut from a material having a round bar shape, which is advantageous. - In the embodiment, in a case of the cutting instrument A in which the thickness of the working
portion 2 is 1.2 mm, the height of the slopedsurface 5 b is 0.038 mm, and is set to be about 3.1% of the thickness of the workingportion 2. In addition, in a case of the cutting instrument A in which the thickness of the workingportion 2 is 1.0 mm, the height is 0.031 mm, and is set to be about 3.1% of the thickness of the workingportion 2. Further, in a case of the cutting instrument A in which the thickness of the workingportion 2 is 0.8 mm, the height is 0.022 mm, and is set to be about 2.8% of the thickness of the workingportion 2. - Herein, a bending strength in a case where a thickness of the working
portion 2 is 1.0 mm, and a height of the slopedsurface 5 b is varied will be described. - The inventors conducted a bending test using a method defined in JIS T 5502:2001 (dental rotary instrument—test method) 3.3 neck region strength test by setting a thickness of the working
portion 2 to 1.0 mm, forming thebrazing surface 2 b in a flat surface, providing thesloped surface 5 b on thebrazing surface 1 d of theshank portion 1, setting a height of the brazing surface to eight types in a range from 0.003 mm to 0.09 mm, and fabricating ten test pieces for each set sizes. A bending strength desired for the cutting instrument A that cuts a hard layer such as a tooth and an alveolar bone is greater than or equal to 35 N (Newton). -
Test 1, a height of the brazing surface: 0.003 mm, a ratio with respect to a thickness of the working portion 2: 0.30% (hereinafter the same applies), a bending strength was 29 N as a result of a bending test of ten tests (hereinafter the same applies). The bending strength is determined to be practically insufficient. -
Test 2, a height of the brazing surface: 0.005 mm, a ratio with respect to a thickness of the working portion 2: 0.50%, a bending strength was 35 N. The bending strength is determined to be practically sufficient. -
Test 3, a height of the brazing surface: 0.02 mm, a ratio with respect to a thickness of the working portion 2: 2.00%, a bending strength was 41 N. The bending strength is determined to be practically sufficient. - Test 4, a height of the brazing surface: 0.03 mm, a ratio with respect to a thickness of the working portion 2: 3.00%, a bending strength was 45 N. The bending strength is determined to be practically sufficient.
- Test 5, a height of the brazing surface: 0.04 mm, a ratio with respect to a thickness of the working portion 2: 4.00%, a bending strength was 42 N. The bending strength is determined to be practically sufficient.
- Test 6, a height of the brazing surface: 0.06 mm, a ratio with respect to a thickness of the working portion 2: 6.00%, a bending strength was 38 N. The bending strength is determined to be practically sufficient.
- Test 7, a height of the brazing surface: 0.08 mm, a ratio with respect to a thickness of the working portion 2: 8.00%, a bending strength was 36 N. The bending strength is determined to be practically sufficient.
- Test 8, a height of the brazing surface: 0.09 mm, a ratio with respect to a thickness of the working portion 2: 9.00%, a bending strength was 27 N. The bending strength is determined to be practically insufficient.
- As a result of
Tests 1 through 8 described above, a height at which the most favorable bending strength may be exhibited is present, and a bending strength is degraded when the height as an apex is decreased or increased. A bending strength is practically insufficient when the height is extremely low or extremely high. That is, a graph of the test result is a quadratic curve in which a ratio is 3.00% and a bending strength 45N is an apex. - Accordingly, a range in which a practical bending strength may be exhibited is a range of 0.5% to 8% of the diameter of the brazing surface. In particular, it is more preferable that a ratio with respect to a diameter of the brazing surface be in a range of 1% to 5%, which indicates that a bending strength is in a range exceeding about 40 N.
- In the
brazing portion 3, the apex 5 a of the slopedsurface 5 b provided on thebrazing surface 1 d of theshank portion 1 comes into contact with a flat surface of thebrazing surface 2 b of the workingportion 2, and thus a void having a gap corresponding to a height of the slopedsurface 5 b is formed between the two 1 d and 2 b. Through a solder 6 filled in the void, thebrazing surfaces shank portion 1 and the workingportion 2 are bonded to each other in an integrated manner. - A solder used when the
shank portion 1 and the workingportion 2 are brazed is not particularly limited. However, a silver solder that melts at a relatively low temperature is preferable. In addition, a property of a solder used when a brazing operation is performed may be a foil shape and a bar shape, and is preferably a paste shape. - Since the cutting instrument A constructed as described above is gripped by the handpiece and rotates at a high speed to cut a desired portion, the working
portion 2 is likely to eccentrically rotate and fracture when a center of rotation of theshank portion 1 does not accurately match a center of rotation of the workingportion 2. - For this reason, the cutting instrument A according to the embodiment is manufactured as illustrated in
FIG. 3 . That is, instead of brazing cemented carbide, as the workingportion 2 in which thecutting blades 2 a are formed in advance, to theshank portion 1, cemented carbide sufficiently greater than a thickness and a length of the desired workingportion 2 is brazed to theshank portion 1, and then the cemented carbide is processed, thereby manufacturing the cutting instrument A in which centers of rotation match each other. - First, as illustrated in
FIG. 3A , a material 7 of cemented carbide sufficiently greater than a thickness and a length of the desired workingportion 2 is caused to face thebrazing surface 1 d formed on the joint 1 c of theshank portion 1. In this instance, a surface facing thebrazing surface 1 d of theshank portion 1 of the material 7 is thebrazing surface 2 b of the workingportion 2, and thus is formed as a flat surface. - Thereafter, the apex of the sloped
surface 5 b provided on thebrazing surface 1 d of theshank portion 1 comes into contact with thebrazing surface 2 b formed on the edge face of the material 7 to construct thebrazing portion 3. While maintaining the state, the solder 6 is filled between the both 1 d and 2 b, and thebrazing surfaces brazing portion 3 is heated. The solder 6 is melted by heating thebrazing portion 3, the melted solder reliably penetrates into a center section by capillary phenomenon occurring between thesloped surface 5 b and the flat surface, and a void is not formed. - When the
brazing portion 3 is heated for a predetermined time, and thebrazing portion 3 is cooled down, the solder is solidified due to the cooling, and the material 7 forming theshank portion 1 and the workingportion 2 is brazed and integrated. In this instance, a center of rotation of theshank portion 1 may not match a center of rotation of the material 7. - Next, as illustrated in
FIG. 3B , the material 7 is processed to construct an intermediate material 8. This operation is fixing thegripper 1 a of theshank portion 1 to a processing equipment (not illustrated), and grinding the material 7 so that the workingportion 3 has a desired thickness while causing a rotation in this state. As described in the foregoing, since a center of rotation of thegripper 1 a of theshank portion 1 is a center of rotation of the cutting instrument A, a center of rotation of the intermediate material 8 accurately matches a center of rotation of theshank portion 1 even when a center of rotation of the material 7 does not match the center of rotation of theshank portion 1. - Next, as illustrated in
FIG. 3C , the intermediate material 8 is processes to form a hemispherical edge, and the spiral-shapedcutting blades 2 a are formed on a circumference surface. Through the processing, the workingportion 2 is formed of the material 7 through the intermediate material 8, thereby manufacturing the cutting instrument A. - In the cutting instrument of the invention, the working
portion 2 is formed of cemented carbide which is extremely hard, and thus it is advantageous to use the cutting instrument when cutting a hard portion including a bone in a general surgery, not being limited to a hard surface layer of a tooth, an alveolar bone, or a dental treatment.
Claims (3)
1. A medical cutting instrument comprising a working portion formed of cemented carbide or ceramic at a leading end of a shank portion formed by a round stainless steel bar or a round tool steel bar,
wherein stainless steel or tool steel forming the shank portion and the cemented carbide or ceramic forming the working portion are bonded to each other through a brazing portion, and the brazing portion is brazed while brazing surfaces, which are provided with protrusion portions formed on one or both of the shank portion and the working portion, are brought into contact with each other.
2. The medical cutting instrument according to claim 1 , wherein the protrusion portion provided on the brazing surface is formed as a sloped surface including an apex, and brazing is performed while the apex is in contact with a flat surface or a sloped surface including an apex in a sloped surface including an apex provided on an opposing brazing surface.
3. The medical cutting instrument according to claim 2 , wherein the sloped surface including the apex is formed on a brazing surface formed at an edge in an axial direction of the round stainless steel bar or the round tool steel bar forming the shank surface, and a height of the sloped surface is set in a range of 0.5% to 8% of a diameter of the brazing surface of stainless steel or tool steel.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010-149498 | 2010-06-30 | ||
| JP2010149498 | 2010-06-30 | ||
| PCT/JP2011/064689 WO2012002325A1 (en) | 2010-06-30 | 2011-06-27 | Medical cutting instrument |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/064689 A-371-Of-International WO2012002325A1 (en) | 2010-06-30 | 2011-06-27 | Medical cutting instrument |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/363,703 Division US10350715B2 (en) | 2010-06-30 | 2016-11-29 | Method of producing a medical cutting instrument |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130171583A1 true US20130171583A1 (en) | 2013-07-04 |
Family
ID=45402036
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/807,659 Abandoned US20130171583A1 (en) | 2010-06-30 | 2011-06-27 | Medical cutting instrument |
| US15/363,703 Active 2031-08-22 US10350715B2 (en) | 2010-06-30 | 2016-11-29 | Method of producing a medical cutting instrument |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/363,703 Active 2031-08-22 US10350715B2 (en) | 2010-06-30 | 2016-11-29 | Method of producing a medical cutting instrument |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20130171583A1 (en) |
| EP (1) | EP2589353B1 (en) |
| JP (1) | JP5980115B2 (en) |
| CN (1) | CN103002827B (en) |
| CA (1) | CA2804126C (en) |
| RU (1) | RU2567595C2 (en) |
| WO (1) | WO2012002325A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170072519A1 (en) * | 2010-06-30 | 2017-03-16 | Mani, Inc. | Method of producing a medical cutting instrument |
| US10543059B2 (en) * | 2010-07-03 | 2020-01-28 | Mani, Inc. | Method of producing a medical cutting tool |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3081186B1 (en) * | 2015-04-16 | 2018-05-23 | DENTSPLY SIRONA Inc. | Cutting instrument, in particular a dental cutting instrument |
| CN105496500A (en) * | 2015-12-14 | 2016-04-20 | 黄少安 | Ceramic drill |
| CN109551057B (en) * | 2018-12-17 | 2023-12-15 | 深圳市金洲精工科技股份有限公司 | Needle for turning |
| CN113853177A (en) * | 2019-05-21 | 2021-12-28 | Eco-A株式会社 | Dental medical instrument and method for manufacturing same |
| KR102307866B1 (en) * | 2021-02-18 | 2021-10-05 | 황수환 | Knee-hip surgical cutting tools |
| AT18365U1 (en) * | 2023-07-13 | 2024-12-15 | Ceratizit Austria Gmbh | base body composite for a cutting tool |
Citations (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US965587A (en) * | 1908-12-11 | 1910-07-26 | Columbus K Lassiter | Metal-cutting tool. |
| US1885679A (en) * | 1931-05-01 | 1932-11-01 | Robert R Brooks | Tool and method of constructing the same |
| US2334755A (en) * | 1939-12-18 | 1943-11-23 | Carbur Inc | Cutting tool |
| US2336297A (en) * | 1941-07-08 | 1943-12-07 | Air Reduction | Brazing or welding of pipe ends |
| US2575332A (en) * | 1946-06-19 | 1951-11-20 | Thomas H Coffey | Drill |
| US2708853A (en) * | 1953-07-16 | 1955-05-24 | Steel Company | Metal cutting tool with improved joint |
| US2748483A (en) * | 1953-07-03 | 1956-06-05 | Hoffmeister Erich | Drilling or grinding tools, more particularly for dental purposes |
| US3670416A (en) * | 1970-06-29 | 1972-06-20 | Dentsply Res & Dev | Connecting metal elements and products thereof |
| US4008976A (en) * | 1974-05-16 | 1977-02-22 | Chemetal Corporation | Cutting tool and method for making same |
| JPS5250906A (en) * | 1975-10-23 | 1977-04-23 | Masahide Funai | Tool attached with super hard alloy and process for producing the tool |
| US5112165A (en) * | 1989-04-24 | 1992-05-12 | Sandvik Ab | Tool for cutting solid material |
| US5845547A (en) * | 1996-09-09 | 1998-12-08 | The Sollami Company | Tool having a tungsten carbide insert |
| US6164916A (en) * | 1998-11-02 | 2000-12-26 | General Electric Company | Method of applying wear-resistant materials to turbine blades, and turbine blades having wear-resistant materials |
| US6315065B1 (en) * | 1999-04-16 | 2001-11-13 | Smith International, Inc. | Drill bit inserts with interruption in gradient of properties |
| US6508318B1 (en) * | 1999-11-25 | 2003-01-21 | Sandvik Ab | Percussive rock drill bit and buttons therefor and method for manufacturing drill bit |
| US6676410B2 (en) * | 2002-06-14 | 2004-01-13 | Hinatawada Seimitsu Mfg., Ltd. | Grinding bar |
| US20060157285A1 (en) * | 2005-01-17 | 2006-07-20 | Us Synthetic Corporation | Polycrystalline diamond insert, drill bit including same, and method of operation |
| US20090117517A1 (en) * | 2007-11-01 | 2009-05-07 | Andreas Koster | Dental crown preparation instrument and method for producing same |
| US20090170053A1 (en) * | 2006-05-23 | 2009-07-02 | Nihon University | Cutting Bar for Dental Use |
| WO2009107595A1 (en) * | 2008-02-29 | 2009-09-03 | マニー株式会社 | Dental cutting tool |
| US20100190423A1 (en) * | 2009-01-26 | 2010-07-29 | Chien-Min Sung | Thin Film Brazing of Superabrasive Tools |
| US20100206641A1 (en) * | 2009-02-17 | 2010-08-19 | Hall David R | Chamfered Pointed Enhanced Diamond Insert |
| US20110031036A1 (en) * | 2009-08-07 | 2011-02-10 | Baker Hughes Incorporated | Superabrasive cutters with grooves on the cutting face, and drill bits and drilling tools so equipped |
| US20110120782A1 (en) * | 2009-11-25 | 2011-05-26 | Us Synthetic Corporation | Polycrystalline diamond compact including a substrate having a raised interfacial surface bonded to a leached polycrystalline diamond table, and applications therefor |
| US20110195377A1 (en) * | 2010-02-11 | 2011-08-11 | Sybron Canada Lp | Bur and Method of Making Same |
| US20120247834A1 (en) * | 2011-03-28 | 2012-10-04 | Diamond Innovations, Inc. | Cutting element having modified surface |
| US20130068539A1 (en) * | 2011-09-16 | 2013-03-21 | Baker Hughes Incorporated | Methods of attaching a polycrystalline diamond compact to a substrate and cutting elements formed using such methods |
| US8783389B2 (en) * | 2009-06-18 | 2014-07-22 | Smith International, Inc. | Polycrystalline diamond cutting elements with engineered porosity and method for manufacturing such cutting elements |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2589353A (en) * | 1945-11-23 | 1952-03-18 | Chamberlain Corp | Single manipulative pressure adjuster and auxiliary release for wringers |
| GB728532A (en) * | 1953-01-26 | 1955-04-20 | Dental Mfg Co Ltd | Improvements in or relating to dental burs or the like |
| JPS49123270A (en) * | 1973-03-28 | 1974-11-26 | ||
| JPS6114074A (en) * | 1984-06-30 | 1986-01-22 | Shimadzu Corp | Brazing method |
| JPS62150012U (en) * | 1986-03-14 | 1987-09-22 | ||
| JPS6341409U (en) * | 1986-09-04 | 1988-03-18 | ||
| GB8916263D0 (en) * | 1989-07-15 | 1989-08-31 | Technicut Limited | Router type cutter |
| RU2001601C1 (en) * | 1991-06-13 | 1993-10-30 | Едиев Бегенч Агойлиевич. Едиев Агойпи Едиевич; Гафурова Хадиджа Нурмухамедовна | Extractor of broken pieces os stomatologic instruments from tooth |
| JP3375771B2 (en) * | 1995-02-02 | 2003-02-10 | マニー株式会社 | Peasor reamer or gates drill |
| DE20105751U1 (en) * | 2001-04-03 | 2001-07-26 | Benteler Automobiltechnik GmbH & Co. KG, 33104 Paderborn | Metal component |
| US20040152045A1 (en) * | 2003-02-03 | 2004-08-05 | Benjamin Kachalon | PCD dental drill bit |
| KR100660374B1 (en) * | 2006-02-17 | 2006-12-22 | 송영완 | Implant Drill for Maxillary Sinus Elevation |
| RU2567595C2 (en) * | 2010-06-30 | 2015-11-10 | Мани, Инк. | Medical cutting instrument |
| US20130122461A1 (en) * | 2010-07-03 | 2013-05-16 | Mutsunori SHIOIRI | Medical cutting tool |
-
2011
- 2011-06-27 RU RU2013103782/14A patent/RU2567595C2/en active
- 2011-06-27 WO PCT/JP2011/064689 patent/WO2012002325A1/en active Application Filing
- 2011-06-27 EP EP11800789.7A patent/EP2589353B1/en active Active
- 2011-06-27 CA CA2804126A patent/CA2804126C/en active Active
- 2011-06-27 CN CN201180031077.XA patent/CN103002827B/en active Active
- 2011-06-27 JP JP2012522621A patent/JP5980115B2/en active Active
- 2011-06-27 US US13/807,659 patent/US20130171583A1/en not_active Abandoned
-
2016
- 2016-11-29 US US15/363,703 patent/US10350715B2/en active Active
Patent Citations (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US965587A (en) * | 1908-12-11 | 1910-07-26 | Columbus K Lassiter | Metal-cutting tool. |
| US1885679A (en) * | 1931-05-01 | 1932-11-01 | Robert R Brooks | Tool and method of constructing the same |
| US2334755A (en) * | 1939-12-18 | 1943-11-23 | Carbur Inc | Cutting tool |
| US2336297A (en) * | 1941-07-08 | 1943-12-07 | Air Reduction | Brazing or welding of pipe ends |
| US2575332A (en) * | 1946-06-19 | 1951-11-20 | Thomas H Coffey | Drill |
| US2748483A (en) * | 1953-07-03 | 1956-06-05 | Hoffmeister Erich | Drilling or grinding tools, more particularly for dental purposes |
| US2708853A (en) * | 1953-07-16 | 1955-05-24 | Steel Company | Metal cutting tool with improved joint |
| US3670416A (en) * | 1970-06-29 | 1972-06-20 | Dentsply Res & Dev | Connecting metal elements and products thereof |
| US4008976A (en) * | 1974-05-16 | 1977-02-22 | Chemetal Corporation | Cutting tool and method for making same |
| JPS5250906A (en) * | 1975-10-23 | 1977-04-23 | Masahide Funai | Tool attached with super hard alloy and process for producing the tool |
| US5112165A (en) * | 1989-04-24 | 1992-05-12 | Sandvik Ab | Tool for cutting solid material |
| US5845547A (en) * | 1996-09-09 | 1998-12-08 | The Sollami Company | Tool having a tungsten carbide insert |
| US6164916A (en) * | 1998-11-02 | 2000-12-26 | General Electric Company | Method of applying wear-resistant materials to turbine blades, and turbine blades having wear-resistant materials |
| US6315065B1 (en) * | 1999-04-16 | 2001-11-13 | Smith International, Inc. | Drill bit inserts with interruption in gradient of properties |
| US6508318B1 (en) * | 1999-11-25 | 2003-01-21 | Sandvik Ab | Percussive rock drill bit and buttons therefor and method for manufacturing drill bit |
| US6676410B2 (en) * | 2002-06-14 | 2004-01-13 | Hinatawada Seimitsu Mfg., Ltd. | Grinding bar |
| US20060157285A1 (en) * | 2005-01-17 | 2006-07-20 | Us Synthetic Corporation | Polycrystalline diamond insert, drill bit including same, and method of operation |
| US20090170053A1 (en) * | 2006-05-23 | 2009-07-02 | Nihon University | Cutting Bar for Dental Use |
| US20090117517A1 (en) * | 2007-11-01 | 2009-05-07 | Andreas Koster | Dental crown preparation instrument and method for producing same |
| WO2009107595A1 (en) * | 2008-02-29 | 2009-09-03 | マニー株式会社 | Dental cutting tool |
| US20100190423A1 (en) * | 2009-01-26 | 2010-07-29 | Chien-Min Sung | Thin Film Brazing of Superabrasive Tools |
| US20100206641A1 (en) * | 2009-02-17 | 2010-08-19 | Hall David R | Chamfered Pointed Enhanced Diamond Insert |
| US8783389B2 (en) * | 2009-06-18 | 2014-07-22 | Smith International, Inc. | Polycrystalline diamond cutting elements with engineered porosity and method for manufacturing such cutting elements |
| US20110031036A1 (en) * | 2009-08-07 | 2011-02-10 | Baker Hughes Incorporated | Superabrasive cutters with grooves on the cutting face, and drill bits and drilling tools so equipped |
| US20110120782A1 (en) * | 2009-11-25 | 2011-05-26 | Us Synthetic Corporation | Polycrystalline diamond compact including a substrate having a raised interfacial surface bonded to a leached polycrystalline diamond table, and applications therefor |
| US20110195377A1 (en) * | 2010-02-11 | 2011-08-11 | Sybron Canada Lp | Bur and Method of Making Same |
| US20120247834A1 (en) * | 2011-03-28 | 2012-10-04 | Diamond Innovations, Inc. | Cutting element having modified surface |
| US20130068539A1 (en) * | 2011-09-16 | 2013-03-21 | Baker Hughes Incorporated | Methods of attaching a polycrystalline diamond compact to a substrate and cutting elements formed using such methods |
Non-Patent Citations (2)
| Title |
|---|
| Translation of JP 49-123270 to Hitachi et al, published 1974. * |
| Translation of WO 2009/107595 retrieved on 4/8/2014 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170072519A1 (en) * | 2010-06-30 | 2017-03-16 | Mani, Inc. | Method of producing a medical cutting instrument |
| US10350715B2 (en) * | 2010-06-30 | 2019-07-16 | Mani , Inc. | Method of producing a medical cutting instrument |
| US10543059B2 (en) * | 2010-07-03 | 2020-01-28 | Mani, Inc. | Method of producing a medical cutting tool |
Also Published As
| Publication number | Publication date |
|---|---|
| US10350715B2 (en) | 2019-07-16 |
| CA2804126A1 (en) | 2012-01-05 |
| HK1178772A1 (en) | 2013-09-19 |
| CA2804126C (en) | 2018-10-02 |
| JP5980115B2 (en) | 2016-08-31 |
| WO2012002325A1 (en) | 2012-01-05 |
| CN103002827B (en) | 2015-08-05 |
| US20170072519A1 (en) | 2017-03-16 |
| CN103002827A (en) | 2013-03-27 |
| EP2589353A4 (en) | 2015-07-15 |
| EP2589353A1 (en) | 2013-05-08 |
| RU2013103782A (en) | 2014-08-10 |
| EP2589353B1 (en) | 2023-04-05 |
| RU2567595C2 (en) | 2015-11-10 |
| JPWO2012002325A1 (en) | 2013-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10350715B2 (en) | Method of producing a medical cutting instrument | |
| US10543059B2 (en) | Method of producing a medical cutting tool | |
| US9358079B2 (en) | Bur and method of making same | |
| EP3777751B1 (en) | Dental file | |
| EP2022438A1 (en) | Cutting bar for dental use | |
| EP1634535B1 (en) | Medical needle and cutting tool | |
| JP6888014B2 (en) | Surgical drill bit | |
| JP2007050237A (en) | Root canal instrument having abrasive coating and its manufacturing method | |
| CN101677838B (en) | Rotary drive cutter for dentistry | |
| JP5368835B2 (en) | Longitudinal ground file that is highly durable against damage due to torsion and repeated fatigue | |
| US20210177543A1 (en) | Dental file | |
| CN104625168A (en) | Drilling tool and production method thereof | |
| JP2010269443A (en) | Drill | |
| JP2010269442A (en) | Drill | |
| WO2009107595A1 (en) | Dental cutting tool | |
| JP2005014115A (en) | Drill | |
| HK1178772B (en) | Medical cutting instrument | |
| JP2009190146A (en) | Tool material | |
| JP2025101069A (en) | Guidewires | |
| JP2013099371A (en) | Medical drill | |
| JP2021029540A (en) | Dental root canal treatment tool | |
| KR20200076793A (en) | Medical burr | |
| CN107708601A (en) | Cutting device, particularly dentistry cutting device | |
| ITCO20090073A1 (en) | CUTTER AND METHOD OF USE |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MANI, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIOIRI, MUTSUNORI;REEL/FRAME:029957/0596 Effective date: 20130214 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |