US20110059116A1 - Laser-based vaccine adjuvants - Google Patents
Laser-based vaccine adjuvants Download PDFInfo
- Publication number
- US20110059116A1 US20110059116A1 US12/754,081 US75408110A US2011059116A1 US 20110059116 A1 US20110059116 A1 US 20110059116A1 US 75408110 A US75408110 A US 75408110A US 2011059116 A1 US2011059116 A1 US 2011059116A1
- Authority
- US
- United States
- Prior art keywords
- vaccine
- laser
- cells
- subject
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012646 vaccine adjuvant Substances 0.000 title description 11
- 229940124931 vaccine adjuvant Drugs 0.000 title description 11
- 229960005486 vaccine Drugs 0.000 claims abstract description 113
- 230000028993 immune response Effects 0.000 claims abstract description 47
- 230000001965 increasing effect Effects 0.000 claims abstract description 27
- 230000005855 radiation Effects 0.000 claims abstract description 27
- 230000001066 destructive effect Effects 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 230000004044 response Effects 0.000 claims description 65
- 210000001821 langerhans cell Anatomy 0.000 claims description 36
- 206010061598 Immunodeficiency Diseases 0.000 claims description 20
- 230000007423 decrease Effects 0.000 claims description 20
- 244000052769 pathogen Species 0.000 claims description 16
- 230000001717 pathogenic effect Effects 0.000 claims description 14
- 208000015181 infectious disease Diseases 0.000 claims description 13
- 101000839464 Leishmania braziliensis Heat shock 70 kDa protein Proteins 0.000 claims description 10
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 claims description 6
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 claims description 3
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 claims description 3
- 239000002671 adjuvant Substances 0.000 abstract description 14
- 210000004027 cell Anatomy 0.000 description 122
- 238000000034 method Methods 0.000 description 79
- 210000001519 tissue Anatomy 0.000 description 60
- 230000006378 damage Effects 0.000 description 55
- 210000003491 skin Anatomy 0.000 description 55
- 108091007433 antigens Proteins 0.000 description 44
- 102000036639 antigens Human genes 0.000 description 44
- 238000002255 vaccination Methods 0.000 description 43
- 239000000427 antigen Substances 0.000 description 42
- 230000000694 effects Effects 0.000 description 36
- 101710163595 Chaperone protein DnaK Proteins 0.000 description 33
- 101710178376 Heat shock 70 kDa protein Proteins 0.000 description 33
- 101710152018 Heat shock cognate 70 kDa protein Proteins 0.000 description 33
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 28
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 28
- 239000003795 chemical substances by application Substances 0.000 description 28
- 108090000623 proteins and genes Proteins 0.000 description 28
- 230000002427 irreversible effect Effects 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 25
- 102000004169 proteins and genes Human genes 0.000 description 25
- 230000028327 secretion Effects 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 19
- 241000699670 Mus sp. Species 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- 238000013532 laser treatment Methods 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 14
- 210000000170 cell membrane Anatomy 0.000 description 14
- 201000010099 disease Diseases 0.000 description 14
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 102000004127 Cytokines Human genes 0.000 description 13
- 108090000695 Cytokines Proteins 0.000 description 13
- 102000019034 Chemokines Human genes 0.000 description 11
- 108010012236 Chemokines Proteins 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 230000035699 permeability Effects 0.000 description 11
- 241000282414 Homo sapiens Species 0.000 description 10
- 206010022000 influenza Diseases 0.000 description 10
- 229960003971 influenza vaccine Drugs 0.000 description 10
- 108020004707 nucleic acids Proteins 0.000 description 10
- 102000039446 nucleic acids Human genes 0.000 description 10
- 230000006907 apoptotic process Effects 0.000 description 9
- 238000013459 approach Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- SPSXSWRZQFPVTJ-ZQQKUFEYSA-N hepatitis b vaccine Chemical compound C([C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCSC)C(=O)N[C@@H](CC1N=CN=C1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)OC(=O)CNC(=O)CNC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@@H](N)CCCNC(N)=N)C1=CC=CC=C1 SPSXSWRZQFPVTJ-ZQQKUFEYSA-N 0.000 description 9
- 229940124736 hepatitis-B vaccine Drugs 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 230000035800 maturation Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000003248 secreting effect Effects 0.000 description 9
- 210000004927 skin cell Anatomy 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 7
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 7
- 210000001744 T-lymphocyte Anatomy 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 230000005779 cell damage Effects 0.000 description 7
- 210000002615 epidermis Anatomy 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 208000002979 Influenza in Birds Diseases 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 206010064097 avian influenza Diseases 0.000 description 6
- 238000004925 denaturation Methods 0.000 description 6
- 230000036425 denaturation Effects 0.000 description 6
- 210000004443 dendritic cell Anatomy 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000002500 effect on skin Effects 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 230000005847 immunogenicity Effects 0.000 description 5
- 229940072221 immunoglobulins Drugs 0.000 description 5
- 230000003308 immunostimulating effect Effects 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000008823 permeabilization Effects 0.000 description 5
- 230000000144 pharmacologic effect Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 208000035473 Communicable disease Diseases 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 208000029462 Immunodeficiency disease Diseases 0.000 description 4
- 206010027202 Meningitis bacterial Diseases 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000002679 ablation Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 201000009904 bacterial meningitis Diseases 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 208000037887 cell injury Diseases 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 230000001010 compromised effect Effects 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 230000002939 deleterious effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 208000002672 hepatitis B Diseases 0.000 description 4
- 230000007813 immunodeficiency Effects 0.000 description 4
- 238000011532 immunohistochemical staining Methods 0.000 description 4
- 238000003364 immunohistochemistry Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 210000002510 keratinocyte Anatomy 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229940023041 peptide vaccine Drugs 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 102000018932 HSP70 Heat-Shock Proteins Human genes 0.000 description 3
- 108010027992 HSP70 Heat-Shock Proteins Proteins 0.000 description 3
- 206010020565 Hyperaemia Diseases 0.000 description 3
- 201000005505 Measles Diseases 0.000 description 3
- 208000005647 Mumps Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000010255 intramuscular injection Methods 0.000 description 3
- 239000007927 intramuscular injection Substances 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 3
- 208000010805 mumps infectious disease Diseases 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 150000004804 polysaccharides Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 201000005404 rubella Diseases 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000010254 subcutaneous injection Methods 0.000 description 3
- 239000007929 subcutaneous injection Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- 238000011238 DNA vaccination Methods 0.000 description 2
- 229940021995 DNA vaccine Drugs 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 229920002683 Glycosaminoglycan Polymers 0.000 description 2
- 102000001398 Granzyme Human genes 0.000 description 2
- 108060005986 Granzyme Proteins 0.000 description 2
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 2
- 102000003777 Interleukin-1 beta Human genes 0.000 description 2
- 108090000193 Interleukin-1 beta Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 108010006519 Molecular Chaperones Proteins 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 108091092356 cellular DNA Proteins 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000001876 chaperonelike Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000001339 epidermal cell Anatomy 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000002751 lymph Anatomy 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000005210 lymphoid organ Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 230000016379 mucosal immune response Effects 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000000528 statistical test Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002861 ventricular Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 1
- 101710154868 60 kDa heat shock protein, mitochondrial Proteins 0.000 description 1
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 1
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 1
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 1
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 1
- -1 CCR6 Proteins 0.000 description 1
- 102000004288 CCR6 Receptors Human genes 0.000 description 1
- 108010017079 CCR6 Receptors Proteins 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 241000759568 Corixa Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 102100034051 Heat shock protein HSP 90-alpha Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 101001016865 Homo sapiens Heat shock protein HSP 90-alpha Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 241000371980 Influenza B virus (B/Shanghai/361/2002) Species 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010082786 Interleukin-1alpha Proteins 0.000 description 1
- 102000004125 Interleukin-1alpha Human genes 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229940124904 Menactra Drugs 0.000 description 1
- 101710151805 Mitochondrial intermediate peptidase 1 Proteins 0.000 description 1
- 101710151803 Mitochondrial intermediate peptidase 2 Proteins 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102000017033 Porins Human genes 0.000 description 1
- 108010013381 Porins Proteins 0.000 description 1
- 208000031951 Primary immunodeficiency Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108700033496 Recombivax HB Proteins 0.000 description 1
- 229940124942 Recombivax HB Drugs 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 102100038081 Signal transducer CD24 Human genes 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- XEGGRYVFLWGFHI-UHFFFAOYSA-N bendiocarb Chemical compound CNC(=O)OC1=CC=CC2=C1OC(C)(C)O2 XEGGRYVFLWGFHI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000001736 capillary Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000012820 cell cycle checkpoint Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 230000007960 cellular response to stress Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 230000002254 contraceptive effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 210000001047 desmosome Anatomy 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 229960003983 diphtheria toxoid Drugs 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 102000034240 fibrous proteins Human genes 0.000 description 1
- 108091005899 fibrous proteins Proteins 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000004837 gut-associated lymphoid tissue Anatomy 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000004968 inflammatory condition Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 210000003963 intermediate filament Anatomy 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000002430 laser surgery Methods 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 230000007056 liver toxicity Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000009196 low level laser therapy Methods 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 210000003126 m-cell Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 210000002780 melanosome Anatomy 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 229940014135 meningitis vaccine Drugs 0.000 description 1
- 210000000716 merkel cell Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000005063 microvascular endothelium Anatomy 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000006618 mitotic catastrophe Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000002487 multivesicular body Anatomy 0.000 description 1
- 229940049982 murine ear Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229960005030 other vaccine in atc Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 210000001986 peyer's patch Anatomy 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 108010053455 riboflavin-binding protein Proteins 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 210000004739 secretory vesicle Anatomy 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000000015 thermotherapy Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 230000030968 tissue homeostasis Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000028973 vesicle-mediated transport Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000000605 viral structure Anatomy 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/29—Hepatitis virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/095—Neisseria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/29—Hepatitis virus
- A61K39/292—Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55516—Proteins; Peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0659—Radiation therapy using light characterised by the wavelength of light used infrared
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0662—Visible light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/067—Radiation therapy using light using laser light
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2730/00—Reverse transcribing DNA viruses
- C12N2730/00011—Details
- C12N2730/10011—Hepadnaviridae
- C12N2730/10111—Orthohepadnavirus, e.g. hepatitis B virus
- C12N2730/10134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/00034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- Aluminum salts (aluminum hydroxide, aluminum phosphate or alum) have been used in vaccine preparations for over 80 years (Glenny et al. 1926). They have the ability to create more antigenic precipitates with some vaccines, enhance the uptake by antigen-presenting cells by increasing the local concentration of antigen at the injection site, and stimulate immunogenicity by direct or indirect stimulation of dendritic cells, activation of complement, and by inducing the release of chemokines (Hogen Esch 2002). While these mechanisms can be relevant in stimulating type II (antibody-mediated) immune responses, they do not induce cytotoxic T-cell or cell-mediated immune responses. Aluminum salts also cause side effects in a certain percentage of the population that receives such vaccinations.
- MPL Monophosphoryl lipid A
- FENDRIX® GaxoSmithKline
- Corixa a vaccine against hepatitis B.
- the EMEA also recently approved the oil-in-water emulsion adjuvant MF59 for use with FOCETRIA®, a Novartis' pandemic influenza vaccine. Neither of these has received market approval by the FDA.
- the present invention is directed to a vaccine for generating an enhanced immune response in a subject previously exposed to non-destructive laser radiation, as compared to an immune response in a subject previously non-exposed to the non-destructive laser radiation.
- Such vaccine turns out to have efficacy in the subjects who are immunocompromised or non-responsive to the vaccine without the previous exposure to the laser radiation.
- the vaccine of the present invention can comprise an amount of HSP 70 for generating an enhanced immune response.
- the vaccine of the present invention generates the enhanced response from the subject with increased HSP 70 concentration due to the previous exposure to laser radiation.
- the vaccine generates the enhanced response the subject with an increased Langerhans cell concentration due to the previous exposure to laser radiation.
- the referenced enhanced immune response comprises an increase in an antibody titer specific to the vaccine.
- Another kind of an enhanced immune response generated by the vaccine is an increased resistance to a condition, which for, example, can be a decrease in an infection rate upon exposure to a pathogen specific to the vaccine, or it can be a decrease in mortality in response to an exposure to the pathogen specific to the vaccine.
- the present invention is also directed to the use of a composition
- a composition comprising a vaccine for use in combination with laser radiation for generating an enhanced immune response from a subject, as compared to an immune response without the use of laser radiation.
- the composition can further comprise an amount of HSP 70.
- the referenced enhanced immune response can be generated by the vaccine in a subject who is immunocompromised or who is non-responsive to the vaccine without the previous exposure to laser radiation.
- the invention contemplates methods of administering a vaccine to a subject including exposing an area of an epidermal layer of skin of the subject to a laser wherein laser exposure does not cause significant or irreversible damage cells in the exposed area, and contacting the subject with the antigen at the site of laser exposure, thereby administering the vaccine.
- Irreversible damage to the cells includes cell death, either upon exposure to the laser, or as a direct result of laser exposure.
- Significant damage is damage to at least 1%, 0.5%, 0.25%, 0.1%, 0.01%, or 0.001% of cells exposed to the laser.
- the invention further provides methods to increase HSP 70 concentration and/or Langerhans cell concentration at or near the site of laser exposure as compared to a site not exposed to laser by exposing an epidermal layer of the skin to laser wherein laser exposure does not cause significant or irreversible damage cells in the exposed area.
- the frequency of the laser is about 1 to about 20 kilohertz
- the power of the laser is about 0.5 to about 10 watts, about 1 watt to 8 watts, about 1 watt to about 5 watts, about 1 watt to about 3 watts, or about 1.5 watts
- the pulse duration is about 1 to about 1000 nanoseconds, about 1 to 500 nanoseconds, about 1 to 100 nanoseconds, about 1 to 50 nanoseconds, about 5 to 20 nanoseconds, or about 10 nanoseconds.
- the laser exposure takes place as close as possible to the time of the vaccine, either before or after administration of the vaccine, to within about an hour, within about 45 minutes, within about 30 minutes, within about 15 minutes, to within about 10 minutes of vaccine administration.
- the methods of the invention include administering a vaccine to a laser exposed area of an epidermal layer of skin of the subject to provide an increase in a detectable response to the vaccine as compared to administering a vaccine to an epidermal layer of skin area of a subject not exposed to laser.
- an increase in a detectable response can include an increase in antibody titer specific to the vaccine, an increase in resistance to a condition as demonstrated, for example by a decrease in infection rate upon exposure to a pathogen specific to the vaccine, a decrease in mortality in response to exposure to a pathogen specific to the vaccine, and/or a decrease in time to detect a response to the vaccine.
- the methods of the invention can further include detecting a response to the vaccine.
- the invention can also include identifying a subject in need of vaccination.
- the subject is immunocompromised.
- the invention further includes co-administration of the vaccine with heat shock protein 70.
- the invention provides methods that can be practiced using any laser that provides a wavelength that can stimulate an immune response to an antigen (see, e.g., Table 2).
- Lasers for use in the methods of the invention include, but are not limited to a copper bromide laser and a neodymium-doped yttrium aluminium garnet; (Nd:YAG) laser.
- Laser wavelengths for use in the methods of the invention include, but are not limited to 510 nm and 578 nm.
- Laser beam sizes for use in the method of the invention include, but are not limited to 1-10 mm, 2-8 mm, 2-7 mm, or 3-5 mm.
- the invention provides methods for contacting a subject with a vaccine at a site of laser exposure by injection.
- the invention provides methods for injection including, but not limited to intradermal, subcutaneous, and intramuscular injection.
- FIG. 1 shows a schematic of the optimal conditions for the laser-based immune enhancement methods of the invention of the skin at a specific wavelength of irradiation.
- FIG. 2 shows a graph of the rates of accumulation of damage in tissue based on the rate coefficients of Henriques. Times associated with dotted lines indicate the number of seconds to achieve threshold damage for a step rise in tissue temperature.
- FIG. 3 is a schematic showing the relationship between power density and pulse duration in the generation of phase explosion of water in tissues using a laser.
- FIG. 4 is a graph showing the logarithmic relationship between temperature and exposure time for induction of a heat shock response in tissue.
- FIG. 5 shows tissue sections stained to detect the presence of Langerhans cells in the skin before and after laser treatment.
- FIG. 6 shows changes in the amount of heat shock protein 70 in murine ear sheets after a one or two minute exposure to laser irradiation.
- FIG. 7 shows immunoblotting results for HSP70 in epidermal cells derived from the ears of mice showing changes in total HSP in response to different combinations of laser light wavelengths and durations of exposure.
- treating refers to subjecting the subject to a pharmaceutical treatment, e.g., the administration of a drug, such that the extent of the disease is decreased or prevented. For example, treating results in the reduction of at least on sign or symptom of the disease or condition.
- Treatment includes (but is not limited to) administration of a composition, such as a pharmaceutical composition, in combination with exposure to a laser as described herein, and may be performed either prophylactically or subsequent to the initiation of a pathologic event. Treatment can require administration of an agent and/or treatment more than once.
- preventing as it refers to a condition means that a subject in which the occurrence of a condition is prevented, will show no detectable symptoms of a condition of interest. No detectable symptoms means less than 10%, 5%, 1.0%, 0.5%, 0.1% or 0.01% of the level of detectable symptoms of a subject that has been diagnosed with a condition of interest.
- a “condition” includes any abnormality that can occur in a subject including any disease, infection, disorder, tumor, cancer, inflammatory condition, or cellular structure associated with disordered function.
- To “prevent the occurrence of a condition” also means to stop or delay the occurrence of a condition of interest. Prevention can require administration of an agent and/or treatment more than once.
- Irreversible damage is understood as causing harm to the cells which directly leads to death of the cells exposed to the laser in the methods of the invention.
- Irreversible damage to a cell means that the function of the cell is negatively altered or compromised and cannot return to normal. Irreversible damage can occur when the cell is destroyed, physically removed from its environment, or when the function of the cell is compromised, for example by irreversible disruption of the membrane or destruction or damage to one or more of the organelles or processes within the cell.
- Significant damage refers to the number of cells that are killed, i.e., irreversibly damaged, either as a ratio (percent) of the cells exposed to the laser, as a defined number of cells per laser exposure, or a defined area of cells. Significant damage is damage to at least 1%. 0.5%, 0.25%. 0.1%, 0.001%, or 0.0001% of the cells expose to the laser.
- adjuvant is understood as an aid or contributor to increase the efficacy or potency of a vaccine or in the prevention, amelioration, or cure of disease by increasing the efficacy or potency of a therapeutic agent as compared to a vaccine or agent administered without the adjuvant.
- An increase in the efficacy or potency can include a decrease in the amount of vaccine or agent to be administered, a decrease in the frequency and/or number of doses to be administered, or a more rapid or robust response to the agent or vaccine (i.e., higher antibody titer).
- An adjuvant can be an agent or laser.
- subject refers to a mammal.
- a human subject can be known as a patient.
- mammal refers to any mammal including but not limited to human, mouse, rat, sheep, monkey, goat, rabbit, hamster, horse, cow or pig.
- non-human mammal refers to any mammal that is not a human.
- exposing means treating with a laser for an exposure time useful to the invention.
- exposing means to expose a subject to a laser applied in a pulse, wherein the pulse is applied for a particular duration.
- the range of pulse durations are in the hundreds of picoseconds to tens of nanoseconds (for example, about 100, 200, 300, 400, 500, 600, 700, 800, 900 picoseconds, or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 75, or 100 nanoseconds). It is understood that the actual pulse length will vary somewhat based on the limitations of the laser and the switching rate/shutter speed.
- “exposing” means to expose a subject to a laser of a particular pulse frequency.
- Optimal frequencies range from about 1 kHz to about 20 kHz (for example, 1, 5, 10, 15, 20 kHz), with typical pulse frequencies in the 5, 6, 7, 8, 9, or 10 kHz frequency. It is understood that the actual frequency will vary somewhat based on the limitations of the laser and the switching rate/shutter speed.
- “exposing” means to expose a subject to a laser of a particular wavelength where the range of wavelengths can range from the visible light to the near infrared portion of the electromagnetic spectrum (approximately 400 nm to 1400 nm, for example, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1125, 1150, 1175, 1200, 1225, 1250, 1275, 1300, 1325, 1350, 1375, and 1400 nm), and are typically about 500-1100 nm.
- “exposing” means to expose a subject to a laser with a particular peak power, where the range of power is 0.1 to 10 Kwatts (for example, about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 Kwatts) and are typically about 1-5 Kwatts.
- “expose” means to expose a subject to a laser for a particular length of time. The range of exposures can be about 5 seconds to about 600 seconds (for example, about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600 seconds).
- “expose” means to expose a particular area of the subject. Typical exposure areas are about 1-100 mm 2 (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mm 2 ).
- the exposure to a laser occurs prior to administration of said agent.
- the exposure to said laser occurs about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50 seconds, about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 minutes or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more hours before administration of said agent.
- the exposure to said laser occurs about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50 seconds, about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 minutes or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more hours after administration of said agent.
- a “laser” refers to an electronic-optical device that emits coherent light radiation.
- a typical laser emits light in a narrow, low-divergence monochromatic (single-colored, if the laser is operating in the visible spectrum), beam with a well-defined wavelength.
- laser light is in sharp contrast with such light sources as the incandescent light bulb, which emits light over a wide area and over a wide spectrum of wavelengths.
- a “laser” includes any laser that is currently available or may become available that can provide the appropriate pulse duration, power, and pulse frequency required by the methods of the instant invention.
- Currently available lasers that can be used in the methods of the invention include, but are not limited to, a copper bromide laser such as the Norseld DualYellow copper bromide laser (511 and 578 nm) or the Asclepion ProYellow+copper (511 and 578 nm), or a neodymium-doped yttrium aluminium garnet (Nd:YAG) lasers such as a Q-switched Yag laser such as the RMI 15 Q-Switched Diode-Pumped Solid State Laser with an output at either 532 nm or 1064 nm.
- a copper bromide laser such as the Norseld DualYellow copper bromide laser (511 and 578 nm) or the Asclepion ProYellow+copper (511 and 578 nm)
- administering refers to any method according to the invention including but not limited to injection, subcutaneous, transcutaneous, intramuscular, intraperitoneal, intracranial and spinal injection, administration directly to a blood vessel, including artery, vein or capillary, intravenous drip, ingestion via the oral route, inhalation, transepithelial diffusion (such as via a drug-impregnated, adhesive patch) or by the use of an implantable, time-release drug delivery device, which may comprise a reservoir of exogenously-produced agent or may, instead, comprise cells that produce and secrete the therapeutic agent or topical application. Additional methods of administration are provided herein below in the section entitled “Dosage and Administration.” As used herein, “administering” can also refer to exposure of a subject to a laser, preferably for a therapeutic use.
- contacting means exposing a subject to, for example by any of the methods of administration described herein. “Contacting” refers to exposing a subject to, for example, an agent for a duration of about 1, 5, 10, 20, 30, 40, 50 minutes, about 1, 2, 5, 10, 20, 24 hours, about 2, 3, 4, 5, 6, 7, 8, 9, 10 days or more. In one embodiment, “contacting” refers to exposing a subject more than once, for example about 2, 3, 4, 5, 6, 7, 8, 9, 10 times or more.
- an “agent” refers to any protein, recombinant protein, small molecule, DNA, RNA, antigen, parasite, virus, bacteria, or other prokaryotic or eukaryotic cells, either whole cells or fragments thereof, or combination thereof.
- An “agent” also includes a vaccine.
- a used herein, a “vaccine” is a preparation which is used to increase immunity of a subject to a particular condition or antigen.
- an “antigen” is understood as any compound that can be used to stimulate a specific immune response.
- An antigen can be an isolated or purified protein, nucleic acid, carbohydrate, small molecule, and the like.
- an antigen can be a complex mixture, naturally or artificially generated including a mixture of one or more of protein, nucleic acid, carbohydrate, small molecule optionally in the form of a pathogen, particularly a killed or attenuated pathogen.
- Antigens include self- and non-self antigens.
- an antigen can be a protein that is not normally present in a subject, e.g., a cancer cell.
- An antigen can also be a contraceptive protein (e.g., riboflavin carrier protein).
- nucleic acid therapeutic or “nucleic acid antagonist” can be any nucleic acid (DNA, RNA, or a combination thereof) or an analog thereof (e.g., PNA) optionally including one or more modifications (see, e.g., U.S. Pat. Nos. 7,015,315 and 6,670,461, incorporated herein by reference) to modulate pharmacokinetic or pharmacodynamic properties of the nucleic acid.
- Nucleic acid antagonists can be antisense oligonucleotides (see, e.g., U.S. Pat. No. 5,366,878; or 6,921,812, both incorporated herein by reference), small interfering (si)RNA (see, e.g., U.S.
- a “small molecule” is understood as is meant a compound having a molecular weight of no more than about 1500 daltons, 1000 daltons, 750 daltons, 500 daltons.
- a small molecule is not a nucleic acid or polypeptide.
- analog is meant a molecule that is not identical, but has analogous functional or structural features.
- “increase” as it refers to a response means elevating the level of response (for example, cell membrane permeability, production or secretion of Heat Shock Proteins (HSPs), increased concentration, maturation and/or activation of Langerhans cells at the site of laser exposure) following administration of an agent or antigen by at least about 2-fold (for example about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1000-fold or more) or at least about 2% (for example, about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100%), in a subject that has been exposed to a laser, as compared to an untreated subject.
- HSPs Heat Shock Proteins
- a “heat shock protein” refers to a group of proteins whose expression is increased when cells are exposed to elevated temperatures or other stress.
- the HSPs are named according to their molecular weights. For example, Hsp60, Hsp70 and Hsp90 (the most widely-studied HSPs) refer to families of heat shock proteins on the order of 60, 70 and 90 kilodaltons in size, respectively.
- the small 8 kilodalton protein ubiquitin which marks proteins for degradation, also has features of a heat shock protein.
- a “detectable response” includes a discernable, preferably a measurable level of a response that occurs in a subject that has been exposed to a laser, as described herein, but not in a subject that has not been exposed to a laser.
- a “response” that is detected includes, but is not limited to, one or more of an increase in immunogenicity, an increase in an immune response, an increase in the concentration of Langerhans cells at the site of irradiation, an increase in the maturation or activation of Langerhans cells, an increase in the number of mature Langerhans cells, an increase in the production of Heat Shock Proteins (HSPs), an increase in the secretion of HSPs, an increase in cell membrane permeability, an increase in the level of one or more cytokine or chemokine, an increase in antibody titer to an agent of interest, an increase in lymphocyte cytotoxic activity, an increase in response to antigen challenge, or an increase in viability in response to pathogen challenge.
- HSPs Heat Shock Proteins
- a “detectable response” means a response that is at least about 0.01%, 0.5%, 1%, 10%, 20%, 30% or more than the response of a subject that has not been exposed to a laser.
- a “detectable response” also means a response that is at least about 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1000-fold or more greater than the response of a subject that has not been exposed to a laser.
- detecting a response means performing an assay to determine if a response has occurred.
- the response can be zero or below the limit of detection of the assay method.
- immunogenicity refers to the ability, for example the ability of an agent, to induce humoral and/or cell-mediated immune responses in a subject.
- immune response refers to a response made by the immune system of an organism to a substance, which includes but is not limited to foreign or self proteins. There are three general types of “immune response” including, but not limited to mucosal, humoral, and cellular “immune responses.”
- a “mucosal immune response” results from the production of secretory IgA (sIgA) antibodies in secretions that bathe all mucosal surfaces of the respiratory tract, gastrointestinal tract and the genitourinary tract and in secretions from all secretory glands (McGhee, J. R. et al., 1983, Annals NY Acad. Sci. 409).
- sIgA antibodies act to prevent colonization of pathogens on a mucosal surface (Williams, R. C. et al., Science 177, 697 (1972); McNabb, P. C. et al., Ann. Rev. Microbiol.
- sIgA can be stimulated either by local immunization of the secretory gland or tissue or by presentation of an antigen to either the gut-associated lymphoid tissue (GALT or Peyer's patches) or the bronchial-associated lymphoid tissue (BALT; Cebra, J. J. et al., Cold Spring Harbor Symp. Quant. Biol. 41, 210 (1976); Bienenstock, J. M., Adv. Exp. Med. Biol. 107, 53 (1978); Weisz-Carrington, P. et al., J. Immunol.
- GALT gut-associated lymphoid tissue
- BALT bronchial-associated lymphoid tissue
- M cells cover the surface of the GALT and BALT and may be associated with other secretory mucosal surfaces.
- M cells act to sample antigens from the luminal space adjacent to the mucosal surface and transfer such antigens to antigen-presenting cells (dendritic cells and macrophages), which in turn present the antigen to a T lymphocyte (in the case of T-dependent antigens), which process the antigen for presentation to a committed B cell.
- B cells are then stimulated to proliferate, migrate and ultimately be transformed into an antibody-secreting plasma cell producing IgA against the presented antigen.
- an “immune response” can be measured using a technique known to those of skill in the art.
- serum, blood or other secretions may be obtained from an organism for which an “immune response” is suspected to be present, and assayed for the presence of a of the above mentioned immunoglobulins using an enzyme-linked immuno-absorbent assay (ELISA; U.S. Pat. No. 5,951,988; Ausubel et al., Short Protocols in Molecular Biology 3rd Ed. John Wiley & Sons, Inc. 1995).
- ELISA enzyme-linked immuno-absorbent assay
- an antigen can be said to stimulate an “immune response” if the quantitative measure of immunoglobulins in an animal treated with an antigen detected by ELISA is statistically different from the measure of immunoglobulins detected in an animal not treated with the antigen, wherein the immunoglobulins are specific for the antigen.
- a statistical test known in the art may be used to determine the difference in measured immunoglobulin levels including, but not limited to ANOVA, Student's T-test, and the like, wherein the P value is at least ⁇ 0.1, ⁇ 0.05, ⁇ 0.01, ⁇ 0.005, ⁇ 0.001, and even ⁇ 0.0001.
- an “immune response” can be measured using other techniques such as immunohistochemistry using labeled antibodies which are specific for portions of the immunoglobulins raised during the “immune response”.
- Tissue from an animal to which an antigen has been administered according to the invention may be obtained and processed for immunohistochemistry using techniques well known in the art (Ausubel et al., Short Protocols in Molecular Biology 3rd Ed. John Wiley & Sons, Inc. 1995).
- Microscopic data obtained by immunohistochemistry can be quantitated by scanning the immunohistochemically stained tissue sample and quantitating the level of staining using a computer software program known to those of skill in the art including, but not limited to NIH Image (National Institutes of Health, Bethesda, Md.).
- an antigen of the present invention can be said to stimulate an “immune response” if the quantitative measure of immunohistochemical staining in an animal treated with an antigen is statistically different from the measure of immunohistochemical staining detected in an animal not treated with the same antigen, wherein said histochemical staining requires binding specific for that protein.
- a statistical test known in the art may be used to determine the difference in measured immunohistochemical staining levels including, but not limited to ANOVA, Student's T-test, and the like, wherein the P value is at least ⁇ 0.1, ⁇ 0.05, ⁇ 0.01, ⁇ 0.005, ⁇ 0.001, and even ⁇ 0.0001.
- “Langerhans cells” refers to bone marrow-derived, antigen-processing and—presenting cells that are involved in a variety of T cell responses. These cells have dark nuclei and pale, or clear cytoplasm, no desmosomes attaching to neighboring cells, no tonofilament bundles and no melanosomes. However, they do contain smooth vesicles, multivesicular bodies, and lysosomes, but most characteristic are the Birbeck granules.
- Langerhans cells are present in the basal, spinous and granular layers of the skin, but are also found in other squamous epithelia, including the oral cavity, esophagus, and vagina, as well as in lymphoid organs such as the spleen, thymus, and lymph node.
- an “activated Langerhans cell” refers to Langerhans cells that have phagocytosed antigens and are increased their expression of major histocompatibility complex class I or II and costimulatory molecules and will migrate to T cell areas of draining lymph nodes. Activated Langerhans cells undergo a maturation process that allows them to become stimulators of T cell immunity. As used herein a “mature Langerhans cell” refers to cells that have gained potent immunogenic capacity, including the ability to secrete T-cell attracting chemokines and to interact with T-cells. They are characterized as having the properties of being CD24+, CD25+, CD69 ⁇ , CD80 (B7-1)+, CD83+, CD122+ and CCR7+.
- identifying refers detecting indicators that a subject that is susceptible to a condition refers to the process of assessing a subject and determining that the subject is at risk of developing or could develop a condition.
- a subject can be susceptible to a condition due to environmental conditions (e.g., population density, availability of clean water, hospitalization), genetic predisposition (e.g., heritable immune deficiency), the presence of other condition (e.g., burns or other injury in which the skin is disrupted, cystic fibrosis, AIDS), or the treatment of conditions with drugs that result in immunodeficiency (e.g., cancer chemotherapeutic agents).
- environmental conditions e.g., population density, availability of clean water, hospitalization
- genetic predisposition e.g., heritable immune deficiency
- the presence of other condition e.g., burns or other injury in which the skin is disrupted, cystic fibrosis, AIDS
- drugs that result in immunodeficiency e.
- selecting refers to the process of determining that an identified subject will receive an agent to prevent or treat the occurrence of a condition. Selecting can be based on an individuals susceptibility to a particular disease or condition due to, for example, family history, lifestyle, age, ethnicity, or other factors.
- “Measuring” means detecting or determining the amount, for example, any one of an increase or a decrease in immunogenicity, an increase in an immune response, an increase in the concentration of Langerhans cells at the site or irradiation, an increase in the maturation or activation of Langerhans cells, an increase in the number of mature Langerhans cells, an increase in the production of Heat Shock Proteins (HSPs), an increase in the secretion of HSPs, an increase in cell membrane permeability, an increase in the level of one or more cytokines or chemokines, an increase in antibody titer to an agent, or an increase in lymphocyte cytotoxic activity, according to the methods described herein. Measuring is the steps taken to determine if an increase or decrease in a level of the material to be detected. Measuring may indicate a level that is zero or below the level of detection, or greater than the linear detection limit of the method used for measuring.
- Measureping is performed in vitro or in vivo, for example in the skin at the site of laser exposure, in serum or in blood or other biological sample, tissue or organ.
- “Measuring” also means detecting a change that is either an increase or decrease in the response (for example an increase in immunogenicity, an increase in an immune response, an increase in the concentration of Langerhans cells at the site or irradiation, an increase in the maturation or activation of Langerhans cells, an increase in the number of mature Langerhans cells, an increase in the production of Heat Shock Proteins (HSPs), an increase in the secretion of HSPs, an increase in cell membrane permeability, an increase in the level of one or more cytokine or chemokine, an increase in antibody titer to an agent, or an increase in lymphocyte cytotoxic activity, a decrease in the development of disease, or a decrease in the death rate in response to a pathogen challenge) of a subject to administration of an agent, according to the methods described herein.
- HSPs Heat Shock Proteins
- “Measuring” is performed in a subject wherein an agent has been administered and wherein said subject has been exposed to a laser. “Measuring” is also performed in a control subject, for example a subject that has not received an agent and that has not been exposed to a laser, or a subject that has received an agent but has not been exposed to a laser.
- a “decrease” as it refers to a diminution in the level of a response as defined herein means a response that is at least about 2-fold (for example about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1000-fold or more) or at least about 2% (for example, about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100%), less than the level of response of an untreated subject, for example a subject that has not received an agent and has not been exposed to a laser or a subject that has received an agent but has not been exposed to a laser subject.
- 2-fold for example about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100%
- phrases “pharmaceutically acceptable carrier” is art recognized and includes a pharmaceutically acceptable material, composition or vehicle, suitable for administering compounds used in the methods described herein to subjects, e.g., mammals.
- the carriers include liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject agent from one organ, or portion of the body, to another organ, or portion of the body.
- Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
- suitable carriers to be administered prior to exposure to the laser preferably do not include chromophores or other compounds that alter the absorption of heat by the tissue, or result in chemical reactions that can cause significant and/or irreversible damage to the cells or tissue.
- materials which can serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as e
- therapeutically effective amount or a “therapeutically effective dose” of a compound is the amount necessary to or sufficient to provide a detectable improvement in of at least one symptom associated or caused by the state, disorder or disease being treated.
- the therapeutically effective amount can be administered as a single dose or in multiple doses over time. Two or more compounds can be used together to provide a “therapeutically effective amount” to provide a detectable improvement wherein the same amount of either compound alone would be insufficient to provide a therapeutically effective amount.
- the terms “effective” and “effectiveness” includes both pharmacological effectiveness and physiological safety.
- Pharmacological effectiveness refers to the ability of the treatment to result in a desired biological effect in the patient.
- Physiological safety refers to the level of toxicity, or other adverse physiological effects at the cellular, organ and/or organism level (often referred to as side-effects) resulting from administration of the treatment.
- side-effects the level of toxicity, or other adverse physiological effects at the cellular, organ and/or organism level (often referred to as side-effects) resulting from administration of the treatment.
- the term “ineffective” indicates that a treatment does not provide sufficient pharmacological effect to be therapeutically useful, even in the absence of deleterious effects, at least in the unstratified population.
- “Less effective” means that the treatment results in a therapeutically significant lower level of pharmacological effectiveness and/or a therapeutically greater level of adverse physiological effects, e.g., greater liver toxicity.
- a drug which is “effective against” a disease or condition indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as a improvement of symptoms, a cure, a reduction in disease load, reduction in tumor mass or cell numbers, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating the particular type of disease or condition.
- the term “tolerance” refers to the ability of a patient to accept a treatment, based, e.g., on deleterious effects and/or effects on lifestyle. Frequently, the term principally concerns the patients perceived magnitude of deleterious effects such as nausea, weakness, dizziness, and diarrhea, among others. Such experienced effects can, for example, be due to general or cell-specific toxicity, activity on non-target cells, cross-reactivity on non-target cellular constituents (non-mechanism based), and/or side effects of activity on the target cellular substituents (mechanism based), or the cause of toxicity may not be understood. In any of these circumstances one may identify an association between the undesirable effects and variances in specific genes from the subject to contact with an agent ex vivo.
- the method of selecting a treatment involves selecting a method of administration of a compound, combination of compounds, or pharmaceutical composition, for example, selecting a suitable dosage level and/or frequency of administration, and/or mode of administration of a compound.
- the method of administration can be selected to provide better, preferably maximum therapeutic benefit.
- “maximum” refers to an approximate local maximum based on the parameters being considered, not an absolute maximum.
- a “suitable dosage level” refers to a dosage level that provides a therapeutically reasonable balance between pharmacological effectiveness and deleterious effects. Often this dosage level is related to the peak or average serum levels resulting from administration of a drug at the particular dosage level.
- cell membrane permeability refers to a property of cell membranes that allows the passage of solvents and solutes into and out of cells.
- Cell membrane permeability can be measured by methods well known in the art including but not limited to spectrofluorometry, luminometry, or flow cytometry.
- cell membrane permeability refers to an increase of at least about 2-fold (for example about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1000-fold or more) or at least about 2% over the normal permeability of a particular cell (for example, about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100%), in a subject that has been exposed to a laser, as compared to an untreated subject.
- 2-fold for example about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100%
- an increase in cell membrane permeability refers to an increase that persists for a duration of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50 minutes, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more hours, or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more days.
- cytokine refers to a class of signaling proteins and glycoproteins that, like hormones and neurotransmitters, are used extensively in cellular communication. While hormones are secreted from specific organs to the blood, and neurotransmitters are related to neural activity, the cytokines are a more diverse class of compounds in terms of origin and purpose. They are produced by a wide variety of hematopoietic and non-hematopoietic cell types and can have effects on both nearby cells or throughout the organism, sometimes strongly dependent on the presence of other chemicals.
- the cytokine family consists mainly of smaller, water-soluble proteins and glycoproteins with a mass of between 8 and 30 kDa.
- Cytokines are critical to the functioning of both innate and adaptive immune responses. They are often secreted by immune cells which have encountered a pathogen as a way to activate and recruit more immune cells and increase the system's response to the pathogen. However, apart from their role in the development and functioning of the immune system, as well as their aberrant modes of secretion in a variety of immunological, inflammatory and infectious diseases, cytokines are also involved in several developmental processes during embryogenesis.
- a cytokine useful according to the invention includes but is not limited to pro-inflammatory cytokines such as IL-1 alpha, IL-1 beta, TNF-alpha, IL-6, and IL-12, as well as growth-promoting cytokines such as granulocyte-macrophage colony stimulating factor or type I and type II interferons.
- pro-inflammatory cytokines such as IL-1 alpha, IL-1 beta, TNF-alpha, IL-6, and IL-12
- growth-promoting cytokines such as granulocyte-macrophage colony stimulating factor or type I and type II interferons.
- chemokine refers to a family of small cytokines, or proteins secreted by cells. Proteins are classified as chemokines according to shared structural characteristics such as small size (they are all approximately 8-10 kilodaltons in size), and the presence of four cysteine residues in conserved locations that are key to forming their 3-dimensional shape. Their name is derived from their ability to induce directed chemotaxis in nearby responsive cells; they are chemotactic cytokines. Some chemokines are considered pro-inflammatory and can be induced during an immune response to promote cells of the immune system to a site of infection, while others are considered homeostatic and are involved in controlling the migration of cells during normal processes of tissue maintenance or development.
- Chemokines are found in all vertebrates, some viruses and some bacteria, but none have been described for other invertebrates. These proteins exert their biological effects by interacting with G protein-linked transmembrane receptors called chemokine receptors, that are selectively found on the surfaces of their target cells.
- a chemokine useful according to the invention includes but is not limited to IL-8, MIP-1, MIP-2, IP-10, RANTES, CCR5, CCR6, CCR7, or CXCR4.
- antibody titer means a measurement of how much antibody an organism has produced that recognizes a particular epitope, expressed as the greatest dilution ratio (or its reciprocal) that still gives a positive result. In one embodiment, antibody titers are determined by ELISA assays.
- lymphocyte cytotoxic activity means the ability of a lymphocyte to kill another cell of a different type, typically by means of elaborating porins. This capability can be measured by co-culturing lymphocytes and target cells.
- improving the efficiency means increasing, as defined herein, any one of the level of response, the speed with which a response occurs, or the duration of the response, as compared to the response to an agent in a subject that has not been exposed to a laser.
- An increase in the efficiency refers to a change in the level of a response, the speed with which a response occurs or a duration of the response in a subject that has been exposed to a laser as compared to a subject that has not been exposed to a laser, that is at least about 2-fold more (for example about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1000-fold or more) or at least about 2% more (for example, about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100% more), than the efficiency of a response in a subject that has been exposed to a laser, as compared to an untreated subject.
- a subject that is “immunocompromised” refers to a subject that has an immunodeficiency of any kind
- An “immunodeficiency” (or immune deficiency) is a state in which the immune system's ability to fight infectious disease is compromised or entirely absent. Most cases of immunodeficiency are acquired (“secondary”) but some people are born with defects in the immune system, or primary immunodeficiency. An immunocompromised person may be particularly vulnerable to opportunistic infections, in addition to normal infections that could affect everyone.
- a subject that is “immunocompromised” refers to a subject wherein the decrease in the ability of the subject to respond to an infection or infectious disease is at least about 2-fold less (for example about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 1000-fold or more) or at least about 2% less (for example, about 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100%), than the ability of a subject that is not immunocompromised to respond to an infection or an infectious disease.
- extracellular matrix refers to the extracellular part of tissue that usually provides structural support to the cells in addition to performing various other important functions.
- the extracellular matrix is the defining feature of connective tissue in mammals.
- Extracellular matrix includes the interstitial matrix and the basement membrane. Interstitial matrix is present between various cells (i.e., in the intercellular spaces). Gels of polysaccharides and fibrous proteins fill the interstitial space and act as a compression buffer against the stress placed on the ECM.
- Basement membranes are sheet-like depositions of ECM on which various epithelial cells rest.
- the extracellular matrix comprises polysaccharides (for example, glycosaminoglycans or cellulose) and proteins (such as collagen) secreted by cells. Examples of extracellular matrix proteins include but are not limited to collagen, laminin, fibronectin, vitronectin, elastin, glycosaminoglycans, proteoglycans, and combinations of some or all of these components.
- skin cells are cells which make up the epidermis for example, Merkel cells, keratinocytes, melanocytes and Langerhans cells.
- secretion refers to the process of segregating, elaborating, and releasing a substance from a cell.
- obtaining is understood as purchase, procure, manufacture, or otherwise come into possession of the desired material.
- “Providing,” refers to obtaining, by for example, buying or making the, e.g., polypeptide, drug, polynucleotide, probe, antigen, and the like, including libraries of such compounds or libraries of combinations of types of compounds.
- the material provided may be made by any known or later developed biochemical or other technique.
- compounds may be derived from natural sources, be chemically synthesized by directed or combinatorial methods, or a collection of known compounds (e.g., compounds approved for therapeutic use in humans).
- the term “recombinant DNA molecule” as used herein refers to a DNA molecule, which is comprised of segments of DNA joined together by means of molecular biological techniques.
- a nucleic acid sequence even if internal to a larger oligonucleotide, also may be said to have 5′ and 3′ ends.
- discrete elements are referred to as being “upstream” or 5′ of the “downstream” or 3′ elements. This terminology reflects the fact that transcription proceeds in a 5′ to 3′ fashion along the DNA strand.
- the promoter and enhancer elements which direct transcription of a linked gene are generally located 5′ or upstream of the coding region. However, enhancer elements can exert their effect even when located 3′ of the promoter element and the coding region. Transcription termination and polyadenylation signals are located 3′ or downstream of the coding region.
- Ranges provided herein are understood to be shorthand for all of the values within the range.
- a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.
- “about” is understood to be relative to the amount of variance typically tolerated in the specific assay, method, or measurement provided. For example, “about” is typically understood to be within about 3 standard deviations of the mean, or two standard deviations of the mean. About can be understood as a variation of 20%, 15%, 12%, 10%, 8%, 5%, 3%, 2%, or 1%, depending upon the tolerances in the particular art, device, assay, or method.
- compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.
- the invention provides a laser-based method of creating both photothermal and photokinetic effects in skin cells leading to enhanced immunostimulatory effects, without causing significant and irreversible cell damage.
- laser treatment stimulates the extracellular release of HSP70 from cells in the skin. This requires a laser emitting light at a specific combination of wavelength, pulse duration, frequency and fluence to induce production and extracellular release of HSP70 in the epidermal and dermal layer of the skin over a relatively short exposure time without causing concomitant tissue damage.
- the invention provides methods for laser-based enhancement of vaccine efficacy. Fundamentally, it utilizes a specific type of laser irradiation for an exposure duration and frequency. It is suggested that exposure to the laser under the specific parameters disclosed herein causes enough stress on cells of the epidermal and dermal layer of the skin sufficient to result in the secretion of a significant amount heat shock protein 70 molecules into the extracellular matrix, but not enough to result in irreversible cellular damage. The end result of this irradiation is the enhanced response of the epidermal immune mechanisms to administered vaccines, leading to a better immune response in the immunized subject. As an example, FIG. 1 shows the ideal ranges of pulse duration, frequency and power for an Nd:YAG laser emitting at 578 nm for use in the methods of the invention.
- a wavelength or combination of wavelengths of light must be selected that are significantly absorbed by one or more chromophores, which are chemical compounds capable of selective light absorbance, located in the epidermal or dermal layers of the skin.
- chromophores are melanin, hemoglobin, riboflavin, and cytochrome. It is suggested that this preferential absorption is the basis for the subsequent photothermal, photokinetic and photochemical effects that leads to enhanced immune response in immunized subjects.
- the skin must be exposed to the laser light at a site at or near the site of injection.
- the site of injection is exposed to the laser.
- the skin can be exposed to the laser at a site near the injection site provided that the skin exposed to the laser is within the area in which the vaccine would diffuse between the time of the injection and the time of exposure to the laser.
- the non-damaging laser-based methods of the invention are distinct from prior medical uses of lasers.
- the approved, routine medical applications of lasers have largely been methods that intentionally damage tissue including:
- the methods provided herein are not based on creating irreversible damage or destruction of cells. Instead the methods are based on exposing cells to a laser of relatively high power without causing significant or irreversible damage to the cells. Irreversible damage does not include a cell stress response in which the cell may enter a period of senescence prior to cell division. Reversible damage can be induced and detected, for example, by the activation of one or more cell cycle checkpoints which can result in a pause in the cell cycle or by the detection of a transient increase in membrane permeability.
- Irreversible damage to cells can be caused by the destructive application of heat on proteins or lipids in the cell (denaturation or coagulation), by thermal expansion or vaporization of water in and around the cell (ablation), or by triggering the release of destructive chemical compounds within the cell such as radical oxygen or nitrogen species (photochemical destruction).
- Denaturation, coagulation and ablation are principally the result of the conversion of laser light energy into heat energy. This conversion is mediated by chromophores, which are chemical compounds capable of selective light absorbance. Once the laser energy is converted into heat via the chromophore, heat begins to dissipate into the surrounding tissue.
- thermal containment When light energy is absorbed by the chromophore faster than it can be dissipated to the surrounding tissue, the result is an increase in the temperature within a local region. This condition is called thermal containment.
- a local region which can be an organelle, a cell, or a microstructure
- damage to or destruction of the tissue results either by alteration of the biological material of the cell or by significant and rapid heating of intra- or extracellular water.
- the denaturation or coagulation of tissues occurs when a rise in temperature alters the structures within the tissue, causing a loss of function.
- Denaturation of proteins occurs when the kinetic energy caused by heat overcomes the weak hydrogen bonds and van der Waals interactions that help maintain the three-dimensional structure of proteins.
- FIG. 2 shows the threshold temperature for tissue damage in the skin at different time intervals (Welch 1984).
- An alternative method of causing irreversible tissue destruction is through the ablation of the tissue using thermal expansion or vaporization of water.
- Ablation refers to the explosive removal of tissue from the site of irradiation.
- water itself is the chromophore for the laser.
- laser ablation a small volume of water is very rapidly heated to the point where either its expansion within a confined area causes a loss of the structural integrity of the tissue or cell, or to the point where the water experiences a rapid phase change into a gas, referred to as a phase explosion.
- water exists in a superheated metastable liquid state and then rapidly moves into an equilibrium state as a gas.
- Irreversible damage to the cells can also result from the photochemical effects of lasers, which occur when laser energy catalyzes a chemical process that is toxic to the cell.
- lasers One of the major ways lasers can cause cell and tissue destruction through photochemical effects is the generation of reactive oxygen or nitrogen species. The precise mechanisms of action are not understood, but it is hypothesized that when the energy of a photon from a laser exceeds the energy needed to remove an electron from a molecule, a collision with that molecule might then lead to generation of free radicals. Therefore, the initial cellular damage may be due to the local formation of hydroxyl or other reactive radicals that may then generate longer lived organic radicals including peroxy- or alkoxy-radicals (Kim 2002). Typical targets for this kind of laser damage are cell membranes, mitochondria, nitric acid complexes, proteins and lipids.
- Another photochemical effect is the direct damage of cellular DNA by laser light. In some cases absorption of energetic photons can cause breaks in the DNA structure, leading in some cases to irreversible cell damage and subsequent apoptosis.
- Irreversible damage to cells from photothermal and photochemical effects result in either the apoptosis or necrosis of the cell, depending on the site and extent of the damage, or the disruption of the entire tissue (in the case of laser ablation).
- Cells need not be killed immediately upon exposure to the laser, but instead, they may die over a longer period of time as a direct result of laser treatment (e.g., initiate apoptosis, become necrotic, somatic fusion and subsequent mitotic catastrophe).
- the exact cause or causes of irreversible damage is not a limitation of the invention. Irreversible damage can result from a combination of mechanisms.
- Thermal damage to a culture of cells or living tissue can be expressed by the parameter ⁇ , which is the logarithm of the ratio of the concentration of the intact protein in a sample before damage and the concentration of intact protein in a sample after exposure.
- ⁇ is dimensionless, exponentially dependent on temperature, and linearly dependent on time of exposure (Diller and Pearce 1999).
- Calculation of ⁇ is a function of the ratio of the concentration of viable cells at time point 0 and at time point (t). A value of 1 for ⁇ at the time point (t) means that 63.2% of cells in a given sample have been damaged at that point, while a value of 10 means that virtually all cells in the sample have been destroyed.
- Measurement of the concentration of viable cells in a particular tissue or culture is routine in the art. Methods and kits are known in the art to detect apoptosis and necrosis. The number of cells undergoing apoptosis or necrosis can be readily scored and expressed as a percentage of cells exposed to the laser.
- Apoptosis can be detected using flow cytometry techniques. For example, apoptotic cells show an increased uptake of the vital dye HO342 compared to live cells due to a changes in membrane permeability. Apoptosis can be measured using a number of other assay-based approaches including measurement of DNA fragmentation, membrane phospholipid changes, interleukin-1beta converting enzyme-like protease activation, or nucleosomal fragmentation by DNA agarose gel electrophoresis. Finally, apoptosis can be detected through visual means such as changes in cell morphology.
- Necrotic cells can be detected by flow cytometry techniques, such as the addition of the nucleic acid stain PI, which binds to DNA or RNA but cannot permeate cell membranes and therefore is visible under fluorescence only if the cell membrane has been compromised, or stains such as propidium iodide or 7-AAD that discriminate cells which have lost membrane integrity. In addition, they can be visualized optically using standard staining and microscopy techniques.
- the degree of irreversible damage to tissue samples may also be determined by several methods known in the art, such as the measurement of changes in optical characteristics of the tissue. For example, concentration of viable cells in muscles and collagen can be measured by the relative birefringence of tissue when viewed through a polarized filter (Diller and Pearce 1999), Undamaged tissue is birefringent and appears bright while damaged, nonbirefringent tissue is dark. The proportion of damaged to undamaged tissue in a particular sample can be calculated by measuring optical intensity. Other methods of optical measurement are also possible (see for example Roggan and Müller 1995). Additional methods exist in the art to quantify damage in tissue includes enzyme deactivation (Bhowmick and Bischof 1998) and extravasation of fluorescent-tagged proteins (Green and Diller 1978).
- the method of this invention utilizes high power laser irradiation of tissue, but is designed to avoid significant and irreversible damage to cells. Preferably less than 1% of cells are irreversibly damaged upon laser exposure using the methods of the invention, which would correspond to an ⁇ value of 0.01 or less. In an embodiment, significant and irreversible damage of the cells is limited or prevented by limiting the increase in temperature in the cells and/or tissues exposed to the laser in the methods of the invention to below the levels below the critical thresholds illustrated in FIG. 2 . In addition, the method does not result in the heating of intracellular or extracellular water to supercritical temperatures required for vaporization.
- the method is distinguished from the use of relatively low power laser irradiation to modify the metabolic activity of cells in order to accelerate burn or wound healing.
- Such methods which are sometimes referred to as low-level laser therapy (LLLT) use very low power irradiation (in the range of 10 milliwatts to 10 watts) with a wide variety of wavelengths, pulse durations and frequencies with the intention of stimulating the production of factors such as proangiogenic or other growth factors that can lead to accelerated healing processes.
- LLLT low-level laser therapy
- the wavelength of laser light determines the depth of its penetration into the skin.
- Laser light of wavelengths in the near infrared spectrum penetrate furthest into the skin.
- Absorption of laser light by surrounding tissues also depends on the wavelength of the laser used.
- visible light laser radiation is absorbed by pigments in the skin (chromophores).
- Absorption by a particular pigment is dependent on the laser's wavelength.
- Near infrared energy such as that produced by the neodymium:yttrium aluminum garnet (Nd:YAG) laser at 1.06 ⁇ m, has little pigment specificity, while the 10.6 ⁇ m wavelength light emitted by the CO 2 laser is effectively absorbed by water.
- laser pulses at an appropriate frequency (Hz, or KHz).
- the methods herein rely predominantly on the use of a combination of the desired pulse length, preferably in the nanosecond range; frequency, preferably in the kilohertz range; and power, preferably in the range of about 1-10 watts.
- HSP 70 increased local concentration of HSP 70 at or near the site of laser exposure, particularly extracellular HSP 70, increased local concentration or number of Langerhans cells at or near the site of exposure, and/or increased response to antigen as compared to a subject not exposed to laser, without causing significant or irreversible damage to the cells or tissue exposed to the laser.
- the method is practiced to minimize the exposure time required to yield these effects to seconds or minutes. Variation in wavelength, laser type, beam size, fluence, and frequency of laser administration on a macro time scale (e.g., minutes, hours, days, rather than fractions of seconds) is well within the ability of those in the art. Methods of testing specific parameters using the methods provided herein as well as those known to those of skill in the art is routine.
- tissue can be heated to a supraphysiologic level, eventually leading to significant and irreversible cell injury, death or destruction of tissue through superheating of water within and around the tissues (Venugopalan et al. 1996, incorporated herein by reference). Because cellular injury or death is a property of the heat exposure duration and not solely of the temperature (Moritz and Henrique 1947, incorporated herein by reference), the heating effect of a laser can be controlled to keep it below a level that causes significant cell damage or death. This heating effect leads to two biological processes in the skin which together create the conditions for effective immunostimulation suitable for enhancing vaccination: production and secretion of heat shock proteins and concentration stimulation of Langerhans cells.
- HSPs heat shock proteins
- skin cells heat shock response
- HSPs heat shock proteins
- cells produce HSPs in response to stress caused by heat, poisons or signals from nerves or hormones.
- heat shock proteins play an important protective role against these stresses, specifically assisting in protein maintenance, folding, chaperoning and degredation, and, when expressed on the surface of the cell, assist with the stabilization of the cell membrane.
- HSP70 heat shock proteins
- HSP70 is involved in protein folding and chaperoning activities inside the cell, outside the cell it acts as a chaperone of protein antigens to dendritic cells and stimulates their maturation (Bendz et al. 2007).
- Dendritic cells are key actors in the immune response against both infectious pathogens and cancerous tumors (Banchereau and Steinman 1998). In an immature state, dendritic cells capture and process antigens with high efficiency. After maturation, they migrate to lymphoid organs to present these antigens, as well as co-stimulatory molecules, to T cells.
- antigen-presenting dendritic cells Approximately 40% of the body's antigen-presenting dendritic cells are located in the skin. These antigen presenting cells, called Langerhans cells, are concentrated in the in the basal, spinous, and granular layers of the epidermis, showing a preference for the suprabasal portion of the epidermis.
- HSP70 can also be elicited by use of a laser capable of creating thermal confinement sufficient to raise temperatures of cells above normal but below the critical temperature where cells begin to die (Souil et al. 2001).
- cells vary in their ability to produce HSPs. For example, keratinocytes in the skin highly express HSP70 relative to other cell types (Trautinger et al. 1993)
- This method utilizes a laser to rapidly and non-destructively (i.e., without significant or irreversible damage) cause the secretion of significant quantities of HSP70 in the skin and yield enhancements in the response to vaccination.
- lasers of different types can enhance the expression of heat shock protein in living tissues without causing significant damage to the living cells (Ferrando et al. 1993; Destura et al. 2001; Souil et al. 2001; Emohare et al. 2004). To date, no research has demonstrated that a non-destructive exposure to laser irradiation leads to enhanced secretion of HSP70 from cells.
- HSP70 The secretion of HSP70 introduces a significant additional number of chaperone proteins into the surrounding epidermal tissues that are capable of enhancing presentation the protein antigens from a vaccine to Langerhans cells. HSP70 is capable of inducing maturation of immature Langerhans cells, rapidly multiplying the number that migrates to the lymph system, where they prime T-cells to mount an immune response against a cell or virus expressing the vaccine antigen.
- this invention leads to the concentration of immature Langerhans cells in the local area of the skin subject to laser irradiation.
- FIG. 5 shows a specific example of the increase in number of Langerhans cells in the epidermal tissues of a mouse subject to laser irradiation. This concentration also serves to increase the effectiveness of vaccination by increasing the number of Langerhans cells available to receive vaccine antigens and migrate to the lymph system after maturation.
- Fibroblasts cells derived from mouse embryo were cultured in the Petri dish using the Eagle or No. 199 medium for 24 h. Cell culture was exposed to the light beam of the Cu laser. The levels of HSP70 have been determined before and after irradiation using antibodies to Hsp70 (Russian Patent No. 2242764 7, Aug. 2003. After a 1 minute exposure, the separated supernatant solution displayed 350% increase of the extracellular HSP70, from 3.2 to 11.2 ng/L. The culture cells remained viable after laser irradiation as established by staining with the toluidine blue 0.2%
- Healthy white mice (CBA, Rappolovo, 50 animals) were treated using Cu laser by exposing a section of an ear to the laser light with a diameter of 5 mm over a period of 1-3 min. After the experiments, the animals were sacrificed at different time points. Immunohistochemical staining using antibodies to HSP70 (Russian Patent No. 2242764, 7, Aug. 2003) of the ventricular epidermal sheets of the ear ( FIG. 6 ) provided a qualitative estimate of the increased levels of the secreted HSP70 as compared to the tissue from untreated ear from the same animal. These data were supported by the results of immunoblotting analysis of the processed ventricular epidermal sheets tissues though these results did not differentiate between secreted and intracellular HSP70.
- mice received 50 ⁇ L of a commercial H3N2 influenza vaccine (VAXIGRIP®, Aventis Pasteur) by subcutaneous injection to the left ear and served as a control group.
- VAXIGRIP® commercial H3N2 influenza vaccine
- 50 mice were administered the same vaccine together with laser treatment (Cu laser at 578/511 nm, 1-3 ns pulses at 10 MHz) of the left ear.
- laser treatment Cu laser at 578/511 nm, 1-3 ns pulses at 10 MHz
- a subgroup of 25 animals was a subject of a one minute exposure whereas another subgroup of 25 mice was a subject of a two-minute exposure.
- mice received the vaccine and exogenous bovine HSP70 (10 ⁇ g per injection, dissolved in 50 ⁇ L saline solution).
- the animals were sacrificed and antibody titers were measured 28 days after vaccination following a standard literature protocol [“The immune drugs for grippe prophylactic and diagnostic effectiveness testing methods” Russian Federal Methodologic Standarts—MY 3.3.2.1758-03′′ (28 Sep. 2003)].
- Results of the experiment are summarized in the Table 1.
- the most optimal treatment consisted in using vaccine and laser treatment for 2 min that resulted in 86% increase of the antibody titers as compared to vaccine alone. 1 min exposure was also effective providing a 54% increase in titers. Consistent with our hypothesis about the role of HSP in improved presentation of the vaccine antigens, combination of the influenza vaccine with exogenous HSP70 produced as much as 68% increase in the antibody titers.
- mice received a commercial H3N2 influenza vaccine (VAXIGRIP®, Aventis Pasteur) by subcutaneous injection to the left ear (50 ⁇ L).
- VAXIGRIP® Aventis Pasteur
- All mice received a lethal dose of the H3N2 influenza virus (strain A/Aichi/2/68) by inhalation using a “Mussson” type ultrasound inhalator coupled with special murine inhalation mask 14 days post-vaccination.
- H3N2 influenza virus strain A/Aichi/2/68
- the first group of 22 immunocompromised patients received a standard influenza vaccination (VAXIGRIP®, Aventis Pasteur), the second group of 22 immunocompromised patients received vaccination after a one-minute laser exposure of the skin.
- 22 healthy control subjects received standard vaccination. Seven different measurements of immune function and activity were assessed 30 days after immunization. Results were normalized to the set of vaccinated healthy adults. Based on an overall assessment of all measurements, 75% of the healthy patients had a significant response to the vaccine whereas only 25% of the vaccinated immunocompromised patients had a significant response. In comparison, over 50% of the immunocompromised patients receiving vaccination with laser showed significant response: double that of the vaccine only group.
- hepatitis B vaccine Recombinant Yeast Hepatitis B vaccine, Combiotech, Russia
- hepatitis B vaccination at 0, 1 and 3 months
- IL-2 2,500,000 IE SQ
- nine patients received the same vaccination schedule coupled with the copper laser treatment of the skin at the time of injection (power-1.5 watts, exposure time 2 minutes, vaccine injection 5 minutes after laser skin treatment).
- Responders were determined by the level of protective antibodies titer (>10 IE/ml).
- Arm 1 subjects receive the standard of care—intramuscular vaccination with the influenza vaccine manufactured to provide prophylaxis against the current season's influenza strain.
- Arm 2 subjects receive the same vaccine in an intradermal delivery (e.g., intradermal microinjection system, Becton, Dickinson & Company). Intradermal dosage is adjusted appropriately to site of delivery.
- Arm 3 subjects receive the same vaccine in an intradermal dosage coupled with a short-duration exposure to a laser vaccine adjuvant device immediately before administration of the vaccine.
- the time of laser exposure is about one minute, but may be adjusted to match skin color, and patients with darker skin receive shorter duration of irradiation. Sufficient numbers of patients are enrolled in each arm to ensure sufficient statistical powering at the end of the study, and enrollees in each arm are case-matched demographically. Enrollment is conducted at the start of the influenza season (November to May).
- the study shows that combination of laser irradiation and epidermal vaccination is statistically superior to both standard of therapy vaccination and epidermal vaccination alone in the improvement of antibody titers and the concentration of Granzyme-secreting cells, and that patients receiving both the epidermal vaccination and laser treatment have a statistically significant decrease in clinical events related to influenza, particularly with respect to hospitalization.
- mice in group 1 receive the standard intramuscular avian influenza vaccine.
- Mice in group 2 receive the standard avian influenza vaccine administered epidermally in the ear.
- Groups 1 and 2 act as control groups for the experiment. Preliminary experiments are used to establish the doses of the vaccine for each group that correspond to protective levels of H5N1 antibody.
- mice in group 3 receive the standard avian influenza vaccine by intramuscular injection coupled with a short-duration laser exposure immediately before administration of the vaccine.
- Mice in group 4 receive the standard avian influenza vaccine administered using epidermal vaccination to the ear coupled with a short-duration exposure to a laser vaccine adjuvant device immediately before administration of the vaccine.
- the duration of laser exposure in groups 3 and 4 will be approximately one minute. Mice in group 3 are shaved in the area of intramuscular injection to maximum effect of the laser.
- mice in each group and subgroup are adequate to sufficiently power the study for statistical analysis.
- a population of healthy individuals is assessed for the difference in response to a novel DNA-based Hepatitis B vaccine compared with an existing, approved hepatitis B vaccine (RECOMBIVAX HB®, Merck and Co.).
- Subjects are randomized to receive either the DNA-based hepatitis B vaccine, the hepatitis B vaccine combined with laser vaccine adjuvant, or the standard hepatitis B vaccine.
- Administration of each type of vaccine, including dosage, frequency of vaccination, and methods of administration, follows FDA-approved approaches.
- the time of exposure to the laser is about one minute, but may be adjusted to match skin color, and patients with darker skin receive shorter duration of irradiation.
- blood samples are drawn from each patient and assessed for hepatitis B surface antigen levels.
- a population of healthy individuals is assessed for the difference in response to a novel subunit-based MMR (measles, mumps, rubella) vaccine compared with an existing, approved MMR vaccine that is composed of attenuated live viruses (MMR II®, Merck and Co.).
- Subjects are randomized to receive either the subunit-based MMR vaccine, the subunit MMR vaccine combined with laser vaccine adjuvant, or the standard MMR vaccine.
- Administration of each type of vaccine, including dosage, frequency of vaccination, and methods of administration follows FDA-approved approaches.
- the time of exposure to the laser is about one minute, but may be adjusted to match skin color, and patients with darker skin receive shorter duration of irradiation.
- Sufficient numbers of patients are enrolled in each arm to ensure sufficient statistical powering at the end of the study, and enrollees in each arm are case-matched demographically.
- Exclusion criteria for the study includes previous vaccination against or exposure to measles, mumps, or rubella.
- a population of healthy individuals is assessed for the difference in response to a novel synthetic peptide vaccine against bacterial meningitis compared with an existing, approved bacterial meningitis vaccine that is composed of meningococcal polysaccharides conjugated to the diphtheria toxoid (MENACTRA®, Sanofi Pasteur).
- Subjects are randomized to receive either the synthetic peptide vaccine, the synthetic peptide vaccine combined with laser vaccine adjuvant, or the standard conjugated vaccine.
- Administration of each type of vaccine, including dosage, frequency of vaccination, and methods of administration follows FDA-approved approaches.
- the time of exposure to the laser is about one minute, but may be adjusted to match skin color, and patients with darker skin receive shorter duration of irradiation.
- Sufficient numbers of patients are enrolled in each arm to ensure sufficient statistical powering at the end of the study, and enrollees in each arm are case-matched demographically. Exclusion criteria for the study includes previous vaccination against or exposure to bacterial meningitis.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Communicable Diseases (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Pulmonology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Oncology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/428,275 US20130078265A1 (en) | 2007-10-04 | 2012-03-23 | Laser-based vaccine adjuvants |
| US14/255,931 US10052376B2 (en) | 2007-10-04 | 2014-04-17 | Laser-based vaccine adjuvants |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2007113393 | 2007-10-04 | ||
| RU2007113393 | 2007-10-04 | ||
| RU2008121934 | 2008-05-27 | ||
| RU2008121934 | 2008-05-27 | ||
| PCT/IB2008/002637 WO2009044272A2 (fr) | 2007-10-04 | 2008-10-06 | Adjuvants de vaccin utilisant un rayonnement laser |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2008/002637 Continuation WO2009044272A2 (fr) | 2007-10-04 | 2008-10-06 | Adjuvants de vaccin utilisant un rayonnement laser |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/428,275 Continuation US20130078265A1 (en) | 2007-10-04 | 2012-03-23 | Laser-based vaccine adjuvants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110059116A1 true US20110059116A1 (en) | 2011-03-10 |
Family
ID=40526769
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/754,081 Abandoned US20110059116A1 (en) | 2007-10-04 | 2010-04-05 | Laser-based vaccine adjuvants |
| US13/428,275 Abandoned US20130078265A1 (en) | 2007-10-04 | 2012-03-23 | Laser-based vaccine adjuvants |
| US14/255,931 Expired - Fee Related US10052376B2 (en) | 2007-10-04 | 2014-04-17 | Laser-based vaccine adjuvants |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/428,275 Abandoned US20130078265A1 (en) | 2007-10-04 | 2012-03-23 | Laser-based vaccine adjuvants |
| US14/255,931 Expired - Fee Related US10052376B2 (en) | 2007-10-04 | 2014-04-17 | Laser-based vaccine adjuvants |
Country Status (2)
| Country | Link |
|---|---|
| US (3) | US20110059116A1 (fr) |
| WO (1) | WO2009044272A2 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220176148A1 (en) * | 2018-02-23 | 2022-06-09 | GlobaLaseReach, LLC | Device for delivering precision phototherapy |
| US20240225540A9 (en) * | 2019-12-11 | 2024-07-11 | Rockley Photonics Limited | Optical sensing module |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2012301730A1 (en) * | 2011-09-01 | 2014-04-17 | The General Hospital Corporation | Laser adjuvants for enhancing immune response |
| US10828354B2 (en) | 2015-04-20 | 2020-11-10 | Pantec Biosolutions Ag | Laser-assisted intradermal administration of active substances |
| CN107693954B (zh) * | 2017-10-31 | 2020-05-26 | 重庆京渝激光技术有限公司 | 全自动激光治疗机 |
| US11622943B2 (en) | 2019-05-10 | 2023-04-11 | Chamkurkishtiah Panduranga Rao | System and method for allergen-specific epicutaneous immunotherapy |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050281783A1 (en) * | 2003-10-15 | 2005-12-22 | Kinch Michael S | Listeria-based EphA2 vaccines |
| US20060241577A1 (en) * | 2000-03-31 | 2006-10-26 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2345788C2 (ru) * | 2005-09-02 | 2009-02-10 | ООО "Научно-практический центр медико-биологических проблем "ГОРМЕЗИС" | Способ лазерной вакцинации больных с метастатическими формами рака |
-
2008
- 2008-10-06 WO PCT/IB2008/002637 patent/WO2009044272A2/fr not_active Ceased
-
2010
- 2010-04-05 US US12/754,081 patent/US20110059116A1/en not_active Abandoned
-
2012
- 2012-03-23 US US13/428,275 patent/US20130078265A1/en not_active Abandoned
-
2014
- 2014-04-17 US US14/255,931 patent/US10052376B2/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060241577A1 (en) * | 2000-03-31 | 2006-10-26 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
| US20050281783A1 (en) * | 2003-10-15 | 2005-12-22 | Kinch Michael S | Listeria-based EphA2 vaccines |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220176148A1 (en) * | 2018-02-23 | 2022-06-09 | GlobaLaseReach, LLC | Device for delivering precision phototherapy |
| US12144999B2 (en) * | 2018-02-23 | 2024-11-19 | GlobaLaseReach, LLC | Device for delivering precision phototherapy |
| US20240225540A9 (en) * | 2019-12-11 | 2024-07-11 | Rockley Photonics Limited | Optical sensing module |
Also Published As
| Publication number | Publication date |
|---|---|
| US10052376B2 (en) | 2018-08-21 |
| WO2009044272A2 (fr) | 2009-04-09 |
| WO2009044272A3 (fr) | 2009-07-16 |
| US20140335110A1 (en) | 2014-11-13 |
| US20130078265A1 (en) | 2013-03-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10052376B2 (en) | Laser-based vaccine adjuvants | |
| Stertman et al. | The Matrix-M™ adjuvant: A critical component of vaccines for the 21st century | |
| Guebre-Xabier et al. | Immunostimulant patch containing heat-labile enterotoxin from Escherichia coli enhances immune responses to injected influenza virus vaccine through activation of skin dendritic cells | |
| Wang et al. | A micro-sterile inflammation array as an adjuvant for influenza vaccines | |
| Wang et al. | Natural STING agonist as an “ideal” adjuvant for cutaneous vaccination | |
| Chiang et al. | Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines | |
| von Stebut et al. | Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major | |
| US7488491B2 (en) | Use of glycosylceramides as adjuvants for vaccines against infections and cancer | |
| Bach et al. | Transcutaneous immunotherapy via laser‐generated micropores efficiently alleviates allergic asthma in P hl p 5–sensitized mice | |
| Tian et al. | Luteolin as an adjuvant effectively enhances CTL anti-tumor response in B16F10 mouse model | |
| Korbelik et al. | N-dihydrogalactochitosan as immune and direct antitumor agent amplifying the effects of photodynamic therapy and photodynamic therapy-generated vaccines | |
| EP3265120B1 (fr) | Procédé | |
| RS53713B1 (sr) | Sredstva i postupci za aktivnu ćelijsku imunoterapiju kancera pomoću ćelija tumora ubijenih sa visokim hidrostatičkim pritiskom i dendritičnim ćelijama | |
| US20170157417A1 (en) | Laser adjuvants for enhancing immune response | |
| KR101294290B1 (ko) | 예방 또는 치료를 위해 제i류 주조직 적합성복합체〔mhc〕-제한 에피토프에 대한 면역 반응을 유발,향상 및 지속하는 방법 | |
| Baird et al. | MV-626, a potent and selective inhibitor of ENPP1 enhances STING activation and augments T-cell mediated anti-tumor activity in vivo | |
| EP1912672B1 (fr) | Produits de ribosome défectueux dans les blebs (dribbles) et procédés d utilisation pour stimuler une réponse immunitaire | |
| Cai et al. | Synergistic effect of glycated chitosan and photofrin photodynamic therapy on different breast tumor model | |
| EP3129045B1 (fr) | Méthode de traitement du melanome | |
| Baca‐Estrada et al. | The haemopoietic growth factor, Flt3L, alters the immune response induced by transcutaneous immunization | |
| US10828354B2 (en) | Laser-assisted intradermal administration of active substances | |
| Carmona-Cruz et al. | The skin Immune System and Intradermal Delivery of vaccines: a review | |
| US20120231044A1 (en) | Vaccine formulation of mannose coated peptide particles | |
| WO2009144567A1 (fr) | Champ électrique pulsé de haute énergie faisant office d’adjuvant vaccinal | |
| Wang et al. | Covalent crosslinking of tumor antigens stimulates an antitumor immune response |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |