US20100087125A1 - Polishing tool and polishing device - Google Patents
Polishing tool and polishing device Download PDFInfo
- Publication number
- US20100087125A1 US20100087125A1 US12/530,041 US53004108A US2010087125A1 US 20100087125 A1 US20100087125 A1 US 20100087125A1 US 53004108 A US53004108 A US 53004108A US 2010087125 A1 US2010087125 A1 US 2010087125A1
- Authority
- US
- United States
- Prior art keywords
- circular
- holding member
- grind stone
- air space
- grinding tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005498 polishing Methods 0.000 title description 4
- 239000004575 stone Substances 0.000 claims abstract description 63
- 230000001902 propagating effect Effects 0.000 claims abstract description 10
- 230000000149 penetrating effect Effects 0.000 claims description 51
- 239000000758 substrate Substances 0.000 claims description 37
- 239000011148 porous material Substances 0.000 claims description 25
- 239000000463 material Substances 0.000 description 14
- 230000007423 decrease Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910000906 Bronze Inorganic materials 0.000 description 3
- 239000010974 bronze Substances 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- 239000004831 Hot glue Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
- B24B1/04—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B7/00—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
- B24B7/20—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
- B24B7/22—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
- B24B7/228—Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/16—Bushings; Mountings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D7/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
- B24D7/16—Bushings; Mountings
Definitions
- This invention relates to a grinding tool (or polishing tool) and a grinding machine (or polishing device) which is favorably employable for grinding a surface of an object such as glass material or silicon material.
- various substrates such as glass substrates, silicon substrates, silicon nitride substrates, sapphire substrates, or silicon carbide substrates are employed for manufacturing thin film electronic devices. These substrates are ground on their surfaces using a grinding machine to give smoothened surfaces.
- optical devices such as a lens and a prism can be ground to give smoothened surfaces.
- the grinding machine has been employed for grinding these objects on their surface to give smoothened surface or to adjust the thickness of the objects by repeated grinding procedures.
- FIG. 1 is a plan view of a grinding tool attached to a grinding machine illustrated in Patent Publication 1 (WO 06/137453).
- FIG. 2 is a sectional view of the grinding tool 1 taken along the line I-I indicated in FIG. 1 .
- the grinding tool 1 shown in FIG. 1 and FIG. 2 comprises a connecting plate 2 to be connected to a rotating shaft of a rotation driving means (e.g., motor), a circular elastic member 4 which is connected to the periphery of the connecting plate 2 via connecting means 3 composed of plural connecting portions 3 a and space portions 3 b, ultrasonic vibrators 5 fixed on the periphery of the circular elastic member 4 in the form of a circle, and grind stone 6 attached to the lower end at the periphery of the circular elastic member 4 .
- the connecting plate 2 of the grinding tool 1 is connected to the rotating shaft via a disc-shaped attachment.
- the connecting plates have four holes 7 each of which receives a bolt for attaching the connecting plate to the disc-shaped attachment.
- the grinding tool 1 is rotated by driving the rotating shaft and the bottom of the grinding stone is brought into contact to an object to be ground, while the ultrasonic wave generated in the ultrasonic vibrator 5 is applied to the grinding stone 6 via the circular elastic member 4 .
- the object is ground on its surface.
- the circular elastic member 4 of the grinding tool 1 is largely vibrated in the areas between the adjoining connecting portions as compared with the areas continuing from the connecting portions 3 a. Therefore, the ultrasonic vibration generated in each ultrasonic vibrator 5 hardly propagates to the rotating shaft via the connecting portion 3 a and the connecting plate 2 , and most of the generated ultrasonic vibration is applied to the grinding stone.
- the grinding stone 6 vibrates with a large amplitude so as to reduce friction between the grinding stone and the object to be ground, and generation of undesirable vibration of the machine is kept low. For this reason, the object can be ground with high precision by means of the grinding tool 1 disclosed in the Patent Publication 1.
- the grinding tool disclosed in the Patent Publication 1 can grind an object with high precision. It has been found, however, that a portion of the ultrasonic vibration generated in the ultrasonic vibrator still propagates to the rotating shaft via the connecting portion of the connecting means and the connecting plate. Therefore, a small amount of the energy of the ultrasonic vibration is lost.
- a grinding machine comprising a support table on which an object to be ground is supported, a rotating shaft vertically arranged above the support table, and a grinding tool connected to a lower end of the rotating shaft in parallel with the support table, the grinding tool comprising a grind stone-holding member on which a circular ultrasonic vibrator electrically connectable to an electric source is fixed and a circular grind stone attached to a lower end of a periphery of the grind stone-holding member, in which the grind stone-holding member of the grinding tool has a continuous or discontinuous circular air space area between a position of the circular ultrasonic vibrator and a position at which the grind stone-holding member is connected to the rotating shaft, the continuous or discontinuous circular air space area comprising multiple circular air space regions which comprise circularly formed or arranged continuous or discontinuous air spaces, whereby the circular air space area keeps an ultrasonic wave generated from the circular ultrasonic vibrator from linearly propagating to an area on an opposite side where the rotating shaft is connected.
- the circular air space area comprises plural inner penetrating grooves intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating grooves intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer penetrating grooves and each of the outer connecting areas being arranged to face each of the inner penetrating grooves.
- the circular air space area comprises plural inner penetrating holes intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating holes intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer through holes and each of the outer connecting areas being arranged to face each of the inner through holes.
- the circular air space area comprises a circular upper unpenetrating groove which extended downwardly from an upper surface of the grind stone-holding member and a circular lower unpenetrating groove which extended upwardly from a lower surface of the grind stone-holding member, a total of a depth of the upper groove and a depth of the lower groove being larger than thickness of the grind stone-connecting member.
- the circular air space area comprises circular porous material arranged in the grind stone-holding member on an inner side of the circular ultrasonic vibrator.
- the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises upper plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member and lower plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member, each of the upper connecting areas being arranged to face each of the lower penetrating grooves and each of the lower connecting areas being arranged to face each of the upper penetrating grooves.
- the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular outer unpenetrating grooves which extend inwardly from an outer surface of the cylinder member and circular inner unpenetrating grooves which extend outwardly from an inner surface of the cylinder member, a total of a depth of the outer groove and a depth of the inner groove being larger than thickness of the cylinder member.
- the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular porous material arranged in the cylinder member on an upper side of the circular ultrasonic vibrator.
- a grinding tool comprising a grind stone-holding member on which a circular ultrasonic vibrator electrically connectable to an electric source is fixed, said grind stone-holing member having a center portion to be connected to a rotating shaft, and a circular grind stone attached to a lower end of a periphery of the grind stone-holding member, in which the grind stone-holding member of the grinding tool has a continuous or discontinuous circular air space area between a position of the circular ultrasonic vibrator and a position at which the grind stone-holding member is connected to the rotating shaft, the continuous or discontinuous circular air space area comprising multiple circular air space regions which comprise circularly formed or arranged continuous or discontinuous air spaces, whereby the circular air space area keeps an ultrasonic wave generated from the circular ultrasonic vibrator from linearly propagating to an area on an opposite side where the rotating shaft is connected.
- Preferred embodiments of the grinding tool of the invention are the grinding tools described above for the preferred embodiments (1) to (7) of the grinding machine.
- circular ultrasonic vibrator can be a set of plural ultrasonic vibrators arranged in the form of circle.
- circular grinding stone can be a set of plural grinding stone pieces arranged in the form of a circle.
- the grinding stone-holding means of the grinding tool of the invention there is formed a circular air space area in which circular air space regions (or zones) are arranged.
- a ultrasonic vibration generated in the circular ultrasonic vibrator of the grinding tool is reflected at any of the ultrasonic wave reflecting faces provided by the plural air space areas constituting the circular air space areas, whereby the ultrasonic wave does not propagate to the rotating shaft. Therefore, the ultrasonic vibration is applied to the circular grinding stone with prominent high efficiency, so that the circular grinding stone vibrates with a large amplitude and the friction between the circular grinding stone and the object to be ground reduces. For this reason, an object can be ground with prominently high precision by the use of the grinding tool of the invention.
- FIG. 3 is a front view of one embodiment of the grinding machine according to the invention.
- FIG. 4 is a plan view illustrating the grinding machine of FIG. 3 that is given by sectioning the rotating shaft 13 a taken along the II-II line.
- FIG. 5 is an enlarged sectional view of the grinding tool 40 of FIG. 4 taken along the line III-III.
- the grinding machine 10 of the invention comprises a support table 12 on which an object 11 to be ground is supported; a rotating shaft 13 a vertically arranged above the support table 12 , and a grinding tool 40 (a grinding tool of the invention connected to a lower end of the rotating shaft 13 a in parallel with the support table 12 , the grinding tool comprising a grind stone-holding member 32 on which circular ultrasonic vibrators 31 a, 31 b electrically connectable to an electric source 14 is fixed and a circular grind stone 33 attached to a lower end of a periphery of the grind stone-holding member 32 .
- the grinding machine 10 is characteristic in that the grind stone-holding member 32 has a circular air space area 36 (which comprises two circular air space regions comprising circularly arranged discontinuous air spaces) between a position 34 a of the circular ultrasonic vibrator 31 a, 31 b and a position 34 b (the position at which the grinding tool 40 is connected to the rotating shaft) at which the grind stone-holding member 32 is connected to the rotating shaft 13 a, whereby the circular air space area 36 keeps an ultrasonic wave generated from the circular ultrasonic vibrators 31 a, 31 b from linearly propagating to the position 34 a where the rotating shaft is connected.
- a circular air space area 36 which comprises two circular air space regions comprising circularly arranged discontinuous air spaces
- the support table 12 is rotatably supported on a rotary shaft 16 a of a rotation-driving apparatus 16 (e.g., motor) placed on a base 15 .
- the support table can be made to move horizontally.
- a grinding-assisting liquid supplying apparatus 18 equipped with a pipe 18 a for supplying a grinding-assisting liquid (e.g., water) onto an object 11 to be ground.
- the supplying apparatus 18 is supported by a pole 21 fixed on the base 15 .
- the pole 21 is arranged behind the support table 12 as shown in FIG. 3 .
- the grinding-assisting liquid may be supplied onto an upper surface of the object to be ground through a through-hole formed in the grind stone-holding member on the inner side of the circular grind stone.
- the grinding tool 40 is connected to the rotating shaft 13 a of the rotation-driving unit 13 .
- the rotation-driving unit 13 is supported by a nut 23 b of a feed screw 23 .
- a screw axis 23 a of the feed screw 23 is connected with a rotation-driving apparatus 17 placed on the base 15 .
- the rotation-driving unit 13 supported by the nut 23 b is moved upwardly or downwardly with the grinding tool 40 when the screw axis 23 a is rotated by driving the rotation-driving apparatus 17 .
- the nut 23 b is connected to a bearing 24 attached to a pole 22 which stands on the base 15 in parallel with the screw axis 23 a. Therefore, the nut 23 b, rotation-driving unit 13 and grinding tool 40 are not rotated around the screw axis 23 a.
- the grinding tool 40 comprises a grind stone-holding member 32 equipped with circular ultrasonic vibrators 31 a, 31 b and a circular grind stone 33 attached to the lower surface of the grind stone-holding member 32 at its periphery.
- the circular grind stone 33 can be composed of abrasives such as diamond grains and a binder such as metal bond or resin bond.
- abrasives such as diamond grains and a binder such as metal bond or resin bond.
- the abrasive can have a mean diameter in the range of 0.1 to 50 ⁇ m.
- the circular grind stone can be composed of plural (e.g., 2 to 50) stone pieces arranged to form of a circle.
- the grind stone composed of plural stone pieces can be favorably utilized to prepare a circular grind stone having a large size.
- the grind stone composed of plural stone pieces is highly resistant to damage (such as formation of cracks) in the case that the ultrasonic vibration is applied to the grind stone or the grind stone is kept in contact with the object to be ground under friction. This is because the stress produced in the grind stone decreases.
- the grind stone-holding member 32 can be made of material capable of transmitting ultrasonic vibrations such as metallic material, for instance, aluminum, bronze, stainless steel or aluminum alloy (e.g., duralmin) or ceramic material.
- the grinding stone-holding member 32 comprises a sleeve 32 a placed around the rotating shaft 13 a and fixed with a bolt 38 a, a holding disc 32 b fixed to the lower surface of the sleeve 32 a with a bolt 38 b, and a grind stone-holding ring 32 c which is fixed to the lower surface of the holding disc 32 b with a combination of an adhesive (e.g., hot-melt adhesive) and a bolt 38 c.
- an adhesive e.g., hot-melt adhesive
- the sleeve 32 a, holding disc 32 b and holding ring 32 c can be made to form a single unit. However, if the sleeve 32 a and holding disc 32 b are made separable from each other and the holding disc 32 b is made to have a small thickness, the holding disc 32 b and grind stone 33 can vibrate with a large amplitude when the circular ultrasonic vibrators 31 a, 31 b generate ultrasonic vibration. In addition, if the sleeve 32 a is made to have a large length, the holding disc 32 b can be firmly fixed to the rotating shaft 13 a via the sleeve 32 a.
- the grinding stone 33 can be easily replaced with a fresh grinding stone when the grinding stone is worn out by the grinding procedures by detaching the holding ring 32 c with the worn grinding stone 33 without removing the below-described wirings 28 b, 28 c for connecting the circular ultrasonic vibrators 31 a, 31 b to the electric energy-receiving unit 25 b of the below-described rotary transformer 25 .
- the grinding stone-holding member 32 is preferably made to be symmetrical around the rotating axis so that the grinding stone can be rotated stably.
- the holding disc can be made in the form of a circular disc or a polygonal disc.
- a circular air space area 36 composed of two circular air space regions comprising circularly arranged discontinuous air spaces between the position 34 a of the circular ultrasonic vibrators 31 a, 31 b and the position 34 b for connecting with the rotating shaft 13 a.
- formed circular air space area 36 keeps an ultrasonic wave generated from the circular ultrasonic vibrators 31 a, 31 b from linearly propagating to an area on an opposite side near to the position 34 b (the inner side of the illustrated grinding tool 40 ) where the rotating shaft is connected.
- the function of the circular air space area 36 will be described later in more detail.
- position of the ultrasonic vibrator(s) means “position on which the ultrasonic vibrator(s) is fixed”.
- the position of the ultrasonic vibrator(s) corresponds to the inner periphery of the circular ultrasonic vibrators 31 a, 31 b on the grinding stone-holding member 32 .
- the inner periphery of the circular ultrasonic vibrators means an inner periphery of the circular ultrasonic vibrator having the least inner diameter.
- position connecting the rotation shaft means a position at which the grinding stone-holding member is attached to the rotating shaft 13 a.
- Each of the circular ultrasonic vibrators 31 a, 31 b may comprise a piezoelectric material 41 and a pair of electrodes 42 which are placed on their both surfaces.
- the piezoelectric material 41 can be made of piezoelectric ceramic material of lead zirconate titanate.
- the electrode 42 can be made of silver or phosphor bronze.
- Each piezoelectric material 41 of the circular ultrasonic vibrators 31 a, 31 b is polarized, for instance, in the thickness direction.
- the piezoelectric material 41 of the circular ultrasonic vibration 31 a is polarized upwardly in the perpendicular direction
- the piezoelectric material 41 of the circular ultrasonic vibration 31 b is polarized downwardly in the perpendicular direction.
- Each of the circular ultrasonic vibrators 31 a, 31 b is fixed to the grind stone-holding member 32 , for instance, via an epoxy resin.
- the epoxy resin can serve to insulate each of the circular ultrasonic vibrators 31 a , 32 from the grind stone-holding member 32 .
- the circular ultrasonic vibrators 31 a, 31 b can be coated with insulating coat material to keep the pair of the electrodes of the ultrasonic vibrator from electrically connecting with each other when the electrodes are brought into contact with the grinding assisting liquid (e.g., water).
- the circular ultrasonic vibrator can be composed of plural (e.g., 2 to 30) ultrasonic vibrating pieces arranged to form a circle. If the circular ultrasonic vibrator can be preferably composed of plural pieces in the case that a circular ultrasonic vibrator in a large diameter is manufactured.
- one or plural (preferably up to 4) circular ultrasonic vibrators can be used.
- the circular grind stone can be vibrate with a large amplitude if a great number of circular ultrasonic vibrators are used.
- the wiring to transmit electric energy to the circular ultrasonic vibrators is complicated.
- the rotary transformer 25 attached to the grinding machine 10 serves to supply electric energy to each of the circular ultrasonic vibrators 31 a, 31 b rotating with the grinding tool 40 when the object 11 is being ground.
- the rotary transformer 25 comprises a power supply unit 25 a and a power receiving unit 25 b adjacently arranged to each other with a small space. Both of the power supply unit 25 a and power receiving unit 25 b are in an annular form.
- the power supply unit 25 a is fixed to the bottom of the rotation driving unit 13 .
- the power receiving unit 25 b is fixed to the top of the grind stone-holding member 32 .
- the power supply unit 25 a comprises an annular stator core 26 a and a stator coil 27 a
- the power receiving unit 25 b comprises an annular rotor core 26 b and a rotor coil 27 b.
- Each of the stator core 26 a and rotor core 26 b is made of magnetic material such as ferrite and has annular grooves arranged along the periphery of the core.
- Each of the stator coil 27 a and rotor coil 27 b comprises a conductive wiring coiled along the annular grooves formed on each of the stator core 26 a and rotor core 26 b.
- stator coil 27 a To the stator coil 27 a is electrically connected a power source 14 via an electric wiring 28 a, and to the rotor coil 27 b is electrically connected each of the circular ultrasonic vibrators 31 a, 31 b via an electric wiring 28 b, 28 c.
- the electric wiring 28 c is electrically connected to the lower ultrasonic vibrators 31 b through a through hole 32 d formed in the grind stone-holding member 32 .
- stator coil 27 a of the rotary transformer 25 When an electric energy generated by the power source 14 is supplied to the stator coil 27 a of the rotary transformer 25 , the stator coil 27 a and rotor coil 27 b are magnetically coupled to each other. For the reason, the electric energy supplied to the stator coil 27 a is transmitted to the rotor coil 27 b when the rotor coil 27 b (i.e., the power receiving unit 25 b ) is rotated simultaneously with the rotating shaft 13 a. Hence, the electric energy generated by the power source 14 can be transmitted to each of the ultrasonic vibrators 31 a, 31 b rotating together with both of the rotating shaft 13 a and grinding tool 40 when the object 11 is being ground.
- the electric energy (e.g., a.c. alternating voltage) generated by the power source 14 is transmitted to each of the ultrasonic vibrators 31 a, 31 b (in more detail, each electrode of the piezoelectric vibrator serving as ultrasonic vibrator) to cause generation of ultrasonic vibration in the ultrasonic vibrators 31 a, 31 b, and the ultrasonic vibration is then applied to the circular (annular) grind stone 33 via the grind stone-holding member 32 .
- the rotary transformer serving as a transmission unit for transmitting the electric energy to ultrasonic vibrator can be replaced with a slip ring.
- the rotary transformer is advantageous in that it can stably transmit the electric energy to the ultrasonic vibrator rotating together with the rotating shaft at a rotation rate up to 100,000 r.p.m., because the electric energy is transmitted through the power supply unit and power receiving unit which are arranged with no contact.
- the slip ring cannot stably transmit the electric energy to the rotating ultrasonic vibrator when the rotation rate exceeds approx. 5,000 r.p.m.
- the object 11 is temporarily fixed, for instance, to an iron-made holder (not shown) using a hot-melt adhesive.
- the holder to which the object 11 is fixed is then fixed onto the support table 12 , for instance, by means of magnetic force.
- the rotation driving apparatus 16 is actuated to rotate the rotating shaft 16 a together with the support table 12 .
- a liquid is supplied from the pipe 18 a of the liquid supply means 18 on the object 11 .
- the electric energy generated by the power source 14 is transmitted to the ultrasonic vibrators 31 a, 31 b via the rotary transformer 25 , whereby each ultrasonic vibrator generates ultrasonic vibration.
- the generated ultrasonic vibration is then transmitted to the circular grind stone 33 via the grind stone-holding member 32 .
- the driving unit 13 is then driven to rotate the rotating shaft 13 a and the grinding tool 40 .
- the driving apparatus 17 is driven to gradually move the grinding tool downwardly.
- the circular grinding stone 33 under application of ultrasonic vibration is brought into contact with the object 11 under such condition that an outer surface of a portion in the vicinity of the lower end of the grind stone is brought into contact with a portion in the vicinity of the upper end of the object 11 , whereby a whole upper surface of the object 11 is ground or polished.
- the grinding tool is further moved downwardly to grind the object to have a predetermined thickness.
- the circular air space area 36 provided to the grind stone-holding member 32 of the grinding tool 40 is explained below.
- the circular air space area 36 of the grinding tool 40 comprises an inner circular air space region 36 a comprising four air spaces 35 a and an outer circular air space region 36 b comprising four air spaces 35 b.
- the grind stone-holding member 32 has air space areas 35 a, 35 b, an ultrasonic (vibration) reflecting face is formed on the interfaces between the solid grind stone-holding member 32 and the air spaces 35 a, 35 b.
- the ultrasonic vibration generated in the circular ultrasonic vibrators 31 a, 31 b does not linearly propagate to the area on the side of the position 34 b at which the rotating shaft is connected, that is an inner side area in the case of the grinding tool 40 , because the circular air space area 36 comprising a combination of a circular air space regions 36 a, 36 b does not transmit the ultrasonic vibration.
- the ultrasonic vibration generated in the ultrasonic vibrators 31 a, 31 b is reflected on the interfaces formed by the air spaces 35 a, 35 and propagates through the outer side of the grinding stone-holding member 32 to the circular grind stone 33 so as to efficiently cause ultrasonic vibration of the grind stone 33 with large amplitude. If the circular grind stone 33 is vibrates with large amplitude, friction caused between the grind stone 33 and the object 11 decreases so that unfavorable mechanical vibration decreases. For this reason, the grinding tool 40 can grind the object with high precision.
- the circular air space area 36 comprises plural (e.g., four) inner penetrating grooves (inner through grooves) 43 a intermittently formed via connecting areas 37 a and plural (e.g., four) outer penetrating grooves (outer through grooves) 43 b intermittently formed via connecting areas 37 b, in which each of the inner connecting areas 37 a is arranged to face each of the outer penetrating grooves 43 b and each of the outer connecting areas 37 b is arranged to face each of the inner penetrating grooves 43 a.
- the penetrating groove can be easily formed by discharge processing or cutting processing.
- FIG. 6 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 7 is an enlarged sectional view of the grinding tool 60 of FIG. 6 taken along the line IV-IV.
- the grinding tool 60 shown in FIG. 6 and FIG. 7 is similar to the grinding tool 40 of FIG. 4 except that a circular air space area 66 comprises a circular upper unpenetrating groove 73 a which extends downwardly from an upper surface of the grind stone-holding member 62 and a circular lower unpenetrating groove 73 b which extends upwardly from a lower surface of the grind stone-holding member 62 and a total of a depth of the upper groove and a depth of the lower groove is larger than thickness of the grind stone-holding member.
- a circular air space region 66 a is formed of an air space (circular continuous air space) 65 a inside of the upper groove 73 a and a connecting area 67 a
- a circular air space region 66 b is formed of an air space 65 b inside of the lower groove 73 b and a connecting area 67 b.
- the circular air space region 66 a and circular air space region 66 b is combined to give a circular air space area 66 .
- Each of the air spaces 65 a, 65 b and connecting areas 67 a, 67 b is in the form of circle. Therefore, the grinding tool 60 is advantageous over the grinding tool 40 of FIG. 4 , because the circular grind stone 33 can vibrate more uniformly along the grind stone when the ultrasonic vibration is applied, and hence the object can be ground more precisely.
- the total of the depth of the upper groove 73 a and lower groove 73 b is more than the thickness of the grind stone-holding member 62 , preferably not more than 1.5 times, more preferably not more than 1.1 times.
- FIG. 8 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 9 is an enlarged sectional view of the grinding tool 80 of FIG. 8 taken along the line V-V.
- the grinding tool 80 shown in FIG. 8 and FIG. 9 is similar to the grinding tool 40 of FIG. 4 except that a circular air space area 86 comprises circular porous material 93 arranged in the grind stone-holding member 82 on an inner side of the circular ultrasonic vibrators 31 a, 31 b.
- the circular air space area 86 of the grinding tool 80 comprises circular porous material 93 which is formed of plural circular air space regions comprising air spaces 85 arranged in the circular direction of the circular porous material 93 .
- the air spaces comprises a great number of pores dispersed uniformly in the circular porous material 93 . Therefore, the grinding tool 80 is advantageous over the grinding tool 40 of FIG. 4 , because the circular grind stone 33 can vibrate more uniformly along the grind stone when the ultrasonic vibration is applied and moreover the grind stone-holding member 82 has an increased rigidity, and hence the object can be ground more precisely.
- the substrate disc 82 b of the grind stone-holding member 82 can be easily manufactured by the steps of preparing an outer portion of the substrate disc 82 b and an inner portion of the substrate disc 82 b independently, arranging the circular porous material 93 between both portions, and binding the outer and inner portions via the porous material by welding or by the use of an adhesive.
- the circular porous material 93 can be porous metal material.
- the porous material 93 can be prepare by molding a power (or fibers) of metal such as bronze, stainless steel, nickel or titanium under compression.
- the pores of the porous material 93 generally have diameters in the range of 10 nm to several mm.
- the porous material 93 preferably has a bulk density in the range of 5 to 75% of the density of the substrate disc 82 on the outer side.
- FIG. 10 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 11 is an enlarged sectional view of the grinding tool 100 of FIG. 10 taken along the line VI-VI.
- the grinding tool 100 shown in FIG. 10 and FIG. 11 is similar to the grinding tool 40 of FIG. 4 except that a circular air space area 106 comprises inner plural penetrating holes (through holes) 113 a intermittently formed via connecting areas 107 a and outer plural penetrating holes (through holes) 113 b intermittently formed via connecting areas 107 b both formed in the grind stone-holding member 102 and that the inner connecting areas 107 a face the outer penetrating holes 113 b and the outer connecting areas 107 b face the inner penetrating holes 113 a.
- one circular air space region 106 a is composed of an air spaces 105 a inside of the plural penetrating holes 113 a and the connecting areas 107 a
- another circular air space region 106 b is composed of an air spaces 105 b inside of the plural penetrating holes 113 b and the connecting areas 107 b.
- the circular air space region 106 a and circular air space region 106 b are combined to give a circular air space area 106 .
- the grinding tool 100 may be advantageous over the grinding tool 40 of FIG. 4 because the penetrating holes 113 a, 113 b can be easily formed by perforating method using a drill.
- two (or more) rotary transformers 115 a, 115 b can be arranged around the rotating shaft 13 a to be connected to the grinding tool 100 .
- To the circular ultrasonic vibrators 31 a, 31 b can be supplied electric energy by means of the rotary transformers 115 a, 115 b.
- the rotary transformers 115 a, 115 b are magnetically shielded from each other by means of a permalloy-made cylinder 116 placed between them.
- the circular ultrasonic vibrators 31 a, 31 b can receive an alternating voltage (e.g., sine wave voltage) of the same phase via the rotary transformers 115 a, 115 b, so that the ultrasonic vibrators 31 a, 31 b can vibrate in the radial direction with the same phase.
- an alternating voltage e.g., sine wave voltage
- the ultrasonic vibrator 31 a vibrates to increase its diameter
- the ultrasonic vibrator 31 b vibrates simultaneously to increase its diameter, so that the outer periphery of the grind stone-holding member 102 is displaced outwardly.
- the ultrasonic vibrator 31 a vibrates to decrease its diameter
- the ultrasonic vibrator 31 b vibrates simultaneously to decrease its diameter, so that the outer periphery of the grind stone-holding member 102 is displaced inwardly. Therefore, the outer periphery of the grind stone-holding member 102 vibrates in the direction indicated by an arrow 119 a shown in FIG. 11 (that is a direction in parallel with the surface of the object to be ground) together with the circular grind stone 33 .
- the vibration of the circular grind stone 33 in the direction in parallel with the surface of an object to be ground can improve precision of the grinding processing.
- the circular ultrasonic vibrators 31 a, 31 b can receive an alternating voltage (e.g., sine wave voltage) of the opposite phase via the rotary transformers 115 a, 115 b, so that the ultrasonic vibrators 31 a, 31 b can vibrate in the radial direction with the opposite phase.
- an alternating voltage e.g., sine wave voltage
- the ultrasonic vibrator 31 a vibrates to increase its diameter
- the ultrasonic vibrator 31 b vibrates to decrease its diameter, so that the grind stone-holding member 102 is deformed to move its outer periphery downwardly.
- the ultrasonic vibrator 31 a vibrates to decrease its diameter
- the ultrasonic vibrator 31 b vibrates to increase its diameter, so that the outer periphery of the grind stone-holding member 102 is deformed to move its outer periphery upwardly. Therefore, the outer periphery of the grind stone-holding member 102 vibrates in the direction indicated by an arrow 119 b shown in FIG. 11 (that is a direction substantially perpendicular to the surface of the object to be ground) together with the circular grind stone 33 .
- the vibration of the circular grind stone 33 in the direction perpendicular to the surface of an object to be ground can grind the object at an increased rate (or within shortened period of time).
- the object can be first submitted to rough grinding by applying alternating current with opposite phase to the ultrasonic vibrators 31 a, 31 , to grind the object at a higher rate. Subsequently, the object can be submitted to precise grinding by applying alternating current with same phase to the ultrasonic vibrators 31 a, 31 , to grind the object at a higher precision. As a result, an object can be roughly ground within a short period of time and then ground with high precision.
- FIG. 12 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 13 is an enlarged sectional view of the grinding tool 120 of FIG. 12 taken along the line VII-VII.
- the grinding tool 120 shown in FIG. 12 and FIG. 13 is similar to the grinding tool 40 of FIG. 4 except that the grind stone-holding member 122 comprises a disc substrate 112 a and a cylinder member 122 b downwardly extended from a periphery of the disc substrate 122 a, and the circular air space area 126 comprises upper plural penetrating grooves 133 a intermittently formed via connecting areas 127 a formed in the cylinder member 122 b and lower plural penetrating grooves 133 b intermittently formed via connecting areas 127 b formed in the cylinder member 122 b.
- Each of the upper connecting areas 127 a are arranged to face each of the lower penetrating grooves 133 b and each of the lower connecting areas 127 b are arranged to face each of the upper penetrating grooves 133 a.
- one circular air space region 126 a is composed of air spaces 125 a inside of the upper plural penetrating grooves 133 a and plural connecting areas 127 a and another air space region 126 b is composed of air spaces 125 b inside of the lower plural penetrating grooves 133 b and plural connecting areas 127 b.
- the circular air space region 126 a and circular air space region 126 b are combined to form a circular air space area 126 .
- the grinding tool 120 may be advantageous in that the grinding stone can vibrate with a large amplitude in the direction in parallel with an object to be ground if the cylinder member 122 b is so manufactured as to have a thin thickness.
- the term of “position on which the circular ultrasonic vibrator is fixed to the grind stone-holding member” means the top end position of the ultrasonic vibrator.
- FIG. 14 is a partly broken view of other embodiment of the grinding tool of the invention.
- FIG. 15 is an enlarged sectional view of the grinding tool 140 of FIG. 14 taken along the line VIII-VIII.
- the grinding tool 140 shown in FIG. 14 and FIG. 15 is similar to the grinding tool 40 of FIG. 4 except that the grind stone-holding member 142 comprises a disc substrate 142 a and a cylinder member 142 b downwardly extended from a periphery of the disc substrate 142 a, and the circular air space area 146 comprises circular outer unpenetrating grooves 153 a which extend inwardly from an outer surface of the cylinder member 142 and circular inner unpenetrating grooves 153 b which extend outwardly from an inner surface of the cylinder member 142 .
- a total of a depth of the outer groove 153 a and a depth of the inner groove 153 b is larger than thickness of the cylinder member 142 b.
- the circular ultrasonic vibrator 31 is fixed to the lower surface of the cylinder member 142 b.
- one circular air space region 146 a is composed of air space 145 a inside of the outer groove 153 a and the connecting area 147 a
- another air space region 146 b is composed of air space 145 b inside of the inner groove 153 b and the connecting area 147 b
- a circular air space area 146 is composed of the circular air space region 146 a and circular air space region 146 b.
- the grinding tool 140 of FIG. 14 is also advantageous for the same reason described for the grinding tool 60 of FIG. 6 .
- the total of the depth of the outer groove 153 a and inner groove 153 b is more than the thickness of the cylinder member 142 , preferably not more than 1.5 times, more preferably not more than 1.1 times.
- FIG. 16 is a schematic view of other embodiment of the grinding tool of the invention.
- FIG. 17 is an enlarged sectional view of the grinding tool 160 of FIG. 16 taken along the line IX-IX.
- the grinding tool 160 shown in FIG. 16 and FIG. 17 is similar to the grinding tool 40 of FIG. 4 except that the grind stone-holding member 162 comprises a disc substrate 162 a and a cylinder member 162 b downwardly extended from a periphery of the disc substrate 162 a, and the circular air space area 166 comprises circular porous material 173 arranged in the cylinder member 162 on an upper side of the circular ultrasonic vibrator 31 .
- the circular are space area 166 of the grinding tool 160 comprises plural circular air space regions which contain pores (air spaces) 165 which are arranged in the circular porous material 173 in the axis direction.
- FIG. 1 is a front view of a grinding tool attached to a conventional grinding machine.
- FIG. 2 is a sectional view of the grinding tool 1 of FIG. 1 taken along the line I-I.
- FIG. 3 is a front view of one embodiment of the grinding machine according to the invention.
- FIG. 4 is a plan view illustrating the grinding machine of FIG. 3 that is given by sectioning the rotating shaft 13 a taken along the II-II line.
- FIG. 5 is an enlarged sectional view of the grinding tool 40 of FIG. 4 taken along the line III-III.
- FIG. 6 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 7 is an enlarged sectional view of the grinding tool 60 of FIG. 6 taken along the line IV-IV.
- FIG. 8 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 9 is an enlarged sectional view of the grinding tool 80 of FIG. 8 taken along the line V-V.
- FIG. 10 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 11 is an enlarged sectional view of the grinding tool 100 of FIG. 10 taken along the line VI-VI.
- FIG. 12 is a plan view of other embodiment of the grinding tool of the invention.
- FIG. 13 is an enlarged sectional view of the grinding tool 120 of FIG. 12 taken along the line VII-VII.
- FIG. 14 is a partly broken view of other embodiment of the grinding tool of the invention.
- FIG. 15 is an enlarged sectional view of the grinding tool 140 of FIG. 14 taken along the line VIII-VIII.
- FIG. 16 is a schematic view of other embodiment of the grinding tool of the invention.
- FIG. 17 is an enlarged sectional view of the grinding tool 160 of FIG. 16 taken along the line IX-IX.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Abstract
A grinding machine (10) composed of a support table (12) for supporting an object (11) to be ground, a rotating shaft (13 a) vertically arranged above the support table, and a grinding tool (40) connected to a lower end of the rotating shaft in parallel with the support table, in which the grinding tool is composed of a grind stone-holding member (32) on which a circular ultrasonic vibrators (31 a, 31 b) electrically connectable to an electric source are fixed and a circular grind stone (33) attached to a lower end of a periphery of the grind stone-holding member, in which the grind stone-holding member of the grinding tool has a continuous or discontinuous circular air space area (36) composed of multiple circular air space regions which are composed of circularly formed or arranged discontinuous air spaces between a position of the circular ultrasonic vibrator and a position at which the grind stone-holding member is connected to the rotating shaft, whereby the multiple circular air space area keeps an ultrasonic wave generated from the circular ultrasonic vibrator from linearly propagating to an area on an opposite side where the rotating shaft is connected, can grind an object to be ground with high precision because the ultrasonic wave generated in the ultrasonic vibrator is efficiently applied to the grind stone.
Description
- This invention relates to a grinding tool (or polishing tool) and a grinding machine (or polishing device) which is favorably employable for grinding a surface of an object such as glass material or silicon material.
- Heretofore, various substrates such as glass substrates, silicon substrates, silicon nitride substrates, sapphire substrates, or silicon carbide substrates are employed for manufacturing thin film electronic devices. These substrates are ground on their surfaces using a grinding machine to give smoothened surfaces. In addition, optical devices such as a lens and a prism can be ground to give smoothened surfaces. Thus, the grinding machine has been employed for grinding these objects on their surface to give smoothened surface or to adjust the thickness of the objects by repeated grinding procedures.
-
FIG. 1 is a plan view of a grinding tool attached to a grinding machine illustrated in Patent Publication 1 (WO 06/137453).FIG. 2 is a sectional view of the grinding tool 1 taken along the line I-I indicated inFIG. 1 . - The grinding tool 1 shown in
FIG. 1 andFIG. 2 comprises a connectingplate 2 to be connected to a rotating shaft of a rotation driving means (e.g., motor), a circularelastic member 4 which is connected to the periphery of the connectingplate 2 via connectingmeans 3 composed of plural connectingportions 3 a andspace portions 3 b,ultrasonic vibrators 5 fixed on the periphery of the circularelastic member 4 in the form of a circle, andgrind stone 6 attached to the lower end at the periphery of the circularelastic member 4. The connectingplate 2 of the grinding tool 1 is connected to the rotating shaft via a disc-shaped attachment. The connecting plates have fourholes 7 each of which receives a bolt for attaching the connecting plate to the disc-shaped attachment. - In the use of the grinding machine equipped with the above-mentioned grinding tool, the grinding tool 1 is rotated by driving the rotating shaft and the bottom of the grinding stone is brought into contact to an object to be ground, while the ultrasonic wave generated in the
ultrasonic vibrator 5 is applied to thegrinding stone 6 via the circularelastic member 4. Thus, the object is ground on its surface. - The circular
elastic member 4 of the grinding tool 1 is largely vibrated in the areas between the adjoining connecting portions as compared with the areas continuing from the connectingportions 3 a. Therefore, the ultrasonic vibration generated in eachultrasonic vibrator 5 hardly propagates to the rotating shaft via the connectingportion 3 a and the connectingplate 2, and most of the generated ultrasonic vibration is applied to the grinding stone. When the ultrasonic vibration is efficiently applied to thegrinding stone 6, the grindingstone 6 vibrates with a large amplitude so as to reduce friction between the grinding stone and the object to be ground, and generation of undesirable vibration of the machine is kept low. For this reason, the object can be ground with high precision by means of the grinding tool 1 disclosed in the Patent Publication 1. - The grinding tool disclosed in the Patent Publication 1 can grind an object with high precision. It has been found, however, that a portion of the ultrasonic vibration generated in the ultrasonic vibrator still propagates to the rotating shaft via the connecting portion of the connecting means and the connecting plate. Therefore, a small amount of the energy of the ultrasonic vibration is lost.
- It is an object of the present invention to provide a grinding tool and a grinding machine in which the ultrasonic vibration generated in the ultrasonic vibrator is applied to the grinding stone more efficiently.
- There is provided by the invention a grinding machine comprising a support table on which an object to be ground is supported, a rotating shaft vertically arranged above the support table, and a grinding tool connected to a lower end of the rotating shaft in parallel with the support table, the grinding tool comprising a grind stone-holding member on which a circular ultrasonic vibrator electrically connectable to an electric source is fixed and a circular grind stone attached to a lower end of a periphery of the grind stone-holding member, in which the grind stone-holding member of the grinding tool has a continuous or discontinuous circular air space area between a position of the circular ultrasonic vibrator and a position at which the grind stone-holding member is connected to the rotating shaft, the continuous or discontinuous circular air space area comprising multiple circular air space regions which comprise circularly formed or arranged continuous or discontinuous air spaces, whereby the circular air space area keeps an ultrasonic wave generated from the circular ultrasonic vibrator from linearly propagating to an area on an opposite side where the rotating shaft is connected.
- Preferred embodiments of the grinding machine of the present invention are set forth below.
- (1) The circular air space area comprises plural inner penetrating grooves intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating grooves intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer penetrating grooves and each of the outer connecting areas being arranged to face each of the inner penetrating grooves.
- (2) The circular air space area comprises plural inner penetrating holes intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating holes intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer through holes and each of the outer connecting areas being arranged to face each of the inner through holes.
- (3) The circular air space area comprises a circular upper unpenetrating groove which extended downwardly from an upper surface of the grind stone-holding member and a circular lower unpenetrating groove which extended upwardly from a lower surface of the grind stone-holding member, a total of a depth of the upper groove and a depth of the lower groove being larger than thickness of the grind stone-connecting member.
- (4) The circular air space area comprises circular porous material arranged in the grind stone-holding member on an inner side of the circular ultrasonic vibrator.
- (5) The grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises upper plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member and lower plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member, each of the upper connecting areas being arranged to face each of the lower penetrating grooves and each of the lower connecting areas being arranged to face each of the upper penetrating grooves.
- (6) The grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular outer unpenetrating grooves which extend inwardly from an outer surface of the cylinder member and circular inner unpenetrating grooves which extend outwardly from an inner surface of the cylinder member, a total of a depth of the outer groove and a depth of the inner groove being larger than thickness of the cylinder member.
- (7) The grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular porous material arranged in the cylinder member on an upper side of the circular ultrasonic vibrator.
- (8) The support table rotates.
- There is further provided by the invention a grinding tool comprising a grind stone-holding member on which a circular ultrasonic vibrator electrically connectable to an electric source is fixed, said grind stone-holing member having a center portion to be connected to a rotating shaft, and a circular grind stone attached to a lower end of a periphery of the grind stone-holding member, in which the grind stone-holding member of the grinding tool has a continuous or discontinuous circular air space area between a position of the circular ultrasonic vibrator and a position at which the grind stone-holding member is connected to the rotating shaft, the continuous or discontinuous circular air space area comprising multiple circular air space regions which comprise circularly formed or arranged continuous or discontinuous air spaces, whereby the circular air space area keeps an ultrasonic wave generated from the circular ultrasonic vibrator from linearly propagating to an area on an opposite side where the rotating shaft is connected.
- Preferred embodiments of the grinding tool of the invention are the grinding tools described above for the preferred embodiments (1) to (7) of the grinding machine.
- In the specification, the term of “circular ultrasonic vibrator” can be a set of plural ultrasonic vibrators arranged in the form of circle. The term of “circular grinding stone” can be a set of plural grinding stone pieces arranged in the form of a circle.
- In the grinding stone-holding means of the grinding tool of the invention, there is formed a circular air space area in which circular air space regions (or zones) are arranged. A ultrasonic vibration generated in the circular ultrasonic vibrator of the grinding tool is reflected at any of the ultrasonic wave reflecting faces provided by the plural air space areas constituting the circular air space areas, whereby the ultrasonic wave does not propagate to the rotating shaft. Therefore, the ultrasonic vibration is applied to the circular grinding stone with prominent high efficiency, so that the circular grinding stone vibrates with a large amplitude and the friction between the circular grinding stone and the object to be ground reduces. For this reason, an object can be ground with prominently high precision by the use of the grinding tool of the invention.
- The grinding machine of the invention is described below, referring to the attached drawings.
-
FIG. 3 is a front view of one embodiment of the grinding machine according to the invention.FIG. 4 is a plan view illustrating the grinding machine ofFIG. 3 that is given by sectioning the rotatingshaft 13 a taken along the II-II line.FIG. 5 is an enlarged sectional view of thegrinding tool 40 ofFIG. 4 taken along the line III-III. - As is shown in
FIG. 3 toFIG. 5 , thegrinding machine 10 of the invention comprises a support table 12 on which anobject 11 to be ground is supported; arotating shaft 13 a vertically arranged above the support table 12, and a grinding tool 40 (a grinding tool of the invention connected to a lower end of the rotatingshaft 13 a in parallel with the support table 12, the grinding tool comprising a grind stone-holding member 32 on which circularultrasonic vibrators 31 a, 31 b electrically connectable to anelectric source 14 is fixed and acircular grind stone 33 attached to a lower end of a periphery of the grind stone-holding member 32. Thegrinding machine 10 is characteristic in that the grind stone-holding member 32 has a circular air space area 36 (which comprises two circular air space regions comprising circularly arranged discontinuous air spaces) between aposition 34 a of the circularultrasonic vibrator 31 a, 31 b and aposition 34 b (the position at which thegrinding tool 40 is connected to the rotating shaft) at which the grind stone-holding member 32 is connected to therotating shaft 13 a, whereby the circularair space area 36 keeps an ultrasonic wave generated from the circularultrasonic vibrators 31 a, 31 b from linearly propagating to theposition 34 a where the rotating shaft is connected. - The support table 12 is rotatably supported on a
rotary shaft 16 a of a rotation-driving apparatus 16 (e.g., motor) placed on abase 15. The support table can be made to move horizontally. - Above the support table 12, a grinding-assisting liquid supplying
apparatus 18 equipped with apipe 18 a for supplying a grinding-assisting liquid (e.g., water) onto anobject 11 to be ground. The supplyingapparatus 18 is supported by apole 21 fixed on thebase 15. Thepole 21 is arranged behind the support table 12 as shown inFIG. 3 . The grinding-assisting liquid may be supplied onto an upper surface of the object to be ground through a through-hole formed in the grind stone-holding member on the inner side of the circular grind stone. - The
grinding tool 40 is connected to therotating shaft 13 a of the rotation-drivingunit 13. The rotation-drivingunit 13 is supported by anut 23 b of afeed screw 23. Ascrew axis 23 a of thefeed screw 23 is connected with a rotation-drivingapparatus 17 placed on thebase 15. The rotation-drivingunit 13 supported by thenut 23 b is moved upwardly or downwardly with thegrinding tool 40 when thescrew axis 23 a is rotated by driving the rotation-drivingapparatus 17. Thenut 23 b is connected to abearing 24 attached to apole 22 which stands on thebase 15 in parallel with thescrew axis 23 a. Therefore, thenut 23 b, rotation-drivingunit 13 andgrinding tool 40 are not rotated around thescrew axis 23 a. - The
grinding tool 40 comprises a grind stone-holding member 32 equipped with circularultrasonic vibrators 31 a, 31 b and acircular grind stone 33 attached to the lower surface of the grind stone-holding member 32 at its periphery. - The
circular grind stone 33 can be composed of abrasives such as diamond grains and a binder such as metal bond or resin bond. Generally, the abrasive can have a mean diameter in the range of 0.1 to 50 μm. - The circular grind stone can be composed of plural (e.g., 2 to 50) stone pieces arranged to form of a circle. The grind stone composed of plural stone pieces can be favorably utilized to prepare a circular grind stone having a large size. In addition, the grind stone composed of plural stone pieces is highly resistant to damage (such as formation of cracks) in the case that the ultrasonic vibration is applied to the grind stone or the grind stone is kept in contact with the object to be ground under friction. This is because the stress produced in the grind stone decreases.
- The grind stone-holding
member 32 can be made of material capable of transmitting ultrasonic vibrations such as metallic material, for instance, aluminum, bronze, stainless steel or aluminum alloy (e.g., duralmin) or ceramic material. - The grinding stone-holding
member 32 comprises asleeve 32 a placed around the rotatingshaft 13 a and fixed with a bolt 38 a, a holdingdisc 32 b fixed to the lower surface of thesleeve 32 a with abolt 38 b, and a grind stone-holdingring 32 c which is fixed to the lower surface of the holdingdisc 32 b with a combination of an adhesive (e.g., hot-melt adhesive) and abolt 38 c. - The
sleeve 32 a, holdingdisc 32 b and holdingring 32 c can be made to form a single unit. However, if thesleeve 32 a and holdingdisc 32 b are made separable from each other and theholding disc 32 b is made to have a small thickness, the holdingdisc 32 b and grindstone 33 can vibrate with a large amplitude when the circularultrasonic vibrators 31 a, 31 b generate ultrasonic vibration. In addition, if thesleeve 32 a is made to have a large length, the holdingdisc 32 b can be firmly fixed to therotating shaft 13 a via thesleeve 32 a. If theholding disc 32 b and grinding stone-holdingring 32 c are made separable from each other, the grindingstone 33 can be easily replaced with a fresh grinding stone when the grinding stone is worn out by the grinding procedures by detaching the holdingring 32 c with the worn grindingstone 33 without removing the below-described 28 b, 28 c for connecting the circularwirings ultrasonic vibrators 31 a, 31 b to the electric energy-receivingunit 25 b of the below-describedrotary transformer 25. - The grinding stone-holding
member 32 is preferably made to be symmetrical around the rotating axis so that the grinding stone can be rotated stably. For instance, the holding disc can be made in the form of a circular disc or a polygonal disc. - In the grinding stone-holding
member 32, there is formed a circularair space area 36 composed of two circular air space regions comprising circularly arranged discontinuous air spaces between theposition 34 a of the circularultrasonic vibrators 31 a, 31 b and theposition 34 b for connecting with the rotatingshaft 13 a. Thus formed circularair space area 36 keeps an ultrasonic wave generated from the circularultrasonic vibrators 31 a, 31 b from linearly propagating to an area on an opposite side near to theposition 34 b (the inner side of the illustrated grinding tool 40) where the rotating shaft is connected. The function of the circularair space area 36 will be described later in more detail. - The term of “position of the ultrasonic vibrator(s)” means “position on which the ultrasonic vibrator(s) is fixed”. In the case that the circular
air space area 36 is formed in the grinding stone-holdingmember 32 on the inner side of the circularultrasonic vibrators 31 a, 31 b, the position of the ultrasonic vibrator(s) corresponds to the inner periphery of the circularultrasonic vibrators 31 a, 31 b on the grinding stone-holdingmember 32. In the case that plural circular ultrasonic vibrators having different inner diameters are fixed to the grinding stone-holdingmember 32, the inner periphery of the circular ultrasonic vibrators means an inner periphery of the circular ultrasonic vibrator having the least inner diameter. The term of “position connecting the rotation shaft) means a position at which the grinding stone-holding member is attached to therotating shaft 13 a. - Each of the circular
ultrasonic vibrators 31 a, 31 b may comprise apiezoelectric material 41 and a pair ofelectrodes 42 which are placed on their both surfaces. Thepiezoelectric material 41 can be made of piezoelectric ceramic material of lead zirconate titanate. Theelectrode 42 can be made of silver or phosphor bronze. - Each
piezoelectric material 41 of the circularultrasonic vibrators 31 a, 31 b is polarized, for instance, in the thickness direction. For example, thepiezoelectric material 41 of the circular ultrasonic vibration 31 a is polarized upwardly in the perpendicular direction, while thepiezoelectric material 41 of the circularultrasonic vibration 31 b is polarized downwardly in the perpendicular direction. - Each of the circular
ultrasonic vibrators 31 a, 31 b is fixed to the grind stone-holdingmember 32, for instance, via an epoxy resin. The epoxy resin can serve to insulate each of the circularultrasonic vibrators 31 a, 32 from the grind stone-holdingmember 32. The circularultrasonic vibrators 31 a, 31 b can be coated with insulating coat material to keep the pair of the electrodes of the ultrasonic vibrator from electrically connecting with each other when the electrodes are brought into contact with the grinding assisting liquid (e.g., water). - The circular ultrasonic vibrator can be composed of plural (e.g., 2 to 30) ultrasonic vibrating pieces arranged to form a circle. If the circular ultrasonic vibrator can be preferably composed of plural pieces in the case that a circular ultrasonic vibrator in a large diameter is manufactured.
- Practically, one or plural (preferably up to 4) circular ultrasonic vibrators can be used. The circular grind stone can be vibrate with a large amplitude if a great number of circular ultrasonic vibrators are used. However, if a large number of circular ultrasonic vibrators is attached to the grind stone-holding member, the wiring to transmit electric energy to the circular ultrasonic vibrators is complicated.
- The
rotary transformer 25 attached to the grindingmachine 10 serves to supply electric energy to each of the circularultrasonic vibrators 31 a, 31 b rotating with the grindingtool 40 when theobject 11 is being ground. - The
rotary transformer 25 comprises apower supply unit 25 a and apower receiving unit 25 b adjacently arranged to each other with a small space. Both of thepower supply unit 25 a andpower receiving unit 25 b are in an annular form. Thepower supply unit 25 a is fixed to the bottom of therotation driving unit 13. Thepower receiving unit 25 b is fixed to the top of the grind stone-holdingmember 32. - The
power supply unit 25 a comprises anannular stator core 26 a and astator coil 27 a, and thepower receiving unit 25 b comprises anannular rotor core 26 b and arotor coil 27 b. Each of thestator core 26 a androtor core 26 b is made of magnetic material such as ferrite and has annular grooves arranged along the periphery of the core. Each of thestator coil 27 a androtor coil 27 b comprises a conductive wiring coiled along the annular grooves formed on each of thestator core 26 a androtor core 26 b. - To the
stator coil 27 a is electrically connected apower source 14 via an electric wiring 28 a, and to therotor coil 27 b is electrically connected each of the circularultrasonic vibrators 31 a, 31 b via an 28 b, 28 c. Theelectric wiring electric wiring 28 c is electrically connected to the lowerultrasonic vibrators 31 b through a throughhole 32 d formed in the grind stone-holdingmember 32. - When an electric energy generated by the
power source 14 is supplied to thestator coil 27 a of therotary transformer 25, thestator coil 27 a androtor coil 27 b are magnetically coupled to each other. For the reason, the electric energy supplied to thestator coil 27 a is transmitted to therotor coil 27 b when therotor coil 27 b (i.e., thepower receiving unit 25 b) is rotated simultaneously with the rotatingshaft 13 a. Hence, the electric energy generated by thepower source 14 can be transmitted to each of theultrasonic vibrators 31 a, 31 b rotating together with both of therotating shaft 13 a and grindingtool 40 when theobject 11 is being ground. - The electric energy (e.g., a.c. alternating voltage) generated by the
power source 14 is transmitted to each of theultrasonic vibrators 31 a, 31 b (in more detail, each electrode of the piezoelectric vibrator serving as ultrasonic vibrator) to cause generation of ultrasonic vibration in theultrasonic vibrators 31 a, 31 b, and the ultrasonic vibration is then applied to the circular (annular)grind stone 33 via the grind stone-holdingmember 32. - The rotary transformer serving as a transmission unit for transmitting the electric energy to ultrasonic vibrator can be replaced with a slip ring. The rotary transformer is advantageous in that it can stably transmit the electric energy to the ultrasonic vibrator rotating together with the rotating shaft at a rotation rate up to 100,000 r.p.m., because the electric energy is transmitted through the power supply unit and power receiving unit which are arranged with no contact. On the other hand, the slip ring cannot stably transmit the electric energy to the rotating ultrasonic vibrator when the rotation rate exceeds approx. 5,000 r.p.m.
- The procedures for grinding the object by means of the grinding
machine 10 are described below. - The
object 11 is temporarily fixed, for instance, to an iron-made holder (not shown) using a hot-melt adhesive. The holder to which theobject 11 is fixed is then fixed onto the support table 12, for instance, by means of magnetic force. - Thereafter, the
rotation driving apparatus 16 is actuated to rotate therotating shaft 16 a together with the support table 12. A liquid is supplied from thepipe 18 a of the liquid supply means 18 on theobject 11. The electric energy generated by thepower source 14 is transmitted to theultrasonic vibrators 31 a, 31 b via therotary transformer 25, whereby each ultrasonic vibrator generates ultrasonic vibration. The generated ultrasonic vibration is then transmitted to thecircular grind stone 33 via the grind stone-holdingmember 32. - The driving
unit 13 is then driven to rotate therotating shaft 13 a and the grindingtool 40. Subsequently, the drivingapparatus 17 is driven to gradually move the grinding tool downwardly. By these operations, thecircular grinding stone 33 under application of ultrasonic vibration is brought into contact with theobject 11 under such condition that an outer surface of a portion in the vicinity of the lower end of the grind stone is brought into contact with a portion in the vicinity of the upper end of theobject 11, whereby a whole upper surface of theobject 11 is ground or polished. The grinding tool is further moved downwardly to grind the object to have a predetermined thickness. - The circular
air space area 36 provided to the grind stone-holdingmember 32 of the grindingtool 40 is explained below. - The circular
air space area 36 of the grindingtool 40 comprises an inner circular air space region 36 a comprising fourair spaces 35 a and an outer circularair space region 36 b comprising fourair spaces 35 b. - It is known that when two different material having greatly different inherent acoustic impedances are in contact with each other to form a interface, a most portion of a sound wave propagating in one material toward another material is reflected on the interface so that almost no sound wave propagates to the later material. The sound impedance is defined as a product of a density of the material and a sound velocity. Since solid material and air have largely different densities from each other, most of a sound wave propagating in the solid material is reflected on the interface between the solid material and air and does not propagate to the air.
- Accordingly, if the grind stone-holding
member 32 has 35 a, 35 b, an ultrasonic (vibration) reflecting face is formed on the interfaces between the solid grind stone-holdingair space areas member 32 and the 35 a, 35 b.air spaces - Thus, in the grinding
tool 40, the ultrasonic vibration generated in the circularultrasonic vibrators 31 a, 31 b does not linearly propagate to the area on the side of theposition 34 b at which the rotating shaft is connected, that is an inner side area in the case of the grindingtool 40, because the circularair space area 36 comprising a combination of a circularair space regions 36 a, 36 b does not transmit the ultrasonic vibration. - Accordingly, the ultrasonic vibration generated in the
ultrasonic vibrators 31 a, 31 b is reflected on the interfaces formed by theair spaces 35 a, 35 and propagates through the outer side of the grinding stone-holdingmember 32 to thecircular grind stone 33 so as to efficiently cause ultrasonic vibration of thegrind stone 33 with large amplitude. If thecircular grind stone 33 is vibrates with large amplitude, friction caused between thegrind stone 33 and theobject 11 decreases so that unfavorable mechanical vibration decreases. For this reason, the grindingtool 40 can grind the object with high precision. - As is shown in
FIG. 4 , the circularair space area 36 comprises plural (e.g., four) inner penetrating grooves (inner through grooves) 43 a intermittently formed via connectingareas 37 a and plural (e.g., four) outer penetrating grooves (outer through grooves) 43 b intermittently formed via connectingareas 37 b, in which each of the inner connectingareas 37 a is arranged to face each of the outer penetratinggrooves 43 b and each of the outer connectingareas 37 b is arranged to face each of the inner penetratinggrooves 43 a. Under this structure, most of the ultrasonic vibration generated in the circularultrasonic vibrators 31 a, 31 b is reflected on any of the ultrasonic wave-reflecting faces formed by the 35 a, 35 b, and is efficiently utilized to cause the ultrasonic vibration of theair spaces circular grind stone 33. - The penetrating groove can be easily formed by discharge processing or cutting processing.
-
FIG. 6 is a plan view of other embodiment of the grinding tool of the invention.FIG. 7 is an enlarged sectional view of the grindingtool 60 ofFIG. 6 taken along the line IV-IV. - The grinding
tool 60 shown inFIG. 6 andFIG. 7 is similar to the grindingtool 40 ofFIG. 4 except that a circularair space area 66 comprises a circularupper unpenetrating groove 73 a which extends downwardly from an upper surface of the grind stone-holdingmember 62 and a circularlower unpenetrating groove 73 b which extends upwardly from a lower surface of the grind stone-holdingmember 62 and a total of a depth of the upper groove and a depth of the lower groove is larger than thickness of the grind stone-holding member. - In the grinding
tool 60, a circularair space region 66 a is formed of an air space (circular continuous air space) 65 a inside of theupper groove 73 a and a connectingarea 67 a, while a circularair space region 66 b is formed of anair space 65 b inside of thelower groove 73 b and a connectingarea 67 b. The circularair space region 66 a and circularair space region 66 b is combined to give a circularair space area 66. - Each of the
65 a, 65 b and connectingair spaces 67 a, 67 b is in the form of circle. Therefore, the grindingareas tool 60 is advantageous over the grindingtool 40 ofFIG. 4 , because thecircular grind stone 33 can vibrate more uniformly along the grind stone when the ultrasonic vibration is applied, and hence the object can be ground more precisely. - The total of the depth of the
upper groove 73 a andlower groove 73 b is more than the thickness of the grind stone-holdingmember 62, preferably not more than 1.5 times, more preferably not more than 1.1 times. -
FIG. 8 is a plan view of other embodiment of the grinding tool of the invention.FIG. 9 is an enlarged sectional view of the grindingtool 80 ofFIG. 8 taken along the line V-V. - The grinding
tool 80 shown inFIG. 8 andFIG. 9 is similar to the grindingtool 40 ofFIG. 4 except that a circularair space area 86 comprises circularporous material 93 arranged in the grind stone-holdingmember 82 on an inner side of the circularultrasonic vibrators 31 a, 31 b. - The circular
air space area 86 of the grindingtool 80 comprises circularporous material 93 which is formed of plural circular air space regions comprisingair spaces 85 arranged in the circular direction of the circularporous material 93. - The air spaces comprises a great number of pores dispersed uniformly in the circular
porous material 93. Therefore, the grindingtool 80 is advantageous over the grindingtool 40 ofFIG. 4 , because thecircular grind stone 33 can vibrate more uniformly along the grind stone when the ultrasonic vibration is applied and moreover the grind stone-holdingmember 82 has an increased rigidity, and hence the object can be ground more precisely. - The
substrate disc 82 b of the grind stone-holdingmember 82 can be easily manufactured by the steps of preparing an outer portion of thesubstrate disc 82 b and an inner portion of thesubstrate disc 82 b independently, arranging the circularporous material 93 between both portions, and binding the outer and inner portions via the porous material by welding or by the use of an adhesive. - The circular
porous material 93 can be porous metal material. Theporous material 93 can be prepare by molding a power (or fibers) of metal such as bronze, stainless steel, nickel or titanium under compression. The pores of theporous material 93 generally have diameters in the range of 10 nm to several mm. - The
porous material 93 preferably has a bulk density in the range of 5 to 75% of the density of thesubstrate disc 82 on the outer side. -
FIG. 10 is a plan view of other embodiment of the grinding tool of the invention.FIG. 11 is an enlarged sectional view of the grindingtool 100 ofFIG. 10 taken along the line VI-VI. - The grinding
tool 100 shown inFIG. 10 andFIG. 11 is similar to the grindingtool 40 ofFIG. 4 except that a circularair space area 106 comprises inner plural penetrating holes (through holes) 113 a intermittently formed via connectingareas 107 a and outer plural penetrating holes (through holes) 113 b intermittently formed via connectingareas 107 b both formed in the grind stone-holdingmember 102 and that the inner connectingareas 107 a face the outer penetratingholes 113 b and the outer connectingareas 107 b face the inner penetratingholes 113 a. - In the grinding
tool 100, one circular air space region 106 a is composed of anair spaces 105 a inside of the plural penetratingholes 113 a and the connectingareas 107 a, and another circular air space region 106 b is composed of anair spaces 105 b inside of the plural penetratingholes 113 b and the connectingareas 107 b. The circular air space region 106 a and circular air space region 106 b are combined to give a circularair space area 106. - The grinding
tool 100 may be advantageous over the grindingtool 40 ofFIG. 4 because the penetrating 113 a, 113 b can be easily formed by perforating method using a drill.holes - As is shown in
FIG. 11 , two (or more) rotary transformers 115 a, 115 b can be arranged around the rotatingshaft 13 a to be connected to the grindingtool 100. To the circularultrasonic vibrators 31 a, 31 b can be supplied electric energy by means of the rotary transformers 115 a, 115 b. The rotary transformers 115 a, 115 b are magnetically shielded from each other by means of a permalloy-madecylinder 116 placed between them. - In the above-mentioned arrangement of the rotary transformers, the circular
ultrasonic vibrators 31 a, 31 b can receive an alternating voltage (e.g., sine wave voltage) of the same phase via the rotary transformers 115 a, 115 b, so that theultrasonic vibrators 31 a, 31 b can vibrate in the radial direction with the same phase. As a result, when the ultrasonic vibrator 31 a vibrates to increase its diameter, theultrasonic vibrator 31 b vibrates simultaneously to increase its diameter, so that the outer periphery of the grind stone-holdingmember 102 is displaced outwardly. Then, when the ultrasonic vibrator 31 a vibrates to decrease its diameter, theultrasonic vibrator 31 b vibrates simultaneously to decrease its diameter, so that the outer periphery of the grind stone-holdingmember 102 is displaced inwardly. Therefore, the outer periphery of the grind stone-holdingmember 102 vibrates in the direction indicated by anarrow 119 a shown inFIG. 11 (that is a direction in parallel with the surface of the object to be ground) together with thecircular grind stone 33. - The vibration of the
circular grind stone 33 in the direction in parallel with the surface of an object to be ground can improve precision of the grinding processing. - Otherwise, the circular
ultrasonic vibrators 31 a, 31 b can receive an alternating voltage (e.g., sine wave voltage) of the opposite phase via the rotary transformers 115 a, 115 b, so that theultrasonic vibrators 31 a, 31 b can vibrate in the radial direction with the opposite phase. As a result, when the ultrasonic vibrator 31 a vibrates to increase its diameter, theultrasonic vibrator 31 b vibrates to decrease its diameter, so that the grind stone-holdingmember 102 is deformed to move its outer periphery downwardly. Then, when the ultrasonic vibrator 31 a vibrates to decrease its diameter, theultrasonic vibrator 31 b vibrates to increase its diameter, so that the outer periphery of the grind stone-holdingmember 102 is deformed to move its outer periphery upwardly. Therefore, the outer periphery of the grind stone-holdingmember 102 vibrates in the direction indicated by anarrow 119 b shown inFIG. 11 (that is a direction substantially perpendicular to the surface of the object to be ground) together with thecircular grind stone 33. - The vibration of the
circular grind stone 33 in the direction perpendicular to the surface of an object to be ground can grind the object at an increased rate (or within shortened period of time). - In the use of the grinding machine equipped with the rotary transformers 115 a, 115 b, the object can be first submitted to rough grinding by applying alternating current with opposite phase to the
ultrasonic vibrators 31 a, 31, to grind the object at a higher rate. Subsequently, the object can be submitted to precise grinding by applying alternating current with same phase to theultrasonic vibrators 31 a, 31, to grind the object at a higher precision. As a result, an object can be roughly ground within a short period of time and then ground with high precision. - The above-mentioned procedures utilizing a circular ultrasonic vibrator composed of plural ultrasonic vibrating pieces and plural rotary transformers are described in detail in the aforementioned Patent Publication 1.
-
FIG. 12 is a plan view of other embodiment of the grinding tool of the invention.FIG. 13 is an enlarged sectional view of the grindingtool 120 ofFIG. 12 taken along the line VII-VII. - The grinding
tool 120 shown inFIG. 12 andFIG. 13 is similar to the grindingtool 40 ofFIG. 4 except that the grind stone-holdingmember 122 comprises a disc substrate 112 a and acylinder member 122 b downwardly extended from a periphery of thedisc substrate 122 a, and the circularair space area 126 comprises upperplural penetrating grooves 133 a intermittently formed via connectingareas 127 a formed in thecylinder member 122 b and lowerplural penetrating grooves 133 b intermittently formed via connectingareas 127 b formed in thecylinder member 122 b. Each of the upper connectingareas 127 a are arranged to face each of the lower penetratinggrooves 133 b and each of the lower connectingareas 127 b are arranged to face each of the upper penetratinggrooves 133 a. - In the grinding
tool 120, one circularair space region 126 a is composed ofair spaces 125 a inside of the upperplural penetrating grooves 133 a and plural connectingareas 127 a and anotherair space region 126 b is composed ofair spaces 125 b inside of the lowerplural penetrating grooves 133 b and plural connectingareas 127 b. The circularair space region 126 a and circularair space region 126 b are combined to form a circularair space area 126. - Most of the ultrasonic vibration generated in the circular
ultrasonic vibrator 31 propagating to the circularair space area 126 is reflected to an ultrasonic wave reflecting faces provided by the 125 a, 125 b and then propagates to theair spaces circular grinding stone 33 via the grind stone-holdingmember 122. Thus, the generated ultrasonic vibration is efficiently applied to the grind stone. - The grinding
tool 120 may be advantageous in that the grinding stone can vibrate with a large amplitude in the direction in parallel with an object to be ground if thecylinder member 122 b is so manufactured as to have a thin thickness. - In the case that the circular
air space area 126 is formed in the grind stone-holdingmember 122 above the circularultrasonic vibrator 31, the term of “position on which the circular ultrasonic vibrator is fixed to the grind stone-holding member” means the top end position of the ultrasonic vibrator. -
FIG. 14 is a partly broken view of other embodiment of the grinding tool of the invention.FIG. 15 is an enlarged sectional view of the grindingtool 140 ofFIG. 14 taken along the line VIII-VIII. - The grinding
tool 140 shown inFIG. 14 andFIG. 15 is similar to the grindingtool 40 ofFIG. 4 except that the grind stone-holdingmember 142 comprises adisc substrate 142 a and acylinder member 142 b downwardly extended from a periphery of thedisc substrate 142 a, and the circularair space area 146 comprises circularouter unpenetrating grooves 153 a which extend inwardly from an outer surface of thecylinder member 142 and circularinner unpenetrating grooves 153 b which extend outwardly from an inner surface of thecylinder member 142. A total of a depth of theouter groove 153 a and a depth of theinner groove 153 b is larger than thickness of thecylinder member 142 b. The circularultrasonic vibrator 31 is fixed to the lower surface of thecylinder member 142 b. - In the grinding
tool 140, one circularair space region 146 a is composed of air space 145 a inside of theouter groove 153 a and the connectingarea 147 a, and anotherair space region 146 b is composed ofair space 145 b inside of theinner groove 153 b and the connectingarea 147 b. A circularair space area 146 is composed of the circularair space region 146 a and circularair space region 146 b. - The grinding
tool 140 ofFIG. 14 is also advantageous for the same reason described for the grindingtool 60 ofFIG. 6 . - The total of the depth of the
outer groove 153 a andinner groove 153 b is more than the thickness of thecylinder member 142, preferably not more than 1.5 times, more preferably not more than 1.1 times. -
FIG. 16 is a schematic view of other embodiment of the grinding tool of the invention.FIG. 17 is an enlarged sectional view of the grindingtool 160 ofFIG. 16 taken along the line IX-IX. - The grinding
tool 160 shown inFIG. 16 andFIG. 17 is similar to the grindingtool 40 ofFIG. 4 except that the grind stone-holdingmember 162 comprises adisc substrate 162 a and acylinder member 162 b downwardly extended from a periphery of thedisc substrate 162 a, and the circularair space area 166 comprises circularporous material 173 arranged in thecylinder member 162 on an upper side of the circularultrasonic vibrator 31. - Thus, the circular are
space area 166 of the grindingtool 160 comprises plural circular air space regions which contain pores (air spaces) 165 which are arranged in the circularporous material 173 in the axis direction. -
FIG. 1 is a front view of a grinding tool attached to a conventional grinding machine. -
FIG. 2 is a sectional view of the grinding tool 1 ofFIG. 1 taken along the line I-I. -
FIG. 3 is a front view of one embodiment of the grinding machine according to the invention. -
FIG. 4 is a plan view illustrating the grinding machine ofFIG. 3 that is given by sectioning the rotatingshaft 13 a taken along the II-II line. -
FIG. 5 is an enlarged sectional view of the grindingtool 40 ofFIG. 4 taken along the line III-III. -
FIG. 6 is a plan view of other embodiment of the grinding tool of the invention. -
FIG. 7 is an enlarged sectional view of the grindingtool 60 ofFIG. 6 taken along the line IV-IV. -
FIG. 8 is a plan view of other embodiment of the grinding tool of the invention. -
FIG. 9 is an enlarged sectional view of the grindingtool 80 ofFIG. 8 taken along the line V-V. -
FIG. 10 is a plan view of other embodiment of the grinding tool of the invention. -
FIG. 11 is an enlarged sectional view of the grindingtool 100 ofFIG. 10 taken along the line VI-VI. -
FIG. 12 is a plan view of other embodiment of the grinding tool of the invention. -
FIG. 13 is an enlarged sectional view of the grindingtool 120 ofFIG. 12 taken along the line VII-VII. -
FIG. 14 is a partly broken view of other embodiment of the grinding tool of the invention. -
FIG. 15 is an enlarged sectional view of the grindingtool 140 ofFIG. 14 taken along the line VIII-VIII. -
FIG. 16 is a schematic view of other embodiment of the grinding tool of the invention. -
FIG. 17 is an enlarged sectional view of the grindingtool 160 ofFIG. 16 taken along the line IX-IX. - The numerals mean the following:
- 1 grinding tool, 2 connecting plate, 3 a connecting means, 3 b connecting portion, 4 elastic body, 5 ultrasonic vibrator, 6 grind stone, 7 screw hole, 10 grinding machine, 11 object to be ground, 12 support table, 13 rotation-driving unit, 13 a rotating shaft, 14 power source, 15 base, 16, 17 rotation driving apparatus, 16 a rotating shaft, 18 grinding assisting liquid-supplying means, 18 a pipe, 21, 21 pole, 23 feed screw, 23 a screw axis, 23 b nut, 24 bearing, 25 rotary transformer, 25 a power supply unit, 25 b power-receiving unit, 26 a stator core, 26 b rotor core, 27 a stator coil, 27 b rotor coil, 28 a, 28 b, 28 c wiring, 31, 31 a, 31 b circular ultrasonic vibrator, 32 grind stone-holding member, 32 a sleeve, 32 b substrate disc, 32 c grind stone-holding ring, 32 d through hole, 33 circular grind stone, 34 a position on which the circular ultrasonic vibrator is fixed, 34 b position connecting the rotating shaft, 35 a, 35 b air space, 36 circular air space area, 36 a, 36 b circular air space region, 37 a, 37 b connecting area, 38 a, 38 b, 38 c bolt, 40 grinding tool, 41 piezoelectric material, 42 electrode, 43 a, 43 b penetrating groove, 44 a position on which the circular ultrasonic vibrator is fixed, 60 grinding tool, 62 grind stone-holding member, 66 circular air space area, 65 a, 65 b air space, 66 a, 66 b circular air space region, 67 a, 67 b connecting area, 73 a circular upper groove, 73 b circular lower groove, 80 grinding tool, 82 grind stone-holding member, 82 b disc substrate, 85 pores (air space), 86 circular air space area, 83 circular porous material, 100 grinding tool, 102 grind stone-holding member, 105 a, 105 b air space, 106 circular air space area, 106 a, 106 b circular air space region, 107 a, 107 b connecting area, 113 a, 113 b penetrating hole, 115 a, 115 b rotary transformer, 116 cylinder member, 119 a, 119 b arrow indicating direction of the vibration of the circular grind stone 33, 120 grinding tool, 122 grind stone-holding member, 122 a disc member, 122 b cylinder member, 125 a, 125 b air space, 126 circular air space area, 126 a, 126 b circular air space region, 127 a, 127 b connecting area, 133 a, 133 b penetrating groove, 140 grinding tool, 142 grind stone-holding member, 142 a disc member, 142 b cylinder member, 145 a, 145 b air space, 146 circular air space area, 146 a, 146 b circular air space region, 147 a, 147 b connecting area, 153 a circular outer groove, 153 b circular inner groove, 160 grinding tool, 162 grind stone-holding member, 162 a, disc member, 162 b cylinder member, 165 pores (air space), 166 circular air space area, 173 circular porous material
Claims (17)
1. A grinding machine comprising a support table on which an object to be ground is supported, a rotating shaft vertically arranged above the support table, and a grinding tool connected to a lower end of the rotating shaft in parallel with the support table, the grinding tool comprising a grind stone-holding member on which a circular ultrasonic vibrator electrically connectable to an electric source is fixed and a circular grind stone attached to a lower end of a periphery of the grind stone-holding member, in which the grind stone-holding member of the grinding tool has a continuous or discontinuous circular air space area between a position of the circular ultrasonic vibrator and a position at which the grind stone-holding member is connected to the rotating shaft, the continuous or discontinuous circular air space area comprising multiple circular air space regions which comprise circularly formed or arranged continuous or discontinuous air spaces, whereby the circular air space area keeps an ultrasonic wave generated from the circular ultrasonic vibrator from linearly propagating to an area on an opposite side where the rotating shaft is connected.
2. The grinding machine of claim 1 , in which the circular air space area comprises plural inner penetrating grooves intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating grooves intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer penetrating grooves and each of the outer connecting areas being arranged to face each of the inner penetrating grooves.
3. The grinding machine of claim 1 , in which the circular air space area comprises plural inner penetrating holes intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating holes intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer through holes and each of the outer connecting areas being arranged to face each of the inner through holes.
4. The grinding machine of claim 1 , in which the circular air space area comprises s circular upper unpenetrating groove which extends downwardly from an upper surface of the grind stone-holding member and a circular lower unpenetrating groove which extends upwardly from a lower surface of the grind stone-holding member, a total of a depth of the upper groove and a depth of the lower groove being larger than thickness of the grind stone-holding member.
5. The grinding machine of claim 1 , in which the circular air space area comprises circular porous material arranged in the grind stone-holding member on an inner side of the circular ultrasonic vibrator.
6. The grinding machine of claim 1 , in which the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises upper plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member and lower plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member, each of the upper connecting areas being arranged to face each of the lower penetrating grooves and each of the lower connecting areas being arranged to face each of the upper penetrating grooves.
7. The grinding machine of claim 1 , in which the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular outer unpenetrating grooves which extend inwardly from an outer surface of the cylinder member and circular inner unpenetrating grooves which extend outwardly from an inner surface of the cylinder member, a total of a depth of the outer groove and a depth of the inner groove being larger than thickness of the cylinder member.
8. The grinding machine of claim 1 , in which the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular porous material arranged in the cylinder member on an upper side of the circular ultrasonic vibrator.
9. The grinding machine of claim 1 , in which the support table rotates.
10. A grinding tool comprising a grind stone-holding member on which a circular ultrasonic vibrator electrically connectable to an electric source is fixed, said grind stone-holing member having a center portion to be connected to a rotating shaft, and a circular grind stone attached to a lower end of a periphery of the grind stone-holding member, in which the grind stone-holding member of the grinding tool has a continuous or discontinuous circular air space area between a position of the circular ultrasonic vibrator and a position at which the grind stone-holding member is connected to the rotating shaft, the continuous or discontinuous circular air space area comprising multiple circular air space regions which comprise circularly formed or arranged continuous or discontinuous air spaces, whereby the circular air space area keeps an ultrasonic wave generated from the circular ultrasonic vibrator from linearly propagating to an area on an opposite side where the rotating shaft is connected.
11. The grinding tool of claim 10 , in which the circular air space area comprises plural inner penetrating grooves intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating grooves intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer penetrating grooves and each of the outer connecting areas being arranged to face each of the inner penetrating grooves.
12. The grinding tool of claim 10 , in which the circular air space area comprises plural inner penetrating holes intermittently formed in the grind stone-holding member via connecting areas and plural outer penetrating holes intermittently formed in the grind stone-holding member via connecting areas, each of the inner connecting areas being arranged to face each of the outer through holes and each of the outer connecting areas being arranged to face each of the inner through holes.
13. The grinding tool of claim 10 , in which the circular air space area comprises circular upper unpenetrating grooves which extend downwardly from an upper surface of the grind stone-holding member and circular lower unpenetrating grooves which extend upwardly from a lower surface of the grind stone-holding member, a total of a depth of the upper groove and a depth of the lower groove being larger than thickness of the grind stone-holding member.
14. The grinding tool of claim 10 , in which the circular air space area comprises circular porous material arranged on an inner side of the circular ultrasonic vibrator.
15. The grinding tool of claim 10 , in which the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises upper plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member and lower plural penetrating grooves intermittently formed via connecting areas formed in the cylinder member, each of the upper connecting areas being arranged to face each of the lower penetrating grooves and each of the lower connecting areas being arranged to face each of the upper penetrating grooves.
16. The grinding tool of claim 10 , in which the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular outer unpenetrating grooves which extend inwardly from an outer surface of the cylinder member and circular inner unpenetrating grooves which extend outwardly from an inner surface of the cylinder member, a total of a depth of the outer groove and a depth of the inner groove being larger than thickness of the cylinder member.
17. The grinding tool of claim 10 , in which the grind stone-holding member comprises a disc substrate and a cylinder member downwardly extended from a periphery of the disc substrate, and the circular air space area comprises circular porous material arranged in the cylinder member on an upper side of the circular ultrasonic vibrator.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007-098874 | 2007-03-07 | ||
| JP2007098874 | 2007-03-07 | ||
| JP2007137186 | 2007-04-23 | ||
| JP2007-137186 | 2007-04-23 | ||
| PCT/JP2008/054181 WO2008108463A1 (en) | 2007-03-07 | 2008-03-07 | Polishing tool and polishing device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100087125A1 true US20100087125A1 (en) | 2010-04-08 |
Family
ID=39738328
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/530,041 Abandoned US20100087125A1 (en) | 2007-03-07 | 2008-03-07 | Polishing tool and polishing device |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20100087125A1 (en) |
| JP (1) | JPWO2008108463A1 (en) |
| CN (1) | CN101674919A (en) |
| WO (1) | WO2008108463A1 (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100197205A1 (en) * | 2005-06-21 | 2010-08-05 | Kazumasa Ohnishi | Grinding device using ultrasonic vibration |
| JP2011110659A (en) * | 2009-11-27 | 2011-06-09 | Uwave:Kk | Grinding tool |
| US20110167626A1 (en) * | 2010-01-12 | 2011-07-14 | Ye Hongyu | Structure for installing split-style diamond grinding disk |
| US20120204603A1 (en) * | 2011-02-16 | 2012-08-16 | Showa Denko K.K. | Method for producing glass substrate for magnetic recording medium |
| US20120270475A1 (en) * | 2009-10-08 | 2012-10-25 | Komax Holding Ag | Apparatus and method for decoating solar modules |
| CN102909648A (en) * | 2012-11-01 | 2013-02-06 | 昆山市大金机械设备厂 | Automatic grinding device |
| CN103737471A (en) * | 2013-12-27 | 2014-04-23 | 湖南宇晶机器股份有限公司 | Ultrathin and fragile workpiece polishing method and polishing device |
| US20150343602A1 (en) * | 2014-05-30 | 2015-12-03 | Tenryu Saw Mfg. Co., Ltd. | Cup grinding wheel |
| US20160256981A1 (en) * | 2015-03-03 | 2016-09-08 | Disco Corporation | Grinding wheel, grinding apparatus, and method of grinding wafer |
| US20170361409A1 (en) * | 2014-11-18 | 2017-12-21 | Sauer Gmbh | Spindle device and machine tool having a spindle device |
| US20200206877A1 (en) * | 2018-12-28 | 2020-07-02 | Jovan Pajovic | Method and system for producing abrasive products |
| CN112904719A (en) * | 2021-01-15 | 2021-06-04 | 哈尔滨工程大学 | Annular area tracking control method suitable for underwater robot position |
| CN115519427A (en) * | 2022-09-27 | 2022-12-27 | 南通市一帆钢绳有限公司 | Surface burr cleaning device is used in galvanized steel wire rope production |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5208630B2 (en) * | 2008-09-08 | 2013-06-12 | 株式会社ディスコ | Grinding wheel |
| JP5357571B2 (en) * | 2009-02-24 | 2013-12-04 | 株式会社ディスコ | Grinding wheel |
| JP5301321B2 (en) * | 2009-03-06 | 2013-09-25 | 株式会社ディスコ | Grinding wheel |
| JP5329264B2 (en) * | 2009-03-06 | 2013-10-30 | 株式会社ディスコ | Grinding wheel |
| JP5362492B2 (en) * | 2009-09-07 | 2013-12-11 | 株式会社ディスコ | Grinding wheel |
| JP5706146B2 (en) * | 2010-12-10 | 2015-04-22 | 株式会社ディスコ | Grinding equipment |
| JP2012125850A (en) * | 2010-12-13 | 2012-07-05 | Disco Corp | Grinding wheel |
| JP5394427B2 (en) * | 2011-03-29 | 2014-01-22 | コマツNtc株式会社 | Removal method of grinding wheel base metal, removal jig, grinding machine and grinding wheel base metal |
| CN102179733A (en) * | 2011-04-11 | 2011-09-14 | 辽宁工业大学 | Annular ultrasonic polishing oscillator |
| JP5848640B2 (en) * | 2012-03-08 | 2016-01-27 | 株式会社ディスコ | Polishing surface plate and lapping equipment |
| WO2014063075A1 (en) * | 2012-10-19 | 2014-04-24 | Motion Concepts, LLC | Setup platform apparatus for bench and pedestal grinders |
| CN104889881B (en) * | 2015-05-27 | 2017-07-18 | 厦门大学 | One kind vibration composite and flexible grinding and polishing instrument |
| JP6814579B2 (en) * | 2016-09-20 | 2021-01-20 | 株式会社ディスコ | Grinding wheel and grinding equipment |
| JP6995306B2 (en) * | 2017-08-03 | 2022-01-14 | 株式会社キラ・コーポレーション | Ultrasonic vibration processing equipment |
| CN109202756B (en) * | 2018-11-15 | 2024-04-02 | 珠海市世创金刚石工具制造有限公司 | Staggered tooth diamond grinding wheel |
| CN110125801B (en) * | 2019-05-21 | 2024-06-21 | 清博(昆山)智能科技有限公司 | Digital speed regulation controlled pneumatic polishing device and working method thereof |
| CN110355621B (en) * | 2019-07-17 | 2021-03-16 | 大连理工大学 | Combined grinding wheel for ultrasonic machining and design method thereof |
| CN112276785B (en) * | 2020-10-16 | 2022-07-05 | 广州大学 | Double-traveling-wave action bearing roller ultrasonic grinding device |
| CN112846972B (en) * | 2021-01-11 | 2022-10-21 | 烟台鑫硕机械有限公司 | Grinding wheel fastening device of vertical circular truncated cone surface grinding machine |
| JP7592362B2 (en) * | 2021-02-02 | 2024-12-02 | 株式会社ディスコ | Grinding Method |
| CN115383520B (en) * | 2022-08-30 | 2024-07-16 | 山东大学 | Micro-texture processing device and method for inner wall of rolling bearing raceway |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3112542B2 (en) * | 1992-01-24 | 2000-11-27 | オリンパス光学工業株式会社 | Ultrasonic polishing equipment |
| JPH09291557A (en) * | 1996-04-24 | 1997-11-11 | Shimizu Corp | Underground vibration isolation wall |
| JPH10156706A (en) * | 1996-11-27 | 1998-06-16 | Speedfam Co Ltd | Device and method for polishing |
| JP4075658B2 (en) * | 2003-03-27 | 2008-04-16 | 豊田合成株式会社 | Intake device and method of manufacturing the same |
| JP2006184079A (en) * | 2004-12-27 | 2006-07-13 | Tohoku Univ | Atomic force microscope |
| CN101242930B (en) * | 2005-06-21 | 2010-11-03 | 大西一正 | Grinding device using ultrasonic vibration |
-
2008
- 2008-03-07 US US12/530,041 patent/US20100087125A1/en not_active Abandoned
- 2008-03-07 WO PCT/JP2008/054181 patent/WO2008108463A1/en not_active Ceased
- 2008-03-07 JP JP2009502631A patent/JPWO2008108463A1/en active Pending
- 2008-03-07 CN CN200880014504A patent/CN101674919A/en active Pending
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100197205A1 (en) * | 2005-06-21 | 2010-08-05 | Kazumasa Ohnishi | Grinding device using ultrasonic vibration |
| US20120270475A1 (en) * | 2009-10-08 | 2012-10-25 | Komax Holding Ag | Apparatus and method for decoating solar modules |
| JP2011110659A (en) * | 2009-11-27 | 2011-06-09 | Uwave:Kk | Grinding tool |
| US20110167626A1 (en) * | 2010-01-12 | 2011-07-14 | Ye Hongyu | Structure for installing split-style diamond grinding disk |
| US8464420B2 (en) * | 2010-01-12 | 2013-06-18 | Wuhan Wan Bang Laser Diamond Tools Co., Ltd. | Structure for installing split-style diamond grinding disk |
| US20120204603A1 (en) * | 2011-02-16 | 2012-08-16 | Showa Denko K.K. | Method for producing glass substrate for magnetic recording medium |
| CN102909648A (en) * | 2012-11-01 | 2013-02-06 | 昆山市大金机械设备厂 | Automatic grinding device |
| CN103737471A (en) * | 2013-12-27 | 2014-04-23 | 湖南宇晶机器股份有限公司 | Ultrathin and fragile workpiece polishing method and polishing device |
| US20150343602A1 (en) * | 2014-05-30 | 2015-12-03 | Tenryu Saw Mfg. Co., Ltd. | Cup grinding wheel |
| US20170361409A1 (en) * | 2014-11-18 | 2017-12-21 | Sauer Gmbh | Spindle device and machine tool having a spindle device |
| US11292095B2 (en) * | 2014-11-18 | 2022-04-05 | Sauer Gmbh | Spindle device and machine tool having a spindle device |
| US20160256981A1 (en) * | 2015-03-03 | 2016-09-08 | Disco Corporation | Grinding wheel, grinding apparatus, and method of grinding wafer |
| US10076825B2 (en) * | 2015-03-03 | 2018-09-18 | Disco Corporation | Method of grinding wafer |
| US20200206877A1 (en) * | 2018-12-28 | 2020-07-02 | Jovan Pajovic | Method and system for producing abrasive products |
| CN112904719A (en) * | 2021-01-15 | 2021-06-04 | 哈尔滨工程大学 | Annular area tracking control method suitable for underwater robot position |
| CN115519427A (en) * | 2022-09-27 | 2022-12-27 | 南通市一帆钢绳有限公司 | Surface burr cleaning device is used in galvanized steel wire rope production |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2008108463A1 (en) | 2008-09-12 |
| JPWO2008108463A1 (en) | 2010-06-17 |
| CN101674919A (en) | 2010-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100087125A1 (en) | Polishing tool and polishing device | |
| JPWO2006137453A1 (en) | Polishing equipment using ultrasonic vibration | |
| US20100212470A1 (en) | Disklike cutting tool and cutting device | |
| JP5443960B2 (en) | Polishing tool | |
| US20090114204A1 (en) | Cutting tool and cutting device that have disk-like cutting blade | |
| CN112658818B (en) | Ultrasonic vibration-assisted grinding device for wafer ultra-precision machining | |
| TW201143968A (en) | Polishing method | |
| JP2007125867A (en) | Disk-shaped blade and cutting apparatus | |
| JP5329264B2 (en) | Grinding wheel | |
| JP2009285798A (en) | Grinding method of sapphire substrate | |
| US20060032332A1 (en) | Cutting tool and cutting machine | |
| JP5362492B2 (en) | Grinding wheel | |
| JP5301321B2 (en) | Grinding wheel | |
| JP5706146B2 (en) | Grinding equipment | |
| JP2009226575A (en) | Polishing tool and polishing device | |
| JP2007245325A (en) | Ultrasonic grinding device and grindstone for use therein | |
| JP2010214496A (en) | Polishing device | |
| JP2011110693A (en) | Grinding tool | |
| JP2010120153A (en) | Polishing tool and polishing apparatus | |
| JP2011152605A (en) | Grinding device | |
| CN112188938B (en) | Ultrasonic vibration applying tool, traveling wave generating device, and ultrasonic machining device | |
| JP5208630B2 (en) | Grinding wheel | |
| JP2011062801A (en) | Polishing tool | |
| JP4731247B2 (en) | Cutting equipment | |
| JP2008110464A (en) | Ultrasonic grinding device and grinding wheel used for the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |