[go: up one dir, main page]

US20100011944A1 - Perforation Gun System for Sealing Penetration Holes - Google Patents

Perforation Gun System for Sealing Penetration Holes Download PDF

Info

Publication number
US20100011944A1
US20100011944A1 US12/567,826 US56782609A US2010011944A1 US 20100011944 A1 US20100011944 A1 US 20100011944A1 US 56782609 A US56782609 A US 56782609A US 2010011944 A1 US2010011944 A1 US 2010011944A1
Authority
US
United States
Prior art keywords
gun barrel
perforation
sliding tube
perforators
gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/567,826
Inventor
Rolf Rospek
Malte Veehmayer
Wilfried Krauthäuser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP2004/010609 external-priority patent/WO2005033472A1/en
Application filed by Individual filed Critical Individual
Priority to US12/567,826 priority Critical patent/US20100011944A1/en
Publication of US20100011944A1 publication Critical patent/US20100011944A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction

Definitions

  • the invention relates to a perforation gun having an outer gun barrel, arranged in an interior of which are perforators that can be ignited by a fuse leading through the gun barrel and after ignition pierce the gun barrel at penetration holes, and means for automatically closing the penetration holes.
  • Perforation guns are used in deep bore hole blasting in the oil and natural-gas industries to tie the bore hole to the storage horizon.
  • a perforation gun consists of an outer gun barrel, arranged in the interior of which there are perforators—usually hollow or projectile charges—that shoot radially outwards through the gun barrel in the case of ignition. Penetration holes remain in the gun barrel after the shot.
  • the underlying object of the invention is to improve a perforation gun in such a way that with simple and reliable means emergence of fragments out of the gun barrel into the bore hole is avoided.
  • the means for the automatic closure comprise cartridges with a swellable two-component foam, and these cartridges are arranged in the gun barrel and can be broken up by means of the ignited fuse, as a result of which foam emerges out of the cartridges, swells up and blocks the penetration holes.
  • a cartridge is arranged next to each perforator.
  • perforation guns that have an outer gun barrel, arranged in the interior of which there are perforators that can be ignited by way of a fuse leading through the gun barrel and after ignition pierce the gun barrel at penetration holes, with means being provided for automatically closing the perforation holes, and these means comprising a sliding tube which can be displaced by means of an adjusting arrangement by at least the diameter of the penetration hole after the penetration, it is proposed that the sliding tube be arranged coaxially between the perforators and the gun barrel.
  • the sliding tube be arranged coaxially between the perforators and the gun barrel.
  • the sliding tube is fixed in its starting position by way of a securing element that breaks up after ignition of the fuse and enables the displacement of the sliding tube.
  • the sliding tube is closed on the side to which it is to be displaced and is open on the other side, as a result of which the sliding tube is formed like a plunger that can be displaced by means of the pressure building up as a result of the ignition of the perforators.
  • the sliding tube have a wall thickness that permits radial expansion as a result of the pressure that has built up in the gun barrel after the ignition of the perforators.
  • a fluid arranged between the sliding tube and the gun barrel there is a fluid.
  • This fluid can be used to control the timing of the radial expansion of the sliding tube.
  • FIG. 1 shows a gun barrel 1 of a perforation gun for use in the oil and natural-gas industries for tying a bore hole to the storage horizon.
  • the gun barrel 1 is closed at its two ends by means of a respective connector or seal 18 .
  • a sliding tube 4 Arranged in the interior of the gun barrel 1 there is a sliding tube 4 and therein a charge carrier 9 , to which perforators 10 are secured.
  • these perforators 10 are hollow charges.
  • a fuse 11 is guided to the respective ignition points of the perforators 10 .
  • the fuse 11 is guided through the connectors or seals 18 into the interior of the perforation gun.
  • the inner tube or the sliding tube 4 is closed at one end, for example by means of a cap 5 .
  • a securing element 7 Lying next to the cap 5 there is a securing element 7 , here a shearing pin, that secures the sliding tube 4 before the shot in such a way that the sliding tube 4 cannot be displaced in the gun barrel 1 in the longitudinal direction.
  • Predetermined breaking points 3 can be introduced into the gun barrel 1 , opposite the perforators 10 , so that after the ignition of the perforators 10 the hollow-charge stream 12 that forms (see FIG. 2 ) can pierce the gun barrel 1 in an unhindered manner.
  • FIG. 2 shows a cutaway portion from the perforation gun directly after the ignition.
  • the fuse 11 has ignited the perforators 10 .
  • the hollow-charge stream or hollow-charge jet 12 that forms has pierced the sliding tube 4 and the gun barrel 1 .
  • the metal housings of the perforators 10 are split up thereby and form splinter pieces and fragments that form a portion of the “debris”.
  • FIG. 3 shows a cutaway portion from the perforation gun directly after the shot.
  • the hollow-charge stream 12 has pierced the sliding tube 4 at the penetration hole 14 and the gun barrel 1 at the penetration hole 13 .
  • a pressure has built up in the interior of the sliding tube 4 . This pressure acts upon the sliding tube 4 in the direction of the securing element 7 , since the sliding tube 4 is closed on the side of the securing element 5 by means of a cap 5 and is open on the opposite side.
  • “Debris” 17 has formed in the interior.
  • FIG. 4 shows a cutaway portion from the perforation gun after the shot.
  • the securing element 7 has been sheared off, as a result of which the sliding tube 4 has been displaced as far as the adjacent connector or seal 18 .
  • the remaining small portions or the debris 17 cannot leave the gun barrel 1 .
  • the inner tube 4 has become inflated after the shot and has thus become wedged with the gun barrel 1 .
  • the invention thus consists of a mechanism that closes the perforation holes or penetration holes 13 in the gun wall 2 after the shot and thus prevents the “debris” 17 from emerging.
  • Foam cartridges or, as described, a slide or rotary mechanism can be used as a closure mechanism.
  • some perforators 10 are replaced by cartridges with a two-component foam.
  • the fuse 11 that ignites the perforators or charges 10 , the cartridge is caused to react, and the foam swells up and blocks the penetration holes 13 .
  • a second tube a sliding tube 4 , which is displaced by at least the diameter of the penetration hole 13 after the penetration (either longitudinally: sliding mechanism, or transversely: rotary mechanism), is inserted into the gun.
  • the path of displacement is marked by an X (see reference numeral 8 ).
  • a pre-tensioned spring can be used for the movement of the inner tube or second tube or sliding tube 4 after the shot.
  • the sliding tube 4 is fixed in the starting position by way of a securing element 7 which is destroyed by the fuse 11 , for example. Pins, snap rings or screws, for example, can be used as the securing element 7 .
  • the destruction can also be effected, for example, by way of a pyrotechnic element—possibly even with a delay-action composition.
  • the internal pressure in the gun after the shot, caused by the reaction products of the explosives in the perforators 10 can also be used to move the slide mechanism or the slide tube 5 (sic). If the slide tube 4 is closed on the side to which it is to be moved and is kept open on the other side, this sliding tube 4 can be moved like a plunger. The internal pressure can only be relieved through the perforation holes 14 and the leadthroughs 6 for the fuse 11 . The time until the pressure has been completely reduced is sufficient to displace the sliding tube 4 and thus to close the penetration holes 13 , 14 .
  • the gas pressure causes the sliding tube 4 to inflate (also known for conventional perforation guns by the term “gun swell”).
  • the expanding sliding tube 4 can become wedged with the inner wall of the outer tube or gun barrel 1 and thus cannot slip back.
  • the time of this expansion can be controlled, for example, by way of a fluid between the inner and outer wall.
  • Grease or silicone oil for example, can be used for this purpose.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Toys (AREA)

Abstract

A perforation gun includes an external gun barrel in the interior of which perforators are located which can be ignited via a fuse extending through the gun barrel and which, after ignition, pierce the gun barrel with perforation holes. A sliding tube or a swellable two-component foam is provided which automatically closes the perforation holes. The swellable two-component foam can be provided in a cartridge located inside the gun barrel and can be broken up by the ignited fuse, thereby allowing foam to escape from the cartridges, allowing it to swell and obliterate the perforation holes. The sliding tube can be displaced after perforation by an adjusting device by at least the diameter of the perforation hole, the sliding tube being located coaxially between the perforators and the gun barrel.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation application of U.S. application Ser. No. 10/573,581, filed Mar. 27, 2006, the contents of which are incorporated herein by reference.
  • The invention relates to a perforation gun having an outer gun barrel, arranged in an interior of which are perforators that can be ignited by a fuse leading through the gun barrel and after ignition pierce the gun barrel at penetration holes, and means for automatically closing the penetration holes.
  • Perforation guns are used in deep bore hole blasting in the oil and natural-gas industries to tie the bore hole to the storage horizon.
  • A perforation gun consists of an outer gun barrel, arranged in the interior of which there are perforators—usually hollow or projectile charges—that shoot radially outwards through the gun barrel in the case of ignition. Penetration holes remain in the gun barrel after the shot.
  • In order to ignite the perforators there is a fuse leading through the gun barrel that causes the perforators to ignite in the case of ignition.
  • In the case of this method a problem is presented by residual pieces and fragments of the perforators and of the components in the interior of the gun barrel that can fall into the bore hole through the penetration holes after the shot. In order to avoid this “debris” (fragments of the perforators), in WO 00/49 271 it is proposed that, in order to close the penetration holes independently, a sliding tube, which can be displaced outside the gun barrel on the outer wall of the gun barrel, be displaced by means of an adjusting arrangement by at least the diameter of the penetration hole after the shot. This system has disadvantages in horizontal bore holes, since here the sliding tube rests on the “casing inner wall” and as a result displacement of the sliding tube is rendered difficult. What is meant by the term casing is the outermost tube that is introduced into the bore hole and into which the perforation gun is inserted.
  • The underlying object of the invention is to improve a perforation gun in such a way that with simple and reliable means emergence of fragments out of the gun barrel into the bore hole is avoided.
  • In accordance with the invention this object is achieved in a first embodiment in that the means for the automatic closure comprise cartridges with a swellable two-component foam, and these cartridges are arranged in the gun barrel and can be broken up by means of the ignited fuse, as a result of which foam emerges out of the cartridges, swells up and blocks the penetration holes.
  • In a preferred embodiment, a cartridge is arranged next to each perforator.
  • In the case of perforation guns that have an outer gun barrel, arranged in the interior of which there are perforators that can be ignited by way of a fuse leading through the gun barrel and after ignition pierce the gun barrel at penetration holes, with means being provided for automatically closing the perforation holes, and these means comprising a sliding tube which can be displaced by means of an adjusting arrangement by at least the diameter of the penetration hole after the penetration, it is proposed that the sliding tube be arranged coaxially between the perforators and the gun barrel. As a result, emergence of fragments out of the gun barrel into the bore hole is avoided with simple and reliable means. In the case of horizontal bore holes, in which the outer wall rests on the casing inner wall, displacement of the sliding tube is possible in a reliable way.
  • In a preferred embodiment, the sliding tube is fixed in its starting position by way of a securing element that breaks up after ignition of the fuse and enables the displacement of the sliding tube.
  • The adjusting arrangement can be a tensioned spring or a pyrotechnic element that can be ignited by means of the fuse.
  • In a preferred embodiment the sliding tube is closed on the side to which it is to be displaced and is open on the other side, as a result of which the sliding tube is formed like a plunger that can be displaced by means of the pressure building up as a result of the ignition of the perforators.
  • In order to fix the sliding tube after the displacement, it is proposed that the sliding tube have a wall thickness that permits radial expansion as a result of the pressure that has built up in the gun barrel after the ignition of the perforators.
  • Advantageously, arranged between the sliding tube and the gun barrel there is a fluid. This fluid can be used to control the timing of the radial expansion of the sliding tube.
  • An embodiment of the invention is explained in greater detail in the following with the aid of four figures.
  • FIG. 1 shows a gun barrel 1 of a perforation gun for use in the oil and natural-gas industries for tying a bore hole to the storage horizon. The gun barrel 1 is closed at its two ends by means of a respective connector or seal 18. Arranged in the interior of the gun barrel 1 there is a sliding tube 4 and therein a charge carrier 9, to which perforators 10 are secured. In the figures shown, these perforators 10 are hollow charges. In order to ignite these perforators 10, a fuse 11 is guided to the respective ignition points of the perforators 10. The fuse 11 is guided through the connectors or seals 18 into the interior of the perforation gun.
  • The inner tube or the sliding tube 4 is closed at one end, for example by means of a cap 5. Lying next to the cap 5 there is a securing element 7, here a shearing pin, that secures the sliding tube 4 before the shot in such a way that the sliding tube 4 cannot be displaced in the gun barrel 1 in the longitudinal direction.
  • Predetermined breaking points 3 can be introduced into the gun barrel 1, opposite the perforators 10, so that after the ignition of the perforators 10 the hollow-charge stream 12 that forms (see FIG. 2) can pierce the gun barrel 1 in an unhindered manner.
  • FIG. 2 shows a cutaway portion from the perforation gun directly after the ignition. The fuse 11 has ignited the perforators 10. The hollow-charge stream or hollow-charge jet 12 that forms has pierced the sliding tube 4 and the gun barrel 1. The metal housings of the perforators 10 are split up thereby and form splinter pieces and fragments that form a portion of the “debris”.
  • FIG. 3 shows a cutaway portion from the perforation gun directly after the shot. The hollow-charge stream 12 has pierced the sliding tube 4 at the penetration hole 14 and the gun barrel 1 at the penetration hole 13. A pressure has built up in the interior of the sliding tube 4. This pressure acts upon the sliding tube 4 in the direction of the securing element 7, since the sliding tube 4 is closed on the side of the securing element 5 by means of a cap 5 and is open on the opposite side. “Debris” 17 has formed in the interior.
  • FIG. 4 shows a cutaway portion from the perforation gun after the shot. As a result of the pressure in the sliding tube 4, the securing element 7 has been sheared off, as a result of which the sliding tube 4 has been displaced as far as the adjacent connector or seal 18. As a result, the remaining small portions or the debris 17 cannot leave the gun barrel 1. What is not shown is that the inner tube 4 has become inflated after the shot and has thus become wedged with the gun barrel 1.
  • The invention thus consists of a mechanism that closes the perforation holes or penetration holes 13 in the gun wall 2 after the shot and thus prevents the “debris” 17 from emerging. Foam cartridges or, as described, a slide or rotary mechanism can be used as a closure mechanism. In the case of the foam cartridges, some perforators 10 are replaced by cartridges with a two-component foam. By means of the fuse 11 that ignites the perforators or charges 10, the cartridge is caused to react, and the foam swells up and blocks the penetration holes 13.
  • When a sliding or rotary mechanism is used, a second tube, a sliding tube 4, which is displaced by at least the diameter of the penetration hole 13 after the penetration (either longitudinally: sliding mechanism, or transversely: rotary mechanism), is inserted into the gun. In FIG. 1, the path of displacement is marked by an X (see reference numeral 8). A pre-tensioned spring can be used for the movement of the inner tube or second tube or sliding tube 4 after the shot. The sliding tube 4 is fixed in the starting position by way of a securing element 7 which is destroyed by the fuse 11, for example. Pins, snap rings or screws, for example, can be used as the securing element 7. The destruction can also be effected, for example, by way of a pyrotechnic element—possibly even with a delay-action composition. The internal pressure in the gun after the shot, caused by the reaction products of the explosives in the perforators 10, can also be used to move the slide mechanism or the slide tube 5 (sic). If the slide tube 4 is closed on the side to which it is to be moved and is kept open on the other side, this sliding tube 4 can be moved like a plunger. The internal pressure can only be relieved through the perforation holes 14 and the leadthroughs 6 for the fuse 11. The time until the pressure has been completely reduced is sufficient to displace the sliding tube 4 and thus to close the penetration holes 13, 14. At the same time, the gas pressure causes the sliding tube 4 to inflate (also known for conventional perforation guns by the term “gun swell”). The expanding sliding tube 4 can become wedged with the inner wall of the outer tube or gun barrel 1 and thus cannot slip back. The time of this expansion can be controlled, for example, by way of a fluid between the inner and outer wall. Grease or silicone oil, for example, can be used for this purpose.

Claims (2)

1. A perforation gun having an outer gun barrel, arranged in the interior of which there are perforators that can be ignited by way of a fuse leading through the gun barrel and after ignition pierce the gun barrel at penetration holes, wherein means are provided for the automatic closure of the penetration holes, characterised in that the means for the automatic closure comprise cartridges with a swellable two-component foam and these cartridges are arranged in the gun barrel and can be broken up by means of the ignited fuse, as a result of which foam emerges out of the cartridges, swells up and blocks the penetration holes.
2. A perforation gun according to claim 1, characterised in that a cartridge is arranged next to each perforator.
US12/567,826 2003-09-27 2009-09-28 Perforation Gun System for Sealing Penetration Holes Abandoned US20100011944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/567,826 US20100011944A1 (en) 2003-09-27 2009-09-28 Perforation Gun System for Sealing Penetration Holes

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
DE10344958 2003-09-27
DE10344958.2 2003-09-27
DE102004004750.2 2004-01-30
DE102004004750 2004-01-30
DE102004011616 2004-03-10
DE102004011616.4 2004-03-10
DE102004043948.6 2004-09-11
DE102004043948A DE102004043948A1 (en) 2003-09-27 2004-09-11 Perforation gun used in well drill hole explosions in the crude oil and natural gas industry comprises elements for automatically closing the perforation holes and consisting of cartridges containing a swellable two-component foam
PCT/EP2004/010609 WO2005033472A1 (en) 2003-09-27 2004-09-22 Perforation gun system producing self-closing perforation holes
US57358107A 2007-01-12 2007-01-12
US12/567,826 US20100011944A1 (en) 2003-09-27 2009-09-28 Perforation Gun System for Sealing Penetration Holes

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2004/010609 Continuation WO2005033472A1 (en) 2003-09-27 2004-09-22 Perforation gun system producing self-closing perforation holes
US57358107A Continuation 2003-09-27 2007-01-12

Publications (1)

Publication Number Publication Date
US20100011944A1 true US20100011944A1 (en) 2010-01-21

Family

ID=34527289

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/567,826 Abandoned US20100011944A1 (en) 2003-09-27 2009-09-28 Perforation Gun System for Sealing Penetration Holes

Country Status (3)

Country Link
US (1) US20100011944A1 (en)
DE (1) DE102004043948A1 (en)
EA (1) EA008214B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130292174A1 (en) * 2012-05-03 2013-11-07 Baker Hughes Incorporated Composite liners for perforators

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386168B1 (en) * 2018-06-11 2019-08-20 Dynaenergetics Gmbh & Co. Kg Conductive detonating cord for perforating gun

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142572A (en) * 1935-04-13 1939-01-03 Lane Wells Co Perforating gun
US2252270A (en) * 1938-11-05 1941-08-12 American Oil Tool Company Perforating device
US2462784A (en) * 1941-11-17 1949-02-22 Lane Wells Co Well perforating gun
US3361204A (en) * 1965-06-25 1968-01-02 Pan American Petroleum Corp Method and apparatus for treating an underground formation
US3366179A (en) * 1965-08-18 1968-01-30 John C Kinley Well tool having safety means to prevent premature firing
US4009757A (en) * 1975-02-03 1977-03-01 Vann Roy Randell Sand consolidation method
US4160412A (en) * 1977-06-27 1979-07-10 Thomas A. Edgell Earth fracturing apparatus
US4637478A (en) * 1982-10-20 1987-01-20 Halliburton Company Gravity oriented perforating gun for use in slanted boreholes
US5070943A (en) * 1990-12-26 1991-12-10 Jet Research Center, Inc. Apparatus and method for perforating a well
US5960894A (en) * 1998-03-13 1999-10-05 Primex Technologies, Inc. Expendable tubing conveyed perforator
US6412415B1 (en) * 1999-11-04 2002-07-02 Schlumberger Technology Corp. Shock and vibration protection for tools containing explosive components
US6679327B2 (en) * 2001-11-30 2004-01-20 Baker Hughes, Inc. Internal oriented perforating system and method
US20070079966A1 (en) * 2005-05-16 2007-04-12 Kevin George Perforation gun with integral debris trap apparatus and method of use
US7246659B2 (en) * 2003-02-28 2007-07-24 Halliburton Energy Services, Inc. Damping fluid pressure waves in a subterranean well

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765739A (en) * 1951-01-26 1956-10-09 Welex Jet Services Inc Jet carrier sealing plug
US4407368A (en) * 1978-07-03 1983-10-04 Exxon Production Research Company Polyurethane ball sealers for well treatment fluid diversion
US4287952A (en) * 1980-05-20 1981-09-08 Exxon Production Research Company Method of selective diversion in deviated wellbores using ball sealers
DE9105241U1 (en) * 1990-05-12 1991-06-20 Schönmackers Umweltdienste Sonderabfall GmbH & Co. KG, 4152 Kempen Containers for collecting pollutants
DE4206331A1 (en) * 1991-03-05 1992-09-10 Exxon Production Research Co BALL SEALS AND USE THERE FOR DRILL HOLE TREATMENT
US6220370B1 (en) * 1999-02-18 2001-04-24 Owen Oil Tools, Inc. Circulating gun system
CA2271620C (en) * 1999-05-14 2007-10-23 Baker Hughes (Canada) Ltd. Downhole magnetic debris collector
US6237688B1 (en) * 1999-11-01 2001-05-29 Halliburton Energy Services, Inc. Pre-drilled casing apparatus and associated methods for completing a subterranean well

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2142572A (en) * 1935-04-13 1939-01-03 Lane Wells Co Perforating gun
US2252270A (en) * 1938-11-05 1941-08-12 American Oil Tool Company Perforating device
US2462784A (en) * 1941-11-17 1949-02-22 Lane Wells Co Well perforating gun
US3361204A (en) * 1965-06-25 1968-01-02 Pan American Petroleum Corp Method and apparatus for treating an underground formation
US3366179A (en) * 1965-08-18 1968-01-30 John C Kinley Well tool having safety means to prevent premature firing
US4009757A (en) * 1975-02-03 1977-03-01 Vann Roy Randell Sand consolidation method
US4160412A (en) * 1977-06-27 1979-07-10 Thomas A. Edgell Earth fracturing apparatus
US4637478A (en) * 1982-10-20 1987-01-20 Halliburton Company Gravity oriented perforating gun for use in slanted boreholes
US5070943A (en) * 1990-12-26 1991-12-10 Jet Research Center, Inc. Apparatus and method for perforating a well
US5960894A (en) * 1998-03-13 1999-10-05 Primex Technologies, Inc. Expendable tubing conveyed perforator
US6412415B1 (en) * 1999-11-04 2002-07-02 Schlumberger Technology Corp. Shock and vibration protection for tools containing explosive components
US6679327B2 (en) * 2001-11-30 2004-01-20 Baker Hughes, Inc. Internal oriented perforating system and method
US7246659B2 (en) * 2003-02-28 2007-07-24 Halliburton Energy Services, Inc. Damping fluid pressure waves in a subterranean well
US20070079966A1 (en) * 2005-05-16 2007-04-12 Kevin George Perforation gun with integral debris trap apparatus and method of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130292174A1 (en) * 2012-05-03 2013-11-07 Baker Hughes Incorporated Composite liners for perforators

Also Published As

Publication number Publication date
EA008214B1 (en) 2007-04-27
EA200600643A1 (en) 2006-10-27
DE102004043948A1 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
US7607379B2 (en) Perforation gun system for sealing perforation holes
US11530585B2 (en) Non-explosive downhole perforating and cutting tools
US8397813B2 (en) Device for a test plug
US4523650A (en) Explosive safe/arm system for oil well perforating guns
RU2349738C2 (en) Safety device for borehole perforation system, borehole perforation system and method for borehole perforation system control
US20180135390A1 (en) Method of initiating a percussion initiator
US9945214B2 (en) Firing mechanism for a perforating gun or other downhole tool
NO179561B (en) Device for perforating a well
NO310741B1 (en) Perforation gun ignition head
US10822931B2 (en) Firing mechanism for a perforating gun or other downhole tool
US20100011944A1 (en) Perforation Gun System for Sealing Penetration Holes
USH1603H (en) Flare with safe-and-arm ignition system
HU185544B (en) Method and mechanism for breaking by firedampproof blasting of large charge carried out in mine areas impossible to supervise
US20120198988A1 (en) Perforating gun having self-closing penetration holes
US11834936B2 (en) Dissolvable time delay firing head and method
CA2871622C (en) Firing mechanism for a perforating gun or other downhole tool
US2773424A (en) Gun perforator
US8210105B2 (en) Method and device for detonating an explosive charge
US2695665A (en) Front-firing gun perforator
EP0288238A2 (en) Method and apparatus for perforating well bores
MXPA97005659A (en) Punishing canyon for po pipes

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE