US20090036371A1 - Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents - Google Patents
Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents Download PDFInfo
- Publication number
- US20090036371A1 US20090036371A1 US12/038,673 US3867308A US2009036371A1 US 20090036371 A1 US20090036371 A1 US 20090036371A1 US 3867308 A US3867308 A US 3867308A US 2009036371 A1 US2009036371 A1 US 2009036371A1
- Authority
- US
- United States
- Prior art keywords
- saa
- glaucoma
- canceled
- expression
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000010412 Glaucoma Diseases 0.000 title claims abstract description 81
- 108700028909 Serum Amyloid A Proteins 0.000 title abstract description 113
- 238000003745 diagnosis Methods 0.000 title description 4
- 239000000030 antiglaucoma agent Substances 0.000 title 1
- 102000054727 Serum Amyloid A Human genes 0.000 claims abstract description 117
- 238000000034 method Methods 0.000 claims abstract description 62
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- 230000003993 interaction Effects 0.000 claims description 10
- 102000023984 PPAR alpha Human genes 0.000 claims description 7
- 101710190759 Serum amyloid A protein Proteins 0.000 claims description 7
- 229960002297 fenofibrate Drugs 0.000 claims description 7
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 claims description 7
- 108091008725 peroxisome proliferator-activated receptors alpha Proteins 0.000 claims description 7
- 239000000556 agonist Substances 0.000 claims description 5
- KPSRODZRAIWAKH-JTQLQIEISA-N Ciprofibrate Natural products C1=CC(OC(C)(C)C(O)=O)=CC=C1[C@H]1C(Cl)(Cl)C1 KPSRODZRAIWAKH-JTQLQIEISA-N 0.000 claims description 4
- KPSRODZRAIWAKH-UHFFFAOYSA-N ciprofibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1C1C(Cl)(Cl)C1 KPSRODZRAIWAKH-UHFFFAOYSA-N 0.000 claims description 4
- 229960002174 ciprofibrate Drugs 0.000 claims description 4
- DPRAYRYQQAXQPE-UHFFFAOYSA-N 2-bromohexadecanoic acid Chemical compound CCCCCCCCCCCCCCC(Br)C(O)=O DPRAYRYQQAXQPE-UHFFFAOYSA-N 0.000 claims description 3
- IIBYAHWJQTYFKB-UHFFFAOYSA-N bezafibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1CCNC(=O)C1=CC=C(Cl)C=C1 IIBYAHWJQTYFKB-UHFFFAOYSA-N 0.000 claims description 3
- 229960000516 bezafibrate Drugs 0.000 claims description 3
- YZFWTZACSRHJQD-UHFFFAOYSA-N ciglitazone Chemical compound C=1C=C(CC2C(NC(=O)S2)=O)C=CC=1OCC1(C)CCCCC1 YZFWTZACSRHJQD-UHFFFAOYSA-N 0.000 claims description 3
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 3
- YNZXLMPHTZVKJN-VBKCWIKWSA-N (3z,5e,7r,8r,9s,10s,11r,13e,15e,17s,18r)-18-[(2s,3r,4s)-4-[(2r,4r,5s,6r)-2,4-dihydroxy-5-methyl-6-[(e)-prop-1-enyl]oxan-2-yl]-3-hydroxypentan-2-yl]-9-ethyl-8,10-dihydroxy-3,17-dimethoxy-5,7,11,13-tetramethyl-1-oxacyclooctadeca-3,5,13,15-tetraen-2-one Chemical compound O1C(=O)\C(OC)=C\C(\C)=C\[C@@H](C)[C@@H](O)[C@@H](CC)[C@@H](O)[C@H](C)C\C(C)=C\C=C\[C@H](OC)[C@H]1[C@@H](C)[C@@H](O)[C@H](C)[C@]1(O)O[C@H](\C=C\C)[C@@H](C)[C@H](O)C1 YNZXLMPHTZVKJN-VBKCWIKWSA-N 0.000 claims description 2
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 claims description 2
- 102000003141 Tachykinin Human genes 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 2
- AGBQKNBQESQNJD-UHFFFAOYSA-N alpha-Lipoic acid Natural products OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 claims description 2
- 229930192649 bafilomycin Natural products 0.000 claims description 2
- XDHNQDDQEHDUTM-UHFFFAOYSA-N bafliomycin A1 Natural products COC1C=CC=C(C)CC(C)C(O)C(C)C=C(C)C=C(OC)C(=O)OC1C(C)C(O)C(C)C1(O)OC(C(C)C)C(C)C(O)C1 XDHNQDDQEHDUTM-UHFFFAOYSA-N 0.000 claims description 2
- 229930184793 concanamycin Natural products 0.000 claims description 2
- 235000019136 lipoic acid Nutrition 0.000 claims description 2
- GOHMRMDXUXWCDQ-UHFFFAOYSA-N pseudolaric acid B Natural products CC(=O)OC12CCC(C)=CCC11C(=O)OC(C)(C=CC=C(C)C(O)=O)C2CC1 GOHMRMDXUXWCDQ-UHFFFAOYSA-N 0.000 claims description 2
- VDGOFNMYZYBUDT-YDRCMHEVSA-N pseudolaric acid b Chemical compound C([C@@]12OC(C)=O)CC(C(=O)OC)=CC[C@@]11C(=O)O[C@](C)(\C=C\C=C(/C)C(O)=O)[C@@H]2CC1 VDGOFNMYZYBUDT-YDRCMHEVSA-N 0.000 claims description 2
- VDGOFNMYZYBUDT-UHFFFAOYSA-N pseudolarix acid B Natural products CC(=O)OC12CCC(C(=O)OC)=CCC11C(=O)OC(C)(C=CC=C(C)C(O)=O)C2CC1 VDGOFNMYZYBUDT-UHFFFAOYSA-N 0.000 claims description 2
- 102000005962 receptors Human genes 0.000 claims description 2
- 108020003175 receptors Proteins 0.000 claims description 2
- 108060008037 tachykinin Proteins 0.000 claims description 2
- 229960002663 thioctic acid Drugs 0.000 claims description 2
- 230000014509 gene expression Effects 0.000 abstract description 41
- 210000004027 cell Anatomy 0.000 description 37
- 108090000623 proteins and genes Proteins 0.000 description 36
- 210000001519 tissue Anatomy 0.000 description 33
- 210000001585 trabecular meshwork Anatomy 0.000 description 33
- 150000001875 compounds Chemical class 0.000 description 22
- 108700028369 Alleles Proteins 0.000 description 17
- 150000007523 nucleic acids Chemical class 0.000 description 17
- 210000003733 optic disk Anatomy 0.000 description 17
- 230000003321 amplification Effects 0.000 description 16
- 238000003199 nucleic acid amplification method Methods 0.000 description 16
- 239000000523 sample Substances 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 14
- 102000039446 nucleic acids Human genes 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- 238000001514 detection method Methods 0.000 description 13
- 230000035772 mutation Effects 0.000 description 13
- 201000010099 disease Diseases 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 210000001508 eye Anatomy 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000009396 hybridization Methods 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 11
- 238000003752 polymerase chain reaction Methods 0.000 description 11
- 108091034117 Oligonucleotide Proteins 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 108090001007 Interleukin-8 Proteins 0.000 description 9
- 102000004890 Interleukin-8 Human genes 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 210000001742 aqueous humor Anatomy 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 230000001594 aberrant effect Effects 0.000 description 8
- 239000013615 primer Substances 0.000 description 8
- 102000004127 Cytokines Human genes 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 7
- 102100032277 Serum amyloid A-1 protein Human genes 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 101000869480 Homo sapiens Serum amyloid A-1 protein Proteins 0.000 description 6
- 206010030348 Open-Angle Glaucoma Diseases 0.000 description 6
- 101710083332 Serum amyloid A-2 protein Proteins 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000750 progressive effect Effects 0.000 description 6
- 238000003753 real-time PCR Methods 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 102100032007 Serum amyloid A-2 protein Human genes 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 210000003994 retinal ganglion cell Anatomy 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- 201000004569 Blindness Diseases 0.000 description 4
- 241001635598 Enicostema Species 0.000 description 4
- 206010027626 Milia Diseases 0.000 description 4
- 108700008625 Reporter Genes Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 210000000554 iris Anatomy 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229940054534 ophthalmic solution Drugs 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000000770 proinflammatory effect Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 3
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 3
- 108010010234 HDL Lipoproteins Proteins 0.000 description 3
- 102000015779 HDL Lipoproteins Human genes 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 206010002022 amyloidosis Diseases 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- -1 genomic Chemical class 0.000 description 3
- 210000005119 human aortic smooth muscle cell Anatomy 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002997 ophthalmic solution Substances 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 108091006024 signal transducing proteins Proteins 0.000 description 3
- 102000034285 signal transducing proteins Human genes 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000004393 visual impairment Effects 0.000 description 3
- 102000007592 Apolipoproteins Human genes 0.000 description 2
- 108010071619 Apolipoproteins Proteins 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- 101000818546 Homo sapiens N-formyl peptide receptor 2 Proteins 0.000 description 2
- 101000637835 Homo sapiens Serum amyloid A-4 protein Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 208000005531 Immunoglobulin Light-chain Amyloidosis Diseases 0.000 description 2
- 229940119178 Interleukin 1 receptor antagonist Drugs 0.000 description 2
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 102100021126 N-formyl peptide receptor 2 Human genes 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 206010030043 Ocular hypertension Diseases 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 102100032016 Serum amyloid A-4 protein Human genes 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102100031142 Transcriptional repressor protein YY1 Human genes 0.000 description 2
- 101710122472 Transcriptional repressor protein YY1 Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000007783 downstream signaling Effects 0.000 description 2
- 230000004406 elevated intraocular pressure Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000003492 excitotoxic effect Effects 0.000 description 2
- 231100000063 excitotoxicity Toxicity 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 239000004090 neuroprotective agent Substances 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 201000006366 primary open angle glaucoma Diseases 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 208000023769 AA amyloidosis Diseases 0.000 description 1
- 208000023761 AL amyloidosis Diseases 0.000 description 1
- 206010048998 Acute phase reaction Diseases 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 102000005666 Apolipoprotein A-I Human genes 0.000 description 1
- 108010059886 Apolipoprotein A-I Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- 102100032752 C-reactive protein Human genes 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 206010018325 Congenital glaucomas Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102100027417 Cytochrome P450 1B1 Human genes 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020001738 DNA Glycosylase Proteins 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 102000028381 DNA glycosylase Human genes 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 206010012565 Developmental glaucoma Diseases 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 102100021084 Forkhead box protein C1 Human genes 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 241000223783 Glaucoma Species 0.000 description 1
- 101000725164 Homo sapiens Cytochrome P450 1B1 Proteins 0.000 description 1
- 101000818310 Homo sapiens Forkhead box protein C1 Proteins 0.000 description 1
- 101000984044 Homo sapiens LIM homeobox transcription factor 1-beta Proteins 0.000 description 1
- 101000585663 Homo sapiens Myocilin Proteins 0.000 description 1
- 101000992283 Homo sapiens Optineurin Proteins 0.000 description 1
- 101000595669 Homo sapiens Pituitary homeobox 2 Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 102100025457 LIM homeobox transcription factor 1-beta Human genes 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100029839 Myocilin Human genes 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 206010067013 Normal tension glaucoma Diseases 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 102100031822 Optineurin Human genes 0.000 description 1
- 108010032788 PAX6 Transcription Factor Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 102100037506 Paired box protein Pax-6 Human genes 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010010677 Phosphodiesterase I Proteins 0.000 description 1
- 206010035015 Pigmentary glaucoma Diseases 0.000 description 1
- 102100036090 Pituitary homeobox 2 Human genes 0.000 description 1
- 206010036673 Primary amyloidosis Diseases 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 101150026634 SAA3 gene Proteins 0.000 description 1
- 206010039811 Secondary amyloidosis Diseases 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004658 acute-phase response Effects 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001384 anti-glaucoma Effects 0.000 description 1
- 229940006133 antiglaucoma drug and miotics carbonic anhydrase inhibitors Drugs 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000003489 carbonate dehydratase inhibitor Substances 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 102000049842 cholesterol binding protein Human genes 0.000 description 1
- 108010011793 cholesterol binding protein Proteins 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 210000000695 crystalline len Anatomy 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005786 degenerative changes Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000009266 disease activity Effects 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 229940124274 edetate disodium Drugs 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000005908 host-protective function Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229940100601 interleukin-6 Drugs 0.000 description 1
- 229940096397 interleukin-8 Drugs 0.000 description 1
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 201000002978 low tension glaucoma Diseases 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000003547 miosis Effects 0.000 description 1
- 239000003604 miotic agent Substances 0.000 description 1
- 230000033607 mismatch repair Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 101150029137 mutY gene Proteins 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000005157 neural retina Anatomy 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 238000001821 nucleic acid purification Methods 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 230000000050 nutritive effect Effects 0.000 description 1
- 238000010915 one-step procedure Methods 0.000 description 1
- 229940100655 ophthalmic gel Drugs 0.000 description 1
- 229940069265 ophthalmic ointment Drugs 0.000 description 1
- 229940100654 ophthalmic suspension Drugs 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 208000020911 optic nerve disease Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 208000032288 primary infantile B glaucoma 3 Diseases 0.000 description 1
- 208000022256 primary systemic amyloidosis Diseases 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000002437 synoviocyte Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 239000012929 tonicity agent Substances 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 108091006107 transcriptional repressors Proteins 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000001745 uvea Anatomy 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/046—Tachykinins, e.g. eledoisins, substance P; Related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/38—Heterocyclic compounds having sulfur as a ring hetero atom
- A61K31/385—Heterocyclic compounds having sulfur as a ring hetero atom having two or more sulfur atoms in the same ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5023—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4709—Amyloid plaque core protein
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/02—Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/16—Ophthalmology
- G01N2800/168—Glaucoma
Definitions
- the present invention relates to the field of diagnosis and treatment of glaucoma. More specifically, the invention provides methods and compositions for diagnosing and treating glaucoma and for identifying agents potentially useful for the treatment of glaucoma.
- POAG Primary Open Angle Glaucoma
- IOP intraocular pressure
- Glaucoma affects three separate tissues in the eye.
- the elevated IOP associated with POAG is due to morphological and biochemical changes in the trabecular meshwork (TM), a tissue located at the angle between the cornea and iris. Most of the nutritive aqueous humor exits the anterior segment of the eye through the TM.
- TM trabecular meshwork
- the progressive loss of TM cells and the build-up of extracellular debris in the TM of glaucomatous eyes leads to increased resistance to aqueous outflow, thereby raising IOP.
- Elevated IOP, as well as other factors such as ischemia cause degenerative changes in the optic nerve head (ONH) leading to progressive “cupping” of the ONH and loss of retinal ganglion cells and axons.
- ONH optic nerve head
- the detailed molecular mechanisms responsible for glaucomatous damage to the TM, ONH, and the retinal ganglion cells are unknown.
- each form of glaucoma may have a unique pathology and accordingly a different therapeutic approach to the management of the disease may be required.
- a drug that effects the expression of enzymes that degrade the extracellular matrix of the optic nerve head would not likely prevent RGC death caused by excitotoxicity.
- RGC death occurs by a process called apoptosis (programmed cell death).
- apoptosis programmed cell death
- different types of insults that can cause death may do so by converging on a few common pathways.
- Targeting downstream at a common pathway is a strategy that may broaden the utility of a drug and increase the probability that it may have utility in the management of different forms of the disease.
- drugs that effect multiple metabolic pathways are more likely to produce undesirable side-effects.
- selective neuroprotective agents can be tested with the aim of reducing the degree of variation about the measured response.
- Glaucoma is currently diagnosed based on specific signs of the disease (characteristic optic nerve head changes and visual field loss). However, over half of the population with glaucoma are unaware they have this blinding disease and by the time they are diagnosed, they already have irreversibly lost approximately 30-50% of their retinal ganglion cells. Thus, improved methods for early diagnosis of glaucoma are needed.
- the present invention overcomes these and other drawbacks of the prior art by providing methods to diagnose and compositions to treat glaucoma.
- the present invention provides a method for treating glaucoma by administering to a patient in need thereof a therapeutically effective amount of a composition comprising an agent that interacts with a gene encoding serum amyloid A protein (SAA), or with the gene's promoter sequence.
- SAA serum amyloid A protein
- SAA serum amyloid A protein
- the agent will be a protein, peptide, peptidomimetic, small molecule or nucleic acid.
- the present invention provides a method for treating glaucoma by administering to a patient in need thereof a therapeutically effective amount of a composition comprising an agent that inhibits interaction of the serum amyloid A protein (SAA) with its receptor.
- the agent will be a peroxisome proliferator-activated receptor ⁇ (PPAR ⁇ ) agonists, tachykinin peptides and their non-peptide analogs or ⁇ -lipoic acid.
- PPAR ⁇ peroxisome proliferator-activated receptor ⁇
- the agent will be fenofibrate, Wy-14643, (4-chloro-6-(2,3-xylidino)-2-pryrimidinylthiol)-acetic acid), ciprofibrate, 2-bromohexadecanoic acid, bezafibrate and ciglitizone, bafilomycin, concanamycin or pseudolaric acid B.
- the present invention further provides a pharmaceutical composition for treating glaucoma comprising a therapeutically effective amount of a serum amyloid A protein (SAA) antagonist and a pharmaceutical carrier.
- SAA serum amyloid A protein
- the antagonist contained in the composition may be any of the compounds identified above.
- the present invention provides a method for diagnosing glaucoma, by the following steps:
- the biological sample is ocular tissue, tears, aqueous humor, cerebrospinal fluid, nasal or cheek swab or serum.
- the biological sample comprises trabecular meshwork cells.
- the present invention provides a method for diagnosing glaucoma in a patient, by the steps:
- the present invention also provides a method for identifying agents potentially useful for treating glaucoma, by the steps:
- the present invention provides a method for identifying an agent potentially useful for treating glaucoma, by the steps:
- the cells containing the SAA protein or expression vectors will be HL-60 cells.
- FIG. 1 QPCR analysis of SAA expression in 12 glaucoma vs. 11 normal TM tissues. NTM and GTM represent average expression level of the gene in normal and glaucoma groups, respectively.
- FIG. 2A QPCR analysis of SAA expression in TM cell lines.
- NTM and GTM represent average expression level of the gene in normal and glaucoma groups, respectively.
- FIG. 2B QPCR analysis of SAA expression in optic nerve head tissues.
- NTM and GTM represent average expression level of the gene in normal and glaucoma groups, respectively.
- FIG. 5 IL-8 secretion by HL-60 cells in response to increasing concentrations of rhSAA.
- Glaucoma is a heterogeneous group of optic neuropathies that share certain clinical features.
- the loss of vision in glaucoma is due to the selective death of retinal ganglion cells in the neural retina that is clinically diagnosed by characteristic changes in the visual field, nerve fiber layer defects, and a progressive cupping of the ONH.
- One of the main risk factors for the development of glaucoma is the presence of ocular hypertension (elevated intraocular pressure, IOP). IOP also appears to be involved in the pathogenesis of normal tension glaucoma where patients have what is often considered to be normal IOP.
- the elevated IOP associated with glaucoma is due to elevated aqueous humor outflow resistance in the trabecular meshwork (TM), a small specialized tissue located in the iris-corneal angle of the ocular anterior chamber.
- Glaucomatous changes to the TM include a loss in TM cells and the deposition and accumulation of extracellular debris including proteinaceous plaque-like material.
- ONH optic nerve head
- ONH glial cells In glaucomatous eyes, there are morphological and mobility changes in ONH glial cells.
- IOP and/or transient ischemic insults there is a change in the composition of the ONH extracellular matrix and alterations in the glial cell and retinal ganglion cell axon morphologies.
- the present inventors have discovered that the expression of Serum Amyloid A (SAA) mRNA and protein are significantly upregulated in glaucomatous TM tissues and cells.
- SAA Serum Amyloid A
- the inventors have verified the differential mRNA expression seen using Affymetrix gene chips by real time quantitative polymerase chain reaction (QPCR) and increased SAA protein levels by SAA ELISA. This is the first time SAA has been shown to be expressed in the TM.
- Human SAA comprises a number of small, differentially expressed apolipoproteins encoded by genes localized on the short arm of chromosome 11. There are four isoforms of SAAs.
- SAA1 (SEQ ID NO:2), encoded by SEQ ID NO:1, and SAA2 (SEQ ID NO:4), encoded by SEQ ID NO:3, are known as acute phase reactants, like C-reactive protein, that is, they are dramatically upregulated by proinflammatory cytokines.
- the 5′UTR promoter regions of SAA1 and SAA2 genes are also provided (SEQ ID NO:12 and SEQ ID NO:13, respectively).
- SAA3 (SEQ ID NO:5) is a pseudogene and SAA4 (SEQ ID NO:6) is a low level constitutively expressed gene encoding constitutive SAA4 (SEQ ID NO:7).
- SAA2 has two isoforms, SAA2 ⁇ (SEQ ID NO:9), encoded by SEQ ID NO:8, and SAA2 ⁇ (SEQ ID NO:1), encoded by SEQ ID NO:10, which differ by only one amino acid.
- SAA1 and SAA2 proteins are 93.5% identical at the amino acid level (SEQ ID NO:2 and SEQ ID NO:4, respectively) and these genes are 96.7% identical at the nucleotide level (SEQ ID NO:1 and SEQ ID NO:3, respectively).
- SAA is an acute-phase reactant whose level in the blood is elevated approximately 1000-fold as part of the body's responses to various injuries, including trauma, infection, inflammation, and neoplasia.
- the liver has been considered to be the primary site of expression.
- extrahepatic SAA expression was described initially in mouse tissues, and later in cells of human atherosclerotic lesions (O'Hara et al. 2000). Subsequently, SAA mRNA was found widely expressed in many histologically normal human tissues.
- SAA isoforms are apolipoproteins that become a major component of high-density lipoprotein (HDL) in the blood plasma of mammals and displaces A-I (ApoA-I) and phospholipid from the HDL particles (Miida et al. 1999).
- SAA binds cholesterol and may serve as a transient cholesterol-binding protein.
- over-expression of SAA1 or SAA2 leads to the formation of linear fibrils in amyloid deposits, which can lead to pathogenesis (Uhlar and Whitehead 1999; Liang et al. 1997).
- SAA plays an important role in infections, inflammation, and in the stimulation of tissue repair.
- SAA concentration may increase up to 1000-fold following inflammation, infection, necrosis, and decline rapidly following recovery.
- serum SAA concentration is considered to be a useful marker with which to monitor inflammatory disease activity.
- Hepatic biosynthesis of SAA is up-regulated by pro-inflammatory cytokines, leading to an acute phase response.
- Chronically elevated SAA concentrations are a prerequisite for the pathogenesis of secondary amyloidosis, a progressive and sometimes fatal disease characterized by the deposition in major organs of insoluble plaques composed principally of proteolytically cleaved SAA. This same process also may lead to atherosclerosis.
- These mechanisms permit the rapid induction of SAA expression to fulfill host-protective functions, but they also must ensure that SAA expression is rapidly returned to baseline levels to prevent amyloidosis.
- These mechanisms include modulation of promoter activity involving, for example, the inducer nuclear factor kB (NF-kB) and its inhibitor IkB, up-regulation of transcription factors of the nuclear factor for interleukin-6 (NF-IL6) family, and transcriptional repressors such as yin and yang 1 (YY1).
- Post-transcriptional modulation involving changes in mRNA stability and translation efficiency permit further up- and down-regulatory control of SAA protein synthesis to be achieved.
- cytokine antagonists such as the interleukin-1 receptor antagonist (IL-1Ra) and of soluble cytokine receptors, resulting in less signal transduction driven by pro-inflammatory cytokines (Jensen and Whitehead 1998).
- IL-1Ra interleukin-1 receptor antagonist
- soluble cytokine receptors resulting in less signal transduction driven by pro-inflammatory cytokines
- Increased SAA may be involved in the generation of elevated IOP and damage to the optic nerve leading to vision loss in glaucoma patients.
- the present invention provides methods of using a finding of increased SAA expression to diagnose glaucoma.
- the present invention further provides methods for screening for agents that alter SAA expression or function in order to identify potentially anti-glaucomatous agents.
- the present invention provides methods and compositions of using agents that antagonize SAA actions and/or interactions with other proteins for the treatment of glaucoma.
- the present invention provides a variety of methods for diagnosing glaucoma.
- Certain methods of the invention can detect mutations in nucleic acid sequences that result in inappropriately high levels of SAA protein. These diagnostics can be developed based on the known nucleic acid sequence of human SAA, or the encoded amino acid sequence (see Miller 2001). Other methods can be developed based on the genomic sequence of human SAA or of the sequence of genes that regulate expression of SAA. Still other methods can be developed based upon a change in the level of SAA gene expression at the mRNA level.
- the methods of the invention can detect the activity or level of SAA signaling proteins or genes encoding SAA signaling proteins. For example, methods can be developed that detect inappropriately low SAA signaling activity, including for example, mutations that result in inappropriate functioning of SAA signaling components, including SAA induction of IL-8. In addition, non-nucleic acid based techniques may be used to detect alteration in the amount or specific activity of any of these SAA signaling proteins.
- a variety of means are currently available to the skilled artisan for detecting aberrant levels or activities of genes and gene products. These methods are well known by and have become routine for the skilled artisan. For example, many methods are available for detecting specific alleles at human polymorphic loci. The preferred method for detecting a specific polymorphic allele will depend, in part, upon the molecular nature of the polymorphism. The various allelic forms of the polymorphic locus may differ by a single base-pair of the DNA. Such single nucleotide polymorphisms (or SNPs) are major contributors to genetic variation, comprising some 80% of all known polymorphisms, and their density in the human genome is estimated to be on average 1 per 1,000 base pairs.
- the DNA sample is obtained from a bodily fluid, e.g., blood, obtained by known techniques (e.g. venipuncture), or buccal cells. Most preferably, the samples for use in the methods of the present invention will be obtained from blood or buccal cells. Alternately, nucleic acid tests can be performed on dry samples (e.g. hair or skin).
- Diagnostic procedures may also be performed in situ directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary.
- Nucleic acid reagents may be used as probes and/or primers for such in situ procedures (see, for example, Nuovo 1992).
- Fingerprint profiles may be generated, for example, by utilizing a differential display procedure, Northern analysis and/or RT-PCR.
- a preferred detection method is allele specific hybridization using probes overlapping a region of at least one allele of an SAA signaling component that is indicative of glaucoma and having about 5, 10, 20, 25 or 30 contiguous nucleotides around the mutation or polymorphic region.
- several probes capable of hybridizing specifically to other allelic variants involved in glaucoma are attached to a solid phase support, e.g., a “chip” (which can hold up to about 250,000 oligonucleotides).
- Oligonucleotides can be bound to a solid support by a variety of processes, including lithography.
- a chip comprises all the allelic variants of at least one polymorphic region of a gene.
- the solid phase support is then contacted with a test nucleic acid and hybridication to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment.
- Amplification techniques are known to those of skill in the art and include, but are not limited to, cloning, polymerase chain reaction (PCR), polymerase chain reaction of specific alleles (ASA), ligase chain reaction (LCR), nested polymerase chain reaction, self sustained sequence replication (Guatelli et al. 1990), transcriptional amplification system (Kwoh et al. 1989), and Q-Beta Replicase (Lizardi, et al. 1988).
- Amplification products may be assayed in a variety of ways, including size analysis, restriction digestion followed by size analysis, detecting specific tagged oligonucleotide primers in the reaction products, allele-specific oligonucleotide (ASO) hybridization, allele specific 5′ exonuclease detection, sequencing, hybridization, SSCP, and the like.
- ASO allele-specific oligonucleotide
- PCR based detection means can include multiplex amplification of a plurality of markers simultaneously. For example, it is well known in the art to select PCR primers to generate PCR products that do not overlap in size and can be analyzed simultaneously. Alternatively, it is possible to amplify different markers with primers that are differentially labeled and thus can each be differentially detected. Of course, hybridization based detection means allow the differential detection of multiple PCR products in a sample. Other techniques are known in the art to allow multiplex analyses of a plurality of markers.
- the method includes the steps of (i) collecting a sample of cells from a patient, (ii) isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, (iii) contacting the nucleic acid sample with one or more primers which specifically hybridize 5′ and 3′ to at least one allele of SAA that is indicative of glaucoma under conditions such that hybridization and amplification of the allele occurs, and (iv) detecting the amplification product.
- nucleic acid e.g., genomic, mRNA or both
- aberrant levels or activities of SAA that are indicative of glaucoma are identified by alterations in restriction enzyme cleavage patterns.
- sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis.
- any of a variety of sequencing reactions known in the art can be used to directly sequence the allele.
- Exemplary sequencing reactions include those based on techniques developed my Maxim and Gilbert (1977) or Sanger (1977).
- any of a variety of automated sequencing procedures may be utilized when performing the subject assays, including sequencing by mass spectrometry (see, for example WO94/16101; Cohen et al. 1996; Griffin et al. 1993).
- sequencing by mass spectrometry see, for example WO94/16101; Cohen et al. 1996; Griffin et al. 1993.
- the occurrence of only one, two or three of the nucleic acid bases need be determined in the sequencing reaction. For instance, A-track or the like, e.g., where only one nucleic acid is detected, can be carried out.
- protection from cleavage agents can be used to detect mismatched bases in RNA/RNA or RNA/DNA or DNA/DNA heteroduplexes (Myers et al. 1985b; Cotton et al. 1988; Saleeba et al. 1992).
- the control DNA or RNA can be labeled for detection.
- the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes).
- DNA mismatch repair enzymes
- the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T and G/T mismatches (Hsu et al. 1994; U.S. Pat. No. 5,459,039).
- alterations in electrophoretic mobility will be used to identify aberrant levels or activities of SAA that are indicative of glaucoma.
- SAA single strand conformation polymorphism
- SSCP single strand conformation polymorphism
- the movement of alleles in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. 1985a).
- DGGE denaturing gradient gel electrophoresis
- a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner 1987).
- oligonucleotide primers may be prepared in which the known mutation or nucleotide difference (e.g., in allelic variants) is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. 1986; Saiki et al. 1989).
- Such allele specific oligonucleotide hybridization techniques may be used to test one mutation or polymorphic region per reaction when oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations or polymorphic regions when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
- Oligonucleotides used as primers for specific amplification may carry the mutation or polymorphic region of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. 1989) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner 1993).
- amplification may also be performed using Taq ligase for amplification (Barany 1991). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
- identification of an allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, E.g., in U.S. Pat. No. 4,998,617 and in Landegren et al. 1988).
- OLA oligonucleotide ligation assay
- Nickerson et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson et al. 1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.
- fenofibrate a peroxisome proliferator-activated receptor ⁇ (PPAR ⁇ ) agonist
- PPAR ⁇ peroxisome proliferator-activated receptor ⁇
- fenofibrate and WY 14643 treatment reduces plasma SAA concentration (Yamazaki et al. 2002). It is believed that other PPAR ⁇ agonists, such as ciprofibrate, 2-bromohexadecanoic acid, bezafibrate, ciprofibrate and ciglitizone may also be useful for the treatment of glaucoma.
- the present inventors further postulate that agents that prevent amyloid-induced cell death may be useful for protecting TM and other ocular cells in the anterior uvea and at the back of the eye, especially the retina and optic nerve head.
- the Compounds of this invention can be incorporated into various types of ophthalmic formulations for delivery to the eye (e.g., topically, intracamerally, or via an implant).
- the Compounds are preferably incorporated into topical ophthalmic formulations for delivery to the eye.
- the Compounds may be combined with ophthalmologically acceptable preservatives, surfactants, viscosity enhancers, penetration enhancers, buffers, sodium chloride, and water to form an aqueous, sterile ophthalmic suspension or solution.
- Ophthalmic solution formulations may be prepared by dissolving a Compound in a physiologically acceptable isotonic aqueous buffer.
- the ophthalmic solution may include an ophthalmologically acceptable surfactant to assist in dissolving the Compound.
- the ophthalmic solution may contain an agent to increase viscosity, such as, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polyvinylpyrrolidone, or the like, to improve the retention of the formulation in the conjunctival sac.
- Gelling agents can also be used, including, but not limited to, gellan and xanthan gum.
- the active ingredient is combined with a preservative in an appropriate vehicle, such as, mineral oil, liquid lanolin, or white petrolatum.
- Sterile ophthalmic gel formulations may be prepared by suspending the Compound in a hydrophilic base prepared from the combination of, for example, carbopol-974, or the like, according to the published formulations for analogous ophthalmic preparations; preservatives and tonicity agents can be incorporated.
- the Compounds are preferably formulated as topical ophthalmic suspensions or solutions, with a pH of about 4 to 8.
- the establishment of a specific dosage regimen for each individual is left to the discretion of the clinicians.
- the Compounds will normally be contained in these formulations in an amount 0.01% to 5% by weight, but preferably in an amount of 0.05% to 2% and most preferably in an amount 0.1 to 1.0% by weight.
- the dosage form may be a solution, suspension microemulsion.
- 1 to 2 drops of these formulations would be delivered to the surface of the eye 1 to 4 times per day according to the discretion of a skilled clinician.
- the Compounds can also be used in combination with other agents for treating glaucoma, such as, but not limited to, ⁇ -blockers, prostaglandins, carbonic anhydrase inhibitors, ⁇ 2 agonists, miotics, and neuroprotectants.
- agents for treating glaucoma such as, but not limited to, ⁇ -blockers, prostaglandins, carbonic anhydrase inhibitors, ⁇ 2 agonists, miotics, and neuroprotectants.
- RNA pools of TM tissues from 13 normal donors vs. 9 glaucoma donors was used to determine gene expression using the Affymetric GeneChips set (HG-U133). Amyloid A2 expression was identified to increase 4 fold in glaucoma comparing to that in normal TM tissues.
- QPCR was conducted using individual RNA from 12 glaucoma and 11 normal TM tissues. Five from 12 glaucoma TM tissues (42%) showed significant increase in SAA1/2 expression. Average of SAA expression in the 12 glaucoma TM was 5.4 fold to that in the 11 normal TM ( FIG. 1 ).
- a similar trend of SAA differential expression was observed in glaucoma TM cells or glaucoma optic nerve head tissues.
- SAA protein was measured by ELISA in aqueous humor from 16 normal and 20 glaucomatous individuals. SAA was found to be almost 3 times higher in glaucomatous aqueous humor than in normal samples (10.0 ng/ml vs. 3.7 ng/ml respectively). The results are shown in FIG. 4 .
- Kits for in vitro assay for quantitative determination of Serum Amyloid A (SAA) in animal or human sera, plasma, buffered solutions, cell culture media, and tissue or cell extracts are commercially available.
- the assay is a solid phase sandwich Enzyme Linked-Immuno-Sorbent Assay (ELISA).
- ELISA Enzyme Linked-Immuno-Sorbent Assay
- the antibodies are constructed such that neither one interferes with the binding epitope of the other.
- the SAA is both captured on the plate by the immobilized antibody and labeled with the conjugated second antibody in a one step procedure. After an incubation period, the plate is washed to remove all unbound material and a substrate (PNPP or peroxide) is added. The intensity of the colored product is proportional to the concentration of SAA present in the unknown sample.
- the human hepatoma cell line, HepG2 is widely used for studies on SAA induction by cytokines, for transfection with plasmids, and reporter assays.
- SAA mRNA and protein synthesis can be induced by various cytokines in several human hepatoma cell lines including PCL/PRF/5, HepB and HepG2 (Uhlar and Whitehead 1999).
- SAA synthesis by human aortic smooth muscle cells (HASMC) is induced by glucocorticoid hormones and not by the proinflammatory cytokines, IL-1, IL-6, and TNF- ⁇ , which stimulate the production of SAA by hepatocytes (Kumon et al. 2002b; Kumon et al.
- Cytokine-like properties of SAA include induction of IL-8 secretion by neutrophils. (Furlaneto and Campa, 2002; He et al. 2003).
- HL-60 cells a promyelocytic cell line, was identified that responds to SAA with increased IL-8 secretion, and can be used for in vitro assays of SAA function.
- HL-60 cells were treated for four hours with increasing concentrations of recombinant human SAA, and IL-8 was measured in the media by ELISA.
- IL-8 secretion increased in a dose dependent manner ( FIG. 5 ).
- HL-60 cells can be used as a surrogate cell line for functional assays to identify agents that alter SAA function and expression levels.
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and structurally related may be substituted for the agents described herein to achieve similar results. All such substitutions and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Urology & Nephrology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ophthalmology & Optometry (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The present invention provides compositions and methods for treating glaucoma, methods for diagnosing glaucoma, and methods for identifying agents which may be useful in the treatment of glaucoma. More specifically, the present invention describes the use of agents that modulate the expression of serum amyloid A.
Description
- 1. Field of the Invention
- The present invention relates to the field of diagnosis and treatment of glaucoma. More specifically, the invention provides methods and compositions for diagnosing and treating glaucoma and for identifying agents potentially useful for the treatment of glaucoma.
- 2. Description of the Related Art
- There are a number of ocular conditions that are caused by, or aggravated by, damage to the optic nerve head, degeneration of ocular tissues, and/or elevated intraocular pressure. For example, “glaucomas” are a group of debilitating eye diseases that are a leading cause of irreversible blindness in the United States and other developed nations. Primary Open Angle Glaucoma (“POAG”) is the most common form of glaucoma. The disease is characterized by the degeneration of the trabecular meshwork, leading to obstruction of the normal ability of aqueous humor to leave the eye without closure of the space (e.g., the “angle”) between the iris and cornea (Vaughan, D. et al., (1992)). A characteristic of such obstruction in this disease is an increased intraocular pressure (“IOP”), resulting in progressive visual loss and blindness if not treated appropriately and in a timely fashion. The disease is estimated to affect between 0.4% and 3.3% of all adults over 40 years old (Leske, M. C. et al. (1986); Bengtsson, B. (1989); Strong, N. P. (1992)). Moreover, the prevalence of the disease rises with age to over 6% of those 75 years or older (Strong, N. P., (1992)).
- Glaucoma affects three separate tissues in the eye. The elevated IOP associated with POAG is due to morphological and biochemical changes in the trabecular meshwork (TM), a tissue located at the angle between the cornea and iris. Most of the nutritive aqueous humor exits the anterior segment of the eye through the TM. The progressive loss of TM cells and the build-up of extracellular debris in the TM of glaucomatous eyes leads to increased resistance to aqueous outflow, thereby raising IOP. Elevated IOP, as well as other factors such as ischemia, cause degenerative changes in the optic nerve head (ONH) leading to progressive “cupping” of the ONH and loss of retinal ganglion cells and axons. The detailed molecular mechanisms responsible for glaucomatous damage to the TM, ONH, and the retinal ganglion cells are unknown.
- Twenty years ago, the interplay of ocular hypertension, ischemia and mechanical distortion of the optic nerve head were heavily debated as the major factors causing progression of visual field loss in glaucoma. Since then, other factors including excitotoxicity, nitric oxide, absence of vital neurotrophic factors, abnormal glial/neuronal interplay and genetics have been implicated in the degenerative disease process. The consideration of molecular genetics deserves some discussion insofar as it may ultimately define the mechanism of cell death, and provide for discrimination of the various forms of glaucoma. Within the past 10 years, over 15 different glaucoma genes have been mapped and 7 glaucoma genes identified. This includes six mapped genes (GLC1A-GLC1F) and two identified genes (MYOC and OPTN) for primary open angle glaucoma, two mapped genes (GLC3A-GLC3B) and one identified gene for congenital glaucoma (CYP1B1), two mapped genes for pigmentary dispersion/pigmentary glaucoma, and a number of genes for developmental or syndromic forms of glaucoma (FOXC1, PITX2, LMX1B, PAX6).
- Thus, each form of glaucoma may have a unique pathology and accordingly a different therapeutic approach to the management of the disease may be required. For example, a drug that effects the expression of enzymes that degrade the extracellular matrix of the optic nerve head would not likely prevent RGC death caused by excitotoxicity. In glaucoma, RGC death occurs by a process called apoptosis (programmed cell death). It has been speculated that different types of insults that can cause death may do so by converging on a few common pathways. Targeting downstream at a common pathway is a strategy that may broaden the utility of a drug and increase the probability that it may have utility in the management of different forms of the disease. However, drugs that effect multiple metabolic pathways are more likely to produce undesirable side-effects. With the advent of gene-based diagnostic kits to identify specific forms of glaucoma, selective neuroprotective agents can be tested with the aim of reducing the degree of variation about the measured response.
- Glaucoma is currently diagnosed based on specific signs of the disease (characteristic optic nerve head changes and visual field loss). However, over half of the population with glaucoma are unaware they have this blinding disease and by the time they are diagnosed, they already have irreversibly lost approximately 30-50% of their retinal ganglion cells. Thus, improved methods for early diagnosis of glaucoma are needed.
- Current glaucoma therapy is directed to lowering IOP, a major risk factor for the development and progression of glaucoma. However, none of the current IOP lowering therapies actually intervenes in the glaucomatous disease process responsible for elevated IOP and progressive damage to the anterior segment continues. This is one possible reason why most patients become “resistant” to conventional glaucoma therapies. Thus, what is needed is a therapeutic method for altering (by inhibiting or even reversing) the disease process.
- The present invention overcomes these and other drawbacks of the prior art by providing methods to diagnose and compositions to treat glaucoma. In one aspect, the present invention provides a method for treating glaucoma by administering to a patient in need thereof a therapeutically effective amount of a composition comprising an agent that interacts with a gene encoding serum amyloid A protein (SAA), or with the gene's promoter sequence. The interaction between the agent and the gene encoding SAA, or with its promoter sequence, modulates the expression of SAA, such that the patient's glaucomatous condition is treated. In preferred embodiments, the agent will be a protein, peptide, peptidomimetic, small molecule or nucleic acid.
- In another aspect, the present invention provides a method for treating glaucoma by administering to a patient in need thereof a therapeutically effective amount of a composition comprising an agent that inhibits interaction of the serum amyloid A protein (SAA) with its receptor. Preferably, the agent will be a peroxisome proliferator-activated receptor α (PPARα) agonists, tachykinin peptides and their non-peptide analogs or α-lipoic acid. Most preferably, the agent will be fenofibrate, Wy-14643, (4-chloro-6-(2,3-xylidino)-2-pryrimidinylthiol)-acetic acid), ciprofibrate, 2-bromohexadecanoic acid, bezafibrate and ciglitizone, bafilomycin, concanamycin or pseudolaric acid B.
- The present invention further provides a pharmaceutical composition for treating glaucoma comprising a therapeutically effective amount of a serum amyloid A protein (SAA) antagonist and a pharmaceutical carrier. The antagonist contained in the composition may be any of the compounds identified above.
- In yet another embodiment, the present invention provides a method for diagnosing glaucoma, by the following steps:
-
- a) obtaining a biological sample from a patient; and
- b) analyzing said sample for an aberrant level, aberrant bioactivity or mutations of the gene encoding serum amyloid A protein (SAA) or its promoter region or its gene products, wherein said gene encoding SAA comprises the sequence set forth in SEQ ID NO:1 or SEQ ID NO:3, wherein its promoter region comprises the sequence set forth in SEQ ID NO:12 or SEQ ID NO:13, and wherein SAA comprises the sequence set forth in SEQ ID NO:2 or SEQ ID NO:4;
wherein the aberrantly high level, aberrantly high bioactivity or mutations of the SAA genes or the gene products indicates a diagnosis of glaucoma.
- In preferred aspects, the biological sample is ocular tissue, tears, aqueous humor, cerebrospinal fluid, nasal or cheek swab or serum. Most preferably, the biological sample comprises trabecular meshwork cells.
- Alternatively, the present invention provides a method for diagnosing glaucoma in a patient, by the steps:
-
- a) collecting cells from a patient;
- b) isolating nucleic acid from the cells;
- c) contacting the sample with one or more primers which specifically hybridize 5′ and 3′ to at least one allele of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:12, or SEQ ID NO:13 under conditions such that hybridization and amplification of the allele occurs; and
- d) detecting the amplification product;
wherein aberrant level or mutations of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:12, or SEQ ID NO:13, in the sample indicates a diagnosis of glaucoma.
- The present invention also provides a method for identifying agents potentially useful for treating glaucoma, by the steps:
-
- a) obtaining cells expressing SAA (SEQ ID NO:1 or SEQ ID NO:2) or cells containing SAA promoter/reporter gene such that the reporter gene is expressed;
- b) admixing a candidate substance with the cells; and
- c) determining the level of SAA protein (SEQ ID NO:2 or SEQ ID NO:4) or the level of gene expression in the cells;
wherein an increase or decrease of the production of SAA protein or gene expression in the presence of said candidate substance indicates an agent potentially useful for the treatment of glaucoma.
- In another aspect, the present invention provides a method for identifying an agent potentially useful for treating glaucoma, by the steps:
-
- a) forming a reaction mixture comprising:
- (i) an SAA protein or a cell expressing SAA or a reporter gene driven by an SAA promoter;
- (ii) an SAA protein binding partner; and
- (iii) a test compound; and
- b) detecting interaction of the SAA protein and binding partner or level of reporter gene products in the presence of the test compound and in the absence of the test compound;
- a) forming a reaction mixture comprising:
- wherein a decrease or increase in the interaction of the SAA protein with its binding partner in the presence of the test compound relative to the interaction in the absence of the test compound indicates a potentially useful agent for treating glaucoma.
- In another aspect, the present invention provides a method for identifying an agent potentially useful for treating glaucoma, by the steps:
-
- a) forming a reaction mixture comprising:
- (i) cells comprising SAA recombinant protein (SEQ ID NO:2 or SEQ ID NO:4) or cells comprising expression vectors comprising SEQ ID NO: 1 or SEQ ID NO:3; and
- (ii) a test compound; and
- b) detecting the effect on downstream signalling (IL-8) in the presence of the test compound and in the absence of the test compound;
wherein a decrease or increase in the downstream signalling in the presence of the test compound relative to the interaction in the absense of the test compound indicates a potentially useful agent for treating glaucoma.
- a) forming a reaction mixture comprising:
- In preferred aspects, the cells containing the SAA protein or expression vectors will be HL-60 cells.
- The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to these drawings in combination with the detailed description of specific embodiments presented herein.
-
FIG. 1 . QPCR analysis of SAA expression in 12 glaucoma vs. 11 normal TM tissues. NTM and GTM represent average expression level of the gene in normal and glaucoma groups, respectively. -
FIG. 2A . QPCR analysis of SAA expression in TM cell lines. NTM and GTM represent average expression level of the gene in normal and glaucoma groups, respectively. -
FIG. 2B . QPCR analysis of SAA expression in optic nerve head tissues. NTM and GTM represent average expression level of the gene in normal and glaucoma groups, respectively. -
FIG. 3 . SAA protein in TM tissues from normal and glaucoma donors (n=6). A significant increase (3-fold) in SAA was observed in glaucoma TM tissues compared to normal tissue (p=0.031). The bars show mean+/−s.e.m. -
FIG. 4 . SAA protein determined by ELISA in human aqueous humor from normal and glaucomatous individuals. The values are expressed as the average SAA in ng/ml of aqueous humor, +/−s.e.m. (p=0.005). -
FIG. 5 . IL-8 secretion by HL-60 cells in response to increasing concentrations of rhSAA. - Glaucoma is a heterogeneous group of optic neuropathies that share certain clinical features. The loss of vision in glaucoma is due to the selective death of retinal ganglion cells in the neural retina that is clinically diagnosed by characteristic changes in the visual field, nerve fiber layer defects, and a progressive cupping of the ONH. One of the main risk factors for the development of glaucoma is the presence of ocular hypertension (elevated intraocular pressure, IOP). IOP also appears to be involved in the pathogenesis of normal tension glaucoma where patients have what is often considered to be normal IOP. The elevated IOP associated with glaucoma is due to elevated aqueous humor outflow resistance in the trabecular meshwork (TM), a small specialized tissue located in the iris-corneal angle of the ocular anterior chamber. Glaucomatous changes to the TM include a loss in TM cells and the deposition and accumulation of extracellular debris including proteinaceous plaque-like material. In addition, there are also changes that occur in the glaucomatous optic nerve head (ONH). In glaucomatous eyes, there are morphological and mobility changes in ONH glial cells. In response to elevated IOP and/or transient ischemic insults, there is a change in the composition of the ONH extracellular matrix and alterations in the glial cell and retinal ganglion cell axon morphologies.
- The present inventors have discovered that the expression of Serum Amyloid A (SAA) mRNA and protein are significantly upregulated in glaucomatous TM tissues and cells. The inventors have verified the differential mRNA expression seen using Affymetrix gene chips by real time quantitative polymerase chain reaction (QPCR) and increased SAA protein levels by SAA ELISA. This is the first time SAA has been shown to be expressed in the TM.
- Human SAA comprises a number of small, differentially expressed apolipoproteins encoded by genes localized on the short arm of chromosome 11. There are four isoforms of SAAs. SAA1 (SEQ ID NO:2), encoded by SEQ ID NO:1, and SAA2 (SEQ ID NO:4), encoded by SEQ ID NO:3, are known as acute phase reactants, like C-reactive protein, that is, they are dramatically upregulated by proinflammatory cytokines. The 5′UTR promoter regions of SAA1 and SAA2 genes are also provided (SEQ ID NO:12 and SEQ ID NO:13, respectively). SAA3 (SEQ ID NO:5) is a pseudogene and SAA4 (SEQ ID NO:6) is a low level constitutively expressed gene encoding constitutive SAA4 (SEQ ID NO:7). SAA2 has two isoforms, SAA2α (SEQ ID NO:9), encoded by SEQ ID NO:8, and SAA2β (SEQ ID NO:1), encoded by SEQ ID NO:10, which differ by only one amino acid. SAA1 and SAA2 proteins are 93.5% identical at the amino acid level (SEQ ID NO:2 and SEQ ID NO:4, respectively) and these genes are 96.7% identical at the nucleotide level (SEQ ID NO:1 and SEQ ID NO:3, respectively).
- SAA is an acute-phase reactant whose level in the blood is elevated approximately 1000-fold as part of the body's responses to various injuries, including trauma, infection, inflammation, and neoplasia. As an acute-phase reactant, the liver has been considered to be the primary site of expression. However, extrahepatic SAA expression was described initially in mouse tissues, and later in cells of human atherosclerotic lesions (O'Hara et al. 2000). Subsequently, SAA mRNA was found widely expressed in many histologically normal human tissues. Localized expression was noted in a variety of tissues, including breast, stomach, small and large intestine, prostate, lung, pancreas, kidney, tonsil, thyroid, pituitary, placenta, skin epidermis, and brain neurons. Expression was also observed in lymphocytes, plasma cells, and endothelial cells. SAA protein expression co-localized with SAA mRNA expression has also been reported in histologically normal human extrahepatic tissues. (Liang et al. 1997; Urieli-Shoval et al. 1998).
- SAA isoforms are apolipoproteins that become a major component of high-density lipoprotein (HDL) in the blood plasma of mammals and displaces A-I (ApoA-I) and phospholipid from the HDL particles (Miida et al. 1999). SAA binds cholesterol and may serve as a transient cholesterol-binding protein. In addition, over-expression of SAA1 or SAA2 leads to the formation of linear fibrils in amyloid deposits, which can lead to pathogenesis (Uhlar and Whitehead 1999; Liang et al. 1997). SAA plays an important role in infections, inflammation, and in the stimulation of tissue repair. SAA concentration may increase up to 1000-fold following inflammation, infection, necrosis, and decline rapidly following recovery. Thus, serum SAA concentration is considered to be a useful marker with which to monitor inflammatory disease activity. Hepatic biosynthesis of SAA is up-regulated by pro-inflammatory cytokines, leading to an acute phase response. Chronically elevated SAA concentrations are a prerequisite for the pathogenesis of secondary amyloidosis, a progressive and sometimes fatal disease characterized by the deposition in major organs of insoluble plaques composed principally of proteolytically cleaved SAA. This same process also may lead to atherosclerosis. There is a requirement for both positive and negative SAA control mechanisms to maintain homeostasis. These mechanisms permit the rapid induction of SAA expression to fulfill host-protective functions, but they also must ensure that SAA expression is rapidly returned to baseline levels to prevent amyloidosis. These mechanisms include modulation of promoter activity involving, for example, the inducer nuclear factor kB (NF-kB) and its inhibitor IkB, up-regulation of transcription factors of the nuclear factor for interleukin-6 (NF-IL6) family, and transcriptional repressors such as yin and yang 1 (YY1). Post-transcriptional modulation involving changes in mRNA stability and translation efficiency permit further up- and down-regulatory control of SAA protein synthesis to be achieved. In the later stages of the AP response, SAA expression is effectively down-regulated via the increased production of cytokine antagonists such as the interleukin-1 receptor antagonist (IL-1Ra) and of soluble cytokine receptors, resulting in less signal transduction driven by pro-inflammatory cytokines (Jensen and Whitehead 1998).
- There are several reports suggesting that primary amyloidosis may be associated with glaucoma. For example, it was found that amyloid was deposited in various ocular tissues including the vitreous, retina, choroid, iris, lens, and TM in primary systemic amyloidosis patients (Schwartz et al. 1982). Ermilov et al. (1993) reported that in 478 eyes of 313 patients, aged 25 years to 90 years, with cataracts, glaucoma, and/or diabetes mellitus, 66 (14%) of the eyes contained amyloid-pseudoexfoliative amyloid (PEA). Krasnov et al. (1996) reported that 44.4% of 115 patients with open-angle glaucoma revealed extracellular depositions of amyloid. Amyloidosis was revealed in the sclera in 82% of the cases and in the iris in 70% of the cases. A number of clinical conditions, including Alzheimer's disease, exhibit aberrant amyloid tissue deposits associated with disease. However, amyloids are molecularly heterogeneous and encoded by different amyloid genes. The previous reports are unclear regarding which amyloid(s) might be associated with glaucoma. The present inventors have shown, for the first time, that SAA gene expression is elevated significantly in glaucomatous TM tissues. Increased SAA may be involved in the generation of elevated IOP and damage to the optic nerve leading to vision loss in glaucoma patients. The present invention provides methods of using a finding of increased SAA expression to diagnose glaucoma. The present invention further provides methods for screening for agents that alter SAA expression or function in order to identify potentially anti-glaucomatous agents. In another aspect, the present invention provides methods and compositions of using agents that antagonize SAA actions and/or interactions with other proteins for the treatment of glaucoma.
- Based on the inventors' finding that certain subjects with glaucoma have increased levels of SAA expression, the present invention provides a variety of methods for diagnosing glaucoma. Certain methods of the invention can detect mutations in nucleic acid sequences that result in inappropriately high levels of SAA protein. These diagnostics can be developed based on the known nucleic acid sequence of human SAA, or the encoded amino acid sequence (see Miller 2001). Other methods can be developed based on the genomic sequence of human SAA or of the sequence of genes that regulate expression of SAA. Still other methods can be developed based upon a change in the level of SAA gene expression at the mRNA level.
- In alternative embodiments, the methods of the invention can detect the activity or level of SAA signaling proteins or genes encoding SAA signaling proteins. For example, methods can be developed that detect inappropriately low SAA signaling activity, including for example, mutations that result in inappropriate functioning of SAA signaling components, including SAA induction of IL-8. In addition, non-nucleic acid based techniques may be used to detect alteration in the amount or specific activity of any of these SAA signaling proteins.
- A variety of means are currently available to the skilled artisan for detecting aberrant levels or activities of genes and gene products. These methods are well known by and have become routine for the skilled artisan. For example, many methods are available for detecting specific alleles at human polymorphic loci. The preferred method for detecting a specific polymorphic allele will depend, in part, upon the molecular nature of the polymorphism. The various allelic forms of the polymorphic locus may differ by a single base-pair of the DNA. Such single nucleotide polymorphisms (or SNPs) are major contributors to genetic variation, comprising some 80% of all known polymorphisms, and their density in the human genome is estimated to be on average 1 per 1,000 base pairs. A variety of methods are available for detecting the presence of a particular single nucleotide polymorphic allele in an individual. Advancements in the field have provided accurate, easy, and inexpensive large-scale SNP genotyping. For example, see U.S. Pat. No. 4,656,127; French Patent 2,650,840; PCT App. No. WO91/02087; PCT App. No. WO92/15712; Komher et al. 1989; Sokolov 1990; Syvanen et al. 1990; Kuppuswamy et al. 1991; Prezant et al. 1992; Ugozzoli et al. 1992; Nyren et al. 1993; Roest et al. 1993; and van der Luijt et al. 1994).
- Any cell type or tissue may be utilized to obtain nucleic acid samples for use in the diagnostics described herein. In a preferred embodiment, the DNA sample is obtained from a bodily fluid, e.g., blood, obtained by known techniques (e.g. venipuncture), or buccal cells. Most preferably, the samples for use in the methods of the present invention will be obtained from blood or buccal cells. Alternately, nucleic acid tests can be performed on dry samples (e.g. hair or skin).
- Diagnostic procedures may also be performed in situ directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents may be used as probes and/or primers for such in situ procedures (see, for example, Nuovo 1992).
- In addition to methods which focus primarily on the detection of one nucleic acid sequence, profiles may also be assessed in such detection schemes. Fingerprint profiles may be generated, for example, by utilizing a differential display procedure, Northern analysis and/or RT-PCR.
- A preferred detection method is allele specific hybridization using probes overlapping a region of at least one allele of an SAA signaling component that is indicative of glaucoma and having about 5, 10, 20, 25 or 30 contiguous nucleotides around the mutation or polymorphic region. In a preferred embodiment of the invention, several probes capable of hybridizing specifically to other allelic variants involved in glaucoma are attached to a solid phase support, e.g., a “chip” (which can hold up to about 250,000 oligonucleotides). Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. Mutation detection analysis using these chips comprising oligonucleotides, also termed “DNA probe arrays” is described e.g., in Cronin et al. (1996). In one embodiment, a chip comprises all the allelic variants of at least one polymorphic region of a gene. The solid phase support is then contacted with a test nucleic acid and hybridication to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment.
- These techniques may further include the step of amplifying the nucleic acid before analysis. Amplification techniques are known to those of skill in the art and include, but are not limited to, cloning, polymerase chain reaction (PCR), polymerase chain reaction of specific alleles (ASA), ligase chain reaction (LCR), nested polymerase chain reaction, self sustained sequence replication (Guatelli et al. 1990), transcriptional amplification system (Kwoh et al. 1989), and Q-Beta Replicase (Lizardi, et al. 1988).
- Amplification products may be assayed in a variety of ways, including size analysis, restriction digestion followed by size analysis, detecting specific tagged oligonucleotide primers in the reaction products, allele-specific oligonucleotide (ASO) hybridization, allele specific 5′ exonuclease detection, sequencing, hybridization, SSCP, and the like.
- PCR based detection means can include multiplex amplification of a plurality of markers simultaneously. For example, it is well known in the art to select PCR primers to generate PCR products that do not overlap in size and can be analyzed simultaneously. Alternatively, it is possible to amplify different markers with primers that are differentially labeled and thus can each be differentially detected. Of course, hybridization based detection means allow the differential detection of multiple PCR products in a sample. Other techniques are known in the art to allow multiplex analyses of a plurality of markers.
- In a merely illustrative embodiment, the method includes the steps of (i) collecting a sample of cells from a patient, (ii) isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, (iii) contacting the nucleic acid sample with one or more primers which specifically hybridize 5′ and 3′ to at least one allele of SAA that is indicative of glaucoma under conditions such that hybridization and amplification of the allele occurs, and (iv) detecting the amplification product. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
- In a preferred embodiment of the subject assay, aberrant levels or activities of SAA that are indicative of glaucoma are identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis.
- In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the allele. Exemplary sequencing reactions include those based on techniques developed my Maxim and Gilbert (1977) or Sanger (1977). It is also contemplated that any of a variety of automated sequencing procedures may be utilized when performing the subject assays, including sequencing by mass spectrometry (see, for example WO94/16101; Cohen et al. 1996; Griffin et al. 1993). It will be evident to one of skill in the art that, for certain embodiments, the occurrence of only one, two or three of the nucleic acid bases need be determined in the sequencing reaction. For instance, A-track or the like, e.g., where only one nucleic acid is detected, can be carried out.
- In a further embodiment, protection from cleavage agents (such as a nuclease, hydroxylamin or osmium tetraoxide and with piperidine) can be used to detect mismatched bases in RNA/RNA or RNA/DNA or DNA/DNA heteroduplexes (Myers et al. 1985b; Cotton et al. 1988; Saleeba et al. 1992). In a preferred embodiment, the control DNA or RNA can be labeled for detection.
- In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes). For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T and G/T mismatches (Hsu et al. 1994; U.S. Pat. No. 5,459,039).
- In other embodiments, alterations in electrophoretic mobility will be used to identify aberrant levels or activities of SAA that are indicative of glaucoma. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. 1989; Cotton 1993; Hayashi 1992; Keen et al. 1991).
- In yet another embodiment, the movement of alleles in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. 1985a). In a further embodiment, a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner 1987).
- Examples of other techniques for detecting alleles include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation or nucleotide difference (e.g., in allelic variants) is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. 1986; Saiki et al. 1989). Such allele specific oligonucleotide hybridization techniques may be used to test one mutation or polymorphic region per reaction when oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations or polymorphic regions when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
- Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation or polymorphic region of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. 1989) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner 1993). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. 1992). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany 1991). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
- In another embodiment, identification of an allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, E.g., in U.S. Pat. No. 4,998,617 and in Landegren et al. 1988). Nickerson et al. have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson et al. 1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.
- Several techniques based on this OLA method have been developed and can be used to detect aberrant levels or activities of SAA that are indicative of glaucoma. For example, U.S. Pat. No. 5,593,826 and Tobe et al. (1996), describe such techniques that are frequently used.
- In one embodiment, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, may be formulated in a pharmaceutically acceptable composition and used to treat glaucoma by modulating SAA expression. Studies have shown that fenofibrate and WY 14643 treatment reduces plasma SAA concentration (Yamazaki et al. 2002). It is believed that other PPARα agonists, such as ciprofibrate, 2-bromohexadecanoic acid, bezafibrate, ciprofibrate and ciglitizone may also be useful for the treatment of glaucoma.
- The present inventors further postulate that agents that prevent amyloid-induced cell death may be useful for protecting TM and other ocular cells in the anterior uvea and at the back of the eye, especially the retina and optic nerve head.
- The Compounds of this invention, can be incorporated into various types of ophthalmic formulations for delivery to the eye (e.g., topically, intracamerally, or via an implant). The Compounds are preferably incorporated into topical ophthalmic formulations for delivery to the eye. The Compounds may be combined with ophthalmologically acceptable preservatives, surfactants, viscosity enhancers, penetration enhancers, buffers, sodium chloride, and water to form an aqueous, sterile ophthalmic suspension or solution. Ophthalmic solution formulations may be prepared by dissolving a Compound in a physiologically acceptable isotonic aqueous buffer. Further, the ophthalmic solution may include an ophthalmologically acceptable surfactant to assist in dissolving the Compound. Furthermore, the ophthalmic solution may contain an agent to increase viscosity, such as, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polyvinylpyrrolidone, or the like, to improve the retention of the formulation in the conjunctival sac. Gelling agents can also be used, including, but not limited to, gellan and xanthan gum. In order to prepare sterile ophthalmic ointment formulations, the active ingredient is combined with a preservative in an appropriate vehicle, such as, mineral oil, liquid lanolin, or white petrolatum. Sterile ophthalmic gel formulations may be prepared by suspending the Compound in a hydrophilic base prepared from the combination of, for example, carbopol-974, or the like, according to the published formulations for analogous ophthalmic preparations; preservatives and tonicity agents can be incorporated.
- The Compounds are preferably formulated as topical ophthalmic suspensions or solutions, with a pH of about 4 to 8. The establishment of a specific dosage regimen for each individual is left to the discretion of the clinicians. The Compounds will normally be contained in these formulations in an amount 0.01% to 5% by weight, but preferably in an amount of 0.05% to 2% and most preferably in an amount 0.1 to 1.0% by weight. The dosage form may be a solution, suspension microemulsion. Thus, for
topical presentation 1 to 2 drops of these formulations would be delivered to the surface of theeye 1 to 4 times per day according to the discretion of a skilled clinician. - The Compounds can also be used in combination with other agents for treating glaucoma, such as, but not limited to, β-blockers, prostaglandins, carbonic anhydrase inhibitors, α2 agonists, miotics, and neuroprotectants.
- The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
- RNA pools of TM tissues from 13 normal donors vs. 9 glaucoma donors was used to determine gene expression using the Affymetric GeneChips set (HG-U133). Amyloid A2 expression was identified to increase 4 fold in glaucoma comparing to that in normal TM tissues. To confirm this result, QPCR was conducted using individual RNA from 12 glaucoma and 11 normal TM tissues. Five from 12 glaucoma TM tissues (42%) showed significant increase in SAA1/2 expression. Average of SAA expression in the 12 glaucoma TM was 5.4 fold to that in the 11 normal TM (
FIG. 1 ). In addition, a similar trend of SAA differential expression was observed in glaucoma TM cells or glaucoma optic nerve head tissues. There was an average increase of 5.4-fold in glaucoma TM cells (14 glaucoma vs. 11 normal TM cell lines,FIG. 2A ) and 118-fold in glaucoma optic nerve head tissues (14 glaucoma vs. 12 normal,FIG. 2B ) compared to normals, respectively. ELISA of SAA in TM tissues from 6 normal and 6 glaucoma donors showed that SAA protein was also significantly increased in glaucoma TM tissues compared to normals. There was a 3-fold difference in SAA concentration in glaucomatous tissue compared to normal tissue (11.3 and 3.8 μg/mg protein respectively). These data are shown inFIG. 3 . - An association of increased expression of SAA with glaucoma was further demonstrated in human aqueous humor. SAA protein was measured by ELISA in aqueous humor from 16 normal and 20 glaucomatous individuals. SAA was found to be almost 3 times higher in glaucomatous aqueous humor than in normal samples (10.0 ng/ml vs. 3.7 ng/ml respectively). The results are shown in
FIG. 4 . - 1% Fenofibrate suspension for topical application to decrease SAA and lower IOP in the eye.
-
Description Conc. Units Purpose Fenofibrate (AL18543), 1% W/V % active ingredient NOC hydroxypropyl 0.5% W/V % viscosity modifier methylcellulose (2910) (E4M), USP dibasic sodium phosphate 0.2% W/V % buffering agent (anhydrous), usp sodium chloride, usp 0.75% W/V % tonicity agent disodium edta 0.01% W/V % chelating agent (edetate disodium), usp polysorbate 80, nf 0.05% W/V % wetting agent benzalkonium chloride, 0.01% W/V % preservative nf sodium hydroxide, nf q.s. pH W/V % pH adjust hydrochloric acid, nf q.s. pH W/V % pH adjust purified water, usp q.s. 100% W/V % vehicle - One method that can be used for screening for agents that alter SAA expression and function is to determine changes in SAA protein levels. Kits for in vitro assay for quantitative determination of Serum Amyloid A (SAA) in animal or human sera, plasma, buffered solutions, cell culture media, and tissue or cell extracts are commercially available. The assay is a solid phase sandwich Enzyme Linked-Immuno-Sorbent Assay (ELISA). A monoclonal antibody specific for SAA has been coated onto the wells of a microtiter plate. Samples, including standards of known SAA content, or unknowns, are added to these wells along with a secondary antibody conjugated to alkaline phosphatase or peroxidase. The antibodies are constructed such that neither one interferes with the binding epitope of the other. The SAA is both captured on the plate by the immobilized antibody and labeled with the conjugated second antibody in a one step procedure. After an incubation period, the plate is washed to remove all unbound material and a substrate (PNPP or peroxide) is added. The intensity of the colored product is proportional to the concentration of SAA present in the unknown sample.
- The human hepatoma cell line, HepG2, is widely used for studies on SAA induction by cytokines, for transfection with plasmids, and reporter assays. SAA mRNA and protein synthesis can be induced by various cytokines in several human hepatoma cell lines including PCL/PRF/5, HepB and HepG2 (Uhlar and Whitehead 1999). SAA synthesis by human aortic smooth muscle cells (HASMC) is induced by glucocorticoid hormones and not by the proinflammatory cytokines, IL-1, IL-6, and TNF-α, which stimulate the production of SAA by hepatocytes (Kumon et al. 2002b; Kumon et al. 2001; is Thorn and Whitehead 2002). SAA stimulated the chemotactic migration of HASMC in a dose dependent manner when assayed using a Chemotaxicell culture chamber (Kumon et al. 2002a). SAA mRNA expression and protein production was demonstrated in primary cultures of rheumatoid arthritis synoviocytes (O'Hara et al. 2000).
- Cytokine-like properties of SAA include induction of IL-8 secretion by neutrophils. (Furlaneto and Campa, 2002; He et al. 2003). HL-60 cells, a promyelocytic cell line, was identified that responds to SAA with increased IL-8 secretion, and can be used for in vitro assays of SAA function. HL-60 cells were treated for four hours with increasing concentrations of recombinant human SAA, and IL-8 was measured in the media by ELISA. IL-8 secretion increased in a dose dependent manner (
FIG. 5 ). HL-60 cells can be used as a surrogate cell line for functional assays to identify agents that alter SAA function and expression levels. - All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and structurally related may be substituted for the agents described herein to achieve similar results. All such substitutions and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
- The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
- United States Patents
- Books
- Other Publications
- Furlenato, C J, and Campa A, A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 by human blood neutrophil, B
IOCHEM. BIOPHYS. RES. COMMUN 268:405-408 (2002). - He, R, Sang H, Ye, R D, Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R, B
LOOD 101:1572-1581 (2003). - Jensen L E and Whitehead A S, B
IOCHEM. J. 334:489-503 (1998). - Jordat M S, et al., P
LANTA MED. 68:667-71 (2002). - Kane et al., J. N
EUROCHEM., 72: 1939-1947 (1999). - Kumon, Y., Hosokawa, T., Suehiro, T., Ideda, Y., Sipe, J. D., and Hashimoto, K., Acute-phase, but not constitutive serum amyloid A (SAA) is chemotactic for cultured human aortic smooth muscle cells, A
MYLOID 9:237-241 (2002a). - Kumon, Y., Suehiro, T., Faulkes, D. J., Hosakawa, T., Ideda, Y., Woo, P., Sipe, J.D., and Hashimoto, K., Transcriptional regulation of Serum Amyloid A1 gene expression in human aortic smooth muscle cells involves CCAAT/enhancer binding proteins (C/EBP) and is distinct from HepG2 cells, S
CAND. J. IMMUNOL. 56:504-511 (2002b). - Kumon, Y., Suehiro, T., Hashimoto, K., and Sipe, J. D., Dexamethasone, but not IL-1 alone, upregulates acute-phase serum amyloid A gene expression and production by cultured human aortic smooth muscle cells, S
CAND J. IMMUNOL. 53:7-12 (2001). - Lambert et al., P
ROC. NAT. ACAD. SCI. USA 95: 6448-6453 (1998). - Liang, J. S., Sloane, J. A., Wells, J. M., Abraham, C. R., Fine, R. E., and Sipe, J. D., Evidence for local production of acute phase response apolipoprotein serum amyloid A in Alzheimer's disease brain, N
EUROSCI. LETT. 225:73-76 (1997). - Liu et al., J. N
EUROCHEM. 69: 2285-2293 (1997). - Miida T., Yamada, T., Yamadera, T., Ozaki, K., Inano, K., Okada, M., Serum amyloid A protein generates pre-beta 1 high-density lipoprotein from alpha-migrating high-density lipoprotein, B
IOCHEM. 38(51):16958-16962 (1999). - Miller, Genome Biology 3(1):reviews 3001.1-3001.15 (2001) (also at http://genomebiology.com/2001/3/1/reviews/3001.1)
- Nakagami et al., E
UR. J. PHARMACOL. 457: 11-17 (2002a). - Nakagami et al., B
R. J. PHARMACOL., 137: 676-682 (2002b). - O'Hara, R., Murphy, E. P., Whitehead, A. S., FitzGerald, O., and Bresnihan, B., Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue, A
RTHRITIS RES. 2:142-144 (2000). - Pike et al., J. N
EUROSCI. 13: 1676-1687 (1993). - Thorn, C. F. and Whitehead, A. S., Differential glucocorticoid enhancement of the cytokine-driven transcriptional activation of the human actue phase serum amyloid A genes, SAA1 and SAA, J. I
MMUNOL. 169:399-406 (2002). - Uhlar, C. M., and Whitehead, A. S., Serum amyloid A, the major vertebrate acute-phase reactant, E
UR. J. BIOCHEM. 265:501-523 (1999). - Urieli-Shoval, S., Cohen, P., Eisenberg, S., and Matzner, Y., Widespread expression of serum amyloid A in histologically normal human tissue. Predominant localization to the epithelium, J. H
ISTOCHEM. CYTOCHEM. 46:1377-1384 (1998). - Yamazaki et al., B
IOCHEMICAL AND BIOPHYSICAL RES. COMM., 290:1114-1122 (2002). - Yankner et al., S
CIENCE 250: 279-282 (1990) - Zhang et al., N
EUROSCI. LETT. 312: 125-128 (2001)
Claims (13)
1. (canceled)
2. (canceled)
3. A method for treating glaucoma, said method comprising administering to a patient in need thereof a therapeutically effective amount of a composition comprising an agent that inhibits interaction of the serum amyloid A protein (SAA) with its receptor.
4. The method of claim 3 , wherein said agent is a peroxisome proliferator-activated receptor α (PPARα) agonists, tachykinin peptides and their non-peptide analogs or α-lipoic acid.
5. The method of claim 4 , wherein the agent is fenofibrate, Wy-14643, ( 4-chloro-6-(2,3-xylidino)-2-pryrimidinylthiol)-acetic acid), ciprofibrate, 2-bromohexadecanoic acid, bezafibrate and ciglitizone, bafilomycin, concanamycin or pseudolaric acid B.
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/038,673 US20090036371A1 (en) | 2003-12-17 | 2008-02-27 | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
| US13/226,640 US20120064532A1 (en) | 2003-12-17 | 2011-09-07 | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US53043003P | 2003-12-17 | 2003-12-17 | |
| US11/000,757 US7357931B2 (en) | 2003-12-17 | 2004-12-01 | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US12/038,673 US20090036371A1 (en) | 2003-12-17 | 2008-02-27 | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/000,757 Division US7357931B2 (en) | 2003-12-17 | 2004-12-01 | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/226,640 Division US20120064532A1 (en) | 2003-12-17 | 2011-09-07 | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090036371A1 true US20090036371A1 (en) | 2009-02-05 |
Family
ID=34710163
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/000,757 Expired - Fee Related US7357931B2 (en) | 2003-12-17 | 2004-12-01 | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US12/038,673 Abandoned US20090036371A1 (en) | 2003-12-17 | 2008-02-27 | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
| US13/226,640 Abandoned US20120064532A1 (en) | 2003-12-17 | 2011-09-07 | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/000,757 Expired - Fee Related US7357931B2 (en) | 2003-12-17 | 2004-12-01 | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/226,640 Abandoned US20120064532A1 (en) | 2003-12-17 | 2011-09-07 | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US7357931B2 (en) |
| EP (1) | EP1694192A4 (en) |
| JP (2) | JP4827742B2 (en) |
| CN (1) | CN1993136A (en) |
| AR (2) | AR048135A1 (en) |
| AU (1) | AU2004304944B2 (en) |
| BR (1) | BRPI0417732A (en) |
| CA (1) | CA2545777A1 (en) |
| MX (1) | MXPA06006503A (en) |
| RU (1) | RU2365379C2 (en) |
| TW (1) | TWI398261B (en) |
| WO (1) | WO2005060542A2 (en) |
| ZA (1) | ZA200603464B (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100063052A1 (en) * | 2003-12-17 | 2010-03-11 | Alcon, Inc. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20100113481A1 (en) * | 2003-12-17 | 2010-05-06 | Alcon Research, Ltd. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060121039A1 (en) * | 2004-12-07 | 2006-06-08 | Alcon, Inc. | Use of agents that prevent the generation of amyloid-like proteins and/or drusen, and/or use of agents that promote sequestration and/or degradation of, and/or prevent the neurotoxic effects of such proteins in the treatment of macular degeneration |
| TWI398261B (en) * | 2003-12-17 | 2013-06-11 | Alcon Inc | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20050137122A1 (en) * | 2003-12-17 | 2005-06-23 | Alcon, Inc. | Use of agents that prevent generation of amyloid and amyloid-like lipoproteins, and/or use of agents that promote sequestration and/or degradation of, and/or prevent neurotoxicity of such proteins in the treatment of hearing loss and improving body balance |
| TWI401316B (en) * | 2004-12-23 | 2013-07-11 | Alcon Inc | Rnai inhibition of serum amyloid a for treatment of glaucoma |
| US20060154981A1 (en) * | 2005-01-12 | 2006-07-13 | Alcon, Inc. | Method of reducing intraocular pressure and treating glaucoma |
| CA2630668C (en) * | 2005-11-22 | 2016-07-12 | Mcgill University | Intraocular pressure-regulated early genes and uses thereof |
| US20090136465A1 (en) | 2007-09-28 | 2009-05-28 | Intrexon Corporation | Therapeutic Gene-Switch Constructs and Bioreactors for the Expression of Biotherapeutic Molecules, and Uses Thereof |
| WO2009105481A1 (en) * | 2008-02-19 | 2009-08-27 | The Buck Institute For Age Research | Mao-b elevation as an early parkinson's disease biomarker |
| RU2404253C1 (en) * | 2009-06-22 | 2010-11-20 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова Федерального агентства по здравоохранению и социальному развитию" | METHOD OF DETECTING MUTATION P369ins IN GENE CYP1B1 |
| US20160002624A1 (en) | 2012-05-17 | 2016-01-07 | Isis Pharmaceuticals, Inc. | Antisense oligonucleotide compositions |
| TWI472369B (en) * | 2012-07-24 | 2015-02-11 | Univ Nat Central | Assay kit and analysis method |
| ES2673009T3 (en) | 2013-03-14 | 2018-06-19 | EyeCRO, LLC | Topical microemulsion delivery platform |
| WO2017082393A1 (en) * | 2015-11-12 | 2017-05-18 | 学校法人 聖マリアンナ医科大学 | Prophylactic and therapeutic agent for glaucoma |
| GB201521085D0 (en) * | 2015-11-30 | 2016-01-13 | Biozep As | Use |
| CN108299551A (en) * | 2018-02-09 | 2018-07-20 | 北京市华信行生物科技有限公司 | 1 mutant of serum amyloid A protein and its preparation method and application |
| CN113186275A (en) * | 2021-06-16 | 2021-07-30 | 上海交通大学医学院附属仁济医院 | Application of serum amyloid A1 in preparation of biomarker for diagnosing polycystic ovarian syndrome |
| CN113244225B (en) * | 2021-06-16 | 2022-06-28 | 昆明医科大学第一附属医院 | Application of pseudolaric acid B in preparation of antiplatelet drugs |
| CZ309154B6 (en) * | 2021-08-20 | 2022-03-16 | GeneSpector Innovations s.r.o. | A method of predicting the severity of an infectious disease and a biomarker for use in this method and monitoring infectious disease therapy |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4656127A (en) * | 1983-04-22 | 1987-04-07 | Amersham International Plc. | Method of detecting mutations in DNA and RNA |
| US4998617A (en) * | 1986-09-15 | 1991-03-12 | Laura Lupton Inc | Facial cosmetic liquid make up kit |
| US5459039A (en) * | 1989-05-12 | 1995-10-17 | Duke University | Methods for mapping genetic mutations |
| US5545628A (en) * | 1995-01-10 | 1996-08-13 | Galephar P.R. Inc. | Pharmaceutical composition containing fenofibrate |
| US5593826A (en) * | 1993-03-22 | 1997-01-14 | Perkin-Elmer Corporation, Applied Biosystems, Inc. | Enzymatic ligation of 3'amino-substituted oligonucleotides |
| US6103756A (en) * | 1999-08-11 | 2000-08-15 | Vitacost Inc. | Ocular orally ingested composition for prevention and treatment of individuals |
| US20020102581A1 (en) * | 1999-02-19 | 2002-08-01 | Hageman Gregory S. | Diagnostics and therapeutics for ocular disorders |
| US6433018B1 (en) * | 2001-08-31 | 2002-08-13 | The Research Foundation Of State University Of New York | Method for reducing hypertrophy and ischemia |
| US20050137123A1 (en) * | 2003-12-17 | 2005-06-23 | Alcon, Inc. | Use of agents that down-regulate expression of tanis and/or p21^Waf1/Cip1/Sd1 genes, and use of agents that inhibit, degrade, sequester or prevent the neurotoxicity of gene product proteins of tanis and p21^Waf1/Cip1/Sd1 genes |
| US20050153927A1 (en) * | 2003-12-17 | 2005-07-14 | Alcon, Inc. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20070208043A1 (en) * | 2003-12-17 | 2007-09-06 | Alcon, Inc. | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
| US20100113481A1 (en) * | 2003-12-17 | 2010-05-06 | Alcon Research, Ltd. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6A (en) * | 1836-08-10 | Thomas Blanchard | Machine for forming end pieces of plank blocks for ships | |
| FR2650840B1 (en) | 1989-08-11 | 1991-11-29 | Bertin & Cie | RAPID DETECTION AND / OR IDENTIFICATION OF A SINGLE BASED ON A NUCLEIC ACID SEQUENCE, AND ITS APPLICATIONS |
| US6004744A (en) | 1991-03-05 | 1999-12-21 | Molecular Tool, Inc. | Method for determining nucleotide identity through extension of immobilized primer |
| WO1994016101A2 (en) | 1993-01-07 | 1994-07-21 | Koester Hubert | Dna sequencing by mass spectrometry |
| US5606043A (en) * | 1994-11-03 | 1997-02-25 | The Regents Of The University Of California | Methods for the diagnosis of glaucoma |
-
2004
- 2004-11-25 TW TW093136350A patent/TWI398261B/en not_active IP Right Cessation
- 2004-12-01 RU RU2006125428/14A patent/RU2365379C2/en not_active IP Right Cessation
- 2004-12-01 JP JP2006545696A patent/JP4827742B2/en not_active Expired - Fee Related
- 2004-12-01 US US11/000,757 patent/US7357931B2/en not_active Expired - Fee Related
- 2004-12-01 BR BRPI0417732-0A patent/BRPI0417732A/en active Search and Examination
- 2004-12-01 WO PCT/US2004/040156 patent/WO2005060542A2/en not_active Ceased
- 2004-12-01 AU AU2004304944A patent/AU2004304944B2/en not_active Ceased
- 2004-12-01 CA CA002545777A patent/CA2545777A1/en not_active Abandoned
- 2004-12-01 ZA ZA200603464A patent/ZA200603464B/en unknown
- 2004-12-01 CN CNA200480037061XA patent/CN1993136A/en active Pending
- 2004-12-01 MX MXPA06006503A patent/MXPA06006503A/en unknown
- 2004-12-01 EP EP04812625A patent/EP1694192A4/en not_active Withdrawn
- 2004-12-14 AR ARP040104646A patent/AR048135A1/en not_active Application Discontinuation
-
2008
- 2008-02-27 US US12/038,673 patent/US20090036371A1/en not_active Abandoned
-
2010
- 2010-07-27 AR ARP100102718A patent/AR077599A2/en not_active Application Discontinuation
-
2011
- 2011-05-19 JP JP2011112832A patent/JP2011157398A/en not_active Withdrawn
- 2011-09-07 US US13/226,640 patent/US20120064532A1/en not_active Abandoned
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4656127A (en) * | 1983-04-22 | 1987-04-07 | Amersham International Plc. | Method of detecting mutations in DNA and RNA |
| US4998617A (en) * | 1986-09-15 | 1991-03-12 | Laura Lupton Inc | Facial cosmetic liquid make up kit |
| US5459039A (en) * | 1989-05-12 | 1995-10-17 | Duke University | Methods for mapping genetic mutations |
| US5593826A (en) * | 1993-03-22 | 1997-01-14 | Perkin-Elmer Corporation, Applied Biosystems, Inc. | Enzymatic ligation of 3'amino-substituted oligonucleotides |
| US5545628A (en) * | 1995-01-10 | 1996-08-13 | Galephar P.R. Inc. | Pharmaceutical composition containing fenofibrate |
| US20020102581A1 (en) * | 1999-02-19 | 2002-08-01 | Hageman Gregory S. | Diagnostics and therapeutics for ocular disorders |
| US6103756A (en) * | 1999-08-11 | 2000-08-15 | Vitacost Inc. | Ocular orally ingested composition for prevention and treatment of individuals |
| US6433018B1 (en) * | 2001-08-31 | 2002-08-13 | The Research Foundation Of State University Of New York | Method for reducing hypertrophy and ischemia |
| US20050137123A1 (en) * | 2003-12-17 | 2005-06-23 | Alcon, Inc. | Use of agents that down-regulate expression of tanis and/or p21^Waf1/Cip1/Sd1 genes, and use of agents that inhibit, degrade, sequester or prevent the neurotoxicity of gene product proteins of tanis and p21^Waf1/Cip1/Sd1 genes |
| US20050153927A1 (en) * | 2003-12-17 | 2005-07-14 | Alcon, Inc. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20070208043A1 (en) * | 2003-12-17 | 2007-09-06 | Alcon, Inc. | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents |
| US7357931B2 (en) * | 2003-12-17 | 2008-04-15 | Alcon, Inc. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US7662389B2 (en) * | 2003-12-17 | 2010-02-16 | Alcon, Inc. | Use of serum amyloid A gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20100063052A1 (en) * | 2003-12-17 | 2010-03-11 | Alcon, Inc. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20100113481A1 (en) * | 2003-12-17 | 2010-05-06 | Alcon Research, Ltd. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20100173852A1 (en) * | 2003-12-17 | 2010-07-08 | Alcon, Inc. | USE OF AGENTS THAT DOWN-REGULATE EXPRESSION OF TANIS AND/OR P21 Waf1/Cip1/Sd1 GENES, AND USE OF AGENTS THAT INHIBIT, DEGRADE, SEQUESTER OR PREVENT THE NEUROTOXICITY OF GENE PRODUCT PROTEINS OF TANIS AND P21 Waf1/Cip1/Sd1 GENES |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100063052A1 (en) * | 2003-12-17 | 2010-03-11 | Alcon, Inc. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
| US20100113481A1 (en) * | 2003-12-17 | 2010-05-06 | Alcon Research, Ltd. | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents |
Also Published As
| Publication number | Publication date |
|---|---|
| US20050153927A1 (en) | 2005-07-14 |
| BRPI0417732A (en) | 2007-04-03 |
| RU2006125428A (en) | 2008-01-27 |
| CA2545777A1 (en) | 2005-07-07 |
| AR048135A1 (en) | 2006-04-05 |
| JP2011157398A (en) | 2011-08-18 |
| US20120064532A1 (en) | 2012-03-15 |
| JP4827742B2 (en) | 2011-11-30 |
| ZA200603464B (en) | 2007-07-25 |
| EP1694192A2 (en) | 2006-08-30 |
| WO2005060542A3 (en) | 2006-10-26 |
| EP1694192A4 (en) | 2010-12-08 |
| CN1993136A (en) | 2007-07-04 |
| TW200520768A (en) | 2005-07-01 |
| US7357931B2 (en) | 2008-04-15 |
| JP2007514783A (en) | 2007-06-07 |
| AU2004304944A1 (en) | 2005-07-07 |
| WO2005060542A2 (en) | 2005-07-07 |
| TWI398261B (en) | 2013-06-11 |
| AU2004304944B2 (en) | 2010-06-10 |
| MXPA06006503A (en) | 2008-02-13 |
| RU2365379C2 (en) | 2009-08-27 |
| AR077599A2 (en) | 2011-09-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090036371A1 (en) | Use of Serum Amyloid A Gene in Diagnosis and Treatment of Glaucoma and Identification of Anti-Glaucoma Agents | |
| EP2428210B1 (en) | P38 mapk inhibitors for use in treating ocular hypertension | |
| US10813905B2 (en) | Methods of treating sickle cell disease and related disorders using fumaric acid esters | |
| US20100113481A1 (en) | Use of serum amyloid a gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents | |
| JP5087011B2 (en) | Non-human animals for eye disease models | |
| HK1169022A (en) | P38 mapk inhibitors for use in treating ocular hypertension | |
| HK1169022B (en) | P38 mapk inhibitors for use in treating ocular hypertension | |
| US20050170430A1 (en) | Diagnosis and treatment of glaucoma and methods for discovering new glaucoma therapeutic agents based on the wnt/ca2+ signaling pathway | |
| US20050164907A1 (en) | Diagnosis and treatment of glaucoma and methods for discovering new glaucoma therapeutic agents based on the wnt/planar cell polarity (pcp) signaling pathway | |
| ES2369157T3 (en) | GENES AFFECTING THE PERFORMANCE OF HUMAN MEMORY. | |
| KR20070021994A (en) | Use of Serum Amyloid A Gene in the Diagnosis and Treatment of Glaucoma and in Identification of Anti-Glaucoma Drugs |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NOVARTIS AG, SWITZERLAND Free format text: MERGER;ASSIGNOR:ALCON, INC.;REEL/FRAME:026376/0076 Effective date: 20110408 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |