[go: up one dir, main page]

US20080202045A1 - method of producing a flooring and a flooring produced according to the method - Google Patents

method of producing a flooring and a flooring produced according to the method Download PDF

Info

Publication number
US20080202045A1
US20080202045A1 US12/107,929 US10792908A US2008202045A1 US 20080202045 A1 US20080202045 A1 US 20080202045A1 US 10792908 A US10792908 A US 10792908A US 2008202045 A1 US2008202045 A1 US 2008202045A1
Authority
US
United States
Prior art keywords
layer
binder
aggregate material
flooring
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/107,929
Inventor
Christer Lindgren
Lars Askfelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RA Golv AB
Original Assignee
RA Golv AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RA Golv AB filed Critical RA Golv AB
Priority to US12/107,929 priority Critical patent/US20080202045A1/en
Publication of US20080202045A1 publication Critical patent/US20080202045A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors

Definitions

  • the present application is a divisional of U.S. application Ser. No. 10/907,009, filed on Mar. 16, 2005.
  • the present invention relates generally to a method of producing a flooring, and to a flooring. It is desirable to provide a method of producing a flooring that is simple and economical. It is desirable to provide a method of producing a flooring that permits the construction of floorings of thin layers. It is desirable to provide a method of producing a flooring that reduces the requirement for the removal of material in the final grinding operation.
  • a method for the production of a flooring resting on a sub-floor comprises providing a first layer of binder on the sub-floor, spreading a first layer of aggregate material over the first layer of binder to bond the first layer of aggregate material therein, providing a second layer of binder over the bonded first layer of binder and first layer of aggregate material, spreading a second layer of aggregate material over the second layer of binder to bond the second layer of aggregate material therein, aggregate particles of the second layer of aggregate material being randomly oriented upon being spread over the second layer of binder and defining, with the binder material, an irregular upper surface, and grinding the irregular upper surface to form a smooth upper surface.
  • the second layer of binder and the second layer of aggregate material Prior to allowing the second layer of binder to set and prior to grinding, are mechanically processed to remove air and to turn at least some of the aggregate particles of the second layer of aggregate material so that a volume of the irregular upper surface needed to be removed to form the smooth upper surface is reduced.
  • a flooring to be smoothed by grinding comprises a first layer of binder, particles of a first layer of aggregate material spread over the first layer of binder and bonded therein, a second layer of binder spread over the bonded first layer of binder and particles of the first layer of aggregate material, and particles of a second layer of aggregate material spread over the second layer of binder and bonded therein.
  • the second layer of binder and the second layer aggregate material are mechanically processed, relative to a random orientation of aggregate particles of the second layer of aggregate material, to remove air and to turn at least some of the aggregate particles of the second layer of aggregate material so that a volume of the irregular upper surface needed to be removed by grinding to form a smooth upper surface is reduced.
  • FIG. 1 is a cross section through a flooring in the process of construction, a first layer of aggregate having been bonded in a layer of binder on a sub-floor;
  • FIG. 2 shows the cross section of FIG. 1 , a second layer of binder having been applied
  • FIG. 3 shows the section according to FIG. 2 , a second layer of aggregate having however been applied, and this second layer having been mechanically processed for orienting the individual pieces or particles of aggregate so that their flattest and smoothest sides are substantially turned to face upwards;
  • FIG. 4 is a section approximately according to FIG. 1 and indicates the thickness of material that must be removed if the flooring with unoriented pieces or particles of aggregate is to be flattened by grinding;
  • FIG. 5 shows the section according to FIG. 3 , showing the amount of material that must be ground off before the flooring is smooth and flat;
  • FIG. 6 shows the section according to FIGS. 3 and 5 in the flat-ground state.
  • FIG. 1 shows a cross section through a flooring according to the present invention in the process of being built up and reference numeral 1 relates to a sub-floor or generally to a floor substrate.
  • Reference numeral 2 relates to a layer of binder, for example epoxy based.
  • the binder layer 2 is spread on the substrate 1 , whereafter a first layer of particulate aggregate material, for example marble chips, are spread in the binder layer.
  • the individual pieces or particles of aggregate material have been given reference numeral 3 .
  • the sub-floor or substrate 1 is completely flat. Should this not be the case, the sub-floor 1 is adjusted in this respect using a cement-based screed possibly followed by grinding before the first layer 2 of binder is spread out.
  • the binder in the first binder layer is applied in a quantity of approximately 0.2 kg per m 2 and the aggregate in a quantity of approximately 2 kg per m 2 . This implies that the binder layer will have a thickness of the order of magnitude of 2 mm.
  • the aggregate material need not be graded, but, in the relevant embodiment, has a maximum particle size of 3-5 mm.
  • the individual particles or pieces 3 of aggregate are depressed in the binder layer 2 or alternatively have sunk down into it as a result of their higher density, for which reason the top surface 5 of the binder layer in FIG. 1 lies on a higher level than it did prior to application of the aggregate material,
  • the aggregate material may comprise, for example, crushed marble, cullet, crushed stone of types other than marble, wood chips, seashells etc.
  • the individual pieces or particles 3 are of an irregular shape and the individual particles themselves may differ considerably in both shape and also size.
  • the aggregate material is spread out over the binder layer 2 applied on the substrate 1 , the individual particles or pieces 3 of aggregate material will be wholly randomly oriented.
  • the present invention it is possible (but not necessary), before the drying or setting of the first binder layer 2 , to topple over, by mechanical processing of the first aggregate layer, such aggregate pieces or particles 3 as display the upwardly extending sharp edges 6 or points, onto their side. As a result, it is possible to reduce the roughness displayed by the flooring in this production stage.
  • the binder layer 2 applied on the substrate 1 it is possible to apply the binder on the individual pieces 3 of aggregate by running them in a suitable mixer with an addition of binder prior to the spreading operation.
  • FIG. 2 shows the same cross section as FIG. 1 , but after the next step in the production process where the flooring in the process of being built up has been given an additional layer of binder 9 , a second layer of binder with the top surface 10 .
  • the binder in the second layer of binder is preferably of the same type, or at least same nature as the binder in the first layer 2 .
  • the second layer 9 of binder is only applied once the first layer 2 has dried or set at least so far that the individual pieces or particles 3 of aggregate are properly bonded and can also most preferably be trodden on.
  • the binder in the second layer 9 is relatively fugitive, liqueform, or paste, it may be assumed that, at leas after the application in FIG. 2 , it is largely free of air pockets.
  • the second layer of binder 9 is spread with a greater thickness than the first, and in such instance this thickness may lie in the order of magnitude of 3 to 4 mm, in which event the binder in the second layer 9 may also include filler in the form of aggregate material of finer grading than that which was otherwise employed, as well as colour pigment, suitably a colour pigment which harmonises with the colour of the aggregate material employed.
  • the spreading of the binder in the second layer may be put into effect using a rubber scraper or similar implement, since the binder is liqueform or in paste form.
  • the proportion of filler may be as much as two thirds of the total and the quantity may amount to 6 kg per m 2 .
  • a second layer of particular aggregate 11 is applied or spread out, which, for example, may comprise to two thirds of a fraction having a particle size of 1-3 mm and to one third of a fraction having a particle size of 3-5 mm.
  • the type of aggregate material is the same as in FIGS. 1 and 2 and the applied quantity amount to the order of magnitude of 4 kg per m 2 .
  • the individual pieces or particles 11 in the aggregate material will initially be randomly oriented in the same manner as the individual pieces or particles 3 in the first layer of aggregate material were randomly oriented.
  • the next step of the production process entails that the individual particles 11 in at least the upper region of the second layer of aggregate are oriented by a mechanical processing so that, on the one hand, air is driven out, and, on the other hand, the individual pieces 11 or particles of aggregate material are at least partly caused to turn with their sharp and jagged edges 13 away from the top side of the impending flooring.
  • the mechanical processing and orientatin of the individual pieces 11 or particles in the second layer of aggregate material the cross section through the flooring in the process of being built up will have the appearance as is apparent from FIG. 3 .
  • the pieces of the aggregate material have, at least to some degree, been oriented in such a manner that their more or less planar surfaces 12 are turned to face upwards, while sharp edges and jagged portions 13 are turned to face away from the top side of the floor. It will also be apparent from the Figure that the pieces 11 are thoroughly surrounded by the binder 9 and that also a thinner layer 14 of the binder may be present on the upper side of the pieces 11 . It is also largely apparent that there are no air pockets 15 in the second layer of binder 9 , nor in the second layer of aggregate 11 , possibly with the exception of the lower regions thereof.
  • the mechanical processing and orientation of the individual particles or pieces 11 proceeds such that these are subjected to forces which are substantially parallel with the upper defining surface of the flooring. This will cause the individual particles to turn to the positions illustrated in FIG. 3 .
  • the mechanical processing also entails that the individual particles are acted on by forces that are directed downwards towards the substrate 1 so that the particles will thereby be “kneaded down” into the binder 9 , which, as a result, may float up to the top side of the individual pieces 11 and form the upper, thin layer 14 .
  • the lower layer of aggregate material functions as an arrest surface which prevents individual particles 11 or pieces in the upper layer of aggregate material from being depressed too far down so that the layer thickness in the flooring in the process of being formed locally may become too slight or that, in a later stage, a grinding down to an excessive grinding depth is required.
  • the peaks 6 of the lower layer of aggregate material may fulfill the same function as an arrest surface when the second layer of binder 9 is spread out using a suitable scraper.
  • the mechanical processing of the second layer of aggregate material 11 may be put into effect employing spring-biased plates which move approximately parallel with the top surface of the layer and in contact therewith.
  • the individual sheets or plates make an acute angle with the substrate so that their front edges in the direction of movement lie somewhat higher than the rear edges.
  • the mechanical processing orient the particles aggregate material 11 so that a substantial portion of the particles are oriented so that larger and flatter surfaces of the particles face upwardly, as opposed to smaller, more jagged surfaces. What constitutes a substantial portion of particles will vary and may be any suitable portion greater than 0%, such as 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or higher. It will be appreciated that mechanical processing will not ordinarily orient all particles in a desired manner. It is also ordinarily desirable that mechanical processing, usually by pressing particles of aggregate material 11 down, will press the uncured binder 9 upwardly between the particles of aggregate material to cover upper surfaces of the particles. It is also desirable that mechanical processing will press a substantial quantity of air out from spaces between particles of aggregate material 11 , usually as a result of having uncured binder 9 rising from below, up into the spaces, thereby driving the air in those spaces upwardly to the surface.
  • FIG. 5 shows the quantity of material which must be removed for this to be put into effect.
  • the upper, broken line 16 shows the level that corresponds to the upper point 18 in the flooring, in this case, the upper surface of the thin binder layer 14 which may exist on the top side of any individual particle or piece 11 in the upper layer of aggregate material.
  • the lower broken line 17 shows the level of the lower point 19 where an individual piece or particle 11 of aggregate material has an upwardly facing, continuous grinding surface.
  • the grinding process between the steps of the production process illustrated in FIGS. 5 and 6 takes place in several stages using gradually finer grinding material. In the last stages, use is made of an extremely fine particulate grinding material, possibly a pure polishing agent so that, as a result, the upper surface 20 and 21 will be smooth.
  • the ground surface is sealed with a protective paint 100 (shown in phantom in FIG. 6 ), a wax or the like, whereafter a possible further polishing takes place.
  • a protective paint 100 shown in phantom in FIG. 6
  • a wax or the like whereafter a possible further polishing takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Floor Finish (AREA)

Abstract

In a method of producing a flooring, a sub-floor is coated with a first layer of binder. A layer of aggregate material is spread over the binder which is then allowed to dry or set so that the particles bond therein. A second layer of binder is spread out over the first layer of binder and aggregate material bonded therein. A second layer of aggregate material is spread over the second layer of binder. Prior to drying or setting of the second layer of binder, the aggregate material of the second layer is mechanically processed to drive out air and in order to orient the particles of the aggregate material so that these turn their sharp edges and jagged tips away from the top side of the impending flooring. Finally, the flooring is allowed to dry or set, whereafter it is ground flat and even.

Description

    BACKGROUND AND SUMMARY
  • The present application is a divisional of U.S. application Ser. No. 10/907,009, filed on Mar. 16, 2005. The present invention relates generally to a method of producing a flooring, and to a flooring. It is desirable to provide a method of producing a flooring that is simple and economical. It is desirable to provide a method of producing a flooring that permits the construction of floorings of thin layers. It is desirable to provide a method of producing a flooring that reduces the requirement for the removal of material in the final grinding operation.
  • In accordance with an aspect of the present invention, a method for the production of a flooring resting on a sub-floor is provided. The method comprises providing a first layer of binder on the sub-floor, spreading a first layer of aggregate material over the first layer of binder to bond the first layer of aggregate material therein, providing a second layer of binder over the bonded first layer of binder and first layer of aggregate material, spreading a second layer of aggregate material over the second layer of binder to bond the second layer of aggregate material therein, aggregate particles of the second layer of aggregate material being randomly oriented upon being spread over the second layer of binder and defining, with the binder material, an irregular upper surface, and grinding the irregular upper surface to form a smooth upper surface. Prior to allowing the second layer of binder to set and prior to grinding, the second layer of binder and the second layer of aggregate material are mechanically processed to remove air and to turn at least some of the aggregate particles of the second layer of aggregate material so that a volume of the irregular upper surface needed to be removed to form the smooth upper surface is reduced.
  • In accordance with another aspect of the present invention, a flooring to be smoothed by grinding comprises a first layer of binder, particles of a first layer of aggregate material spread over the first layer of binder and bonded therein, a second layer of binder spread over the bonded first layer of binder and particles of the first layer of aggregate material, and particles of a second layer of aggregate material spread over the second layer of binder and bonded therein. The second layer of binder and the second layer aggregate material are mechanically processed, relative to a random orientation of aggregate particles of the second layer of aggregate material, to remove air and to turn at least some of the aggregate particles of the second layer of aggregate material so that a volume of the irregular upper surface needed to be removed by grinding to form a smooth upper surface is reduced.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described hereinbelow, with reference to the accompanying Drawings. In the accompanying Drawings:
  • FIG. 1 is a cross section through a flooring in the process of construction, a first layer of aggregate having been bonded in a layer of binder on a sub-floor;
  • FIG. 2 shows the cross section of FIG. 1, a second layer of binder having been applied;
  • FIG. 3 shows the section according to FIG. 2, a second layer of aggregate having however been applied, and this second layer having been mechanically processed for orienting the individual pieces or particles of aggregate so that their flattest and smoothest sides are substantially turned to face upwards;
  • FIG. 4 is a section approximately according to FIG. 1 and indicates the thickness of material that must be removed if the flooring with unoriented pieces or particles of aggregate is to be flattened by grinding;
  • FIG. 5 shows the section according to FIG. 3, showing the amount of material that must be ground off before the flooring is smooth and flat; and
  • FIG. 6 shows the section according to FIGS. 3 and 5 in the flat-ground state.
  • DESCRIPTION OF PREFERRED EMBODIMENT
  • FIG. 1 shows a cross section through a flooring according to the present invention in the process of being built up and reference numeral 1 relates to a sub-floor or generally to a floor substrate. Reference numeral 2 relates to a layer of binder, for example epoxy based. The binder layer 2 is spread on the substrate 1, whereafter a first layer of particulate aggregate material, for example marble chips, are spread in the binder layer. The individual pieces or particles of aggregate material have been given reference numeral 3.
  • It is desirable to provide a thin flooring which saves material and which does not accumulate excessively in the vertical direction, it is important that the sub-floor or substrate 1 is completely flat. Should this not be the case, the sub-floor 1 is adjusted in this respect using a cement-based screed possibly followed by grinding before the first layer 2 of binder is spread out.
  • While it is not the intention, there may possibly occur small air pockets 4 in the binder layer 2, but as long as these pockets are not overly large or overly numerous, this is of no consequence to the quality of the flooring.
  • The binder in the first binder layer is applied in a quantity of approximately 0.2 kg per m2 and the aggregate in a quantity of approximately 2 kg per m2. This implies that the binder layer will have a thickness of the order of magnitude of 2 mm. The aggregate material need not be graded, but, in the relevant embodiment, has a maximum particle size of 3-5 mm.
  • It will be apparent from FIG. 1 that the individual particles or pieces 3 of aggregate are depressed in the binder layer 2 or alternatively have sunk down into it as a result of their higher density, for which reason the top surface 5 of the binder layer in FIG. 1 lies on a higher level than it did prior to application of the aggregate material, Given that the aggregate material may comprise, for example, crushed marble, cullet, crushed stone of types other than marble, wood chips, seashells etc., the individual pieces or particles 3 are of an irregular shape and the individual particles themselves may differ considerably in both shape and also size. In that the aggregate material is spread out over the binder layer 2 applied on the substrate 1, the individual particles or pieces 3 of aggregate material will be wholly randomly oriented. However, a certain orientation of the individual particles or pieces 3 may possibly be over-represented, where the pieces have their largest and flattest side turned to face downwards, since an upstanding piece or particle will probably show a tendency to “topple over”. This is illustrated in FIG. 1 in that certain pieces of aggregate have upwardly extending jagged or sharp edges 6 while other pieces or particles may have largely planar surfaces 7 turned to face upwards, while still further pieces or particles may have arched surfaces 8 turned to face upwards. The foregoing also implies that the flooring in the process of being built up will have an upper surface that is extremely rough in the production stage it is in according to FIG. 1.
  • According to the present invention, it is possible (but not necessary), before the drying or setting of the first binder layer 2, to topple over, by mechanical processing of the first aggregate layer, such aggregate pieces or particles 3 as display the upwardly extending sharp edges 6 or points, onto their side. As a result, it is possible to reduce the roughness displayed by the flooring in this production stage.
  • In addition to, or possibly as an alternative to, the binder layer 2 applied on the substrate 1, it is possible to apply the binder on the individual pieces 3 of aggregate by running them in a suitable mixer with an addition of binder prior to the spreading operation.
  • FIG. 2 shows the same cross section as FIG. 1, but after the next step in the production process where the flooring in the process of being built up has been given an additional layer of binder 9, a second layer of binder with the top surface 10. The binder in the second layer of binder is preferably of the same type, or at least same nature as the binder in the first layer 2.
  • The second layer 9 of binder is only applied once the first layer 2 has dried or set at least so far that the individual pieces or particles 3 of aggregate are properly bonded and can also most preferably be trodden on.
  • Since the binder in the second layer 9 is relatively fugitive, liqueform, or paste, it may be assumed that, at leas after the application in FIG. 2, it is largely free of air pockets.
  • The second layer of binder 9 is spread with a greater thickness than the first, and in such instance this thickness may lie in the order of magnitude of 3 to 4 mm, in which event the binder in the second layer 9 may also include filler in the form of aggregate material of finer grading than that which was otherwise employed, as well as colour pigment, suitably a colour pigment which harmonises with the colour of the aggregate material employed. Ideally, the spreading of the binder in the second layer may be put into effect using a rubber scraper or similar implement, since the binder is liqueform or in paste form. The proportion of filler may be as much as two thirds of the total and the quantity may amount to 6 kg per m2.
  • After the application of the second layer of binder 9, a second layer of particular aggregate 11 is applied or spread out, which, for example, may comprise to two thirds of a fraction having a particle size of 1-3 mm and to one third of a fraction having a particle size of 3-5 mm. The type of aggregate material is the same as in FIGS. 1 and 2 and the applied quantity amount to the order of magnitude of 4 kg per m2.
  • In that the second layer of aggregate is spread out over the second layer of binder, the individual pieces or particles 11 in the aggregate material will initially be randomly oriented in the same manner as the individual pieces or particles 3 in the first layer of aggregate material were randomly oriented.
  • The next step of the production process entails that the individual particles 11 in at least the upper region of the second layer of aggregate are oriented by a mechanical processing so that, on the one hand, air is driven out, and, on the other hand, the individual pieces 11 or particles of aggregate material are at least partly caused to turn with their sharp and jagged edges 13 away from the top side of the impending flooring. After the mechanical processing and orientatin of the individual pieces 11 or particles in the second layer of aggregate material, the cross section through the flooring in the process of being built up will have the appearance as is apparent from FIG. 3.
  • It win be apparent from FIG. 3 that the pieces of the aggregate material have, at least to some degree, been oriented in such a manner that their more or less planar surfaces 12 are turned to face upwards, while sharp edges and jagged portions 13 are turned to face away from the top side of the floor. It will also be apparent from the Figure that the pieces 11 are thoroughly surrounded by the binder 9 and that also a thinner layer 14 of the binder may be present on the upper side of the pieces 11. It is also largely apparent that there are no air pockets 15 in the second layer of binder 9, nor in the second layer of aggregate 11, possibly with the exception of the lower regions thereof.
  • The mechanical processing and orientation of the individual particles or pieces 11 proceeds such that these are subjected to forces which are substantially parallel with the upper defining surface of the flooring. This will cause the individual particles to turn to the positions illustrated in FIG. 3. The mechanical processing also entails that the individual particles are acted on by forces that are directed downwards towards the substrate 1 so that the particles will thereby be “kneaded down” into the binder 9, which, as a result, may float up to the top side of the individual pieces 11 and form the upper, thin layer 14.
  • During the mechanical processing of the upper layer of aggregate material, the lower layer of aggregate material functions as an arrest surface which prevents individual particles 11 or pieces in the upper layer of aggregate material from being depressed too far down so that the layer thickness in the flooring in the process of being formed locally may become too slight or that, in a later stage, a grinding down to an excessive grinding depth is required.
  • The peaks 6 of the lower layer of aggregate material may fulfill the same function as an arrest surface when the second layer of binder 9 is spread out using a suitable scraper.
  • Ideally, the mechanical processing of the second layer of aggregate material 11 may be put into effect employing spring-biased plates which move approximately parallel with the top surface of the layer and in contact therewith. In such instance, the individual sheets or plates make an acute angle with the substrate so that their front edges in the direction of movement lie somewhat higher than the rear edges. Through viscous forces in the second layer of binder 9 and as a result of direct mechanical friction between the plates and the individual pieces 11 of the aggregate material in the upper layer, these pieces 11 will be turned in the above-described manner and oriented with their substantially planar surfaces 12 facing upwards.
  • In that the mechanical processing of the second layer of aggregate material 11 entails an additional supply of energy, it is possible to reorient individual aggregate particles so that their point of gravity will be raised.
  • It is ordinarily desirable that the mechanical processing orient the particles aggregate material 11 so that a substantial portion of the particles are oriented so that larger and flatter surfaces of the particles face upwardly, as opposed to smaller, more jagged surfaces. What constitutes a substantial portion of particles will vary and may be any suitable portion greater than 0%, such as 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or higher. It will be appreciated that mechanical processing will not ordinarily orient all particles in a desired manner. It is also ordinarily desirable that mechanical processing, usually by pressing particles of aggregate material 11 down, will press the uncured binder 9 upwardly between the particles of aggregate material to cover upper surfaces of the particles. It is also desirable that mechanical processing will press a substantial quantity of air out from spaces between particles of aggregate material 11, usually as a result of having uncured binder 9 rising from below, up into the spaces, thereby driving the air in those spaces upwardly to the surface.
  • The next step in the production process for the flooring entails that, after setting or drying of the second layer 9 of binder, the somewhat uneven and undulating upper surface of the flooring in FIG. 3 is to be ground totally flat, In this instance, FIG. 5 shows the quantity of material which must be removed for this to be put into effect. In FIG. 5, the upper, broken line 16 shows the level that corresponds to the upper point 18 in the flooring, in this case, the upper surface of the thin binder layer 14 which may exist on the top side of any individual particle or piece 11 in the upper layer of aggregate material. The lower broken line 17 shows the level of the lower point 19 where an individual piece or particle 11 of aggregate material has an upwardly facing, continuous grinding surface.
  • If an analogy is drawn with the grinding of the flooring in the state according to FIG. 1, the levels 16 and 17 would be found as shown in FIG. 4. It will readily be appreciated that, with randomly oriented pieces or particles in the aggregate material, the amount of material that must be ground off is considerably greater than is the case after an orientation of the individual pieces 11 carried out according to the present invention.
  • After grinding down of the top surface of the flooring:, it will have the appearance which is apparent from FIG. 6. In such instance, it should be observed that the upper pieces 11 of aggregate material all display upper grinding surfaces 20 which lie in the one and same plane, while, on the other hand, the amount of binder 9 which is to be found in the upper surface 21 is considerably less.
  • The grinding process between the steps of the production process illustrated in FIGS. 5 and 6 takes place in several stages using gradually finer grinding material. In the last stages, use is made of an extremely fine particulate grinding material, possibly a pure polishing agent so that, as a result, the upper surface 20 and 21 will be smooth.
  • After grinding to the desired surface structure, the ground surface is sealed with a protective paint 100 (shown in phantom in FIG. 6), a wax or the like, whereafter a possible further polishing takes place.
  • In the present application, the use of terms such as “including” is open-ended and is intended to have the same meaning as terms such as “comprising” and not preclude the presence of other structure, material, or acts. Similarly, though the use of terms such as “can” or “may” is intended to be open-ended and to reflect that structure, material, or acts are not necessary, the failure to use such terms is not intended to reflect that structure, material, or acts are essential. To the extent that structure, material, or acts are presently considered to be essential, they are identified as such.
  • While this invention has been illustrated and described in accordance with a preferred embodiment, it is recognized that variations and changes may be made therein without departing from the invention as set forth in the claims.

Claims (7)

1-15. (canceled)
16. A flooring to be smoothed by grinding, comprising:
a first layer of binder;
particles of a first layer of aggregate material spread over the first layer of binder and bonded therein;
a second layer of binder spread over the bonded first layer of binder and particles of the first layer of aggregate material; and
particles of a second layer of aggregate material spread over the second layer of binder and bonded therein, the second layer of binder and the second layer aggregate material having been mechanically processed, relative to a random orientation of aggregate particles of the second layer of aggregate material, to remove air and to turn at least some of the aggregate particles of the second layer of aggregate material so that a volume of the irregular upper surface needed to be removed by grinding to form a smooth upper surface is reduced.
17. The flooring as set forth in claim 16, wherein aggregate material of the first layer aggregate material is randomly oriented.
18. The flooring as set forth in claim 16, wherein the first layer of aggregate material and the second layer of aggregate material are the same type of aggregate material.
19. The flooring as set forth in claim 18, wherein the first layer of binder and the second layer of binder are the same type of binder.
20. The flooring as set forth in claim 16, wherein the first layer of binder and the second layer of binder are the same type of binder.
21. The flooring as set forth in claim 16, wherein the second layer of binder material covers upper surfaces of the particles of aggregate of the second layer of aggregate material.
US12/107,929 2005-03-16 2008-04-23 method of producing a flooring and a flooring produced according to the method Abandoned US20080202045A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/107,929 US20080202045A1 (en) 2005-03-16 2008-04-23 method of producing a flooring and a flooring produced according to the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/907,009 US7504129B2 (en) 2005-03-16 2005-03-16 Method of producing a flooring and a flooring produced according to the method
US12/107,929 US20080202045A1 (en) 2005-03-16 2008-04-23 method of producing a flooring and a flooring produced according to the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/907,009 Division US7504129B2 (en) 2005-03-16 2005-03-16 Method of producing a flooring and a flooring produced according to the method

Publications (1)

Publication Number Publication Date
US20080202045A1 true US20080202045A1 (en) 2008-08-28

Family

ID=37008855

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/907,009 Expired - Fee Related US7504129B2 (en) 2005-03-16 2005-03-16 Method of producing a flooring and a flooring produced according to the method
US12/107,929 Abandoned US20080202045A1 (en) 2005-03-16 2008-04-23 method of producing a flooring and a flooring produced according to the method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/907,009 Expired - Fee Related US7504129B2 (en) 2005-03-16 2005-03-16 Method of producing a flooring and a flooring produced according to the method

Country Status (1)

Country Link
US (2) US7504129B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277127A1 (en) * 2008-05-08 2009-11-12 Single Eagle, Inc. Decorative aggregate concrete surface preparation process
US11168232B2 (en) 2018-02-23 2021-11-09 Ardex Group Gmbh Methods of installing tile using a reactivatable tile bonding mat
US12209413B2 (en) 2019-06-19 2025-01-28 Firmecrete Inc. System and method for exposed aggregate architectural coating for existing concrete structures
US10919813B2 (en) 2019-06-19 2021-02-16 Firmecrete Inc. System and method for exposed aggregate architectural coating for existing concrete structures

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1193843A (en) * 1916-08-08 Amekictjs e
US1361763A (en) * 1920-06-08 1920-12-07 Hamil John Method of surfacing
US1397678A (en) * 1919-11-22 1921-11-22 Paoli Bruno O A De Terrazzo flooring
US1646667A (en) * 1922-03-01 1927-10-25 William M Bailey Company Method of making floors
US1717769A (en) * 1926-06-21 1929-06-18 Morris L Gordon Composite bituminous pavement and method of laying the same
US1857511A (en) * 1928-08-24 1932-05-10 Nathan C Johnson Top surface of concrete and the like and method of forming the same
US1915814A (en) * 1930-05-31 1933-06-27 William C Mcduffie Receiver Fo Method of constructing asphalt macadam surface courses
US2010025A (en) * 1932-12-14 1935-08-06 Carborundum Co Floor surface
US2045936A (en) * 1932-05-20 1936-06-30 Anthony Casciani Construction of terrazzo and like floors
US2083900A (en) * 1933-06-06 1937-06-15 Colprovia Roads Inc Pavement and method of making pavements
US2197431A (en) * 1936-08-07 1940-04-16 Telemachus H Johnson Method of laying concrete pavements
US2296453A (en) * 1941-04-16 1942-09-22 George J Saffert Method of molding concrete products
US3112681A (en) * 1959-08-03 1963-12-03 Exxon Research Engineering Co Paving with polymer-bonded aggregates
US3608444A (en) * 1969-07-14 1971-09-28 Phillips Petroleum Co Pavement laying or patching with aggregate,fabric,and adhesive
US4043738A (en) * 1975-10-29 1977-08-23 Modesto Narciso G Vibratory compacting machine
US4265563A (en) * 1977-03-17 1981-05-05 Owens-Corning Fiberglas Corporation Road pavement and repair
US4284366A (en) * 1979-06-11 1981-08-18 The Johnson Rubber Company Elastomeric composite pavement
US4614486A (en) * 1984-11-07 1986-09-30 Bruno Bragagnini Portable apparatus for compacting and leveling a poured floor
US5152633A (en) * 1988-11-07 1992-10-06 Netlon Limited Method of reinforcing a paved surface
US5185192A (en) * 1989-05-01 1993-02-09 The Granitech Corporation Ornamental pre-cast terrazzo panels with integral inlay design
US5281050A (en) * 1992-05-11 1994-01-25 Howard Ronald M Power screed
US5339589A (en) * 1993-02-12 1994-08-23 Thrower John H Aggregate floor and method for forming same
US5445473A (en) * 1992-07-07 1995-08-29 Koch Materials Company Crack anti-rise system inserted between the structural layer and the road carpet of a carriageway and process for producing such a system
US5480259A (en) * 1994-06-29 1996-01-02 Thrower; John H. Aggregate floor and method for forming same
US5556225A (en) * 1995-02-14 1996-09-17 Felix A. Marino Co., Inc. Method for repairing asphalt pavement
US5702651A (en) * 1996-03-01 1997-12-30 The United States Of America As Respresented By The Secretary Of The Army Use of oriented tabular aggregate in manufacture of high-flexural-strength concrete
US5941656A (en) * 1996-06-10 1999-08-24 Tonen Corporation Method of reinforcing asphalt-placed concrete structure
US6158920A (en) * 1996-03-28 2000-12-12 Total Raffinage Distribution S.A. Roadway structure made from rigid materials
US6951679B2 (en) * 1999-02-09 2005-10-04 Silena Gaggini Surfaces of transparent resin in which marble or other stones are embedded

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH361114A (en) 1960-02-11 1962-03-31 Diethelm & Co Process for the production of floor coverings
DE1509879A1 (en) 1964-11-24 1969-05-22 Herbert Schaefer Process for the production of wear-resistant plastic floor coverings
DE4225613A1 (en) 1992-08-03 1994-02-10 Wilfried Grund Forming floor finishing layer with surface profiling - includes steps of applying granular substance, profiling green surface, and applying finishing layer sealing
SE512627C2 (en) 1997-04-15 2000-04-10 R A Ind Ab Floor covering
US5794401A (en) * 1997-06-03 1998-08-18 Shaw; Lee A. Durable architectural flooring and method of fabricating the same
GB9717902D0 (en) * 1997-08-21 1997-10-29 Smith Michael J Egg handling machinery
EP0992639A1 (en) 1998-10-09 2000-04-12 RA Industrigolv AB Floor covering
FR2820446A1 (en) 2001-02-07 2002-08-09 Interdesco Production of coating of resin mortar charged with siliceous particles on a support using an anchoring layer, a base layer and a finishing layer to confer a smooth surface

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1193843A (en) * 1916-08-08 Amekictjs e
US1397678A (en) * 1919-11-22 1921-11-22 Paoli Bruno O A De Terrazzo flooring
US1361763A (en) * 1920-06-08 1920-12-07 Hamil John Method of surfacing
US1646667A (en) * 1922-03-01 1927-10-25 William M Bailey Company Method of making floors
US1717769A (en) * 1926-06-21 1929-06-18 Morris L Gordon Composite bituminous pavement and method of laying the same
US1857511A (en) * 1928-08-24 1932-05-10 Nathan C Johnson Top surface of concrete and the like and method of forming the same
US1915814A (en) * 1930-05-31 1933-06-27 William C Mcduffie Receiver Fo Method of constructing asphalt macadam surface courses
US2045936A (en) * 1932-05-20 1936-06-30 Anthony Casciani Construction of terrazzo and like floors
US2010025A (en) * 1932-12-14 1935-08-06 Carborundum Co Floor surface
US2083900A (en) * 1933-06-06 1937-06-15 Colprovia Roads Inc Pavement and method of making pavements
US2197431A (en) * 1936-08-07 1940-04-16 Telemachus H Johnson Method of laying concrete pavements
US2296453A (en) * 1941-04-16 1942-09-22 George J Saffert Method of molding concrete products
US3112681A (en) * 1959-08-03 1963-12-03 Exxon Research Engineering Co Paving with polymer-bonded aggregates
US3608444A (en) * 1969-07-14 1971-09-28 Phillips Petroleum Co Pavement laying or patching with aggregate,fabric,and adhesive
US4043738A (en) * 1975-10-29 1977-08-23 Modesto Narciso G Vibratory compacting machine
US4265563A (en) * 1977-03-17 1981-05-05 Owens-Corning Fiberglas Corporation Road pavement and repair
US4284366A (en) * 1979-06-11 1981-08-18 The Johnson Rubber Company Elastomeric composite pavement
US4614486A (en) * 1984-11-07 1986-09-30 Bruno Bragagnini Portable apparatus for compacting and leveling a poured floor
US5152633A (en) * 1988-11-07 1992-10-06 Netlon Limited Method of reinforcing a paved surface
US5185192A (en) * 1989-05-01 1993-02-09 The Granitech Corporation Ornamental pre-cast terrazzo panels with integral inlay design
US5281050A (en) * 1992-05-11 1994-01-25 Howard Ronald M Power screed
US5445473A (en) * 1992-07-07 1995-08-29 Koch Materials Company Crack anti-rise system inserted between the structural layer and the road carpet of a carriageway and process for producing such a system
US5339589A (en) * 1993-02-12 1994-08-23 Thrower John H Aggregate floor and method for forming same
US5480259A (en) * 1994-06-29 1996-01-02 Thrower; John H. Aggregate floor and method for forming same
US5556225A (en) * 1995-02-14 1996-09-17 Felix A. Marino Co., Inc. Method for repairing asphalt pavement
US5702651A (en) * 1996-03-01 1997-12-30 The United States Of America As Respresented By The Secretary Of The Army Use of oriented tabular aggregate in manufacture of high-flexural-strength concrete
US6158920A (en) * 1996-03-28 2000-12-12 Total Raffinage Distribution S.A. Roadway structure made from rigid materials
US5941656A (en) * 1996-06-10 1999-08-24 Tonen Corporation Method of reinforcing asphalt-placed concrete structure
US6951679B2 (en) * 1999-02-09 2005-10-04 Silena Gaggini Surfaces of transparent resin in which marble or other stones are embedded

Also Published As

Publication number Publication date
US20060207213A1 (en) 2006-09-21
US7504129B2 (en) 2009-03-17

Similar Documents

Publication Publication Date Title
CN1179825C (en) Abrasive Pads for Chemical Mechanical Polishing
RU2404861C2 (en) Wear resistant board with decorative surface
US7591967B2 (en) Method for the aesthetic surface treatment of a monolithic concrete floor and product of the method
US5247765A (en) Abrasive product comprising a plurality of discrete composite abrasive pellets in a resilient resin matrix
US20080202045A1 (en) method of producing a flooring and a flooring produced according to the method
CN1118354C (en) Mosaic polishing pads and method relating thereto
CA2359852C (en) Non stain flooring
MY125856A (en) Method of planarizing the upper surface of a semiconductor wafer
EP3593968A1 (en) Device, installation and method for producing an artificial stone slab having coloured veins, and artificial stone slab so obtained
EP1460201A1 (en) A method of producing a flooring and a flooring producted according to the method
US20040161546A1 (en) Method Of Making A Stone Veneer
EP0894593B1 (en) Method for manufacturing mosaic tesserae with an antique appearance, and mosaic tesserae obtainable thereby
JPH07102745A (en) Floor plate
CN215167583U (en) Split type floor
JP7702012B1 (en) Flooring construction structure
EP3347211B1 (en) Structured cork floor
CN2360489Y (en) Marble two-ply
CN1236696A (en) Method for producing sheets of solid surfacing and solid surfacing sheets produced
US20020041937A1 (en) Stone veneer
CN219976961U (en) Diamond micropowder drying dehumidification equipment
JP3103819B2 (en) Decorative plate and manufacturing method thereof
JP3103818B2 (en) Decorative plate and manufacturing method thereof
EP1688560A3 (en) A method of manufacturing a flooring panel
US20020115383A1 (en) Method of removing coating film
CN2650937Y (en) Sander of artificial board

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION