US20070017612A1 - Ignition mixtures - Google Patents
Ignition mixtures Download PDFInfo
- Publication number
- US20070017612A1 US20070017612A1 US11/168,462 US16846205A US2007017612A1 US 20070017612 A1 US20070017612 A1 US 20070017612A1 US 16846205 A US16846205 A US 16846205A US 2007017612 A1 US2007017612 A1 US 2007017612A1
- Authority
- US
- United States
- Prior art keywords
- ignition mixture
- metals
- ignition
- group
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 60
- 239000002360 explosive Substances 0.000 claims abstract description 25
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000007800 oxidant agent Substances 0.000 claims abstract description 7
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical group [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims description 11
- 150000001340 alkali metals Chemical class 0.000 claims description 11
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 11
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000000020 Nitrocellulose Substances 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- -1 ditetrazoles Chemical compound 0.000 claims description 5
- DLINORNFHVEIFE-UHFFFAOYSA-N hydrogen peroxide;zinc Chemical compound [Zn].OO DLINORNFHVEIFE-UHFFFAOYSA-N 0.000 claims description 5
- 229920001220 nitrocellulos Polymers 0.000 claims description 5
- 150000004655 tetrazenes Chemical class 0.000 claims description 5
- 229940105296 zinc peroxide Drugs 0.000 claims description 5
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical class NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- OTXHZHQQWQTQMW-UHFFFAOYSA-N (diaminomethylideneamino)azanium;hydrogen carbonate Chemical compound OC([O-])=O.N[NH2+]C(N)=N OTXHZHQQWQTQMW-UHFFFAOYSA-N 0.000 claims description 3
- FQQQSNAVVZSYMB-UHFFFAOYSA-N 1,1-diaminoguanidine Chemical compound NN(N)C(N)=N FQQQSNAVVZSYMB-UHFFFAOYSA-N 0.000 claims description 3
- YSIBQULRFXITSW-OWOJBTEDSA-N 1,3,5-trinitro-2-[(e)-2-(2,4,6-trinitrophenyl)ethenyl]benzene Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1\C=C\C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O YSIBQULRFXITSW-OWOJBTEDSA-N 0.000 claims description 3
- IDCPFAYURAQKDZ-UHFFFAOYSA-N 1-nitroguanidine Chemical compound NC(=N)N[N+]([O-])=O IDCPFAYURAQKDZ-UHFFFAOYSA-N 0.000 claims description 3
- BAKYASSDAXQKKY-UHFFFAOYSA-N 4-Hydroxy-3-methylbenzaldehyde Chemical compound CC1=CC(C=O)=CC=C1O BAKYASSDAXQKKY-UHFFFAOYSA-N 0.000 claims description 3
- QJTIRVUEVSKJTK-UHFFFAOYSA-N 5-nitro-1,2-dihydro-1,2,4-triazol-3-one Chemical compound [O-][N+](=O)C1=NC(=O)NN1 QJTIRVUEVSKJTK-UHFFFAOYSA-N 0.000 claims description 3
- 101150016456 Hexa gene Proteins 0.000 claims description 3
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical compound NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 claims description 3
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 claims description 3
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 claims description 3
- NDEMNVPZDAFUKN-UHFFFAOYSA-N guanidine;nitric acid Chemical compound NC(N)=N.O[N+]([O-])=O.O[N+]([O-])=O NDEMNVPZDAFUKN-UHFFFAOYSA-N 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- UAGLZAPCOXRKPH-UHFFFAOYSA-N nitric acid;1,2,3-triaminoguanidine Chemical compound O[N+]([O-])=O.NNC(NN)=NN UAGLZAPCOXRKPH-UHFFFAOYSA-N 0.000 claims description 3
- 150000002978 peroxides Chemical class 0.000 claims description 3
- 125000005385 peroxodisulfate group Chemical group 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 150000003673 urethanes Chemical class 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 235000010333 potassium nitrate Nutrition 0.000 claims description 2
- 239000004323 potassium nitrate Substances 0.000 claims description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims 2
- 150000007656 barbituric acids Chemical class 0.000 claims 2
- 238000010304 firing Methods 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- WETZJIOEDGMBMA-UHFFFAOYSA-L lead styphnate Chemical compound [Pb+2].[O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C([O-])=C1[N+]([O-])=O WETZJIOEDGMBMA-UHFFFAOYSA-L 0.000 description 3
- 239000003380 propellant Substances 0.000 description 3
- IUKSYUOJRHDWRR-UHFFFAOYSA-N 2-diazonio-4,6-dinitrophenolate Chemical compound [O-]C1=C([N+]#N)C=C([N+]([O-])=O)C=C1[N+]([O-])=O IUKSYUOJRHDWRR-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000013615 primer Substances 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 2
- JGZAFSFVZSXXCJ-ONEGZZNKSA-N (E)-bis(2H-tetrazol-5-yl)diazene Chemical compound N(=N\C1=NN=NN1)/C1=NN=NN1 JGZAFSFVZSXXCJ-ONEGZZNKSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 150000007945 N-acyl ureas Chemical class 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Inorganic materials [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 231100000279 safety data Toxicity 0.000 description 1
- DUIOPKIIICUYRZ-UHFFFAOYSA-N semicarbazide Chemical compound NNC(N)=O DUIOPKIIICUYRZ-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Inorganic materials [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/10—Initiators therefor
- F42B3/113—Initiators therefor activated by optical means, e.g. laser, flashlight
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06C—DETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
- C06C7/00—Non-electric detonators; Blasting caps; Primers
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06C—DETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
- C06C9/00—Chemical contact igniters; Chemical lighters
Definitions
- the present invention relates to ignition mixtures and manufacture and use thereof.
- Ignition mixtures and primers are used to ignite pyrotechnic mixtures or primers as well as propellant charges.
- the pyrotechnic mixtures or primers can represent the single charge or a booster charge or a gas-generating primer.
- Propellant charges and primers convert into primarily gaseous components which can be used to trigger rapid-acting processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety.
- One variant is represented by the use of liquid primers instead of solid primers. These exploit the reaction of liquid fuel with oxidizers to generate gases.
- Ignition mixtures are generally triggered mechanically so that they must be sensitive to the action of friction and impact. They generally consist of initial or primary explosives such as lead trinitroresorcinate or diazodinitrophenol, reducing agents such as metal powder, or oxidizers such as barium nitrate or zinc peroxide. Sensitizers such as tetrazene or friction agents such as powdered glass, which increase the sensitivity of the initial explosive materials, are also used. For electrically ignitable systems, the rapid-reacting initial explosives are primarily used. However, the high mechanical sensitivity of the components required for perfect function is a disadvantage when handling the raw materials and mixtures. Handling requires special safety measures. Other types of ignition such as ignition by heat or by coupling high-frequency electromagnetic waves do not solve this problem or are suitable only for highly specialized and sharply limited applications.
- the goal of the present invention is to provide new ignition mixtures.
- the problem is solved by ignition mixtures that can be ignited by the laser light.
- the explosives contained in the ignition mixtures according to the invention can be primary or initial explosives, secondary explosives, or mixtures of these explosives.
- the primary or initial explosives that can be used may for example be lead trinitroresorcinate, diazodinitrophenol, tetrazene, or potassium dinitrobenzofuroxanate, or mixtures of these explosives.
- Appropriate secondary explosives are chosen from nitrocellulose, hexanitrostilbene, nitrided aromatic compounds, and/or nitrided aromatic compounds with a polymer structure such as polynitropolyphenylether or plynitropolyphenylenes, from specific heterocycles such as nitrotriazolone, from the derivatives of tetrazoles such as aminotetrazole, ditetrazole, or diaminoguanidine azotetrazole, and from hexagene or octagene. Secondary explosives derived from urea and its derivatives can also be used.
- urea derivatives biuret guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazide nitrate, as well as urethanes, ureides such as barbituric acid, and their derivatives.
- These explosives can be used alone or in a mixture.
- secondary explosives are preferred, and nitrided aromatic compounds with a polymer structure, in particular polynitropolyphenylether and the polynitropolyphenylenes or mixtures of these secondary explosives are particularly preferred.
- the igniters according to the invention also contain oxidizers and reducing agents which are common per se. Binders, processing agents, and pressing agents can also be used.
- Oxidizers that may be used can be the peroxides of alkali metals and alkaline earth metals, zinc peroxide, and the peroxodisulfates of the aforesaid elements and of ammonium, nitrates of alkali metals, and alkaline earth metals, in particular lithium, sodium, potassium, or strontium nitrate, as well as ammonium nitrate, oxohalogen compounds of alkali metals or alkaline earth metals or of ammonium, and particularly preferably potassium perchlorate or ammonium perchlorate.
- Sulfur is also suitable as an oxidizer. These oxidizers can be used alone or in a mixture.
- the reducing agents used according to the invention are metals such as titanium, zirconium, aluminum, magnesium, and cerium in the finely powdered form. Alloys of these metals as well such as titanium/aluminum or cerium/magnesium can be used according to the invention. Other reducing agents are carbon or boron. These reducing agents can be used alone or in a mixture.
- binders Compounds from the group of polyesters or polyurethanes can be used as binders.
- Processing agents and pressing agents can be substances which for example improve flowability such as Aerosil or substances which impede dust formation and improve slip or meterability, such as graphite or boron nitride.
- the ignition mixtures according to the invention can also be dyed or reacted with dye pigments.
- Heat stability can also be improved if necessary by adding stabilizers.
- Substances used to stabilize nitrocellulose can for example be used for this purpose.
- combustion moderates that affect the rate of combustion can be added to the ignition mixtures according to the invention.
- Moderators that participate in the reaction in the form of heterogenous catalysis are metals, metal oxides, and/or metal carbonates and/or metal sulfides.
- the metals that can preferably be used are boron, silicon, copper, iron, titanium, zinc, or molybdenum. Calcium carbonate can also be used. Mixtures of these moderators can also be used.
- Moderators that react in the form of homogenous catalysis are for example sulfur, copper resorcilates, or ferrocene and its derivatives. These moderators are evaporated by the temperatures produced by the reaction and can thus affect the reaction themselves or as secondary products.
- the ignition mixtures according to the invention can also be treated with protective agents or be coated.
- the ignition mixtures according to the invention have multiple potential uses. For example, they are used to ignite pyrotechnic mixtures or primers as well as propellant charges that trigger rapid processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety.
- thermodynamic computer program for the ignition mixtures according to the invention at constant volume and a loading density of 0.1 g/cm 3 . Table 3 shows the most important data in the thermodynamic calculation. The ignition energy necessary for triggering a reaction was determined experimentally.
- the ignition mixtures according to the invention were produced by methods known of themselves.
- the individual components were sifted through a sieve with a small mesh size of 0.2 mm as shown in Table 1 and mixed in a tumble mixer for 30 minutes. 200 mg portions of these mixtures were pressed into pellets with a diameter of 6 mm with a pressing force of 71 N/mm 2 .
- the pellets so produced were ignited with a laser beam (wavelength 1,060 nm) with an energy of approximately 200 mJ and a pulse length of 2.5 ms.
- the ignition behavior is shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Air Bags (AREA)
- Automotive Seat Belt Assembly (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
A firing mixture which contains explosives, oxidizing and reducing agents is characterized in that it contains one or several explosives which can be fired by laser light. Also disclosed is a process for producing the same and its use.
Description
- This is a continuation of application of Ser. No. 09/873,422, filed Jun. 5, 2001, which is a continuation of application Ser. No. 09/639,071, filed Aug. 16, 2000, which is a continuation of application Ser. No. 09/171,805, filed Oct. 14, 1999 (now abandoned).
- The present invention relates to ignition mixtures and manufacture and use thereof.
- Ignition mixtures and primers are used to ignite pyrotechnic mixtures or primers as well as propellant charges. The pyrotechnic mixtures or primers can represent the single charge or a booster charge or a gas-generating primer. Propellant charges and primers convert into primarily gaseous components which can be used to trigger rapid-acting processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety. One variant is represented by the use of liquid primers instead of solid primers. These exploit the reaction of liquid fuel with oxidizers to generate gases.
- Ignition mixtures are generally triggered mechanically so that they must be sensitive to the action of friction and impact. They generally consist of initial or primary explosives such as lead trinitroresorcinate or diazodinitrophenol, reducing agents such as metal powder, or oxidizers such as barium nitrate or zinc peroxide. Sensitizers such as tetrazene or friction agents such as powdered glass, which increase the sensitivity of the initial explosive materials, are also used. For electrically ignitable systems, the rapid-reacting initial explosives are primarily used. However, the high mechanical sensitivity of the components required for perfect function is a disadvantage when handling the raw materials and mixtures. Handling requires special safety measures. Other types of ignition such as ignition by heat or by coupling high-frequency electromagnetic waves do not solve this problem or are suitable only for highly specialized and sharply limited applications.
- The goal of the present invention is to provide new ignition mixtures.
- In a first embodiment of the invention, the problem is solved by ignition mixtures that can be ignited by the laser light. The explosives contained in the ignition mixtures according to the invention can be primary or initial explosives, secondary explosives, or mixtures of these explosives. The primary or initial explosives that can be used may for example be lead trinitroresorcinate, diazodinitrophenol, tetrazene, or potassium dinitrobenzofuroxanate, or mixtures of these explosives. Appropriate secondary explosives are chosen from nitrocellulose, hexanitrostilbene, nitrided aromatic compounds, and/or nitrided aromatic compounds with a polymer structure such as polynitropolyphenylether or plynitropolyphenylenes, from specific heterocycles such as nitrotriazolone, from the derivatives of tetrazoles such as aminotetrazole, ditetrazole, or diaminoguanidine azotetrazole, and from hexagene or octagene. Secondary explosives derived from urea and its derivatives can also be used. Examples of these are the urea derivatives biuret, guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazide nitrate, as well as urethanes, ureides such as barbituric acid, and their derivatives. These explosives can be used alone or in a mixture. According to the invention, secondary explosives are preferred, and nitrided aromatic compounds with a polymer structure, in particular polynitropolyphenylether and the polynitropolyphenylenes or mixtures of these secondary explosives are particularly preferred.
- In addition to the explosives, the igniters according to the invention also contain oxidizers and reducing agents which are common per se. Binders, processing agents, and pressing agents can also be used.
- Oxidizers that may be used can be the peroxides of alkali metals and alkaline earth metals, zinc peroxide, and the peroxodisulfates of the aforesaid elements and of ammonium, nitrates of alkali metals, and alkaline earth metals, in particular lithium, sodium, potassium, or strontium nitrate, as well as ammonium nitrate, oxohalogen compounds of alkali metals or alkaline earth metals or of ammonium, and particularly preferably potassium perchlorate or ammonium perchlorate. Sulfur is also suitable as an oxidizer. These oxidizers can be used alone or in a mixture.
- The reducing agents used according to the invention are metals such as titanium, zirconium, aluminum, magnesium, and cerium in the finely powdered form. Alloys of these metals as well such as titanium/aluminum or cerium/magnesium can be used according to the invention. Other reducing agents are carbon or boron. These reducing agents can be used alone or in a mixture.
- Compounds from the group of polyesters or polyurethanes can be used as binders. Compounds with binding properties that contribute to the heat of explosion and/or the oxygen balance, for example nitrocellulose or polynitropolyphenylene, can also be used as binders.
- Processing agents and pressing agents can be substances which for example improve flowability such as Aerosil or substances which impede dust formation and improve slip or meterability, such as graphite or boron nitride.
- For improved absorption of laser light, the ignition mixtures according to the invention can also be dyed or reacted with dye pigments. Heat stability can also be improved if necessary by adding stabilizers. Substances used to stabilize nitrocellulose can for example be used for this purpose.
- In addition, combustion moderates that affect the rate of combustion can be added to the ignition mixtures according to the invention.
- Substances or mixtures thereof able to affect combustion and combustion rate by heterogenous or homogenous catalysis are used as combustion moderates. Moderator that participate in the reaction in the form of heterogenous catalysis are metals, metal oxides, and/or metal carbonates and/or metal sulfides. The metals that can preferably be used are boron, silicon, copper, iron, titanium, zinc, or molybdenum. Calcium carbonate can also be used. Mixtures of these moderators can also be used.
- Moderators that react in the form of homogenous catalysis are for example sulfur, copper resorcilates, or ferrocene and its derivatives. These moderators are evaporated by the temperatures produced by the reaction and can thus affect the reaction themselves or as secondary products.
- For protection against environmental influences, the ignition mixtures according to the invention can also be treated with protective agents or be coated.
- The ignition mixtures according to the invention have multiple potential uses. For example, they are used to ignite pyrotechnic mixtures or primers as well as propellant charges that trigger rapid processes such as acceleration of projectiles, driving in fastening materials, for example with the aid of bolt setters, or inflating air bags or triggering belt tighteners in vehicle safety.
- The safety data on some of the ignition mixtures according to the invention are provided in Table 2. The data were derived by the methods of the Bundesanstalt für Materialprüfung [Federal Institute for Materials Testing]. By comparison to the primary explosive lead nitroresorcinate, sensitivity to friction and impact are significantly improved with the igniting agents according to the invention.
- In estimating important parameters of the ignition mixtures according to the invention such as the energy released by the reaction (heat of explosion), pressure, explosion temperature, and reaction products produced at this temperature, an adiabatic reaction was calculated with a thermodynamic computer program for the ignition mixtures according to the invention at constant volume and a loading density of 0.1 g/cm3. Table 3 shows the most important data in the thermodynamic calculation. The ignition energy necessary for triggering a reaction was determined experimentally.
- The examples below are intended to illustrate the invention without restricting it.
- The ignition mixtures according to the invention were produced by methods known of themselves. The individual components were sifted through a sieve with a small mesh size of 0.2 mm as shown in Table 1 and mixed in a tumble mixer for 30 minutes. 200 mg portions of these mixtures were pressed into pellets with a diameter of 6 mm with a pressing force of 71 N/mm2. The pellets so produced were ignited with a laser beam (wavelength 1,060 nm) with an energy of approximately 200 mJ and a pulse length of 2.5 ms. The ignition behavior is shown in Table 1.
TABLE 1 Examples Components 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNO3 52.5 52.5 33.3 32.3 33.3 40 40 B 18.8 18.8 2.9 2.9 10 10 binder 3.7 3.7 NPE 25 45 44.7 44.5 44.1 66.7 64.8 66.7 64.8 25 50 PNP 25 100 66.7 50 25 ZnO2 50 49.8 49.8 49 33.3 32.3 Ti 5 4.9 4.9 4.9 graphite 0.5 1 2 black powder 75 75 ignition behavior +++ + + + + + + ++ + + + +++ +++ + + +++ + = ignition ++ = good ignition +++ = very good ignition Components Used: KNO3 potassium nitrate <200 μm B amorphous boron Ti titanium metal powder <40 μm binder polyurethane NPE polynitropolyphenylether PNP polynitropolyphenylene ZnO2 zinc peroxide, mean grain size 6.5 μ, oxygen content 13.5% -
TABLE 2 Ex. Condensate Ignition Pressure T Heat Percentage Energy Specimen (atm) (K) (cal/g) (%/mol) (mJ) NPE 1109 2932 686 0 ≈10 NPE/KNO3 907.4 3073.5 672 7.5 160 66.7/33.3 NPE/ZnO2Ti 1198 4146 978 14.6 ≈200 45/50/5 black powder/ 430 2290 −179 11.6 ≈200 NPE 75/25 AZM O 622 3265 615 52 ≈200 9531/NPE 75/25 NPE/KNO3/B 843 3374 673 29 ≈90 50/40/10 NPE/ZnO2 1341 4044 1016 7 >200 66.7/33.3 NPE/ZnO2/B 1194 3731 991 14 >200 64.8/32.3/2.9 NPE/KNO3/B 1002 3382 752 2 ≈100 64.8/32.3/2.9 NC/KNO3 872 3282 883 11 no ignition 66.7/33.3 lead 683 3639 550 10 ≈5 trinitroresorcinate -
TABLE 3 Friction Sensitivity Impact Sensitivity Detonation Point Explosive (N) (J) (° C.) lead trinitroresorcinate 2 ≦0.025 280 AZM O 2956 ≧360 5 >400 AZM O 9531 ≧360 4 >400 black powder ≧360 5 >400 HITP ≧360 15-50 >400 (aminotetrazole base) NPE ≧360 7.5 >260 NPE/ZnO2/Ti ≧360 15 230 NPE/ZnO2 240 20 235 NPE/KNO3 + 3% B 160 4 decomposition starting at 230 PNP/KNO3 ≧360 10 293 PNP/KNO3/B ≧360 10 293
Claims (12)
1. Ignition mixture that is ignitable by laser light and that contains a secondary explosive, wherein the secondary explosive is selected from the group consisting of polynitrophenylether, polynitropolyphenylenes, nitrocellulose, hexanitrostilbene, nitrotriazolone, aminotetrazoles, ditetrazoles, diaminoguanidine azotetrazoles, hexagene, octagene, biuret, guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazidenitrate, urethanes, barbituric acids and mixtures thereof.
2. Ignition mixture according to claim 1 , characterized in that the secondary explosive is selected from the group consisting of polynitropolyphenylethers and polynitropolyphenylenes.
3. Ignition mixture according to claim 1 , characterized in that the ignition mixture further contains an oxidizer, wherein the oxidizer is selected from the group consisting of sulfur, the peroxides of alkali metals or alkaline earth metals, zinc peroxide, peroxodisulfates of alkali metals or alkaline earth metals, ammonium from the nitrates of alkali metals and alkaline earth metals, oxohalogen compounds of alkali metals or alkaline earth metals, ammonium, and mixtures thereof.
4. Ignition mixture according to claim 1 , characterized in that the mixture further contains a reducing agent, wherein the reducing agent is selected from the group consisting of a metal selected from the group consisting of titanium, zirconium, aluminum, magnesium, cerium, and a mixture of these metals, an alloy of these metals carbon, boron, and mixtures thereof.
5. Ignition mixture according to claim 1 , characterized in that the ignition mixture further contains binders and/or processing agents and/or pressing agents and/or combustion moderators.
6. Ignition mixture according to claim 1 , characterized in that the ignition mixture is dyed or reacted with dye pigments.
7. Ignition mixture according to claim 1 , characterized in that the ignition mixture further contains combustion moderators that are appropriate for affecting combustion and the rate thereof by heterogeneous or homogenous catalysis.
8. Method for manufacturing the ignition mixture according to claim 1 , characterized in that the individual components are mixed then pressed.
9. An ignition mixture that is ignitable by laser light and that contains a secondary explosive, an oxidizer, a reducing agent and a binder, wherein
the secondary explosive is selected from the group consisting of polynitrophenylether, polynitropolyphenylenes, nitrocellulose, hexanitrostilbene, nitrotriazolone, aminotetrazoles, ditetrazoles, diaminoguanidine azotetrazoles, hexagene, octagene, biuret, guanidine, nitroguanidine, guanidine nitrate, aminoguanidine, aminoguanidine nitrate, thiourea, triaminoguanidine nitrate, aminoguanidine hydrogen carbonate, azodicarboxylic acid diamide, tetrazene, semicarbazidenitrate, urethanes, barbituric acids and mixtures thereof,
the oxidizer is selected from the group consisting of sulfur, the peroxides of alkali metals or alkaline earth metals, zinc peroxide, peroxodisulfates of alkali metals or alkaline earth metals, ammonium from the nitrates of alkali metals and alkaline earth metals, oxohalogen compounds of alkali metals or alkaline earth metals, ammonium, and mixtures thereof, and
the reducing agent is selected from the group consisting of a metal selected from the group consisting of titanium, zirconium, aluminum, magnesium, cerium, and a mixture of these metals, an alloy of these metals, carbon, boron, and mixtures thereof.
10. The ignition mixture according to claim 9 , wherein
the secondary explosive is polynitrophenylether,
the oxidizer is potassium nitrate,
the reducing agent is boron, and
the binder is polyurethane.
11. A method for igniting an ignition mixture, comprising igniting an ignition mixture with laser light, the ignition mixture comprising the ignition mixture according to claim 1 .
12. A method for igniting an ignition mixture, comprising igniting an ignition mixture with laser light, the ignition mixture comprising the ignition mixture according to claim 9.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/168,462 US20070017612A1 (en) | 1996-04-26 | 2005-06-29 | Ignition mixtures |
| US12/750,643 US20100180787A1 (en) | 1996-04-26 | 2010-03-30 | Ignition mixtures |
| US12/963,794 US20110162547A1 (en) | 1996-04-26 | 2010-12-09 | Ignition mixtures |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19616627A DE19616627A1 (en) | 1996-04-26 | 1996-04-26 | Kindling mixtures |
| DE19616627.6 | 1996-04-26 | ||
| US17180599A | 1999-10-14 | 1999-10-14 | |
| US63907100A | 2000-08-16 | 2000-08-16 | |
| US09/873,422 US20010054462A1 (en) | 1996-04-26 | 2001-06-05 | Ignition Mixtures |
| US11/168,462 US20070017612A1 (en) | 1996-04-26 | 2005-06-29 | Ignition mixtures |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/873,422 Continuation US20010054462A1 (en) | 1996-04-26 | 2001-06-05 | Ignition Mixtures |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/750,643 Division US20100180787A1 (en) | 1996-04-26 | 2010-03-30 | Ignition mixtures |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070017612A1 true US20070017612A1 (en) | 2007-01-25 |
Family
ID=7792474
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/873,422 Abandoned US20010054462A1 (en) | 1996-04-26 | 2001-06-05 | Ignition Mixtures |
| US11/168,462 Abandoned US20070017612A1 (en) | 1996-04-26 | 2005-06-29 | Ignition mixtures |
| US12/750,643 Abandoned US20100180787A1 (en) | 1996-04-26 | 2010-03-30 | Ignition mixtures |
| US12/963,794 Abandoned US20110162547A1 (en) | 1996-04-26 | 2010-12-09 | Ignition mixtures |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/873,422 Abandoned US20010054462A1 (en) | 1996-04-26 | 2001-06-05 | Ignition Mixtures |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/750,643 Abandoned US20100180787A1 (en) | 1996-04-26 | 2010-03-30 | Ignition mixtures |
| US12/963,794 Abandoned US20110162547A1 (en) | 1996-04-26 | 2010-12-09 | Ignition mixtures |
Country Status (6)
| Country | Link |
|---|---|
| US (4) | US20010054462A1 (en) |
| EP (1) | EP0894235B1 (en) |
| AT (1) | ATE304156T1 (en) |
| DE (2) | DE19616627A1 (en) |
| ES (1) | ES2249799T3 (en) |
| WO (1) | WO1997041403A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090151825A1 (en) * | 2006-02-24 | 2009-06-18 | Cheddite France | Ignition Composition and Applications |
| US20120132099A1 (en) * | 2008-08-19 | 2012-05-31 | Busky Randall T | Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same |
| RU2522611C2 (en) * | 2012-10-18 | 2014-07-20 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Light sensitive explosive composition |
| US9199887B2 (en) | 2006-03-02 | 2015-12-01 | Orbital Atk, Inc. | Propellant compositions including stabilized red phosphorus and methods of forming same |
| RU2637016C1 (en) * | 2017-03-20 | 2017-11-29 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Method for manufacturing heat-resistant light-sensitive explosive compositions and light detonator on their basis |
| US20180130659A1 (en) * | 2016-11-08 | 2018-05-10 | Varian Semiconductor Equipment Associates, Inc. | Plasma Doping Using A Solid Dopant Source |
| RU2729490C1 (en) * | 2019-06-14 | 2020-08-07 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Initiating composition and method for production thereof |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19805976C1 (en) * | 1998-02-13 | 1999-04-29 | Nigu Chemie Gmbh | Pre-ignition powder for thermal safety device for car air-bags |
| ATE369327T1 (en) * | 1998-03-20 | 2007-08-15 | Delphi Tech Inc | ELECTRICALLY ACTUATED INITIAL EXPLOSIVES AND IGNITION SETS |
| US6165296A (en) * | 1999-02-02 | 2000-12-26 | Autoliv Development As | Gas generant igniter composition and method |
| US6132480A (en) * | 1999-04-22 | 2000-10-17 | Autoliv Asp, Inc. | Gas forming igniter composition for a gas generant |
| ATA75099A (en) * | 1999-04-28 | 2001-03-15 | Hirtenberger Ag | IGNITION BLOCK |
| DE10058705C1 (en) | 2000-11-25 | 2002-02-28 | Rheinmetall W & M Gmbh | Pourable bursting charge consisting of crystalline explosive embedded in a polymer matrix, containing finely divided metal powder, e.g. vanadium, as solid lubricant to provide low viscosity at high solids content |
| WO2003000624A2 (en) * | 2001-05-10 | 2003-01-03 | Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik | Igniting agents |
| AT410315B (en) * | 2001-11-14 | 2003-03-25 | Josef Koehler | Low signature pyrotechnic product, used as electrically-ignitable bullet-hit for special effects or in cable cutter, pelican hook, glass breaker or trunnion gun, contains atoxic metal diazinate, passivator and nitro compounds |
| KR100561952B1 (en) * | 2002-09-13 | 2006-03-21 | 주식회사 한화 | Microvibration Shredding Agent Composition |
| US20040089383A1 (en) * | 2003-02-06 | 2004-05-13 | Mendenhall Ivan V. | Gas generant igniter coating materials and methods |
| DE102004001980A1 (en) * | 2003-01-14 | 2004-07-22 | Ruag Ammotec Gmbh | Propellant charge useful in weapons training systems comprises a soft friction material |
| JP2007516404A (en) | 2003-05-21 | 2007-06-21 | アレックザ ファーマシューティカルズ, インコーポレイテッド | Optically or electrically ignited built-in heating unit and drug supply unit using the same |
| US7402777B2 (en) | 2004-05-20 | 2008-07-22 | Alexza Pharmaceuticals, Inc. | Stable initiator compositions and igniters |
| EP2246086A3 (en) | 2004-08-12 | 2012-11-21 | Alexza Pharmaceuticals, Inc. | Aerosol drug delivery device incorporating percussively activated heating unit |
| DE102009052120A1 (en) * | 2008-11-07 | 2010-06-02 | Ruag Ammotec Gmbh | Ignition rates with improved ignition performance |
| US8465606B1 (en) * | 2009-01-16 | 2013-06-18 | The United States Of America As Represented By The Secretary Of The Army | Composition of matter for an incendiary device and method of manufacture |
| DE102011108146B4 (en) * | 2011-07-20 | 2014-03-20 | Diehl Bgt Defence Gmbh & Co. Kg | Use of a salt of bistetrazolylamine and detonator |
| WO2013187926A1 (en) * | 2012-06-13 | 2013-12-19 | Alliant Techsystems Inc. | Non lethal payloads and methods of producing same |
| KR101740620B1 (en) * | 2015-02-27 | 2017-05-26 | 부산대학교 산학협력단 | Nano Energetic Material Composites with Explosion via Optical Ignition and Method for fabricating the same |
| US20190023629A1 (en) * | 2016-10-05 | 2019-01-24 | Olin Corporation | Pyrotechnic compositions |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3618521A (en) * | 1969-07-07 | 1971-11-09 | Us Navy | Propellant gas generator |
| US3682727A (en) * | 1968-08-05 | 1972-08-08 | Dynamit Nobel Ag | Igniter charge for propellant compositions and rocket propellant charges |
| US4363679A (en) * | 1979-12-22 | 1982-12-14 | Dynamit Nobel Aktiengesellschaft | Use of zinc peroxide as oxidant for explosives and pyrotechnical mixtures |
| US4620046A (en) * | 1983-03-21 | 1986-10-28 | Dynamit Nobel Aktiengesellschaft | Nitrated aryl ethers |
| US4861924A (en) * | 1988-08-25 | 1989-08-29 | Jet Research Center, Inc. | 1,3,5-trinitro-2,4,6-tripicrylbenzene |
| US4870903A (en) * | 1987-05-20 | 1989-10-03 | Aerospatiale Societe Nationale Industrielle | Photopyrotechnical detonation device and photopyrotechnical chain using this device |
| US4956029A (en) * | 1987-03-11 | 1990-09-11 | Dynamit Nobel Aktiengesellschaft | Electrically primable igniter charges for caseless ammunition and propellant cartridges |
| US5212343A (en) * | 1990-08-27 | 1993-05-18 | Martin Marietta Corporation | Water reactive method with delayed explosion |
| US5241264A (en) * | 1991-05-15 | 1993-08-31 | Advantest Corporation | IC test apparatus |
| US5406889A (en) * | 1993-09-03 | 1995-04-18 | Morton International, Inc. | Direct laser ignition of ignition products |
| US5472529A (en) * | 1991-06-26 | 1995-12-05 | Asahi Kasei Kogyo Kabushiki Kaisha | Explosive composition and method for producing the same |
| US5552257A (en) * | 1994-01-21 | 1996-09-03 | Minnesota Mining And Manufacturing Company | Thermal decomposition of azide-containing materials |
| US5625165A (en) * | 1992-02-24 | 1997-04-29 | Wight; Charles A. | Desensitized energetic materials |
| US5747723A (en) * | 1996-11-26 | 1998-05-05 | The United States Of America As Represented By The Secretary Of The Army | Modular artillery charge system |
| US6080248A (en) * | 1998-02-10 | 2000-06-27 | Snpe | Non-detonatable pyrotechnic materials for microsystems |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3519505A (en) * | 1967-03-01 | 1970-07-07 | Space Ordnance Systems Inc | Ignition material containing tellurium dioxide,boron and fluoropolymeric binder |
| US3876478A (en) * | 1972-12-18 | 1975-04-08 | Us Navy | Light sensitive explosive mixture |
| DE2543971C2 (en) * | 1975-10-02 | 1986-05-22 | Dynamit Nobel Ag, 5210 Troisdorf | Ignition system for high temperature resistant propellants |
| DE2752166C2 (en) * | 1977-11-23 | 1986-10-23 | Dynamit Nobel Ag, 5210 Troisdorf | Polynitro aromatic polymers |
| LU85320A1 (en) * | 1984-04-17 | 1985-11-27 | Oreal | COSMETIC COMPOSITION CONTAINING ALOESIN AS A PROTECTIVE AGENT AGAINST SUNLIGHT AND ITS USE FOR PROTECTING SKIN AND HAIR |
| SE462092B (en) * | 1988-10-17 | 1990-05-07 | Nitro Nobel Ab | INITIATIVE ELEMENT FOR PRIMARY EXTENSION FREE EXPLOSION CAPS |
| US4892037A (en) * | 1989-01-03 | 1990-01-09 | The United States Of America As Represented By The Secretary Of The Army | Self consumable initiator |
| US5099761A (en) * | 1991-01-28 | 1992-03-31 | The United States Of America As Represented By The Secretary Of The Army | Laser actuated thru-bulkhead initiator |
| US5179247A (en) * | 1991-07-15 | 1993-01-12 | Ensign-Bickford Aerospace Corporation | Optically initiated detonator |
| DE4302476C2 (en) * | 1993-01-29 | 1995-12-07 | Dynamit Nobel Ag | Ignition-sensitive electrical detonators with a weak detonative output, process for their production and their use |
| DE69508023T2 (en) * | 1994-08-27 | 1999-10-07 | Eley Ltd., Witton | Initial charge |
-
1996
- 1996-04-26 DE DE19616627A patent/DE19616627A1/en not_active Ceased
-
1997
- 1997-04-24 AT AT97921748T patent/ATE304156T1/en active
- 1997-04-24 EP EP97921748A patent/EP0894235B1/en not_active Expired - Lifetime
- 1997-04-24 WO PCT/EP1997/002104 patent/WO1997041403A1/en not_active Ceased
- 1997-04-24 DE DE59712416T patent/DE59712416D1/en not_active Expired - Lifetime
- 1997-04-24 ES ES97921748T patent/ES2249799T3/en not_active Expired - Lifetime
-
2001
- 2001-06-05 US US09/873,422 patent/US20010054462A1/en not_active Abandoned
-
2005
- 2005-06-29 US US11/168,462 patent/US20070017612A1/en not_active Abandoned
-
2010
- 2010-03-30 US US12/750,643 patent/US20100180787A1/en not_active Abandoned
- 2010-12-09 US US12/963,794 patent/US20110162547A1/en not_active Abandoned
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3682727A (en) * | 1968-08-05 | 1972-08-08 | Dynamit Nobel Ag | Igniter charge for propellant compositions and rocket propellant charges |
| US3618521A (en) * | 1969-07-07 | 1971-11-09 | Us Navy | Propellant gas generator |
| US4363679A (en) * | 1979-12-22 | 1982-12-14 | Dynamit Nobel Aktiengesellschaft | Use of zinc peroxide as oxidant for explosives and pyrotechnical mixtures |
| US4620046A (en) * | 1983-03-21 | 1986-10-28 | Dynamit Nobel Aktiengesellschaft | Nitrated aryl ethers |
| US4956029A (en) * | 1987-03-11 | 1990-09-11 | Dynamit Nobel Aktiengesellschaft | Electrically primable igniter charges for caseless ammunition and propellant cartridges |
| US4870903A (en) * | 1987-05-20 | 1989-10-03 | Aerospatiale Societe Nationale Industrielle | Photopyrotechnical detonation device and photopyrotechnical chain using this device |
| US4861924A (en) * | 1988-08-25 | 1989-08-29 | Jet Research Center, Inc. | 1,3,5-trinitro-2,4,6-tripicrylbenzene |
| US5212343A (en) * | 1990-08-27 | 1993-05-18 | Martin Marietta Corporation | Water reactive method with delayed explosion |
| US5241264A (en) * | 1991-05-15 | 1993-08-31 | Advantest Corporation | IC test apparatus |
| US5472529A (en) * | 1991-06-26 | 1995-12-05 | Asahi Kasei Kogyo Kabushiki Kaisha | Explosive composition and method for producing the same |
| US5625165A (en) * | 1992-02-24 | 1997-04-29 | Wight; Charles A. | Desensitized energetic materials |
| US5406889A (en) * | 1993-09-03 | 1995-04-18 | Morton International, Inc. | Direct laser ignition of ignition products |
| US5552257A (en) * | 1994-01-21 | 1996-09-03 | Minnesota Mining And Manufacturing Company | Thermal decomposition of azide-containing materials |
| US5747723A (en) * | 1996-11-26 | 1998-05-05 | The United States Of America As Represented By The Secretary Of The Army | Modular artillery charge system |
| US6080248A (en) * | 1998-02-10 | 2000-06-27 | Snpe | Non-detonatable pyrotechnic materials for microsystems |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090151825A1 (en) * | 2006-02-24 | 2009-06-18 | Cheddite France | Ignition Composition and Applications |
| US8052813B2 (en) * | 2006-02-24 | 2011-11-08 | Cheddite France | Ignition composition and applications |
| US9199887B2 (en) | 2006-03-02 | 2015-12-01 | Orbital Atk, Inc. | Propellant compositions including stabilized red phosphorus and methods of forming same |
| US20120132099A1 (en) * | 2008-08-19 | 2012-05-31 | Busky Randall T | Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same |
| US8540828B2 (en) * | 2008-08-19 | 2013-09-24 | Alliant Techsystems Inc. | Nontoxic, noncorrosive phosphorus-based primer compositions and an ordnance element including the same |
| RU2522611C2 (en) * | 2012-10-18 | 2014-07-20 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Light sensitive explosive composition |
| US20180130659A1 (en) * | 2016-11-08 | 2018-05-10 | Varian Semiconductor Equipment Associates, Inc. | Plasma Doping Using A Solid Dopant Source |
| RU2637016C1 (en) * | 2017-03-20 | 2017-11-29 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Method for manufacturing heat-resistant light-sensitive explosive compositions and light detonator on their basis |
| RU2729490C1 (en) * | 2019-06-14 | 2020-08-07 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Initiating composition and method for production thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0894235B1 (en) | 2005-09-07 |
| WO1997041403A1 (en) | 1997-11-06 |
| ES2249799T3 (en) | 2006-04-01 |
| EP0894235A1 (en) | 1999-02-03 |
| US20100180787A1 (en) | 2010-07-22 |
| DE19616627A1 (en) | 1997-11-06 |
| US20110162547A1 (en) | 2011-07-07 |
| ATE304156T1 (en) | 2005-09-15 |
| DE59712416D1 (en) | 2005-10-13 |
| US20010054462A1 (en) | 2001-12-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100180787A1 (en) | Ignition mixtures | |
| US6997998B2 (en) | Lead-and barium-free propellant charges | |
| US5417160A (en) | Lead-free priming mixture for percussion primer | |
| US5380380A (en) | Ignition compositions for inflator gas generators | |
| US5861571A (en) | Gas-generative composition consisting essentially of ammonium perchlorate plus a chlorine scavenger and an organic fuel | |
| US5936195A (en) | Gas generating composition with exploded aluminum powder | |
| US6221187B1 (en) | Method of safely initiating combustion of a gas generant composition using an autoignition composition | |
| US20010001970A1 (en) | Lead- and barium-free propellant charges | |
| CA2253196C (en) | Firing mixtures | |
| US6645326B2 (en) | Low temperature autoignition material | |
| USH285H (en) | Oxygen rich igniter compositions | |
| RU2157357C1 (en) | Pellet causing no corrosion | |
| DE19616628A1 (en) | Ignition mixture used for igniting pyrotechnical mixtures | |
| Eneh | CHEMICAL EXPLOSIVES: WARHEAD ALLY | |
| Eneh | Chapter Thirty-four | |
| Gesser | Explosives | |
| Fox | Explosives and Class 1 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |